explanation      blue bibcodes open ADS page with paths to full text
Author name code: schmitt
ADS astronomy entries on 2022-09-14
=author:"Schmitt, J.H.M.M." OR =author:"Schmitt, Juergen H.M.M." OR =author:"Schmitt, J."

---------------------------------------------------------
Title: The stellar content of the ROSAT all-sky survey
Authors: Freund, S.; Czesla, S.; Robrade, J.; Schneider, P. C.;
   Schmitt, J. H. M. M.
2022A&A...664A.105F    Altcode: 2022arXiv220512874F
  <BR /> Aims: We present and apply a method to identify the stellar
  content of the ROSAT all-sky survey (RASS). <BR /> Methods: We
  performed a crossmatch between the RASS sources and stellar candidates
  selected from Gaia Early Data Release 3 (EDR3) and estimated stellar
  probabilities for every RASS source from the geometric properties of
  the match and additional properties, namely the X-ray to G-band flux
  ratio and the counterpart distances. <BR /> Results: A comparison with
  preliminary detections from the first eROSITA all-sky survey (eRASS1)
  show that the positional offsets of the RASS sources are larger than
  expected from the uncertainties given in the RASS catalog. From the
  RASS sources with reliable positional uncertainties, we identify 28 630
  (24.9%) sources as stellar; this is the largest sample of stellar X-ray
  sources to date. Directly from the stellar probabilities, we estimate
  the completeness and reliability of the sample to be about 93% and
  confirm this value by comparing it to the identification of randomly
  shifted RASS sources, preliminary stellar eRASS1 identifications,
  and results from a previous identification of RASS sources. Our
  stellar RASS sources contain sources of all spectral types and
  luminosity classes. According to their position in the color-magnitude
  diagram, many stellar RASS sources are young stars with ages of a few
  10<SUP>7</SUP> yr or binaries. When plotting the X-ray to bolometric
  flux ratio as a function of the color, the onset of convection and
  the saturation limit are clearly visible. We note that later-type
  stars reach continuously higher F<SUB>X</SUB>/F<SUB>bol</SUB>
  values, which is probably due to more frequent flaring. The color
  distribution of the stellar RASS sources clearly differs from
  the unrelated background sources. We present the three-dimensional
  distribution of the stellar RASS sources that shows a clear increase
  in the source density near known stellar clusters. <P />Tables B.1
  and B.2 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/664/A105">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/664/A105</A>

---------------------------------------------------------
Title: Classification of various Gaia-Alerted objects
Authors: Dennefeld, M.; Pellouin, C.; Dupuis, H.; Favard, St.; Schmitt,
   J.; Adami, C.; Russeil, D.
2022ATel15509....1D    Altcode:
  We observed several Gaia Alerted (Hodgkin et al. 2021, A &amp; A,
  652, 76) objects during a commissioning run of the new spectro-imager
  MISTRAL at the 1.93m telescope at Haute-Provence observatory (OHP),
  during the nights of June 28, 29 and 30, 2022.

---------------------------------------------------------
Title: Observation of Gaia22cry(AT2022nmq), candidate SN
Authors: Dennefeld, M.; Dupuis, H.; Favard, St.; Schmitt, J.
2022ATel15486....1D    Altcode:
  We observed Gaia22cry (alias AT 2022nmq, first alerted by ZTF
  (22aaoolua) as a SN candidate on June 25 (TNSATR 151039) and discovered
  independantly on June 26, 2022 by Gaia Alerts (Hodgkin et al. 2022
  TNSATR 151356)) at Haute-Provence Observatory (OHP) on June 30th,
  01:30 TU. The spectro-imager MISTRAL was used at the 1.93m telescope
  and the object was quite conspicuous on the r band image (r ~ 18.0).

---------------------------------------------------------
Title: Observations of the Type Ia supernova 2022frn
Authors: Tanchon, E.; Basa, S.; Blondin, S.; Adami, C.; Schmitt,
   J.; Report
2022TNSAN.135....1T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Eight Years of TIGRE Robotic Spectroscopy: Operational
    Experience and Selected Scientific Results
Authors: González-Pérez, José Nicolás; Mittag, Marco; Schmitt,
   Jürgen H. M. M.; Schröder, Klaus-Peter; Jack, Dennis; Rauw, Gregor;
   Nazé, Yaël
2022FrASS...9.2546G    Altcode: 2022arXiv220602832G
  TIGRE (Telescopio Internacional de Guanajuato Robótico
  Espectroscópico) has been operating in fully robotic mode in the
  La Luz Observatory (Guanajuato, Mexico) since the end of 2013. With
  its sole instrument, HEROS, an échelle spectrograph with a spectral
  resolution R ∼20,000, TIGRE has collected more than 48,000 spectra
  of 1,151 different sources with a total exposure time of more than
  11,000 h in these 8 years. Here we briefly describe the system and the
  upgrades performed during the last years. We present the statistics
  of the weather conditions at the La Luz Observatory, emphasizing the
  characteristics that affect the astronomical observations. We evaluate
  the performance and efficiency of TIGRE, both optical and operational,
  and describe the improvements of the system implemented to optimize the
  telescope's performance and meet the requirements of the astronomer
  in terms of timing constraints for the observations and the quality
  of the spectra. We describe the actions taken to slow down the optical
  efficiency loss due to the aging of the optical surfaces as well as the
  upgrades of the scheduler and the observing procedures to minimize the
  time lost due to interrupted observations or observations that do not
  reach the required quality. Finally, we highlight a few of the main
  scientific results obtained with TIGRE data.

---------------------------------------------------------
Title: The corona - chromosphere connection studied with simultaneous
    eROSITA and TIGRE observations
Authors: Fuhrmeister, B.; Czesla, S.; Robrade, J.; González-Pérez,
   J. N.; Schneider, C.; Mittag, M.; Schmitt, J. H. M. M.
2022A&A...661A..24F    Altcode: 2021arXiv210614546F
  Stellar activity manifests itself in a variety of different
  phenomena, some of which we can measure as activity tracers from
  different atmospheric layers of the star, typically at different
  wavelengths. Stellar activity is furthermore inherently time
  variable, therefore simultaneous measurements are necessary to
  study the correlation between different activity indicators. In
  this study we compare X-ray fluxes measured within the first
  all-sky survey conducted by the extended ROentgen Survey with
  an Imaging Telescope Array (eROSITA) instrument on board the
  Spectrum-Roentgen-Gamma observatory to Ca II H&amp;K excess flux
  measurements R<SUB>HK</SUB><SUP>+</SUP>, using observations made
  with the robotic TIGRE telescope. We created the largest sample of
  simultaneous X-ray and spectroscopic Ca II H&amp;K observations of
  late-type stars obtained so far, and in addition, previous measurements
  of Ca II H&amp;K for all sample stars were obtained. We find the
  expected correlation between our log(L<SUB>X</SUB>/L<SUB>bol</SUB>)
  to log(R<SUB>HK</SUB><SUP>+</SUP>) measurements, but when the whole
  stellar ensemble is considered, the correlation between coronal
  and chromospheric activity indicators does not improve when the
  simultaneously measured data are used. A more detailed analysis
  shows that the correlation of log(L<SUB>X</SUB>/L<SUB>bol</SUB>) to
  log(R<SUB>HK</SUB><SUP>+</SUP>) measurements of the pseudo-simultaneous
  data still has a high probability of being better than that of a random
  set of non-simultaneous measurements with a long time baseline between
  the observations. Cyclic variations on longer timescales are therefore
  far more important for the activity flux-flux relations than short-term
  variations in the form of rotational modulation or flares, regarding
  the addition of "noise" to the activity flux-flux correlations. Finally,
  regarding the question of predictability of necessarily space-based log
  (L<SUB>X</SUB>/L<SUB>bol</SUB>) measurements by using ground-based
  chromospheric indices, we present a relation for estimating log
  (L<SUB>X</SUB>/L<SUB>bol</SUB>) from R<SUB>HK</SUB><SUP>+</SUP> values
  and show that the expected error in the calculated minus observed
  (C-O) log (L<SUB>X</SUB>/L<SUB>bol</SUB>) values is 0.35 dex. <P
  />Full Table 3 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A24">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A24</A>

---------------------------------------------------------
Title: eROSITA X-ray scan of the η Chamaeleontis cluster. Member
    study and search for dispersed low-mass stars
Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.;
   Schneider, P. C.
2022A&A...661A..34R    Altcode:
  Context. The nearby young open cluster η Chamaeleontis has been
  observed by eROSITA/SRG during its CalPV phase for 150 ks. The
  extended ROentgen Survey with an Imaging Telescope Array (eROSITA)
  data were taken in the field-scan mode, an observing mode of
  Spectrum-Roentgen-Gamma (SRG) that follows a rectangular grid-like
  pattern, here covering a 5 × 5 deg field with an exposure depth of
  about 5 ks. <BR /> Aims: The η Cha cluster with an age of about 8 Myr
  is a key target for investigating the evolution of young stars, and
  we aim to study the known members in X-rays. Additionally, we search
  for potential new members of the anticipated dispersed low-mass cluster
  population in a sensitive wide-field X-ray observation. <BR /> Methods:
  Using eROSITA X-ray data, we studied the η Cha region. Detected
  sources were identified by cross-matching X-ray sources with Gala
  and 2MASS, and young stars were identified by their X-ray activity,
  the position in the color-magnitude diagram, and by their astrometric
  and kinematic properties. X-ray-luminosities, light curves, and
  spectra of cluster members were obtained and compared with previous
  X-ray data. Literature results of other member searches were used
  to verify our new member candidates in the observed field. <BR />
  Results: We determine X-ray properties of virtually all known η
  Cha members and identify five additional stellar systems that show
  basically identical characteristics, but they are more dispersed. Four
  of them were previously proposed as potential members; this status is
  supported by our X-ray study. Based on their spatial distribution,
  further members are expected beyond the sky region we surveyed. The
  identified stellar systems very likely belong to the ejected halo
  population, which brings the total number of η Cha cluster members
  to at least 23. <BR /> Conclusions: Sensitive X-ray surveys are best
  suited to identifying active stars, and the combination of the ongoing
  eROSITA all-sky survey with Gala measurements provides an unprecedented
  opportunity to study the nearby, young stellar population. <P />The
  source catalog is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A34">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A34</A>

---------------------------------------------------------
Title: X-raying the Sco-Cen OB association: The low-mass stellar
    population revealed by eROSITA
Authors: Schmitt, J. H. M. M.; Czesla, S.; Freund, S.; Robrade, J.;
   Schneider, P. C.
2022A&A...661A..40S    Altcode: 2021arXiv210614549S
  We present the results of the first X-ray all-sky survey (eRASS1)
  performed by the eROSITA instrument on board the Spectrum-Roentgen-Gamma
  observatory of the Sco-Cen OB association. Bona fide Sco-Cen member
  stars are young and are therefore expected to emit X-rays at the
  saturation level. The sensitivity limit of eRASS1 makes these stars
  detectable down to about a tenth of a solar mass. By cross-correlating
  the eRASS1 source catalog with the Gaia EDR3 catalog, we arrive at a
  complete identification of the stellar (i.e., coronal) source content
  of eROSITA in the Sco-Cen association, and in particular obtain for the
  first time a 3D view of the detected stellar X-ray sources. Focusing
  on the low-mass population and placing the optical counterparts
  identified in this way in a color-magnitude diagram, we can isolate
  the young stars out of the detected X-ray sources and obtain age
  estimates of the various Sco-Cen populations. A joint analysis of the
  2D and 3D space motions, the latter being available only for a smaller
  subset of the detected stellar X-ray sources, reveals that the space
  motions of the selected population show a high degree of parallelism,
  but there is also an additional population of young, X-ray emitting
  and essentially cospatial stars that appears to be more diffuse in
  velocity space. Its nature is currently unclear. We argue that with
  our procedures, an identification of almost the whole stellar content
  of the Sco-Cen association will become possible once the final Gaia
  and eROSITA catalogs are available by the end of this decade. We
  furthermore call into question any source population classification
  scheme that relies on purely kinematic selection criteria. <P />Full
  Table A.1 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A40">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A40</A>

---------------------------------------------------------
Title: The eROSITA Final Equatorial-Depth Survey (eFEDS). Variability
    catalogue and multi-epoch comparison
Authors: Boller, Th.; Schmitt, J. H. M. M.; Buchner, J.; Freyberg,
   M.; Georgakakis, A.; Liu, T.; Robrade, J.; Merloni, A.; Nandra, K.;
   Malyali, A.; Krumpe, M.; Salvato, M.; Dwelly, T.
2022A&A...661A...8B    Altcode: 2021arXiv210614523B
  The 140-square-degrees Final Equatorial-Depth Survey (eFEDS) field,
  observed with the extended ROentgen Survey with an Imaging Telescope
  Array (eROSITA) on board the Spectrum-Roentgen-Gamma mission, provides
  a first look at the variable eROSITA sky. We analysed the intrinsic
  X-ray variability of the eFEDS sources and provide X-ray light curves
  and tables with variability test results in the 0.2-2.3 keV (soft)
  and 2.3-5.0 keV (hard) bands. We performed variability tests using
  the traditional normalised excess variance and maximum amplitude
  variability methods (as performed for the 2RXS catalogue), and we
  present results from the Bayesian excess variance and Bayesian block
  methods. We identified 65 sources as being significantly variable in
  the soft band. In the hard band, only one source is found to vary
  significantly. For the most variable sources, the light curves are
  well fit by an empirical stellar flare model and reveal extreme flare
  properties. A few highly variable active galactic nuclei have also
  been detected. About half of the variable eFEDS sources are detected
  in the X-rays for the first time with eROSITA. Comparison with 2RXS and
  XMM-Newton observations provides variability information on timescales
  of years to decades. <P />Table of the eFEDS sources with variability
  test results is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A8">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A8</A>

---------------------------------------------------------
Title: The eROSITA Final Equatorial-Depth Survey (eFEDS). The Stellar
    Counterparts of eROSITA sources identified by machine learning and
    Bayesian algorithms
Authors: Schneider, P. C.; Freund, S.; Czesla, S.; Robrade, J.;
   Salvato, M.; Schmitt, J. H. M. M.
2022A&A...661A...6S    Altcode: 2021arXiv210614521S
  Stars are ubiquitous X-ray emitters and will be a substantial
  fraction of the X-ray sources detected in the on-going all-sky
  survey performed by the eROSITA instrument aboard the Spectrum
  Roentgen Gamma (SRG) observatory. We use the X-ray sources in the
  eROSITA Final Equatorial-Depth Survey (eFEDS) field observed during
  the SRG performance verification phase to investigate different
  strategies to identify the stars among other source categories. We
  focus here on Support Vector Machine (SVM) and Bayesian approaches,
  and our approaches are based on a cross-match with the Gaia catalog,
  which will eventually contain counterparts to virtually all stellar
  eROSITA sources. We estimate that 2060 stars are among the eFEDS
  sources based on the geometric match distance distribution, and we
  identify the 2060 most likely stellar sources with the SVM and Bayesian
  methods, the latter being named HamStars in the eROSITA context. Both
  methods reach completeness and reliability percentages of almost 90%,
  and the agreement between both methods is, incidentally, also about
  90%. Knowing the true number of stellar sources allowed us to derive
  association probabilities p<SUB>ij</SUB> for the SVM method similar
  to the Bayesian method so that one can construct samples with defined
  completeness and reliability properties using appropriate cuts in
  p<SUB>ij</SUB>. The thus identified stellar sources show the typical
  characteristics known for magnetically active stars, specifically,
  they are generally compatible with the saturation level, show a large
  spread in activity for stars of spectral F to G, and have comparatively
  high fractional X-ray luminosities for later spectral types.

---------------------------------------------------------
Title: The nature of the X-ray sources constituting the 6.7 keV
    Galactic ridge emission
Authors: Schmitt, J. H. M. M.; Czesla, S.; Schneider, P. C.; Freund,
   S.; Robrade, J.
2022A&A...661A..88S    Altcode:
  We reanalyze the deep Chandra X-ray observations near the Galactic
  center and show that reliable identifications of X-ray sources can
  be obtained with the Gaia EDR3 data to investigate which types of
  stellar sources are responsible for the X-ray emission observed from the
  Galactic ridge (GRXE). In the central 3 arcmin region 318 X-ray sources
  are detected, about one-third of which can be identified with objects
  listed in Gaia EDR3; however, only 22 objects have parallaxes and colors
  and can be placed into a color-magnitude diagram and thus be identified
  as coronal X-ray emitters. A rather large fraction of the X-ray sources
  cannot be identified with Gaia EDR3 entries, and we discuss the optical
  brightnesses of these sources. We analyze the counting events obtained
  in the 6.7 keV iron line spectral region and show that they are mainly
  caused by background events; however, 237 events can be associated with
  the detected X-ray sources, and we carry out an intensity measurement
  of the whole iron line complex. Our analysis shows that the mean energy
  of this iron line complex is located at a wavelength of ≈1.87 Å,
  where a variety of emission lines of iron ions in ionization stages
  FeXXIII-FeXXV are located; another line at 7.0 keV is only marginally
  detected, while the fluorescent 6.4 keV neutral iron line is clearly
  not seen. We demonstrate that only a few of the detected X-ray sources
  are responsible for the bulk of the observed iron line emission. We
  discuss to what extent coronal emission can be held responsible and
  demonstrate that M dwarfs and active binary systems like RS CVn systems
  do not significantly contribute to the observed emission; instead,
  it appears that the Galactic ridge emission is produced by optically
  fainter sources. Among the known population of cataclysmic variables,
  polars and dwarf novae appear to be the most promising candidates as
  main contributors to the GRXE.

---------------------------------------------------------
Title: A highly mutually inclined compact warm-Jupiter system KOI-984?
Authors: Sun, L.; Ioannidis, P.; Gu, S.; Schmitt, J. H. M. M.;
   Wang, X.; Kouwenhoven, M. B. N.; Perdelwitz, V.; Flammini Dotti, F.;
   Czesla, S.
2022MNRAS.512.4604S    Altcode: 2021arXiv211109668S
  The discovery of a population of close-orbiting giant planets (≤ 1
  au) has raised a number of questions about their origins and dynamical
  histories. These issues have still not been fully resolved, despite
  over 20 years of exoplanet detections and a large number of discovered
  exoplanets. In particular, it is unclear whether warm Jupiters (WJs)
  form in situ, or whether they migrate from further outside and are
  even currently migrating to form hot Jupiters. Here, we report the
  possible discovery and characterization of the planets in a highly
  mutually inclined (I<SUB>mut</SUB> ≃ 45°) compact two-planet system
  (KOI-984), in which the newly discovered warm Jupiter KOI-984c is
  on a 21.5-d moderately eccentric (e ≃ 0.4) orbit, in addition to a
  previously known 4.3-d planet candidate KOI-984b. Meanwhile, the orbital
  configuration of a moderately inclined (I<SUB>mut</SUB> ≃ 15°)
  low-mass (m<SUB>c</SUB> ≃ 24M<SUB>⊕</SUB>; P<SUB>b</SUB> ≃ 8.6
  d) perturbing planet near the 1:2 mean-motion resonance with KOI-984b
  could also well reproduce the observed transit-timing variations and
  transit-duration variations of KOI-984b. Such an eccentric WJ with
  a close-in sibling would pose a challenge to the proposed formation
  and migration mechanisms of WJs if the first scenario is supported
  with more evidence in the near future; this system with several other
  well measured inclined WJ systems (e.g. Kepler-419 and Kepler-108) may
  provide additional clues to the origin and dynamical histories of WJs.

---------------------------------------------------------
Title: The Janus Camera Onboard ESA JUICE Mission: The Science
    Planning Strategy
Authors: Lucchetti, A.; Tubiana, C.; Roatsch, T.; Hueso, R.; Denk,
   T.; Schmidt, J.; Lopes, R. M. C.; Williams, D.; Bell, J.; Schneider,
   N.; Lara, L. M.; Gwinner, K.; Stephan, K.; Tosi, F.; Aboudan, A.;
   Bilotta, T.; Cremonese, G.; Della Corte, V.; Dattolo, A.; Hviid, S.;
   Mertens, V.; Matz, K. -D.; Politi, R.; Schrödter, R.; Trauthan, F.;
   Zusi, M.; Palumbo, P.; Janus Team
2022LPICo2678.2144L    Altcode:
  We present the resulting JANUS VIS-camera (onboard ESA JUICE mission)
  planning strategy we are developing in order to fulfill the JANUS
  scientific requirements.

---------------------------------------------------------
Title: VizieR Online Data Catalog: eFEDS catalogue of variable X-ray
    sources (Boller+, 2022)
Authors: Boller, T.; Schmitt, J. H. M. M.; Buchner, J.; Freyberg,
   M.; Georgakakis, A.; Liu, T.; Robrade, J.; Merloni, A.; Nandra, K.;
   Malyali, A.; Krumpe, M.; Salvato, M.; Dwelly, T.
2022yCat..36610008B    Altcode:
  Intrinsic X-ray variability of eFEDS sources in the 0.2-2.3keV (soft)
  and 2.3-5.0keV (hard) bands has been determined. Variability tests
  have been performed using the normalized excess variance, the maximum
  amplitude variability method as performed for the 2RXS catalogue as
  well as the Bayesian excess variance and the Bayesian block methods. In
  total 65 sources have been identified as being significantly variable
  in the soft band. In the hard band only one source is found to vary
  significantly. For the most variable sources fits to stellar flare
  events reveal extreme flare properties. A few highly variable AGN have
  also been detected. About half of the variable eFEDS sources have been
  detected at X-rays with eROSITA for the first time. <P />(2 data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: eta Cha cluster eROSITA X-ray scan
    (Robrade+, 2022)
Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.;
   Schneider, P. C.
2022yCat..36610034R    Altcode:
  The nearby young open cluster eta Chamaeleontis has been observed by
  eROSITA/SRG during its CalPV phase for 150ks. The extended ROentgen
  Survey with an Imaging Telescope Array (eROSITA) data were taken in
  the field-scan mode, an observing mode of Spectrum-Roentgen-Gamma
  (SRG) that follows a rectangular grid-like pattern, here covering
  a 5x5deg field with an exposure depth of about 5ks. We present the
  X-ray source catalog of the eROSITA eta Cha field scan in the main
  (0.2-2.3keV) and hard (2.3-5.0keV) energy band. <P />(2 data files).

---------------------------------------------------------
Title: Orbital obliquity sampling in the Kepler-20 system using the
    3D animation software Blender
Authors: Müller, H. M.; Ioannidis, P.; Schmitt, J. H. M. M.
2022A&A...657A..37M    Altcode: 2021arXiv211009268M
  Context. The mutual orbital alignment in multiple planetary systems
  is an important parameter for understanding their formation. There
  are a number of elaborate techniques to determine the alignment
  parameters using photometric or spectroscopic data. Planet-planet
  occultations (PPOs), which can occur in multiple transiting systems,
  are one intuitive example. While the presence of PPOs constrains the
  orbital alignment, the absence at first glance does not. <BR /> Aims:
  Planetary systems, for which the measurement of orbital obliquities with
  conventional techniques remains elusive, call for new methods whereby
  at least some information on the alignments can be obtained. Here
  we develop a method that uses photometric data to gain this kind of
  information from multi-transit events. <BR /> Methods: In our approach
  we synthesize multi-transit light curves of the exoplanets in question
  via the construction of a grid of projected orbital tilt angles α,
  while keeping all transit parameters constant. These model light curves
  contain PPOs for some values of α. To compute the model light curves,
  we use the 3D animation software Blender for our transit simulations,
  which allows the use of arbitrary surface brightness distributions of
  the star, such as limb darkening from model atmospheres. The resulting
  model light curves are then compared to actual measurements. <BR />
  Results: We present a detailed study of the multi-transiting planetary
  system Kepler-20, including parameter fits of the transiting planets and
  an analysis of the stellar activity. We apply our method to Kepler-20 b
  and c, where we are able to exclude some orbital geometries, and find
  a tendency of these planets to eclipse in front of different stellar
  hemispheres in a prograde direction. <BR /> Conclusions: Despite the
  low statistical significance of our results in the case of Kepler-20,
  we argue that our method is valuable for systems where PPO signals
  larger than the noise can occur. According to our analysis, noise ≤ 2
  × 10<SUP>−4</SUP> for planets like Kepler-20 b, or a planet radius
  ≥ 3 R<SUB>Earth</SUB> for the smaller component and Kepler-20-like
  photometry, would be sufficient to achieve significant results.

---------------------------------------------------------
Title: Hα and He I absorption in HAT-P-32 b observed with
    CARMENES. Detection of Roche lobe overflow and mass loss
Authors: Czesla, S.; Lampón, M.; Sanz-Forcada, J.; García Muñoz,
   A.; López-Puertas, M.; Nortmann, L.; Yan, D.; Nagel, E.; Yan, F.;
   Schmitt, J. H. M. M.; Aceituno, J.; Amado, P. J.; Caballero, J. A.;
   Casasayas-Barris, N.; Henning, Th.; Khalafinejad, S.; Molaverdikhani,
   K.; Montes, D.; Pallé, E.; Reiners, A.; Schneider, P. C.; Ribas,
   I.; Quirrenbach, A.; Zapatero Osorio, M. R.; Zechmeister, M.
2022A&A...657A...6C    Altcode: 2021arXiv211013582C
  We analyze two high-resolution spectral transit time series of the
  hot Jupiter HAT-P-32 b obtained with the CARMENES spectrograph. Our
  new XMM-Newton X-ray observations of the system show that the
  fast-rotating F-type host star exhibits a high X-ray luminosity of 2.3
  × 10<SUP>29</SUP> erg s<SUP>−1</SUP> (5-100 Å), corresponding to a
  flux of 6.9 × 10<SUP>4</SUP> erg cm<SUP>−2</SUP> s<SUP>−1</SUP>
  at the planetary orbit, which results in an energy-limited escape
  estimate of about 10<SUP>13</SUP> g s<SUP>−1</SUP> for the
  planetary mass-loss rate. The spectral time series show significant,
  time-dependent absorption in the Hα and He Iλ10833 triplet lines
  with maximum depths of about 3.3% and 5.3%. The mid-transit absorption
  signals in the Hα and He Iλ10833 lines are consistent with results
  from one-dimensional hydrodynamic modeling, which also yields mass-loss
  rates on the order of 10<SUP>13</SUP> g s<SUP>−1</SUP>. We observe
  an early ingress of a redshifted component of the transmission signal,
  which extends into a redshifted absorption component, persisting until
  about the middle of the optical transit. While a super-rotating wind
  can explain redshifted ingress absorption, we find that an up-orbit
  stream, transporting planetary mass in the direction of the star,
  also provides a plausible explanation for the pre-transit signal. This
  makes HAT-P-32 a benchmark system for exploring atmospheric dynamics
  via transmission spectroscopy.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Diagnostic
    capabilities of strong K I lines for photosphere and chromosphere
Authors: Fuhrmeister, B.; Czesla, S.; Nagel, E.; Reiners, A.; Schmitt,
   J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Shulyak, D.; Johnson,
   E. N.; Zechmeister, M.; Montes, D.; López-Gallifa, Á.; Ribas, I.;
   Quirrenbach, A.; Amado, P. J.; Galadí-Enríquez, D.; Hatzes, A. P.;
   Kürster, M.; Danielski, C.; Béjar, V. J. S.; Kaminski, A.; Morales,
   J. C.; Zapatero Osorio, M. R.
2022A&A...657A.125F    Altcode: 2021arXiv211101552F
  There are several strong K I lines found in the spectra of M dwarfs,
  among them the doublet near 7700 Å and another doublet near 12 500
  Å. We study these optical and near-infrared doublets in a sample of
  324 M dwarfs, observed with CARMENES, the high-resolution optical and
  near-infrared spectrograph at Calar Alto, and investigate how well the
  lines can be used as photospheric and chromospheric diagnostics. Both
  doublets have a dominant photospheric component in inactive stars
  and can be used as tracers of effective temperature and gravity. For
  variability studies using the optical doublet, we concentrate on
  the red line component because this is less prone to artefacts from
  telluric correction in individual spectra. The optical doublet lines
  are sensitive to activity, especially for M dwarfs later than M5.0 V
  where the lines develop an emission core. For earlier type M dwarfs,
  the red component of the optical doublet lines is also correlated
  with Hα activity. We usually find positive correlation for stars with
  Hα in emission, while early-type M stars with Hα in absorption show
  anti-correlation. During flares, the optical doublet lines can exhibit
  strong fill-in or emission cores for our latest spectral types. On
  the other hand, the near-infrared doublet lines very rarely show
  correlation or anti-correlation to Hα and do not change line shape
  significantly even during the strongest observed flares. Nevertheless,
  the near-infrared doublet lines show notable resolved Zeeman splitting
  for about 20 active stars which allows to estimate the magnetic fields
  B. <P />Full Table 2 is only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A125">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A125</A>

---------------------------------------------------------
Title: Gaia21fji is indeed a Young Stellar Object
Authors: Adami, Ch.; Grosso, N.; Dennefeld, M.; Favard, St.; Schmitt,
   J.; Huppert, Fr.; Brunel, J. C.
2021ATel15131....1A    Altcode:
  Gaia 21fji (= AT2021aftk) was alerted on Nov. 6, 2021 due to a recent
  brightening (Hodgkin et al., TNS Astronomical Transient Report 130737)
  and noted as "Candidate YSO".

---------------------------------------------------------
Title: VizieR Online Data Catalog: KI diagnostic capabilities for
    M dwarfs (Fuhrmeister+, 2022)
Authors: Fuhrmeister, B.; Czesla, S.; Nagel, E.; Reiners, A.; Schmitt,
   J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Shulyak, D.; Johnson,
   E. N.; Zechmeister, M.; Montes, D.; Lopez-Gallifa, A.; Ribas, I.;
   Quirrenbach, A.; Amado, P. J.; Galadi-Enriquez, D.; Hatzes, A. P.;
   Kuerster, M.; Danielski, C.; Bejar, V. J. S.; Kaminski, A.; Morales,
   J. C.; Zapatero Osorio, M. R.
2021yCat..36570125F    Altcode:
  We measure the pseudo-equivalent width for pEW) of the KI doublet lines
  in each stellar spectrum. The integration ranges for the lines and
  the reference bands are found in Table 1 of the paper. For comparison
  purposes we also measure pEW values of Halpha. From these measurements
  we compute the mean pEW, the median absolute deviation (MAD) and
  Pearson's correlation coefficients for the lines. <P />(1 data file).

---------------------------------------------------------
Title: Using a Holistic Modeling Approach to Simulate Mud-Induced
    Periodic Stratification in Hyper-Turbid Estuaries
Authors: Schmidt, J.; Malcherek, A.
2021GeoRL..4892798S    Altcode:
  This study focuses on a holistic modeling approach, in which water,
  fluid mud, and immobile mud are all calculated by only one set of
  equations. To integrate the immobile mud into this concept, a holistic
  transport equation including sediment transport and consolidation
  is developed. In some estuaries, extensive deepening and dredging
  resulted in tidal deformation and sediment import to such extent,
  that hyper-turbid conditions developed. Recent measurements from
  the Ems estuary show that the locations of interfaces between water,
  fluid mud, and consolidated mud vary during a tidal cycle. Conditions
  are varying from fully mixed to stably stratified. As a suitable case
  study for the holistic model, a 1D vertical numerical simulation of
  the Ems has been set up, which is able to qualitatively reproduce
  the observed vertical velocity, concentration, and velocity shear
  profile. The simulation shows mud-induced periodic stratification.

---------------------------------------------------------
Title: Current status of PAPYRUS: the pyramid based adaptive optics
    system at LAM/OHP
Authors: Muslimov, E.; Levraud, N.; Chambouleyron, V.; Boudjema, I.;
   Lau, A.; Caillat, A.; Pedreros, F.; Otten, G.; El Hadi, K.; Joaquina,
   K.; Maxime, M.; El Morsy, M.; Beltramo-Martin, O.; Fétick, R.; Ke,
   Z.; Sauvage, J. -F.; Neichel, B.; Fusco, T.; Schmitt, J.; Le Van Suu,
   A.; Charton, J.; Schimpf, A.; Martin, B.; Dintrono, F.; Esposito,
   S.; Pina, E.
2021SPIE11876E..0HM    Altcode: 2021arXiv211010263M; 2021arXiv211010263E
  The Provence Adaptive optics Pyramid Run System (PAPYRUS) is a
  pyramid-based Adaptive Optics (AO) system that will be installed at the
  Coude focus of the 1.52m telescope (T152) at the Observatoire de Haute
  Provence (OHP). The project is being developed by PhD students and
  Postdocs across France with support from staff members consolidating
  the existing expertise and hardware into an RD testbed. This testbed
  allows us to run various pyramid wavefront sensing (WFS) control
  algorithms on-sky and experiment on new concepts for wavefront control
  with additional benefit from the high number of available nights at
  this telescope. It will also function as a teaching tool for students
  during the planned AO summer school at OHP. To our knowledge, this is
  one of the first pedagogic pyramid-based AO systems on-sky. The key
  components of PAPYRUS are a 17x17 actuators Alpao deformable mirror
  with a Alpao RTC, a very low noise camera OCAM2k, and a 4-faces glass
  pyramid. PAPYRUS is designed in order to be a simple and modular system
  to explore wavefront control with a pyramid WFS on sky. We present an
  overview of PAPYRUS, a description of the opto-mechanical design and
  the current status of the project.

---------------------------------------------------------
Title: VizieR Online Data Catalog: eRASS1 X-ray sources Sco-Cen
    members (Schmitt+, 2022)
Authors: Schmitt, J. H. M. M.; Czesla, S.; Freund, S.; Robrade, J.;
   Schneider, P. C.
2021yCat..36610040S    Altcode:
  Our Sco-Cen membership list is presented together with the X-ray
  properties as obtained by a crossmatch with detections from the first
  eROSITA all-sky survey (eRASS1) and the Gaia Early Data release EDR3. In
  the catalog we provide a list with the corresponding (preliminary)
  eROSITA designations, the designations of the matching Gaia EDR3
  identifications, the derived X-ray right ascensions and declinations
  (in degrees), the match distances (in arcsec) between eROSITA and
  Gaia sources, the eRASS1 count rate (in cts/s) as well as a flag,
  denoting which part of the Sco-Cen association the entry belongs to
  (US,UCL,UCC). <P />(1 data file).

---------------------------------------------------------
Title: Simultaneous eROSITA and TESS observations of the ultra-active
    star AB Doradus
Authors: Schmitt, J. H. M. M.; Ioannidis, P.; Robrade, J.; Predehl,
   P.; Czesla, S.; Schneider, P. C.
2021A&A...652A.135S    Altcode: 2021arXiv210614537S
  We present simultaneous multiwavelength observations of the ultra-active
  star AB Doradus obtained in the X-ray range with the eROSITA instrument
  on board the Russian-German Spectrum-Roentgen-Gamma mission, and
  in the optical range obtained with the Transiting Exoplanet Survey
  Satellite (TESS). Thanks to its fortuitous location in the vicinity
  of the southern ecliptic pole, AB Dor was observed by these missions
  simultaneously for almost 20 days. With the hitherto obtained data we
  study the long-term evolution of the X-ray flux from AB Dor and the
  relation between this observable and the photospheric activity of its
  spots. Over the 1.5 yr of eROSITA survey observations, the "quiescent"
  X-ray flux of AB Dor has not changed, and furthermore it appears
  unrelated to the photospheric modulations observed by TESS. During
  the simultaneous eROSITA and TESS coverage, an extremely large flare
  event with a total energy release of at least 4 × 10<SUP>36</SUP>
  erg in the optical was observed, the largest ever seen on AB Dor. We
  show that the total X-ray output of this flare was far smaller than
  this, and discuss whether this maybe a general feature of flares on
  late-type stars. <P />Note to the reader: the article was assigned to
  another Special Issue on 16 December 2021.

---------------------------------------------------------
Title: CARMENES input catalog of M dwarfs. VI. A time-resolved Ca
    II H&amp;K catalog from archival data
Authors: Perdelwitz, V.; Mittag, M.; Tal-Or, L.; Schmitt, J. H. M. M.;
   Caballero, J. A.; Jeffers, S. V.; Reiners, A.; Schweitzer, A.;
   Trifonov, T.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Seifert,
   W.; Cifuentes, C.; Cortés-Contreras, M.; Montes, D.; Revilla, D.;
   Skrzypinski, S. L.
2021A&A...652A.116P    Altcode: 2021arXiv210706376P
  Context. Radial-velocity (RV) jitter caused by stellar magnetic
  activity is an important factor in state-of-the-art exoplanet
  discovery surveys such as CARMENES. Stellar rotation, along with
  heterogeneities in the photosphere and chromosphere caused by
  activity, can result in false-positive planet detections. Hence,
  it is necessary to determine the stellar rotation period and compare
  it to any putative planetary RV signature. Long-term measurements of
  activity indicators such as the chromospheric emission in the Ca II
  H&amp;K lines (R<SUB>HK</SUB><SUP>'</SUP>) enable the identification of
  magnetic activity cycles. <BR /> Aims: In order to determine stellar
  rotation periods and study the long-term behavior of magnetic activity
  of the CARMENES guaranteed time observations (GTO) sample, it is
  advantageous to extract R<SUB>HK</SUB><SUP>'</SUP> time series from
  archival data, since the CARMENES spectrograph does not cover the blue
  range of the stellar spectrum containing the Ca II H&amp;K lines. <BR
  /> Methods: We have assembled a catalog of 11 634 archival spectra
  of 186 M dwarfs acquired by seven different instruments covering
  the Ca II H&amp;K regime: ESPaDOnS, FEROS, HARPS, HIRES, NARVAL,
  TIGRE, and UVES. The relative chromospheric flux in these lines,
  R<SUB>HK</SUB><SUP>'</SUP>, was directly extracted from the spectra
  by rectification with PHOENIX synthetic spectra via narrow passbands
  around the Ca II H&amp;K line cores. <BR /> Results: The combination
  of archival spectra from various instruments results in time series
  for 186 stars from the CARMENES GTO sample. As an example of the use
  of the catalog, we report the tentative discovery of three previously
  unknown activity cycles of M dwarfs. <BR /> Conclusions: We conclude
  that the method of extracting R<SUB>HK</SUB>^\prime with the use of
  model spectra yields consistent results for different instruments
  and that the compilation of this catalog will enable the analysis
  of long-term activity time series for a large number of M dwarfs. <P
  />Full Table 3 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/652/A116">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/652/A116</A>

---------------------------------------------------------
Title: OHP spectroscopic observations of AT2021, candidate Nova in M31
Authors: Dennefeld, M.; Schmitt, J.; Favard, St.; Hornstein, J.;
   Adami, C.
2021ATel14760....1D    Altcode:
  We observed at Haute-Provence Observatory (OHP, CNRS, France) the
  candidate Nova in M31, PNV 00424717 +4118173 = AT 2021scc (Hornoch
  et al., ATel 14753) on July 6th, 01h50UT, with the new spectro-imager
  Mistral during its last test runs at the 1.93m telescope.

---------------------------------------------------------
Title: VizieR Online Data Catalog: CARMENES time-resolved CaII
    H&amp;K catalog (Perdelwitz+, 2021)
Authors: Perdelwitz, V.; Mittag, M.; Tal-Or, L.; Schmitt, J. H. M. M.;
   Caballero, J. A.; Jeffers, S. V.; Reiners, A.; Schweitzer, A.;
   Trifonov, T.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Seifert,
   W.; Cifuentes, C.; Cortes-Contreras, M.; Montes, D.; Revilla, D.;
   Skrzypinski, S. L.
2021yCat..36520116P    Altcode:
  The time-resolved catalog is based on pipeline-reduced spectra
  from seven different spectrographs: <P />ESPADONS (Donati et
  al., 1997MNRAS.291..658D; Petit et al., 2014PASP..126..469P,
  Cat. J/PASP/126/469) FEROS (Kaufer et al., 1999Msngr..95....8K)
  HARPS (Mayor et al., 2003Msngr.114...20M) HIRES (Vogt et al. 1994, in
  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
  Series, Vol. 2198, Instrumentation in Astronomy VIII, 362; Vogt 2002,
  in Astronomical Society of the Pacific Conference Series, Vol. 270,
  Astronomical Instrumentation and Astrophysics, 5) NARVAL (Petit et
  al., 2014PASP..126..469P, Cat. J/PASP/126/469; Donati et al. 2006,
  in Astronomical Society of the Pacific Conference Series, Vol. 358,
  Solar Polarization 4, 362) TIGRE (Schmitt et al., 2004ANS...325...27W)
  UVES (Dekker et al. 2000, in Society of Photo-Optical Instrumentation
  Engineers (SPIE) Conference Series, Vol. 4008, Optical and IR Telescope
  Instrumentation and Detectors, 534-545) <P />The spectral rectification
  and flux calibration is based on PHOENIX model atmospheres (Husser et
  al., 2013A&amp;A...553A...6H). <P />(2 data files).

---------------------------------------------------------
Title: A cosmic dust detection suite for the deep space Gateway
Authors: Wozniakiewicz, P. J.; Bridges, J.; Burchell, M. J.; Carey, W.;
   Carpenter, J.; Della Corte, V.; Dignam, A.; Genge, M. J.; Hicks, L.;
   Hilchenbach, M.; Hillier, J.; Kearsley, A. T.; Krüger, H.; Merouane,
   S.; Palomba, E.; Postberg, F.; Schmidt, J.; Srama, R.; Trieloff, M.;
   van-Ginneken, M.; Sterken, V. J.
2021AdSpR..68...85W    Altcode:
  The decade of the 2020s promises to be when humanity returns to
  space beyond Earth orbit, with several nations trying to place
  astronauts on the Moon, before going further into deep space. As
  part of such a programme, NASA and partner organisations, propose
  to build a Deep Space Gateway in lunar orbit by the mid-2020s. This
  would be visited regularly and offer a platform for science as well
  as for human activity. Payloads that can be mounted externally on the
  Gateway offer the chance to, amongst other scientific goals, monitor
  and observe the dust flux in the vicinity of the Moon. This paper
  looks at relevant technologies to measure dust which will impact the
  exposed surface at high speed. Flux estimates and a model payload of
  detectors are described. It is predicted that the flux is sufficient to
  permit studies of cometary vs. asteroidal dust and their composition,
  and to sample interstellar dust streams. This may also be the last
  opportunity to measure the natural dust flux near the Moon before the
  current, relatively pristine environment, is contaminated by debris,
  as humanity's interest in the Moon generates increased activity in
  that vicinity in coming decades.

---------------------------------------------------------
Title: eROSITA X-ray scan of the eta Chamaeleontis cluster
Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.;
   Schneider, P. C.
2021arXiv210614531R    Altcode:
  The nearby young open cluster eta Chamaeleontis has been observed
  by eROSITA/SRG during its CalPV phase for 150 ks. The eROSITA
  data were taken in the field-scan mode, an observing mode of
  Spectrum-Roentgen-Gamma (SRG) that follows a rectangular grid-like
  pattern, here covering a 5x5 deg field with an exposure depth of
  about 5 ks. We study the known members in X-rays and search for
  potential new members of the anticipated dispersed low-mass cluster
  population. Detected sources were identified by cross-matching X-ray
  sources with Gaia and 2MASS, and young stars were identified by their
  X-ray activity, the position in the color-magnitude diagram, and by
  their astrometric and kinematic properties. X-ray-luminosities, light
  curves, and spectra of cluster members were obtained and compared with
  previous X-ray data. Literature results of other member searches were
  used to verify our new member candidates in the observed field. We
  determine X-ray properties of virtually all known eta Cha members and
  identify five additional stellar systems that show basically identical
  characteristics, but are more dispersed. Four of them were previously
  proposed as potential members; this status is supported by our X-ray
  study. Based on their spatial distribution, further members are expected
  beyond the sky region we surveyed. The identified stellar systems very
  likely belong to the ejected halo population, which brings the total
  number of eta Cha cluster members to at least 23.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Corona-chromosphere connection
    (Fuhrmeister+, 2022)
Authors: Fuhrmeister, B.; Czesla, S.; Robrade, J.; Gonzales-Perez,
   J. N.; Schneider, C.; Mittag, M.; Schmitt, J. H. M. M.
2021yCat..36610024F    Altcode:
  We state here the X-ray luminosities derived from the eROSITA
  count-rates. The CaII H &amp; K measurements are given as S-index for
  the TIGRE telescope, which can be converted to S<SUB>MountWilson</SUB>
  by the equation given in Mittag et al. (2016A&amp;A...591A..89M). We
  list the median value for all CaII H &amp; K measurements and
  the pseudo-simultaneous data. For the latter we give the time
  difference between the middle of the eROSITA observation and the TIGRE
  observation. Rotation period estimates from CaII H &amp; K are computed
  following Mittag et al. (2018A&amp;A...618A..48M). <P />(1 data file).

---------------------------------------------------------
Title: Connecting the Formation of Stars and Planets. I -
    Spectroscopic Characterization of Host Stars with TIGRE
Authors: Flor-Torres, L. M.; Coziol, R.; Schröder, K. -P.; Jack,
   D.; Schmitt, J. H. M. M.; Blanco-Cuaresma, S.
2021RMxAA..57..199F    Altcode: 2021arXiv210111666F
  In search for a connection between the formation of stars and the
  formation of planets, a new semi-automatic spectral analysis method
  using iSpec was developed for the TIGRE telescope installed in
  Guanajuato, Mexico. TIGRE is a 1.2m robotic telescope, equipped with
  an Echelle spectrograph (HEROS), with a resolution R ≃ 20000. iSpec
  is a synthetic spectral fitting program for stars that allows to
  determine in an homogeneous way their fundamental parameters: effective
  temperature, T<SUB>eff</SUB>, surface gravity, log g, metallicities,
  [M/H] and [Fe/H], and rotational velocity, V sin i. In this first
  article we test our method by analysing the spectra of 46 stars,
  hosts of exoplanets, obtained with the TIGRE.

---------------------------------------------------------
Title: Connecting the Formation of Stars and Planets. II: Coupling
    the Angular Momentum of Stars with the Angular Momentum of Planets
Authors: Flor-Torres, L. M.; Coziol, R.; Schröder, K. -P.; Jack,
   D.; Schmitt, J. H. M. M.
2021RMxAA..57..217F    Altcode: 2021arXiv210111676F
  A sample of 46 stars, host of exoplanets, is used to search for
  a connection between their formation process and the formation of
  the planets rotating around them. Separating our sample into two,
  stars hosting high-mass exoplanets (HMEs) and low-mass exoplanets
  (LMEs), we found the former to be more massive and to rotate faster
  than the latter. We also found the HMEs to have higher orbital angular
  momentum than the LMEs and to have lost more angular momentum through
  migration. These results are consistent with the view that the more
  massive the star and the higher its rotation, the more massive was
  its protoplanetarys disk and rotation, and the more efficient was the
  extraction of angular momentum from the planets.

---------------------------------------------------------
Title: New <SUP>59</SUP>Fe Stellar Decay Rate with Implications for
    the <SUP>60</SUP>Fe Radioactivity in Massive Stars
Authors: Gao, B.; Giraud, S.; Li, K. A.; Sieverding, A.; Zegers,
   R. G. T.; Tang, X.; Ash, J.; Ayyad-Limonge, Y.; Bazin, D.; Biswas,
   S.; Brown, B. A.; Chen, J.; DeNudt, M.; Farris, P.; Gabler, J. M.;
   Gade, A.; Ginter, T.; Grinder, M.; Heger, A.; Hultquist, C.; Hill,
   A. M.; Iwasaki, H.; Kwan, E.; Li, J.; Longfellow, B.; Maher, C.;
   Ndayisabye, F.; Noji, S.; Pereira, J.; Qi, C.; Rebenstock, J.; Revel,
   A.; Rhodes, D.; Sanchez, A.; Schmitt, J.; Sumithrarachchi, C.; Sun,
   B. H.; Weisshaar, D.
2021PhRvL.126o2701G    Altcode:
  The discrepancy between observations from γ -ray astronomy of the
  <SUP>60</SUP>Fe / <SUP>26</SUP>Al γ -ray flux ratio and recent
  calculations is an unresolved puzzle in nuclear astrophysics. The
  stellar β -decay rate of <SUP>59</SUP>Fe is one of the major nuclear
  uncertainties impeding us from a precise prediction. The important
  Gamow-Teller strengths from the low-lying states in <SUP>59</SUP>Fe to
  the <SUP>59</SUP>Co ground state are measured for the first time using
  the exclusive measurement of the <SUP>59</SUP>Co (t ,&lt;SUP&lt;3He+γ
  )<SUP>59</SUP>Fe charge-exchange reaction. The new stellar decay rate
  of <SUP>59</SUP>Fe is a factor of 3.5 ±1.1 larger than the currently
  adopted rate at T =1.2 GK . Stellar evolution calculations show that
  the <SUP>60</SUP>Fe production yield of an 18 solar mass star is
  decreased significantly by 40% when using the new rate. Our result
  eliminates one of the major nuclear uncertainties in the predicted
  yield of <SUP>60</SUP>Fe and alleviates the existing discrepancy of
  the <SUP>60</SUP>Fe / <SUP>26</SUP>Al ratio.

---------------------------------------------------------
Title: Experimental Study of Chondrule Rim Formation
Authors: Hyde, T. W.; Schmidt, J.; Matthews, L. S.; Carballido, A.
2021LPI....52.1128H    Altcode:
  Chondrules found within chondritic meteorites contain fundamental
  information about the origin of the solar system. This paper examines
  the development of fine-grained dust rims and the data they provide
  concerning this question.

---------------------------------------------------------
Title: The eROSITA X-ray telescope on SRG
Authors: Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.;
   Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.;
   Borm, K.; Bornemann, W.; Bräuninger, H.; Brüggen, M.; Brunner, H.;
   Brusa, M.; Bulbul, E.; Buntov, M.; Burwitz, V.; Burkert, W.; Clerc,
   N.; Churazov, E.; Coutinho, D.; Dauser, T.; Dennerl, K.; Doroshenko,
   V.; Eder, J.; Emberger, V.; Eraerds, T.; Finoguenov, A.; Freyberg,
   M.; Friedrich, P.; Friedrich, S.; Fürmetz, M.; Georgakakis, A.;
   Gilfanov, M.; Granato, S.; Grossberger, C.; Gueguen, A.; Gureev, P.;
   Haberl, F.; Hälker, O.; Hartner, G.; Hasinger, G.; Huber, H.; Ji,
   L.; Kienlin, A. v.; Kink, W.; Korotkov, F.; Kreykenbohm, I.; Lamer,
   G.; Lomakin, I.; Lapshov, I.; Liu, T.; Maitra, C.; Meidinger, N.;
   Menz, B.; Merloni, A.; Mernik, T.; Mican, B.; Mohr, J.; Müller,
   S.; Nandra, K.; Nazarov, V.; Pacaud, F.; Pavlinsky, M.; Perinati,
   E.; Pfeffermann, E.; Pietschner, D.; Ramos-Ceja, M. E.; Rau, A.;
   Reiffers, J.; Reiprich, T. H.; Robrade, J.; Salvato, M.; Sanders, J.;
   Santangelo, A.; Sasaki, M.; Scheuerle, H.; Schmid, C.; Schmitt, J.;
   Schwope, A.; Shirshakov, A.; Steinmetz, M.; Stewart, I.; Strüder,
   L.; Sunyaev, R.; Tenzer, C.; Tiedemann, L.; Trümper, J.; Voron, V.;
   Weber, P.; Wilms, J.; Yaroshenko, V.
2021A&A...647A...1P    Altcode: 2020arXiv201003477P
  eROSITA (extended ROentgen Survey with an Imaging Telescope Array)
  is the primary instrument on the Spectrum-Roentgen-Gamma (SRG)
  mission, which was successfully launched on July 13, 2019, from the
  Baikonour cosmodrome. After the commissioning of the instrument and
  a subsequent calibration and performance verification phase, eROSITA
  started a survey of the entire sky on December 13, 2019. By the end
  of 2023, eight complete scans of the celestial sphere will have been
  performed, each lasting six months. At the end of this program,
  the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV)
  will be about 25 times more sensitive than the ROSAT All-Sky Survey,
  while in the hard band (2.3-8 keV) it will provide the first ever true
  imaging survey of the sky. The eROSITA design driving science is the
  detection of large samples of galaxy clusters up to redshifts z &gt;
  1 in order to study the large-scale structure of the universe and test
  cosmological models including Dark Energy. In addition, eROSITA is
  expected to yield a sample of a few million AGNs, including obscured
  objects, revolutionizing our view of the evolution of supermassive black
  holes. The survey will also provide new insights into a wide range of
  astrophysical phenomena, including X-ray binaries, active stars, and
  diffuse emission within the Galaxy. Results from early observations,
  some of which are presented here, confirm that the performance of
  the instrument is able to fulfil its scientific promise. With this
  paper, we aim to give a concise description of the instrument, its
  performance as measured on ground, its operation in space, and also
  the first results from in-orbit measurements.

---------------------------------------------------------
Title: Life, the Universe and Everything... you ever wanted to know
    about the Astrophysics Source Code Library
Authors: Allen, A.; DuPrie, K.; Gosmeyer, C.; Mavuram, S.; Nemiroff,
   R.; Ryan, P.; Schmidt, J.; Teuben, P.
2021AAS...23712705A    Altcode:
  Why does the Astrophysics Source Code Library (ASCL, ascl.net)
  exist? Does it include planetary software? Are the ASCL's data
  available for download? What changes have occurred in astronomy in the
  past ten years that make publishing and getting credit for software
  easier? Does the ASCL mint DOIs for its entries? Do other disciplines
  have something analogous to the ASCL? What improvements have been added
  to the ASCL? This presentation answers all of these questions and more,
  and provides the rationale behind the ASCL's actions. In addition,
  it provides tips and tricks for using the ASCL and leveraging the
  information in it to improve the discoverability and citation of your
  own research software.

---------------------------------------------------------
Title: OHP classification of Atlas21aao (=AT2021fv) as a Ia SN a
    few days before maximum
Authors: Dennefeld, M.; Adami, C.; Schmitt, J.; Troncin, J. P.
2021ATel14304....1D    Altcode:
  During a further test run of the new spectro-imager Mistral attached
  to the 1.93m telescope at Haute-Provence Observatory (OHP-CNRS), we
  observed the transient ATLAS21aao (=AT2021fv) on Jan. 06.021 UT. The
  useful range was 408-812 nm and the slit was opened at 2" (4 pixels
  of 0.20 nm each).

---------------------------------------------------------
Title: A technique for the study of (p,n) reactions with unstable
    isotopes at energies relevant to astrophysics
Authors: Gastis, P.; Perdikakis, G.; Berg, G. P. A.; Dombos, A. C.;
   Estrade, A.; Falduto, A.; Horoi, M.; Liddick, S. N.; Lipschutz, S.;
   Lyons, S.; Montes, F.; Palmisano, A.; Pereira, J.; Randhawa, J. S.;
   Redpath, T.; Redshaw, M.; Schmitt, J.; Sheehan, J. R.; Smith, M. K.;
   Tsintari, P.; Villari, A. C. C.; Wang, K.; Zegers, R. G. T.
2021NIMPA.98564603G    Altcode: 2020arXiv200413506G
  We have developed and tested an experimental technique for the
  measurement of low-energy (p,n) reactions in inverse kinematics relevant
  to nuclear astrophysics. The proposed setup is located at the ReA3
  facility at the National Superconducting Cyclotron Laboratory. In the
  current approach, we operate the beam-transport line in ReA3 as a recoil
  separator while tagging the outgoing neutrons from the (p,n) reactions
  with the low-energy neutron detector array (LENDA). The developed
  technique was verified by using the <SUP>40</SUP>Ar(p,n)<SUP>40</SUP>K
  reaction as a probe. The results of the proof-of-principle experiment
  with the <SUP>40</SUP>Ar beam show that cross-section measurements
  within an uncertainty of ∼25% are feasible with count rates up to 7
  counts/mb/pnA/s. In this article, we give a detailed description of
  the experimental setup, and present the analysis method and results
  from the test experiment. Future plans on using the technique in
  experiments with the separator for capture reactions (SECAR) that is
  currently being commissioned are also discussed.

---------------------------------------------------------
Title: Spectroscopic classification of some transients at
Haute-Provence Observatory: Gaia20fnu (=AT2020abcl), ZTF20actskcf
    (=AT2020abfa), Gaia20fpd (=AT2020aaun), Atlas20bgpi (=AT2020abqq)
    and Gaia20fcl (=AT2020aazj)
Authors: Dennefeld, M.; Adami, C.; Russell, D.; Basa, St.; Schmitt, J.;
   Brunel, J. C.; Dolon, Fr.; Huppert, Fr.; LeVanSuu, A.; Troncin, J. P.
2020ATel14263....1D    Altcode:
  Observations were made during a test run of the new imaging-spectrograph
  Mistral mounted at the Cassegrain focus of the 1.93m telescope on
  Dec. 8 and 9, 2020.

---------------------------------------------------------
Title: The CARMENES M-dwarf planet survey
Authors: Quirrenbach, Andreas; CARMENES Consortium; Amado, P. J.;
   Ribas, I.; Reiners, A.; Caballero, J. A.; Aceituno, J.; Alacid, J. M.;
   Alonso-Floriano, F. J.; Anglada-Escudé, G.; Azzaro, M.; Baroch,
   D.; Bauer, F. F.; Becerril, S.; Béjar, V. J. S.; Bluhm, P.; Calvo
   Ortega, R.; Cardona Guillén, C.; Casasayas-Barris, N.; Chaturvedi, P.;
   Cifuentes, C.; Colomé, J.; Conte, D.; Cortés-Contreras, M.; Czesla,
   S.; Díez-Alonso, E.; Domínguez Fernández, A. J.; Dreizler, S.;
   Duque-Arribas, C.; Espinoza, N.; Fuhrmeister, B.; Galadí-Enríquez,
   D.; Gar´a Quintana, E.; González-Alvare, E.; González Cuesta,
   z. L.; González Hernández, J. I.; Guenther, E. W.; de Guindos,
   E.; Hatzes, A. P.; Henning, T.; Herbort, O.; Herrero, E.; Hintz,
   D.; Iglesias-Pára, J.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.;
   Kaminski, A.; Kemmer, J.; Khaimova, J.; Khalafinejad, S.; Klahr, H.;
   Kossakowski, D.; Kreidberg, L.; Kürster, M.; Labarga, F.; Lafarga, M.;
   Lampón, M.; Lara, L. M.; Lillo-Box, J.; Lodieu, N.; López Gallifa,
   A.; López González, M. J.; López-Puertas, M.; Luque, R.; Marfil,
   E.; Martín-Ruiz, S.; Matthé, C.; Molaverdikhani, K.; Montes, D.;
   Morales, J. C.; Morales-Calderóon, M.; Nagel, E.; Nortmann, L.; Nowak,
   G.; Ofir, A.; Oshaghi, M.; Pallé, E.; Passegger, V. M.; Pavlov,
   A.; Pedraz, S.; Perdelwitz, V.; Perger, M.; Reffert, S.; Revilla,
   D.; Rodríguez, E.; Rodríguez López, C.; Sabotta, S.; Sadegi, S.;
   Sairam, L.; Salz, M.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis,
   P.; Schäfer, S.; Schiller, J.; Schlecker, M.; Schmitt, J. H. M. M.;
   Schöfer, P.; Schweitzer, A.; Seiferta, W.; Shan, Y.; Shulyak, D.;
   Skrzypinski, S. L.; Solano, E.; Soto, M. G.; Stahl, O.; Stangret, M.;
   Stock, S. A.; Strachan, J. B. P.; Stuber, T.; Stürmer, J.; Tabernero,
   H. M.; Tal-Or, L.; Tala-Pinto, M.; Trifonov, T.; Vanaverbeke, S.;
   Yan, F.; Zapatero Osorio, M. R.; Zechmeister, M.
2020SPIE11447E..3CQ    Altcode:
  The CARMENES instrument consists of two cross-dispersed Échelle
  spectrographs, which together cover the wavelength range from 5,200
  to 17,100 Å. During its first five years of operation at the 3.5 m
  telescope on Calar Alto, Spain, it has been used for a radial-velocity
  survey of 365 M dwarfs, for follow-up radial-velocity observations
  of transiting exoplanets, and for spectroscopic studies of exoplanet
  atmospheres during transits. The CARMENES data have also yielded a
  wealth of information on the fundamental parameters and activity of
  M dwarfs. We provide an overview of the scientific results from the
  main CARMENES survey in the years 2016 to 2020.

---------------------------------------------------------
Title: Keeping up with the cool stars: one TESS year in the life of
    AB Doradus
Authors: Ioannidis, P.; Schmitt, J. H. M. M.
2020A&A...644A..26I    Altcode: 2020arXiv201016273I
  The long-term, high precision photometry delivered by the Transiting
  Exoplanet Survey Satellite (TESS) enables us to gain new insight into
  known and hitherto well-studied stars. In this paper, we present the
  result of our TESS study of the photospheric activity of the rapid
  rotator AB Doradus. Due to its favorable position near the southern
  ecliptic pole, the TESS satellite recorded almost 600 rotations of AB
  Doradus with high cadence, allowing us to study starspots and flares
  on this ultra-active star. The observed peak-to-peak variation of
  the rotational modulations reaches almost 11%, and we find that
  the starspots on AB Doradus show highly preferred longitudinal
  positions. Using spot modeling, we measured the positions of
  the active regions on AB Doradus and we find that preferred spot
  configurations should include large regions extending from low to
  high stellar latitudes. We interpret the apparent movement of spots
  as the result of both differential rotation and spot evolution and
  argue that the typical spot lifetimes should range between 10 and 20
  days. We further find a connection between the flare occurrence on
  AB Doradus and the visibility of the active regions on its surface,
  and we finally recalculated the star's rotation period using different
  methods and we compared it with previous determinations.

---------------------------------------------------------
Title: Spectroscopic confirmation of AT2020aafw as a Nova in M31
Authors: Adami, C.; Dennefeld, M.; Schmitt, J.; Brunel, J. C.; Dolon,
   Fr.; Huppert, Fr.; LeVanSuu, A.; Moreau, Fr.; Troncin, J. P.; Russeil,
   D.; Basa, St.
2020ATel14215....1A    Altcode:
  We have obtained spectra of AT2020aafw, a candidate Nova in M31
  discovered independently by Hornoch et al. (ATel 14183) and Conjat
  (TNS report 89872) on Nov. 16 and 17. Observations were made during a
  test run on Nov. 23.88 UT, with the new, low-dispersion spectro-imager
  Mistral, attached to the Cassegrain focus of the OHP 1.93m telescope.

---------------------------------------------------------
Title: Proxima Centauri - the nearest planet host observed
    simultaneously with AstroSat, Chandra, and HST
Authors: Lalitha, S.; Schmitt, J. H. M. M.; Singh, K. P.; Schneider,
   P. C.; Parke Loyd, R. O.; France, K.; Predehl, P.; Burwitz, V.;
   Robrade, J.
2020MNRAS.498.3658L    Altcode: 2020MNRAS.tmp.2492L; 2020arXiv200807175L
  Our nearest stellar neighbour, Proxima Centauri, is a low-mass star with
  spectral type dM5.5 and hosting an Earth-like planet orbiting within
  its habitable zone. However, the habitability of the planet depends on
  the high-energy radiation of the chromospheric and coronal activity of
  the host star. We report the AstroSat, Chandra, and HST observation
  of Proxima Centauri carried out as part of the multiwavelength
  simultaneous observational campaign. Using the soft X-ray data,
  we probe the different activity states of the star. We investigate
  the coronal temperatures, emission measures and abundance. Finally,
  we compare our results with earlier observations of Proxima Centauri.

---------------------------------------------------------
Title: Time series of optical spectra of Nova V659 Sct
Authors: Jack, Dennis; Schröder, Klaus-Peter; Eenens, Philippe;
   Wolter, Uwe; González-Pérez, José Nicolás.; Schmitt, Jürgen
   H. M. M.; Hauschildt, Peter H.
2020AN....341..781J    Altcode: 2020arXiv200614052J
  With our robotic 1.2 m TIGRE telescope, we were able to obtain eight
  optical spectra with intermediate resolution (R ≈ 20,000) of the
  Nova V659 Sct during different phases of its outburst. We present a
  list of the lines found in the Nova spectra. The most common features
  are H I, O I, Na I, Fe II, and Ca II. Studying the spectral evolution
  of the strong features, we found that the absorption features move
  to higher expansion velocities before disappearing, and the emission
  features show (different) asymmetries. Because of the intermediate
  spectral resolution, we identified and analyzed the interstellar
  medium absorption features present in the spectra. We detected atomic
  absorption features of Na I and Ca II. The sodium D lines show more
  complex substructures with three main absorption features at a velocity
  of around -10, 30, and 85 km s<SUP>-1</SUP>. We identified several
  diffuse interstellar bands (DIBs) in the Nova V659 Sct spectra and
  determined their velocities and equivalent widths.

---------------------------------------------------------
Title: An extensive spectroscopic time series of three Wolf-Rayet
    stars - II. A search for wind asymmetries in the dust-forming WC7
    binary WR137
Authors: St-Louis, N.; Piaulet, C.; Richardson, N. D.; Shenar, T.;
   Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Gauza, B.; Knapen,
   J. H.; Kubát, J.; Kubátová, B.; Sablowski, D. P.; Simón-Díaz,
   S.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.;
   Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater,
   R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.;
   dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan,
   J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.;
   Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.
2020MNRAS.497.4448S    Altcode: 2020arXiv200709239S; 2020MNRAS.tmp.2293S
  We present the results of a 4-month, spectroscopic campaign of the
  Wolf-Rayet dust-making binary, WR137. We detect only small-amplitude
  random variability in the C III λ5696 emission line and its integrated
  quantities (radial velocity, equivalent width, skewness, and kurtosis)
  that can be explained by stochastic clumps in the wind of the WC
  star. We find no evidence of large-scale periodic variations often
  associated with Corotating Interaction Regions that could have
  explained the observed intrinsic continuum polarization of this
  star. Our moderately high-resolution and high signal-to-noise average
  Keck spectrum shows narrow double-peak emission profiles in the H α,
  H β, H γ, He II λ6678, and He II λ5876 lines. These peaks have
  a stable blue-to-red intensity ratio with a mean of 0.997 and a root
  mean square of 0.004 commensurate with the noise level; no variability
  is found during the entire observing period. We suggest that these
  profiles arise in a decretion disc around the O9 companion, which is
  thus an O9e star. The characteristics of the profiles are compatible
  with those of other Be/Oe stars. The presence of this disc can explain
  the constant component of the continuum polarization of this system,
  for which the angle is perpendicular to the plane of the orbit, implying
  that the rotation axis of the O9e star is aligned with that of the
  orbit. It remains to be explained why the disc is so stable within the
  strong ultraviolet radiation field of the O star. We present a binary
  evolutionary scenario that is compatible with the current stellar and
  system parameters.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Chromospheric activity of SZ
    Piscium (Cao+, 2020)
Authors: Cao, D.; Gu, S.; Wolter, U.; Mittag, M.; Schmitt, J. H. M. M.
2020yCat..51590292C    Altcode:
  High-resolution spectroscopic observations of the SZ Psc system were
  performed during several observing runs from 2014 to 2018. Most of the
  spectroscopic observations were carried out with the 2.16m telescope
  at the Xinglong station of National Astronomical Observatories and
  the 2.4m telescope at the Lijiang station of Yunnan observatories,
  Chinese Academy of Sciences, respectively. The same fiber-fed
  High-Resolution Echelle Spectrograph (HiRES), which has a resolving
  power of R=λ/Δλ~48000 over the wavelength range from 3900 to 9500Å,
  was equipped to both telescopes and the 4096x4096pixel CCD detectors
  were respectively used to record the echelle spectra during our
  observations. <P />(2 data files).

---------------------------------------------------------
Title: The corona of GJ 1151 in the context of star-planet interaction
Authors: Foster, G.; Poppenhaeger, K.; Alvarado-Gómez, J. D.; Schmitt,
   J. H. M. M.
2020MNRAS.497.1015F    Altcode: 2020arXiv200705317F; 2020MNRAS.tmp.2100F
  The low-mass star GJ 1151 has been reported to display variable
  low-frequency radio emission, which has been interpreted as a signpost
  of coronal star-planet interactions with an unseen exoplanet. Here
  we report the first X-ray detection of GJ 1151's corona based on the
  XMM-Newton data. We find that the star displays a small flare during
  the X-ray observation. Averaged over the observation, we detect the
  star with a low coronal temperature of 1.6 MK and an X-ray luminosity
  of L<SUB>X</SUB> = 5.5 × 10<SUP>26</SUP> erg s<SUP>-1</SUP>. During
  the quiescent time periods excluding the flare, the star remains
  undetected with an upper limit of $L_{\mathrm{ X},\, \mathrm{ qui}}
  \le 3.7\times 10^{26}$ erg s<SUP>-1</SUP>. This is compatible with the
  coronal assumptions used in a recently published model for a star-planet
  interaction origin of the observed radio signals from this star.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Variability
    of the He I line at 10 830 Å
Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.;
   Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Hintz, D.;
   Johnson, E. N.; Schöfer, P.; Zechmeister, M.; Reiners, A.; Ribas, I.;
   Amado, P. J.; Quirrenbach, A.; Nortmann, L.; Bauer, F. F.; Béjar,
   V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Galadí-Enríquez,
   D.; Hatzes, A. P.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.
2020A&A...640A..52F    Altcode: 2020arXiv200609372F
  The He I infrared (IR) triplet at 10 830 Å is known as an activity
  indicator in solar-type stars and has become a primary diagnostic in
  exoplanetary transmission spectroscopy. He I IR lines are a tracer
  of the stellar extreme-ultraviolet irradiation from the transition
  region and corona. We study the variability of the He I triplet lines
  in a spectral time series of 319 M dwarf stars that was obtained with
  the CARMENES high-resolution optical and near-infrared spectrograph
  at Calar Alto. We detect He I IR line variability in 18% of our
  sample stars, all of which show Hα in emission. Therefore, we find
  detectable He I variability in 78% of the sub-sample of stars with
  Hα emission. Detectable variability is strongly concentrated in the
  latest spectral sub-types, where the He I lines during quiescence
  are typically weak. The fraction of stars with detectable He I
  variation remains lower than 10% for stars earlier than M3.0 V,
  while it exceeds 30% for the later spectral sub-types. Flares are
  accompanied by particularly pronounced line variations, including
  strongly broadened lines with red and blue asymmetries. However,
  we also find evidence for enhanced He I absorption, which is
  potentially associated with increased high-energy irradiation levels
  at flare onset. Generally, He I and Hα line variations tend to be
  correlated, with Hα being the most sensitive indicator in terms
  of pseudo-equivalent width variation. This makes the He I triplet
  a favourable target for planetary transmission spectroscopy. <P
  />Full Table 2 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A52">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A52</A>

---------------------------------------------------------
Title: Updated X-ray view of the Hyades cluster
Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2020A&A...640A..66F    Altcode: 2020arXiv200605135F
  <BR /> Aims: We revisit the X-ray properties of the main sequence
  Hyades members and the relation between X-ray emission and stellar
  rotation. <BR /> Methods: As an input catalog for Hyades members,
  we combined three recent Hyades membership lists derived from Gaia
  DR2 data that include the Hyades core and its tidal tails. We searched
  for X-ray detections of the main sequence Hyades members in the ROSAT
  all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory,
  and XMM-Newton. Furthermore, we adopted rotation periods derived from
  Kepler's K2 mission and other resources. <BR /> Results: We find an
  X-ray detection for 281 of 1066 bona fide main sequence Hyades members
  and provide statistical upper limits for the undetected sources. The
  majority of the X-ray detected stars are located in the Hyades core
  because of its generally smaller distance to the Sun. F- and G-type
  stars have the highest detection fraction (72%), while K- and M-type
  dwarfs have lower detection rates (22%). The X-ray luminosities of the
  detected members range from ∼2 × 10<SUP>27</SUP> erg s<SUP>-1</SUP>
  for late M-type dwarfs to ∼2 × 10<SUP>30</SUP> erg s<SUP>-1</SUP>
  for active binaries. The X-ray luminosity distribution functions
  formally differ for the members in the core and tidal tails, which
  is likely caused by a larger fraction of field stars in our Hyades
  tails sample. Compared to previous studies, our sample is slightly
  fainter in X-rays due to differences in the Hyades membership list
  used; furthermore, we extend the X-ray luminosity distribution to
  fainter luminosities. The X-ray activity of F- and G-type stars is
  well defined at F<SUB>X</SUB>/F<SUB>bol</SUB> ≈ 10<SUP>-5</SUP>. The
  fractional X-ray luminosity and its spread increases to later spectral
  types reaching the saturation limit (F<SUB>X</SUB>/F<SUB>bol</SUB> ≈
  10<SUP>-3</SUP>) for members later than spectral type M3. Confirming
  previous results, the X-ray flux varies by less than a factor of
  three between epochs for the 104 Hyades members with multiple epoch
  data, significantly less than expected from solar-like activity
  cycles. Rotation periods are found for 204 Hyades members, with about
  half of them being detected in X-rays. The activity-rotation relation
  derived for the coeval Hyades members has properties very similar
  to those obtained by other authors investigating stars of different
  ages. <P />Data are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A66">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A66</A>

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Measuring
precise radial velocities in the near infrared: The example of the
    super-Earth CD Cet b
Authors: Bauer, F. F.; Zechmeister, M.; Kaminski, A.; Rodríguez
   López, C.; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski,
   D.; Quirrenbach, A.; Becerril Jarque, S.; Rodríguez, E.; Amado,
   P. J.; Seifert, W.; Reiners, A.; Schäfer, S.; Ribas, I.; Béjar,
   V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning,
   T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales,
   J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E.
2020A&A...640A..50B    Altcode: 2020arXiv200601684B
  The high-resolution, dual channel, visible and near-infrared
  spectrograph CARMENES offers exciting opportunities for stellar
  and exoplanetary research on M dwarfs. In this work we address the
  challenge of reaching the highest radial velocity precision possible
  with a complex, actively cooled, cryogenic instrument, such as the
  near-infrared channel. We describe the performance of the instrument
  and the work flow used to derive precise Doppler measurements from
  the spectra. The capability of both CARMENES channels to detect
  small exoplanets is demonstrated with the example of the nearby
  M5.0 V star CD Cet (GJ 1057), around which we announce a super-Earth
  (4.0 ± 0.4 M<SUB>⊕</SUB>) companion on a 2.29 d orbit. <P />Based
  on observations collected at the Centro Astronómico Hispano Alemán
  (CAHA) at Calar Alto, Almería, Spain, operated jointly by the Junta de
  Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). <P
  />Based on observations collected at the European Southern Observatory,
  Paranal, Chile, under program 0103.C-0152(A), and La Silla, Chile,
  under programs 072.C-0488(E) and 183.C-0437(A).

---------------------------------------------------------
Title: Atmospheric characterization of the ultra-hot Jupiter
    MASCARA-2b/KELT-20b. Detection of Ca II, Fe II, Na I, and the
    Balmer series of H (Hα, Hβ, and Hγ) with high-dispersion transit
    spectroscopy (Corrigendum)
Authors: Casasayas-Barris, N.; Pallé, E.; Yan, F.; Chen, G.; Kohl,
   S.; Stangret, M.; Parviainen, H.; Helling, Ch.; Watanabe, N.; Czesla,
   S.; Fukui, A.; Montañés-Rodríguez, P.; Nagel, E.; Narita, N.;
   Nortmann, L.; Nowak, G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.
2020A&A...640C...6C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: eRASSt J100130.9-614021: A new bright X-ray source discovered
    by SRG/eROSITA
Authors: Rau, A.; Maitra, C.; Ducci, L.; Schmitt, J.; Wilms, J.;
   Kreykenbohm, I.; Weber, Ph.; Salvato, M.; Lamer, G.; Schwope, A.
2020ATel13844....1R    Altcode:
  During the second all-sky survey (eRASS:2), the eROSITA instrument
  on board the Russian/German Spektrum-Roentgen-Gamma (SRG) mission
  discovered a new X-ray source, eRASSt J100130.9-614021, localized
  to RA(J2000) = 10:01:30.93 (150.37887 deg) Dec(J2000) = -61:40:21.5
  (-61.67265 deg) with an estimated uncertainty of 2.5" radius (incl.

---------------------------------------------------------
Title: Further Investigation on Chromospheric and Prominence Activity
    of the RS Canum Venaticorum Star SZ Piscium
Authors: Cao, Dongtao; Gu, Shenghong; Wolter, U.; Mittag, M.; Schmitt,
   J. H. M. M.
2020AJ....159..292C    Altcode:
  To continue our study on chromospheric activity and detection for
  possible prominence events of the very active RS Canum Venaticorum
  star SZ Piscium (SZ Psc), long-term high-resolution spectroscopic
  observations were obtained during several observing runs from 2014 to
  2018. Based on the spectral subtraction technique, the chromospheric
  emission of the Ca II IRT (λ8662, λ8542, and λ8498), H<SUB>α</SUB>,
  Na I D<SUB>1</SUB>, D<SUB>2</SUB> doublet, H<SUB>β</SUB>, and Ca II H
  &amp; K lines is mainly associated with the K1 IV primary star of the
  SZ Psc system, in good agreement with the previous studies, and the F8
  V secondary star also shows some chromospheric emission, implying its
  active chromosphere. Moreover, an optical flare characterized by the He
  I D<SUB>3</SUB> line emission together with stronger emission in the
  other indicators was detected. Furthermore, two chromospheric active
  longitudes around the two quadratures of the system were identified
  for most of the time, and the chromospheric activity shows significant
  changes during a few orbital cycles. The chromospheric activity level
  seems to show a long-term variation during our observations. There
  were some excess absorption features in the subtracted H<SUB>α</SUB>
  line and the other activity indicators, which would be caused by
  prominence-like materials associated with the K1 IV primary star of the
  system. Prominence materials could absorb the chromospheric emission and
  continuum from the K1 IV primary star and even the F8 V secondary one.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Dynamical
    characterization of the multiple planet system GJ 1148 and prospects
    of habitable exomoons around GJ 1148 b
Authors: Trifonov, T.; Lee, M. H.; Kürster, M.; Henning, Th.; Grishin,
   E.; Stock, S.; Tjoa, J.; Caballero, J. A.; Wong, K. H.; Bauer, F. F.;
   Quirrenbach, A.; Zechmeister, M.; Ribas, I.; Reffert, S.; Reiners,
   A.; Amado, P. J.; Kossakowski, D.; Azzaro, M.; Béjar, V. J. S.;
   Cortés-Contreras, M.; Dreizler, S.; Hatzes, A. P.; Jeffers, S. V.;
   Kaminski, A.; Lafarga, M.; Montes, D.; Morales, J. C.; Pavlov, A.;
   Rodríguez-López, C.; Schmitt, J. H. M. M.; Solano, E.; Barnes, R.
2020A&A...638A..16T    Altcode: 2020arXiv200200906T
  Context. GJ 1148 is an M-dwarf star hosting a planetary system composed
  of two Saturn-mass planets in eccentric orbits with periods of 41.38
  and 532.02 days. <BR /> Aims: We reanalyze the orbital configuration
  and dynamics of the GJ 1148 multi-planetary system based on new precise
  radial velocity measurements taken with CARMENES. <BR /> Methods: We
  combined new and archival precise Doppler measurements from CARMENES
  with those available from HIRES for GJ 1148 and modeled these data
  with a self-consistent dynamical model. We studied the orbital
  dynamics of the system using the secular theory and direct N-body
  integrations. The prospects of potentially habitable moons around GJ
  1148 b were examined. <BR /> Results: The refined dynamical analyses
  show that the GJ 1148 system is long-term stable in a large phase-space
  of orbital parameters with an orbital configuration suggesting apsidal
  alignment, but not in any particular high-order mean-motion resonant
  commensurability. GJ 1148 b orbits inside the optimistic habitable zone
  (HZ). We find only a narrow stability region around the planet where
  exomoons can exist. However, in this stable region exomoons exhibit
  quick orbital decay due to tidal interaction with the planet. <BR />
  Conclusions: The GJ 1148 planetary system is a very rare M-dwarf
  planetary system consisting of a pair of gas giants, the inner of
  which resides in the HZ. We conclude that habitable exomoons around
  GJ 1148 b are very unlikely to exist.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Updated X-ray view of the Hyades
    cluster (Freund+, 2020)
Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2020yCat..36400066F    Altcode:
  Our Hyades membership list is presented together with the X-ray
  and rotational properties. The X-ray properties were obtained by a
  crossmatch with detections from the Second ROSAT all-sky survey (2RXS,
  Cat. J/A+A/588/A103) source catalog, and pointings from the Second ROSAT
  PSPC catalog (2RXP, Cat. IX/30), <P />ROSAT HRI Pointed Observations
  (1RXH, Cat. IX/28), the Chandra Source Catalog, and XMM-Newton. For
  sources with multiple detections, the X-ray data derived from XMM-Newton
  or Chandra data is adopted as best X-ray identification if available,
  and otherwise the ROSAT observation with the longest exposure time. In
  addition to the best X-ray identification, all detections from the
  different instruments are provided. Hyades members with multiple
  detections of the same source in one catalog have multiple entries
  in the table. All X-ray fluxes are converted into the XMM-Newton band
  (0.2-12keV) adopting an APEC thermal plasma model with a temperature of
  log(T)=6.5 and solar metallicity. For the Hyades members not detected
  in any catalog, upper limits are provided. The rotation periods are
  adopted from Douglas et al. (2019ApJ...879..100D) and Lanzafame et
  al. (2018A&amp;A...616A..16L, Cat. I/345). <P />(1 data file).

---------------------------------------------------------
Title: Rotation of solar-like stars in the immediate solar
    neighborhood
Authors: Schmitt, Jürgen H. M. M.; Mittag, Marco
2020AN....341..497S    Altcode:
  Although photometric space-based missions such as CoRoT or Kepler have
  yielded rotation measurements of many thousands of late-type stars
  during the last decade, the rotational properties of the bulk of the G
  star population remain undetected by these missions. From the Sun (when
  viewed as a star), we know that rotation measurements in the ultraviolet
  are the most promising, or more general, measurements in wavelength
  regions very sensitive to plage areas on the stars. Therefore, the
  "classical" S-index, that is, the strength of the Ca II H&amp;K line
  core emission, is still the most viable activity and rotation indicator,
  and with robotic spectroscopy telescopes, such monitoring measurements
  can be carried out efficiently and economically. We define a complete
  volume-limited sample of solar stars in the immediate solar environment
  and present period measurements in Ca II H&amp;K, both from archival
  Mount Wilson data and new data obtained with our robotic TIGRE facility.

---------------------------------------------------------
Title: VizieR Online Data Catalog: M dwarfs HeI infrared triplet
    variability (Fuhrmeister+, 2020)
Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.;
   Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Hintz, D.;
   Johnson, E. N.; Schoefer, P.; Zechmeister, M.; Reiners, A.; Ribas,
   I.; Amado, P. J.; Quirrenbach, A.; Nortmann, L.; Bauer, F. F.; Bejar,
   V. J. S.; Cortes-Contreras, M.; Dreizler, S.; Galadi-Enriquez, D.;
   Hatzes, A. P.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Montes, D.
2020yCat..36400052F    Altcode:
  The HeI infrared (IR) triplet at 10830Å is known as an activity
  indicator and has become a primary diagnostic in exoplanetary
  transmission spectroscopy. The HeI IR lines are a tracer of the
  stellar extreme-ultraviolet irradiation from the transition region
  and corona. We study the variability of the HeI IR triplet lines in
  spectral time series of 319 M dwarf stars, obtained with the CARMENES
  spectrograph. <P />We measure the pseudo-equivalent width (pEW) in each
  stellar spectrum. The integration ranges for the line and the reference
  bands are found in Table 1 of the paper. For comparison purposes
  we also measure pEW values of Hα, the bluest CaII IR triplet line,
  and the HeI D<SUB>3</SUB> line. From these measurements we compute the
  mean pEW, the median absolute deviation (MAD) and Pearson's correlation
  coefficients for the lines. <P />(1 data file).

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. The He
    I infrared triplet lines in PHOENIX models of M 2-3 V stars
Authors: Hintz, D.; Fuhrmeister, B.; Czesla, S.; Schmitt,
   J. H. M. M.; Schweitzer, A.; Nagel, E.; Johnson, E. N.; Caballero,
   J. A.; Zechmeister, M.; Jeffers, S. V.; Reiners, A.; Ribas, I.; Amado,
   P. J.; Quirrenbach, A.; Anglada-Escudé, G.; Bauer, F. F.; Béjar,
   V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Galadí-Enríquez,
   D.; Guenther, E. W.; Hauschildt, P. H.; Kaminski, A.; Kürster, M.;
   Lafarga, M.; López del Fresno, M.; Montes, D.; Morales, J. C.
2020A&A...638A.115H    Altcode: 2020arXiv200506246H
  The He I infrared (IR) line at a vacuum wavelength of 10 833 Å is a
  diagnostic for the investigation of atmospheres of stars and planets
  orbiting them. For the first time, we study the behavior of the He I
  IR line in a set of chromospheric models for M-dwarf stars, whose much
  denser chromospheres may favor collisions for the level population over
  photoionization and recombination, which are believed to be dominant
  in solar-type stars. For this purpose, we use published PHOENIX
  models for stars of spectral types M2 V and M3 V and also compute new
  series of models with different levels of activity following an ansatz
  developed for the case of the Sun. We perform a detailed analysis of
  the behavior of the He I IR line within these models. We evaluate the
  line in relation to other chromospheric lines and also the influence
  of the extreme ultraviolet (EUV) radiation field. The analysis of the
  He I IR line strengths as a function of the respective EUV radiation
  field strengths suggests that the mechanism of photoionization and
  recombination is necessary to form the line for inactive models, while
  collisions start to play a role in our most active models. Moreover,
  the published model set, which is optimized in the ranges of the Na
  I D<SUB>2</SUB>, Hα, and the bluest Ca II IR triplet line, gives an
  adequate prediction of the He I IR line for most stars of the stellar
  sample. Because especially the most inactive stars with weak He I IR
  lines are fit worst by our models, it seems that our assumption of
  a 100% filling factor of a single inactive component no longer holds
  for these stars.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. A
    super-Earth planet orbiting HD 79211 (GJ 338 B)
Authors: González-Álvarez, E.; Zapatero Osorio, M. R.; Caballero,
   J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.;
   Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister,
   M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, A.;
   Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.;
   Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.;
   Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.;
   Perger, M.; Schmitt, J. H. M. M.
2020A&A...637A..93G    Altcode: 2020arXiv200313052G
  <BR /> Aims: We report on radial velocity time series for two M0.0
  V stars, GJ 338 B and GJ 338 A, using the CARMENES spectrograph,
  complemented by ground-telescope photometry from Las Cumbres and
  Sierra Nevada observatories. We aim to explore the presence of small
  planets in tight orbits using the spectroscopic radial velocity
  technique. <BR /> Methods: We obtained 159 and 70 radial velocity
  measurements of GJ 338 B and A, respectively, with the CARMENES
  visible channel between 2016 January and 2018 October. We also
  compiled additional relative radial velocity measurements from the
  literature and a collection of astrometric data that cover 200 a of
  observations to solve for the binary orbit. <BR /> Results: We found
  dynamical masses of 0.64 ± 0.07 M<SUB>⊙</SUB> for GJ 338 B and 0.69
  ± 0.07 M<SUB>⊙</SUB> for GJ 338 A. The CARMENES radial velocity
  periodograms show significant peaks at 16.61 ± 0.04 d (GJ 338 B) and
  16.3<SUB>-1.3</SUB><SUP>+3.5</SUP> d (GJ 338 A), which have counterparts
  at the same frequencies in CARMENES activity indicators and photometric
  light curves. We attribute these to stellar rotation. GJ 338 B shows
  two additional, significant signals at 8.27 ± 0.01 and 24.45 ± 0.02
  d, with no obvious counterparts in the stellar activity indices. The
  former is likely the first harmonic of the star's rotation, while we
  ascribe the latter to the existence of a super-Earth planet with a
  minimum mass of 10.27<SUB>-1.38</SUB><SUP>+1.47</SUP> M<SUB>⊕</SUB>
  orbiting GJ 338 B. We have not detected signals of likely planetary
  origin around GJ 338 A. <BR /> Conclusions: GJ 338 Bb lies inside
  the inner boundary of the habitable zone around its parent star. It
  is one of the least massive planets ever found around any member
  of stellar binaries. The masses, spectral types, brightnesses,
  and even the rotational periods are very similar for both stars,
  which are likely coeval and formed from the same molecular cloud, yet
  they differ in the architecture of their planetary systems. <P />Full
  Tables B.1-B.6 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/637/A93">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/637/A93</A>

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Radial
    velocities and activity indicators from cross-correlation functions
    with weighted binary masks
Authors: Lafarga, M.; Ribas, I.; Lovis, C.; Perger, M.; Zechmeister,
   M.; Bauer, F. F.; Kürster, M.; Cortés-Contreras, M.; Morales,
   J. C.; Herrero, E.; Rosich, A.; Baroch, D.; Reiners, A.; Caballero,
   J. A.; Quirrenbach, A.; Amado, P. J.; Alacid, J. M.; Béjar, V. J. S.;
   Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski,
   A.; Montes, D.; Pedraz, S.; Rodríguez-López, C.; Schmitt, J. H. M. M.
2020A&A...636A..36L    Altcode: 2020arXiv200307471L
  Context. For years, the standard procedure to measure radial velocities
  (RVs) of spectral observations consisted in cross-correlating the
  spectra with a binary mask, that is, a simple stellar template that
  contains information on the position and strength of stellar absorption
  lines. The cross-correlation function (CCF) profiles also provide
  several indicators of stellar activity. <BR /> Aims: We present a
  methodology to first build weighted binary masks and, second, to
  compute the CCF of spectral observations with these masks from which
  we derive radial velocities and activity indicators. These methods
  are implemented in a python code that is publicly available. <BR />
  Methods: To build the masks, we selected a large number of sharp
  absorption lines based on the profile of the minima present in high
  signal-to-noise ratio (S/N) spectrum templates built from observations
  of reference stars. We computed the CCFs of observed spectra and
  derived RVs and the following three standard activity indicators:
  full-width-at-half-maximum as well as contrast and bisector inverse
  slope. <BR /> Results: We applied our methodology to CARMENES
  high-resolution spectra and obtain RV and activity indicator time
  series of more than 300 M dwarf stars observed for the main CARMENES
  survey. Compared with the standard CARMENES template matching pipeline,
  in general we obtain more precise RVs in the cases where the template
  used in the standard pipeline did not have enough S/N. We also show
  the behaviour of the three activity indicators for the active star YZ
  CMi and estimate the absolute RV of the M dwarfs analysed using the CCF
  RVs. <P />Table A.1 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/636/A36">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/636/A36</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Absolute radial velocities of
    CARMENES M dwarfs (Lafarga+, 2020)
Authors: Lafarga, M.; Ribas, I.; Lovis, C.; Perger, M.; Zechmeister,
   M.; Bauer, F. F.; Kuerster, M.; Cortes-Contreras, M.; Morales,
   J. C.; Herrero, E.; Rosich, A.; Baroch, D.; Reiners, A.; Caballero,
   J. A.; Quirrenbach, A.; Amado, P. J.; Alacid, J. M.; Bejar, V. J. S.;
   Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski,
   A.; Montes, D.; Pedraz, S.; Rodriguez-Lopez, C.; Schmitt, J. H. M. M.
2020yCat..36360036L    Altcode:
  Absolute radial velocities (RVs) of 323 M dwarf stars observed with
  CARMENES. The RVs were computed using the cross-correlation function
  (CCF) method with binary masks on CARMENES visual observations. The
  RV values and uncertainties also take into account the gravitational
  redshift and the convective blueshift of the stars. The gravitational
  redshift is computed using mass and radius values from Schweitzer
  et al., 2019A&amp;A...625A..68S, Cat. J/A+A/625/A68. We consider the
  convective blueshift to be 0+/-100m/s for all stars. <P />(1 data file).

---------------------------------------------------------
Title: VizieR Online Data Catalog: HD 79211 CARMENES radial velocities
    (Gonzalez-Alvarez+, 2020)
Authors: Gonzalez-Alvarez, E.; Zapatero Osorio, M. R.; Caballero,
   J. A.; Sanz-Forcada, J.; Bejar, V. J. S.; Gonzalez-Cuesta, L.;
   Dreizler, S.; Bauer, F. F.; Rodriguez, E.; Tal-Or, L.; Zechmeister, M.;
   Montes, D.; Lopez-Gonzalez, M. J.; Ribas, I.; Reiners, A.; Quirrenbach,
   A.; Amado, P. J.; Anglada-Escude, G.; Azzaro, M.; Cortes-Contreras, M.;
   Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kuerster,
   M.; Lafarga, M.; Morales, J. C.; Palle, E.; Perger, M.; Schmitt,
   J. H. M. M.
2020yCat..36370093G    Altcode:
  Detailed CARMENES RV analysis of the M0.0 V stars GJ 338 A (HD 79210)
  and GJ 338 B (HD 79211), a wide binary system with similar mass stellar
  components. <P />New RVs were obtained for each member of the stellar
  binary using the CARMENES fibre-fed, echelle spectrograph. CARMENES
  is installed at the 3.5m telescope of the Calar Alto Observatory in
  Almeria (Spain). <P />(6 data files).

---------------------------------------------------------
Title: The first Doppler imaging of the active binary prototype RS
    Canum Venaticorum
Authors: Xiang, Yue; Gu, Shenghong; Wolter, U.; Schmitt, J. H. M. M.;
   Collier Cameron, A.; Barnes, J. R.; Mittag, M.; Perdelwitz, V.;
   Kohl, S.
2020MNRAS.492.3647X    Altcode: 2020arXiv200102572X
  We present the first Doppler images of the prototypical active binary
  star RS Canum Venaticorum, derived from high-resolution spectra
  observed in 2004, 2016 and 2017, using three different telescopes and
  observing sites. We apply the least-squares deconvolution technique
  to all observed spectra to obtain high signal-to-noise line profiles,
  which are used to derive the surface images of the active K-type
  component. Our images show a complex spot pattern on the K star,
  distributed widely in longitude. All star-spots revealed by our Doppler
  images are located below a latitude of about 70°. In accordance
  with previous light-curve modelling studies, we find no indication
  of a polar spot on the K star. Using Doppler images derived from two
  consecutive rotational cycles, we estimate a surface differential
  rotation rate of ΔΩ = -0.039 ± 0.003 rad d<SUP>-1</SUP> and α
  = ΔΩ/Ω<SUB>eq</SUB> = -0.030 ± 0.002 for the K star. Given the
  limited phase coverage during those two rotations, the uncertainty of
  our differential rotation estimate is presumably higher.

---------------------------------------------------------
Title: VizieR Online Data Catalog: GJ 3512 radial velocity and light
    curves (Morales+, 2019)
Authors: Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.;
   Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodriguez,
   E.; Lopez-Gonzalez, M. J.; Rodriguez-Lopez, C.; Bejar, V. J. S.;
   Gonzalez-Cuesta, L.; Luque, R.; Palle, E.; Perger, M.; Baroch,
   D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escude, G.;
   Caballero, J. A.; Cortes-Contreras, M.; Dreizler, S.; Lafarga, M.;
   Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; Schweitzer,
   A.; Tal-Or, L.; Trifonov, T.; Zechmeister, M.; Quirrenbach, A.;
   Amado, P. J.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Jeffers,
   S. V.; Kaminski, A.; Kurster, M.; Montes, D.; Seifert, W.; Abellan,
   F. J.; Abril, M.; Aceituno, J.; Aceituno, F. J.; Alonso-Floriano,
   F. J.; Ammler-von Eiff, M.; Antona, R.; Arroyo-Torres, B.; Azzaro,
   M.; Barrado, D.; Becerril-Jarque, S.; Benitez, D.; Berdinas, Z. M.;
   Bergond, G.; Brinkmoller, M.; Del Burgo, C.; Burn, R.; Calvo-Ortega,
   R.; Cano, J.; Cardenas, M. C.; Cardona Guillen, C.; Carro, J.; Casal,
   E.; Casanova, V.; Casasayas-Barris, N.; Chaturvedi, P.; Cifuentes,
   C.; Claret, A.; Colome, J.; Czesla, S.; Diez-Alonso, E.; Dorda, R.;
   Emsenhuber, A.; Fernandez, M.; Fernandez-Martin, A.; Ferro, I. M.;
   Fuhrmeister, B.; Galadi-Enriquez, D.; Gallardo Cava, I.; Garcia Vargas,
   M. L.; Garcia-Piquer, A.; Gesa, L.; Gonzalez-Alvarez, E.; Gonzalez
   Hernandez, J. I.; Gonzalez-Peinado, R.; Guardia, J.; Guijarro, A.;
   de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.;
   Hermelo, I.; Hernandez Arabi, R.; Hernandez, Otero F.; Hintz, D.;
   Holgado, G.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kehr,
   M.; Kemmer, J.; Kim, M.; Kluter, J.; Klutsch, A.; Labarga, F.; Labiche,
   N.; Lalitha, S.; Lampon, M.; Lara, L. M.; Launhardt, R.; Lazaro,
   F. J.; Lizon, J. -L.; Llamas, M.; Lodieu, N.; Lopez Del Fresno, M.;
   Lopez Salas, J. F.; Lopez-Santiago, J.; Magan Madinabeitia, H.; Mall,
   U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Martin,
   E. L.; Martin-Fernandez, P.; Martin-Ruiz, S.; Martinez-Rodriguez,
   H.; Marvin, C. J.; Mirabet, E.; Moya, A.; Naranjo, V.; Nelson, R. P.;
   Nortmann, L.; Nowak, G.; Ofir, A.; Pascual, J.; Pavlov, A.; Pedraz,
   S.; Perez Medialde, A. D.; Perez-Calpena, A.; Perryman, M. A. C.;
   Rabaza, O.; Ramon Ballesta, A.; Rebolo, R.; Redondo, P.; Rix, H. -W.;
   Rodler, F.; Rodriguez Trinidad, A.; Sabotta, S.; Sadegi, S.; Salz,
   M.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.;
   Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schafer, S.; Schlecker,
   M.; Schmitt, J. H. M. M.; Schofer, P.; Solano, E.; Sota, A.; Stahl, O.;
   Stock, S.; Stuber, T.; Sturmer, J.; Suarez, J. C.; Tabernero, H. M.;
   Tulloch, S. M.; Veredas, G.; Vico-Linares, J. I.; Vilardell, F.;
   Wagner, K.; Winkler, J.; Wolthoff, V.; Yan, F.; Zapatero Osorio, M. R.
2020yCatp021036502M    Altcode:
  These tables list the radial velocities measured with the
  visual (VIS) and near-infrared (NIR) channels of the CARMENES
  spectrograph (Quirrenbach et al. 2018SPIE10702E..0WQ), and the
  stellar activity indices computed with SERVAL (Zechmeister et
  al. 2018A&amp;A...609A..12Z). Photometry obtained from the Montsec,
  Sierra Nevada, and las Cumbres observatories is also listed here as
  used in the paper. <P />(4 data files).

---------------------------------------------------------
Title: Behavior of Dust in an Inductively-Heated Plasma Jet with
    Application to Planetary Science
Authors: Schmidt, J.; Carballido, A.; Laufer, R.; Herdrich, G.; Hyde,
   T. W.
2020LPI....51.1839S    Altcode:
  Alumina particles have been injected into Argon gas plasma jets created
  by the inductively-heated plasma generator IPG6-B and interaction has
  been observed.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M
    dwarfs. Photospheric parameters of target stars from high-resolution
    spectroscopy. II. Simultaneous multi-wavelength range modeling of
    activity insensitive lines (Corrigendum)
Authors: Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.;
   Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.;
   Cortés-Contreras, M.; Domínguez-Fernández, A. J.; Quirrenbach,
   A.; Ribas, I.; Azzaro, M.; Anglada-Escudé, G.; Bauer, F. F.; Béjar,
   V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.;
   Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.;
   Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M.
2020A&A...634C...2P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic activity and evolution of the four Hyades K giants
Authors: Schröder, K. -P.; Mittag, M.; Jack, D.; Rodríguez Jiménez,
   A.; Schmitt, J. H. M. M.
2020MNRAS.492.1110S    Altcode: 2019arXiv191203638S; 2019MNRAS.tmp.3183S
  We determine the exact physical parameters of the four Hyades cluster
  K giants, using their parallaxes and atmospheric modelling of our
  red-channel TIGRE high-resolution spectra. Performing a comparison with
  well-tested evolutionary tracks, we derive exact masses and evolutionary
  stages. At an age of 588 (±60) Myr and with a metallicity of Z = 0.03
  (consistent with the spectroscopic abundances), we find HD 27371 and
  HD 28307, the two less bright K giants, at the onset of central helium
  burning, entering their blue loops with a mass of 2.62 M<SUB>⊙</SUB>,
  while the slightly brighter stars HD 28305 and HD 27697 are already
  exiting their blue loop. Their more advanced evolution suggests a higher
  mass of 2.75 M<SUB>⊙</SUB>. Notably, this pairing coincides with
  the different activity levels, which we find for these four stars from
  chromospheric activity monitoring with TIGRE and archival Mount Wilson
  data as well as from ROSAT coronal detections. The two less evolved K
  giants are the far more active pair, and we confidently confirm their
  rotation with periods of about 142 d. This work therefore provides some
  first, direct evidence of magnetic braking during the 130 Myr lasting
  phase of central helium-burning, similar to what has long been known
  to occur to cool main-sequence stars.

---------------------------------------------------------
Title: Best ways to let others know how to cite your research software
Authors: Allen, A.; Nemiroff, R.; Ryan, P.; Schmidt, J.; Teuben, P.
2020AAS...23510912A    Altcode:
  Software citation is good for research transparency and reproducibility,
  and maybe, if you work it right, for your CV, too. You can get credit
  and recognition through citations for your code! This presentation
  highlights several powerful methods for increasing the probability that
  use of your research software will be cited, and cited correctly. The
  presentation covers how to create codemeta.json and CITATION.cff
  automagically from Astrophysics Source Code Library (ASCL ascl.net)
  entries, edit, and use these files, the value of including such files
  on your code site(s), and efforts underway in astronomy and other
  fields to improve software citation and credit.

---------------------------------------------------------
Title: Initial performance of the CUORE detector
Authors: Cushman, J. S.; Alduino, C.; Alfonso, K.; Avignone, F. T.,
   III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Bersani,
   A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho,
   A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli,
   L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.;
   Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.;
   Creswick, R. J.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Davis,
   C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.;
   Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Ferri, E.; Ferroni, F.;
   Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.;
   Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.;
   Gotti, C.; Gutierrez, T. D.; Han, K.; Heeger, K. M.; Hennings-Yeomans,
   R.; Huang, H. Z.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.;
   Lim, K. E.; Ma, Y. G.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei,
   Y.; Moggi, N.; Morganti, S.; Nagorny, S. S.; Napolitano, T.; Nastasi,
   M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.;
   O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.;
   Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pira, C.; Pirro,
   S.; Pozzi, S.; Previtali, E.; Reindl, F.; Rosenfeld, C.; Rusconi,
   C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt,
   J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Taffarello, L.; Terranova,
   F.; Tomei, C.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang,
   H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise,
   T.; Zanotti, L.; Zhang, G. Q.; Zimmermann, S.; Zucchelli, S.
2020JPhCS1342a2114C    Altcode:
  CUORE, the Cryogenic Underground Observatory for Rare Events, is
  an experiment searching for the neutrinoless double-beta decay of
  <SUP>130</SUP>Te. The first CUORE dataset was acquired in May and
  June 2017 and consisted of 10.6 kg-yr of TeO<SUB>2</SUB> exposure,
  with several days of calibration data before and after the physics
  dataset. We discuss here the initial performance of the CUORE detector
  and cryostat in this first dataset.

---------------------------------------------------------
Title: Three-Dimensional Kinematic Reconstruction of the
    Optically-Emitting, High-Velocity, Oxygen-Rich Ejecta of Supernova
    Remnant N132D
Authors: Milisavljevic, D.; Law, C. J.; Patnaude, D.; Plucinsky,
   P.; Gladders, M.; Schmidt, J.; Sravan, N.; Banovetz, J.; Sano, H.;
   McGraw, J.; Takahashi, G.
2020AAS...23530708M    Altcode:
  We present a three-dimensional (3D) kinematic reconstruction of the
  optically-emitting, oxygen-rich ejecta of supernova remnant N132D in
  the Large Magellanic Cloud. Data were obtained with the 6.5m Magellan
  telescope in combination with the IMACS+GISMO instrument and survey [O
  III] 4959, 5007 line emission in a 3' x 3' region centered on N132D. The
  spatial and spectral resolution of our data enable detailed examination
  of structure and the ability to compare and contrast this structure with
  other remnants. The majority of N132D's optically bright oxygen ejecta
  are arranged in a torus-like geometry tilted approximately 28 degrees
  with respect to the plane of the sky. The torus has a radius of 4.36 pc
  (D = 50 kpc), exhibits a blue-shifted radial velocity asymmetry of -3000
  to 2300 km/s, and has a conspicuous break in its circumference. Assuming
  homologous expansion from the geometric center of O-rich filaments,
  the average expansion velocity of 1744 km/s translates to an age
  since explosion of 2445 ± 195 yr. A faint, spatially-separated
  "runaway knot" (RK) with total space velocity of 3150 km/s is nearly
  perpendicular to the torus plane and coincident with X-ray emission
  that is substantially enhanced in Si relative to the LMC and N132D's
  bulk ejecta. These kinematic and chemical signatures suggest that the
  RK may have had its origin deep within the progenitor star. Overall,
  the main shell morphology and high-velocity, Si-enriched components of
  N132D have remarkable similarity with that of Cassiopeia A, which is
  known to be the result of a Type IIb supernova explosion. Our results
  underscore the need for further observations and simulations that can
  robustly reconcile whether the observed morphology is dominated by
  explosion dynamics or shaped by interaction with the environment.

---------------------------------------------------------
Title: Gamow-Teller transitions to <SUP>93</SUP>Zr via the
    <SUP>93</SUP>Nb(t ,<SUP>3</SUP>He+γ ) reaction at 115 MeV/u and
    its application to the stellar electron-capture rates
Authors: Gao, B.; Zegers, R. G. T.; Zamora, J. C.; Bazin, D.; Brown,
   B. A.; Bender, P.; Crawford, H. L.; Engel, J.; Falduto, A.; Gade, A.;
   Gastis, P.; Ginter, T.; Guess, C. J.; Lipschutz, S.; Macchiavelli,
   A. O.; Miki, K.; Ney, E. M.; Longfellow, B.; Noji, S.; Pereira, J.;
   Schmitt, J.; Sullivan, C.; Titus, R.; Weisshaar, D.
2020PhRvC.101a4308G    Altcode:
  Electron-capture reactions play important roles in the late evolution
  of core-collapse supernovae. The electron-capture rates used in
  astrophysical simulations rely on theoretical calculations which
  have to be tested against and guided by experimental data. We report
  on the measurement of the Gamow-Teller strength distribution of the
  odd-mass nucleus <SUP>93</SUP>Nb via the (t ,<SUP>3</SUP>He + γ )
  charge-exchange reaction at a beam energy of 115 MeV/u. The Gamow-Teller
  strength distributions were extracted up to an excitation energy in
  <SUP>93</SUP>Zr of 10 MeV. The results were compared with shell-model
  and quasiparticle random-phase approximation (QRPA) calculations. The
  theoretical calculations fail to describe the details of the strength
  distribution, but estimate reasonably well the integrated Gamow-Teller
  transition strength. Electron-capture rates derived from the measured
  and theoretical strength distributions match reasonably well, especially
  at the higher stellar densities of importance for deleptonization
  during the collapse of the stellar core, since the electron-capture
  Q value is close to zero and the Fermi energy sufficiently high to
  ensure that the details of the strength distribution do not have a
  strong impact on the derived rates. At stellar densities in excess of
  10<SUP>9</SUP> g/cm<SUP>3</SUP>, the electron-capture rate based on a
  single-state approximation used in astrophysical simulations is slightly
  higher than the rates based on the data and the shell-model and QRPA
  calculations, likely due to the fact that the approximation includes
  temperature-dependent effects, which increase the rates. However,
  the difference is much smaller than that observed in recent studies
  of nuclei with Z &lt;40 near N =50 , suggesting that the single-state
  approximation does not account for Pauli-blocking effects for nuclei
  with Z &lt;40 that are much stronger than those for <SUP>93</SUP>Nb
  with Z =41 .

---------------------------------------------------------
Title: SRG/eROSITA detection of the bright, transient X-ray flare
    SRGt J123822.3-253206
Authors: Wilms, J.; Kreykenbohm, I.; Weber, P.; Falkner, S.; Dauser,
   T.; Knies, J.; Koenig, O.; Malyali, A.; Rau, A.; Merloni, A.;
   Bogensberger, D.; Brunner, H.; Buchner, J.; Carpano, S.; Freyberg,
   M.; Haberl, F.; Maitra, C.; Salvato, M.; Doroshenko, V.; Ducci, L.;
   Ji, L.; Schmitt, J. H. M. M.; Schwope, A.
2020ATel13416....1W    Altcode:
  On 31 December 2019 at 6:42 UTC (MJD 58848.280), the eROSITA instrument
  onboard the Russian/German Spektrum-Roentgen-Gamma (SRG) mission
  detected a bright X-ray flare localized to RA(J2000) = 12:38:22.2
  Dec(J2000) = -25:32:06 with an estimated positional uncertainty of
  10" radius.

---------------------------------------------------------
Title: First results from the CUORE experiment
Authors: Alduino, C.; Alfonso, K.; Avignone, F. T., III; Azzolini, O.;
   Bari, G.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca,
   A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica,
   L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.;
   Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello,
   S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.;
   D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Davis, C. J.; Dell'Oro,
   S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Dompe, V.;
   Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Ferri, E.; Ferroni, F.;
   Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.;
   Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.;
   Gotti, C.; Gutierrez, T. D.; Han, K.; Heeger, K. M.; Hennings-Yeomans,
   R.; Huang, H. Z.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.;
   Lim, K. E.; Ma, Y. G.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei,
   Y.; Moggi, N.; Morganti, S.; Nagorny, S. S.; Napolitano, T.; Nastasi,
   M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.;
   O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.;
   Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pira, C.; Pirro,
   S.; Pozzi, S.; Previtali, E.; Reindl, F.; Rosenfeld, C.; Rusconi,
   C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt,
   J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Taffarello, L.; Terranova,
   F.; Tomei, C.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang,
   H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise,
   T.; Zanotti, L.; Zhang, G. Q.; Zimmermann, S.; Zucchelli, S.
2020JPhCS1342a2002A    Altcode:
  CUORE (Cryogenic Underground Observatory for Rare Events) is a ton-scale
  experiment aiming to the search of neutrino-less double beta decay in
  <SUP>130</SUP>Te with a projected sensitivity on the Majorana effective
  mass close to the inverted hierarchy region. The CUORE detector consists
  of a segmented array of 988 TeO<SUB>2</SUB> bolometers, organized in 19
  towers and operated at a temperature of about 10 mK thanks to a custom
  cryogenic system which, besides the uncommon scale, observes several
  constraints from the radio-purity of the materials to the mechanical
  decoupling of the cooling systems. The successful commissioning of the
  CUORE cryogenic system has been completed early in 2016 and represents
  an outstanding achievement by itself. The installation of the detector
  proceeded along 2016 followed by the cooldown to base temperature at
  the beginning of 2017. The CUORE detector is now operational and has
  been taking science data since Spring 2017. With the first ~3 weeks
  of collected data, we present here the most stringent constraint on
  the <SUP>130</SUP>Te half-live for the neutrino-less double beta decay.

---------------------------------------------------------
Title: Deriving Impact Ejecta Launch Site Distributions for Mapping
    the Composition of Europa
Authors: Goode, W. R., III; Kempf, S.; Schmidt, J.
2019AGUFM.P53D3480G    Altcode:
  The Surface Dust Analyzer (SUDA) is a time-of-flight mass spectrometer
  that will fly aboard NASA's Europa Clipper with an expected launch date
  in 2023. During close flybys of Europa (~25-100 km at closest approach),
  SUDA will measure the the chemical composition of particles encountered
  by the instrument via impact ionization. SUDA is expected to collect
  particles from both ice particle plumes on the surface of Europa and
  surface ejecta created by hypervelocity impacts of micrometeoroids with
  the moon. The focus of this study is on associating detected surface
  ejecta with their site of origin on Europa. This is achieved with
  probability distributions derived using Monte Carlo simulations. The
  simulations are designed using established models of impact ejecta
  dynamics and include the necessary distributions of particle velocities
  for a given position relative to Europa. The simulated velocities
  and detection positions are used to backtrack the ejecta particle's
  trajectory to its launch site on the surface, providing distinct
  launch site distributions with respect to the sub-spacecraft point. <P
  />The spatial resolution of surface chemical composition measurements
  along the ground track of the spacecraft can be characterized for any
  flyby. We also show how measuring the grain entry velocity parallel
  to the boresight of the instrument with a 1% uncertainty further
  constrains the probable launch site area thereby improving the
  resolution of compositional mapping performed by SUDA. This method
  plays a key role in the science planning for the instrument and will
  enhance the analysis of returned data from Europa Clipper's mission.

---------------------------------------------------------
Title: The SUfarce Dust Analyzer (SUDA ): Compositional Mapping of
    Europa's Surface.
Authors: Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama,
   R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt,
   J.; Zolotov, M. Y.; Hsu, S.; Cassidy, T.; Henderson, B. L.; Goode,
   W. R., III; Tucker, S.; Frank, W.; Lev-Tov, S.; Hoxie, V.; Yehle,
   A.; Arteaga Garcia, A.
2019AGUFM.P53D3500K    Altcode:
  The Surface Dust Analyzer (SUDA) instrument onboard NASA's
  Europa Clipper Flagship mission measures the composition of dust
  particles populating the thin exospheres around the Galilean moons
  of Jupiter. Since these grains are direct samples from the moon's
  icy surface, the unique data from SUDA will constrain the composition
  and geological history of surface and subsurface materials. SUDA will
  search for and analyze the composition and nature of active and recent
  plumes, and also identify particles ejected from Io's volcanoes. Our
  data will constrain the origins of surface non-ice materials, exchange
  processes involving the entire exosphere-surface-interior system,
  and help assess the habitability of Europa. <P />SUDA is a time-of-
  flight, reflectron-type impact mass spectrometer, optimized for a
  high mass resolution that only weakly depends on the impact location
  on its target. The mass spectrometer has a resolution of m/Δm ~ 200
  and is capable to detecting either the cations or the anions generated
  in an impact. The high purity iridium coated impact target enables
  the detection of trace amounts (&lt; 1 ppm) of salts, amino acids,
  and fatty acids embedded in the ice matrix of the particles ejected
  from the surface. The velocity sensor in front of the mass spectrometer
  measures the velocity component of the incoming grain parallel to the
  instrument's boresight with 1% uncertainty. This data allows SUDA to
  constrain the ejecta's origin on Europa's surface with an uncertainty
  of about half of the spacecraft altitude. <P />A flight-like engineering
  model of the SUDA instrument has been built in order to demonstrate its
  performance through calibration experiments using NASA's SSERVI/IMPACT
  dust accelerator facility at he University of Colorado, Boulder, with
  a variety of cosmo-chemically relevant dust analogues. The effective
  mass resolution of m/Δm of 150-300 is achieved for the mass range
  of interest m = 1u - 150u. The instrument has recently passed its
  Critical Design Review and the team is in the process of fabricating
  the flight instrument.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. The He
    I triplet at 10830 Å across the M dwarf sequence
Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.;
   Schmitt, J. H. M. M.; Hintz, D.; Johnson, E. N.; Sanz-Forcada, J.;
   Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.;
   Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.;
   Béjar, V. J. S.; Cortés-Contreras, M.; Díez-Alonso, E.; Dreizler,
   S.; Galadí-Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster,
   M.; Lafarga, M.; Montes, D.
2019A&A...632A..24F    Altcode: 2019arXiv191100246F
  The He I infrared (IR) triplet at 10 830 Å is an important activity
  indicator for the Sun and in solar-type stars, however, it has rarely
  been studied in relation to M dwarfs to date. In this study, we use the
  time-averaged spectra of 319 single stars with spectral types ranging
  from M0.0 V to M9.0 V obtained with the CARMENES high resolution
  optical and near-infrared spectrograph at Calar Alto to study the
  properties of the He I IR triplet lines. In quiescence, we find the
  triplet in absorption with a decrease of the measured pseudo equivalent
  width (pEW) towards later sub-types. For stars later than M5.0 V,
  the He I triplet becomes undetectable in our study. This dependence
  on effective temperature may be related to a change in chromospheric
  conditions along the M dwarf sequence. When an emission in the triplet
  is observed, we attribute it to flaring. The absence of emission during
  quiescence is consistent with line formation by photo-ionisation
  and recombination, while flare emission may be caused by collisions
  within dense material. The He I triplet tends to increase in depth
  according to increasing activity levels, ultimately becoming filled in;
  however, we do not find a correlation between the pEW(He IR) and X-ray
  properties. This behaviour may be attributed to the absence of very
  inactive stars (L<SUB>X</SUB>/L<SUB>bol</SUB> &lt; -5.5) in our sample
  or to the complex behaviour with regard to increasing depth and filling
  in. <P />Full Table 2 is only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A24">http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A24</A>

---------------------------------------------------------
Title: Water vapor detection in the transmission spectra of HD 209458
    b with the CARMENES NIR channel
Authors: Sánchez-López, A.; Alonso-Floriano, F. J.; López-Puertas,
   M.; Snellen, I. A. G.; Funke, B.; Nagel, E.; Bauer, F. F.; Amado,
   P. J.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.;
   Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Anglada-Escudé,
   G.; Béjar, V. J. S.; Casasayas-Barris, N.; Galadí-Enríquez, D.;
   Guenther, E. W.; Henning, Th.; Kaminski, A.; Kürster, M.; Lampón,
   M.; Lara, L. M.; Montes, D.; Morales, J. C.; Stangret, M.; Tal-Or,
   L.; Sanz-Forcada, J.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.;
   Zechmeister, M.
2019A&A...630A..53S    Altcode: 2019arXiv190808754S
  <BR /> Aims: We aim at detecting water vapor in the atmosphere of the
  hot Jupiter HD 209458 b and perform a multi-band study in the near
  infrared with CARMENES. <BR /> Methods: The water vapor absorption
  lines from the atmosphere of the planet are Doppler-shifted due to
  the large change in its radial velocity during transit. This shift is
  of the order of tens of km s<SUP>-1</SUP>, whilst the Earth's telluric
  and the stellar lines can be considered quasi-static. We took advantage
  of this shift to remove the telluric and stellar lines using SYSREM,
  which performs a principal component analysis including proper error
  propagation. The residual spectra contain the signal from thousands
  of planetary molecular lines well below the noise level. We retrieve
  the information from those lines by cross-correlating the residual
  spectra with models of the atmospheric absorption of the planet. <BR
  /> Results: We find a cross-correlation signal with a signal-to-noise
  ratio (S/N) of 6.4, revealing H<SUB>2</SUB>O in HD 209458 b. We obtain
  a net blueshift of the signal of -5.2 <SUB>-1.3</SUB><SUP>+2.6</SUP>
  km s<SUP>-1</SUP> that, despite the large error bars, is a firm
  indication of day- to night-side winds at the terminator of this
  hot Jupiter. Additionally, we performed a multi-band study for the
  detection of H<SUB>2</SUB>O individually from the three near infrared
  bands covered by CARMENES. We detect H<SUB>2</SUB>O from its 0.96-1.06
  μm band with a S/N of 5.8, and also find hints of a detection from the
  1.06-1.26 μm band, with a low S/N of 2.8. No clear planetary signal is
  found from the 1.26-1.62 μm band. <BR /> Conclusions: Our significant
  H<SUB>2</SUB>O signal at 0.96-1.06 μm in HD 209458 b represents the
  first detection of H<SUB>2</SUB>O from this band individually, the
  bluest one to date. The unfavorable observational conditions might be
  the reason for the inconclusive detection from the stronger 1.15 and
  1.4 μm bands. H<SUB>2</SUB>O is detected from the 0.96-1.06 μm band
  in HD 209458 b, but hardly in HD 189733 b, which supports a stronger
  aerosol extinction in the latter, in line with previous studies. Future
  data gathered at more stable conditions and with larger S/N at both
  optical and near-infrared wavelengths could help to characterize the
  presence of aerosols in HD 209458 b and other planets.

---------------------------------------------------------
Title: VizieR Online Data Catalog: HeI IR triplet measurements for
    M dwarfs (Fuhrmeister+, 2019)
Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.;
   Schmitt, J. H. M. M.; Hintz, D.; Johnson, E. N.; Sanz-Forcada, J.;
   Schoefer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.;
   Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.;
   Bejar, V. J. S.; Cortes-Contreras, M.; Diez-Alonso, E.; Dreizler,
   S.; Galadi-Enriquez, D.; Guenther, E. W.; Kaminski, A.; Kuerster,
   M.; Lafarga, M.; Montes, D.
2019yCat..36320024F    Altcode:
  We measure the pseudo-equivalent width (pEW) in the averaged stellar
  spectra using a Voigt fit with four Voigt components to account for
  neighbouring lines. The fit does not account for the bluest HeI triplet
  component and treats the two redder components as one component as they
  are totally blended for the used resolution of 80400. For comparison
  purposes we give also pEW values of Hα, the bluest CaII IR triplet
  line, and the HeI D<SUB>3</SUB> line which were obtained by integration
  over the line from the same spectra. As a further comparison for the
  activity level of the star we give LX/Lbol values mostly taken from
  the ROSAT all-sky survey. <P />(1 data file).

---------------------------------------------------------
Title: Constraints for stellar electron-capture rates on
    <SUP>86</SUP>Kr via the <SUP>86</SUP>Kr(t ,<SUP>3</SUP>He+γ
    )<SUP>86</SUP>Br reaction and the implications for core-collapse
    supernovae
Authors: Titus, R.; Ney, E. M.; Zegers, R. G. T.; Bazin, D.; Belarge,
   J.; Bender, P. C.; Brown, B. A.; Campbell, C. M.; Elman, B.; Engel,
   J.; Gade, A.; Gao, B.; Kwan, E.; Lipschutz, S.; Longfellow, B.;
   Lunderberg, E.; Mijatović, T.; Noji, S.; Pereira, J.; Schmitt, J.;
   Sullivan, C.; Weisshaar, D.; Zamora, J. C.
2019PhRvC.100d5805T    Altcode: 2019arXiv190803985T
  Background: In the late stages of stellar core collapse just
  prior to core bounce, electron captures on medium-heavy nuclei
  drive deleptonization. Therefore, simulations require the use of
  accurate reaction rates. Nuclei with neutron number near N =50 above
  atomic number Z =28 play an important role. Rates presently used
  in astrophysical simulations rely primarily on a relatively simple
  single-state approximation. In order to improve the accuracy of
  the astrophysical simulations, experimental data are needed to test
  the electron-capture rates and to guide the development of better
  theoretical models and astrophysical simulations. <P />Purpose: The
  purpose of the present work was to measure the Gamow-Teller transition
  strength from <SUP>86</SUP>Kr to <SUP>86</SUP>Br, to derive the stellar
  electron-capture rates based on the extracted strengths, and to compare
  the derived rates with rates based on shell-model and quasiparticle
  random-phase approximation (QRPA) Gamow-Teller strengths calculations,
  as well as the single-state approximation. An additional purpose was to
  test the impact of using improved electron-capture rates on the late
  evolution of core-collapse supernovae. <P />Method: The Gamow-Teller
  strengths from <SUP>86</SUP>Kr were extracted from the <SUP>86</SUP>Kr(t
  ,<SUP>3</SUP>He+γ ) charge-exchange reaction at 115 MeV /u . The
  electron-capture rates were calculated as a function of stellar
  density and temperature. Besides the case of <SUP>86</SUP>Kr, the
  electron-capture rates based on the QRPA calculations were calculated
  for 78 additional isotopes near N =50 above Z =28 . The impact of using
  these rates instead of those based on the single-state approximation
  is studied in a spherically symmetrical simulation of core collapse
  just prior to bounce. <P />Results: The derived electron-capture
  rates on <SUP>86</SUP>Kr from the experimental Gamow-Teller strength
  distribution are much smaller than the rates estimated based on the
  single-state approximation. Rates based on Gamow-Teller strengths
  estimated in shell-model and QRPA calculations are more accurate. The
  core-collapse supernova simulation with electron-capture rates based
  on the QRPA calculations indicate a significant reduction in the
  deleptonization during the collapse phase. <P />Conclusions: It is
  important to utilize microscopic theoretical models that are tested
  by experimental data to constrain and estimate Gamow-Teller strengths
  and derived electron-capture rates for nuclei near N =50 that are
  inputs for astrophysical simulations of core-collapse supernovae and
  their multimessenger signals, such as the emission of neutrinos and
  gravitational waves.

---------------------------------------------------------
Title: A giant exoplanet orbiting a very-low-mass star challenges
    planet formation models
Authors: Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.;
   Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez,
   E.; López-González, M. J.; Rodríguez-López, C.; Béjar, V. J. S.;
   González-Cuesta, L.; Luque, R.; Pallé, E.; Perger, M.; Baroch,
   D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escudé, G.;
   Caballero, J. A.; Cortés-Contreras, M.; Dreizler, S.; Lafarga, M.;
   Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; Schweitzer,
   A.; Tal-Or, L.; Trifonov, T.; Zechmeister, M.; Quirrenbach, A.;
   Amado, P. J.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Jeffers,
   S. V.; Kaminski, A.; Kürster, M.; Montes, D.; Seifert, W.; Abellán,
   F. J.; Abril, M.; Aceituno, J.; Aceituno, F. J.; Alonso-Floriano,
   F. J.; Ammler-von Eiff, M.; Antona, R.; Arroyo-Torres, B.; Azzaro,
   M.; Barrado, D.; Becerril-Jarque, S.; Benítez, D.; Berdiñas, Z. M.;
   Bergond, G.; Brinkmöller, M.; del Burgo, C.; Burn, R.; Calvo-Ortega,
   R.; Cano, J.; Cárdenas, M. C.; Cardona Guillén, C.; Carro, J.; Casal,
   E.; Casanova, V.; Casasayas-Barris, N.; Chaturvedi, P.; Cifuentes,
   C.; Claret, A.; Colomé, J.; Czesla, S.; Díez-Alonso, E.; Dorda, R.;
   Emsenhuber, A.; Fernández, M.; Fernández-Martín, A.; Ferro, I. M.;
   Fuhrmeister, B.; Galadí-Enríquez, D.; Gallardo Cava, I.; García
   Vargas, M. L.; Garcia-Piquer, A.; Gesa, L.; González-Álvarez,
   E.; González Hernández, J. I.; González-Peinado, R.; Guàrdia,
   J.; Guijarro, A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.;
   Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero,
   F.; Hintz, D.; Holgado, G.; Huber, A.; Huke, P.; Johnson, E. N.;
   de Juan, E.; Kehr, M.; Kemmer, J.; Kim, M.; Klüter, J.; Klutsch,
   A.; Labarga, F.; Labiche, N.; Lalitha, S.; Lampón, M.; Lara, L. M.;
   Launhardt, R.; Lázaro, F. J.; Lizon, J. -L.; Llamas, M.; Lodieu,
   N.; López del Fresno, M.; López Salas, J. F.; López-Santiago, J.;
   Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil,
   E.; Marín Molina, J. A.; Martín, E. L.; Martín-Fernández, P.;
   Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mirabet,
   E.; Moya, A.; Naranjo, V.; Nelson, R. P.; Nortmann, L.; Nowak, G.;
   Ofir, A.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez Medialdea, D.;
   Pérez-Calpena, A.; Perryman, M. A. C.; Rabaza, O.; Ramón Ballesta,
   A.; Rebolo, R.; Redondo, P.; Rix, H. -W.; Rodler, F.; Rodríguez
   Trinidad, A.; Sabotta, S.; Sadegi, S.; Salz, M.; Sánchez-Blanco,
   E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.;
   Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schlecker, M.; Schmitt,
   J. H. M. M.; Schöfer, P.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.;
   Stuber, T.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tulloch,
   S. M.; Veredas, G.; Vico-Linares, J. I.; Vilardell, F.; Wagner, K.;
   Winkler, J.; Wolthoff, V.; Yan, F.; Zapatero Osorio, M. R.
2019Sci...365.1441M    Altcode: 2019arXiv190912174M
  Surveys have shown that super-Earth and Neptune-mass exoplanets are more
  frequent than gas giants around low-mass stars, as predicted by the core
  accretion theory of planet formation. We report the discovery of a giant
  planet around the very-low-mass star GJ 3512, as determined by optical
  and near-infrared radial-velocity observations. The planet has a minimum
  mass of 0.46 Jupiter masses, very high for such a small host star,
  and an eccentric 204-day orbit. Dynamical models show that the high
  eccentricity is most likely due to planet-planet interactions. We use
  simulations to demonstrate that the GJ 3512 planetary system challenges
  generally accepted formation theories, and that it puts constraints
  on the planet accretion and migration rates. Disk instabilities may
  be more efficient in forming planets than previously thought.

---------------------------------------------------------
Title: Transient Discovery Report for 2019-09-25
Authors: Keel, W.; Schmidt, J.; Dalcanton, J.
2019TNSTR1910....1K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: He I λ 10 830 Å in the transmission spectrum of HD209458 b
Authors: Alonso-Floriano, F. J.; Snellen, I. A. G.; Czesla, S.; Bauer,
   F. F.; Salz, M.; Lampón, M.; Lara, L. M.; Nagel, E.; López-Puertas,
   M.; Nortmann, L.; Sánchez-López, A.; Sanz-Forcada, J.; Caballero,
   J. A.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Aceituno,
   J.; Anglada-Escudé, G.; Béjar, V. J. S.; Brinkmöller, M.; Hatzes,
   A. P.; Henning, Th.; Kaminski, A.; Kürster, M.; Labarga, F.; Montes,
   D.; Pallé, E.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.
2019A&A...629A.110A    Altcode: 2019arXiv190713425A
  Context. Recently, the He I triplet at 10 830 Å was rediscovered as an
  excellent probe of the extended and possibly evaporating atmospheres of
  close-in transiting planets. This has already resulted in detections
  of this triplet in the atmospheres of a handful of planets, both from
  space and from the ground. However, while a strong signal is expected
  for the hot Jupiter HD 209458 b, only upper limits have been obtained so
  far. <BR /> Aims: Our goal is to measure the helium excess absorption
  from HD 209458 b and assess the extended atmosphere of the planet and
  possible evaporation. <BR /> Methods: We obtained new high-resolution
  spectral transit time-series of HD 209458 b using CARMENES at the 3.5
  m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a
  spectral resolving power of 80 400. The observed spectra were corrected
  for stellar absorption lines using out-of-transit data, for telluric
  absorption using the MOLECFIT software, and for the sky emission lines
  using simultaneous sky measurements through a second fibre. <BR />
  Results: We detect He I absorption at a level of 0.91 ± 0.10% (9 σ)
  at mid-transit. The absorption follows the radial velocity change
  of the planet during transit, unambiguously identifying the planet
  as the source of the absorption. The core of the absorption exhibits
  a net blueshift of 1.8 ± 1.3 km s<SUP>-1</SUP>. Possible low-level
  excess absorption is seen further blueward from the main absorption
  near the centre of the transit, which could be caused by an extended
  tail. However, this needs to be confirmed. <BR /> Conclusions: Our
  results further support a close relation between the strength of
  planetary absorption in the helium triplet lines and the level of
  ionising, stellar X-ray, and extreme-UV irradiation.

---------------------------------------------------------
Title: X-ray emission in the enigmatic CVSO 30 system
Authors: Czesla, S.; Schneider, P. C.; Salz, M.; Klocová, T.; Schmidt,
   T. O. B.; Schmitt, J. H. M. M.
2019A&A...629A...5C    Altcode: 2019arXiv190711551C
  CVSO 30 is a young, active, weak-line T Tauri star; it possibly hosts
  the only known planetary system with both a transiting hot-Jupiter and a
  cold-Jupiter candidate (CVSO 30 b and CVSO 30 c). We analyzed archival
  ROSAT, Chandra, and XMM-Newton data to study the coronal emission in
  the system. According to our modeling, CVSO 30 shows a quiescent X-ray
  luminosity of ≈8 × 10<SUP>29</SUP> erg s<SUP>-1</SUP>. The X-ray
  absorbing column is consistent with interstellar absorption. XMM-Newton
  observed a flare, during which a transit of the candidate CVSO 30
  b was expected, but no significant transit-induced variation in the
  X-ray flux is detectable. While the hot-Jupiter candidate CVSO 30 b
  has continuously been undergoing mass loss powered by the high-energy
  irradiation, we conclude that its evaporation lifetime is considerably
  longer than the estimated stellar age of 2.6 Myr.

---------------------------------------------------------
Title: Experimental constraint on stellar electron-capture rates from
    the <SUP>88</SUP>Sr(t ,<SUP>3</SUP>He+γ )<SUP>88</SUP>Rb reaction
    at 115 MeV/u
Authors: Zamora, J. C.; Zegers, R. G. T.; Austin, Sam M.; Bazin, D.;
   Brown, B. A.; Bender, P. C.; Crawford, H. L.; Engel, J.; Falduto, A.;
   Gade, A.; Gastis, P.; Gao, B.; Ginter, T.; Guess, C. J.; Lipschutz,
   S.; Longfellow, B.; Macchiavelli, A. O.; Miki, K.; Ney, E.; Noji,
   S.; Pereira, J.; Schmitt, J.; Sullivan, C.; Titus, R.; Weisshaar, D.
2019PhRvC.100c2801Z    Altcode: 2019arXiv190605934Z
  The Gamow-Teller strength distribution from <SUP>88</SUP>Sr was
  extracted from a (t ,<SUP>3</SUP>He+γ ) experiment at 115 MeV /u to
  constrain estimates for the electron-capture rates on nuclei around N
  =50 , between and including <SUP>78</SUP>Ni and <SUP>88</SUP>Sr, which
  are important for the late evolution of core-collapse supernovae. The
  observed Gamow-Teller strength below an excitation energy of 8 MeV
  was consistent with zero and below 10 MeV amounted to 0.1 ±0.05
  . Except for a very-weak transition that could come from the 2.231-MeV
  1<SUP>+</SUP> state, no γ lines that could be associated with the
  decay of known 1<SUP>+</SUP> states were identified. The derived
  electron-capture rate from the measured strength distribution is more
  than an order of magnitude smaller than rates based on the single-state
  approximation presently used in astrophysical simulations for most
  nuclei near N =50 . Rates based on shell-model and quasiparticle
  random-phase approximation calculations that account for Pauli-blocking
  and core-polarization effects provide better estimates than the
  single-state approximation, although a relatively strong transition to
  the first 1<SUP>+</SUP> state in <SUP>88</SUP>Rb is not observed in
  the data. Pauli-unblocking effects due to high stellar temperatures
  could partially counter the low electron-capture rates. The new data
  serve as a zero-temperature benchmark for constraining models used to
  estimate such effects.

---------------------------------------------------------
Title: Erratum: “Quantifying Feedback from Narrow Line
    Region Outflows in Nearby Active Galaxies. II. Spatially
    Resolved Mass Outflow Rates for the QSO2 Markarian 34” (<A
href="https://doi.org/10.3847/1538-4357/aae3e6">2018, ApJ, 867,
    88</A>)
Authors: Revalski, M.; Dashtamirova, D.; Crenshaw, D. M.; Kraemer,
   S. B.; Fischer, T. C.; Schmitt, H. R.; Gnilka, C. L.; Schmidt,
   J.; Elvis, M.; Fabbiano, G.; Storchi-Bergmann, T.; Maksym, W. P.;
   Gandhi, P.
2019ApJ...881..167R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Superflares on AB Doradus observed with TESS
Authors: Schmitt, J. H. M. M.; Ioannidis, P.; Robrade, J.; Czesla,
   S.; Schneider, P. C.
2019A&A...628A..79S    Altcode:
  We present short-cadence data of the ultra-active star AB Dor measured
  by the Transiting Exoplanet Survey Satellite (TESS). In the TESS
  light curves of AB Dor, we found numerous flare events in addition to
  time-variable rotational modulation with an amplitude of up to 7%. We
  identified eight superflares (releasing more than 10<SUP>34</SUP> erg)
  and studied their morphologies and energetics. We compared these flares
  to both the most energetic solar flare seen in total solar irradiance
  measurements as well as to a very energetic flare on AB Dor observed
  by XMM-Newton, the superflare nature of which we also demonstrate. The
  total energy of both the solar flare and the event on AB Dor emitted
  in the optical exceed their respective X-ray outputs possibly by an
  order of magnitude, suggesting that the dominant energy loss of such
  flares actually occurs at optical wavelengths. Superflares are found
  to take place on AB Dor at a rate of about one per week, and due to
  the star's proximity and brightness can be studied in excruciating
  detail. Thus the TESS data offer a superb possibility to study the
  frequency and energetics of superflare events for stars in the solar
  neighborhood and at large.

---------------------------------------------------------
Title: Magnetic activity of the solar-like star HD 140538
Authors: Mittag, M.; Schmitt, J. H. M. M.; Metcalfe, T. S.; Hempelmann,
   A.; Schröder, K. -P.
2019A&A...628A.107M    Altcode: 2019arXiv190704575M
  The periods of rotation and activity cycles are among the most
  important properties of the magnetic dynamo thought to be operating
  in late-type, main-sequence stars. In this paper, we present a
  S<SUB>MWO</SUB>-index time series composed from different data sources
  for the solar-like star HD 140538 and derive a period of 3.88 ± 0.02
  yr for its activity cycle. Furthermore, we analyse the high-cadence,
  seasonal S<SUB>MWO</SUB> data taken with the TIGRE telescope and
  find a rotational period of 20.71 ± 0.32 days. In addition, we
  estimate the stellar age of HD 140538 as 3.7 Gyrs via a matching
  evolutionary track. This is slightly older than the ages obtained
  from gyrochronology based on the above rotation period, as well as
  the activity-age relation. These results, together with its stellar
  parameters that are very similar to a younger Sun, make HD 140538 a
  relevant case study for our understanding of solar activity and its
  evolution with time.

---------------------------------------------------------
Title: Modeling light curves of the multi-transiting system Kepler-20
    using Blender
Authors: Müller, Holger Matthias; Ioannidis, Panagiotis; Schmitt,
   Jürgen H. M. M.
2019ESS.....431002M    Altcode:
  Transiting multi-planet systems can hold additional information about
  their orbital configurations. These systems can show multi-transits
  where at least two planets are eclipsing the star at the same time. If
  the orbital alignments are favorable, these systems also provide
  planet-planet occultations (PPOs). The presence or absence of these
  events gives constraints on the alignment of the orbits in question. We
  present a comprehensive study of the multi-transiting planetary system
  Kepler-20. The solar-like host star is orbited by six planets, while
  five of them perform transits. Their small sizes range from roughly
  1 to 3 Earth radii, clearly detected by Kepler. In our approach we
  synthesize a grid of multi-transit light curves using the orbital
  parameters of planets b and c, varying the angle α between their
  orbits, while keeping their transit impact parameters constant. For
  that purpose we are the first to utilize the publically available 3D
  animation software Blender. This allows us to use arbitrary surface
  brightness distributions of the star like model limb darkening or
  spots. The resulting light curves show PPOs depending on the angle
  α, which are then compared to the Kepler data. In this way we are
  able to statistically exclude orbital geometries, and we can identify
  which are the most favorable. Besides the Rossiter-McLaughlin effect
  where spectral data is needed, this method is able to acquire orbital
  alignment information from the optical light curve alone.

---------------------------------------------------------
Title: Atmospheric characterization of the ultra-hot Jupiter
    MASCARA-2b/KELT-20b. Detection of CaII, FeII, NaI, and the Balmer
    series of H (Hα, Hβ, and Hγ) with high-dispersion transit
    spectroscopy
Authors: Casasayas-Barris, N.; Pallé, E.; Yan, F.; Chen, G.; Kohl,
   S.; Stangret, M.; Parviainen, H.; Helling, Ch.; Watanabe, N.; Czesla,
   S.; Fukui, A.; Montañés-Rodríguez, P.; Nagel, E.; Narita, N.;
   Nortmann, L.; Nowak, G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.
2019A&A...628A...9C    Altcode: 2019arXiv190512491C
  Ultra-hot Jupiters orbit very close to their host star and consequently
  receive strong irradiation, causing their atmospheric chemistry to
  be different from the common gas giants. Here, we have studied the
  atmosphere of one of these particular hot planets, MASCARA-2b/KELT-20b,
  using four transit observations with high resolution spectroscopy
  facilities. Three of these observations were performed with HARPS-N
  and one with CARMENES. Additionally, we simultaneously observed
  one of the transits with MuSCAT2 to monitor possible spots in the
  stellar surface. At high resolution, the transmission residuals show
  the effects of Rossiter-McLaughlin and centre-to-limb variations
  from the stellar lines profiles, which we have corrected to finally
  extract the transmission spectra of the planet. We clearly observe
  the absorption features of CaII, FeII, NaI, Hα, and Hβ in the
  atmosphere of MASCARA-2b, and indications of Hγ and MgI at low
  signal-to-noise ratio. In the case of NaI, the true absorption is
  difficult to disentangle from the strong telluric and interstellar
  contamination. The results obtained with CARMENES and HARPS-N are
  consistent, measuring an Hα absorption depth of 0.68 ± 0.05 and
  0.59 ± 0.07%, and NaI absorption of 0.11 ± 0.04 and 0.09 ± 0.05%
  for a 0.75 Å passband, in the two instruments respectively. The Hα
  absorption corresponds to 1.2 R<SUB>p</SUB>, which implies an expanded
  atmosphere, as a result of the gas heating caused by the irradiation
  received from the host star. For Hβ and Hγ only HARPS-N covers
  this wavelength range, measuring an absorption depth of 0.28 ± 0.06
  and 0.21 ± 0.07%, respectively. For CaII, only CARMENES covers this
  wavelength range measuring an absorption depth of 0.28 ± 0.05, 0.41
  ± 0.05 and 0.27 ± 0.06% for CaII λ8498Å, λ8542Å and λ8662Å
  lines, respectively. Three additional absorption lines of FeII are
  observed in the transmission spectrum by HARPS-N (partially covered
  by CARMENES), measuring an average absorption depth of 0.08 ± 0.04%
  (0.75 Å passband). The results presented here are consistent with
  theoretical models of ultra-hot Jupiters atmospheres, suggesting the
  emergence of an ionised gas on the day-side of such planets. Calcium
  and iron, together with other elements, are expected to be singly
  ionised at these temperatures and be more numerous than its neutral
  state. The Calcium triplet lines are detected here for the first
  time in transmission in an exoplanet atmosphere. <P />Reduced
  spectra are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A9">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A9</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: MASCARA-2b transmission spectra
    (Casasayas-Barris+, 2019)
Authors: Casasayas-Barris, N.; Palle, E.; Yan, F.; Chen, G.; Kohl, S.;
   Stangret, H.; Parviainen, M.; Helling, Ch.; Watanabe, N.; Czesla, S.;
   Montanes-Rodriguez, P.; Nagel, E.; Narita, N.; Nortmann, L.; Nowak,
   G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.
2019yCat..36280009C    Altcode:
  We observed a total of four transits of MASCARA-2b using the HARPS-N
  and CARMENES high resolution spectrographs. One of these transits was
  simultaneously observed with the Multicolour Simultaneous Camera for
  studying Atmospheres of Transiting exoplanets 2 (MuSCAT2), a four-colour
  simultaneous imager, in order to monitor possible stellar activity. One
  additional epoch was observed with MuSCAT2 to reproduce the results
  of the first observation. <P />(16 data files).

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M
    dwarfs. Photospheric parameters of target stars from high-resolution
    spectroscopy. II. Simultaneous multiwavelength range modeling of
    activity insensitive lines
Authors: Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.;
   Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.;
   Cortés-Contreras, M.; Domínguez-Fernández, A. J.; Quirrenbach,
   A.; Ribas, I.; Azzaro, M.; Anglada-Escudé, G.; Bauer, F. F.; Béjar,
   V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.;
   Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.;
   Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M.
2019A&A...627A.161P    Altcode: 2019arXiv190700807P
  We present precise photospheric parameters of 282 M dwarfs
  determined from fitting the most recent version of PHOENIX models to
  high-resolution CARMENES spectra in the visible (0.52-0.96 μm) and NIR
  wavelength range (0.96-1.71 μm). With its aim to search for habitable
  planets around M dwarfs, several planets of different masses have
  been detected. The characterization of the target sample is important
  for the ability to derive and constrain the physical properties of any
  planetary systems that are detected. As a continuation of previous work
  in this context, we derived the fundamental stellar parameters effective
  temperature, surface gravity, and metallicity of the CARMENES M-dwarf
  targets from PHOENIX model fits using a χ<SUP>2</SUP> method. We
  calculated updated PHOENIX stellar atmosphere models that include a
  new equation of state to especially account for spectral features
  of low-temperature stellar atmospheres as well as new atomic and
  molecular line lists. We show the importance of selecting magnetically
  insensitive lines for fitting to avoid effects of stellar activity
  in the line profiles. For the first time, we directly compare stellar
  parameters derived from multiwavelength range spectra, simultaneously
  observed for the same star. In comparison with literature values we
  show that fundamental parameters derived from visible spectra and
  visible and NIR spectra combined are in better agreement than those
  derived from the same spectra in the NIR alone. <P />Full Tables
  B.1 and B.2 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A161">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A161</A>

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Detection
    of a mini-Neptune around LSPM J2116+0234 and refinement of orbital
    parameters of a super-Earth around GJ 686 (BD+18 3421)
Authors: Lalitha, S.; Baroch, D.; Morales, J. C.; Passegger, V. M.;
   Bauer, F. F.; Cardona Guillén, C.; Dreizler, S.; Oshagh, M.; Reiners,
   A.; Ribas, I.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Béjar,
   V. J. S.; Colomé, J.; Cortés-Contreras, M.; Galadí-Enríquez, D.;
   González-Cuesta, L.; Guenther, E. W.; Hagen, H. -J.; Henning, T.;
   Herrero, E.; Husser, T. -O.; Jeffers, S. V.; Kaminski, A.; Kürster,
   M.; Lafarga, M.; Lodieu, N.; López-González, M. J.; Montes, D.;
   Perger, M.; Rosich, A.; Rodríguez, E.; Rodríguez-López, C.; Schmitt,
   J. H. M. M.; Tal-Or, L.; Zechmeister, M.
2019A&A...627A.116L    Altcode: 2019arXiv190509075L
  Although M dwarfs are known for high levels of stellar activity,
  they are ideal targets for the search of low-mass exoplanets
  with the radial velocity (RV) method. We report the discovery of a
  planetary-mass companion around LSPM J2116+0234 (M3.0 V) and confirm
  the existence of a planet orbiting GJ 686 (BD+18 3421; M1.0 V). The
  discovery of the planet around LSPM J2116+0234 is based on CARMENES
  RV observations in the visual and near-infrared channels. We confirm
  the planet orbiting around GJ 686 by analyzing the RV data spanning
  over two decades of observationsfrom CARMENES VIS, HARPS-N, HARPS,
  and HIRES. We find planetary signals at 14.44 and 15.53 d in the
  RV data for LSPM J2116+0234 and GJ 686, respectively. Additionally,
  the RV, photometric time series, and various spectroscopic indicators
  show hints of variations of 42 d for LSPM J2116+0234 and 37 d for GJ
  686, which we attribute to the stellar rotation periods. The orbital
  parameters of the planets are modeled with Keplerian fits together
  with correlated noise from the stellar activity. A mini-Neptune with a
  minimum mass of 11.8 M<SUB>⊕</SUB> orbits LSPM J2116+0234 producing a
  RV semi-amplitude of 6.19 m s<SUP>-1</SUP>, while a super-Earth of mass
  6.6 M<SUB>⊕</SUB> orbits GJ 686 and produces a RV semi-amplitude of
  3.0 m s<SUP>-1</SUP>. Both LSPM J2116+0234 and GJ 686 have planetary
  companions populating the regime of exoplanets with masses lower
  than 15 M<SUB>⊕</SUB> and orbital periods &lt;20 d. <P />Table
  A.1 and A.2 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A116">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A116</A>

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Two
    temperate Earth-mass planet candidates around Teegarden's Star
Authors: Zechmeister, M.; Dreizler, S.; Ribas, I.; Reiners, A.;
   Caballero, J. A.; Bauer, F. F.; Béjar, V. J. S.; González-Cuesta,
   L.; Herrero, E.; Lalitha, S.; López-González, M. J.; Luque, R.;
   Morales, J. C.; Pallé, E.; Rodríguez, E.; Rodríguez López, C.;
   Tal-Or, L.; Anglada-Escudé, G.; Quirrenbach, A.; Amado, P. J.; Abril,
   M.; Aceituno, F. J.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von
   Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Arroyo-Torres,
   B.; Azzaro, M.; Baroch, D.; Barrado, D.; Becerril, S.; Benítez,
   D.; Berdiñas, Z. M.; Bergond, G.; Bluhm, P.; Brinkmöller, M.;
   del Burgo, C.; Calvo Ortega, R.; Cano, J.; Cardona Guillén, C.;
   Carro, J.; Cárdenas Vázquez, M. C.; Casal, E.; Casasayas-Barris,
   N.; Casanova, V.; Chaturvedi, P.; Cifuentes, C.; Claret, A.; Colomé,
   J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Dorda, R.;
   Fernández, M.; Fernández-Martín, A.; Fuhrmeister, B.; Fukui, A.;
   Galadí-Enríquez, D.; Gallardo Cava, I.; Garcia de la Fuente, J.;
   Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Góngora Rueda, J.;
   González-Álvarez, E.; González Hernández, J. I.; González-Peinado,
   R.; Grözinger, U.; Guàrdia, J.; Guijarro, A.; de Guindos, E.;
   Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.;
   Henning, T.; Hermelo, I.; Hernández Arabi, R.; Hernández Castaño,
   L.; Hernández Otero, F.; Hintz, D.; Huke, P.; Huber, A.; Jeffers,
   S. V.; Johnson, E. N.; de Juan, E.; Kaminski, A.; Kemmer, J.; Kim,
   M.; Klahr, H.; Klein, R.; Klüter, J.; Klutsch, A.; Kossakowski, D.;
   Kürster, M.; Labarga, F.; Lafarga, M.; Llamas, M.; Lampón, M.; Lara,
   L. M.; Launhardt, R.; Lázaro, F. J.; Lodieu, N.; López del Fresno,
   M.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.;
   Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil,
   E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.;
   Martín-Fernández, P.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet,
   E.; Montañés-Rodríguez, P.; Montes, D.; Moreno-Raya, M. E.;
   Nagel, E.; Naranjo, V.; Narita, N.; Nortmann, L.; Nowak, G.; Ofir,
   A.; Oshagh, M.; Panduro, J.; Parviainen, H.; Pascual, J.; Passegger,
   V. M.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea,
   D.; Perger, M.; Perryman, M. A. C.; Rabaza, O.; Ramón Ballesta, A.;
   Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix,
   H. -W.; Rodler, F.; Rodríguez Trinidad, A.; Rosich, A.; Sadegi, S.;
   Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.;
   Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt,
   J. H. M. M.; Schöfer, P.; Schweitzer, A.; Seifert, W.; Shulyak, D.;
   Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Strachan, J. B. P.; Stuber,
   T.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala Pinto, M.;
   Trifonov, T.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner,
   K.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2019A&A...627A..49Z    Altcode: 2019arXiv190607196Z
  Context. Teegarden's Star is the brightest and one of the nearest
  ultra-cool dwarfs in the solar neighbourhood. For its late spectral
  type (M7.0 V), the star shows relatively little activity and is
  a prime target for near-infrared radial velocity surveys such as
  CARMENES. <BR /> Aims: As part of the CARMENES search for exoplanets
  around M dwarfs, we obtained more than 200 radial-velocity measurements
  of Teegarden's Star and analysed them for planetary signals. <BR />
  Methods: We find periodic variability in the radial velocities of
  Teegarden's Star. We also studied photometric measurements to rule
  out stellar brightness variations mimicking planetary signals. <BR />
  Results: We find evidence for two planet candidates, each with 1.1
  M<SUB>⊕</SUB> minimum mass, orbiting at periods of 4.91 and 11.4 d,
  respectively. No evidence for planetary transits could be found in
  archival and follow-up photometry. Small photometric variability is
  suggestive of slow rotation and old age. <BR /> Conclusions: The two
  planets are among the lowest-mass planets discovered so far, and they
  are the first Earth-mass planets around an ultra-cool dwarf for which
  the masses have been determined using radial velocities. <P />Tables
  D.1 and D.2 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A49">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A49</A>

---------------------------------------------------------
Title: Constraining the Neutron Star Compactness: Extraction of the
    <SUP>23</SUP>Al (p ,γ ) Reaction Rate for the r p Process
Authors: Wolf, C.; Langer, C.; Montes, F.; Pereira, J.; Ong, W. -J.;
   Poxon-Pearson, T.; Ahn, S.; Ayoub, S.; Baumann, T.; Bazin, D.; Bender,
   P. C.; Brown, B. A.; Browne, J.; Crawford, H.; Cyburt, R. H.; Deleeuw,
   E.; Elman, B.; Fiebiger, S.; Gade, A.; Gastis, P.; Lipschutz, S.;
   Longfellow, B.; Meisel, Z.; Nunes, F. M.; Perdikakis, G.; Reifarth,
   R.; Richter, W. A.; Schatz, H.; Schmidt, K.; Schmitt, J.; Sullivan, C.;
   Titus, R.; Weisshaar, D.; Woods, P. J.; Zamora, J. C.; Zegers, R. G. T.
2019PhRvL.122w2701W    Altcode: 2019arXiv190606091W
  The <SUP>123</SUP>Al (p ,γ )<SUP>24</SUP>Si reaction is among the
  most important reactions driving the energy generation in type-I
  x-ray bursts. However, the present reaction-rate uncertainty limits
  constraints on neutron star properties that can be achieved with
  burst model-observation comparisons. Here, we present a novel
  technique for constraining this important reaction by combining
  the GRETINA array with the neutron detector LENDA coupled to
  the S800 spectrograph at the National Superconducting Cyclotron
  Laboratory. The <SUP>23</SUP>Al (d ,n ) reaction was used to populate
  the astrophysically important states in <SUP>24</SUP>Si. This enables
  a measurement in complete kinematics for extracting all relevant
  inputs necessary to calculate the reaction rate. For the first time,
  a predicted close-lying doublet of a 2<SUB>2</SUB><SUP>+</SUP>
  and (4<SUB>1</SUB><SUP>+</SUP>,0<SUB>2</SUB><SUP>+</SUP> ) state in
  <SUP>24</SUP>Si was disentangled, finally resolving conflicting results
  from two previous measurements. Moreover, it was possible to extract
  spectroscopic factors using GRETINA and LENDA simultaneously. This new
  technique may be used to constrain other important reaction rates for
  various astrophysical scenarios.

---------------------------------------------------------
Title: VizieR Online Data Catalog: LSPM J2116+0234 and GJ 686 radial
    velocities (Lalitha+, 2019)
Authors: Lalitha, S.; Baroch, D.; Morales, J. C.; Passegger, V. M.;
   Bauer, F. F.; Cardona Guillen, C.; Dreizler, S.; Oshagh, M.; Reiners,
   A.; Ribas, I.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.;
   Bejar, V. J. S.; Colome, J.; Cortes-Contreras, M.; Galadi-Enriquez,
   D.; Gonzalez-Cuesta, L.; Guenther, E. W.; Hagen, H. -J.; Henning, T.;
   Herrero, E.; Husser, T. -O.; Jeffers, S. V.; Kaminski, A.; Kuerster,
   M.; Lafarga, M.; Lodieu, N.; Lopez-Gonzalez, M. J.; Montes, D.;
   Perger, M.; Rosich, A.; Rodriguez, E.; Rodriguez-Lopez, C.; Schmitt,
   J. H. M. M.; Tal-Or, L.; Zechmeister, M.
2019yCat..36270116L    Altcode:
  We analysed radial velocity data from the CARMENES NIR and VIS channels
  for LSPM J2116+0234, and from CARMENES VIS channel, HARPS and HIRES for
  GJ 686. All the RVs are corrected for barycentric motion and secular
  acceleration. The CARMENES measurements were taken in the context
  of the CARMENES search for exoplanets around M dwarfs. The CARMENES
  instrument consists of two channels: the VIS channel obtains spectra
  at a resolution of R=94600 in the wavelength range 520-960nm, while
  the NIR channel yields spectra of R=80400 covering 960-1710nm. Both
  channels are calibrated in wavelength with hollow-cathode lamps
  and use temperature- and pressure-stabilized Fabry-Perot etalons
  to interpolate the wavelength solution and simultaneously monitor
  the spectrograph drift during nightly operations (Bauer et al.,
  2015A&amp;A...581A.117B). <P />(2 data files).

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Different
    roads to radii and masses of the target stars
Authors: Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar,
   V. J. S.; Cortés-Contreras, M.; Caballero, J. A.; del Burgo,
   C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.;
   Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.;
   Anglada-Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.;
   Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil,
   E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Solano, E.;
   Tabernero, H. M.; Zechmeister, M.
2019A&A...625A..68S    Altcode: 2019arXiv190403231S
  <BR /> Aims: We determine the radii and masses of 293 nearby, bright M
  dwarfs of the CARMENES survey. This is the first time that such a large
  and homogeneous high-resolution (R &gt; 80 000) spectroscopic survey
  has been used to derive these fundamental stellar parameters. <BR
  /> Methods: We derived the radii using Stefan-Boltzmann's law. We
  obtained the required effective temperatures T<SUB>eff</SUB> from
  a spectral analysis and we obtained the required luminosities L
  from integrated broadband photometry together with the Gaia DR2
  parallaxes. The mass was then determined using a mass-radius relation
  that we derived from eclipsing binaries known in the literature. We
  compared this method with three other methods: (1) We calculated
  the mass from the radius and the surface gravity log g, which was
  obtained from the same spectral analysis as T<SUB>eff</SUB>. (2) We
  used a widely used infrared mass-magnitude relation. (3) We used a
  Bayesian approach to infer stellar parameters from the comparison of
  the absolute magnitudes and colors of our targets with evolutionary
  models. <BR /> Results: Between spectral types M0 V and M7 V our radii
  cover the range 0.1 R<SUB>⊙</SUB> &lt; R &lt; 0.6 R<SUB>⊙</SUB>
  with an error of 2-3% and our masses cover 0.09 ℳ<SUB>⊙</SUB>
  &lt; ℳ&lt; 0.6ℳ<SUB>⊙</SUB> with an error of 3-5%. We find
  good agreement between the masses determined with these different
  methods for most of our targets. Only the masses of very young
  objects show discrepancies. This can be well explained with the
  assumptions that we used for our methods. <P />Table B.1 (stellar
  parameters) is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr/">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/625/A68">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/625/A68</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Teegarden's Star RV and Hα curves
    (Zechmeister+, 2019)
Authors: Zechmeister, M.; Dreizler, M.; Ribas, I.; Reiners, A.;
   Caballero, J. A.; Bauer, F. F.; Bejar, V. J. S.; Gonzalez-Cuesta, L.;
   Herrero, E.; Lalitha, S.; Lopez-Gonzalez, M. J.; Luque, R.; Morales,
   J. C.; Palle, E.; Rodriguez, E.; Rodriguez Lopez, C.; Tal-Or, L.;
   Anglada-Escude, G.; Quirrenbach, A.; Amado, P. J.; Abril, M.; Aceituno,
   F. J.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.;
   Antona Jimenez, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro,
   M.; Baroch, D.; Barrado, D.; Becerril, S.; Benitez, D.; Berdinas,
   Z. M.; Bergond, G.; Bluhm, P.; Brinkmoeller, M.; Del Burgo, C.; Calvo
   Ortega, R.; Cano, J.; Cardona Guillen, C.; Carro, J.; Cardenas Vazquez,
   M. C.; Casal, E.; Casasayas-Barris, N.; Casanova, V.; Chaturvedi, P.;
   Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla,
   S.; Diez-Alonso, E.; Dorda, R.; Fernandez, M.; Fernandez-Martin,
   A.; Fuhrmeister, B.; Fukui, A.; Galadi-Enriquez, D.; Gallardo Cava,
   I.; Garcia de La Fuente, J.; Garcia-Piquer, A.; Garcia Vargas, M. L.;
   Gesa, L.; Gongora Rueda, J.; Gonzalez-Alvarez, E.; Gonzalez Hernandez,
   J. I.; Gonzalez-Peinado, R.; Groezinger, U.; Guardia, J.; Guijarro,
   A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa,
   R. P.; Helmling, J.; Henning, T.; Hermelo, I.; Hernandez Arabi, R.;
   Hernandez Castano, L.; Hernandez, Otero F.; Hintz, D.; Huke, P.;
   Huber, A.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.; Kaminski,
   A.; Kemmer, J.; Kim, M.; Klahr, H.; Klein, R.; Klueter, J.; Klutsch,
   A.; Kossakowski, D.; Kuerster, M.; Labarga, F.; Lafarga, M.; Llamas,
   M.; Lampon, M.; Lara, L. M.; Launhardt, R.; Lazaro, F. J.; Lodieu,
   N.; Lopez Del Fresno, M.; Lopez-Puertas, M.; Lopez Salas, J. F.;
   Lopez-Santiago, J.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.;
   Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.;
   Martin, E. L.; Martin-Fernandez, P.; Martin-Ruiz, S.; Marvin, C. J.;
   Mirabet, E.; Montanes-Rodriguez, P.; Montes, D.; Moreno-Raya, M. E.;
   Nagel, E.; Naranjo, V.; Narita, N.; Nortmann, L.; Nowak, G.; Ofir,
   A.; Oshagh, M.; Panduro, J.; Parviainen, H.; Pascual, J.; Passegger,
   V. M.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea,
   D.; Perger, M.; Perryman, M. A. C.; Rabaza, O.; Ramon Ballesta,
   A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.;
   Rix, H. -W.; Rodler, F.; Rodriguez Trinidad, A.; Rosich, A.; Sadegi,
   S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.;
   Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schmitt,
   J. H. M. M.; Schoefer, P.; Schweitzer, A.; Seifert, W.; Shulyak,
   D.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Strachan, J. B. P.;
   Stuber, T.; Stuermer, J.; Suarez, J. C.; Tabernero, H. M.; Tala Pinto,
   M.; Trifonov, T.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.;
   Wagner, K.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2019yCat..36270049Z    Altcode:
  Time series for radial velocities and activity indicators of Teegarden's
  Star from CARMENES VIS and NIR spectrograph are presented. See
  Zechmeister et al. (2017A&amp;A...609A..12Z) for a detailed description
  of the parameters. <P />(2 data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Radii and masses of the CARMENES
    targets (Schweitzer+, 2019)
Authors: Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Bejar,
   V. J. S.; Cortes-Contreras, M.; Caballero, J. A.; Del Burgo, C.;
   Czesla, S.; Kuerster, M.; Montes, D.; Zapatero Osorio, M. R.;
   Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno,
   J.; Anglada-Escude, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.;
   Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil,
   E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Solano, E.;
   Tabernero, H. M.; Zechmeister, M.
2019yCat..36250068S    Altcode:
  Table B1 contains the stellar parameters of our sample. The
  sample consists of 293 nearby, bright M dwarfs with no known close
  companions. Their metallicities spread around solar metallicity. Most
  stars are inactive or mildly active and older than a few hundred million
  years. However, known active or young stars are also included although
  most of the analyses assume inactive main sequence stars. All parameters
  are determined by us except where noted otherwise. <P />(1 data file).

---------------------------------------------------------
Title: Gliese 49: activity evolution and detection of a super-Earth. A
    HADES and CARMENES collaboration
Authors: Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.;
   Affer, L.; Azzaro, M.; Amado, P. J.; Anglada-Escudé, G.; Baroch,
   D.; Barrado, D.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.;
   Cortés-Contreras, M.; Damasso, M.; Dreizler, S.; González-Cuesta,
   L.; González Hernández, J. I.; Guenther, E. W.; Henning, T.;
   Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga,
   M.; Leto, G.; López-González, M. J.; Maldonado, J.; Micela, G.;
   Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.;
   Rodríguez, E.; Rodríguez-López, C.; Schmitt, J. H. M. M.; Sozzetti,
   A.; Suárez Mascareño, A.; Toledo-Padrón, B.; Zanmar Sánchez, R.;
   Zapatero Osorio, M. R.; Zechmeister, M.
2019A&A...624A.123P    Altcode: 2019arXiv190304808P
  Context. Small planets around low-mass stars often show orbital periods
  in a range that corresponds to the temperate zones of their host stars
  which are therefore of prime interest for planet searches. Surface
  phenomena such as spots and faculae create periodic signals in radial
  velocities and in observational activity tracers in the same range,
  so they can mimic or hide true planetary signals. <BR /> Aims: We
  aim to detect Doppler signals corresponding to planetary companions,
  determine their most probable orbital configurations, and understand
  the stellar activity and its impact on different datasets. <BR />
  Methods: We analyzed 22 yr of data of the M1.5 V-type star Gl 49
  (BD+61 195) including HARPS-N and CARMENES spectrographs, complemented
  by APT2 and SNO photometry. Activity indices are calculated from the
  observed spectra, and all datasets are analyzed with periodograms and
  noise models. We investigated how the variation of stellar activity
  imprints on our datasets. We further tested the origin of the signals
  and investigate phase shifts between the different sets. To search
  for the best-fit model we maximize the likelihood function in a Markov
  chain Monte Carlo approach. <BR /> Results: As a result of this study,
  we are able to detect the super-Earth Gl 49b with a minimum mass of 5.6
  M<SUB>⊕</SUB>. It orbits its host star with a period of 13.85 d at a
  semi-major axis of 0.090 au and we calculate an equilibrium temperature
  of 350 K and a transit probability of 2.0%. The contribution from the
  spot-dominated host star to the different datasets is complex, and
  includes signals from the stellar rotation at 18.86 d, evolutionary
  timescales of activity phenomena at 40-80 d, and a long-term variation
  of at least four years. <P />Based on observations made with the Italian
  TNG, operated on the island of La Palma, Spain; the CARMENES instrument
  installed at the 3.5 m telescope of the Calar Alto Observatory,
  Spain; the robotic APT2 located at Serra La Nave on Mt. Etna, Italy;
  and the T90 telescope at Sierra Nevada Observatory, Spain.Full
  Table A.1 is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A123">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A123</A>

---------------------------------------------------------
Title: Kepler-411: a four-planet system with an active host star
Authors: Sun, L.; Ioannidis, P.; Gu, S.; Schmitt, J. H. M. M.; Wang,
   X.; Kouwenhoven, M. B. N.
2019A&A...624A..15S    Altcode: 2019arXiv190209719S
  We present a detailed characterization of the Kepler-411 system (KOI
  1781). This system was previously known to host two transiting planets:
  one with a period of 3 days (R = 2.4 R<SUB>⊕</SUB>; Kepler-411b) and
  one with a period of 7.8 days (R = 4.4 R<SUB>⊕</SUB>; Kepler-411c),
  as well as a transiting planetary candidate with a 58-day period
  (R = 3.3 R<SUB>⊕</SUB>; KOI 1781.03) from Kepler photometry. Here,
  we combine Kepler photometry data and new transit timing variation
  (TTV) measurements from all the Kepler quarters with previous
  adaptive-optics imaging results, and dynamical simulations, in
  order to constrain the properties of the Kepler-411 system. From
  our analysis, we obtain masses of 25.6 ± 2.6 M<SUB>⊕</SUB>
  for Kepler-411b and 26.4 ± 5.9 M<SUB>⊕</SUB> for Kepler-411c,
  and we confirm the planetary nature of KOI 1781.03 with a mass of
  15.2 ± 5.1 M<SUB>⊕</SUB>, hence the name Kepler-411d. Furthermore,
  by assuming near-coplanarity of the system (mutual inclination below
  30°), we discover a nontransiting planet, Kepler-411e, with a mass
  of 10.8 ± 1.1 M<SUB>⊕</SUB> on a 31.5-day orbit, which has a strong
  dynamical interaction with Kepler-411d. With densities of 1.71 ± 0.39
  g cm<SUP>-3</SUP> and 2.32 ± 0.83 g cm<SUP>-3</SUP>, both Kepler-411c
  and Kepler-411d belong to the group of planets with a massive core
  and a significant fraction of volatiles. Although Kepler-411b has
  a sub-Neptune size, it belongs to the group of rocky planets. <P
  />Tables 2-4 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A15">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A15</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gl 49 radial velocities and
    activity indicators (Perger+, 2019)
Authors: Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.;
   Affer, L.; Azzaro, M.; Amado, P. J.; Anglada-Escude, G.; Baroch,
   D.; Barrado, D.; Bauer, F. F.; Bejar, V. J. S.; Caballero, J. A.;
   Cortes-Contreras, M.; Damasso, M.; Dreizler, S.; Gonzalez-Cuesta,
   L.; Gonzalez Hernandez, J. I.; Guenther, E. W.; Henning, T.;
   Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga,
   M.; Leto, G.; Lopez-Gonzalez, M. J.; Maldonado, J.; Micela, G.;
   Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.;
   Rodriguez, E.; Rodriguez-Lopez, C.; Schmitt, J. H. M. M.; Sozzetti,
   A.; Suarezmascareno, A.; Toledo-Padron, B.; Zanmar Sanchez, R.;
   Zapatero Osorio, M. R.; Zechmeister, M.
2019yCat..36240123P    Altcode:
  Radial velocity and activity indicator time-series data of Gl 49
  from HIRES, HARPS-N, and CARMENES instruments. <P />We obtained 137
  RVs from optical spectra of the HADES program. They were observed
  over six seasons (S1 to S6) between 3 Sep 2012 and 11 Oct 2017 with
  HARPS-N. <P />We obtained spectroscopic observations with the CARMENES
  instrument, installed since 2015 at the 3.51m telescope of the Calar
  Alto Observatory in Spain. <P />Gl 49 was also observed with the HIRES
  instrument, installed since the late 1990s at the Keck I telescope
  located in Hawaii, USA. <P />(1 data file).

---------------------------------------------------------
Title: Concept for an Experimental Study of Dust Rim Formation
    on Chondrules
Authors: Schmidt, J.; Carballido, A.; Matthews, L. S.; Laufer, R.;
   Herdrich, G.; Hyde, T. W.
2019LPI....50.1910S    Altcode:
  An experiment in the IPG6-B plasma facility is proposed to study the
  growth of fine-grained dust rims chondrules by electrically neutral
  and charged dust.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Period
    search in Hα, Na I D, and Ca II IRT lines
Authors: Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Johnson,
   E. N.; Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister,
   M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F.;
   Béjar, V. J. S.; Cortés-Contreras, M.; Díez Alonso, E.; Dreizler,
   S.; Galadí-Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster,
   M.; Lafarga, M.; Montes, D.
2019A&A...623A..24F    Altcode: 2019arXiv190105173F
  We use spectra from CARMENES, the Calar Alto high-Resolution search
  for M dwarfs with Exo-earths with Near-infrared and optical Echelle
  Spectrographs, to search for periods in chromospheric indices in
  16 M0-M2 dwarfs. We measure spectral indices in the Hα, the Ca
  II infrared triplet (IRT), and the Na I D lines to study which of
  these indices are best-suited to finding rotation periods in these
  stars. Moreover, we test a number of different period-search algorithms,
  namely the string length method, the phase dispersion minimisation,
  the generalized Lomb-Scargle periodogram, and the Gaussian process
  regression with quasi-periodic kernel. We find periods in four stars
  using Hα and in five stars using the Ca II IRT, two of which have
  not been found before. Our results show that both Hα and the Ca II
  IRT lines are well suited for period searches, with the Ca II IRT
  index performing slightly better than Hα. Unfortunately, the Na I D
  lines are strongly affected by telluric airglow, and we could not find
  any rotation period using this index. Further, different definitions
  of the line indices have no major impact on the results. Comparing
  the different search methods, the string length method and the phase
  dispersion minimisation perform worst, while Gaussian process models
  produce the smallest numbers of false positives and non-detections.

---------------------------------------------------------
Title: Swift UVOT near-UV transit observations of WASP-121 b
Authors: Salz, M.; Schneider, P. C.; Fossati, L.; Czesla, S.; France,
   K.; Schmitt, J. H. M. M.
2019A&A...623A..57S    Altcode: 2019arXiv190110223S
  Close-in gas planets are subject to continuous photoevaporation that
  can erode their volatile envelopes. Today, ongoing mass loss has been
  confirmed in a few individual systems via transit observations in the
  ultraviolet spectral range. We demonstrate that the Ultraviolet/Optical
  Telescope (UVOT) onboard the Neil Gehrels Swift Observatory enables
  photometry to a relative accuracy of about 0.5% and present the first
  near-UV (200-270 nm, NUV) transit observations of WASP-121 b, a hot
  Jupiter with one of the highest predicted mass-loss rates. The data
  cover the orbital phases 0.85-1.15 with three visits. We measure a
  broadband NUV transit depth of 2.10 ± 0.29%. While still consistent
  with the optical value of 1.55%, the NUV data indicate excess absorption
  of 0.55% at a 1.9σ level. Such excess absorption is known from the
  WASP-12 system, and both of these hot Jupiters are expected to undergo
  mass loss at extremely high rates. With a Cloudy simulation, we show
  that absorption lines of Fe II in a dense extended atmosphere can cause
  broadband near-UV absorption at the 0.5% level. Given the numerous
  lines of low-ionization metals, the NUV range is a promising tracer
  of photoevaporation in the hottest gas planets. <P />Light curves
  shown in Fig. A.1 are available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A57">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A57</A>

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M
    dwarfs. Chromospheric modeling of M 2-3 V stars with PHOENIX
Authors: Hintz, D.; Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.;
   Johnson, E. N.; Schweitzer, A.; Caballero, J. A.; Zechmeister, M.;
   Jeffers, S. V.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.;
   Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras,
   M.; Dreizler, S.; Galadí-Enríquez, D.; Guenther, E. W.; Hauschildt,
   P. H.; Kaminski, A.; Kürster, M.; Lafarga, M.; López del Fresno,
   M.; Montes, D.; Morales, J. C.; Passegger, V. M.; Seifert, W.
2019A&A...623A.136H    Altcode: 2019arXiv190203992H
  Chromospheric modeling of observed differences in stellar activity
  lines is imperative to fully understand the upper atmospheres of
  late-type stars. We present one-dimensional parametrized chromosphere
  models computed with the atmosphere code PHOENIX using an underlying
  photosphere of 3500 K. The aim of this work is to model chromospheric
  lines of a sample of 50 M2-3 dwarfs observed in the framework of the
  CARMENES, the Calar Alto high-Resolution search for M dwarfs with
  Exo-earths with Near-infrared and optical Echelle Spectrographs,
  exoplanet survey. The spectral comparison between observed data and
  models is performed in the chromospheric lines of Na I D<SUB>2</SUB>,
  Hα, and the bluest Ca II infrared triplet line to obtain best-fit
  models for each star in the sample. We find that for inactive stars a
  single model with a VAL C-like temperature structure is sufficient to
  describe simultaneously all three lines adequately. Active stars are
  rather modeled by a combination of an inactive and an active model, also
  giving the filling factors of inactive and active regions. Moreover, the
  fitting of linear combinations on variable stars yields relationships
  between filling factors and activity states, indicating that more
  active phases are coupled to a larger portion of active regions on
  the surface of the star.

---------------------------------------------------------
Title: Density waves and the viscous overstability in Saturn's rings
Authors: Lehmann, M.; Schmidt, J.; Salo, H.
2019A&A...623A.121L    Altcode: 2018arXiv180601211L
  This paper considers resonantly forced spiral density waves in
  a dense planetary ring that is close to the threshold for viscous
  overstability. We solved numerically the hydrodynamical equations for
  a dense thin disk in the vicinity of an inner Lindblad resonance with
  a perturbing satellite. Our numerical scheme is one-dimensional so
  that the spiral shape of a density wave is taken into account through
  a suitable approximation of the advective terms arising from the fluid
  orbital motion. This paper is a first attempt to model the co-existence
  of resonantly forced density waves and short-scale free overstable
  wavetrains as observed in Saturn's rings, by conducting large-scale
  hydrodynamical integrations. These integrations reveal that the two
  wave types undergo complex interactions, not taken into account in
  existing models for the damping of density waves. In particular we
  found that, depending on the relative magnitude of both wave types,
  the presence of viscous overstability can lead to the damping of an
  unstable density wave and vice versa. The damping of the short-scale
  viscous overstability by a density wave was investigated further by
  employing a simplified model of an axisymmetric ring perturbed by a
  nearby Lindblad resonance. A linear hydrodynamic stability analysis as
  well as local N-body simulations of this model system were performed
  and support the results of our large-scale hydrodynamical integrations.

---------------------------------------------------------
Title: Spot evolution in the eclipsing binary CoRoT 105895502
Authors: Czesla, S.; Terzenbach, S.; Wichmann, R.; Schmitt, J. H. M. M.
2019A&A...623A.107C    Altcode: 2019arXiv190405600C
  Stellar activity is ubiquitous in late-type stars. The special geometry
  of eclipsing binary systems is particularly advantageous to study the
  stellar surfaces and activity. We present a detailed study of the 145
  d CoRoT light curve of the short-period (2.17 d) eclipsing binary CoRoT
  105895502. By means of light-curve modeling with Nightfall, we determine
  the orbital period, effective temperature, Roche-lobe filling factors,
  mass ratio, and orbital inclination of CoRoT 105895502 and analyze the
  temporal behavior of starspots in the system. Our analysis shows one
  comparably short-lived (≈40 d) starspot, remaining quasi-stationary
  in the binary frame, and one starspot showing prograde motion at a rate
  of 2.3° day<SUP>-1</SUP>, whose lifetime exceeds the duration of the
  observation. In the CoRoT band, starspots account for as much as 0.6% of
  the quadrature flux of CoRoT 105895502, however we cannot attribute the
  spots to individual binary components with certainty. Our findings can
  be explained by differential rotation, asynchronous stellar rotation,
  or systematic spot evolution.

---------------------------------------------------------
Title: White paper for Chandra cool attitude targets (CAT): Stellar
    activity with TESS and Chandra
Authors: Günther, Hans Moritz; Principe, David A.; Melis, Carl;
   Monsch, Kristina; Schneider, P. Christian; Czesla, S.; Wright,
   Nicholas J.; Kashyap, Vinay L.; Schmitt, J. H. M. M.; Newton, E. R.;
   Drake, Jeremy J.; Huenemoerder, D. P.
2019arXiv190301547G    Altcode:
  All cool stars show magnetic activity, and X-ray emission is the
  hallmark of this activity. Gaining an understanding of activity aids
  us in answering fundamental questions about stellar astrophysics and
  in determining the impact of activity on the exoplanets that orbit
  these stars. Stellar activity is driven by magnetic fields, which are
  ultimately powered by convection and stellar rotation. However, the
  resulting dynamo properties heavily depend on the stellar interior
  structure and are far from being understood. X-ray radiation can
  evaporate exoplanet atmospheres and damage organic materials on the
  planetary surface, reducing the probability that life can form or
  be sustained, but also provides an important source of energy for
  prebiotic chemical reactions. Over the next two years, the TESS mission
  will deliver a catalog of the closest exoplanets, along with rotation
  periods and activity diagnostics for millions of stars, whether or not
  they have a planet. We propose to include all cool stars that are TESS
  targets and bright enough for Chandra observations, as determined by
  their detection and flux in the ROSAT all-sky survey (RASS), to the
  list of Chandra Cool Attitude Targets (CATs). For each target, the
  signal will be sufficient to fit the coronal plasma with at least two
  temperature components, and compare abundances of groups of elements
  with low, medium, or high first ionization potential. Similar to the
  known relation between X-ray luminosity $L_X$ and rotation period,
  we can correlate stellar properties with coronal temperatures and
  abundances to constrain models for stellar activity, coronal heating,
  and stellar dynamos. Detailed X-ray characterization for even a subset
  of planet-hosting systems would dramatically advance our knowledge of
  what impact these emissions have on orbiting planets.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Kepler-411 mid-transit times
    (Sun+, 2019)
Authors: Sun, L.; Ioannidis, P.; Gu, S. G.; Schmitt, J. H. M. M.;
   Wang, X. B.; Kouwenhoven, M. B. N.
2019yCat..36240015S    Altcode:
  The Kepler data of Kepler-411 were downloaded from the MAST archive
  (https://archive.stsci.edu/kepler), which contains the data recorded in
  the 17 quarters; we use both long- and short-cadence data (available
  for quarters Q10 to Q17). We use the PDCSAP data for our analysis. <P
  />(3 data files).

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. The
enigmatic planetary system GJ 4276: one eccentric planet or two
planets in a 2:1 resonance?
Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.; Dreizler,
   S.; Anglada-Escudé, G.; Rodríguez, E.; Ribas, I.; Reiners, A.;
   Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Aceituno, J.; Béjar,
   V. J. S.; Cortés-Contreras, M.; González-Cuesta, L.; Guenther, E. W.;
   Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga,
   M.; López-González, M. J.; Montes, D.; Morales, J. C.; Passegger,
   V. M.; Rodríguez-López, C.; Schweitzer, A.; Zechmeister, M.
2019A&A...622A.153N    Altcode: 2019arXiv190102367N
  We report the detection of a Neptune-mass exoplanet around the M4.0
  dwarf GJ 4276 (G 232-070) based on radial velocity (RV) observations
  obtained with the CARMENES spectrograph. The RV variations of GJ
  4276 are best explained by the presence of a planetary companion that
  has a minimum mass of m<SUB>b</SUB> sin i ≈ 16 M<SUB>⊕</SUB> on a
  P<SUB>b</SUB> = 13.35 day orbit. The analysis of the activity indicators
  and spectral diagnostics exclude stellar induced RV perturbations
  and prove the planetary interpretation of the RV signal. We show
  that a circular single-planet solution can be excluded by means of
  a likelihood ratio test. Instead, we find that the RV variations can
  be explained either by an eccentric orbit or interpreted as a pair of
  planets on circular orbits near a period ratio of 2:1. Although the
  eccentric single-planet solution is slightly preferred, our statistical
  analysis indicates that none of these two scenarios can be rejected
  with high confidence using the RV time series obtained so far. Based
  on the eccentric interpretation, we find that GJ 4276 b is the most
  eccentric (e<SUB>b</SUB> = 0.37) exoplanet around an M dwarf with such
  a short orbital period known today. <P />Photometric measurements
  and Table C.1 are available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A153">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A153</A>

---------------------------------------------------------
Title: Multiple water band detections in the CARMENES near-infrared
    transmission spectrum of HD 189733 b
Authors: Alonso-Floriano, F. J.; Sánchez-López, A.; Snellen,
   I. A. G.; López-Puertas, M.; Nagel, E.; Amado, P. J.; Bauer,
   F. F.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.;
   Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Aceituno, J.;
   Anglada-Escudé, G.; Béjar, V. J. S.; Guenther, E. W.; Henning, T.;
   Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.;
   Morales, J. C.; Tal-Or, L.; Schmitt, J. H. M. M.; Zapatero Osorio,
   M. R.; Zechmeister, M.
2019A&A...621A..74A    Altcode: 2018arXiv181108901A
  <BR /> Aims: We explore the capabilities of CARMENES for characterising
  hot-Jupiter atmospheres by targeting multiple water bands, in
  particular, those at 1.15 and 1.4 μm. Hubble Space Telescope
  observations suggest that this wavelength region is relevant for
  distinguishing between hazy and/or cloudy and clear atmospheres. <BR
  /> Methods: We observed one transit of the hot Jupiter HD 189733 b
  with CARMENES. Telluric and stellar absorption lines were removed
  using SYSREM, which performs a principal component analysis including
  proper error propagation. The residual spectra were analysed for water
  absorption with cross-correlation techniques using synthetic atmospheric
  absorption models. <BR /> Results: We report a cross-correlation peak at
  a signal-to-noise ratio (S/N) of 6.6, revealing the presence of water
  in the transmission spectrum of HD 189733 b. The absorption signal
  appeared slightly blueshifted at -3.9 ± 1.3 km s<SUP>-1</SUP>. We
  measured the individual cross-correlation signals of the water bands
  at 1.15 and 1.4 μm, finding cross-correlation peaks at S/N of 4.9 and
  4.4, respectively. The 1.4 μm feature is consistent with that observed
  with the Hubble Space Telescope. <BR /> Conclusions: The water bands
  studied in this work have been mainly observed in a handful of planets
  from space. Being able also to detect them individually from the ground
  at higher spectral resolution can provide insightful information to
  constrain the properties of exoplanet atmospheres. Although the current
  multi-band detections can not yet constrain atmospheric haze models
  for HD 189733 b, future observations at higher S/N could provide an
  alternative way to achieve this aim.

---------------------------------------------------------
Title: Discovery of short-term activity cycles in F-type stars
Authors: Mittag, M.; Schmitt, J. H. M. M.; Hempelmann, A.; Schröder,
   K. -P.
2019A&A...621A.136M    Altcode:
  Previous studies have revealed a 120 day activity cycle in the F-type
  star τ Boo, which represents the shortest activity cycle discovered
  until now. The question arises as to whether or not short-term activity
  cycles are a common phenomenon in F-type stars. To address this
  question, we analyse S-index time series of F-type stars taken with the
  TIGRE telescope to search for periodic variations with a maximal length
  of 2 years using the generalised Lomb-Scargle periodogram method. In
  our sample, we find four F-type stars showing periodic variations
  shorter than one year. However, the amplitude of these variations in
  our sample of F-star type stars appears to be smaller than that of
  solar-type stars with well-developed cyclic activity, and apparently
  represents only a part of the total activity. We conclude that among
  F-stars, the time-behaviour of activity differs from that of the Sun
  and cooler main sequence stars, as short-term cyclic variations with
  shallow amplitude of the cycle seem to prevail, rather than cycles
  with 10+ years periods and a larger cycle amplitude.

---------------------------------------------------------
Title: Prominence activation, optical flare, and post-flare loops
    on the RS Canum Venaticorum star SZ Piscium
Authors: Cao, Dongtao; Gu, Shenghong; Ge, Jian; Wang, Tinggui; Zhou,
   Jilin; Chang, Liang; Wolter, U.; Mittag, M.; Schmitt, J. H. M. M.;
   Perdelwitz, V.
2019MNRAS.482..988C    Altcode: 2018MNRAS.tmp.2644C
  We present the results of time-resolved high-resolution spectroscopic
  observations of the very active RS Canum Venaticorum (RS CVn) star SZ
  Piscium (SZ Psc), obtained during two consecutive observing nights
  on 2011 October 24 and 25. Several optical chromospheric activity
  indicators are analysed using the spectral subtraction technique, which
  show the remarkably different behaviour between two nights. Gradually
  blue-shifted and strengthened excess absorption features presented
  in the series of the subtracted spectra (especially for the Hα, He I
  D<SUB>3</SUB>, and Hβ lines), as a result of active stellar prominence
  that is rising its height along the line of our sight, was detected in
  the observations on October 24. This prominence activation event was
  probably associated with the subsequently occurred optical flare, and
  part of that flare decay phase was hunted in the observations on October
  25. The flare was characterized by the prominent He I D<SUB>3</SUB>
  line emission, as well as stronger chromospheric emission in the Hα,
  Hβ, and other active lines. The gradual decay of flare was accompanied
  by an obviously developmental absorption feature in the blue wing of the
  Hα and other active lines, which could be explained as cool post-flare
  loops which projected against the bright flare background. Therefore,
  a series of possibly associated magnetic activity phenomena, including
  flare-related prominence activation, optical flare, and post-flare
  loops, were detected during our observations.

---------------------------------------------------------
Title: The CARMENES survey for M dwarf planets .
Authors: Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.;
   Caballero, J. A.; Seifert, W.; Aceituno, J.; Béjar, V. J. S.; Hatzes,
   A. P.; Henning, T.; Kürster, M.; Montes, D.; Schmitt, J. H. M. M.;
   CARMENES Consortium
2019MmSAI..90..554Q    Altcode:
  CARMENES is a pair of high-resolution spectrographs optimized for
  measuring radial velocities in the wavelength range from 0.52 to
  1.71 mu m; it has been in operation at Calar Alto Observatory since
  January 2016. The CARMENES survey is targeting 342 M dwarfs; it aims
  at obtaining at least 50 spectra for each of them. In the first three
  years of the survey, the signatures of several previously known planets
  have been detected, and new planets with masses almost down to 1 M_oplus
  have been discovered. The most remarkable discoveries include a cold
  super-Earth orbiting Barnard's star and a pair of Earth twins in the
  habitable zone of Teegarden's star. CARMENES has also been used for
  observations of evaporating atmospheres of hot Jupiters in the He I
  lambda 10830 Å line.

---------------------------------------------------------
Title: Dust Emission by Active Moons
Authors: Hillier, J. K.; Schmidt, J.; Hsu, H. -W.; Postberg, F.
2018SSRv..214..131H    Altcode:
  In recent decades, volcanic and cryovolcanic activity on moons
  within the Solar System has been recognised as an important source of
  cosmic dust. Two moons, Jupiter's satellite Io and Saturn's satellite
  Enceladus, are known to be actively emitting dust into circumplanetary
  and interplanetary space. A third moon, Europa, shows tantalising
  hints of activity. Here we review current observations and theories
  concerning the generation, emission and evolution of cosmic dust
  arising from these objects.

---------------------------------------------------------
Title: Ground-based detection of an extended helium atmosphere in
    the Saturn-mass exoplanet WASP-69b
Authors: Nortmann, Lisa; Pallé, Enric; Salz, Michael; Sanz-Forcada,
   Jorge; Nagel, Evangelos; Alonso-Floriano, F. Javier; Czesla, Stefan;
   Yan, Fei; Chen, Guo; Snellen, Ignas A. G.; Zechmeister, Mathias;
   Schmitt, Jürgen H. M. M.; López-Puertas, Manuel; Casasayas-Barris,
   Núria; Bauer, Florian F.; Amado, Pedro J.; Caballero, José A.;
   Dreizler, Stefan; Henning, Thomas; Lampón, Manuel; Montes, David;
   Molaverdikhani, Karan; Quirrenbach, Andreas; Reiners, Ansgar; Ribas,
   Ignasi; Sánchez-López, Alejandro; Schneider, P. Christian; Zapatero
   Osorio, María R.
2018Sci...362.1388N    Altcode: 2018arXiv181203119N
  Hot gas giant exoplanets can lose part of their atmosphere due
  to strong stellar irradiation, and these losses can affect their
  physical and chemical evolution. Studies of atmospheric escape
  from exoplanets have mostly relied on space-based observations of
  the hydrogen Lyman-α line in the far ultraviolet region, which is
  strongly affected by interstellar absorption. Using ground-based
  high-resolution spectroscopy, we detected excess absorption in the
  helium triplet at 1083 nanometers during the transit of the Saturn-mass
  exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measured line
  blueshifts of several kilometers per second and posttransit absorption,
  which we interpret as the escape of part of the atmosphere trailing
  behind the planet in comet-like form.

---------------------------------------------------------
Title: Detection of He I λ10830 Å absorption on HD 189733 b with
    CARMENES high-resolution transmission spectroscopy
Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Nagel, E.; Schmitt,
   J. H. M. M.; Nortmann, L.; Alonso-Floriano, F. J.; López-Puertas, M.;
   Lampón, M.; Bauer, F. F.; Snellen, I. A. G.; Pallé, E.; Caballero,
   J. A.; Yan, F.; Chen, G.; Sanz-Forcada, J.; Amado, P. J.; Quirrenbach,
   A.; Ribas, I.; Reiners, A.; Béjar, V. J. S.; Casasayas-Barris, N.;
   Cortés-Contreras, M.; Dreizler, S.; Guenther, E. W.; Henning, T.;
   Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Lara, L. M.;
   Molaverdikhani, K.; Montes, D.; Morales, J. C.; Sánchez-López, A.;
   Seifert, W.; Zapatero Osorio, M. R.; Zechmeister, M.
2018A&A...620A..97S    Altcode: 2018arXiv181202453S
  We present three transit observations of HD 189733 b obtained with
  the high-resolution spectrograph CARMENES at Calar Alto. A strong
  absorption signal is detected in the near-infrared He I triplet at
  10830 Å in all three transits. During mid-transit, the mean absorption
  level is 0.88 ± 0.04% measured in a ±10 km s<SUP>-1</SUP> range at
  a net blueshift of - 3.5 ± 0.4 km s<SUP>-1</SUP> (10829.84-10830.57
  Å). The absorption signal exhibits radial velocities of + 6.5 ±
  3.1 km s<SUP>-1</SUP> and - 12.6 ± 1.0 km s<SUP>-1</SUP> during
  ingress and egress, respectively; all radial velocities are measured
  in the planetary rest frame. We show that stellar activity related
  pseudo-signals interfere with the planetary atmospheric absorption
  signal. They could contribute as much as 80% of the observed signal
  and might also affect the observed radial velocity signature, but
  pseudo-signals are very unlikely to explain the entire signal. The
  observed line ratio between the two unresolved and the third line
  of the He I triplet is 2.8 ± 0.2, which strongly deviates from the
  value expected for an optically thin atmospheres. When interpreted
  in terms of absorption in the planetary atmosphere, this favors a
  compact helium atmosphere with an extent of only 0.2 planetary radii
  and a substantial column density on the order of 4 × 10<SUP>12</SUP>
  cm<SUP>-2</SUP>. The observed radial velocities can be understood either
  in terms of atmospheric circulation with equatorial superrotation
  or as a sign of an asymmetric atmospheric component of evaporating
  material. We detect no clear signature of ongoing evaporation, like pre-
  or post-transit absorption, which could indicate material beyond the
  planetary Roche lobe, or radial velocities in excess of the escape
  velocity. These findings do not contradict planetary evaporation,
  but only show that the detected helium absorption in HD 189733 b does
  not trace the atmospheric layers that show pronounced escape signatures.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. The warm
    super-Earths in twin orbits around the mid-type M dwarfs Ross 1020
    (GJ 3779) and LP 819-052 (GJ 1265)
Authors: Luque, R.; Nowak, G.; Pallé, E.; Kossakowski, D.; Trifonov,
   T.; Zechmeister, M.; Béjar, V. J. S.; Cardona Guillén, C.;
   Tal-Or, L.; Hidalgo, D.; Ribas, I.; Reiners, A.; Caballero, J. A.;
   Amado, P. J.; Quirrenbach, A.; Aceituno, J.; Cortés-Contreras, M.;
   Díez-Alonso, E.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers,
   S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Morales,
   J. C.; Passegger, V. M.; Schmitt, J. H. M. M.; Schweitzer, A.
2018A&A...620A.171L    Altcode: 2018arXiv181007572L
  We announce the discovery of two planetary companions orbiting
  around the low-mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052
  (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES
  radial velocity (RV) observations in the visual channel as part of
  its survey for exoplanets around M dwarfs. In the case of GJ 1265,
  CARMENES observations were complemented with publicly available Doppler
  measurements from HARPS. The datasets reveal two planetary companions,
  one for each star, that share very similar properties: minimum
  masses of 8.0 ± 0.5 M<SUB>⊕</SUB> and 7.4 ± 0.5 M<SUB>⊕</SUB>
  in low-eccentricity orbits with periods of 3.023 ± 0.001 d and 3.651
  ± 0.001 d for GJ 3779 b and GJ 1265 b, respectively. The periodic
  signals around 3 d found in the RV data have no counterpart in any
  spectral activity indicator. Furthermore, we collected available
  photometric data for the two host stars, which confirm that the
  additional Doppler variations found at periods of approximately 95 d
  can be attributed to the rotation of the stars. The addition of these
  planets to a mass-period diagram of known planets around M dwarfs
  suggests a bimodal distribution with a lack of short-period low-mass
  planets in the range of 2-5 M<SUB>⊕</SUB>. It also indicates that
  super-Earths (&gt;5 M<SUB>⊕</SUB>) currently detected by RV and
  transit techniques around M stars are usually found in systems dominated
  by a single planet. <P />The RV and formal uncertainties of GJ 3779
  and GJ 1265 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A171">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A171</A>

---------------------------------------------------------
Title: The MISTRAL spectrograph at OHP
Authors: Adami, C.; Basa, S.; Brunel, J. C.; Buat, V.; Clerc, N.;
   Dennefeld, M.; Dolon, F.; Le van Suu, A.; Moreau, F.; Perruchot, S.;
   Schmitt, J.
2018sf2a.conf..357A    Altcode:
  We present in this contribution the expected MISTRAL characteristics
  and operation modes as well as examples of science applications which
  can be performed by the instrument, in terms of variable sky and non
  transient objects.

---------------------------------------------------------
Title: HD 189733 b: bow shock or no shock?
Authors: Kohl, S.; Salz, M.; Czesla, S.; Schmitt, J. H. M. M.
2018A&A...619A..96K    Altcode:
  Context. Hot Jupiters are surrounded by extended atmospheres of
  neutral hydrogen. Observations have provided evidence for in-transit
  hydrogen Hα absorption as well as variable pre-transit absorption
  signals. These have been interpreted in terms of a bow shock or an
  accretion stream that transits the host star before the planet. <BR />
  Aims: We test the hypothesis of planetary-related Hα absorption by
  studying the time variability of the Hα and stellar activity-sensitive
  calcium lines in high-resolution TIGRE (Telescopio Internacional de
  Guanajuato Robótico Espectroscópico) spectra of the planet host
  HD 189733. <BR /> Methods: In the framework of an observing campaign
  spanning several months, the host star was observed several times per
  week randomly sampling the orbital phases of the planet. We determine
  the equivalent width in the Hα and Ca IRT(calcium infrared triplet)
  lines, and subtract stellar rotationally induced activity from the
  Hα time series via its correlation with the IRT evolution. The
  residuals are explored for significant differences between the
  pre-, in-, and out-of-transit phases. <BR /> Results: We find
  strong stellar rotational variation with a lifetime of about 20-30
  days in all activity indicators, but the corrected Hα time series
  exhibits no significant periodic variation. We exclude the presence
  of more than 6.2 mÅ pre-transit absorption and 5.6 mÅ in-transit
  absorption in the corrected Hα data at a 99% confidence level. <BR
  /> Conclusions: Previously observed Hα absorption signals exceed
  our upper limits, but they could be related to excited atmospheric
  states. The Hα variability in the HD 189733 system is dominated by
  stellar activity, and observed signals around the planetary transit may
  well be caused by short-term stellar variability. <P />Full Table 2 is
  only available in electronic form at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A96">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A96</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: GJ 4276 radial velocity curve
    (Nagel+, 2019)
Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.; Dreizler,
   S.; Anglada-Escude, G.; Rodriguez, E.; Ribas, I.; Reiners, A.;
   Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Aceituno, J.; Bejar,
   V. J. S.; Cortes-Contreras, M.; Gonzalez-Cuesta, L.; Guenther, E. W.;
   Henning, T.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.;
   Lopez-Gonzalez, M. J.; Montes, D.; Morales, J. C. Passegger V. M.;
   Rodriguez-Lopez, C.; Schweitzer, A.; Zechmeister, M.
2018yCat..36220153N    Altcode:
  We analyzed radial velocity data from the CARMENES VIS channel. The
  RVs are corrected for barycentric motion and secular acceleration. The
  CARMENES measurements were taken in the context of the CARMENES search
  for exoplanets around M dwarfs. The CARMENES instrument consists
  of two channels: the VIS channel obtains spectra at a resolution of
  R=94600 in the wavelength range 520-960nm, while the NIR channel yields
  spectra of R=80400 covering 960-1710nm. Both channels are calibrated
  in wavelength with hollow-cathode lamps and use temperature- and
  pressure-stabilized Fabry-Perot etalons to interpolate the wavelength
  solution and simultaneously monitor the spectrograph drift during
  nightly operations (Bauer et al., 2015A&amp;A...581A.117B). <P />To
  determine the stellar rotation period, we obtained V band photometry
  with the T150 telescope located at the Sierra Nevada Observatory (SNO)
  in Spain. <P />(2 data files).

---------------------------------------------------------
Title: Quantifying Feedback from Narrow Line Region Outflows in
    Nearby Active Galaxies. II. Spatially Resolved Mass Outflow Rates
    for the QSO2 Markarian 34
Authors: Revalski, M.; Dashtamirova, D.; Crenshaw, D. M.; Kraemer,
   S. B.; Fischer, T. C.; Schmitt, H. R.; Gnilka, C. L.; Schmidt,
   J.; Elvis, M.; Fabbiano, G.; Storchi-Bergmann, T.; Maksym, W. P.;
   Gandhi, P.
2018ApJ...867...88R    Altcode: 2018arXiv180909105R
  We present spatially resolved mass outflow rate measurements
  ({\dot{M}}<SUB>out</SUB>}) for the narrow line region of Markarian 34,
  the nearest Compton-thick type 2 quasar (QSO2). Spectra obtained with
  the Hubble Space Telescope and at Apache Point Observatory reveal
  complex kinematics, with distinct signatures of outflow and rotation
  within 2 kpc of the nucleus. Using multi-component photoionization
  models, we find that the outflow contains a total ionized gas mass of
  M ≈ 1.6 × 10<SUP>6</SUP> M <SUB>⊙</SUB>. Combining this with the
  kinematics yields a peak outflow rate of {\dot{M}}<SUB>out</SUB>}≈
  2.0+/- 0.4 M <SUB>⊙</SUB> yr<SUP>-1</SUP> at a distance of 470
  pc from the nucleus, with a spatially integrated kinetic energy of
  E ≈ 1.4 × 10<SUP>55</SUP> erg. These outflows are more energetic
  than those observed in Mrk 573 and NGC 4151, supporting a correlation
  between luminosity and outflow strength even though they have similar
  peak outflow rates. The mix of rotational and outflowing components
  suggests that spatially resolved observations are required to determine
  accurate outflow parameters in systems with complex kinematics.

---------------------------------------------------------
Title: Physics of the Applegate mechanism: Eclipsing time variations
    from magnetic activity
Authors: Völschow, M.; Schleicher, D. R. G.; Banerjee, R.; Schmitt,
   J. H. M. M.
2018A&A...620A..42V    Altcode: 2018arXiv180900910V
  Since its proposal in 1992, the Applegate mechanism has been discussed
  as a potential intrinsical mechanism to explain transit-timing
  variations in various types of close binary systems. Most analytical
  arguments presented so far focused on the energetic feasibility of the
  mechanism while applying rather crude one- or two-zone prescriptions
  to describe the exchange of angular momentum within the star. In this
  paper, we present the most detailed approach to date to describe
  the physics giving rise to the modulation period from kinetic and
  magnetic fluctuations. Assuming moderate levels of stellar parameter
  fluctuations, we find that the resulting binary period variations are
  one or two orders of magnitude lower than the observed values in RS-CVn
  like systems, supporting the conclusion of existing theoretical work
  that the Applegate mechanism may not suffice to produce the observed
  variations in these systems. The most promising Applegate candidates
  are low-mass post-common-envelope binaries with binary separations
  ≲1 R<SUB>⊙</SUB> and secondary masses in the range of 0.30
  M<SUB>⊙</SUB> and 0.36 M<SUB>⊙</SUB>.

---------------------------------------------------------
Title: X-ray and UV emission of the ultrashort-period, low-mass
    eclipsing binary system BX Trianguli
Authors: Perdelwitz, V.; Czesla, S.; Robrade, J.; Pribulla, T.;
   Schmitt, J. H. M. M.
2018A&A...619A.138P    Altcode: 2018arXiv180900971P
  Context.Close binary systems provide an excellent tool for determining
  stellar parameters such as radii and masses with a high degree of
  precision. Due to the high rotational velocities, most of these
  systems exhibit strong signs of magnetic activity, postulated
  to be the underlying reason for radius inflation in many of the
  components. Aims.We extend the sample of low-mass binary systems with
  well-known X-ray properties. Methods.We analyze data from a singular
  XMM-Newton pointing of the close, low-mass eclipsing binary system
  BX Tri. The UV light curve was modeled with the eclipsing binary
  modeling tool PHOEBE and data acquired with the EPIC cameras was
  analyzed to search for hints of orbital modulation. Results.We find
  clear evidence of orbital modulation in the UV light curve and show
  that PHOEBE is fully capable of modeling data within this wavelength
  range. Comparison to a theoretical flux prediction based on PHOENIX
  models shows that the majority of UV emission is of photospheric
  origin. While the X-ray light curve does exhibit strong variations,
  the signal-to-noise ratio of the observation is insufficient for a
  clear detection of signs of orbital modulation. There is evidence of
  a Neupert-like correlation between UV and X-ray data.

---------------------------------------------------------
Title: Outstanding X-ray emission from the stellar radio pulsar
    CU Virginis
Authors: Robrade, J.; Oskinova, L. M.; Schmitt, J. H. M. M.; Leto,
   P.; Trigilio, C.
2018A&A...619A..33R    Altcode: 2018arXiv180802367R
  Context. Among the intermediate-mass magnetic chemically peculiar
  (MCP) stars, CU Vir is one of the most intriguing objects. Its 100%
  circularly polarized beams of radio emission sweep the Earth as the
  star rotates, thereby making this strongly magnetic star the prototype
  of a class of nondegenerate stellar radio pulsars. While CU Vir is
  well studied in radio, its high-energy properties are not known. Yet,
  X-ray emission is expected from stellar magnetospheres and confined
  stellar winds. <BR /> Aims: Using X-ray data we aim to test CU Vir
  for intrinsic X-ray emission and investigate mechanisms responsible
  for its generation. <BR /> Methods: We present X-ray observations
  performed with XMM-Newton and Chandra and study obtained X-ray images,
  light curves, and spectra. Basic X-ray properties are derived from
  spectral modelling and are compared with model predictions. In this
  context we investigate potential thermal and nonthermal X-ray emission
  scenarios. <BR /> Results: We detect an X-ray source at the position of
  CU Vir. With L<SUB>X</SUB> ≍ 3×10<SUP>28</SUP> erg s<SUP>-1</SUP> it
  is moderately X-ray bright, but the spectrum is extremely hard compared
  to other Ap stars. Spectral modelling requires multi-component models
  with predominant hot plasma at temperatures of about T<SUB>X</SUB>
  = 25 MK or, alternatively, a nonthermal spectral component. Both
  types of model provide a virtually equivalent description of the
  X-ray spectra. The Chandra observation was performed six years later
  than those by XMM-Newton, yet the source has similar X-ray flux and
  spectrum, suggesting a steady and persistent X-ray emission. This
  is further confirmed by the X-ray light curves that show only mild
  X-ray variability. <BR /> Conclusions: CU Vir is also an exceptional
  star at X-ray energies. To explain its full X-ray properties, a
  generating mechanism beyond standard explanations, like the presence
  of a low-mass companion or magnetically confined wind-shocks, is
  required. Magnetospheric activity might be present or, as proposed
  for fast-rotating strongly magnetic Bp stars, the X-ray emission of
  CU Vir is predominantly auroral in nature.

---------------------------------------------------------
Title: Revisiting the connection between magnetic activity, rotation
    period, and convective turnover time for main-sequence stars
Authors: Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P.
2018A&A...618A..48M    Altcode: 2018arXiv180705825M
  The connection between stellar rotation, stellar activity, and
  convective turnover time is revisited with a focus on the sole
  contribution of magnetic activity to the Ca II H&amp;K emission,
  the so-called excess flux, and its dimensionless indicator
  R<SUP>+</SUP><SUB>HK</SUB> in relation to other stellar parameters
  and activity indicators. Our study is based on a sample of 169
  main-sequence stars with directly measured Mount Wilson S-indices
  and rotation periods. The R<SUP>+</SUP><SUB>HK</SUB> values are
  derived from the respective S-indices and related to the rotation
  periods in various B-V-colour intervals. First, we show that stars
  with vanishing magnetic activity, i.e. stars whose excess flux index
  R<SUP>+</SUP><SUB>HK</SUB> approaches zero, have a well-defined,
  colour-dependent rotation period distribution; we also show that this
  rotation period distribution applies to large samples of cool stars for
  which rotation periods have recently become available. Second, we use
  empirical arguments to equate this rotation period distribution with
  the global convective turnover time, which is an approach that allows
  us to obtain clear relations between the magnetic activity related
  excess flux index R<SUP>+</SUP><SUB>HK</SUB>, rotation periods, and
  Rossby numbers. Third, we show that the activity versus Rossby number
  relations are very similar in the different activity indicators. As a
  consequence of our study, we emphasize that our Rossby number based on
  the global convective turnover time approaches but does not exceed unity
  even for entirely inactive stars. Furthermore, the rotation-activity
  relations might be universal for different activity indicators once
  the proper scalings are used.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Radial velocities of GJ 3779 and
    GJ 1265 (Luque+, 2018)
Authors: Luque, R.; Nowak, G.; Palle, E.; Kossakowski, D.; Trifonov,
   T.; Zechmeister, M.; Bejar, V. J. S.; Cardona Guillen, C.; Tal-Or, L.;
   Hidalgo, D.; Ribas, I.; Reiners, A.; Caballero, J. A.; Amado, P. J.;
   Quirrenbach, A.; Aceituno, J.; Cortes-Contreras, M.; Diez-Alonso, E.;
   Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski,
   A.; Kuerster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Passegger,
   V. M.; Schmitt, J. H. M. M.; Schweitzer, A.
2018yCat..36200171L    Altcode:
  We analyzed radial velocity data from the CARMENES VIS channel for GJ
  3779, and from the CARMENES VIS channel and HARPS for GJ 1265. All the
  RVs are corrected for barycentric motion and secular acceleration. The
  CARMENES measurements were taken in the context of the CARMENES search
  for exoplanets around M dwarfs. The CARMENES instrument consists of two
  channels: the VIS channel obtains spectra at a resolution of R=94600 in
  the wavelength range 520-960nm, while the NIR channel yields spectra of
  R=80400 covering 960-1710nm. Both channels are calibrated in wavelength
  with hollow-cathode lamps and use temperature- and pressure-stabilized
  Fabry-Perot etalons to interpolate the wavelength solution and
  simultaneously monitor the spectrograph drift during nightly operations
  (Bauer et al., 2015A&amp;A...581A.117B). <P />(2 data files).

---------------------------------------------------------
Title: Multiepoch, multiwavelength study of accretion onto T
    Tauri. X-ray versus optical and UV accretion tracers
Authors: Schneider, P. C.; Günther, H. M.; Robrade, J.; Schmitt,
   J. H. M. M.; Güdel, M.
2018A&A...618A..55S    Altcode: 2018arXiv180606788S
  Classical T Tauri stars (CTTSs) accrete matter from the inner edge of
  their surrounding circumstellar disks. The impact of the accretion
  material on the stellar atmosphere results in a strong shock,
  which causes emission from the X-ray to the near-infrared (NIR)
  domain. Shock velocities of several 100 km s<SUP>-1</SUP> imply that
  the immediate post shock plasma emits mainly in X-rays. Indeed,
  two X-ray diagnostics, the so-called soft excess and the high
  densities observed in He-like triplets, differentiate CTTSs from their
  non-accreting siblings. However, accretion shock properties derived
  from X-ray diagnostics often contradict established ultraviolet (UV)-NIR
  accretion tracers and a physical model simultaneously explaining both,
  X-ray and UV-NIR accretion tracers, is not yet available. We present
  new XMM-Newton and Chandra grating observations of the CTTS T Tauri
  combined with UV and optical data. During all epochs, the soft excess
  is large and the densities derived from the O VII and Ne IX He-like
  triplets are compatible with coronal densities. This confirms that
  the soft X-ray emission cannot originate in accretion funnels that
  carry the bulk of the accretion rate despite T Tauri's large soft
  excess. Instead, we propose a model of radially density stratified
  accretion columns to explain the density diagnostics and the soft
  excess. In addition, accretion rate and X-ray luminosity are inversely
  correlated in T Tauri over several epochs. Such an anti-correlation
  has been observed in samples of stars. Hence the process causing it
  must be intrinsic to the accretion process, and we speculate that
  the stellar magnetic field configuration on the visible hemisphere
  affects both the accretion rate and the coronal emission, eventually
  causing the observed anti-correlation. <P />Based on observations
  obtained with XMM-Newton, an ESA science mission with instruments and
  contributions directly funded by ESA Member States and NASA, and based
  on observations obtained by the Chandra X-ray observatory.

---------------------------------------------------------
Title: Stellar activity of evolved, cool giants - old questions
    revisited
Authors: Schröder, K. -P.; Schmitt, J. H. M. M.; Mittag, M.; Gómez
   Trejo, V.; Jack, D.
2018MNRAS.480.2137S    Altcode:
  We present an empirical study of the strength of magnetic stellar
  activity among cool giant stars on the red and asymptotic giant branches
  using the Ca II H&amp;K chromospheric emission strength measured in
  the context of the Mount Wilson project. Because we consider only
  stars with a parallax error smaller than 10 per cent, the stars can be
  accurately placed into an empirical Hertzsprung-Russell diagram and
  their evolutionary status can be reliably assessed from a comparison
  with calibrated evolutionary tracks. We find that S-index values among
  evolved giants redder than 1.5 in B - V and with luminosity classes
  I and II are larger than those found among the progenitor K giants
  with luminosity class III and B - V &lt; 1.3. Converting the measured
  S-indices into physical chromospheric surface fluxes, we find that
  chromospheric heating undergoes a remarkable reversal and revival as
  giant luminosity increases. We also discuss possible explanations for
  this new finding.

---------------------------------------------------------
Title: The relation between stellar magnetic field geometry and
    chromospheric activity cycles - II The rapid 120-day magnetic cycle
    of τ Bootis
Authors: Jeffers, S. V.; Mengel, M.; Moutou, C.; Marsden, S. C.;
   Barnes, J. R.; Jardine, M. M.; Petit, P.; Schmitt, J. H. M. M.; See,
   V.; Vidotto, A. A.; BCool Collaboration
2018MNRAS.479.5266J    Altcode: 2018arXiv180509769J; 2018MNRAS.tmp.1654J
  One of the aims of the BCool programme is to search for cycles in other
  stars and to understand how similar they are to the Sun. In this paper,
  we aim to monitor the evolution of τ Boo's large-scale magnetic field
  using high-cadence observations covering its chromospheric activity
  maximum. For the first time, we detect a polarity switch that is in
  phase with τ Boo's 120-day chromospheric activity maximum and its
  inferred X-ray activity cycle maximum. This means that τ Boo has a
  very fast magnetic cycle of only 240 days. At activity maximum τ Boo's
  large-scale field geometry is very similar to the Sun at activity
  maximum: it is complex and there is a weak dipolar component. In
  contrast, we also see the emergence of a strong toroidal component
  which has not been observed on the Sun, and a potentially overlapping
  butterfly pattern where the next cycle begins before the previous one
  has finished.

---------------------------------------------------------
Title: The atmosphere of WASP-17b: Optical high-resolution
    transmission spectroscopy
Authors: Khalafinejad, Sara; Salz, Michael; Cubillos, Patricio E.;
   Zhou, George; von Essen, Carolina; Husser, Tim-Oliver; Bayliss,
   Daniel D. R.; López-Morales, Mercedes; Dreizler, Stefan; Schmitt,
   Jürgen H. M. M.; Lüftinger, Theresa
2018A&A...618A..98K    Altcode: 2018arXiv180710621K
  High-resolution transmission spectroscopy is a method for understanding
  the chemical and physical properties of upper exoplanetary
  atmospheres. Due to large absorption cross-sections, resonance lines
  of atomic sodium D-lines (at 5889.95 and 5895.92 Å) produce large
  transmission signals. Our aim is to unveil the physical properties
  of WASP-17b through an accurate measurement of the sodium absorption
  in the transmission spectrum. We analyze 37 high-resolution spectra
  observed during a single transit of WASP-17b with the MIKE instrument
  on the 6.5 m Magellan Telescopes. We exclude stellar flaring activity
  during the observations by analyzing the temporal variations of
  H<SUB>α</SUB> and Ca II infrared triplet (IRT) lines. We then obtain
  the excess absorption light curves in wavelength bands of 0.75, 1,
  1.5, and 3 Å around the center of each sodium line (i.e., the light
  curve approach). We model the effects of differential limb-darkening,
  and the changing planetary radial velocity on the light curves. We also
  analyze the sodium absorption directly in the transmission spectrum,
  which is obtained by dividing in-transit by out-of-transit spectra
  (i.e., the division approach). We then compare our measurements with
  a radiative transfer atmospheric model. Our analysis results in a
  tentative detection of exoplanetary sodium: we measure the width and
  amplitude of the exoplanetary sodium feature to be σ<SUB>Na</SUB> =
  (0.128 ± 0.078) Å and A<SUB>Na</SUB> = (1.7 ± 0.9)% in the excess
  light curve approach and σ<SUB>Na</SUB> = (0.850 ± 0.034) Å and
  A<SUB>Na</SUB> = (1.3 ± 0.6)% in the division approach. By comparing
  our measurements with a simple atmospheric model, we retrieve an
  atmospheric temperature of 15501550 <SUB>-200</SUB><SUP>+700</SUP>
  K and radius (at 0.1 bar) of 1.81 ± 0.02 R<SUB>Jup</SUB> for WASP-17b.

---------------------------------------------------------
Title: VizieR Online Data Catalog: HD189733 spectral variability
    (Kohl+, 2018)
Authors: Kohl, S.; Salz, M.; Czesla, S.; Schmitt, J. H. M. M.
2018yCat..36190096K    Altcode:
  Table 2 contains the observed excess equivalent width in different
  lines for each individual observation of HD189733. <P />This data
  was used to search for planet-induced absorption signals. <P />Each
  single observation has been corrected for telluric absorption. To
  obtain the excess flux we subtract the template HD 10476 from our HD
  189733 observations. The integration bands are centered on the line
  cores. The widths are 2Å in Hα and 1.5Å in the other lines. <P
  />The spectra have been acquired at the 1.2m Tigre telescope located
  in La Luz, Mexico. The spectral resolution of the HEROS spectrograph
  is 20000. <P />A detailed description of the table is given in the
  paper. <P />(1 data file).

---------------------------------------------------------
Title: Long-term variations in the X-ray activity of HR 1099
Authors: Perdelwitz, V.; Navarrete, F. H.; Zamponi, J.; Mennickent,
   R. E.; Völschow, M.; Robrade, J.; Schneider, P. C.; Schleicher,
   D. R. G.; Schmitt, J. H. M. M.
2018A&A...616A.161P    Altcode: 2018arXiv180603033P
  Context. Although timing variations in close binary systems have
  been studied for a long time, their underlying causes are still
  unclear. A possible explanation is the so-called Applegate mechanism,
  where a strong, variable magnetic field can periodically change the
  gravitational quadrupole moment of a stellar component, thus causing
  observable period changes. One of the systems exhibiting such strong
  orbital variations is the RS CVn binary HR 1099, whose activity cycle
  has been studied by various authors via photospheric and chromospheric
  activity indicators, resulting in contradicting periods. <BR /> Aims:
  We aim at independently determining the magnetic activity cycle of HR
  1099 using archival X-ray data to allow for a comparison to orbital
  period variations. <BR /> Methods: Archival X-ray data from 80 different
  observations of HR 1099 acquired with 12 different X-ray facilities and
  covering almost four decades were used to determine X-ray fluxes in the
  energy range of 2-10 keV via spectral fitting and flux conversion. Via
  the Lomb-Scargle periodogram we analyze the resulting long-term X-ray
  light curve to search for periodicities. <BR /> Results: We do not
  detect any statistically significant periodicities within the X-ray
  data. An analysis of optical data of HR 1099 shows that the derivation
  of such periods is strongly dependent on the time coverage of available
  data, since the observed optical variations strongly deviate from a pure
  sine wave. We argue that this offers an explanation as to why other
  authors derive such a wide range of activity cycle periods based on
  optical data. We furthermore show that X-ray and optical variations are
  correlated in the sense that the star tends to be optically fainter when
  it is X-ray bright. <BR /> Conclusions: We conclude that our analysis
  constitutes, to our knowledge, the longest stellar X-ray activity
  light curve acquired to date, yet the still rather sparse sampling
  of the X-ray data, along with stochastic flaring activity, does not
  allow for the independent determination of an X-ray activity cycle.

---------------------------------------------------------
Title: Intriguing X-ray and optical variations of the γ Cassiopeiae
    analog HD 45314
Authors: Rauw, G.; Nazé, Y.; Smith, M. A.; Miroshnichenko,
   A. S.; Guarro Fló, J.; Campos, F.; Prendergast, P.; Danford,
   S.; González-Pérez, J. N.; Hempelmann, A.; Mittag, M.; Schmitt,
   J. H. M. M.; Schröder, K. -P.; Zharikov, S. V.
2018A&A...615A..44R    Altcode: 2018arXiv180205512R
  Context. A growing number of Be and Oe stars, named the γ Cas stars,
  are known for their unusually hard and intense X-ray emission. This
  emission could either trace accretion by a compact companion or magnetic
  interaction between the star and its decretion disk. <BR /> Aims:
  To test these scenarios, we carried out a detailed optical monitoring
  of HD 45314, the hottest member of the class of γ Cas stars, along
  with dedicated X-ray observations on specific dates. <BR /> Methods:
  High-resolution optical spectra were taken to monitor the emission
  lines formed in the disk, while X-ray spectroscopy was obtained at
  epochs when the optical spectrum of the Oe star was displaying peculiar
  properties. <BR /> Results: Over the last four years, HD 45314 has
  entered a phase of spectacular variations. The optical emission lines
  have undergone important morphology and intensity changes including
  transitions between single- and multiple-peaked emission lines as well
  as shell events, and phases of (partial) disk dissipation. Photometric
  variations are found to be anti-correlated with the equivalent width of
  the Hα emission. Whilst the star preserved its hard and bright X-ray
  emission during the shell phase, the X-ray spectrum during the phase of
  (partial) disk dissipation was significantly softer and weaker. <BR
  /> Conclusions: The observed behaviour of HD 45314 suggests a direct
  association between the level of X-ray emission and the amount of
  material simultaneously present in the Oe disk as expected in the
  magnetic star-disk interaction scenario. <P />Based on observations
  collected with XMM-Newton, an ESA Science Mission with instruments
  and contributions directly funded by ESA Member States and the USA
  (NASA), and with the TIGRE telescope (La Luz, Mexico).

---------------------------------------------------------
Title: CARMENES: high-resolution spectra and precise radial velocities
    in the red and infrared
Authors: Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.;
   Caballero, J. A.; Seifert, W.; Aceituno, J.; Azzaro, M.; Baroch, D.;
   Barrado, D.; Bauer, F.; Becerril, S.; Bèjar, V. J. S.; Benítez,
   D.; Brinkmöller, M.; Cardona Guillén, C.; Cifuentes, C.; Colomé,
   J.; Cortés-Contreras, M.; Czesla, S.; Dreizler, S.; Frölich, K.;
   Fuhrmeister, B.; Galadí-Enríquez, D.; González Hernández, J. I.;
   González Peinado, R.; Guenther, E. W.; de Guindos, E.; Hagen, H. -J.;
   Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, Th.; Herbort,
   O.; Hernández Castaño, L.; Herrero, E.; Hintz, D.; Jeffers, S. V.;
   Johnson, E. N.; de Juan, E.; Kaminski, A.; Klahr, H.; Kürster,
   M.; Lafarga, M.; Sairam, L.; Lampón, M.; Lara, L. M.; Launhardt,
   R.; López del Fresno, M.; López-Puertas, M.; Luque, R.; Mandel,
   H.; Marfil, E. G.; Martín, E. L.; Martín-Ruiz, S.; Mathar, R. J.;
   Montes, D.; Morales, J. C.; Nagel, E.; Nortmann, L.; Nowak, G.; Pallé,
   E.; Passegger, V. -M.; Pavlov, A.; Pedraz, S.; Pérez-Medialdea, D.;
   Perger, M.; Rebolo, R.; Reffert, S.; Rodríguez, E.; Rodríguez López,
   C.; Rosich, A.; Sabotta, S.; Sadegi, S.; Salz, M.; Sánchez-López,
   A.; Sanz-Forcada, J.; Sarkis, P.; Schäfer, S.; Schiller, J.; Schmitt,
   J. H. M. M.; Schöfer, P.; Schweitzer, A.; Shulyak, D.; Solano, E.;
   Stahl, O.; Tala Pinto, M.; Trifonov, T.; Zapatero Osorio, M. R.; Yan,
   F.; Zechmeister, M.; Abellán, F. J.; Abril, M.; Alonso-Floriano,
   F. J.; Ammler-von Eiff, M.; Anglada-Escudé, G.; Anwand-Heerwart, H.;
   Arroyo-Torres, B.; Berdiñas, Z. M.; Bergondy, G.; Blümcke, M.; del
   Burgo, C.; Cano, J.; Carro, J.; Cárdenas, M. C.; Casal, E.; Claret,
   A.; Díez-Alonso, E.; Doellinger, M.; Dorda, R.; Feiz, C.; Fernández,
   M.; Ferro, I. M.; Gaisné, G.; Gallardo, I.; Gálvez-Ortiz, M. C.;
   García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.;
   Gómez Galera, V.; González-Álvarez, E.; González-Cuesta, L.;
   Grohnert, S.; Grözinger, U.; Guàrdia, J.; Guijarro, A.; Hedrosa,
   R. P.; Hermann, D.; Hermelo, I.; Hernández Arabí, R.; Hernández
   Hernando, F.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K.; Huke,
   P.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Labarga,
   F.; Labiche, N.; Lamert, A.; Laun, W.; Lázaro, F. J.; Lemke, U.;
   Lenzen, R.; Llamas, M.; Lizon, J. -L.; Lodieu, N.; López González,
   M. J.; López-Morales, M.; López Salas, J. F.; López-Santiago,
   J.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Marín Molina,
   J. A.; Martínez-Rodríguez, H.; Maroto Fernández, D.; Marvin, C. J.;
   Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Naranjo, V.;
   Panduro, J.; Pascual, J.; Pérez-Calpena, A.; Perryman, M. A. C.;
   Pluto, M.; Ramón, A.; Redondo, P.; Reinhart, S.; Rhode, P.; Rix,
   H. -W.; Rodler, F.; Rohloff, R. -R.; Sánchez-Blanco, E.; Sánchez
   Carrasco, M. A.; Sarmiento, L. F.; Schmidt, C.; Storz, C.; Strachan,
   J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tal-Or, L.;
   Tulloch, S. M.; Ulbrich, R. -G.; Veredas, G.; Vico Linares, J. L.;
   Vidal-Dasilva, M.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff,
   V.; Xu, W.; Zhao, Z.
2018SPIE10702E..0WQ    Altcode:
  The design and construction of CARMENES has been presented at previous
  SPIE conferences. It is a next-generation radial-velocity instrument at
  the 3.5m telescope of the Calar Alto Observatory, which was built by a
  consortium of eleven Spanish and German institutions. CARMENES consists
  of two separate échelle spectrographs covering the wavelength range
  from 0.52 to 1.71μm at a spec-tral resolution of R &lt; 80,000, fed by
  fibers from the Cassegrain focus of the telescope. CARMENES saw "First
  Light" on Nov 9, 2015. During the commissioning and initial operation
  phases, we established basic performance data such as throughput and
  spectral resolution. We found that our hollow-cathode lamps are suitable
  for precise wavelength calibration, but their spectra contain a number
  of lines of neon or argon that are so bright that the lamps cannot be
  used in simultaneous exposures with stars. We have therefore adopted
  a calibration procedure that uses simultaneous star / Fabry Pérot
  etalon exposures in combination with a cross-calibration between the
  etalons and hollow-cathode lamps during daytime. With this strategy
  it has been possible to achieve 1-2 m/s precision in the visible and
  5-10 m/s precision in the near-IR; further improvements are expected
  from ongoing work on temperature control, calibration procedures
  and data reduction. Comparing the RV precision achieved in different
  wavelength bands, we find a "sweet spot" between 0.7 and 0.8μm, where
  deep TiO bands provide rich RV information in mid-M dwarfs. This is
  in contrast to our pre-survey models, which predicted comparatively
  better performance in the near-IR around 1μm, and explains in
  part why our near-IR RVs do not reach the same precision level as
  those taken with the visible spectrograph. We are now conducting a
  large survey of 340 nearby M dwarfs (with an average distance of only
  12pc), with the goal of finding terrestrial planets in their habitable
  zones. We have detected the signatures of several previously known or
  suspected planets and also discovered several new planets. We find
  that the radial velocity periodograms of many M dwarfs show several
  significant peaks. The development of robust methods to distinguish
  planet signatures from activity-induced radial velocity jitter is
  therefore among our priorities. Due to its large wavelength coverage,
  the CARMENES survey is generating a unique data set for studies of M
  star atmospheres, rotation, and activity. The spectra cover important
  diagnostic lines for activity (H alpha, Na I D1 and D2, and the Ca II
  infrared triplet), as well as FeH lines, from which the magnetic field
  can be inferred. Correlating the time series of these features with
  each other, and with wavelength-dependent radial velocities, provides
  excellent handles for the discrimination between planetary companions
  and stellar radial velocity jitter. These data are also generating
  new insight into the physical properties of M dwarf atmospheres, and
  the impact of activity and flares on the habitability of M star planets.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. Wing
    asymmetries of Hα, Na I D, and He I lines
Authors: Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Jeffers,
   S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.;
   Amado, P. J.; Quirrenbach, A.; Béjar, V. J. S.; Galadí-Enríquez,
   D.; Guenther, E. W.; Kürster, M.; Montes, D.; Seifert, W.
2018A&A...615A..14F    Altcode: 2018arXiv180110372F
  Stellar activity is ubiquitously encountered in M dwarfs and often
  characterised by the Hα line. In the most active M dwarfs, Hα is found
  in emission, sometimes with a complex line profile. Previous studies
  have reported extended wings and asymmetries in the Hα line during
  flares. We used a total of 473 high-resolution spectra of 28 active
  M dwarfs obtained by the CARMENES (Calar Alto high-Resolution search
  for M dwarfs with Exo-Earths with Near-infrared and optical Echelle
  Spectrographs) spectrograph to study the occurrence of broadened
  and asymmetric Hα line profiles and their association with flares,
  and examine possible physical explanations. We detected a total of
  41 flares and 67 broad, potentially asymmetric, wings in Hα. The
  broadened Hα lines display a variety of profiles with symmetric
  cases and both red and blue asymmetries. Although some of these
  line profiles are found during flares, the majority are at least not
  obviously associated with flaring. We propose a mechanism similar to
  coronal rain or chromospheric downward condensations as a cause for
  the observed red asymmetries; the symmetric cases may also be caused by
  Stark broadening. We suggest that blue asymmetries are associated with
  rising material, and our results are consistent with a prevalence of
  blue asymmetries during the flare onset. Besides the Hα asymmetries,
  we find some cases of additional line asymmetries in He I D<SUB>3</SUB>,
  Na I D lines, and the He I line at 10 830 Å taken all simultaneously
  thanks to the large wavelength coverage of CARMENES. Our study shows
  that asymmetric Hα lines are a rather common phenomenon in M dwarfs
  and need to be studied in more detail to obtain a better understanding
  of the atmospheric dynamics in these objects.

---------------------------------------------------------
Title: The (<SUP>6</SUP>Li,<SUP>*6</SUP>Li[3.56 MeV ] ) reaction
    at 100 MeV/u as a probe of Gamow-Teller transition strengths in the
    inelastic scattering channel
Authors: Sullivan, C.; Zegers, R. G. T.; Noji, S.; Austin, Sam M.;
   Schmitt, J.; Aoi, N.; Bazin, D.; Carpenter, M.; Carroll, J. J.;
   Fujita, H.; Garg, U.; Gey, G.; Guess, C. J.; Hoang, T. H.; Harakeh,
   M. N.; Hudson, E.; Ichige, N.; Ideguchi, E.; Inoue, A.; Isaak, J.;
   Iwamoto, C.; Kacir, C.; Koike, T.; Kobayashi, N.; Lipschutz, S.; Liu,
   M.; von Neumann-Cosel, P.; Ong, H. J.; Pereira, J.; Raju, M. Kumar;
   Tamii, A.; Titus, R.; Werner, V.; Yamamoto, Y.; Fang, Y. D.; Zamora,
   J. C.; Zhu, S.; Zhou, X.
2018PhRvC..98a5804S    Altcode:
  Background: Inelastic neutrino-nucleus scattering is important
  for understanding core-collapse supernovae and the detection of
  emitted neutrinos from such events in earth-based detectors. Direct
  measurement of the cross sections is difficult and has only been
  performed on a few nuclei. It is, therefore, important to develop
  indirect techniques from which the inelastic neutrino-nucleus
  scattering cross sections can be determined. <P />Purpose: This paper
  presents a development of the (<SUP>6</SUP>Li,<SUP>*6</SUP>Li[T =1
  ,T<SUB>z</SUB>=0 ,0<SUP>+</SUP>,3.56 MeV ] ) reaction at 100 MeV/u
  as a probe for isolating the isovector spin-transfer response in the
  inelastic channel (Δ S =1 ,Δ T =1 ,Δ T<SUB>z</SUB>=0 ) from which the
  Gamow-Teller transition strengths from nuclei of relevance for inelastic
  neutrino-nucleus scattering cross sections can be extracted. <P
  />Method: By measuring the <SUP>6</SUP>Li ejectile in a magnetic
  spectrometer and selecting events in which the 3.56 MeV γ ray from the
  decay of the <SUP>*6</SUP>Li[3.56 MeV ] state is detected, the isovector
  spin-transfer selectivity is obtained. High-purity germanium clover
  detectors served to detect the γ rays. Doppler reconstruction was used
  to determine the γ energy in the rest frame of <SUP>6</SUP>Li. From
  the <SUP>6</SUP>Li and 3.56 MeV γ -momentum vectors the excitation
  energy of the residual nucleus was determined. <P />Results: In the
  study of the <SUP>12</SUP>C(<SUP>6</SUP>Li,<SUP>*6</SUP>Li[3.56 MeV ])
  reaction, the isovector spin-transfer excitation-energy spectrum in the
  inelastic channel was successfully measured. The strong Gamow-Teller
  state in <SUP>12</SUP>C at 15.1 MeV was observed. Comparisons with the
  analog <SUP>12</SUP>C(<SUP>6</SUP>Li,<SUP>6</SUP>He) reaction validate
  the method of extracting the Gamow-Teller strength. In measurements of
  the <SUP>24</SUP>Mg,<SUP>93</SUP>Nb(<SUP>6</SUP>Li,<SUP>*6</SUP>Li[3.56
  MeV ]) reactions, the 3.56 MeV γ peak could not be isolated from the
  strong background in the γ spectrum from the decay of the isoscalar
  excitations. It is argued that by using a γ -ray tracking array
  instead of a clover array, it is feasible to extend the mass range
  over which the (<SUP>6</SUP>Li,<SUP>*6</SUP>Li) reaction can be used
  for extracting the isovector spin-transfer response up to mass numbers
  of ∼25 and perhaps higher. <P />Conclusions: It is demonstrated that
  the (<SUP>6</SUP>Li,<SUP>*6</SUP>Li[3.56 MeV ]) reaction probe can
  be used to isolate the inelastic isovector spin-transfer response in
  nuclei. Application to nuclei with mass numbers of about 25 or more,
  however, will require a more efficient γ -ray array with a better
  tracking capability.

---------------------------------------------------------
Title: VizieR Online Data Catalog: 324 CARMENES M dwarfs velocities
    (Reiners+, 2018)
Authors: Reiners, A.; Zechmeister, M.; Caballero, J. A.; Ribas, I.;
   Morales, J. C.; Jeffers, S. V.; Schofer, P.; Tal-Or, L.; Quirrenbach,
   A.; Amado, P. J.; Kaminski, A.; Seifert, W.; Abril, M.; Aceituno,
   J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.;
   Anglada-Escude, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro,
   M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Bejar,
   V. J. S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Blumcke, M.;
   Brinkmoller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez, M. C.;
   Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras,
   M.; Czesla, S.; Diez-Alonso, E.; Dreizler, S.; Feiz, C.; Fernandez, M.;
   Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.;
   Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez Hernandez,
   J. I.; Gonzalez-Peinado, R.; Grozinger, U.; Grohnert, S.; Guardia,
   J.; Guenther, E. W.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto,
   J.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa,
   R. P.; Helmling, J.; Henning, T.; Hermelo, I.; Hernandez Arabi, R.;
   Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.;
   Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Kluter,
   J.; Klutsch, A.; Kurster, M.; Lafarga, M.; Lamert, A.; Lampon, M.;
   Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; Lopez
   Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas,
   J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia, H.; Mall,
   U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto
   Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mathar,
   R. J.; Mirabet, E.; Montes, D.; Moreno-Raya, M. E.; Moya, A.; Mundt,
   R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro,
   R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pavlov,
   A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger,
   M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo,
   R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.;
   Rodler, F.; Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad,
   A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.;
   Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis,
   P.; Sarmiento, L. F.; Schafer, S.; Schmitt, J. H. M. M.; Schiller, J.;
   Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Sturmer,
   J.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Trifonov, T.; Tulloch,
   S. M.; Ulbrich, R. G.; Veredas, G.; Vico Linares, J. I.; Vilardell,
   F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero
   Osorio, M. R.
2018yCat..36120049R    Altcode:
  As part of the GTO agreement, we provide early access to one CARMENES
  spectrum for each of our sample targets (Table B.1). They can be
  downloaded from the CARMENES GTO Data Archive (Caballero et al., 2016,
  in Observatory Operations: Strategies, Processes, and Systems VI,
  Proc. SPIE, 9910, 99100E) (http://carmenes.cab.inta-csic.es) <P />(1
  data file).

---------------------------------------------------------
Title: Atmospheric mass-loss of extrasolar planets orbiting
    magnetically active host stars
Authors: Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan
2018MNRAS.477..808L    Altcode: 2018MNRAS.tmp..716S; 2018arXiv180308684S
  Magnetic stellar activity of exoplanet hosts can lead to the production
  of large amounts of high-energy emission, which irradiates extrasolar
  planets, located in the immediate vicinity of such stars. This radiation
  is absorbed in the planets' upper atmospheres, which consequently
  heat up and evaporate, possibly leading to an irradiation-induced
  mass-loss. We present a study of the high-energy emission in the four
  magnetically active planet-bearing host stars, Kepler-63, Kepler-210,
  WASP-19, and HAT-P-11, based on new XMM-Newton observations. We
  find that the X-ray luminosities of these stars are rather high with
  orders of magnitude above the level of the active Sun. The total XUV
  irradiation of these planets is expected to be stronger than that of
  well-studied hot Jupiters. Using the estimated XUV luminosities as the
  energy input to the planetary atmospheres, we obtain upper limits for
  the total mass- loss in these hot Jupiters.

---------------------------------------------------------
Title: The stellar content of the XMM-Newton slew survey
Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2018A&A...614A.125F    Altcode: 2017arXiv171207410F
  <BR /> Aims: We present a detailed analysis of the stellar content
  of the current version of the XMM-Newton slew survey (XMMSL2). <BR
  /> Methods: Since stars emit only a small fraction of their total
  luminosity in the X-ray band, the stellar XMMSL2 sources ought to
  have relatively bright optical counterparts. Therefore the stellar
  identifications were obtained by an automatic crossmatch of the
  XMMSL2 catalog with the first Gaia data release (Gaia DR1), 2MASS,
  and Tycho2 catalogs. The reliability of this procedure was verified
  by a comparison with the individually classified Einstein Observatory
  medium sensitivity survey X-ray sources and by a crossmatch with the
  Chandra Source Catalog. <BR /> Results: We identify 6815 of the 23
  252 unique XMMSL2 sources to be stellar sources, while 893 sources are
  flagged as unreliable. For every counterpart a matching probability is
  estimated based upon the distance between the XMMSL2 source and the
  counterpart. Given this matching probability the sample is expected
  to be reliable to 96.7 % and complete to 96.3 % . The sample contains
  stars of all spectral types and luminosity classes, and late-type
  dwarfs have the largest share. For many stellar sources the fractional
  contribution of the X-ray band to the total energy output is found above
  the saturation limit of previous studies (L<SUB>x</SUB>/L<SUB>bol</SUB>
  = 10<SUP>-3</SUP>), because the XMMSL2 sources are more affected
  by flares owing to their short exposure times of typically 6 s. A
  comparison with the second ROSAT all-sky survey (2RXS) source
  catalog shows that about 25 % of the stellar XMMSL2 sources are
  previously unknown X-ray sources. The results of our identification
  procedure can be accessed via VizieR. <P />Catalog of the stellar
  XMMSL2 sources is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A125">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A125</A>

---------------------------------------------------------
Title: Nanoparticles as a Messenger of Rock-Water Interactions in
    the Subsurface Ocean of Europa
Authors: Hsu, H. -W.; Kempf, S.; Postberg, F.; Schmidt, J.; Horanyi, M.
2018LPICo2085.6035H    Altcode:
  The lesson learned from the Cassini mission will help to probe
  nanograins carrying the rock-water interaction information from Euorpa
  from afar.

---------------------------------------------------------
Title: Search for Tensor, Vector, and Scalar Polarizations in the
    Stochastic Gravitational-Wave Background
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.;
   Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez,
   A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley,
   J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene,
   I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.;
   Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.;
   Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi,
   M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.;
   Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.;
   Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister,
   T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill,
   S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin,
   E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen,
   Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.;
   Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua,
   A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi,
   R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater,
   P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.;
   Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti,
   L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.;
   Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day,
   B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.;
   Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker,
   R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai,
   B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel,
   D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili,
   F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo,
   N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles,
   T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer,
   C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar,
   S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel,
   C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger,
   A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.;
   Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi,
   F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez,
   L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.;
   Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.;
   Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son,
   E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.;
   Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson,
   S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin,
   S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.;
   Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2018PhRvL.120t1102A    Altcode: 2018arXiv180210194T
  The detection of gravitational waves with Advanced LIGO and Advanced
  Virgo has enabled novel tests of general relativity, including
  direct study of the polarization of gravitational waves. While general
  relativity allows for only two tensor gravitational-wave polarizations,
  general metric theories can additionally predict two vector and two
  scalar polarizations. The polarization of gravitational waves is
  encoded in the spectral shape of the stochastic gravitational-wave
  background, formed by the superposition of cosmological and individually
  unresolved astrophysical sources. Using data recorded by Advanced LIGO
  during its first observing run, we search for a stochastic background
  of generically polarized gravitational waves. We find no evidence
  for a background of any polarization, and place the first direct
  bounds on the contributions of vector and scalar polarizations to the
  stochastic background. Under log-uniform priors for the energy in each
  polarization, we limit the energy densities of tensor, vector, and
  scalar modes at 95% credibility to Ω<SUB>0</SUB><SUP>T</SUP>&lt;5.58
  ×10<SUP>-8</SUP> , Ω<SUB>0</SUB><SUP>V</SUP>&lt;6.35 ×10<SUP>-8</SUP>
  , and Ω<SUB>0</SUB><SUP>S</SUP>&lt;1.08 ×10<SUP>-7</SUP> at a
  reference frequency f<SUB>0</SUB>=25 Hz .

---------------------------------------------------------
Title: Full band all-sky search for periodic gravitational waves in
    the O1 LIGO data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen,
   G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson,
   S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton,
   G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak,
   S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini,
   F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley,
   J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene,
   I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.;
   Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.;
   Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi,
   M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.;
   Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.;
   Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister,
   T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill,
   S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin,
   E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen,
   Y.; Cheng, H. -P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel,
   T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua,
   A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag,
   P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.;
   Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.;
   Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión,
   I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day,
   B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale
   Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.;
   Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz,
   J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez,
   D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.;
   Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker,
   R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai,
   B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel,
   D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili,
   F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo,
   N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles,
   T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.;
   Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar,
   R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai,
   K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg,
   T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord,
   J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough,
   J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.;
   Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez,
   C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant,
   G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin,
   M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.;
   Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer,
   J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.;
   Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.;
   Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.;
   Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.;
   Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.;
   Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.;
   Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO
   Scientific Collaboration; Virgo Collaboration
2018PhRvD..97j2003A    Altcode: 2018arXiv180205241T
  We report on a new all-sky search for periodic gravitational
  waves in the frequency band 475-2000 Hz and with a frequency time
  derivative in the range of [-1.0 ,+0.1 ] ×1 0<SUP>-8</SUP> Hz
  /s . Potential signals could be produced by a nearby spinning and
  slightly nonaxisymmetric isolated neutron star in our Galaxy. This
  search uses the data from Advanced LIGO's first observational run
  O1. No gravitational-wave signals were observed, and upper limits
  were placed on their strengths. For completeness, results from the
  separately published low-frequency search 20-475 Hz are included as
  well. Our lowest upper limit on worst-case (linearly polarized) strain
  amplitude h<SUB>0</SUB> is ∼4 ×1 0<SUP>-25</SUP> near 170 Hz, while
  at the high end of our frequency range, we achieve a worst-case upper
  limit of 1.3 ×1 0<SUP>-24</SUP>. For a circularly polarized source
  (most favorable orientation), the smallest upper limit obtained is
  ∼1.5 ×1 0<SUP>-25</SUP>.

---------------------------------------------------------
Title: Constraints on cosmic strings using data from the first
    Advanced LIGO observing run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.;
   Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.;
   Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua,
   A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi,
   R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban,
   P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.;
   D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.;
   Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De,
   S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del
   Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong,
   H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries,
   E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.;
   Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall,
   B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.;
   Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry,
   J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.;
   Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram,
   D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.;
   Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.;
   Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.;
   Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.;
   Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.;
   Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel,
   V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar,
   S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.;
   Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston,
   R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.;
   Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.;
   Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.;
   Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe,
   S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta,
   A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.;
   Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.;
   Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez,
   K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer,
   A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son,
   E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.;
   Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam,
   W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun;
   Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.;
   Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.;
   Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration
2018PhRvD..97j2002A    Altcode: 2017arXiv171201168T
  Cosmic strings are topological defects which can be formed in grand
  unified theory scale phase transitions in the early universe. They
  are also predicted to form in the context of string theory. The main
  mechanism for a network of Nambu-Goto cosmic strings to lose energy
  is through the production of loops and the subsequent emission of
  gravitational waves, thus offering an experimental signature for the
  existence of cosmic strings. Here we report on the analysis conducted
  to specifically search for gravitational-wave bursts from cosmic
  string loops in the data of Advanced LIGO 2015-2016 observing run
  (O1). No evidence of such signals was found in the data, and as
  a result we set upper limits on the cosmic string parameters for
  three recent loop distribution models. In this paper, we initially
  derive constraints on the string tension G μ and the intercommutation
  probability, using not only the burst analysis performed on the O1 data
  set but also results from the previously published LIGO stochastic
  O1 analysis, pulsar timing arrays, cosmic microwave background and
  big-bang nucleosynthesis experiments. We show that these data sets
  are complementary in that they probe gravitational waves produced by
  cosmic string loops during very different epochs. Finally, we show
  that the data sets exclude large parts of the parameter space of the
  three loop distribution models we consider.

---------------------------------------------------------
Title: Macromolecular Organic Compounds Emerging from the Enceladus
    Ocean
Authors: Postberg, F.; Khawaja, N.; Glein, C. R.; Hsu, H. -W.; Kempf,
   S.; Klenner, F.; Noelle, L.; Schmidt, J.; Tobie, G.; Waite, J. H.
2018LPICo2085.6043P    Altcode:
  We report observations of ice grains emitted by Enceladus containing
  concentrated, complex, macromolecular organic material. The data
  provides key constraints on the macromolecular structure and eludes
  Enceladus' organic rock/water chemistry.

---------------------------------------------------------
Title: Covariant conserved currents for scalar-tensor Horndeski theory
Authors: Schmidt, J.; Bičák, J.
2018JMP....59d2501S    Altcode: 2018arXiv180402298S
  The scalar-tensor theories have become popular recently in particular
  in connection with attempts to explain present accelerated expansion
  of the universe, but they have been considered as a natural extension
  of general relativity long time ago. The Horndeski scalar-tensor
  theory involving four invariantly defined Lagrangians is a natural
  choice since it implies field equations involving at most second
  derivatives. Following the formalisms of defining covariant global
  quantities and conservation laws for perturbations of spacetimes in
  standard general relativity, we extend these methods to the general
  Horndeski theory and find the covariant conserved currents for all four
  Lagrangians. The current is also constructed in the case of linear
  perturbations involving both metric and scalar fields. As a specific
  illustration, we derive a superpotential that leads to the covariantly
  conserved current in the Branse-Dicke theory.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M
    dwarfs. High-resolution optical and near-infrared spectroscopy of
    324 survey stars
Authors: Reiners, A.; Zechmeister, M.; Caballero, J. A.; Ribas,
   I.; Morales, J. C.; Jeffers, S. V.; Schöfer, P.; Tal-Or, L.;
   Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Seifert, W.; Abril, M.;
   Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona,
   R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.;
   Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril,
   S.; Béjar, V. J. S.; Benítez, D.; Berdinas, Z. M.; Bergond,
   G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.;
   Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.;
   Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.;
   Dreizler, S.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.;
   Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa,
   L.; Gómez Galera, V.; González Hernández, J. I.; González-Peinado,
   R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guenther, E. W.;
   Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H. -J.;
   Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.;
   Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño,
   L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson,
   E. N.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.;
   Kürster, M.; Lafarga, M.; Lamert, A.; Lampón, M.; Lara, L. M.;
   Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno,
   M.; López-González, J.; López-Puertas, M.; López Salas, J. F.;
   López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.;
   Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto
   Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.;
   Mathar, R. J.; Mirabet, E.; Montes, D.; Moreno-Raya, M. E.; Moya, A.;
   Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir,
   A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger,
   V. M.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea,
   D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón,
   A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.;
   Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.;
   Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.;
   Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.;
   Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt,
   J. H. M. M.; Schiller, J.; Schweitzer, A.; Solano, E.; Stahl, O.;
   Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.;
   Tala, M.; Trifonov, T.; Tulloch, S. M.; Ulbrich, R. G.; Veredas, G.;
   Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff,
   V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2018A&A...612A..49R    Altcode: 2017arXiv171106576R
  The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to
  search for any orbiting planets. In this paper, we present the survey
  sample by publishing one CARMENES spectrum for each M dwarf. These
  spectra cover the wavelength range 520-1710 nm at a resolution of
  at least R &gt;80 000, and we measure its RV, Hα emission, and
  projected rotation velocity. We present an atlas of high-resolution
  M-dwarf spectra and compare the spectra to atmospheric models. To
  quantify the RV precision that can be achieved in low-mass stars over
  the CARMENES wavelength range, we analyze our empirical information
  on the RV precision from more than 6500 observations. We compare our
  high-resolution M-dwarf spectra to atmospheric models where we determine
  the spectroscopic RV information content, Q, and signal-to-noise
  ratio. We find that for all M-type dwarfs, the highest RV precision can
  be reached in the wavelength range 700-900 nm. Observations at longer
  wavelengths are equally precise only at the very latest spectral types
  (M8 and M9). We demonstrate that in this spectroscopic range, the large
  amount of absorption features compensates for the intrinsic faintness
  of an M7 star. To reach an RV precision of 1 m s<SUP>-1</SUP> in very
  low mass M dwarfs at longer wavelengths likely requires the use of a 10
  m class telescope. For spectral types M6 and earlier, the combination
  of a red visual and a near-infrared spectrograph is ideal to search
  for low-mass planets and to distinguish between planets and stellar
  variability. At a 4 m class telescope, an instrument like CARMENES has
  the potential to push the RV precision well below the typical jitter
  level of 3-4 m s<SUP>-1</SUP>.

---------------------------------------------------------
Title: Prospects for observing and localizing gravitational-wave
    transients with Advanced LIGO, Advanced Virgo and KAGRA
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.;
   Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.;
   Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya,
   M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi,
   S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta,
   S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.;
   Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti,
   A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.;
   Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.;
   Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.;
   Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao,
   H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni
   Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan,
   M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.;
   Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.;
   Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu,
   Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark,
   J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla,
   A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.;
   Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave,
   I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day,
   R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.;
   De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.;
   Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto,
   A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Doi, K.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.;
   Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens,
   P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick,
   R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata,
   M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei,
   Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.;
   Frolov, V. V.; Fujii, Y.; Fujimoto, M. -K.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain,
   V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime,
   J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz,
   E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.;
   Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty,
   R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.;
   Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi,
   G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson,
   E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry,
   J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.;
   Inta, R.; Ioka, K.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.;
   Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita,
   T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.;
   Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.;
   Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka,
   Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.;
   Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim,
   J.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; Kimura, N.; King, E. J.;
   King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.;
   Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.;
   Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel,
   V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul;
   Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey,
   B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.;
   Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson,
   A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück,
   H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk,
   B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano,
   S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio,
   M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.;
   Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala,
   N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.;
   Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.;
   Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano,
   L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse,
   M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov,
   V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.;
   Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.;
   Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii,
   W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.;
   Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.;
   Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton,
   G.; Nguyen, T. T.; Ni, W. -T.; Nielsen, A. B.; Nissanke, S.; Nitz,
   A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall,
   L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.;
   Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi,
   K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram,
   Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.;
   Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant,
   G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.;
   Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo,
   P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero,
   E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.;
   Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond,
   V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai,
   K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders,
   J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato,
   T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.;
   Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.;
   Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.;
   Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.;
   Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.;
   Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto,
   Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki,
   T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.;
   Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder,
   D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.;
   Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.;
   Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.;
   Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki,
   T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba,
   T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.;
   Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van
   Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass,
   S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.;
   Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale,
   S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu,
   T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.;
   Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.;
   Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu,
   Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando,
   L.; Zanolin, M.; Zeidler, S.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu,
   S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Kagra Collaboration,
   Ligo Scientific Collaboration; VIRGO Collaboration
2018LRR....21....3A    Altcode: 2013arXiv1304.0670T; 2013arXiv1304.0670A
  We present possible observing scenarios for the Advanced LIGO,
  Advanced Virgo and KAGRA gravitational-wave detectors over the next
  decade, with the intention of providing information to the astronomy
  community to facilitate planning for multi-messenger astronomy with
  gravitational waves. We estimate the sensitivity of the network to
  transient gravitational-wave signals, and study the capability of the
  network to determine the sky location of the source. We report our
  findings for gravitational-wave transients, with particular focus on
  gravitational-wave signals from the inspiral of binary neutron star
  systems, which are the most promising targets for multi-messenger
  astronomy. The ability to localize the sources of the detected signals
  depends on the geographical distribution of the detectors and their
  relative sensitivity, and 90 % credible regions can be as large as
  thousands of square degrees when only two sensitive detectors are
  operational. Determining the sky position of a significant fraction of
  detected signals to areas of 5-20 deg<SUP>2</SUP> requires at least
  three detectors of sensitivity within a factor of ∼2 of each other
  and with a broad frequency bandwidth. When all detectors, including
  KAGRA and the third LIGO detector in India, reach design sensitivity,
  a significant fraction of gravitational-wave signals will be localized
  to a few square degrees by gravitational-wave observations alone.

---------------------------------------------------------
Title: Effects of data quality vetoes on a search for compact binary
    coalescences in Advanced LIGO’s first observing run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin,
   P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.;
   Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.;
   Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert,
   C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini,
   F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.;
   Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.;
   Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti,
   A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.;
   Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.;
   Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.;
   Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.;
   Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe,
   J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.;
   Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.;
   Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.;
   Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot,
   P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta,
   M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.;
   Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi,
   K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones,
   R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.;
   Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger,
   C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.;
   Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani,
   M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.;
   Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey,
   A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.;
   Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.;
   Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi,
   A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano,
   R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger,
   A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.;
   Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.;
   Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.;
   Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.;
   Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil,
   S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini,
   A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.;
   Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari,
   V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi,
   Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi,
   M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.;
   Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels,
   P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto,
   H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018CQGra..35f5010A    Altcode: 2017arXiv171002185T
  The first observing run of Advanced LIGO spanned 4 months, from 12
  September 2015 to 19 January 2016, during which gravitational waves were
  directly detected from two binary black hole systems, namely GW150914
  and GW151226. Confident detection of gravitational waves requires an
  understanding of instrumental transients and artifacts that can reduce
  the sensitivity of a search. Studies of the quality of the detector data
  yield insights into the cause of instrumental artifacts and data quality
  vetoes specific to a search are produced to mitigate the effects of
  problematic data. In this paper, the systematic removal of noisy data
  from analysis time is shown to improve the sensitivity of searches
  for compact binary coalescences. The output of the PyCBC pipeline,
  which is a python-based code package used to search for gravitational
  wave signals from compact binary coalescences, is used as a metric
  for improvement. GW150914 was a loud enough signal that removing noisy
  data did not improve its significance. However, the removal of data with
  excess noise decreased the false alarm rate of GW151226 by more than two
  orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

---------------------------------------------------------
Title: GW170817: Implications for the Stochastic Gravitational-Wave
    Background from Compact Binary Coalescences
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe,
   A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi,
   V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz,
   J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani,
   G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.;
   Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow,
   J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung,
   A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone,
   A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.;
   Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.;
   Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban,
   P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin,
   S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.;
   Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.;
   Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.;
   Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.;
   Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.;
   Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme,
   G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.;
   Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson,
   E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.;
   Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam,
   M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa,
   S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen,
   K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.;
   Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.;
   Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel,
   C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger,
   A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.;
   Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez,
   L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas,
   B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck,
   A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.;
   Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.;
   Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson,
   J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies,
   F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane,
   E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.;
   Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang,
   K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van
   Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde,
   D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.;
   Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato,
   G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.;
   Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick,
   C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2018PhRvL.120i1101A    Altcode: 2017arXiv171005837T
  The LIGO Scientific and Virgo Collaborations have announced the
  event GW170817, the first detection of gravitational waves from the
  coalescence of two neutron stars. The merger rate of binary neutron
  stars estimated from this event suggests that distant, unresolvable
  binary neutron stars create a significant astrophysical stochastic
  gravitational-wave background. The binary neutron star component
  will add to the contribution from binary black holes, increasing
  the amplitude of the total astrophysical background relative to
  previous expectations. In the Advanced LIGO-Virgo frequency band
  most sensitive to stochastic backgrounds (near 25 Hz), we predict
  a total astrophysical background with amplitude Ω<SUB>GW</SUB>(f
  =25 Hz )=1. 8<SUB>-1.3</SUB><SUP>+2.7</SUP>×10<SUP>-9</SUP>
  with 90% confidence, compared with Ω<SUB>GW</SUB>(f =25 Hz
  )=1. 1<SUB>-0.7</SUB><SUP>+1.2</SUP>×10<SUP>-9</SUP> from binary
  black holes alone. Assuming the most probable rate for compact binary
  mergers, we find that the total background may be detectable with a
  signal-to-noise-ratio of 3 after 40 months of total observation time,
  based on the expected timeline for Advanced LIGO and Virgo to reach
  their design sensitivity.

---------------------------------------------------------
Title: All-sky search for long-duration gravitational wave transients
    in the first Advanced LIGO observing run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.;
   Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli,
   G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.;
   Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.;
   Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.;
   Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira,
   E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher,
   R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.;
   Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.;
   Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell,
   S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein,
   B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.;
   Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong,
   J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson,
   A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren,
   A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis,
   M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic,
   I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone,
   L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.;
   McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors,
   G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.;
   Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger,
   C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.;
   Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.;
   Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack,
   A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.;
   Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace,
   A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.;
   Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.;
   Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.;
   Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson,
   N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi,
   F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg,
   V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott,
   J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.;
   Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.;
   Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh,
   R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.;
   Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.;
   Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.;
   Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.;
   Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari,
   S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli,
   M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse,
   M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen,
   J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.;
   Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration
2018CQGra..35f5009A    Altcode: 2017arXiv171106843T
  We present the results of a search for long-duration gravitational
  wave transients in the data of the LIGO Hanford and LIGO Livingston
  second generation detectors between \newcommand{\OOneStart}{12
  ~September ~2015} \newcommand{\OOneStartShort}{September ~2015}
  \OOneStartShort and \newcommand{\OOneStop}{19~ January ~2016}
  \newcommand{\OOneStopShort}{January~ 2016} \OOneStopShort , with a total
  observational time of \newcommand{\OOneLivetime}{49~d} \OOneLivetime
  . The search targets gravitational wave transients of 10-500 s
  duration in a frequency band of 24-2048 Hz, with minimal assumptions
  about the signal waveform, polarization, source direction, or time of
  occurrence. No significant events were observed. As a result we set 90%
  confidence upper limits on the rate of long-duration gravitational wave
  transients for different types of gravitational wave signals. We also
  show that the search is sensitive to sources in the Galaxy emitting at
  least  ∼10<SUP>-8</SUP> \newcommand{\msuncd}{M<SUB>⊙ c^2</SUB>}
  \newcommand{\msun}{M<SUB>⊙</SUB>} {\msuncd} in gravitational waves.

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs . First
    visual-channel radial-velocity measurements and orbital parameter
    updates of seven M-dwarf planetary systems
Authors: Trifonov, T.; Kürster, M.; Zechmeister, M.; Tal-Or,
   L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.;
   Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.;
   Launhardt, R.; Henning, Th.; Montes, D.; Béjar, V. J. S.; Mundt,
   R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.;
   Nowak, G.; Jeffers, S. V.; Rodríguez-López, C.; del Burgo, C.;
   Anglada-Escudé, G.; López-Santiago, J.; Mathar, R. J.; Ammler-von
   Eiff, M.; Guenther, E. W.; Barrado, D.; González Hernández, J. I.;
   Mancini, L.; Stürmer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano,
   F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro,
   M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas,
   Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; Cano, J.; Cárdenas
   Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé,
   J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Feiz, C.;
   Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.;
   Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera,
   V.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia,
   J.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen,
   H. -J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.;
   Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando,
   F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim,
   M.; Klein, R.; Klüter, J.; Klutsch, A.; Lafarga, M.; Lampón, M.;
   Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, M.;
   López-González, M. J.; López-Puertas, M.; López Salas, J. F.;
   Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil,
   E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.;
   Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya,
   M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.;
   Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz,
   S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman,
   M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo,
   P.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez,
   E.; Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.;
   Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.;
   Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller,
   J.; Schöfer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan,
   J. B. P.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.;
   Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler,
   J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2018A&A...609A.117T    Altcode: 2017arXiv171001595T
  Context. The main goal of the CARMENES survey is to find Earth-mass
  planets around nearby M-dwarf stars. Seven M dwarfs included in the
  CARMENES sample had been observed before with HIRES and HARPS and
  either were reported to have one short period planetary companion (GJ
  15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary
  systems (GJ 581 and GJ 876). <BR /> Aims: We aim to report new precise
  optical radial velocity measurements for these planet hosts and test
  the overall capabilities of CARMENES. <BR /> Methods: We combined our
  CARMENES precise Doppler measurements with those available from HIRES
  and HARPS and derived new orbital parameters for the systems. Bona-fide
  single planet systems were fitted with a Keplerian model. The multiple
  planet systems were analyzed using a self-consistent dynamical model
  and their best fit orbits were tested for long-term stability. <BR />
  Results: We confirm or provide supportive arguments for planets around
  all the investigated stars except for GJ 15 A, for which we find that
  the post-discovery HIRES data and our CARMENES data do not show a
  signal at 11.4 days. Although we cannot confirm the super-Earth planet
  GJ 15 Ab, we show evidence for a possible long-period (P<SUB>c</SUB> =
  7030<SUB>-630</SUB><SUP>+970</SUP> d) Saturn-mass (m<SUB>c</SUB>sini
  = 51.8M<SUB>⊕</SUB>) planet around GJ 15 A. In addition, based
  on our CARMENES and HIRES data we discover a second planet around
  GJ 1148, for which we estimate a period P<SUB>c</SUB> = 532.6 days,
  eccentricity e<SUB>c</SUB> = 0.342 and minimum mass m<SUB>c</SUB>sini =
  68.1M<SUB>⊕</SUB>. <BR /> Conclusions: The CARMENES optical radial
  velocities have similar precision and overall scatter when compared
  to the Doppler measurements conducted with HARPS and HIRES. We
  conclude that CARMENES is an instrument that is up to the challenge
  of discovering rocky planets around low-mass stars. <P />Based on
  observations collected at the European Organisation for Astronomical
  Research in the Southern Hemisphere under ESO programmes 072.C-0488,
  072.C-0513, 074.C-0012, 074.C-0364, 075.D-0614, 076.C-0878, 077.C-0364,
  077.C-0530, 078.C-0044, 078.C-0833, 079.C-0681, 183.C-0437, 60.A-9036,
  082.C-0718, 183.C-0972, 085.C-0019, 087.C-0831, 191.C-0873. The
  appendix tables are only available at the CDS via anonymous ftp to
  <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117</A>

---------------------------------------------------------
Title: A posteriori noise estimation in variable data sets. With
    applications to spectra and light curves
Authors: Czesla, S.; Molle, T.; Schmitt, J. H. M. M.
2018A&A...609A..39C    Altcode: 2017arXiv171202226C
  Most physical data sets contain a stochastic contribution produced
  by measurement noise or other random sources along with the
  signal. Usually, neither the signal nor the noise are accurately
  known prior to the measurement so that both have to be estimated a
  posteriori. We have studied a procedure to estimate the standard
  deviation of the stochastic contribution assuming normality and
  independence, requiring a sufficiently well-sampled data set to yield
  reliable results. This procedure is based on estimating the standard
  deviation in a sample of weighted sums of arbitrarily sampled data
  points and is identical to the so-called DER_SNR algorithm for specific
  parameter settings. To demonstrate the applicability of our procedure,
  we present applications to synthetic data, high-resolution spectra, and
  a large sample of space-based light curves and, finally, give guidelines
  to apply the procedure in situation not explicitly considered here to
  promote its adoption in data analysis.

---------------------------------------------------------
Title: First Search for Nontensorial Gravitational Waves from
    Known Pulsars
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
   Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.;
   Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith,
   P.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.;
   Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.;
   Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.;
   Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert,
   C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader,
   M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.;
   Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.;
   Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua,
   A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi,
   R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban,
   P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.;
   D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.;
   Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De,
   S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del
   Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.;
   Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.;
   Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos,
   A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov,
   S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani,
   F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano,
   L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse,
   M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan,
   M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.;
   Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee,
   S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray,
   P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.;
   Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting,
   D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer,
   H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.;
   Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.;
   Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.;
   Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.;
   Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie,
   J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi,
   P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt,
   E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam,
   W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun;
   Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.;
   Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.;
   Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot,
   L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.;
   Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; LIGO Scientific
   Collaboration; Virgo Collaboration
2018PhRvL.120c1104A    Altcode: 2017arXiv170909203T
  We present results from the first directed search for nontensorial
  gravitational waves. While general relativity allows for tensorial
  (plus and cross) modes only, a generic metric theory may, in
  principle, predict waves with up to six different polarizations. This
  analysis is sensitive to continuous signals of scalar, vector, or
  tensor polarizations, and does not rely on any specific theory of
  gravity. After searching data from the first observation run of the
  advanced LIGO detectors for signals at twice the rotational frequency
  of 200 known pulsars, we find no evidence of gravitational waves of
  any polarization. We report the first upper limits for scalar and
  vector strains, finding values comparable in magnitude to previously
  published limits for tensor strain. Our results may be translated into
  constraints on specific alternative theories of gravity.

---------------------------------------------------------
Title: Plume Origins and Plumbing: From Ocean to Surface
Authors: Spencer, J. R.; Nimmo, F.; Ingersoll, A. P.; Hurford, T. A.;
   Kite, E. S.; Rhoden, A. R.; Schmidt, J.; Howett, C. J. A.
2018eims.book..163S    Altcode:
  The plume of Enceladus provides a unique window into subsurface
  processes in the ice shell and ocean of an icy world. Thanks to a
  decade of observations and modeling, a coherent picture is emerging of
  a thin ice shell extending across the south polar region, cut through
  by fractures directly connected to the underlying ocean, and at least
  partially filled with water. The plume jets emerging from the fractures
  directly sample this water reservoir. The shell undergoes daily tidal
  flexing, which modulates plume activity by opening and closing the
  fractures. Dissipation in the ice and conduit water components due to
  this flexing is likely to generate the several gigawatts of observed
  power that are lost from the south pole as infrared radiation and
  plume latent heat.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Stellar content of the XMM-Newton
    slew survey (Freund+, 2018)
Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2018yCat..36140125F    Altcode:
  The stellar content of the current release of the XMM-Newton slew survey
  (XMMSL2) is presented, which was obtained by an automatic crossmatch
  with the Gaia DR1, 2MASS, and Tycho2 catalogs. Further informations
  about the sources were adopted from the BrightStar catalog and the
  catalog by Lepine &amp; Gaidos (2011, Cat. J/AJ/142/138) of bright
  M dwarfs. The first 98 columns of the presented catalog were adopted
  from the XMMSL2 catalog (see IX/53 for details). The catalog contains
  a matching probability for all stellar associations. Additionally
  basic properties of the stellar sources (e.g. position, proper motion,
  parallax, photometry in multiple bands) were adopted from the optical
  and IR catalogs and additional properties (e.g. effective temperature,
  bolometric flux and luminosity) were derived. The catalog contains
  all stellar counterparts with a matching probability higher than 66%,
  unreliable counterparts due to their properties are flagged. <P />(1
  data file).

---------------------------------------------------------
Title: The CARMENES search for exoplanets around M dwarfs. HD147379 b:
    A nearby Neptune in the temperate zone of an early-M dwarf
Authors: Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.;
   Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga,
   M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.;
   Aceituno, J.; Béjar, V. J. S.; Guàrdia, J.; Guenther, E. W.; Hagen,
   H. -J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.;
   Cortés-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von
   Eiff, M.; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.;
   Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer,
   F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.;
   Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas
   Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.;
   Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.;
   Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García
   Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González Hernández,
   J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guijarro,
   A.; de Guindos, E.; Gutiérrez-Soto, J.; Hatzes, A. P.; Hauschildt,
   P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.;
   Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando,
   F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim,
   M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Labarga, F.;
   Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen,
   R.; Launhardt, R.; López del Fresno, M.; López-González, M. J.;
   López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque,
   R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.;
   Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín,
   E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.;
   Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.;
   Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro,
   J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez
   Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza,
   O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.;
   Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López,
   C.; Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi,
   S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López,
   A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.;
   Schmitt, J. H. M. M.; Schiller, J.; Schöfer, P.; Solano, E.; Stahl,
   O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.;
   Tala, M.; Tulloch, S. M.; Ulbrich, R. -G.; Veredas, G.; Vico Linares,
   J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.;
   Yan, F.; Zapatero Osorio, M. R.
2018A&A...609L...5R    Altcode: 2017arXiv171205797R
  We report on the first star discovered to host a planet detected by
  radial velocity (RV) observations obtained within the CARMENES survey
  for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ±
  0.08 M<SUB>⊙</SUB>), a bright M0.0 V star at a distance of 10.7 pc,
  is found to undergo periodic RV variations with a semi-amplitude of
  K = 5.1 ± 0.4 m s<SUP>-1</SUP> and a period of P = 86.54 ± 0.06
  d. The RV signal is found in our CARMENES data, which were taken
  between 2016 and 2017, and is supported by HIRES/Keck observations
  that were obtained since 2000. The RV variations are interpreted
  as resulting from a planet of minimum mass m<SUB>P</SUB> sin i =
  25 ± 2 M<SUB>⊕</SUB>, 1.5 times the mass of Neptune, with an
  orbital semi-major axis a = 0.32 au and low eccentricity (e &lt;
  0.13). HD 147379 b is orbiting inside the temperate zone around the
  star, where water could exist in liquid form. The RV time-series and
  various spectroscopic indicators show additional hints of variations
  at an approximate period of 21.1 d (and its first harmonic), which
  we attribute to the rotation period of the star. <P />RV data
  (Table A.1) are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/L5">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/L5</A>

---------------------------------------------------------
Title: Detection of radial velocity variability of HD 16673 with TIGRE
Authors: Mittag, M.; Hempelmann, A.; Fuhrmeister, B.; Czesla, S.;
   Schmitt, J. H. M. M.
2018AN....339...53M    Altcode:
  During our TIGRE activity monitoring of late-type stars, large radial
  velocity (RV) variations in the F-type star HD 16673 were noticed. An
  automatic pipeline procedure using data in the wavelength range from
  6000 to 7900 Å was developed and telluric lines are used as reference
  to determine accurate radial velocities. The RV curve demonstrates
  the binary nature of the HD 16673 system and allows the determination
  of the orbital parameters of the system. Based on the derived mass
  function, we obtain inclination-dependent mass estimates for the
  secondary component, which orbits with a period of 37.09 days in a
  slightly eccentric orbit and is probably a late-type star.

---------------------------------------------------------
Title: First low-frequency Einstein@Home all-sky search for continuous
    gravitational waves in Advanced LIGO data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca,
   A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.;
   Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak,
   S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.;
   Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay,
   S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.;
   Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti,
   A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella,
   G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin,
   E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.;
   Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung,
   A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.;
   Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio,
   M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.;
   Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.;
   McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire,
   S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.;
   Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston,
   R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.;
   Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.;
   Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer,
   J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao,
   L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam,
   W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun;
   Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.;
   Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.;
   Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig,
   J.; Anderson, D. P.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..96l2004A    Altcode: 2017arXiv170702669T; 2017arXiv170702669A
  We report results of a deep all-sky search for periodic gravitational
  waves from isolated neutron stars in data from the first Advanced
  LIGO observing run. This search investigates the low frequency range
  of Advanced LIGO data, between 20 and 100 Hz, much of which was not
  explored in initial LIGO. The search was made possible by the computing
  power provided by the volunteers of the Einstein@Home project. We find
  no significant signal candidate and set the most stringent upper limits
  to date on the amplitude of gravitational wave signals from the target
  population, corresponding to a sensitivity depth of 48.7 [1 /√{Hz }]
  . At the frequency of best strain sensitivity, near 100 Hz, we set 90%
  confidence upper limits of 1.8 ×1 0<SUP>-25</SUP>. At the low end
  of our frequency range, 20 Hz, we achieve upper limits of 3.9 ×1
  0<SUP>-24</SUP>. At 55 Hz we can exclude sources with ellipticities
  greater than 1 0<SUP>-5</SUP> within 100 pc of Earth with fiducial value
  of the principal moment of inertia of 10<SUP>38</SUP> kg m<SUP>2</SUP> .

---------------------------------------------------------
Title: First narrow-band search for continuous gravitational waves
    from known pulsars in advanced detector data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen,
   G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson,
   S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.;
   Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez,
   A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley,
   J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene,
   I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.;
   Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.;
   Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi,
   M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill,
   S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin,
   E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.;
   Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho,
   H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.;
   Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli,
   C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.;
   Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.;
   Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.;
   Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.;
   Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme,
   G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.;
   Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson,
   E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.;
   Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam,
   M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs,
   M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.;
   Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.;
   Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen,
   K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.;
   Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.;
   Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu,
   J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.;
   Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.;
   Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son,
   E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.;
   Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson,
   S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin,
   S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor,
   J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..96l2006A    Altcode: 2017arXiv171002327T
  Spinning neutron stars asymmetric with respect to their rotation axis
  are potential sources of continuous gravitational waves for ground-based
  interferometric detectors. In the case of known pulsars a fully
  coherent search, based on matched filtering, which uses the position
  and rotational parameters obtained from electromagnetic observations,
  can be carried out. Matched filtering maximizes the signal-to-noise
  (SNR) ratio, but a large sensitivity loss is expected in case of
  even a very small mismatch between the assumed and the true signal
  parameters. For this reason, narrow-band analysis methods have been
  developed, allowing a fully coherent search for gravitational waves
  from known pulsars over a fraction of a hertz and several spin-down
  values. In this paper we describe a narrow-band search of 11 pulsars
  using data from Advanced LIGO's first observing run. Although we have
  found several initial outliers, further studies show no significant
  evidence for the presence of a gravitational wave signal. Finally,
  we have placed upper limits on the signal strain amplitude lower than
  the spin-down limit for 5 of the 11 targets over the bands searched;
  in the case of J1813-1749 the spin-down limit has been beaten for
  the first time. For an additional 3 targets, the median upper limit
  across the search bands is below the spin-down limit. This is the
  most sensitive narrow-band search for continuous gravitational waves
  carried out so far.

---------------------------------------------------------
Title: Search for Post-merger Gravitational Waves from the Remnant
    of the Binary Neutron Star Merger GW170817
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.;
   Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho,
   H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.;
   Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli,
   C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla,
   A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti,
   L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión,
   I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.;
   Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra,
   D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De
   Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.;
   Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.;
   Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.;
   Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.;
   Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.;
   Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.;
   Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.;
   Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili,
   F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo,
   N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles,
   T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.;
   Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar,
   R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai,
   K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet,
   M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer,
   R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.;
   Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez,
   C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon,
   K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.;
   Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.;
   Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.;
   Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.;
   Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson,
   L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.;
   Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel,
   M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner,
   M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.;
   Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.;
   Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith,
   J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.;
   Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas,
   P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.;
   Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.;
   Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward,
   R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.;
   Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.;
   Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.;
   Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.;
   (LIGO Scientific Collaboration; Virgo Collaboration
2017ApJ...851L..16A    Altcode: 2017arXiv171009320T
  The first observation of a binary neutron star (NS) coalescence by the
  Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors
  offers an unprecedented opportunity to study matter under the most
  extreme conditions. After such a merger, a compact remnant is left
  over whose nature depends primarily on the masses of the inspiraling
  objects and on the equation of state of nuclear matter. This could
  be either a black hole (BH) or an NS, with the latter being either
  long-lived or too massive for stability implying delayed collapse
  to a BH. Here, we present a search for GWs from the remnant of the
  binary NS merger GW170817 using data from Advanced LIGO and Advanced
  Virgo. We search for short- (≲1 s) and intermediate-duration
  (≲500 s) signals, which include GW emission from a hypermassive
  NS or supramassive NS, respectively. We find no signal from the
  post-merger remnant. Our derived strain upper limits are more than an
  order of magnitude larger than those predicted by most models. For
  short signals, our best upper limit on the root sum square of
  the GW strain emitted from 1-4 kHz is {h}<SUB>{rss</SUB>}<SUP>50 %
  </SUP>=2.1× {10}<SUP>-22</SUP> {{Hz}}<SUP>-1/2</SUP> at 50% detection
  efficiency. For intermediate-duration signals, our best upper limit at
  50% detection efficiency is {h}<SUB>{rss</SUB>}<SUP>50 % </SUP>=8.4×
  {10}<SUP>-22</SUP> {{Hz}}<SUP>-1/2</SUP> for a millisecond magnetar
  model, and {h}<SUB>{rss</SUB>}<SUP>50 % </SUP>=5.9× {10}<SUP>-22</SUP>
  {{Hz}}<SUP>-1/2</SUP> for a bar-mode model. These results indicate
  that post-merger emission from a similar event may be detectable when
  advanced detectors reach design sensitivity or with next-generation
  detectors.

---------------------------------------------------------
Title: Erratum: “First Search for Gravitational
    Waves from Known Pulsars with Advanced LIGO” (<A
href="https://doi.org/10.3847/1538-4357/aa677f">2017, ApJ, 839,
    12</A>)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.;
   Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli,
   G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.;
   Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.;
   Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di
   Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens,
   P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick,
   R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante,
   I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth,
   S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise,
   A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair,
   J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri,
   V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.;
   Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell,
   S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein,
   B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.;
   Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong,
   J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson,
   A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück,
   H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk,
   B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli,
   F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.;
   Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.;
   Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg,
   V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer,
   J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.;
   Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.;
   Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.;
   Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.;
   Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner,
   D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens,
   T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson,
   C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.;
   Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu,
   Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri,
   J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao,
   C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.;
   Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs,
   G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon,
   R. M.; Stappers, B. W.; Weltevrede, P.
2017ApJ...851...71A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for High-energy Neutrinos from Binary Neutron
    Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger
    Observatory
Authors: Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert,
   J. -J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa,
   S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.;
   Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.;
   Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli,
   R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.;
   Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.;
   Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.;
   Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El
   Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.;
   Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire,
   T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer,
   A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt,
   J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler,
   M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.;
   Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre,
   D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.;
   Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael,
   T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.;
   Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa,
   V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa,
   A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.;
   Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk,
   Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis,
   C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca,
   A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration;
   Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.;
   Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.;
   Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.;
   Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay,
   R.; Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; BenZvi, S.; Berley,
   D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.;
   Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser,
   J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.;
   Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.;
   Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.;
   de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski,
   H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.;
   de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.;
   Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt,
   B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey,
   S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.;
   Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher,
   J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp,
   T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack,
   C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.;
   Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.;
   Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang,
   F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.;
   Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.;
   Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.;
   Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim,
   M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen,
   G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.;
   Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll,
   M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.;
   Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber,
   F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann,
   J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina,
   S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.;
   Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki,
   S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai,
   M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen,
   H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas,
   A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.;
   Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.;
   Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.;
   Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann,
   R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.;
   Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk,
   D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.;
   Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.;
   Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher,
   L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song,
   M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.;
   Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger,
   T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.;
   Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt,
   F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale,
   P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung,
   C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.;
   Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule,
   S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.;
   Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.;
   Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.;
   Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.;
   Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg,
   K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Aab, A.; Abreu, P.;
   Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.;
   Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.;
   Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.;
   Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.;
   Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.;
   Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann,
   P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.;
   Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.;
   Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.;
   Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga,
   L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.;
   Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.;
   Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica,
   L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.;
   Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.;
   Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de
   Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.;
   De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny,
   O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.;
   Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.;
   Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.;
   Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.;
   Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.;
   Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.;
   García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.;
   Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup,
   G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi,
   A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes,
   G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison,
   T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.;
   Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel,
   J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia,
   A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek,
   J.; Kääpä, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp,
   J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.;
   Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb
   Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina,
   R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon,
   I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado,
   A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.;
   Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella,
   G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza,
   J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte,
   E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov,
   A.; Merenda, K. -D.; Michal, S.; Micheletti, M. I.; Middendorf, L.;
   Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet,
   F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller,
   G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.;
   Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz,
   L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.;
   Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta,
   J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.;
   Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira,
   L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok,
   J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.;
   Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel,
   E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.;
   Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.;
   Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo,
   J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl,
   P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.;
   Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos,
   E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer,
   M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten,
   O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.;
   Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard,
   R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.;
   Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.;
   Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich,
   A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.;
   Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada,
   A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova,
   L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros,
   M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño,
   I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.;
   van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.;
   Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha,
   J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz,
   D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke,
   L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang,
   L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.;
   Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger
   Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese,
   F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
   Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.;
   Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.;
   Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato,
   A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.;
   Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.;
   Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe,
   A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi,
   V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.;
   Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao,
   J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney,
   M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán,
   P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.;
   Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung,
   A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone,
   A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette,
   C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.;
   Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.;
   Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.;
   Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.;
   Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley,
   B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.;
   Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain,
   V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime,
   J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.;
   Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin,
   M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras,
   S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.;
   Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.;
   Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa,
   S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen,
   K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.;
   Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.;
   Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie,
   J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi,
   P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.;
   Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.;
   Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel,
   M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner,
   M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska,
   M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.;
   Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain,
   K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.;
   Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.;
   Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.;
   Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo,
   L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev,
   D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van
   Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde,
   D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.;
   Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato,
   G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.;
   Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick,
   C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2017ApJ...850L..35A    Altcode: 2017arXiv171005839A
  The Advanced LIGO and Advanced Virgo observatories recently discovered
  gravitational waves from a binary neutron star inspiral. A short
  gamma-ray burst (GRB) that followed the merger of this binary was also
  recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the
  Anti-Coincidence Shield for the Spectrometer for the International
  Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle
  acceleration by the source. The precise location of the event was
  determined by optical detections of emission following the merger. We
  searched for high-energy neutrinos from the merger in the GeV-EeV energy
  range using the ANTARES, IceCube, and Pierre Auger Observatories. No
  neutrinos directionally coincident with the source were detected within
  ±500 s around the merger time. Additionally, no MeV neutrino burst
  signal was detected coincident with the merger. We further carried
  out an extended search in the direction of the source for high-energy
  neutrinos within the 14 day period following the merger, but found
  no evidence of emission. We used these results to probe dissipation
  mechanisms in relativistic outflows driven by the binary neutron star
  merger. The non-detection is consistent with model predictions of
  short GRBs observed at a large off-axis angle.

---------------------------------------------------------
Title: On the Progenitor of Binary Neutron Star Merger GW170817
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans,
   S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard,
   M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.;
   Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.;
   Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant,
   T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida,
   J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.;
   Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao,
   J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney,
   M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán,
   P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua,
   S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli,
   C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla,
   A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti,
   L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión,
   I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.;
   Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.;
   Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.;
   Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.;
   Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme,
   G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.;
   Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin,
   M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras,
   S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.;
   Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.;
   Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.;
   Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.;
   Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.;
   Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.;
   Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.;
   Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.;
   Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimball, C.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.;
   Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read,
   J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes,
   S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.;
   Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner,
   M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska,
   M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.;
   Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain,
   K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.;
   Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.;
   Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.;
   Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo,
   L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev,
   D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van
   Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde,
   D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.;
   Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato,
   G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.;
   Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick,
   C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal,
   T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   (LIGO Scientific Collaboration; Virgo Collaboration
2017ApJ...850L..40A    Altcode: 2017arXiv171005838T
  On 2017 August 17 the merger of two compact objects with
  masses consistent with two neutron stars was discovered through
  gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical
  (SSS17a/AT 2017gfo) observations. The optical source was associated
  with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc,
  consistent with the gravitational-wave measurement, and the merger
  was localized to be at a projected distance of ∼2 kpc away from
  the galaxy’s center. We use this minimal set of facts and the mass
  posteriors of the two neutron stars to derive the first constraints
  on the progenitor of GW170817 at the time of the second supernova
  (SN). We generate simulated progenitor populations and follow the
  three-dimensional kinematic evolution from binary neutron star (BNS)
  birth to the merger time, accounting for pre-SN galactic motion, for
  considerably different input distributions of the progenitor mass,
  pre-SN semimajor axis, and SN-kick velocity. Though not considerably
  tight, we find these constraints to be comparable to those for Galactic
  BNS progenitors. The derived constraints are very strongly influenced
  by the requirement of keeping the binary bound after the second SN
  and having the merger occur relatively close to the center of the
  galaxy. These constraints are insensitive to the galaxy’s star
  formation history, provided the stellar populations are older than
  1 Gyr.

---------------------------------------------------------
Title: Estimating the Contribution of Dynamical Ejecta in the Kilonova
    Associated with GW170817
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.;
   Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Banagiri, S.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley,
   J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.;
   Bell, A. S.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.;
   Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare,
   R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney,
   R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi,
   M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan,
   C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.;
   Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao,
   J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney,
   M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán,
   P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.;
   Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.;
   Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho,
   H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.;
   Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli,
   C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla,
   A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti,
   L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.;
   Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.;
   Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio,
   S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.;
   Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra,
   D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De
   Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.;
   Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.;
   Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.;
   Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.;
   Kawabe, K.; Kawaguchi, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.;
   Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.;
   Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.;
   Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange,
   J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky,
   P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann,
   J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li,
   T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter,
   E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.;
   Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.;
   Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.;
   Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.;
   Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.;
   Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck,
   A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.;
   Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.;
   Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor,
   J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.;
   Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.;
   Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.;
   (LIGO Scientific Collaboration; Virgo Collaboration
2017ApJ...850L..39A    Altcode: 2017arXiv171005836T
  The source of the gravitational-wave (GW) signal GW170817, very likely
  a binary neutron star merger, was also observed electromagnetically,
  providing the first multi-messenger observations of this type. The
  two-week-long electromagnetic (EM) counterpart had a signature
  indicative of an r-process-induced optical transient known as a
  kilonova. This Letter examines how the mass of the dynamical ejecta
  can be estimated without a direct electromagnetic observation
  of the kilonova, using GW measurements and a phenomenological
  model calibrated to numerical simulations of mergers with dynamical
  ejecta. Specifically, we apply the model to the binary masses inferred
  from the GW measurements, and use the resulting mass of the dynamical
  ejecta to estimate its contribution (without the effects of wind
  ejecta) to the corresponding kilonova light curves from various
  models. The distributions of dynamical ejecta mass range between
  {M}<SUB>{ej</SUB>}={10}<SUP>-3</SUP>-{10}<SUP>-2</SUP> {M}<SUB>⊙
  </SUB> for various equations of state, assuming that the neutron
  stars are rotating slowly. In addition, we use our estimates of the
  dynamical ejecta mass and the neutron star merger rates inferred
  from GW170817 to constrain the contribution of events like this to
  the r-process element abundance in the Galaxy when ejecta mass from
  post-merger winds is neglected. We find that if ≳10% of the matter
  dynamically ejected from binary neutron star (BNS) mergers is converted
  to r-process elements, GW170817-like BNS mergers could fully account
  for the amount of r-process material observed in the Milky Way.

---------------------------------------------------------
Title: GW170608: Observation of a 19 Solar-mass Binary Black Hole
    Coalescence
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini,
   A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.;
   Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz,
   O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer,
   C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.;
   Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer,
   M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.;
   Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.;
   Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.;
   Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.;
   Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio,
   M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.;
   Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day,
   B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel,
   N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.;
   Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack,
   M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe,
   K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim,
   W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King,
   P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte,
   L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.;
   Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.;
   Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie,
   J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi,
   P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.;
   Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.;
   Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.;
   Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.;
   Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck,
   A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.;
   Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.;
   Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor,
   J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.;
   Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.;
   Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.;
   (LIGO Scientific Collaboration; Virgo Collaboration
2017ApJ...851L..35A    Altcode: 2017arXiv171105578T
  On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal
  from the merger of two stellar-mass black holes was observed by the
  two Advanced Laser Interferometer Gravitational-Wave Observatory
  detectors with a network signal-to-noise ratio of 13. This system
  is the lightest black hole binary so far observed, with component
  masses of {12}<SUB>-2</SUB><SUP>+7</SUP> {M}<SUB>⊙ </SUB> and
  {7}<SUB>-2</SUB><SUP>+2</SUP> {M}<SUB>⊙ </SUB> (90% credible
  intervals). These lie in the range of measured black hole masses
  in low-mass X-ray binaries, thus allowing us to compare black holes
  detected through GWs with electromagnetic observations. The source’s
  luminosity distance is {340}<SUB>-140</SUB><SUP>+140</SUP> {Mpc},
  corresponding to redshift {0.07}<SUB>-0.03</SUB><SUP>+0.03</SUP>. We
  verify that the signal waveform is consistent with the predictions of
  general relativity.

---------------------------------------------------------
Title: A gravitational-wave standard siren measurement of the
    Hubble constant
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe,
   A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi,
   V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz,
   J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani,
   G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.;
   Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.;
   Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.;
   de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.;
   Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore,
   L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di
   Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.;
   Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange,
   J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen,
   M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon,
   A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.;
   Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas,
   R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.;
   Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña;
   Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.;
   Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan,
   S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.;
   Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer,
   J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.;
   Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain,
   K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.;
   Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.;
   Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.;
   Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.;
   Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang,
   G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels,
   P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb,
   S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki,
   D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.;
   Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin,
   M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.;
   Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.;
   Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.;
   Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore,
   B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska,
   J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.;
   Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos,
   M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.;
   Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler,
   R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner,
   A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong,
   W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl,
   R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen,
   D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson,
   T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl,
   M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako,
   M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira,
   F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams,
   P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.;
   Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.;
   Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco;
   Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da
   Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.;
   Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga,
   E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.;
   Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.;
   Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn,
   K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.;
   March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando,
   R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.;
   Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith,
   M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.;
   Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller,
   J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart,
   D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi,
   Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis;
   Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.;
   Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.;
   Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner,
   J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen,
   B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi,
   E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema,
   K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.;
   Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.;
   Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.;
   Rebolo, R.; Serra-Ricart, M.
2017Natur.551...85A    Altcode: 2017arXiv171005835A
  On 17 August 2017, the Advanced LIGO and Virgo detectors observed the
  gravitational-wave event GW170817—a strong signal from the merger
  of a binary neutron-star system. Less than two seconds after the
  merger, a γ-ray burst (GRB 170817A) was detected within a region
  of the sky consistent with the LIGO-Virgo-derived location of the
  gravitational-wave source. This sky region was subsequently observed
  by optical astronomy facilities, resulting in the identification of
  an optical transient signal within about ten arcseconds of the galaxy
  NGC 4993. This detection of GW170817 in both gravitational waves and
  electromagnetic waves represents the first ‘multi-messenger’
  astronomical observation. Such observations enable GW170817 to be
  used as a ‘standard siren’ (meaning that the absolute distance
  to the source can be determined directly from the gravitational-wave
  measurements) to measure the Hubble constant. This quantity represents
  the local expansion rate of the Universe, sets the overall scale of
  the Universe and is of fundamental importance to cosmology. Here
  we report a measurement of the Hubble constant that combines the
  distance to the source inferred purely from the gravitational-wave
  signal with the recession velocity inferred from measurements of
  the redshift using the electromagnetic data. In contrast to previous
  measurements, ours does not require the use of a cosmic ‘distance
  ladder’: the gravitational-wave analysis can be used to estimate
  the luminosity distance out to cosmological scales directly, without
  the use of intermediate astronomical distance measurements. We
  determine the Hubble constant to be about 70 kilometres per second
  per megaparsec. This value is consistent with existing measurements,
  while being completely independent of them. Additional standard siren
  measurements from future gravitational-wave sources will enable the
  Hubble constant to be constrained to high precision.

---------------------------------------------------------
Title: Coronal X-ray emission and planetary irradiation in HD 209458
Authors: Czesla, S.; Salz, M.; Schneider, P. C.; Mittag, M.; Schmitt,
   J. H. M. M.
2017A&A...607A.101C    Altcode: 2017arXiv170804537C
  HD 209458 is one of the benchmark objects in the study of hot Jupiter
  atmospheres and their evaporation through planetary winds. The
  expansion of the planetary atmosphere is thought to be driven by
  high-energy extreme ultraviolet (EUV) and X-ray irradiation. We
  obtained new Chandra High Resolution Camera (HRC-I) data, which
  unequivocally show that HD 209458 is an X-ray source. Combining these
  data with archival XMM-Newton observations, we find that the corona
  of HD 209458 is characterized by a temperature of about 1 MK and an
  emission measure of 7 × 10<SUP>49</SUP> cm<SUP>-3</SUP>, yielding an
  X-ray luminosity of 1.6 × 10<SUP>27</SUP> erg s<SUP>-1</SUP> in the
  0.124-2.48 keV band. HD 209458 is an inactive star that has a coronal
  temperature comparable to that of the inactive Sun but that has a
  larger emission measure. At this level of activity, the planetary
  high-energy emission is sufficient to support mass loss at a rate of
  a few times 10<SUP>10</SUP> g s<SUP>-1</SUP>.

---------------------------------------------------------
Title: VizieR Online Data Catalog: HD147379 b velocity curve
    (Reiners+, 2018)
Authors: Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.;
   Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga,
   M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.;
   Aceituno, J.; Bejar, V. J. S.; Guardia, J.; Guenther, E. W.; Hagen,
   H. -J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.;
   Cortes-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von
   Eiff, M.; Antona, R.; Anglada-Escude, G.; Anwand-Heerwart, H.;
   Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.;
   Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke,
   M.; Brinkmoeller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez,
   M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Czesla, S.;
   Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister,
   B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa,
   L.; Gomez Galera, V.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado,
   R.; Groezinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.;
   Gutierrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa,
   R. P.; Helml!, Ing J.; H Enning, Th.; Hermelo, I.; Hernandez Arabi,
   R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.;
   Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein,
   R.; Klueter, J.; Klutsch, A.; Kuerster, M.; Labarga, F.; Lamert, A.;
   Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt,
   R.; Lopez Del Fresno, M.; Lopez-Gonzalez, M. J.; Lopez-Puertas, M.;
   Lopez Salas, J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia,
   H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina,
   J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin,
   C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.;
   Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.;
   Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz,
   S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman,
   M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo,
   P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.;
   Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad, A.; Rohloff,
   R. -R.; Rosich, A.; ! Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco,
   M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento,
   L. F.; Schaefer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schoefer,
   P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stuermer, J.; Suarez,
   J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R. -G.;
   Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler,
   J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2017yCat..36099005R    Altcode:
  We analyzed data from the CARMENES VIS channel and HIRES/Keck. The
  CARMENES measurements were taken in the context of the CARMENES search
  for exoplanets around M dwarfs. The CARMENES instrument consists of two
  channels: the VIS channel obtains spectra at a resolution of R=94600 in
  the wavelength range 520-960nm, while the NIR channel yields spectra of
  R=80400 covering 960-1710nm. Both channels are calibrated in wavelength
  with hollow-cathode lamps and use temperature- and pressure-stabilized
  Fabry-Perot etalons to interpolate the wavelength solution and
  simultaneously monitor the spectrograph drift during nightly operations
  (Bauer et al., 2015A&amp;A...581A.117B). <P />(1 data file).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Gravitational waves search from
    known PSR with LIGO (Abbott+, 2017)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.;
   Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.;
   Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston,
   S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.;
   Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.;
   Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.;
   Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnho Ltz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock,
   O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo,
   J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi,
   L. C.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.;
   Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.;
   Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.;
   Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu,
   Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark,
   J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla,
   A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.;
   Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Del Canton, T.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave,
   I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day,
   R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis,
   M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev,
   V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devenson, J.; Devine
   R. C, .; Dhurandhar, S.; Diaz, M. C.; di Fiore, L.; di Giovanni M.;
   di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio
   A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Dorrington, I.; Douglas, R.; Dovale Alvarez, M.; Downes, T. P.;
   Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernandez Galiana,
   A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori,
   I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, A.; Ghosh, A.; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel,
   D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim,
   J. C.; Kim, W.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.;
   King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.;
   Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov,
   V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak,
   D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.;
   Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lousto, C. O.; Lovelace, G.; Luck, H.; Lundgren, A. P.; Lynch, R.;
   Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.;
   Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man,
   N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.;
   Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov,
   D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid,
   M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.;
   Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGra,
   Th C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam,
   J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.;
   Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani,
   M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.;
   Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.;
   Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia,
   I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery,
   M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.;
   Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway,
   D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan,
   H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone,
   B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.;
   Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.;
   Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.;
   Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.;
   Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.;
   Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero E. A.;
   QuitzoW-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond,
   V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.;
   Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.;
   Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.;
   Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, E.; Schuette, D.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.;
   Shawhan P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez,
   K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer,
   A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son,
   E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil,
   S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, R.;
   Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.;
   Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.;
   Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang,
   Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels,
   P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle,
   C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.;
   Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yu, H.; Yvert, M.;
   Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.;
   Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou,
   Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.;
   Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs,
   G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon,
   R. M.; Stappers, B. W.; Weltevrede, P.; Ligo Scientific Collaboration
2017yCat..18390012A    Altcode:
  We have obtained timings for 200 known pulsars. Timing was performed
  using the 42ft telescope and Lovell telescope at Jodrell Bank (UK),
  the 26m telescope at Hartebeesthoek (South Africa), the Parkes radio
  telescope (Australia), the Nancay Decimetric Radio Telescope (France),
  the Arecibo Observatory (Puerto Rico) and the Fermi Large Area Telescope
  (LAT). Of these, 122 have been targeted in previous campaigns (Aasi+
  2014, J/ApJ/785/119), while 78 are new to this search. <P />(1 data
  file).

---------------------------------------------------------
Title: Time-resolved UVES observations of a stellar flare on the
    planet host HD 189733 during primary transit
Authors: Klocová, T.; Czesla, S.; Khalafinejad, S.; Wolter, U.;
   Schmitt, J. H. M. M.
2017A&A...607A..66K    Altcode: 2017arXiv170709831K
  Context. HD 189733 is an exoplanetary system consisting of a
  transiting hot Jupiter and an active K2V-type main sequence star. Rich
  manifestations of a stellar activity, like photometric spots or
  chromospheric flares were repeatedly observed in this system in optical,
  UV and X-rays. <BR /> Aims: We aim to use VLT/UVES high resolution
  (R = 60 000) echelle spectra to study a stellar flare. <BR /> Methods:
  We have performed simultaneous analyses of the temporal evolution in
  several chromospheric stellar lines, namely, the Ca II H &amp; K lines
  (3933, 3968 Å), H α (6563 Å), H β (4861 Å), H γ (4341 Å), H δ
  (4102 Å), H ɛ (3970 Å), the Ca II infrared triplet lines (8498,
  8542 and 8662 Å), and He I D3 (5875.6 Å). Observations were carried
  out with a time resolution of approximately 1 min for a duration of
  four hours, including a complete planetary transit. <BR /> Results:
  We determine the energy released during the flare in all studied
  chromospheric lines combined to be about 8.7 × 10<SUP>31</SUP> erg,
  which puts this event at the upper end of flare energies observed on
  the Sun. Our analysis does not reveal any significant delay of the flare
  peak observed in the Balmer and Ca II H &amp; K lines, although we find
  a clear difference in the temporal evolution of these lines. The He I D3
  shows additional absorption possibly related to the flare event. Based
  on the flux released in Ca II H &amp; K lines during the flare, we
  estimate the soft X-ray flux emission to be 7 × 10<SUP>30</SUP>
  erg. <BR /> Conclusions: The observed flare can be ranked as a
  moderate flare on a K-type star and confirms a rather high activity
  level of HD 189733 host star. The cores of the studied chromospheric
  lines demonstrate the same behavior and let us study the flare
  evolution. We demonstrate that the activity of an exoplanet host star
  can play an important role in the detection of exoplanet atmospheres,
  since these are frequently discovered as an additional absorption in
  the line cores. A possible star-planet interaction responsible for a
  flare occurrence during a transit can neither be confirmed nor ruled
  out. <P />Based on observations made with ESO Telescopes at the La
  Silla Paranal Observatory under programme ID 089.D-0701(A).

---------------------------------------------------------
Title: Stellar rotation periods determined from simultaneously
    measured Ca II H&amp;K and Ca II IRT lines
Authors: Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister,
   B.; González-Pérez, J. N.; Schröder, K. -P.
2017A&A...607A..87M    Altcode:
  <BR /> Aims: Previous studies have shown that, for late-type stars,
  activity indicators derived from the Ca II infrared-triplet (IRT) lines
  are correlated with the indicators derived from the Ca II H&amp;K
  lines. Therefore, the Ca II IRT lines are in principle usable for
  activity studies, but they may be less sensitive when measuring the
  rotation period. Our goal is to determine whether the Ca II IRT lines
  are sufficiently sensitive to measure rotation periods and how any Ca
  II IRT derived rotation periods compare with periods derived from the
  "classical" Mount Wilson S-index. <BR /> Methods: To analyse the Ca
  II IRT lines' sensitivity and to measure rotation periods, we define
  an activity index for each of the Ca II IRT lines similar to the Mount
  Wilson S-index and perform a period analysis for the lines separately
  and jointly. <BR /> Results: For eleven late-type stars we can measure
  the rotation periods using the Ca II IRT indices similar to those found
  in the Mount Wilson S-index time series and find that a period derived
  from all four indices gives the most probable rotation period; we find
  good agreement for stars with already existing literature values. In a
  few cases the computed periodograms show a complicated structure with
  multiple peaks, meaning that formally different periods are derived
  in different indices. We show that in one case, this is due to data
  sampling effects and argue that denser cadence sampling is necessary
  to provide credible evidence for differential rotation. However,
  our TIGRE data for HD 101501 shows good evidence for the presence of
  differential rotation.

---------------------------------------------------------
Title: VizieR Online Data Catalog: CARMENES radial velocity curves
    of 7 M-dwarf (Trifonov+, 2018)
Authors: Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.;
   Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners,
   A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt,
   R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov,
   A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.;
   Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude,
   G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther,
   E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer,
   J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.;
   Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.;
   Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond,
   G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.;
   Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.;
   Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.;
   Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia
   Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.;
   Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos,
   E.; Gutierrez-Soto, J.; Hagen, H. -J.; Hauschildt, P. H.; Hedrosa,
   R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez
   Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.;
   Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.;
   Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen,
   R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.;
   Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.;
   Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.;
   Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya,
   A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir,
   A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger,
   V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger,
   M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo,
   R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.;
   Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R. -R.; Rosich, A.;
   Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez,
   A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.;
   Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.;
   Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch,
   S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.;
   Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.
2017yCat..36090117T    Altcode:
  The two CARMENES spectrographs are grism cross-dispersed, white pupil,
  echelle spectrograph working in quasi-Littrow mode using a two-beam,
  two-slice image slicer. The visible spectrograph covers the wavelength
  range from 0.52um to 1.05um with 61 orders, a resolving power of
  R=94600, and a mean sampling of 2.8 pixels per resolution element. <P
  />The data presented in this paper were taken during the early phase
  of operation of the CARMENES visible-light spectrograph. <P />(8
  data files).

---------------------------------------------------------
Title: GW170817: Observation of Gravitational Waves from a Binary
    Neutron Star Inspiral
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.;
   Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.;
   Bailes, M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer,
   S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.;
   Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.;
   Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell,
   A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.;
   Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.;
   Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi,
   M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Carullo, G.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani,
   G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.;
   Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.;
   Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra,
   D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De
   Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.;
   Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dudi, R.; Dupej, P.; Dwyer, S. E.; Edo, T. B.;
   Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz,
   J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez,
   D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.;
   Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.;
   Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.;
   Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins,
   P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.;
   Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker,
   R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.;
   Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.;
   Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian,
   F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.;
   Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim,
   W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leon, E.; Leonardi, M.; Leroy, N.; Letendre,
   N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu,
   J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord,
   J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough,
   J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren,
   A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.;
   MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval,
   F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic,
   I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.;
   Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.;
   Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina,
   A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin,
   R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massera, E.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.;
   McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.;
   Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh,
   E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.;
   Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra,
   S. R. P.; Molina, I.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.;
   Murray, P. G.; Nagar, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.;
   Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.;
   Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall,
   L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.;
   Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe,
   M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.;
   Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.;
   Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle,
   C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.;
   Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun;
   Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.;
   Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.;
   Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvL.119p1101A    Altcode: 2017arXiv171005832T
  On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced
  Virgo gravitational-wave detectors made their first observation of
  a binary neutron star inspiral. The signal, GW170817, was detected
  with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate
  estimate of less than one per 8.0 ×10<SUP>4</SUP> years . We
  infer the component masses of the binary to be between 0.86 and
  2.26 M<SUB>⊙</SUB> , in agreement with masses of known neutron
  stars. Restricting the component spins to the range inferred in
  binary neutron stars, we find the component masses to be in the range
  1.17 - 1.60 M<SUB>⊙</SUB> , with the total mass of the system 2.7
  4<SUB>-0.01</SUB><SUP>+0.04</SUP>M<SUB>⊙</SUB> . The source was
  localized within a sky region of 28 deg<SUP>2</SUP> (90% probability)
  and had a luminosity distance of 4 0<SUB>-14</SUB><SUP>+8</SUP> Mpc ,
  the closest and most precisely localized gravitational-wave signal
  yet. The association with the γ -ray burst GRB 170817A, detected by
  Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis
  of a neutron star merger and provides the first direct evidence of
  a link between these mergers and short γ -ray bursts. Subsequent
  identification of transient counterparts across the electromagnetic
  spectrum in the same location further supports the interpretation
  of this event as a neutron star merger. This unprecedented joint
  gravitational and electromagnetic observation provides insight into
  astrophysics, dense matter, gravitation, and cosmology.

---------------------------------------------------------
Title: The stellar content of soft all-sky X-ray surveys
Authors: Schmitt, J.; Freund, S.; Robrade, J.; Schneider, C.
2017xru..conf..206S    Altcode:
  Wide angle soft X-ray surveys such as the ROSAT all-sky survey, the
  XMM slew survey, or the upcoming eROSITA all-sky survey(s) produce
  - more or less homogeneous - data sets with tens and hundreds of
  thousands of X-ray sources. The counterparts of typically about
  a third of these X-ray sources are stars, mostly of late spectral
  type. With the availability of genuine all-sky surveys at optical
  (GAIA) and infrared wavebands (2MASS) with reliable positions and
  multiband fluxes and in particular with the (eventual) availability of
  GAIA parallax information down to v = 15 mag and below, the automatic
  extraction and identification of the stellar content of soft X-ray
  surveys becomes feasible and doable. Distance information and hence
  accurate X-ray luminosities are available for the full data set, the
  counterparts can be accurately placed in the HR diagram and the local
  stellar volume X-ray emissivity can be measured. We discuss optimal
  identification strategies, the potential arising from future GAIA data
  releases and apply our methods to the XMM slew survey data. Our results
  suggest that 30.7% of the XMM slew survey entries can be identified with
  (non-accreting) stars.

---------------------------------------------------------
Title: The coronae of Kepler superflare stars
Authors: Czesla, S.; Huber, K.; Schmitt, J.
2017xru..conf..260C    Altcode:
  Kepler has revealed a population of apparently solar-like, slowly
  rotating G-type stars showing enormous white-light flares, which
  release energies exceeding that of known solar flares by many orders of
  magnitude. The existence of such extreme releases of magnetic energy on
  seemingly innocuous suns raises the question whether also the coronal
  properties of these stars are somehow exceptional and, ultimately,
  whether even the Sun itself may produce superflares at some point. We
  present XMM-Newton X-ray observations of a sample of Kepler superflare
  stars. These allow us to obtain a snapshot of their coronal properties
  and to study their relation to the coronae of normal stars and the Sun.

---------------------------------------------------------
Title: Gravitational Waves and Gamma-Rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
   Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.;
   Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.;
   Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin,
   P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.;
   Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.;
   Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.;
   Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak,
   S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini,
   F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley,
   J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene,
   I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.;
   Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.;
   Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi,
   M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson,
   V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.;
   Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini,
   E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.;
   Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.;
   Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow,
   J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung,
   A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone,
   A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette,
   C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.;
   Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.;
   Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.;
   Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.;
   Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.;
   Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.;
   Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme,
   G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.;
   Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson,
   E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.;
   Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam,
   M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.;
   Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian,
   K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.;
   Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet,
   D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.;
   Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.;
   Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.;
   Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King,
   P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte,
   L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.;
   Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.;
   Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.;
   Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.;
   Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle,
   C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto,
   H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu,
   Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri,
   J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.;
   Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman,
   A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration;
   Virgo Collaboration; Burns, E.; Veres, P.; Kocevski, D.; Racusin,
   J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.;
   Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.;
   Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.;
   Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas,
   W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Gamma-ray Burst
   Monitor, (Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano,
   A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J. -L.;
   Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun,
   F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques,
   J. -P.; Sunyaev, R.; Ubertini, P.; (INTEGRAL
2017ApJ...848L..13A    Altcode: 2017arXiv171005834L
  On 2017 August 17, the gravitational-wave event GW170817 was observed
  by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB)
  GRB 170817A was observed independently by the Fermi Gamma-ray Burst
  Monitor, and the Anti-Coincidence Shield for the Spectrometer for the
  International Gamma-Ray Astrophysics Laboratory. The probability of
  the near-simultaneous temporal and spatial observation of GRB 170817A
  and GW170817 occurring by chance is 5.0× {10}<SUP>-8</SUP>. We
  therefore confirm binary neutron star mergers as a progenitor of
  short GRBs. The association of GW170817 and GRB 170817A provides new
  insight into fundamental physics and the origin of short GRBs. We use
  the observed time delay of (+1.74+/- 0.05) {{s}} between GRB 170817A
  and GW170817 to: (I) constrain the difference between the speed of
  gravity and the speed of light to be between -3× {10}<SUP>-15</SUP>
  and +7× {10}<SUP>-16</SUP> times the speed of light, (II) place new
  bounds on the violation of Lorentz invariance, (III) present a new test
  of the equivalence principle by constraining the Shapiro delay between
  gravitational and electromagnetic radiation. We also use the time delay
  to constrain the size and bulk Lorentz factor of the region emitting the
  gamma-rays. GRB 170817A is the closest short GRB with a known distance,
  but is between 2 and 6 orders of magnitude less energetic than other
  bursts with measured redshift. A new generation of gamma-ray detectors,
  and subthreshold searches in existing detectors, will be essential
  to detect similar short bursts at greater distances. Finally, we
  predict a joint detection rate for the Fermi Gamma-ray Burst Monitor
  and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during
  the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity.

---------------------------------------------------------
Title: GW170814: A Three-Detector Observation of Gravitational Waves
    from a Binary Black Hole Coalescence
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri,
   R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.;
   Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.;
   Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.;
   Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day,
   B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet,
   D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik,
   N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.;
   Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange,
   J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen,
   M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon,
   A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.;
   Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie,
   N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.;
   Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.;
   Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña
   Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee,
   R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano,
   V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz,
   A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet,
   M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer,
   R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.;
   Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli,
   O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.;
   Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee,
   S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore,
   M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.;
   Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.;
   Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz,
   A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.;
   Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme,
   F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.;
   Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.;
   Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.;
   Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe,
   M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.;
   Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.;
   Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.;
   Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas,
   P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov,
   K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.;
   Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.;
   Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada,
   L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand,
   J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.;
   van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass,
   S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.;
   Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale,
   S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.;
   Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh,
   S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward,
   R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.;
   Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.;
   Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.;
   Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.;
   Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny,
   A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvL.119n1101A    Altcode: 2017arXiv170909660T
  On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector
  and the two Advanced LIGO detectors coherently observed a transient
  gravitational-wave signal produced by the coalescence of two stellar
  mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The
  signal was observed with a three-detector network matched-filter
  signal-to-noise ratio of 18. The inferred masses of the initial
  black holes are 30. 5<SUB>-3.0</SUB><SUP>+5.7</SUP>M<SUB>⊙</SUB>
  and 25 .3<SUB>-4.2</SUB><SUP>+2.8</SUP>M<SUB>⊙</SUB> (at the
  90% credible level). The luminosity distance of the source is 54
  0<SUB>-210</SUB><SUP>+130</SUP> Mpc , corresponding to a redshift of
  z =0.1 1<SUB>-0.04</SUB><SUP>+0.03</SUP>. A network of three detectors
  improves the sky localization of the source, reducing the area of the
  90% credible region from 1160 deg<SUP>2</SUP> using only the two LIGO
  detectors to 60 deg<SUP>2</SUP> using all three detectors. For the
  first time, we can test the nature of gravitational-wave polarizations
  from the antenna response of the LIGO-Virgo network, thus enabling a
  new class of phenomenological tests of gravity.

---------------------------------------------------------
Title: Multi-messenger Observations of a Binary Neutron Star Merger
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri,
   R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.;
   Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.;
   Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya,
   G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.;
   Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.;
   De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi,
   C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker,
   C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.;
   Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel,
   S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.;
   Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov,
   B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch,
   R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña
   Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.;
   Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh,
   P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland,
   D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.;
   Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff,
   M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi,
   A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.;
   Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery,
   M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall,
   L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.;
   Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell,
   J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration;
   Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.;
   Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles,
   M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen,
   R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.;
   Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro,
   M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno,
   C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.;
   Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain,
   E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.;
   Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev,
   R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.;
   Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.;
   Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.;
   Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser,
   J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.;
   Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.;
   Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de
   André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.;
   De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With,
   M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.;
   Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.;
   Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.;
   Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.;
   Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.;
   Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt,
   A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren,
   A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing,
   K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman,
   K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber,
   M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski,
   P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani,
   A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher,
   T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.;
   Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.;
   Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.;
   Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.;
   Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak,
   M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.;
   Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer,
   R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki,
   S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha,
   A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper,
   J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.;
   Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea,
   I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.;
   Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg,
   S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.;
   Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.;
   Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.;
   Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar,
   J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav,
   S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.;
   Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.;
   Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.;
   Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky,
   N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.;
   Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams,
   D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg,
   K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.;
   Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan,
   G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride
   Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks,
   D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik,
   Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration;
   Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao,
   X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen,
   Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du,
   Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.;
   Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia,
   S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li,
   C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li,
   Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.;
   Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.;
   Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.;
   Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.;
   Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang,
   Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.;
   Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang,
   C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.;
   Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang,
   Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.;
   Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu,
   Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André,
   M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas,
   T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.;
   Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.;
   Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr,
   J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella,
   M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.;
   Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis,
   G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic,
   D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.;
   Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.;
   Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz,
   R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.;
   Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon,
   C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler,
   M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.;
   Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre,
   D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.;
   Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael,
   T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.;
   Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa,
   V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa,
   A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti,
   M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti,
   M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.;
   Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.;
   Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.;
   Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.;
   de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall,
   C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall,
   F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.;
   Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.;
   Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration;
   Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani,
   L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma,
   I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo,
   F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.;
   Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti,
   F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.;
   Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico,
   F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia,
   M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley,
   R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.;
   Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.;
   Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.;
   Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.;
   Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot,
   E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook,
   E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout,
   M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman,
   J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley,
   W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.;
   Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.;
   Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.;
   Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.;
   Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny,
   B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol,
   K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke,
   D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander,
   F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.;
   Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.;
   Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.;
   Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson,
   M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.;
   Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon,
   R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol,
   R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.;
   Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell,
   M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins,
   A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel,
   M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.;
   Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.;
   Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration;
   Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.;
   Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti,
   S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo,
   P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola,
   L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti,
   A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli,
   L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.;
   Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta,
   A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti,
   N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera,
   M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.;
   Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria,
   T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu,
   S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.;
   Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu,
   L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini,
   Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin,
   D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau,
   M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.;
   Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.;
   Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma,
   K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz,
   D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao,
J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA:
   GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini,
   L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.;
   Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang,
   J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.;
   Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla,
   N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke,
   W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano,
   F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.;
   Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec,
   S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei,
   S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.;
   Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill,
   J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.;
   Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti,
   E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.;
   Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.;
   Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.;
   Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer,
   O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.;
   Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.;
   Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo,
   L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello,
   G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison,
   J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch,
   C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array,
ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon,
R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi,
   I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.;
   Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las
   Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller,
   A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.;
   Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken,
   C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.;
   Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.;
   Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.;
   Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li,
   X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.;
   Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff,
   J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program,
   Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.;
   Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner,
   J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen,
   B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun,
   S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.;
   Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas,
   T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers,
   R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.;
   Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.;
   Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato,
   H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.;
   Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov,
   D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo,
   R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER
   Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.;
   Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa,
   H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim,
   J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi,
   K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata,
   K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata,
   F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito,
   Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi,
   J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.;
   Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi,
   M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.;
   Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.;
   Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.;
   Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.;
   Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.;
   Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.;
   Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou,
   G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.;
   Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim,
   N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.;
   Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.;
   Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.;
   Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.;
   Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.;
   Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.;
   Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH;
   JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers,
   K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.;
   Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman,
   M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.;
   Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai,
   H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima,
   K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.;
   Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki,
   R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita,
   S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.;
   Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka,
   K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team;
   Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier,
   R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.;
   Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee,
   S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.;
   Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo,
   J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt,
   S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra,
   C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith,
   K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan,
   D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.;
   Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla,
   M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia,
   A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.;
   Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.;
   González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz,
   A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.;
   Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.;
   Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence,
   A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.;
   O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.;
   Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.;
   Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice,
   S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.;
   Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen,
   B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron,
   O.; pre="(">ePESSTO, <author; Chen, T. -W.; Krühler, T.; Schady,
   P.; Wiseman, P.; Greiner, J.; Rau, A.; Schweyer, T.; Klose, S.;
   Nicuesa Guelbenzu, A.; GROND; Palliyaguru, N. T.; Tech University,
   Texas; Shara, M. M.; Williams, T.; Vaisanen, P.; Potter, S. B.; Romero
   Colmenero, E.; Crawford, S.; Buckley, D. A. H.; Mao, J.; SALT Group;
   Díaz, M. C.; Macri, L. M.; García Lambas, D.; Mendes de Oliveira,
   C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell,
   W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz,
   M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Chavushyan, V.; Coelho,
   P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; Domínguez
   Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.;
   Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.;
   Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Melia,
   R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones,
   C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.;
   Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.;
Torres-Flores, S.; Tornatore, M.; Zadrożny, A.; Castillo, M.; TOROS:
   Transient Robotic Observatory of South Collaboration; Castro-Tirado,
   A. J.; Tello, J. C.; Hu, Y. -D.; Zhang, B. -B.; Cunniffe, R.;
   Castellón, A.; Hiriart, D.; Caballero-García, M. D.; Jelínek,
   M.; Kubánek, P.; Pérez del Pulgar, C.; Park, I. H.; Jeong, S.;
   Castro Cerón, J. M.; Pandey, S. B.; Yock, P. C.; Querel, R.; Fan,
   Y.; Wang, C.; BOOTES Collaboration; Beardsley, A.; Brown, I. S.;
   Crosse, B.; Emrich, D.; Franzen, T.; Gaensler, B. M.; Horsley,
   L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.;
   Sokolowski, M.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.;
Wayth, R.; Williams, A.; Wu, C.; Murchison Widefield Array, MWA:;
   Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Yamaoka, K.; Takahashi,
   I.; Asaoka, Y.; Ozawa, S.; Torii, S.; Shimizu, Y.; Tamura, T.;
   Ishizaki, W.; Cherry, M. L.; Ricciarini, S.; Penacchioni, A. V.;
   Marrocchesi, P. S.; CALET Collaboration; Pozanenko, A. S.; Volnova,
   A. A.; Mazaeva, E. D.; Minaev, P. Yu.; Krugov, M. A.; Kusakin, A. V.;
   Reva, I. V.; Moskvitin, A. S.; Rumyantsev, V. V.; Inasaridze, R.;
   Klunko, E. V.; Tungalag, N.; Schmalz, S. E.; Burhonov, O.; IKI-GW
   Follow-up Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.;
   Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert,
   P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus,
   J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher,
   M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.;
   Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.;
   Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.;
   Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon,
   B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt,
   P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson,
   K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J. -P.;
   Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.;
   Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.;
   Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.;
   Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.;
   Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.;
   Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.;
   Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.;
   Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt,
   I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Kerszberg,
   D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov,
   D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.;
   Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J. -P.;
   Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.;
   Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Malyshev,
   D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.;
   Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.;
   Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach,
   T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.;
   Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski,
   M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur,
   N. W.; Pelletier, G.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.;
   Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph,
   H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth,
   R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger,
   F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.;
   Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.;
   Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer,
   S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon,
   I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob,
   M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch,
   I.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.;
   Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard,
   C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt,
   D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis,
   G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin,
   F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.;
   Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann,
   P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.;
   Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn,
   J.; Żywucka, N.; H. E. S. S. Collaboration; Fender, R. P.; Broderick,
   J. W.; Rowlinson, A.; Wijers, R. A. M. J.; Stewart, A. J.; ter Veen,
   S.; Shulevski, A.; LOFAR Collaboration; Kavic, M.; Simonetti, J. H.;
   League, C.; Tsai, J.; Obenberger, K. S.; Nathaniel, K.; Taylor,
   G. B.; Dowell, J. D.; Liebling, S. L.; Estes, J. A.; Lippert, M.;
Sharma, I.; Vincent, P.; Farella, B.; Wavelength Array, LWA: Long;
   Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.;
   Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.;
   Barber, A. S.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno,
   E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.;
   Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova,
   S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.;
   De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.;
   Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth,
   R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack,
   H.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.;
   Gonzõlez Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias,
   Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.;
   Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann,
   S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.;
   Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García,
   R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.;
   Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.;
   Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.;
   Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo,
   R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière,
   C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar,
   H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.;
   Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Tibolla, O.;
   Tollefson, K.; Torres, I.; Ukwatta, T. N.; Weisgarber, T.; Westerhoff,
   S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.;
   Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aab, A.; Abreu,
   P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte,
   I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi,
   G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene,
   N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.;
   Barbato, F.; Barreira Luz, R. J.; Becker, K. H.; Bellido, J. A.; Berat,
   C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess,
   S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi,
   C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.;
   Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink,
   S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio,
   A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi,
   G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay,
   R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica,
   L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.;
   Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.;
   Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de
   Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.;
   De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny,
   O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.;
   Dorosti, Q.; Dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.;
   Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.;
   Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.;
   Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.;
   Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.;
   García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.;
   Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup,
   G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi,
   A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes,
   G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison,
   T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann,
   P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.;
   Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.;
   Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili,
   M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer,
   B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.;
   Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.;
   Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd,
   D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira,
   M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti,
   D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.;
   Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.;
   Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez,
   H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys,
   S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.;
   Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal,
   S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.;
   Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino,
   G.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa,
   R.; Naranjo, I.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol,
   M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.;
   Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka,
   M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.;
   Pech, M.; Pedreira, F.; Pȩkala, J.; Peña-Rodriguez, J.; Pereira,
   L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok,
   J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.;
   Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel,
   E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.;
   Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.;
   Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo,
   J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl,
   P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.;
   Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos,
   E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer,
   M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten,
   O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.;
   Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard,
   R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.;
   Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.;
   Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich,
   A.; Suarez, F.; Suarez-Durán, M.; Sudholz, T.; Suomijärvi, T.;
   Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.;
   Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.;
   Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.;
   Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño,
   I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.;
   van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.;
   Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha,
   J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.;
   Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.;
   Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler,
   B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.;
   Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello,
   F.; Pierre Auger Collaboration; Kim, S.; Schulze, S.; Bauer, F. E.;
   Corral-Santana, J. M.; de Gregorio-Monsalvo, I.; González-López,
   J.; Hartmann, D. H.; Ishwara-Chandra, C. H.; Martín, S.; Mehner,
   A.; Misra, K.; Michałowski, M. J.; Resmi, L.; ALMA Collaboration;
   Paragi, Z.; Agudo, I.; An, T.; Beswick, R.; Casadio, C.; Frey, S.;
   Jonker, P.; Kettenis, M.; Marcote, B.; Moldon, J.; Szomoru, A.;
   van Langevelde, H. J.; Yang, J.; Euro VLBI Team; Cwiek, A.; Cwiok,
   M.; Czyrkowski, H.; Dabrowski, R.; Kasprowicz, G.; Mankiewicz, L.;
   Nawrocki, K.; Opiela, R.; Piotrowski, L. W.; Wrochna, G.; Zaremba,
   M.; Żarnecki, A. F.; Pi of Sky Collaboration; Haggard, D.; Nynka,
   M.; Ruan, J. J.; Chandra Team at McGill University; Bland, P. A.;
   Booler, T.; Devillepoix, H. A. R.; de Gois, J. S.; Hancock, P. J.;
   Howie, R. M.; Paxman, J.; Sansom, E. K.; Towner, M. C.; Desert
Fireball Network, DFN:; Tonry, J.; Coughlin, M.; Stubbs, C. W.;
   Denneau, L.; Heinze, A.; Stalder, B.; Weiland, H.; ATLAS; Eatough,
   R. P.; Kramer, M.; Kraus, A.; Time Resolution Universe Survey, High;
   Troja, E.; Piro, L.; Becerra González, J.; Butler, N. R.; Fox, O. D.;
   Khandrika, H. G.; Kutyrev, A.; Lee, W. H.; Ricci, R.; Ryan, R. E.,
   Jr.; Sánchez-Ramírez, R.; Veilleux, S.; Watson, A. M.; Wieringa,
   M. H.; Burgess, J. M.; van Eerten, H.; Fontes, C. J.; Fryer, C. L.;
   Korobkin, O.; Wollaeger, R. T.; RIMAS; RATIR; Camilo, F.; Foley,
   A. R.; Goedhart, S.; Makhathini, S.; Oozeer, N.; Smirnov, O. M.;
   Fender, R. P.; Woudt, P. A.; South Africa/MeerKAT, SKA
2017ApJ...848L..12A    Altcode: 2017arXiv171005833L
  On 2017 August 17 a binary neutron star coalescence candidate (later
  designated GW170817) with merger time 12:41:04 UTC was observed
  through gravitational waves by the Advanced LIGO and Advanced Virgo
  detectors. The Fermi Gamma-ray Burst Monitor independently detected a
  gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with
  respect to the merger time. From the gravitational-wave signal, the
  source was initially localized to a sky region of 31 deg<SUP>2</SUP>
  at a luminosity distance of {40}<SUB>-8</SUB><SUP>+8</SUP> Mpc and
  with component masses consistent with neutron stars. The component
  masses were later measured to be in the range 0.86 to 2.26 {M}<SUB>⊙
  </SUB>. An extensive observing campaign was launched across the
  electromagnetic spectrum leading to the discovery of a bright optical
  transient (SSS17a, now with the IAU identification of AT 2017gfo) in
  NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
  One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
  optical transient was independently detected by multiple teams
  within an hour. Subsequent observations targeted the object and its
  environment. Early ultraviolet observations revealed a blue transient
  that faded within 48 hours. Optical and infrared observations showed
  a redward evolution over ∼10 days. Following early non-detections,
  X-ray and radio emission were discovered at the transient's position ∼
  9 and ∼ 16 days, respectively, after the merger. Both the X-ray and
  radio emission likely arise from a physical process that is distinct
  from the one that generates the UV/optical/near-infrared emission. No
  ultra-high-energy gamma-rays and no neutrino candidates consistent with
  the source were found in follow-up searches. These observations support
  the hypothesis that GW170817 was produced by the merger of two neutron
  stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A)
  and a kilonova/macronova powered by the radioactive decay of r-process
  nuclei synthesized in the ejecta. <P />Any correspondence should be
  addressed to .

---------------------------------------------------------
Title: The role of collective self-gravity in the nonlinear evolution
    of viscous overstability in Saturn's rings
Authors: Lehmann, M.; Schmidt, J.; Salo, H.
2017EPSC...11..209L    Altcode:
  Observational evidence for the presence of axisymmetric periodic
  micro-structure on length scales of 100m - 200m in Saturn's A and
  B rings was revealed by several instruments onboard the Cassini
  mission to Saturn. The structure was seen in radio occultations
  performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007))
  and stellar occultations carried out with the Ultraviolet Imaging
  Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared
  Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this
  micro-structure is best explained by the viscous overstability, which
  arises as a spontaneous oscillatory instability in a dense ring, if
  certain conditions are met, leading to the formation of axisymmetric
  density waves with wavelengths on the order of 100m. We investigate
  the influence of collective self-gravity forces on the nonlinear, large
  scale evolution of the viscous overstability in Saturn's rings. To this
  end we numerically solve the nonlinear hydrodynamic model equations
  for a dense ring, including radial self-gravity and employing values
  for the transport coefficients (such as the ring's viscosity and
  heat conductivity) derived by salo et al. (2001). We concentrate
  on ring optical depths of order unity, which are appropriate to
  model Saturn's dense rings. Furthermore, local N-body simulations,
  incorporating vertical and radial collective self-gravity forces
  are performed. Direct particle-particle forces are omitted, which
  prevents small scale gravitational instabilities (self-gravity wakes)
  from forming, an approximation that allows us to study long radial
  scales of some 10 kilometers and to compare directly the hydrodynamic
  model and the N-body simulations. Our hydrodynamic model results,
  in the limit of vanishing self-gravity, compare very well with the
  studies of Latter &amp; Ogilvie (2010) and Rein &amp; Latter (2013). In
  contrast, for rings with non-vanishing radial self-gravity we find that
  the wavelengths of saturated overstable wave trains tend to settle
  close to the frequency minimum of the nonlinear dispersion relation,
  i.e. the saturation wavelengths decrease with increasing surface mass
  density of the ring. Good agreement between hydrodynamics and N-body
  simulations is found for disks with strong radial self-gravity, while
  the largest deviations occur in the limit of weak self-gravity. The
  resulting saturation wavelengths of the viscous overstability for
  moderate and strong radial self-gravity (100m-300m) agree reasonably
  well with the length scale of the axisymmetric periodic micro structure
  in Saturn's inner A ring and the B ring, as found by Cassini.

---------------------------------------------------------
Title: The Ca II infrared triplet's performance as an activity
    indicator compared to Ca II H and K. Empirical relations to convert
    Ca II infrared triplet measurements to common activity indices
Authors: Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.;
   Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.
2017A&A...605A.113M    Altcode:
  <BR /> Aims: A large number of Calcium infrared triplet (IRT) spectra
  are expected from the Gaia and CARMENES missions. Conversion of these
  spectra into known activity indicators will allow analysis of their
  temporal evolution to a better degree. We set out to find such a
  conversion formula and to determine its robustness. <BR /> Methods:
  We have compared 2274 Ca II IRT spectra of active main-sequence F to
  K stars taken by the TIGRE telescope with those of inactive stars of
  the same spectral type. After normalizing and applying rotational
  broadening, we subtracted the comparison spectra to find the
  chromospheric excess flux caused by activity. We obtained the total
  excess flux, and compared it to established activity indices derived
  from the Ca II H and K lines, the spectra of which were obtained
  simultaneously to the infrared spectra. <BR /> Results: The excess
  flux in the Ca II IRT is found to correlate well with R'<SUB>HK</SUB>
  and R<SUP>+</SUP><SUB>HK</SUB>, as well as S<SUB>MWO</SUB>, if the B -
  V-dependency is taken into account. We find an empirical conversion
  formula to calculate the corresponding value of one activity indicator
  from the measurement of another, by comparing groups of datapoints of
  stars with similar B - V.

---------------------------------------------------------
Title: Fifteen years in the high-energy life of the solar-type star
    HD 81809. XMM-Newton observations of a stellar activity cycle
Authors: Orlando, S.; Favata, F.; Micela, G.; Sciortino, S.; Maggio,
   A.; Schmitt, J. H. M. M.; Robrade, J.; Mittag, M.
2017A&A...605A..19O    Altcode: 2017arXiv170706437O
  Context. The modulation of the activity level of solar-like stars
  is commonly revealed by cyclic variations in their chromospheric
  indicators, such as the Ca II H&amp;K S-index, similarly to what is
  observed in our Sun. However, while the variation of solar activity is
  also reflected in the cyclical modulation of its coronal X-ray emission,
  similar behavior has only been discovered in a few stars other than the
  Sun. <BR /> Aims: The data set of the long-term XMM-Newton monitoring
  program of HD 81809 is analyzed to study its X-ray cycle, investigate if
  the latter is related to the chromospheric cycle, infer the structure of
  the corona of HD 81809, and explore if the coronal activity of HD 81809
  can be ascribed to phenomena similar to solar activity and, therefore,
  considered an extension of the solar case. <BR /> Methods: We analyzed
  the observations of HD 81809 performed with XMM-Newton with a regular
  cadence of six months from 2001 to 2016, which represents one of the
  longest available observational baseline ( 15 yr) for a solar-like star
  with a well-studied chromospheric cycle (with a period of 8 yr). We
  investigated the modulation of coronal luminosity and temperature and
  its relation with the chromospheric cycle. We interpreted the data in
  terms of a mixture of solar-like coronal regions, adopting a method
  originally proposed to study the Sun as an X-ray star. <BR /> Results:
  The observations show a well-defined regular cyclic modulation of the
  X-ray luminosity that reflects the activity level of HD 81809. The data
  covers approximately two cycles of coronal activity; the modulation
  has an amplitude of a factor of 5 (excluding evident flares, as in
  the June 2002 observation) and a period of 7.3 ± 1.5 yr, which is
  consistent with that of the chromospheric cycle. We demonstrate that
  the corona of HD 81809 can be interpreted as an extension of the solar
  case and can be modeled with a mixture of solar-like coronal regions
  along the whole cycle. The activity level is mainly determined by
  varying coverage of very bright active regions, similar to cores of
  active regions observed in the Sun. Evidence of unresolved significant
  flaring activity is present especially in the proximity of cycle maxima.

---------------------------------------------------------
Title: All-sky search for periodic gravitational waves in the O1
    LIGO data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen,
   G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson,
   S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya,
   M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.;
   Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.;
   Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri,
   S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone,
   F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj,
   M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell,
   A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.;
   Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.;
   Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer,
   M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao,
   J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney,
   M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi,
   L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.;
   Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti,
   L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker,
   T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.;
   Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.;
   Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.;
   Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.;
   Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Liu, W.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani,
   R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel,
   C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.;
   Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.;
   Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans,
   G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport,
   J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pisarski, A.; Pitkin, M.;
   Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.;
   Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.;
   Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.;
   Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.;
   Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe,
   S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta,
   A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.;
   Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.;
   Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, J. A.;
   Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne,
   K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov,
   K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trembath-Reichert, S.; Trifirò, D.;
   Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso,
   R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand,
   J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf,
   L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.;
   Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch,
   P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano,
   F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet,
   J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.;
   Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.;
   Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.;
   Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang;
   Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.;
   Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang,
   Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.; Zhu, X. J.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..96f2002A    Altcode: 2017arXiv170702667L
  We report on an all-sky search for periodic gravitational waves in
  the frequency band 20-475 Hz and with a frequency time derivative in
  the range of [-1.0 ,+0.1 ] ×10<SUP>-8</SUP> Hz /s . Such a signal
  could be produced by a nearby spinning and slightly nonaxisymmetric
  isolated neutron star in our galaxy. This search uses the data from
  Advanced LIGO's first observational run, O1. No periodic gravitational
  wave signals were observed, and upper limits were placed on their
  strengths. The lowest upper limits on worst-case (linearly polarized)
  strain amplitude h<SUB>0</SUB> are ∼4 ×10<SUP>-25</SUP> near 170
  Hz. For a circularly polarized source (most favorable orientation), the
  smallest upper limits obtained are ∼1.5 ×10<SUP>-25</SUP>. These
  upper limits refer to all sky locations and the entire range of
  frequency derivative values. For a population-averaged ensemble of sky
  locations and stellar orientations, the lowest upper limits obtained
  for the strain amplitude are ∼2.5 ×10<SUP>-25</SUP>.

---------------------------------------------------------
Title: Carrington cycle 24: the solar chromospheric emission in a
    historical and stellar perspective
Authors: Schröder, K. -P.; Mittag, M.; Schmitt, J. H. M. M.; Jack,
   D.; Hempelmann, A.; González-Pérez, J. N.
2017MNRAS.470..276S    Altcode: 2017arXiv170503777S
  We present the solar S-index record of cycle 24, obtained by the
  Telescopio Internacional de Guanajuato, Robotico Espectroscopico robotic
  telescope facility and its high-resolution spectrograph HEROS (R ≈
  20 000), which measures the solar chromospheric Ca II H&amp;K line
  emission by using moonlight. Our calibration process uses the same set
  of standard stars as introduced by the Mount Wilson team, thus giving us
  a direct comparison with their huge body of observations taken between
  1966 and 1992, as well as with other cool stars. Carrington cycle 24
  activity started from the unusually deep and long minimum 2008/2009,
  with an S-index average of only 0.154, 0.015 deeper than the one of 1986
  (〈S〉 = 0.169). In this respect, the chromospheric radiative losses
  differ remarkably from the variation of the coronal radio flux F10.7 cm
  and the sunspot numbers. In addition, the cycle 24 S-amplitude remained
  small, 0.022 (cycles 21 and 22 averaged: 0.024), and so resulted in a
  very low 2014 maximum of 〈S〉 = 0.176 (cycles 21 and 22 averaged:
  0.193). We argue that this find is significant, since the Ca II H&amp;K
  line emission is a good proxy for the solar far-ultraviolet (far-UV)
  flux, which plays an important role in the heating of the Earth's
  stratosphere, and we further argue that the solar far-UV flux changes
  with solar activity much more strongly than the total solar output.

---------------------------------------------------------
Title: Dynamics of dust particles in the Jovian gossamer rings
Authors: Liu, X.; Schmidt, J.; Krüger, H.
2017EPSC...11..143L    Altcode:
  In this work, we use both analytical methods and numerical simulations
  to investigate the dynamics of dust particles in the Jovian gossamer
  rings.

---------------------------------------------------------
Title: Resolving the Mass Production and Surface Structure of the
    Enceladus Dust Plume
Authors: Kempf, S.; Southworth, B.; Schmidt, J.; Postberg, F.;
   Srama, R.
2017EPSC...11..818K    Altcode:
  Here we report on measurements of the plume dust density during the last
  close Cassini flyby at Enceladus in October 2015. The data match our
  numerical model for the Enceladus plume. The model is based on a large
  number of dynamical simulations including gravity and Lorentz force
  to investigate the earliest phase of the ring particle life span. The
  evolution of the electrostatic charge carried by the initially uncharged
  grains is treated self-consistently. Our numerical simulations reproduce
  all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer
  (CDA). Our model calculations together with the new density data
  constrain the Enceladus dust source rate to &lt; 5 kg/s. Based on our
  simulation results we are able to draw conclusions about the emission
  of plume particles along the fractures in the south polar terrain.

---------------------------------------------------------
Title: Upper Limits on Gravitational Waves from Scorpius X-1 from
    a Model-based Cross-correlation Search in Advanced LIGO Data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.;
   Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.;
   Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin,
   S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.;
   Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.;
   Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.;
   Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva
   Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.;
   Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev,
   V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine,
   R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.;
   Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo,
   F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.;
   Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.;
   Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.;
   Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans,
   M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst,
   S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones,
   E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.;
   Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.;
   Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.;
   Gair, J. R.; Galloway, D. K.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.;
   Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.;
   Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.;
   McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire,
   S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.;
   Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston,
   R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.;
   Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.;
   Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer,
   J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.;
   Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son,
   E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam,
   W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun;
   Yvert, M.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration;
   Virgo Collaboration; Steeghs, D.; Wang, L.
2017ApJ...847...47A    Altcode: 2017arXiv170603119T
  We present the results of a semicoherent search for continuous
  gravitational waves from the low-mass X-ray binary Scorpius X-1, using
  data from the first Advanced LIGO observing run. The search method
  uses details of the modeled, parametrized continuous signal to combine
  coherently data separated by less than a specified coherence time,
  which can be adjusted to trade off sensitivity against computational
  cost. A search was conducted over the frequency range 25-2000 {Hz},
  spanning the current observationally constrained range of binary
  orbital parameters. No significant detection candidates were found,
  and frequency-dependent upper limits were set using a combination
  of sensitivity estimates and simulated signal injections. The most
  stringent upper limit was set at 175 {Hz}, with comparable limits set
  across the most sensitive frequency range from 100 to 200 {Hz}. At this
  frequency, the 95% upper limit on the signal amplitude h <SUB>0</SUB>
  is 2.3× {10}<SUP>-25</SUP> marginalized over the unknown inclination
  angle of the neutron star’s spin, and 8.0× {10}<SUP>-26</SUP>
  assuming the best orientation (which results in circularly polarized
  gravitational waves). These limits are a factor of 3-4 stronger than
  those set by other analyses of the same data, and a factor of ∼7
  stronger than the best upper limits set using data from Initial LIGO
  science runs. In the vicinity of 100 {Hz}, the limits are a factor of
  between 1.2 and 3.5 above the predictions of the torque balance model,
  depending on the inclination angle; if the most likely inclination
  angle of 44° is assumed, they are within a factor of 1.7.

---------------------------------------------------------
Title: The Ca II infrared triplet's performance as an activity
    indicator compared to Ca II H and K
Authors: Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.;
   Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.
2017arXiv170804895M    Altcode:
  Aims. A large number of Calcium Infrared Triplet (IRT) spectra are
  expected from the GAIA- and CARMENES missions. Conversion of these
  spectra into known activity indicators will allow analysis of their
  temporal evolution to a better degree. We set out to find such a
  conversion formula and to determine its robustness. Methods. We have
  compared 2274 Ca II IRT spectra of active main-sequence F to K stars
  taken by the TIGRE telescope with those of inactive stars of the same
  spectral type. After normalizing and applying rotational broadening,
  we subtracted the comparison spectra to find the chromospheric
  excess flux caused by activity. We obtained the total excess flux,
  and compared it to established activity indices derived from the Ca
  II H &amp; K lines, the spectra of which were obtained simultaneously
  to the infrared spectra. Results. The excess flux in the Ca II IRT is
  found to correlate well with $R_\mathrm{HK}'$ and $R_\mathrm{HK}^{+}$,
  as well as $S_\mathrm{MWO}$, if the $B-V$-dependency is taken into
  account. We find an empirical conversion formula to calculate the
  corresponding value of one activity indicator from the measurement of
  another, by comparing groups of datapoints of stars with similar B-V.

---------------------------------------------------------
Title: Search for high-energy neutrinos from gravitational wave
    event GW151226 and candidate LVT151012 with ANTARES and IceCube
Authors: Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid,
   M.; Aubert, J. -J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa,
   S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.;
   Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr,
   J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro,
   A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps,
   A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.;
   Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer,
   A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.;
   Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann,
   S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey,
   J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.;
   James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.;
   Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.;
   Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.;
   Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.;
   Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.;
   Migliozzi, P.; Moussa, A.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino,
   C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.;
   Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori,
   I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler,
   F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati,
   Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.;
   van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.;
   Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Ackermann, M.; Adams,
   J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann,
   D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.;
   Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.;
   Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.;
   Becker, K. -H.; Benzvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.;
   Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.;
   Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Bretz, H. -P.; Bron, S.; Burgman, A.; Carver, T.; Casier,
   M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.;
   Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.;
   Day, M.; de André, J. P. A. M.; de Clercq, C.; Del Pino Rosendo,
   E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.;
   de Wasseige, G.; de With, M.; Deyoung, T.; Díaz-Vélez, J. C.; di
   Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.;
   Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.;
   Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.;
   Finley, C.; Flis, S.; Fösig, C. -C.; Franckowiak, A.; Friedman, E.;
   Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.;
   Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt,
   A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren,
   A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.;
   Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight,
   J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang,
   F.; Huber, M.; Hultqvist, K.; in, S.; Ishihara, A.; Jacobi, E.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.;
   Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.;
   Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.;
   Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.;
   Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.;
   Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.;
   Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.;
   Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber,
   F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann,
   J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.;
   Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.;
   Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke
   Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.;
   Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de Los
   Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.;
   Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann,
   R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.;
   Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.;
   Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine,
   S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska,
   J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger,
   T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.;
   Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar,
   J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav,
   S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke,
   J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.;
   Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.;
   Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.;
   Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.;
   Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.;
   Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.;
   Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott,
   R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams,
   C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.;
   Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.;
   Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya,
   M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton,
   G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.;
   Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker,
   P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell,
   A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.;
   Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney,
   R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.;
   Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair,
   D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.;
   Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan,
   C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin,
   S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.;
   Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.;
   Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies,
   G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.;
   Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del
   Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa,
   R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; di
   Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace,
   S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan,
   F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale
   Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.;
   Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.;
   Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.;
   Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.;
   Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.;
   Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre,
   B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin,
   E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.;
   Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina,
   K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.;
   Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs,
   M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins,
   P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.;
   Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.;
   Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell,
   S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein,
   B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.;
   Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval,
   F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.;
   Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.;
   Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.;
   Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez,
   K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer,
   A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.;
   Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic,
   J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.;
   Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.;
   Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.;
   Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu,
   S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; ANTARES Collaboration
2017PhRvD..96b2005A    Altcode: 2017arXiv170306298A
  The Advanced LIGO observatories detected gravitational waves from
  two binary black hole mergers during their first observation run
  (O1). We present a high-energy neutrino follow-up search for the second
  gravitational wave event, GW151226, as well as for gravitational wave
  candidate LVT151012. We find two and four neutrino candidates detected
  by IceCube, and one and zero detected by Antares, within ±500 s
  around the respective gravitational wave signals, consistent with the
  expected background rate. None of these neutrino candidates are found
  to be directionally coincident with GW151226 or LVT151012. We use
  nondetection to constrain isotropic-equivalent high-energy neutrino
  emission from GW151226, adopting the GW event's 3D localization,
  to less than 2 ×1 0<SUP>51</SUP>- 2 ×1 0<SUP>54</SUP> erg .

---------------------------------------------------------
Title: Search for intermediate mass black hole binaries in the first
    observing run of Advanced LIGO
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
   Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen,
   G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.;
   Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho,
   H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.;
   Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli,
   C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.;
   Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.;
   Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham,
   L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave,
   I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.;
   DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.;
   Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans,
   T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.;
   Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana,
   A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori,
   I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong,
   H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries,
   E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.;
   Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall,
   B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.;
   Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry,
   J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.;
   Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram,
   D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.;
   Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.;
   Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer,
   S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy,
   R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan,
   Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim,
   W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King,
   P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.;
   Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.;
   Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar,
   R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai,
   K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch,
   R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan,
   A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard,
   F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting,
   D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.;
   Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.;
   Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt,
   J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.;
   Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez,
   K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.;
   Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.;
   Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi,
   L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.;
   Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas,
   B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.;
   Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.;
   Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe,
   S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta,
   A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.;
   Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.;
   Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu,
   Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri,
   J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.;
   Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..96b2001A    Altcode: 2017arXiv170404628T
  During their first observational run, the two Advanced LIGO detectors
  attained an unprecedented sensitivity, resulting in the first direct
  detections of gravitational-wave signals produced by stellar-mass
  binary black hole systems. This paper reports on an all-sky search
  for gravitational waves (GWs) from merging intermediate mass black
  hole binaries (IMBHBs). The combined results from two independent
  search techniques were used in this study: the first employs a
  matched-filter algorithm that uses a bank of filters covering the
  GW signal parameter space, while the second is a generic search for
  GW transients (bursts). No GWs from IMBHBs were detected; therefore,
  we constrain the rate of several classes of IMBHB mergers. The most
  stringent limit is obtained for black holes of individual mass 100
  M<SUB>⊙</SUB> , with spins aligned with the binary orbital angular
  momentum. For such systems, the merger rate is constrained to be less
  than 0.93 Gpc<SUP>-3</SUP> yr<SUP>-1</SUP> in comoving units at the 90%
  confidence level, an improvement of nearly 2 orders of magnitude over
  previous upper limits.

---------------------------------------------------------
Title: A sensitive search for unknown spectral emission lines in
    the diffuse X-ray background with XMM-Newton
Authors: Gewering-Peine, A.; Horns, D.; Schmitt, J. H. M. M.
2017JCAP...06..036G    Altcode: 2016arXiv161101733G
  The Standard Model of particle physics can be extended to include
  sterile (right-handed) neutrinos or axions to solve the dark matter
  problem. Depending upon the mixing angle between active and sterile
  neutrinos, the latter have the possibility to decay into monoenergetic
  active neutrinos and photons in the keV-range while axions can couple
  to two photons. We have used data taken with the X-ray telescope
  XMM-Newton for the search of line emissions. We used pointings with
  high exposures and expected dark matter column densities with respect
  to the dark matter halo of the Milky Way. The posterior predictive
  p-value analysis has been applied to locate parameter space regions
  which favour additional emission lines. In addition, upper limits of
  the parameter space of the models have been generated such that the
  preexisting limits have been significantly improved.

---------------------------------------------------------
Title: Search for gravitational waves from Scorpius X-1 in the first
    Advanced LIGO observing run with a hidden Markov model
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen,
   G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.;
   Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.;
   Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.;
   Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy,
   B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.;
   Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne,
   Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.;
   Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz,
   O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.;
   Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan,
   C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.;
   Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao,
   J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney,
   M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi,
   L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu,
   Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.;
   Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette,
   C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.;
   Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.;
   Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent,
   T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson,
   J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di
   Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes,
   T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot,
   M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover,
   L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.;
   Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.;
   Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin,
   T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.;
   Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan,
   B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.;
   Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang,
   R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky,
   P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann,
   J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.;
   Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.;
   MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval,
   F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic,
   I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.;
   Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.;
   Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini,
   L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.;
   McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire,
   S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.;
   Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston,
   R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.;
   Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.;
   Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.;
   Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer,
   J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao,
   L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani,
   R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor,
   R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali,
   M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.;
   Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman,
   S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.;
   Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi,
   J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss,
   R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu,
   Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri,
   J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.;
   Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   Suvorova, S.; Moran, W.; Evans, R. J.; LIGO Scientific Collaboration;
   Virgo Collaboration
2017PhRvD..95l2003A    Altcode: 2017arXiv170403719T
  Results are presented from a semicoherent search for continuous
  gravitational waves from the brightest low-mass X-ray binary,
  Scorpius X-1, using data collected during the first Advanced LIGO
  observing run. The search combines a frequency domain matched
  filter (Bessel-weighted F -statistic) with a hidden Markov model
  to track wandering of the neutron star spin frequency. No evidence
  of gravitational waves is found in the frequency range 60-650
  Hz. Frequentist 95% confidence strain upper limits, h<SUB>0</SUB><SUP>95
  %</SUP>=4.0 ×1 0<SUP>-25</SUP>, 8.3 ×1 0<SUP>-25</SUP>, and 3.0 ×1
  0<SUP>-25</SUP> for electromagnetically restricted source orientation,
  unknown polarization, and circular polarization, respectively, are
  reported at 106 Hz. They are ≤10 times higher than the theoretical
  torque-balance limit at 106 Hz.

---------------------------------------------------------
Title: Structure and variability in the corona of the ultrafast
    rotator LO Pegasi
Authors: Lalitha, S.; Schmitt, J. H. M. M.; Singh, K. P.
2017A&A...602A..26L    Altcode: 2017arXiv170203158L
  Context. Low-mass ultrafast rotators show the typical signatures of
  magnetic activity and are known to produce flares, probably as a
  result of magnetic reconnection. As a consequence, the coronae of
  these stars exhibit very large X-ray luminosities and high plasma
  temperatures, as well as a pronounced inverse FIP effect. <BR />
  Aims: To probe the relationship between the coronal properties with
  spectral type of ultra-fast rotators with P<SUB>rot</SUB>&lt; 1d,
  we analyse the K3 rapid-rotator LO Peg in comparison with other
  low-mass rapid rotators of spectral types G9-M1. <BR /> Methods: We
  report the results of a 42 ks long XMM-Newton observation of LO Peg
  and investigate the temporal evolution of coronal properties like
  the temperatures, emission measures, abundances, densities and the
  morphology of the involved coronal structures. In addition, we also
  use the XMM-Newton data from a sample of rapid rotators and compare
  their coronal properties to those of LO Peg. <BR /> Results: We find
  two distinguishable levels of activity in the XMM-Newton observation
  of LO Peg, which shows significant X-ray variability both in phase
  and amplitude, implying the presence of an evolving active region on
  the surface. The X-ray flux varies by 28%, possibly due to rotational
  modulation. During our observation a large X-ray flare with a peak
  X-ray luminosity of 2 × 10<SUP>30</SUP> erg/s and a total soft X-ray
  energy release of 7.3 × 10<SUP>33</SUP> erg was observed. Further,
  at the onset of the flare we obtain clear signatures for the occurrence
  of the Neupert effect. During the flare a significant emission measure
  increase in the hotter plasma component is observed, while the emission
  measure in the cooler plasma component is only marginally affected,
  indicating that different coronal structures are involved. The flare
  plasma also shows an enhancement of iron by a factor of ≈2 during the
  rise and peak phase of the flare. The electron densities measured using
  the O vii and Ne ix triplets during the quiescent and flaring state
  are ≈6 × 10<SUP>10</SUP> cm<SUP>-3</SUP> and 9 × 10<SUP>11</SUP>
  cm<SUP>-3</SUP>, respectively, and the large errors prevent us from
  finding significant density differences between quiescent and flaring
  states. Our modeling analysis suggests that the scale size of the
  flaring X-ray plasma is smaller than 0.5 R<SUB>⋆</SUB>. Further,
  the flare loop length appears to be smaller than the pressure scale
  height of the flaring plasma. Our studies show that the X-ray properties
  of the LO Peg are very similar to those of other low-mass ultrafast
  rotators, I.e., the X-ray luminosity is very close to saturation,
  its coronal abundances follow a trend of increasing abundance with
  increasing first ionisation potential, the so-called inverse FIP effect.

---------------------------------------------------------
Title: Search for Gravitational Waves Associated with Gamma-Ray
    Bursts during the First Advanced LIGO Observing Run and Implications
    for the Origin of GRB 150906B
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger,
   M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock,
   O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon,
   K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.;
   Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti,
   L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.;
   Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming,
   A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.;
   Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.;
   Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira,
   E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher,
   R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.;
   Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain,
   V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, A.; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel,
   D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee;
   Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte,
   L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov,
   V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak,
   D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn,
   G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes,
   S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma,
   V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger,
   A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.;
   Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt,
   E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schwalbe, S. G.; Scott,
   J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.;
   Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska,
   M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.;
   Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.;
   Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.;
   Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Szolgyen, A.; Tacca, M.; Talukder, D.; Tanner,
   D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens,
   T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson,
   C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting,
   B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu,
   D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu,
   Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.;
   Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration; Aptekar, R. L.;
   Frederiks, D. D.; Golenetskii, S. V.; Golovin, D. V.; Hurley, K.;
   Litvak, M. L.; Mitrofanov, I. G.; Rau, A.; Sanin, A. B.; Svinkin,
   D. S.; von Kienlin, A.; Zhang, X.; IPN Collaboration
2017ApJ...841...89A    Altcode: 2016arXiv161107947L
  We present the results of the search for gravitational waves (GWs)
  associated with γ-ray bursts detected during the first observing run
  of the Advanced Laser Interferometer Gravitational-Wave Observatory
  (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray
  bursts for which LIGO data are available with sufficient duration. For
  all γ-ray bursts, we place lower bounds on the distance to the
  source using the optimistic assumption that GWs with an energy
  of {10}<SUP>-2</SUP>{M}<SUB>⊙ </SUB>{c}<SUP>2</SUP> were emitted
  within the 16-500 Hz band, and we find a median 90% confidence limit
  of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts,
  we place lower bounds on distance with a median 90% confidence limit
  of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and
  139 Mpc for neutron star-black hole coalescences with spins aligned
  to the orbital angular momentum and in a generic configuration,
  respectively. These are the highest distance limits ever achieved
  by GW searches. We also discuss in detail the results of the search
  for GWs associated with GRB 150906B, an event that was localized by
  the InterPlanetary Network near the local galaxy NGC 3313, which is
  at a luminosity distance of 54 Mpc (z = 0.0124). Assuming the γ-ray
  emission is beamed with a jet half-opening angle ≤slant 30^\circ ,
  we exclude a BNS and a neutron star-black hole in NGC 3313 as the
  progenitor of this event with confidence &gt;99%. Further, we exclude
  such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively.

---------------------------------------------------------
Title: GW170104: Observation of a 50-Solar-Mass Binary Black Hole
    Coalescence at Redshift 0.2
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai,
   K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi,
   S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.;
   Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer,
   C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.;
   Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares,
   P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.;
   Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu,
   Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.;
   Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva,
   F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette,
   C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.;
   Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa,
   C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.;
   Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev,
   V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine,
   R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.;
   Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo,
   F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.;
   Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago,
   M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan,
   J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein,
   H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein,
   R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans,
   T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.;
   Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana,
   A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori,
   I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong,
   H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries,
   E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni,
   L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.;
   Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall,
   B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.;
   Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa,
   S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.;
   Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.;
   Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.;
   Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.;
   Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.;
   Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.;
   Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel,
   V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar,
   S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.;
   Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez,
   I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani,
   R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.;
   Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.;
   Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.;
   Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.;
   Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.;
   Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng,
   K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.;
   Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.;
   Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram,
   Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov,
   O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone,
   B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.;
   Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant,
   G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo,
   P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero,
   E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.;
   Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.;
   Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt,
   E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith,
   R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.;
   Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Stratta,
   G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini,
   A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas,
   M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari,
   S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi,
   Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò,
   D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse,
   M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente,
   G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van
   den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.;
   Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.;
   Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels,
   P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle,
   C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.;
   Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman,
   A.; Zucker, M. E.; Zweizig, J.; LIGO Scientific; Virgo Collaboration
2017PhRvL.118v1101A    Altcode: 2017arXiv170601812T
  We describe the observation of GW170104, a gravitational-wave
  signal produced by the coalescence of a pair of stellar-mass black
  holes. The signal was measured on January 4, 2017 at 10∶11:58.6
  UTC by the twin advanced detectors of the Laser Interferometer
  Gravitational-Wave Observatory during their second observing run,
  with a network signal-to-noise ratio of 13 and a false alarm rate
  less than 1 in 70 000 years. The inferred component black hole
  masses are 31. 2<SUB>-6.0</SUB><SUP>+8.4</SUP>M<SUB>⊙</SUB> and
  19. 4<SUB>-5.9</SUB><SUP>+5.3</SUP> M<SUB>⊙</SUB> (at the 90%
  credible level). The black hole spins are best constrained through
  measurement of the effective inspiral spin parameter, a mass-weighted
  combination of the spin components perpendicular to the orbital
  plane, χ<SUB>eff</SUB>=-0.1 2<SUB>-0.30</SUB><SUP>+0.21</SUP>
  . This result implies that spin configurations with both
  component spins positively aligned with the orbital angular
  momentum are disfavored. The source luminosity distance is 88
  0<SUB>-390</SUB><SUP>+450</SUP> Mpc corresponding to a redshift of z
  =0.1 8<SUB>-0.07</SUB><SUP>+0.08</SUP> . We constrain the magnitude
  of modifications to the gravitational-wave dispersion relation and
  perform null tests of general relativity. Assuming that gravitons are
  dispersed in vacuum like massive particles, we bound the graviton mass
  to m<SUB>g</SUB>≤7.7 ×10<SUP>-23</SUP> eV /c<SUP>2</SUP> . In all
  cases, we find that GW170104 is consistent with general relativity.

---------------------------------------------------------
Title: A swirling jet in the quasar 1308+326
Authors: Britzen, S.; Qian, S. -J.; Steffen, W.; Kun, E.; Karouzos,
   M.; Gergely, L.; Schmidt, J.; Aller, M.; Aller, H.; Krause, M.; Fendt,
   C.; Böttcher, M.; Witzel, A.; Eckart, A.; Moser, L.
2017A&A...602A..29B    Altcode:
  Context. Despite numerous and detailed studies of the jets of
  active galactic nuclei (AGN) on pc-scales, many questions are still
  debated. The physical nature of the jet components is one of the
  most prominent unsolved problems, as is the launching mechanism of
  jets in AGN. The quasar 1308+326 (z = 0.997) allows us to study the
  overall properties of its jet in detail and to derive a more physical
  understanding of the nature and origin of jets in general. The long-term
  data provided by the Monitoring Of Jets in Active galactic nuclei with
  Very Long Baseline Array (VLBA) experiments (MOJAVE) survey permit
  us to trace out the structural changes in 1308+326 that we present
  here. The long-lived jet features in this source can be followed
  for about two decades. <BR /> Aims: We investigate the very long
  baseline interferomety (VLBI) morphology and kinematics of the jet
  of 1308+326 to understand the physical nature of this jet and jets
  in general, the role of magnetic fields, and the causal connection
  between jet features and the launching process. <BR /> Methods:
  Fifty VLBA observations performed at 15 GHz from the MOJAVE survey
  were re-modeled with Gaussian components and re-analyzed (the time
  covered: 20 Jan. 1995-25 Jan. 2014). The analysis was supplemented
  by multi-wavelength radio-data (UMRAO, at 4.8, 8.0, and 14.5 GHz) in
  polarization and total intensity. We fit the apparent motion of the
  jet features with the help of a model of a precessing nozzle. <BR />
  Results: The jet features seem to be emitted with varying viewing angles
  and launched into an ejection cone. Tracing the component paths yields
  evidence for rotational motion. Radio flux-density variability can be
  explained as a consequence of enhanced Doppler boosting corresponding
  to the motion of the jet relative to the line of sight. Based on the
  presented kinematics and other indicators, such as electric-vector
  polarization position-angle (EVPA) rotation, we conclude that the jet
  of 1308+326 has a helical structure, meaning that the components are
  moving along helical trajectories and the trajectories themselves are
  also experiencing a precessing motion. A model of a precessing nozzle
  was applied to the data and a subset of the observed jet feature paths
  can be modeled successfully within this model. The data till 2012 are
  consistent with a swing period of 16.9 yr. We discuss several scenarios
  to explain the observed motion phenomena, including a binary black hole
  model. It seems unlikely that the accretion disk around the primary
  black hole, which is disturbed by the tidal forces of the secondary
  black hole, is able to launch a persistent axisymmetric jet. <BR />
  Conclusions: We conclude that we are observing a rotating helix. In
  particular, the observed EVPA swings can be explained by a shock moving
  through a straight jet that is pervaded by a helical magnetic field. We
  compare our results for 1308+326 with other astrophysical scenarios
  where similar, wound-up filamentary structures are found. They are
  all related to accretion-driven processes. A helically moving or
  wound up object is often explained by filamentary features moving
  along magnetic field lines of magnetic flux tubes. It seems that a
  "component" comprises plasma tracing the magnetic field, which guides
  the motion of the radiating radio-band plasma. Further investigations
  and modeling are in preparation. <P />The reduced Figs. A.1-A.13
  (FITS files) are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A29">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A29</A>
  <P /><A
  href="http://www.physics.purdue.edu/astro/MOJAVE/">http://www.physics.purdue.edu/astro/MOJAVE/</A>
  <A
  href="http://www.physics.purdue.edu/astro/MOJAVE/">http://www.physics.purdue.edu/astro/MOJAVE/</A>
  <A
  href="http://www.physics.purdue.edu/astro/MOJAVE/animated/1308+326.I.mpg">http://www.physics.purdue.edu/astro/MOJAVE/animated/1308+326.I.mpg</A>
  <A
  href="http://www.physics.purdue.edu/MOJAVE/sourcepages/1308+326.shtml">http://www.physics.purdue.edu/MOJAVE/sourcepages/1308+326.shtml</A>

---------------------------------------------------------
Title: Effects of waveform model systematics on the interpretation
    of GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.;
   Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.;
   Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston,
   S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.;
   Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.;
   Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish,
   B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.;
   Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman,
   C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman,
   J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.;
   Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia,
   C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant,
   T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida,
   J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.;
   Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.;
   Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.;
   Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.;
   Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz,
   J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.;
   Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira,
   E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher,
   R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.;
   Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt,
   K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.;
   Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel,
   D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee;
   Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte,
   L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov,
   V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak,
   D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn,
   G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov,
   E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.;
   Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.;
   Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram,
   Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier,
   H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash,
   B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.;
   Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.;
   Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith,
   R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer,
   A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil,
   S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.;
   Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic,
   J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.;
   Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.;
   Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.;
   Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger,
   D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi,
   B.; Teukolsky, S.; Vano Vinuales, A.
2017CQGra..34j4002A    Altcode: 2016arXiv161107531T
  Parameter estimates of GW150914 were obtained using Bayesian
  inference, based on three semi-analytic waveform models for binary
  black hole coalescences. These waveform models differ from each other
  in their treatment of black hole spins, and all three models make
  some simplifying assumptions, notably to neglect sub-dominant waveform
  harmonic modes and orbital eccentricity. Furthermore, while the models
  are calibrated to agree with waveforms obtained by full numerical
  solutions of Einstein’s equations, any such calibration is accurate
  only to some non-zero tolerance and is limited by the accuracy of the
  underlying phenomenology, availability, quality, and parameter-space
  coverage of numerical simulations. This paper complements the original
  analyses of GW150914 with an investigation of the effects of possible
  systematic errors in the waveform models on estimates of its source
  parameters. To test for systematic errors we repeat the original
  Bayesian analysis on mock signals from numerical simulations of a series
  of binary configurations with parameters similar to those found for
  GW150914. Overall, we find no evidence for a systematic bias relative to
  the statistical error of the original parameter recovery of GW150914
  due to modeling approximations or modeling inaccuracies. However,
  parameter biases are found to occur for some configurations disfavored
  by the data of GW150914: for binaries inclined edge-on to the detector
  over a small range of choices of polarization angles, and also for
  eccentricities greater than  ∼0.05. For signals with higher
  signal-to-noise ratio than GW150914, or in other regions of the binary
  parameter space (lower masses, larger mass ratios, or higher spins),
  we expect that systematic errors in current waveform models may impact
  gravitational-wave measurements, making more accurate models desirable
  for future observations.

---------------------------------------------------------
Title: Discovery of the secondary eclipse of HAT-P-11 b (Corrigendum)
Authors: Huber, K. F.; Czesla, S.; Schmitt, J. H. M. M.
2017A&A...600C...1H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Search for continuous gravitational waves from neutron stars
    in globular cluster NGC 6544
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.;
   Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser,
   J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer,
   C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.;
   Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan,
   C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.;
   Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.;
   Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.;
   Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.;
   Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton,
   T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave,
   I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.;
   Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del
   Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di
   Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace,
   S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.;
   Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz,
   J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans,
   M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair,
   H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata,
   M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante,
   I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.;
   Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.;
   Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.;
   Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata,
   M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot,
   P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta,
   M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.;
   Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi,
   K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones,
   R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili,
   F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo,
   N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim,
   W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel,
   J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.;
   Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.;
   Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak,
   A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel,
   C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.;
   Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.;
   Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova,
   K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.;
   O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patel, P.; Patricelli, B.; Patrick,
   Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie,
   J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.;
   Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi,
   L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.;
   Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson,
   P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.;
   Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer,
   T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss,
   N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin,
   S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam,
   M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane,
   E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson,
   C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo,
   L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen,
   J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin,
   R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.;
   Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.;
   Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.;
   Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert,
   M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Sigurdsson,
   S.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..95h2005A    Altcode: 2016arXiv160702216A
  We describe a directed search for continuous gravitational waves
  in data from the sixth initial LIGO science run. The target was the
  nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc . The
  search covered a broad band of frequencies along with first and
  second frequency derivatives for a fixed sky position. The search
  coherently integrated data from the two LIGO interferometers over a
  time span of 9.2 days using the matched-filtering F -statistic. We
  found no gravitational-wave signals and set 95% confidence upper
  limits as stringent as 6.0 ×10<SUP>-25</SUP> on intrinsic strain and
  8.5 ×10<SUP>-6</SUP> on fiducial ellipticity. These values beat the
  indirect limits from energy conservation for stars with characteristic
  spin-down ages older than 300 years and are within the range of
  theoretical predictions for possible neutron-star ellipticities. An
  important feature of this search was use of a barycentric resampling
  algorithm which substantially reduced computational cost; this method is
  used extensively in searches of Advanced LIGO and Virgo detector data.

---------------------------------------------------------
Title: Four-month chromospheric and coronal activity cycle in
    τ Boötis
Authors: Mittag, M.; Robrade, J.; Schmitt, J. H. M. M.; Hempelmann,
   A.; González-Pérez, J. N.; Schröder, K. -P.
2017A&A...600A.119M    Altcode:
  We have used our robotic TIGRE facility to closely monitor the
  star τ Boo during the last three observing seasons 2013-2016 and
  to determine its S-index variability from the strength of its Ca
  II H and K line cores in order to study its characteristic cyclic
  chromospheric variations and determine its rotation period. We
  furthermore reanalyze archival X-ray data of τ Boo taken with the
  XMM-Newton satellite. Using Lomb-Scargle periodograms, we find a
  strong periodic signal in our data with a period of about 122 days
  with extremely high significance, which is also consistent with the
  observed long-term X-ray variability. Furthermore, the epochs of
  magnetic field reversals observed in τ Boo with the technique of
  Zeeman Doppler imaging are consistent with the hypothesis that they
  are produced at activity maximum. In line with previous studies of
  τ Boo, we therefore interpret our data as evidence of a very short
  activity cycle in analogy to the solar cycle, but the cycle period of
  τ Boo may also show some slight variability and may show substantial
  phase shifts. The chromospheric signal of τ Boo is found to vary on
  the rotational timescale of somewhat more than three days only during
  one out of the available three observing seasons. The available data
  suggest that persistent cyclic magnetic activity can occur on timescales
  much shorter than the decadal timescale observed for the Sun and many
  other late-type stars.

---------------------------------------------------------
Title: Further evidence for a sub-year magnetic chromospheric activity
    cycle and activity phase jumps in the planet host τ Boötis
Authors: Schmitt, J. H. M. M.; Mittag, M.
2017A&A...600A.120S    Altcode:
  We examine the S-index data, obtained in the context of the Mount Wilson
  H&amp;K project for the nearby F-type star τ Boo, for the presence of
  possible cyclic variations on timescales below one year and "phase jump"
  episodes in the observed S-index activity levels, to determine whether
  such features are persistent properties of the chromospheric activity
  of τ Boo and possibly other late-type stars. Within the Mount Wilson
  H&amp;K project τ Boo was observed during 1278 individual nights,
  albeit with a very inhomogeneous coverage ranging from 2 to 137
  observations per year. Our analysis shows that periodical variations
  with timescales on the order of 110-120 days are a persistent feature of
  the Mount Wilson data set. Furthermore we provide further examples of
  "phase jump" episodes, when the observed S-index activity drops from
  maximum to minimum levels on timescales of one to two weeks, hence such
  features also appear to occur on a more or less regular basis in τ Boo.

---------------------------------------------------------
Title: First Search for Gravitational Waves from Known Pulsars with
    Advanced LIGO
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.;
   Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli,
   G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.;
   Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.;
   Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di
   Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington,
   I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens,
   P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick,
   R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante,
   I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth,
   S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise,
   A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair,
   J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri,
   V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.;
   Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell,
   S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein,
   B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.;
   Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro,
   C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.;
   Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong,
   J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson,
   A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück,
   H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk,
   B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli,
   F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.;
   Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.;
   Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg,
   V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson,
   P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer,
   J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.;
   Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.;
   Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.;
   Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.;
   Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner,
   D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas,
   E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens,
   T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson,
   C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.;
   Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu,
   Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri,
   J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao,
   C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig,
   J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.;
   Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs,
   G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon,
   R. M.; Stappers, B. W.; Weltevrede, P.
2017ApJ...839...12A    Altcode: 2017arXiv170107709T
  We present the result of searches for gravitational waves from 200
  pulsars using data from the first observing run of the Advanced LIGO
  detectors. We find no significant evidence for a gravitational-wave
  signal from any of these pulsars, but we are able to set the most
  constraining upper limits yet on their gravitational-wave amplitudes and
  ellipticities. For eight of these pulsars, our upper limits give bounds
  that are improvements over the indirect spin-down limit values. For
  another 32, we are within a factor of 10 of the spin-down limit, and
  it is likely that some of these will be reachable in future runs of
  the advanced detector. Taken as a whole, these new results improve on
  previous limits by more than a factor of two.

---------------------------------------------------------
Title: Surface Composition of Asteroids Measured Using a Dust
    Analyzer Instrument
Authors: Sternovsky, Z.; Hillier, J.; Postberg, F.; Schmidt, J.;
   Kempf, S.; Horanyi, M.; Rivkin, A. S.
2017LPI....48.2908S    Altcode:
  A laboratory study has been performed to demonstrate the value of dust
  composition analysis for future missions to asteroids or airless bodies.

---------------------------------------------------------
Title: Calibration of the Advanced LIGO detectors for the discovery
    of the binary black-hole merger GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.;
   Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen,
   B.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.;
   Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak,
   S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.;
   Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell,
   A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry,
   C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.;
   Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.;
   Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.;
   Bock, O.; Bodiya, T. P.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.;
   Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.;
   Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Buonanno, A.;
   Byer, R. L.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.;
   Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.;
   Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow,
   J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.;
   Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Cook,
   D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton,
   J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.;
   Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dave,
   I.; Daveloza, H. P.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo,
   W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.;
   Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Dojcinoski, G.; Donovan,
   F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S. E.; Edo, T. B.;
   Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz,
   J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans,
   M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst,
   S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.;
   Fehrmann, H.; Fejer, M. M.; Ferreira, E. C.; Fisher, R. P.; Fletcher,
   M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.;
   Gaonkar, S. G.; Gaur, G.; Gehrels, N.; George, J.; Gergely, L.; Ghosh,
   A.; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.;
   Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.;
   Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.;
   Haster, C. -J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken,
   D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang,
   S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.;
   Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.;
   Jani, K.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe,
   K.; Kawazoe, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim,
   K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel,
   D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.;
   Kokeyama, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.;
   Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo,
   L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.;
   Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lormand,
   M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.;
   Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Mandel,
   I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Massinger, T. J.; Masso-Reid,
   M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo,
   G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meadors,
   G. D.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.;
   Merilh, E.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.;
   Miao, H.; Middleton, H.; Mikhailov, E. E.; Mukund, K. N.; Miller,
   J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra,
   S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss,
   S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nayak, R. K.; Necula, V.; Nedkova, K.; Neunzert, A.; Newton, G.;
   Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott,
   C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai,
   A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.;
   Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.;
   Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.;
   Pierro, V.; Pinto, I. M.; Pitkin, M.; Post, A.; Powell, J.; Prasad,
   J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.;
   Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze,
   D. H.; Rew, H.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.;
   Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.;
   Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.;
   Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siemens, X.; Sigg, D.;
   Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh,
   R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava,
   A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.;
   Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss,
   N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner,
   D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg,
   T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov,
   K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Töyrä, D.;
   Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.;
   Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.;
   Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang,
   M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker,
   M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration
2017PhRvD..95f2003A    Altcode: 2016arXiv160203845T
  In Advanced LIGO, detection and astrophysical source parameter
  estimation of the binary black hole merger GW150914 requires a
  calibrated estimate of the gravitational-wave strain sensed by the
  detectors. Producing an estimate from each detector's differential
  arm length control loop readout signals requires applying time domain
  filters, which are designed from a frequency domain model of the
  detector's gravitational-wave response. The gravitational-wave response
  model is determined by the detector's opto-mechanical response and
  the properties of its feedback control system. The measurements used
  to validate the model and characterize its uncertainty are derived
  primarily from a dedicated photon radiation pressure actuator, with
  cross-checks provided by optical and radio frequency references. We
  describe how the gravitational-wave readout signal is calibrated into
  equivalent gravitational-wave-induced strain and how the statistical
  uncertainties and systematic errors are assessed. Detector data
  collected over 38 calendar days, from September 12 to October 20, 2015,
  contain the event GW150914 and approximately 16 days of coincident data
  used to estimate the event false alarm probability. The calibration
  uncertainty is less than 10% in magnitude and 10° in phase across
  the relevant frequency band, 20 Hz to 1 kHz.

---------------------------------------------------------
Title: Directional Limits on Persistent Gravitational Waves from
    Advanced LIGO's First Observing Run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat,
   S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.;
   Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.;
   Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.;
   Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.;
   Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi,
   A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.;
   Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.;
   Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr,
   W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.;
   Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.;
   Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell,
   E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.;
   Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe,
   K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key,
   J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun;
   Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko,
   S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer,
   C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo,
   L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.;
   Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon,
   A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.;
   Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie,
   N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.;
   Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.;
   Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.;
   McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire,
   S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash,
   B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta,
   G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli,
   M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse,
   M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen,
   J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.;
   Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration
2017PhRvL.118l1102A    Altcode: 2016arXiv161202030T
  We employ gravitational-wave radiometry to map the stochastic
  gravitational wave background expected from a variety of contributing
  mechanisms and test the assumption of isotropy using data from the
  Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO)
  first observing run. We also search for persistent gravitational waves
  from point sources with only minimal assumptions over the 20-1726
  Hz frequency band. Finding no evidence of gravitational waves from
  either point sources or a stochastic background, we set limits at 90%
  confidence. For broadband point sources, we report upper limits on the
  gravitational wave energy flux per unit frequency in the range F<SUB>α
  ,Θ</SUB>(f )&lt;(0.1 - 56 )×10<SUP>-8</SUP> erg cm<SUP>-2</SUP>
  s<SUP>-1</SUP> Hz<SUP>-1</SUP>(f /25 Hz )<SUP>α -1</SUP> depending
  on the sky location Θ and the spectral power index α . For extended
  sources, we report upper limits on the fractional gravitational wave
  energy density required to close the Universe of Ω (f ,Θ )&lt;(0.39 -
  7.6 )×10<SUP>-8</SUP> sr<SUP>-1</SUP>(f /25 Hz )<SUP>α</SUP> depending
  on Θ and α . Directed searches for narrowband gravitational waves from
  astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and
  the Galactic Center) yield median frequency-dependent limits on strain
  amplitude of h<SUB>0</SUB>&lt;(6.7 ,5.5 , and 7.0 )×10<SUP>-25</SUP> ,
  respectively, at the most sensitive detector frequencies between 130-175
  Hz. This represents a mean improvement of a factor of 2 across the band
  compared to previous searches of this kind for these sky locations,
  considering the different quantities of strain constrained in each case.

---------------------------------------------------------
Title: The Compositional Profile of the Enceladian Ice Plume from
    the Latest Cassini Flybys
Authors: Khawaja, N.; Postberg, F.; Schmidt, J.
2017LPI....48.2005K    Altcode:
  From the latest Cassini's flybys of Enceladus (E17, E18, and E21),
  the compositional profile of the Enceladian plume is inferred and
  compared with the E5 data.

---------------------------------------------------------
Title: Resolving the Mass Production and Surface Structure of the
    Enceladus Dust Plume
Authors: Southworth, B. S.; Kempf, S.; Spitale, J.; Srama, R.; Schmidt,
   J.; Postberg, F.
2017LPI....48.2904S    Altcode:
  CDA and ISS data are used in conjunction with plume simulations to
  resolve the Enceladus plume mass production, emission structure,
  and surface deposition.

---------------------------------------------------------
Title: Colors of Enceladus: Plume Redeposition and Lessons for Europa
Authors: Schenk, P.; Buratti, B.; Helfenstein, P.; Kempf, S.;
   Schmidt, J.
2017LPI....48.2601S    Altcode:
  I wonder if the snow loves the craters and cracks, that it kisses them
  so gently? Perhaps it says, "Go to sleep, darlings, till the plumes
  erupt again."

---------------------------------------------------------
Title: Extrasolar planets and their hosts: A new X-ray research area
Authors: Schmitt, J. H. M. M.
2017AN....338..178S    Altcode:
  The field of extrasolar planets has become one of the most lively
  and vibrant field of research in astrophysics. As is almost always
  the case in astrophysics, a multi-wavelength approach is required to
  fully explore and understand the properties of those planets. Also,
  X-ray astronomy plays an important role in this process. The host stars
  of essentially all extrasolar planets are (sometimes very vigorous)
  X-ray emitters, which can severely impact on the outer atmospheric
  layers of their planets. Furthermore, the close proximity between host
  stars and planets in the case of close-in "Hot Jupiters" may lead to
  magnetic or tidal interactions with observable consequences at X-ray
  wavelengths. I will address these issues and discuss how XMM-Newton
  can be used to advance the field.

---------------------------------------------------------
Title: Upper Limits on the Stochastic Gravitational-Wave Background
    from Advanced LIGO's First Observing Run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat,
   S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.;
   Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.;
   Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.;
   Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.;
   Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi,
   A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.;
   Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.;
   Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.;
   Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.;
   Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr,
   W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.;
   Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.;
   Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell,
   E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.;
   Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.;
   Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.;
   Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff,
   R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.;
   Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel,
   V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.;
   Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini,
   A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi,
   M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.;
   Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.;
   Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.;
   MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot,
   A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.;
   Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh,
   J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard
   J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash,
   B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta,
   G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli,
   M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse,
   M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen,
   J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth,
   M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.;
   Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.;
   Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific
   Collaboration; Virgo Collaboration
2017PhRvL.118l1101A    Altcode: 2016arXiv161202029T
  A wide variety of astrophysical and cosmological sources are expected
  to contribute to a stochastic gravitational-wave background. Following
  the observations of GW150914 and GW151226, the rate and mass of
  coalescing binary black holes appear to be greater than many previous
  expectations. As a result, the stochastic background from unresolved
  compact binary coalescences is expected to be particularly loud. We
  perform a search for the isotropic stochastic gravitational-wave
  background using data from Advanced Laser Interferometer Gravitational
  Wave Observatory's (aLIGO) first observing run. The data display no
  evidence of a stochastic gravitational-wave signal. We constrain
  the dimensionless energy density of gravitational waves to be
  Ω<SUB>0</SUB>&lt;1.7 ×10<SUP>-7</SUP> with 95% confidence, assuming a
  flat energy density spectrum in the most sensitive part of the LIGO band
  (20-86 Hz). This is a factor of ∼33 times more sensitive than previous
  measurements. We also constrain arbitrary power-law spectra. Finally,
  we investigate the implications of this search for the background of
  binary black holes using an astrophysical model for the background.

---------------------------------------------------------
Title: VizieR Online Data Catalog: QSO 1308+326 at 15GHz modelfit
    results (Britzen+, 2017)
Authors: Britzen, S.; Qian, S. -J.; Steffen, W.; Kun, E.; Karouzos,
   M.; Gergely, L.; Schmidt, J.; Aller, M.; Aller, H.; Krause, M.; Fendt,
   C.; Bottcher, M.; Witzel, A.; Eckart, A.; Moser, L.
2017yCat..36020029B    Altcode:
  We re-modeled 50 VLBA observations of 1308+326 obtained at 15GHz (taken
  from the online MOJAVE archive webpage) between 1995.05 and 2014.07
  with Gaussian components within the difmap-modelfit programme (Shepherd
  1997). The modelfit programme fits image-plane model components to the
  visibilities in the uv plane. Every epoch was modeled independently
  starting from a point source model. The errors were estimated from
  deviations in all parameters derived by calculating fits to models
  with ±1 component. All the images with model-fits superimposed are
  displayed in Figs. 16-28. The parameters and corresponding uncertainties
  of the model-fits are listed in Tables 2-6 (paper). Components labeled
  with 'x' denote for features that could not be reliably traced across
  the epochs. <P />(2 data files).

---------------------------------------------------------
Title: All-sky search for short gravitational-wave bursts in the
    first Advanced LIGO run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.;
   Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson,
   W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.;
   Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.;
   Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta,
   D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.;
   Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene,
   I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry,
   C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.;
   Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.;
   Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli,
   G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri,
   C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish,
   N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin,
   S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.;
   Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.;
   Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies,
   G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.;
   Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del
   Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.;
   Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.;
   Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.;
   Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann,
   H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira,
   E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher,
   R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier,
   J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.;
   Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.;
   Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely,
   L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.;
   Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy,
   J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.;
   Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac,
   J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.;
   Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley,
   D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.;
   Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.;
   King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.;
   Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov,
   V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak,
   D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn,
   G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee,
   K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.;
   Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy,
   S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.;
   Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert,
   A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nissanke, S.; Nitz,
   A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall,
   L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.;
   Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow,
   C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca,
   A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.;
   Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.;
   Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.;
   Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez,
   K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer,
   A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.;
   Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.;
   Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting,
   B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu,
   D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu,
   Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin,
   M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017PhRvD..95d2003A    Altcode: 2016arXiv161102972T
  We present the results from an all-sky search for short-duration
  gravitational waves in the data of the first run of the Advanced LIGO
  detectors between September 2015 and January 2016. The search algorithms
  use minimal assumptions on the signal morphology, so they are sensitive
  to a wide range of sources emitting gravitational waves. The analyses
  target transient signals with duration ranging from milliseconds to
  seconds over the frequency band of 32 to 4096 Hz. The first observed
  gravitational-wave event, GW150914, has been detected with high
  confidence in this search; the other known gravitational-wave event,
  GW151226, falls below the search's sensitivity. Besides GW150914,
  all of the search results are consistent with the expected rate of
  accidental noise coincidences. Finally, we estimate rate-density limits
  for a broad range of non-binary-black-hole transient gravitational-wave
  sources as a function of their gravitational radiation emission energy
  and their characteristic frequency. These rate-density upper limits
  are stricter than those previously published by an order of magnitude.

---------------------------------------------------------
Title: Exoplanetary atmospheric sodium revealed by orbital
    motion. Narrow-band transmission spectroscopy of HD 189733b with UVES
Authors: Khalafinejad, S.; von Essen, C.; Hoeijmakers, H. J.; Zhou,
   G.; Klocová, T.; Schmitt, J. H. M. M.; Dreizler, S.; Lopez-Morales,
   M.; Husser, T. -O.; Schmidt, T. O. B.; Collet, R.
2017A&A...598A.131K    Altcode: 2016arXiv161001610K
  Context. During primary transits, the spectral signatures of exoplanet
  atmospheres can be measured using transmission spectroscopy. We
  can obtain information on the upper atmosphere of these planets by
  investigating the exoplanets' excess sodium absorption in the optical
  region. However, a number of factors can affect the observed sodium
  absorption signature. We present a detailed model correcting for
  systematic biases to yield an accurate depth for the sodium absorption
  in HD 189733b. <BR /> Aims: The goal of this work is to accurately
  measure the atomspheric sodium absorption light curve in HD 189733b,
  correcting for the effects of stellar differential limb-darkening,
  stellar activity, and a "bump" caused by the changing radial velocity
  of the exoplanet. In fact, owing to the high cadence and quality of
  our data, it is the first time that the last feature can be detected
  even by visual inspection. <BR /> Methods: We use 244 high-resolution
  optical spectra taken by the UVES instrument mounted at the VLT. Our
  observations cover a full transit of HD 189733b, with a cadence of
  45 s. To probe the transmission spectrum of sodium we produce excess
  light curves integrating the stellar flux in passbands of 1 Å, 1.5 Å,
  and 3 Å inside the core of each sodium D-line. We model the effects
  of external sources on the excess light curves, which correspond
  to an observed stellar flare beginning close to mid-transit time
  and the wavelength dependent limb-darkening effects. In addition, by
  characterizing the effect of the changing radial velocity and Doppler
  shifts of the planetary sodium lines inside the stellar sodium lines,
  we estimate the depth and width of the exoplanetary sodium feature. <BR
  /> Results: We estimate the shape of the planetary sodium line by
  a Gaussian profile with an equivalent width of 0.0023 ± 0.0010Å,
  thereby confirming the presence of sodium in the atmosphere of HD
  189733b with excess absorption levels of 0.72 ± 0.25%, 0.34 ± 0.11%,
  and 0.20 ± 0.06% for the integration bands of 1 Å, 1.5 Å, and 3 Å,
  respectively. Using the equivalent width of the planetary sodium line,
  we produce a first order estimate of the number density of sodium in
  the exoplanet atmosphere.

---------------------------------------------------------
Title: Exploring the sensitivity of next generation gravitational
    wave detectors
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.;
   Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen,
   B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast,
   M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.;
   Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.;
   Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.;
   Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.;
   Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer,
   R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano,
   C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro,
   B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow,
   J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.;
   Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.;
   Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming,
   A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.;
   Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies,
   G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.;
   Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.;
   Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang,
   Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer,
   M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.;
   Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda,
   P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur,
   G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup;
   Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar,
   A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.;
   Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote,
   H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heintze,
   M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins,
   P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.;
   Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai,
   T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian,
   L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.;
   Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy,
   R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim,
   N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak,
   D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo,
   L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.;
   Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie,
   N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lormand, M.; Lough,
   J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.;
   MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske,
   M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin,
   I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Masso-Reid, M.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher,
   D.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh,
   E. L.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao,
   H.; Middleton, H.; Mikhailov, E. E.; Miller, A. L.; Miller, A.; Miller,
   B. B.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra,
   C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nayak, R. K.; Nedkova, K.; Nelson, T. J. N.; Neunzert, A.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.;
   Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Pierro,
   V.; Pinto, I. M.; Pitkin, M.; Poe, M.; Post, A.; Powell, J.; Prasad,
   J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe,
   M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.;
   Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rajan, C.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Riles, K.; Rizzo, M.; Robertson,
   N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie,
   J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.;
   Sadeghian, L.; Sakellariadou, M.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar,
   M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker,
   D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil,
   S.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.;
   Thorne, K. A.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tomlinson, C.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä,
   D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass,
   S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson,
   A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf,
   C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.;
   Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.;
   Yu, H.; Zanolin, M.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.;
   Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.;
   Zweizig, J.; (LIGO Scientific Collaboration; Harms, J.
2017CQGra..34d4001A    Altcode: 2016arXiv160708697E; 2016arXiv160708697A
  The second-generation of gravitational-wave detectors are just starting
  operation, and have already yielding their first detections. Research
  is now concentrated on how to maximize the scientific potential of
  gravitational-wave astronomy. To support this effort, we present here
  design targets for a new generation of detectors, which will be capable
  of observing compact binary sources with high signal-to-noise ratio
  throughout the Universe.

---------------------------------------------------------
Title: Hamburger Sternwarte plate archives: Historic long-term
    variability study of active galaxies based on digitized photographic
    plates
Authors: Wertz, M.; Horns, D.; Groote, D.; Tuvikene, T.; Czesla, S.;
   Schmitt, J. H. M. M.
2017AN....338..103W    Altcode: 2016arXiv160700312W
  At the Hamburger Sternwarte, an effort was started in 2010 with the
  aim of digitizing its more than 45,000 photographic plates and films
  stored in its plate archives. At the time of writing, more than 31,000
  plates have already been made available on the Internet for researchers,
  historians, and the interested public. The digitization process and
  the Internet presentation of the plates and accompanying handwritten
  material (plate envelopes, logbooks, observer notes) are presented
  here. To fully exploit the unique photometric and astrometric data,
  stored on the plates, further processing steps are required including
  registering the plate to celestial coordinates, masking of the plates,
  and a calibration of the photoemulsion darkening curve. To demonstrate
  the correct functioning of these procedures, historical light curves
  of two bright BL Lac-type active galactic nuclei are extracted. The
  resulting light curve of the blazar 1ES 1215+303 exhibits a large
  decrease in the magnitude from 14.25-0.12+0.07 to 15.94-0.13+0.09
  in about 300 days, which proves the variability in the optical
  region. Furthermore, we compare the measured magnitudes for the quasar
  3C 273 with contemporaneous measurements and find good agreement.

---------------------------------------------------------
Title: Discovery of the secondary eclipse of HAT-P-11 b
Authors: Huber, K. F.; Czesla, S.; Schmitt, J. H. M. M.
2017A&A...597A.113H    Altcode: 2016arXiv161100153H
  We report the detection of the secondary eclipse of HAT-P-11 b,
  a Neptune-sized planet orbiting an active K4 dwarf. Using all
  available short-cadence data of the Kepler mission, we derive refined
  planetary ephemeris increasing their precision by more than an order
  of magnitude. Our simultaneous primary and secondary transit modeling
  results in improved transit and orbital parameters. In particular, the
  precise timing of the secondary eclipse allows to pin down the orbital
  eccentricity to . The secondary eclipse depth of ppm corresponds to
  a 5.5σ detection and results in a geometric albedo of 0.39 ± 0.07
  for HAT-P-11 b, close to Neptune's value, which may indicate further
  resemblances between these two bodies. Due to the substantial orbital
  eccentricity, the planetary equilibrium temperature is expected to
  change significantly with orbital position and ought to vary between
  630 K and 950 K, depending on the details of heat redistribution in
  the atmosphere of HAT-P-11 b.

---------------------------------------------------------
Title: The basic physics of the binary black hole merger GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud,
   N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.;
   Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader,
   M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.;
   Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare,
   R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz,
   O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen,
   S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.;
   Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.;
   Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.;
   Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.;
   Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni
   Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan,
   M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen,
   Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.;
   Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe,
   J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.;
   Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.;
   Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.;
   Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di;
   Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.;
   Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher,
   M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise,
   A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar,
   S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi,
   K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones,
   R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.;
   Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger,
   C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.;
   Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam,
   J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui,
   M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers,
   P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov,
   E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra,
   C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.;
   Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.;
   Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.;
   Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.;
   Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.;
   Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas,
   B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.;
   Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.;
   Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.;
   Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.;
   Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.;
   Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.;
   Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens,
   X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss,
   N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin,
   S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam,
   M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne,
   K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland,
   K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie,
   C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali,
   M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch,
   H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van
   den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van
   der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano,
   F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale,
   S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang,
   Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson,
   A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf,
   C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto,
   H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.
2017AnP...52900209A    Altcode: 2016arXiv160801940T
  The first direct gravitational-wave detection was made by the Advanced
  Laser Interferometer Gravitational Wave Observatory on September 14,
  2015. The GW150914 signal was strong enough to be apparent, without
  using any waveform model, in the filtered detector strain data. Here,
  features of the signal visible in the data are analyzed using concepts
  from Newtonian physics and general relativity, accessible to anyone
  with a general physics background. The simple analysis presented here
  is consistent with the fully general-relativistic analyses published
  elsewhere,in showing that the signal was produced by the inspiral and
  subsequent merger of two black holes. The black holes were each of
  approximately 35 Msun, still orbited each other as close as ~350 km
  apart, and subsequently merged to form a single black hole. Similar
  reasoning, directly from the data, is used to roughly estimate how
  far these black holes were from the Earth, and the energy that they
  radiated in gravitational waves.

---------------------------------------------------------
Title: Study of the variability of Nova V5668 Sgr, based on
    high-resolution spectroscopic monitoring
Authors: Jack, D.; Robles Pérez, J. de J.; De Gennaro Aquino, I.;
   Schröder, K. -P.; Wolter, U.; Eenens, P.; Schmitt, J. H. M. M.;
   Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Rauw, G.;
   Hauschildt, P. H.
2017AN....338...91J    Altcode: 2017arXiv170201171J
  We present results of our dense spectroscopic monitoring of Nova V5668
  Sgr. Starting on March 19, 2015, only a few days after its discovery,
  we have obtained a series of spectra with the Telescopio Internacional
  en Guanajuato, Robótico y Espectroscópico telescope and its Heidelberg
  extended range optical spectrograph échelle spectrograph, which offers
  a resolution of R = 20,000 and covers the optical wavelength range
  3,8008,800 Å. We performed a line identification of the discernible
  features for four spectra, which are representative of the respective
  phases in the light curve evolution of that nova. We simultaneously
  analyzed the variations in the visual light curve and the corresponding
  spectra of Nova V5668 Sgr. We found that, during the declining phases
  of the nova, the absorption features in all hydrogen and many other
  lines had shifted to higher expansion velocities of about -2,000 km
  s<SUP>-1</SUP>. Conversely, during the rise toward the following
  maximum, these observed absorption features had returned to lower
  expansion velocities. We found that the absorption features of some
  Fe II lines displayed the same behavior, but in addition disappeared
  for a few days during some declining phases. Features of several N I
  lines also disappeared, while new N II lines appeared in the emission
  for a few days during some of the declining phases of the light curve
  of Nova V5668 Sgr. The shape of the emission features is changing
  during the evolution, and shows a clear double-peak structure after
  the deep minimum. Thanks to the dense spectral monitoring we could
  observe several interesting developments of the Nova V5668 Sgr.

---------------------------------------------------------
Title: How Much Dust Does Enceladus eject?
Authors: Kempf, S.; Southworth, B.; Srama, R.; Schmidt, J.; Postberg,
   F.
2016AGUFM.P33A2119K    Altcode:
  There is an ongoing argument how much dust per second the ice volcanoes
  on Saturn's ice moon eject. By adjusting their plume model to the
  dust flux measured by the Cassini dust detector during the close
  Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust
  production rate in the plumes of about 􏱱5 kg/s. On the other hand,
  Ingersoll and Ewald (2005) derived a dust production rate of 51 kg/s
  from the total plume brightness. Knowledge of the production rate is
  essential for estimating the dust to gas mass ratio, which in turn is
  an important constraint for finding the plume source mechanism. Here
  we report on measurements of the plume dust density during the last
  close Cassini flyby at Enceladus in October 2015. The data match our
  numerical model for the Enceladus plume. The model is based on a large
  number of dynamical simulations including gravity and Lorentz force
  to investigate the earliest phase of the ring particle life span. The
  evolution of the electrostatic charge carried by the initially uncharged
  grains is treated self-consistently. Our numerical simulations reproduce
  all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer
  (CDA). Our model calculations together with the new density data
  constrain the Enceladus dust source rate to &lt; 5 kg/s. Based on our
  simulation results we are able to draw conclusions about the emission
  of plume particles along the fractures in the south polar terrain.

---------------------------------------------------------
Title: Explorer of Enceladus and Titan (E<SUP>2</SUP>T): Investigating
    Ocean Worlds' Evolution and Habitability in the Saturn System
Authors: Mitri, G.; Postberg, F.; Soderblom, J. M.; Tobie, G.; Tortora,
   P.; Wurz, P.; Barnes, J. W.; Carrasco, N.; Coustenis, A.; Ferri, F.;
   Hayes, A.; Hillier, J.; Kempf, S.; Lebreton, J. P.; Lorenz, R. D.;
   Orosei, R.; Petropoulos, A. E. E.; Reh, K. R.; Schmidt, J.; Sotin,
   C.; Srama, R.; Vuitton, V.; Yen, C. W.
2016AGUFM.P33A2129M    Altcode:
  The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and
  Enceladus to be two of the most enigmatic worlds in the Solar
  System. Titan, with its organically rich and dynamic atmosphere and
  geology, and Enceladus, with its active plume of water vapor and ice
  including trace amounts of organics, salts, and silica nano-particles,
  both harboring subsurface oceans, are prime environments to investigate
  the conditions for the emergence of life and the habitability
  potential of ocean worlds, as well as the origin and evolution of
  complex planetary systems. The Explorer of Enceladus and Titan (E2T)
  is a space mission concept dedicated to investigating the evolution and
  habitability of these Saturnian satellites and is proposed in response
  to ESA's M5 Cosmic Vision Call, as a medium-class mission led by ESA in
  collaboration with NASA. E2T has a focused state-of-the-art payload that
  will provide in-situ chemical analysis, and high-resolution imaging from
  multiple flybys of Enceladus and Titan using a solar-electric powered
  spacecraft in orbit around Saturn. With significant improvements in
  mass range and resolution, as compared with Cassini instrumentation,
  the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy
  Jet Analyzer (ENIJA) time-of-flight mass spectrometers will provide the
  data needed to decipher the subtle details of the aqueous environment of
  Enceladus from plume sampling and of the complex pre-biotic chemistry
  occurring in Titan's atmosphere. The Titan Imaging and Geology,
  Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map
  thermal emission from Enceladus' tiger stripes at meter scales and
  investigate Titan's geology and compositional variability at decameter
  scales.

---------------------------------------------------------
Title: Supplement: “The Rate of Binary Black Hole Mergers Inferred
    from Advanced LIGO Observations Surrounding GW150914” (2016, ApJL,
    833, L1)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin,
   E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.;
   Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio,
   M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.;
   Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.;
   Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton,
   J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.;
   Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di
   Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio,
   A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco,
   S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.;
   Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun;
   Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.;
   Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.;
   Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.;
   Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma,
   Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.;
   Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero,
   N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.;
   Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.;
   Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie,
   C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali,
   M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.;
   Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.;
   Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wesels, P.;
   Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.;
   Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey,
   C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang,
   M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker,
   M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration;
   Virgo Collaboration
2016ApJS..227...14A    Altcode: 2016arXiv160603939T
  This article provides supplemental information for a Letter reporting
  the rate of (BBH) coalescences inferred from 16 days of coincident
  Advanced LIGO observations surrounding the transient (GW) signal
  GW150914. In that work we reported various rate estimates whose
  90% confidence intervals fell in the range 2-600 Gpc<SUP>-3</SUP>
  yr<SUP>-1</SUP>. Here we give details on our method and computations,
  including information about our search pipelines, a derivation of our
  likelihood function for the analysis, a description of the astrophysical
  search trigger distribution expected from merging BBHs, details on our
  computational methods, a description of the effects and our model for
  calibration uncertainty, and an analytic method for estimating our
  detector sensitivity, which is calibrated to our measurements.

---------------------------------------------------------
Title: Coronal activity cycles in action - X-rays from alpha
    Centauri A/B
Authors: Robrade, J.; Schmitt, J. H. M. M.
2016arXiv161206570R    Altcode:
  We report on the coronal activity cycles of our stellar neighbors alpha
  Centauri A/B. The binary has been monitored with XMM-Newton since
  2002 to study the long-term evolution of coronal activity evolution
  in X-rays. The solar analog alpha Cen A was clearly detected early in
  the program, but virtually faded away from XMM's detectors view around
  2005. After remaining nearly a decade in a state of coronal weakness,
  we now detect a clear re-brightening of its corona. The secondary alpha
  Cen B dominates the X-ray emission at most times and more than a full
  cycle is covered for this star. A new X-ray maximum was observed around
  2012 that is again followed by gentle dimming over the recent years. The
  temporal evolution of the X-ray emission can be well understood, in
  analogy to the 11 year solar-cycle, by coronal activity cycles with
  different amplitudes and periods operating in both stars.

---------------------------------------------------------
Title: Upper Limits on the Rates of Binary Neutron Star and Neutron
    Star-Black Hole Mergers from Advanced LIGO’s First Observing Run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard,
   M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.;
   Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy,
   C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane,
   C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni
   Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.;
   Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen,
   H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.;
   Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.;
   Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.;
   Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.;
   Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.;
   Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.;
   Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.;
   Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher,
   M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.;
   Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond,
   G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart,
   M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.;
   Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.;
   Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.;
   Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.;
   Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.;
   Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.;
   Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim,
   J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King,
   E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko,
   S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.;
   Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky,
   P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.;
   Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis,
   J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.;
   Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.;
   Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani,
   M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.;
   Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey,
   A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.;
   Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer,
   T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss,
   N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin,
   S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam,
   M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane,
   E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.;
   Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.;
   Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.;
   Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.;
   Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels,
   P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto,
   H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016ApJ...832L..21A    Altcode: 2016arXiv160707456T
  We report here the non-detection of gravitational waves from the merger
  of binary-neutron star systems and neutron star-black hole systems
  during the first observing run of the Advanced Laser Interferometer
  Gravitational-wave Observatory (LIGO). In particular, we searched
  for gravitational-wave signals from binary-neutron star systems
  with component masses \in [1,3] {M}<SUB>⊙ </SUB> and component
  dimensionless spins &lt;0.05. We also searched for neutron star-black
  hole systems with the same neutron star parameters, black hole mass
  \in [2,99] {M}<SUB>⊙ </SUB>, and no restriction on the black hole
  spin magnitude. We assess the sensitivity of the two LIGO detectors
  to these systems and find that they could have detected the merger
  of binary-neutron star systems with component mass distributions of
  1.35 ± 0.13 M <SUB>⊙</SUB> at a volume-weighted average distance
  of ∼70 Mpc, and for neutron star-black hole systems with neutron
  star masses of 1.4 M <SUB>⊙</SUB> and black hole masses of at
  least 5 M <SUB>⊙</SUB>, a volume-weighted average distance of at
  least ∼110 Mpc. From this we constrain with 90% confidence the
  merger rate to be less than 12,600 Gpc<SUP>-3</SUP> yr<SUP>-1</SUP>
  for binary-neutron star systems and less than 3600 Gpc<SUP>-3</SUP>
  yr<SUP>-1</SUP> for neutron star-black hole systems. We discuss the
  astrophysical implications of these results, which we find to be in
  conflict with only the most optimistic predictions. However, we find
  that if no detection of neutron star-binary mergers is made in the
  next two Advanced LIGO and Advanced Virgo observing runs we would place
  significant constraints on the merger rates. Finally, assuming a rate
  of {10}<SUB>-7</SUB><SUP>+20</SUP> Gpc<SUP>-3</SUP> yr<SUP>-1</SUP>,
  short gamma-ray bursts beamed toward the Earth, and assuming that all
  short gamma-ray bursts have binary-neutron star (neutron star-black
  hole) progenitors, we can use our 90% confidence rate upper limits
  to constrain the beaming angle of the gamma-ray burst to be greater
  than 2\buildrel{\circ}\over{.} {3}<SUB>-1.1</SUB><SUP>+1.7</SUP>
  (4\buildrel{\circ}\over{.} {3}<SUB>-1.9</SUB><SUP>+3.1</SUP>).

---------------------------------------------------------
Title: On Numerically Reproducing the Enceladus Plume
Authors: Southworth, B.; Kempf, S.; Schmidt, J.
2016AGUFM.P33A2120S    Altcode:
  The Enceladus plume was one of the most exciting discoveries of the
  NASA Cassini mission. However, a number of fundamental features of
  the plume have yet to be agreed upon. Schmidt et al. (2008) estimated
  a mass production rate on the order of 5 kg/s based on data from the
  Cassini dust detector, while Ingersoll and Ewald (2005) estimated
  a production rate of 51 kg/s based on plume brightness. Porco et
  al. (2014) produced a set of jet locations and source strength based
  on imaging; however, simulations of these sources do not reproduce
  surface deposition patterns of plume particles across Enceladus. We
  simulate jet sources across the south polar terrain, particularly along
  the fractures, accounting for gravitational forces and the Lorentz
  force, to construct a detailed numerical profile of the Enceladus
  plume. Recent simulations have led to updated surface deposition maps,
  which are able to constrain jet source locations and strength, and the
  recent E21 flyby provides detailed, low-altitude data from the dust
  detector on spacecraft impact rates. Altogether, dust-detector data,
  surface heat maps of plume fractures, UV surface deposition maps,
  and photometry are used in conjunction to better resolve both the mass
  production rate - and thereby dust-to-gas ratio - and source strength
  and location for the Enceladus plume.

---------------------------------------------------------
Title: The Rate of Binary Black Hole Mergers Inferred from Advanced
    LIGO Observations Surrounding GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin,
   E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.;
   Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.;
   Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio,
   M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.;
   Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.;
   Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton,
   J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.;
   Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di
   Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio,
   A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco,
   S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.;
   Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González,
   G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun;
   Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.;
   Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.;
   Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.;
   Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma,
   Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.;
   Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.;
   Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian,
   L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero,
   N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.;
   Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.;
   Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie,
   C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali,
   M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.;
   Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace,
   L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.;
   Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.;
   Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.;
   Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer,
   M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.;
   Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey,
   C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang,
   M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker,
   M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration;
   Virgo Collaboration
2016ApJ...833L...1A    Altcode: 2016arXiv160203842A; 2016arXiv160203842T
  A transient gravitational-wave signal, GW150914, was identified
  in the twin Advanced LIGO detectors on 2015 September 2015 at
  09:50:45 UTC. To assess the implications of this discovery, the
  detectors remained in operation with unchanged configurations
  over a period of 39 days around the time of the signal. At the
  detection statistic threshold corresponding to that observed for
  GW150914, our search of the 16 days of simultaneous two-detector
  observational data is estimated to have a false-alarm rate (FAR)
  of \lt 4.9× {10}<SUP>-6</SUP> {{yr}}<SUP>-1</SUP>, yielding a
  p-value for GW150914 of \lt 2× {10}<SUP>-7</SUP>. Parameter
  estimation follow-up on this trigger identifies its
  source as a binary black hole (BBH) merger with component masses
  ({m}<SUB>1</SUB>,{m}<SUB>2</SUB>)=({36}<SUB>-4</SUB><SUP>+5</SUP>,{29}<SUB>-4</SUB><SUP>+4</SUP>)
  {M}<SUB>⊙ </SUB> at redshift z={0.09}<SUB>-0.04</SUB><SUP>+0.03</SUP>
  (median and 90% credible range). Here, we report on the constraints
  these observations place on the rate of BBH coalescences. Considering
  only GW150914, assuming that all BBHs in the universe have the same
  masses and spins as this event, imposing a search FAR threshold of
  1 per 100 years, and assuming that the BBH merger rate is constant
  in the comoving frame, we infer a 90% credible range of merger
  rates between 2{--}53 {{Gpc}}<SUP>-3</SUP> {{yr}}<SUP>-1</SUP>
  (comoving frame). Incorporating all search triggers that pass a
  much lower threshold while accounting for the uncertainty in the
  astrophysical origin of each trigger, we estimate a higher rate,
  ranging from 13{--}600 {{Gpc}}<SUP>-3</SUP> {{yr}}<SUP>-1</SUP>
  depending on assumptions about the BBH mass distribution. All together,
  our various rate estimates fall in the conservative range 2{--}600
  {{Gpc}}<SUP>-3</SUP> {{yr}}<SUP>-1</SUP>.

---------------------------------------------------------
Title: Results of the deepest all-sky survey for continuous
    gravitational waves on LIGO S6 data running on the Einstein@Home
    volunteer distributed computing project
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.;
   Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser,
   J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer,
   C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.;
   Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan,
   C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.;
   Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli,
   G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella,
   G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin,
   E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt,
   T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci,
   D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.;
   Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.;
   Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.;
   Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.;
   Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.;
   Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.;
   Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms,
   J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster,
   C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry,
   J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.;
   Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell,
   E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.;
   Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia,
   S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.;
   Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key,
   J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim,
   N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth,
   W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak,
   A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.;
   Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani,
   M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.;
   Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey,
   A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie,
   J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.;
   Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi,
   L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.;
   Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson,
   P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.;
   Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer,
   T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.;
   Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke,
   M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens,
   B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss,
   N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.;
   Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk,
   M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin,
   S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam,
   M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane,
   E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson,
   C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo,
   L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen,
   J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin,
   R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.;
   Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.;
   Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.;
   Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert,
   M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.;
   Zhu, S. J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO
   Scientific Collaboration; Virgo Collaboration
2016PhRvD..94j2002A    Altcode: 2016arXiv160609619T
  We report results of a deep all-sky search for periodic gravitational
  waves from isolated neutron stars in data from the S6 LIGO science
  run. The search was possible thanks to the computing power provided by
  the volunteers of the Einstein@Home distributed computing project. We
  find no significant signal candidate and set the most stringent upper
  limits to date on the amplitude of gravitational wave signals from
  the target population. At the frequency of best strain sensitivity,
  between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5
  ×10<SUP>-25</SUP> , while at the high end of our frequency range,
  around 505 Hz, we achieve upper limits ≃10<SUP>-24</SUP> . At 230 Hz
  we can exclude sources with ellipticities greater than 10<SUP>-6</SUP>
  within 100 pc of Earth with fiducial value of the principal moment of
  inertia of 10<SUP>38</SUP> kg m<SUP>2</SUP> . If we assume a higher
  (lower) gravitational wave spin-down we constrain farther (closer)
  objects to higher (lower) ellipticities.

---------------------------------------------------------
Title: First targeted search for gravitational-wave bursts
    from core-collapse supernovae in data of first-generation laser
    interferometer detectors
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister,
   T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.;
   Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.;
   Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla,
   A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti,
   L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.;
   Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De
   Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.;
   Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini,
   F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio,
   R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei,
   Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain,
   V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet,
   D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy,
   A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos,
   I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.;
   Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.;
   King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte,
   L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.;
   Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.;
   Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.;
   Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi,
   A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.;
   Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros,
   E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.;
   Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland,
   D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.;
   McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam,
   J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.;
   Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.;
   Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.;
   Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.;
   Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann,
   P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix,
   R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo,
   P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie,
   R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.;
   Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.;
   Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling,
   R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott,
   J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar,
   M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava,
   A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.;
   Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari,
   V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.;
   Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò,
   D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano,
   F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale,
   S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.;
   Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker,
   M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang,
   X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen,
   L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb,
   S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson,
   A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf,
   C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.;
   Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.;
   Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.;
   Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..94j2001A    Altcode: 2016arXiv160501785A
  We present results from a search for gravitational-wave bursts
  coincident with two core-collapse supernovae observed optically
  in 2007 and 2011. We employ data from the Laser Interferometer
  Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave
  observatory, and the GEO 600 gravitational-wave observatory. The
  targeted core-collapse supernovae were selected on the basis of
  (1) proximity (within approximately 15 Mpc), (2) tightness of
  observational constraints on the time of core collapse that defines
  the gravitational-wave search window, and (3) coincident operation of
  at least two interferometers at the time of core collapse. We find no
  plausible gravitational-wave candidates. We present the probability of
  detecting signals from both astrophysically well-motivated and more
  speculative gravitational-wave emission mechanisms as a function of
  distance from Earth, and discuss the implications for the detection
  of gravitational waves from core-collapse supernovae by the upgraded
  Advanced LIGO and Virgo detectors.

---------------------------------------------------------
Title: Glimpses of stellar surfaces. II. Origins of the photometric
    modulations and timing variations of KOI-1452
Authors: Ioannidis, P.; Schmitt, J. H. M. M.
2016A&A...594A..42I    Altcode: 2016arXiv160708080I
  The deviations of the mid-transit times of an exoplanet from a linear
  ephemeris are usually the result of gravitational interactions with
  other bodies in the system. However, these types of transit timing
  variations (TTV) can also be introduced by the influences of star spots
  on the shape of the transit profile. Here we use the method of unsharp
  masking to investigate the photometric light curves of planets with
  ambiguous TTV to compare the features in their O-C diagram with the
  occurrence and in-transit positions of spot-crossing events. This method
  seems to be particularly useful for the examination of transit light
  curves with only small numbers of in-transit data points, I.e., the long
  cadence light curves from Kepler satellite. As a proof of concept we
  apply this method to the light curve and the estimated eclipse timing
  variations of the eclipsing binary KOI-1452, for which we prove their
  non-gravitational nature. Furthermore, we use the method to study the
  rotation properties of the primary star of the system KOI-1452 and
  show that the spots responsible for the timing variations rotate with
  different periods than the most prominent periods of the system's light
  curve. We argue that the main contribution in the measured photometric
  variability of KOI-1452 originates in g-mode oscillations, which makes
  the primary star of the system a γ-Dor type variable candidate.

---------------------------------------------------------
Title: Apsidal motion in the massive binary HD 152218
Authors: Rauw, G.; Rosu, S.; Noels, A.; Mahy, L.; Schmitt, J. H. M. M.;
   Godart, M.; Dupret, M. -A.; Gosset, E.
2016A&A...594A..33R    Altcode: 2016arXiv160902735R
  Massive binary systems are important laboratories in which to probe
  the properties of massive stars and stellar physics in general. In
  this context, we analysed optical spectroscopy and photometry of the
  eccentric short-period early-type binary HD 152218 in the young open
  cluster NGC 6231. We reconstructed the spectra of the individual stars
  using a disentangling code. The individual spectra were then compared
  with synthetic spectra obtained with the CMFGEN model atmosphere
  code. We furthermore analysed the light curve of the binary and used
  it to constrain the orbital inclination and to derive absolute masses
  of (19.8 ± 1.5) and (15.0 ± 1.1) M<SUB>⊙</SUB>. Combining radial
  velocity measurements from over 60 yr, we show that the system displays
  apsidal motion at a rate of (2.04<SUP>+ .23</SUP><SUB>-.24</SUB>)°
  yr<SUP>-1</SUP>. Solving the Clairaut-Radau equation, we used stellar
  evolution models, obtained with the CLES code, to compute the internal
  structure constants and to evaluate the theoretically predicted rate of
  apsidal motion as a function of stellar age and primary mass. In this
  way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is
  towards the higher end of, but compatible with, the range of ages of
  the massive star population of NGC 6231 as determined from isochrone
  fitting.

---------------------------------------------------------
Title: Improved Analysis of GW150914 Using a Fully Spin-Precessing
    Waveform Model
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair,
   D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert,
   G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.;
   Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.;
   Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese,
   S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart,
   M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe,
   J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.;
   Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.;
   Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.;
   Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher,
   M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.;
   Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng,
   P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello,
   P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell,
   E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.;
   Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel,
   N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan,
   Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee;
   Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.;
   King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.;
   Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.;
   Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.;
   Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky,
   P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.;
   Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis,
   J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.;
   Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.;
   MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man,
   N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani,
   M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan,
   A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone,
   L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.;
   Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff,
   R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.;
   Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.;
   Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.;
   Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas,
   B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.;
   Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun,
   L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne,
   K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland,
   K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie,
   C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali,
   M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.;
   Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth,
   M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.;
   Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra,
   S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick,
   C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting,
   B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke,
   B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.;
   Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.;
   Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.;
   Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder,
   I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.;
   Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvX...6d1014A    Altcode: 2016arXiv160601210T
  This paper presents updated estimates of source parameters for
  GW150914, a binary black-hole coalescence event detected by the
  Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015
  [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott
  et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented
  parameter estimation of the source using a 13-dimensional,
  phenomenological precessing-spin model (precessing IMRPhenom)
  and an 11-dimensional nonprecessing effective-one-body (EOB) model
  calibrated to numerical-relativity simulations, which forces spin
  alignment (nonprecessing EOBNR). Here, we present new results
  that include a 15-dimensional precessing-spin waveform model
  (precessing EOBNR) developed within the EOB formalism. We find
  good agreement with the parameters estimated previously [Abbott
  et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated
  component masses of 35<SUB>-3</SUB><SUP>+5</SUP> M<SUB>⊙</SUB> and
  3 0<SUB>-4</SUB><SUP>+3</SUP> M<SUB>⊙</SUB> (where errors correspond
  to 90% symmetric credible intervals). We also present slightly tighter
  constraints on the dimensionless spin magnitudes of the two black holes,
  with a primary spin estimate &lt;0.65 and a secondary spin estimate
  &lt;0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116,
  241102 (2016).] estimated the systematic parameter-extraction errors
  due to waveform-model uncertainty by combining the posterior probability
  densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find
  that the two precessing-spin models are in closer agreement, suggesting
  that these systematic errors are smaller than previously quoted.

---------------------------------------------------------
Title: Glimpses of stellar surfaces. I. Spot evolution and
    differential rotation of the planet host star Kepler-210
Authors: Ioannidis, P.; Schmitt, J. H. M. M.
2016A&A...594A..41I    Altcode: 2016arXiv160708065I
  We use high accuracy photometric data obtained with the Kepler satellite
  to monitor the activity modulations of the Kepler-210 planet host star
  over a time span of more than four years. Following the phenomenology
  of the star's light curve in combination with a five spot model,
  we identify six different so-called spot seasons. A characteristic,
  which is common in the majority of the seasons, is the persistent
  appearance of spots in a specific range of longitudes on the stellar
  surface. The most prominent period of the observed activity modulations
  is different for each season and appears to evolve following a specific
  pattern, resembling the changes in the sunspot periods during the
  solar magnetic cycle. Under the hypothesis that the star exhibits
  solar-like differential rotation, we suggest differential rotation
  values of Kepler-210 that are similar to or smaller than that of the
  Sun. Finally, we estimate spot life times between ~60 days and ~90
  days, taking into consideration the evolution of the total covered
  stellar surface computed from our model.

---------------------------------------------------------
Title: Binary Black Hole Mergers in the First Advanced LIGO
    Observing Run
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch,
   J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair,
   D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert,
   G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown,
   N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero,
   M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.;
   Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.;
   Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.;
   Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.;
   Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.;
   Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher,
   M.; Fong, H.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda,
   P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng,
   P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.;
   Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry,
   J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.;
   Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell,
   E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.;
   Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel,
   N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan,
   Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee;
   Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.;
   King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.;
   Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel,
   V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.;
   Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.;
   Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.;
   Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma,
   Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic,
   I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel,
   C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.;
   Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.;
   Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova,
   K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.;
   Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen,
   B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba,
   C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello,
   D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.;
   Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri,
   L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov,
   G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas,
   B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.;
   Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun,
   L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.;
   Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.;
   Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo,
   L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand,
   J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf,
   L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass,
   S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.;
   Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward,
   R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto,
   H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvX...6d1015A    Altcode: 2016arXiv160604856T
  The first observational run of the Advanced LIGO detectors, from
  September 12, 2015 to January 19, 2016, saw the first detections of
  gravitational waves from binary black hole mergers. In this paper,
  we present full results from a search for binary black hole merger
  signals with total masses up to 100 M<SUB>⊙</SUB> and detailed
  implications from our observations of these systems. Our search,
  based on general-relativistic models of gravitational-wave signals
  from binary black hole systems, unambiguously identified two signals,
  GW150914 and GW151226, with a significance of greater than 5 σ over
  the observing period. It also identified a third possible signal,
  LVT151012, with substantially lower significance and with an 87%
  probability of being of astrophysical origin. We provide detailed
  estimates of the parameters of the observed systems. Both GW150914
  and GW151226 provide an unprecedented opportunity to study the
  two-body motion of a compact-object binary in the large velocity,
  highly nonlinear regime. We do not observe any deviations from
  general relativity, and we place improved empirical bounds on several
  high-order post-Newtonian coefficients. From our observations, we infer
  stellar-mass binary black hole merger rates lying in the range 9 - 240
  Gpc<SUP>-3</SUP> yr<SUP>-1</SUP> . These observations are beginning
  to inform astrophysical predictions of binary black hole formation
  rates and indicate that future observing runs of the Advanced detector
  network will yield many more gravitational-wave detections.

---------------------------------------------------------
Title: Direct Imaging discovery of a second planet candidate around
    the possibly transiting planet host CVSO 30
Authors: Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.;
   Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam,
   C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M.
2016A&A...593A..75S    Altcode: 2016arXiv160505315S
  Context. Direct imaging has developed into a very successful
  technique for the detection of exoplanets in wide orbits, especially
  around young stars. Directly imaged planets can be both followed
  astrometrically on their orbits and observed spectroscopically and
  thus provide an essential tool for our understanding of the early
  solar system. <BR /> Aims: We surveyed the 25 Ori association for
  direct-imaging companions. This association has an age of only few
  million years. Among other targets, we observed CVSO 30, which has
  recently been identified as the first T Tauri star found to host a
  transiting planet candidate. <BR /> Methods: We report on photometric
  and spectroscopic high-contrast observations with the Very Large
  Telescope, the Keck telescopes, and the Calar Alto observatory. They
  reveal a directly imaged planet candidate close to the young M3
  star CVSO 30. <BR /> Results: The JHK-band photometry of the newly
  identified candidate is at better than 1σ consistent with late-type
  giants, early-T and early-M dwarfs, and free-floating planets. Other
  hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky
  imaging z' photometric detection limit z' = 20.5 mag excludes early-M
  dwarfs and results in less than 10 M<SUB>Jup</SUB> for CVSO 30 c if
  bound. We present spectroscopic observations of the wide companion that
  imply that the only remaining explanation for the object is that it is
  the first very young (&lt;10 Myr) L - T-type planet bound to a star,
  meaning that it appears bluer than expected as a result of a decreasing
  cloud opacity at low effective temperatures. Only a planetary spectral
  model is consistent with the spectroscopy, and we deduce a best-fit
  mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). <BR
  /> Conclusions: This means that CVSO 30 is the first system in which
  both a close-in and a wide planet candidate are found to have a common
  host star. The orbits of the two possible planets could not be more
  different: they have orbital periods of 10.76 h and about 27 000
  yr. The two orbits may have formed during a mutual catastrophic event
  of planet-planet scattering. <P />Based on observations made with
  ESO Telescopes at the La Silla Paranal Observatory under programme
  IDs 090.C-0448(A), 290.C-5018(B), 092.C-0488(A) and at the Centro
  Astronómico Hispano-Alemán in programme H15-2.2-002.

---------------------------------------------------------
Title: Directly comparing GW150914 with numerical solutions of
    Einstein's equations for binary black hole coalescence
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser,
   J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.;
   Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer,
   C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.;
   Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan,
   C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.;
   Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.;
   Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.;
   Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.;
   Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.;
   Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.;
   Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini,
   F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio,
   R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei,
   Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.;
   Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng,
   P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs,
   M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins,
   P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.;
   Huerta, E. A.; Huet, D.; Hughey, B.; Huttner, S. H.; Huynh-Dinh, T.;
   Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.;
   Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.;
   Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson,
   W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim,
   K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.;
   King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko,
   S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.;
   Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.;
   Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.;
   Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky,
   P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon,
   A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.;
   Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie,
   N. A.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.;
   Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel,
   C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.;
   Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.;
   Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.;
   Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova,
   K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.;
   Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen,
   B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.;
   Pal-Singh, A.; Pan, H.; Pankow, C.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma,
   V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska,
   D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi,
   F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.;
   Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.;
   Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev,
   M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Siellez,
   K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava,
   A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.;
   Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero,
   N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.;
   Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.;
   Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor,
   R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas,
   M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.;
   Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting,
   B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke,
   B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.;
   Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny,
   A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang,
   L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.;
   Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.;
   Chu, T.; Clark, M.; Fauchon-Jones, E.; Fong, H.; Healy, J.; Hemberger,
   D.; Hinder, I.; Husa, S.; Kalaghati, C.; Khan, S.; Kidder, L. E.;
   Kinsey, M.; Laguna, P.; London, L. T.; Lousto, C. O.; Lovelace, G.;
   Ossokine, S.; Pannarale, F.; Pfeiffer, H. P.; Scheel, M.; Shoemaker,
   D. M.; Szilagyi, B.; Teukolsky, S.; Vinuales, A. Vano; Zlochower,
   Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..94f4035A    Altcode: 2016arXiv160601262T
  We compare GW150914 directly to simulations of coalescing binary
  black holes in full general relativity, including several performed
  specifically to reproduce this event. Our calculations go beyond
  existing semianalytic models, because for all simulations—including
  sources with two independent, precessing spins—we perform
  comparisons which account for all the spin-weighted quadrupolar
  modes, and separately which account for all the quadrupolar and
  octopolar modes. Consistent with the posterior distributions
  reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)]
  (at the 90% credible level), we find the data are compatible with
  a wide range of nonprecessing and precessing simulations. Follow-up
  simulations performed using previously estimated binary parameters most
  resemble the data, even when all quadrupolar and octopolar modes are
  included. Comparisons including only the quadrupolar modes constrain
  the total redshifted mass M<SUB>z</SUB>∈[64 M<SUB>⊙</SUB>-82
  M<SUB>⊙</SUB>] , mass ratio 1 /q =m<SUB>2</SUB>/m<SUB>1</SUB>∈[0.6
  ,1 ], and effective aligned spin χ<SUB>eff</SUB>∈[-0.3 ,0.2 ], where
  χ<SUB>eff</SUB>=(S<SUB>1</SUB>/m<SUB>1</SUB>+S<SUB>2</SUB>/m<SUB>2</SUB>).L
  ^/M . Including both quadrupolar and octopolar modes, we find the mass
  ratio is even more tightly constrained. Even accounting for precession,
  simulations with extreme mass ratios and effective spins are highly
  inconsistent with the data, at any mass. Several nonprecessing and
  precessing simulations with similar mass ratio and χ<SUB>eff</SUB>
  are consistent with the data. Though correlated, the components'
  spins (both in magnitude and directions) are not significantly
  constrained by the data: the data is consistent with simulations
  with component spin magnitudes a<SUB>1 ,2</SUB> up to at least 0.8,
  with random orientations. Further detailed follow-up calculations are
  needed to determine if the data contain a weak imprint from transverse
  (precessing) spins. For nonprecessing binaries, interpolating between
  simulations, we reconstruct a posterior distribution consistent with
  previous results. The final black hole's redshifted mass is consistent
  with M<SUB>f ,z</SUB> in the range 64.0 M<SUB>⊙</SUB>-73.5
  M<SUB>⊙</SUB> and the final black hole's dimensionless spin
  parameter is consistent with a<SUB>f</SUB>=0.62 - 0.73 . As our
  approach invokes no intermediate approximations to general relativity
  and can strongly reject binaries whose radiation is inconsistent with
  the data, our analysis provides a valuable complement to Abbott et
  al. [Phys. Rev. Lett. 116, 241102 (2016)].

---------------------------------------------------------
Title: Comprehensive all-sky search for periodic gravitational waves
    in the sixth science run LIGO data
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard,
   M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.;
   Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy,
   C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane,
   C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.;
   Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià,
   M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni
   Baiardi, L.; Cerretani, G.; Cesarini, E.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.;
   Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow,
   J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.;
   Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton,
   T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave,
   I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra,
   D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.;
   Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.;
   DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.;
   Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.;
   Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher,
   M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise,
   A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.;
   Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar,
   S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming,
   G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall,
   A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz,
   D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu,
   Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi,
   K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.;
   Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones,
   R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.;
   Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger,
   C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.;
   Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano,
   V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.;
   Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.;
   Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.;
   Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani,
   M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.;
   Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.;
   Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey,
   A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.;
   Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post,
   A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.;
   Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi,
   H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov,
   G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas,
   B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.;
   Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.;
   Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati,
   Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva,
   A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil,
   S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini,
   A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.;
   Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari,
   V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi,
   Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi,
   M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.;
   Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels,
   P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden,
   J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto,
   H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.;
   Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..94d2002A    Altcode: 2016arXiv160503233T
  We report on a comprehensive all-sky search for periodic gravitational
  waves in the frequency band 100-1500 Hz and with a frequency time
  derivative in the range of [-1.18 ,+1.00 ] ×1 0<SUP>-8</SUP> Hz /s
  . Such a signal could be produced by a nearby spinning and slightly
  nonaxisymmetric isolated neutron star in our galaxy. This search uses
  the data from the initial LIGO sixth science run and covers a larger
  parameter space with respect to any past search. A Loosely Coherent
  detection pipeline was applied to follow up weak outliers in both
  Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate)
  bands. No gravitational wave signals were observed, and upper limits
  were placed on their strength. Our smallest upper limit on worst-case
  (linearly polarized) strain amplitude h<SUB>0</SUB> is 9.7 ×1
  0<SUP>-25</SUP> near 169 Hz, while at the high end of our frequency
  range we achieve a worst-case upper limit of 5.5 ×1 0<SUP>-24</SUP>
  . Both cases refer to all sky locations and entire range of frequency
  derivative values.

---------------------------------------------------------
Title: CARMENES: an overview six months after first light
Authors: Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt,
   R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.;
   Alonso-Floriano, F. J.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.;
   Barrado, D.; Becerril, S.; Bejar, V. J. S.; Benitez, D.; Berdinas,
   Z. M.; Brinkmöller, M.; Cardenas, M. C.; Casal, E.; Claret, A.;
   Colomé, J.; Cortes-Contreras, M.; Czesla, S.; Doellinger, M.;
   Dreizler, S.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister,
   B.; Galadi, D.; Gallardo, I.; Gálvez-Ortiz, M. C.; Garcia-Piquer,
   A.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Hernández,
   J. I.; Gonzalez Peinado, R.; Grözinger, U.; Guàrdia, J.; Guenther,
   E. W.; de Guindos, E.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt,
   P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Arabi, R.;
   Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber,
   A.; Huber, K. F.; Huke, P.; Jeffers, S. V.; de Juan, E.; Kaminski,
   A.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Kürster, M.; Lafarga,
   M.; Lara, L. M.; Lamert, A.; Laun, W.; Launhardt, R.; Lemke, U.;
   Lenzen, R.; Llamas, M.; Lopez del Fresno, M.; López-Puertas, M.;
   López-Santiago, J.; Lopez Salas, J. F.; Magan Madinabeitia, H.; Mall,
   U.; Mandel, H.; Mancini, L.; Marin Molina, J. A.; Maroto Fernández,
   D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C.; Mathar, R. J.;
   Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Nagel,
   E.; Naranjo, V.; Nowak, G.; Palle, E.; Panduro, J.; Passegger, V. M.;
   Pavlov, A.; Pedraz, S.; Perez, E.; Pérez-Medialdea, D.; Perger,
   M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.;
   Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.;
   Rodríguez López, C.; Rohloff, R. R.; Rosich, A.; Sanchez Carrasco,
   M. A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer,
   S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Schöfer,
   P.; Schweitzer, A.; Shulyak, D.; Solano, E.; Stahl, O.; Storz, C.;
   Tabernero, H. M.; Tala, M.; Tal-Or, L.; Ulbrich, R. -G.; Veredas, G.;
   Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Zapatero
   Osorio, M. -R.; Zechmeister, M.; Ammler-von Eiff, M.; Anglada-Escudé,
   G.; del Burgo, C.; Garcia-Vargas, M. L.; Klutsch, A.; Lizon, J. -L.;
   Lopez-Morales, M.; Ofir, A.; Pérez-Calpena, A.; Perryman, M. A. C.;
   Sánchez-Blanco, E.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.;
   Trifonov, T.; Tulloch, S. M.; Xu, W.
2016SPIE.9908E..12Q    Altcode:
  The CARMENES instrument is a pair of high-resolution (R&gt; 80,000)
  spectrographs covering the wavelength range from 0.52 to 1.71 μm,
  optimized for precise radial velocity measurements. It was installed
  and commissioned at the 3.5m telescope of the Calar Alto observatory
  in Southern Spain in 2015. The first large science program of CARMENES
  is a survey of 300 M dwarfs, which started on Jan 1, 2016. We present
  an overview of all subsystems of CARMENES (front end, fiber system,
  visible-light spectrograph, near-infrared spectrograph, calibration
  units, etalons, facility control, interlock system, instrument control
  system, data reduction pipeline, data flow, and archive), and give an
  overview of the assembly, integration, verification, and commissioning
  phases of the project. We show initial results and discuss further
  plans for the scientific use of CARMENES.

---------------------------------------------------------
Title: An extensive spectroscopic time series of three Wolf-Rayet
    stars - I. The lifetime of large-scale structures in the wind of
    WR 134
Authors: Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat,
   A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza,
   B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.;
   Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.;
   Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias,
   F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger,
   T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez,
   A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.;
   Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.;
   Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.;
   Waldschläger, U.; Weiss, D.; Wendt, A.
2016MNRAS.460.3407A    Altcode: 2016arXiv160504868A; 2016MNRAS.tmp..949A
  During the summer of 2013, a 4-month spectroscopic campaign took
  place to observe the variabilities in three Wolf-Rayet stars. The
  spectroscopic data have been analysed for WR 134 (WN6b), to better
  understand its behaviour and long-term periodicity, which we interpret
  as arising from corotating interaction regions (CIRs) in the wind. By
  analysing the variability of the He II λ5411 emission line, the
  previously identified period was refined to P = 2.255 ± 0.008
  (s.d.) d. The coherency time of the variability, which we associate
  with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d,
  or ∼18 cycles, by cross-correlating the variability patterns as a
  function of time. When comparing the phased observational grey-scale
  difference images with theoretical grey-scales previously calculated
  from models including CIRs in an optically thin stellar wind, we find
  that two CIRs were likely present. A separation in longitude of Δφ
  ≃ 90° was determined between the two CIRs and we suggest that the
  different maximum velocities that they reach indicate that they emerge
  from different latitudes. We have also been able to detect observational
  signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and
  He I λ5876). Furthermore, a DAC was found to be present simultaneously
  with the CIR signatures detected in the He I λ5876 emission line which
  is consistent with the proposed geometry of the large-scale structures
  in the wind. Small-scale structures also show a presence in the wind,
  simultaneously with the larger scale structures, showing that they do
  in fact co-exist.

---------------------------------------------------------
Title: Supplement: “Localization and Broadband Follow-up of the
    Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13)
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO
   Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.;
   Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee,
   W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla,
   T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.;
   Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.;
   Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.;
   Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock,
   R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.;
   da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor,
   Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.;
   Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley,
   R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer,
   C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.;
   Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.;
   Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.;
   Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.;
   Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.;
   Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT
   Collaboration; Zadko Collaboration; Algerian National Observatory,
   Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela,
   T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral,
   J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares,
   M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration
2016ApJS..225....8A    Altcode: 2016arXiv160407864A
  This Supplement provides supporting material for Abbott et
  al. (2016a). We briefly summarize past electromagnetic (EM) follow-up
  efforts as well as the organization and policy of the current EM
  follow-up program. We compare the four probability sky maps produced
  for the gravitational-wave transient GW150914, and provide additional
  details of the EM follow-up observations that were performed in the
  different bands.

---------------------------------------------------------
Title: Characterization of transient noise in Advanced LIGO relevant
    to gravitational wave signal GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.;
   Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn,
   L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier,
   F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.;
   Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.;
   Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin,
   E.; Chatterji, S.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.;
   Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu,
   Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.;
   Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.;
   Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi,
   A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.;
   Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton,
   J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De
   Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.;
   Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio,
   A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.;
   Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.;
   Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai,
   A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.;
   Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant,
   A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.;
   Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.;
   Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna,
   C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet,
   D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy,
   A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.;
   Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman,
   W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.;
   Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key,
   J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan,
   Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim,
   Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel,
   D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.;
   Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell,
   J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re,
   V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze,
   D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.;
   Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens,
   X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.;
   Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.;
   Slutsky, J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.;
   Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen,
   L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb,
   S.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.;
   Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou,
   Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016CQGra..33m4001A    Altcode: 2016arXiv160203844T
  On 14 September 2015, a gravitational wave signal from a
  coalescing black hole binary system was observed by the Advanced
  LIGO detectors. This paper describes the transient noise backgrounds
  used to determine the significance of the event (designated GW150914)
  and presents the results of investigations into potential correlated
  or uncorrelated sources of transient noise in the detectors around the
  time of the event. The detectors were operating nominally at the time of
  GW150914. We have ruled out environmental influences and non-Gaussian
  instrument noise at either LIGO detector as the cause of the observed
  gravitational wave signal.

---------------------------------------------------------
Title: Charging of small grains in a space plasma: Application to
    Jovian stream particles
Authors: Dzhanoev, A. R.; Schmidt, J.; Liu, X.; Spahn, F.
2016A&A...591A.147D    Altcode: 2016arXiv160308565D
  Context. Most theoretical investigations of dust charging processes
  in space have treated the current balance condition as independent of
  grain size. However, for small grains, since they are often observed
  in space environments, a dependence on grain size is expected owing to
  secondary electron emission (SEE). Here, by the term "small" we mean
  a particle size comparable to the typical penetration depth for given
  primary electron energy. The results are relevant for the dynamics of
  small, charged dust particles emitted by the volcanic moon Io, which
  forms the Jovian dust streams. <BR /> Aims: We revise the theory of
  charging of small (submicron sized) micrometeoroids to take into account
  a high production of secondary electrons for small grains immersed in an
  isotropic flux of electrons. We apply our model to obtain an improved
  estimate for the charge of the dust streams leaving the Jovian system,
  detected by several spacecraft. <BR /> Methods: We apply a continuum
  model to describe the penetration of primary electrons in a grain and
  the emission of secondary electrons along the path. Averaging over
  an isotropic flux of primaries, we derive a new expression for the
  secondary electron yield, which can be used to express the secondary
  electron current on a grain. <BR /> Results: For the Jupiter plasma
  environment we derive the surface potential of grains composed of NaCl
  (believed to be the major constituent of Jovian dust stream particles)
  or silicates. For small particles, the potential depends on grain size
  and the secondary electron current induces a sensitivity to material
  properties. As a result of the small particle effect, the estimates
  for the charging times and for the fractional charge fluctuations of
  NaCl grains obtained using our general approach to SEE give results
  qualitatively different from the analogous estimates derived from the
  traditional approach to SEE. We find that for the charging environment
  considered in this paper field emission does not limit the charging
  of NaCl grains.

---------------------------------------------------------
Title: Localization and Broadband Follow-up of the Gravitational-wave
    Transient GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya,
   M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.;
   Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth,
   P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.;
   Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.;
   Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.;
   Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti,
   D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill,
   S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda,
   C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.;
   Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.;
   Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.;
   Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.;
   Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma,
   I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.;
   Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni,
   L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.;
   Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.;
   Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim,
   Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.;
   Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange,
   J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.;
   Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.;
   Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee,
   D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.;
   Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.;
   Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling,
   J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh,
   S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly,
   B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.;
   Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.;
   Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.;
   Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca,
   A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani,
   R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.;
   Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.;
   Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken,
   O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci,
   F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.;
   Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg,
   V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz,
   B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock,
   D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro,
   B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.;
   Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer,
   A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo
   Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister,
   K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.;
   Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.;
   McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.;
   Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array
   Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.;
   Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.;
   Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez
   Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec,
   R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.;
   Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz,
   R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong,
   S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart,
   D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.;
   Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott,
   T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.;
   Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.;
   Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander,
   F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.;
   D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich,
   J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.;
   Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher,
   B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.;
   Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen,
   D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James,
   D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.;
   Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin,
   N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti,
   R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger,
   B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord,
   B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert,
   E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.;
   Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.;
   Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.;
   Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker,
   D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny,
   B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy
   Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.;
   Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge,
   C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.;
   Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen,
   R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.;
   Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres,
   P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann,
   M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson,
   M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron,
   R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi,
   J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de
   Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.;
   di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.;
   Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.;
   Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.;
   Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green,
   D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding,
   A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.;
   Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss,
   M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo,
   F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera,
   S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery,
   J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev,
   A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.;
   Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando,
   E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.;
   Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.;
   Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz
   Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.;
   Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.;
   Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama,
   Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.;
   Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.;
   Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.;
   Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman,
   F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni,
   S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone,
   L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.;
   Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo,
   E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.;
   Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko,
   V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer,
   L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller,
   A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci,
   F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar,
   B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.;
   Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley,
   K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin,
   D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline,
   T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa,
   K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta,
   K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.;
   Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey;
   Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.;
   Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali,
   P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.;
   Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.;
   Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.;
   Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration);
   Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.;
   Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian,
   G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.;
   Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro,
   H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.;
   Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen,
   T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.;
   Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison
   Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.;
   Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.;
   Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.;
   Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.;
   Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell,
   H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson,
   J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa,
   N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen,
   J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra,
   A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.;
   Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela,
   R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken,
   C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper
   Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana,
   S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien,
   P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri,
   G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot,
   Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.;
   Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech,
   R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.;
   Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.;
   Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.;
   Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.;
   Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon,
   R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte
   Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration
2016ApJ...826L..13A    Altcode: 2016arXiv160208492A
  A gravitational-wave (GW) transient was identified in data recorded
  by the Advanced Laser Interferometer Gravitational-wave Observatory
  (LIGO) detectors on 2015 September 14. The event, initially designated
  G184098 and later given the name GW150914, is described in detail
  elsewhere. By prior arrangement, preliminary estimates of the time,
  significance, and sky location of the event were shared with 63 teams of
  observers covering radio, optical, near-infrared, X-ray, and gamma-ray
  wavelengths with ground- and space-based facilities. In this Letter we
  describe the low-latency analysis of the GW data and present the sky
  localization of the first observed compact binary merger. We summarize
  the follow-up observations reported by 25 teams via private Gamma-ray
  Coordinates Network circulars, giving an overview of the participating
  facilities, the GW sky localization coverage, the timeline, and depth
  of the observations. As this event turned out to be a binary black hole
  merger, there is little expectation of a detectable electromagnetic
  (EM) signature. Nevertheless, this first broadband campaign to search
  for a counterpart of an Advanced LIGO source represents a milestone and
  highlights the broad capabilities of the transient astronomy community
  and the observing strategies that have been developed to pursue neutron
  star binary merger events. Detailed investigations of the EM data and
  results of the EM follow-up campaign are being disseminated in papers
  by the individual teams.

---------------------------------------------------------
Title: Observing gravitational-wave transient GW150914 with minimal
    assumptions
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.;
   Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen,
   S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe,
   A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant,
   T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng,
   C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.;
   Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.;
   Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies,
   G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent,
   T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo,
   R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di
   Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.;
   Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.;
   Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai,
   A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.;
   Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant,
   A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote,
   H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker,
   J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke,
   M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman,
   M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak,
   D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.;
   Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun;
   Kim, Y. -M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.;
   Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.;
   Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.;
   Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.;
   Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.;
   Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci,
   D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell,
   J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re,
   V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze,
   D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.;
   Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler,
   W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.;
   Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.;
   Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri,
   J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao,
   C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..93l2004A    Altcode: 2016arXiv160203843T
  The gravitational-wave signal GW150914 was first identified on
  September 14, 2015, by searches for short-duration gravitational-wave
  transients. These searches identify time-correlated transients in
  multiple detectors with minimal assumptions about the signal morphology,
  allowing them to be sensitive to gravitational waves emitted by a
  wide range of sources including binary black hole mergers. Over the
  observational period from September 12 to October 20, 2015, these
  transient searches were sensitive to binary black hole mergers similar
  to GW150914 to an average distance of ∼600 Mpc . In this paper,
  we describe the analyses that first detected GW150914 as well as
  the parameter estimation and waveform reconstruction techniques that
  initially identified GW150914 as the merger of two black holes. We find
  that the reconstructed waveform is consistent with the signal from a
  binary black hole merger with a chirp mass of ∼30 M<SUB>⊙</SUB>
  and a total mass before merger of ∼70 M<SUB>⊙</SUB> in the
  detector frame.

---------------------------------------------------------
Title: Search for transient gravitational waves in coincidence with
    short-duration radio transients during 2007-2013
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister,
   T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.;
   Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De
   Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.;
   Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar,
   S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.;
   Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini,
   F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio,
   R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei,
   Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.;
   Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.;
   Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.;
   Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain,
   V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan,
   L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon,
   N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.;
   Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.;
   Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.;
   Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall,
   E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.;
   Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.;
   Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian,
   K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.;
   Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt,
   K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston,
   E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet,
   D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy,
   A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.;
   Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza,
   F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju,
   L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian,
   F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.;
   Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.;
   Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.;
   Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King,
   P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel,
   V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.;
   Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli,
   F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.;
   Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid,
   M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala,
   N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam,
   J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi,
   A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.;
   Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.;
   Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.;
   Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.;
   Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann,
   P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli,
   A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio,
   P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.;
   Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo,
   P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano,
   M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.;
   Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.;
   Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.;
   Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling,
   R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott,
   J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar,
   M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd,
   A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.;
   Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.;
   Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.;
   Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.;
   Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava,
   A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.;
   Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.;
   Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.;
   Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.;
   Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.;
   Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.;
   Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.;
   Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day,
   D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels,
   J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.;
   Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.;
   Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin,
   M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.;
   Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker,
   A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..93l2008A    Altcode: 2016arXiv160501707T
  We present an archival search for transient gravitational-wave
  bursts in coincidence with 27 single-pulse triggers from Green
  Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO
  interferometer network. We also discuss a check for gravitational-wave
  signals in coincidence with Parkes fast radio bursts using similar
  methods. Data analyzed in these searches were collected between 2007
  and 2013. Possible sources of emission of both short-duration radio
  signals and transient gravitational-wave emission include starquakes
  on neutron stars, binary coalescence of neutron stars, and cosmic
  string cusps. While no evidence for gravitational-wave emission in
  coincidence with these radio transients was found, the current analysis
  serves as a prototype for similar future searches using more sensitive
  second-generation interferometers.

---------------------------------------------------------
Title: High-energy neutrino follow-up search of gravitational wave
    event GW150914 with ANTARES and IceCube
Authors: Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi,
   M.; Anton, G.; Ardid, M.; Aubert, J. -J.; Avgitas, T.; Baret, B.;
   Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.;
   Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.;
   Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.;
   Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot,
   A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.;
   Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer,
   D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà,
   S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner,
   A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren,
   H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.;
   Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong,
   M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.;
   Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud,
   C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin,
   M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu,
   A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.;
   Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli,
   P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.;
   Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.;
   Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.;
   Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou,
   M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck,
   V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.;
   Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.;
   Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton,
   G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai,
   X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus,
   J.; Becker, K. -H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley,
   D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig,
   D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm,
   C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun,
   J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier,
   M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.;
   Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva,
   A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.;
   De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.;
   Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung,
   T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.;
   Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.;
   Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde,
   J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C. -C.; Fuchs, T.;
   Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.;
   Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.;
   Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha,
   C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.;
   Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.;
   Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.;
   Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.;
   Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In,
   S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.;
   Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz,
   U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish,
   A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen,
   G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper,
   C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll,
   G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.;
   Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz,
   D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.;
   Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici,
   M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki,
   S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer,
   R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren,
   D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha,
   A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper,
   J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.;
   Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.;
   Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi,
   E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson,
   S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.;
   Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.;
   Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.;
   Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.;
   Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos,
   M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad,
   R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.;
   Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan,
   S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.;
   Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner,
   M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule,
   S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.;
   Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.;
   Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.;
   Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood,
   T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.;
   Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott,
   T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams,
   T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos,
   M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.;
   Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.;
   Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda,
   J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.;
   Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon,
   P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.;
   Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune,
   C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski,
   C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard,
   M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.;
   Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan,
   C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom,
   B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.;
   Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan,
   C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt,
   T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda,
   P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar,
   S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.;
   Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain,
   V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.;
   González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun;
   Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.;
   Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.;
   Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre,
   N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg,
   T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.;
   Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.;
   Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert,
   A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz,
   A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.;
   Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.;
   Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram,
   Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.;
   Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.;
   Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.;
   Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; Antares Collaboration
2016PhRvD..93l2010A    Altcode: 2016arXiv160205411A
  We present the high-energy-neutrino follow-up observations of
  the first gravitational wave transient GW150914 observed by the
  Advanced LIGO detectors on September 14, 2015. We search for
  coincident neutrino candidates within the data recorded by the
  IceCube and Antares neutrino detectors. A possible joint detection
  could be used in targeted electromagnetic follow-up observations,
  given the significantly better angular resolution of neutrino events
  compared to gravitational waves. We find no neutrino candidates in
  both temporal and spatial coincidence with the gravitational wave
  event. Within ±500 s of the gravitational wave event, the number of
  neutrino candidates detected by IceCube and Antares were three and
  zero, respectively. This is consistent with the expected atmospheric
  background, and none of the neutrino candidates were directionally
  coincident with GW150914. We use this nondetection to constrain neutrino
  emission from the gravitational-wave event.

---------------------------------------------------------
Title: Chromospheric activity and evolutionary age of the Sun and
    four solar twins
Authors: Mittag, M.; Schröder, K. -P.; Hempelmann, A.;
   González-Pérez, J. N.; Schmitt, J. H. M. M.
2016A&A...591A..89M    Altcode: 2016arXiv160701279M
  <BR /> Aims: The activity levels of the solar-twin candidates HD 101364
  and HD 197027 are measured and compared with the Sun, the known solar
  twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute
  ages of these five objects are estimated from their positions in the HR
  diagram and the evolutionary (relative) age compared with their activity
  levels. <BR /> Methods: To represent the activity level of these stars,
  the Mount Wilson S-indices were used. To obtain consistent ages and
  evolutionary advance on the main sequence, we used evolutionary tracks
  calculated with the Cambridge Stellar Evolution Code. <BR /> Results:
  From our spectroscopic observations of HD 101364 and HD 197027 and based
  on the established calibration procedures, the respective Mount Wilson
  S-indices are determined. We find that the chromospheric activity of
  both stars is comparable with the present activity level of the Sun and
  that of 18 Sco, at least for the period in consideration. Furthermore,
  the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found
  to be 7.2, 7.1, 6.1, and 5.1 Gyr, respectively. <BR /> Conclusions: With
  the exception of 51 Peg, which has a significantly higher metallicity
  and a mass higher by about 10% than the Sun, the present Sun and its
  twins compare relatively well in their activity levels, even though
  the other twins are somewhat older. Even though 51 Peg has a similar
  age of 6.1 Gyr, this star is significantly less active. Only when we
  compare it on a relative age scale (which is about 20% shorter for 51
  Peg than for the Sun in absolute terms) and use the higher-than-present
  long-term S<SUB>MWO</SUB> average of 0.18 for the Sun, does the S-index
  show a good correlation with evolutionary (relative) age. This shows
  that in the search for a suitably similar solar twin, the relative
  main-sequence age matters for obtaining a comparable activity level.

---------------------------------------------------------
Title: On the nature of absorption features toward nearby stars
Authors: Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.
2016A&A...591A..20K    Altcode:
  Context. Diffuse interstellar absorption bands (DIBs) of largely unknown
  chemical origin are regularly observed primarily in distant early-type
  stars. More recently, detections in nearby late-type stars have also
  been claimed. These stars' spectra are dominated by stellar absorption
  lines. Specifically, strong interstellar atomic and DIB absorption
  has been reported in τ Boo. <BR /> Aims: We test these claims by
  studying the strength of interstellar absorption in high-resolution
  TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. <BR
  /> Methods: We focus our analysis on a strong DIB located at 5780.61
  Å and on the absorption of interstellar Na. First, we carry out a
  differential analysis by comparing the spectra of the highly similar
  F-stars, τ Boo and HD 33608, whose light, however, samples different
  lines of sight. To obtain absolute values for the DIB absorption,
  we compare the observed spectra of τ Boo, HD 33608, and α CrB to
  PHOENIX models and carry out basic spectral modeling based on Voigt
  line profiles. <BR /> Results: The intercomparison between τ Boo and
  HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48
  mÅ at the DIB location which is, however, unlikely to be caused by
  DIB absorption. The comparison between PHOENIX models and observed
  spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional
  interstellar absorption in τ Boo; similar results are obtained for
  HD 33608 and α CrB. For all objects we derive unrealistically large
  values for the radial velocity of any presumed interstellar clouds. In
  τ Boo we find Na D absorption with an equivalent width of 0.65 ±
  0.07 mÅ and 2.3 ± 0.1 mÅ in the D<SUB>2</SUB> and D<SUB>1</SUB>
  lines. For the other Na, absorption of the same magnitude could
  only be detected in the D<SUB>2</SUB> line. Our comparisons between
  model and data show that the interstellar absorption toward τ Boo
  is not abnormally high. <BR /> Conclusions: We find no significant
  DIB absorption in any of our target stars. Any differences between
  modeled and observed spectra are instead attributable to inaccuracies
  in the stellar atmospheric modeling than to DIB absorption. <P
  />The spectra are available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A20">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A20</A>

---------------------------------------------------------
Title: Exoplanets and their Host Stars
Authors: Schmitt, J.
2016xnnd.confE...8S    Altcode:
  Among the most fundamental astrophysical discoveries are clearly the
  detections of many thousands of “extrasolar” planets orbiting their
  hosts. The majority of these new planetary systems have properties
  dramatically different from those in our solar system. The large
  distances to extrasolar planets imply that they can only be observed
  together with their hosts. Modern observations have shown that stars
  and planets are not merely accidental celestial neighbors bound by the
  force of gravity, rather they influence each other in a variety of
  ways. This also and specifically applies to the X-ray properties of
  exoplanet systems which I will review in my talk and give some ideas
  for future work in this area.

---------------------------------------------------------
Title: Properties of the Binary Black Hole Merger GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans,
   S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn,
   J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani,
   G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen,
   H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.;
   Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.;
   Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.;
   Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies,
   G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix,
   J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.;
   Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di
   Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne,
   Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon,
   S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.;
   Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini,
   F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.;
   Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel,
   S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto,
   A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai,
   A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh,
   S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke,
   A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.;
   Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant,
   A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote,
   H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall,
   B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.;
   Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel,
   N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.;
   Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key,
   J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan,
   Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim,
   Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel,
   D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald,
   T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval,
   F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.;
   Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell,
   G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka,
   S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini,
   L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.;
   Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard,
   F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy,
   R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors,
   G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.;
   Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger,
   C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.;
   Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse,
   M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra,
   S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.;
   Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.;
   Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.;
   Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.;
   Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.;
   Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann,
   P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.;
   Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos,
   J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni,
   O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard,
   L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.;
   Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer,
   D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.;
   Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg,
   T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas,
   P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari,
   V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.;
   Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò,
   D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde,
   D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen,
   J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass,
   S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.;
   Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.;
   Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh,
   S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark,
   M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine,
   S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO
   Scientific Collaboration; Virgo Collaboration
2016PhRvL.116x1102A    Altcode: 2016arXiv160203840T
  On September 14, 2015, the Laser Interferometer Gravitational-Wave
  Observatory (LIGO) detected a gravitational-wave transient (GW150914);
  we characterize the properties of the source and its parameters. The
  data around the time of the event were analyzed coherently across
  the LIGO network using a suite of accurate waveform models that
  describe gravitational waves from a compact binary system in general
  relativity. GW150914 was produced by a nearly equal mass binary black
  hole of masses 3 6<SUB>-4</SUB><SUP>+5</SUP>M<SUB>⊙</SUB> and 2
  9<SUB>-4</SUB><SUP>+4</SUP>M<SUB>⊙</SUB> ; for each parameter
  we report the median value and the range of the 90% credible
  interval. The dimensionless spin magnitude of the more massive black
  hole is bound to be &lt;0.7 (at 90% probability). The luminosity
  distance to the source is 41 0<SUB>-180</SUB><SUP>+160</SUP> Mpc ,
  corresponding to a redshift 0.0 9<SUB>-0.04</SUB><SUP>+0.03</SUP>
  assuming standard cosmology. The source location is constrained
  to an annulus section of 610 deg<SUP>2</SUP> , primarily in
  the southern hemisphere. The binary merges into a black hole of
  mass 6 2<SUB>-4</SUB><SUP>+4</SUP>M<SUB>⊙</SUB> and spin 0.6
  7<SUB>-0.07</SUB><SUP>+0.05</SUP>. This black hole is significantly
  more massive than any other inferred from electromagnetic observations
  in the stellar-mass regime.

---------------------------------------------------------
Title: GW150914: First results from the search for binary black hole
    coalescence with Advanced LIGO
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.;
   Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant,
   T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni,
   E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa,
   E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.;
   Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.;
   Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.;
   Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.;
   Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen,
   Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.;
   Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.;
   Cohadon, P. -F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky,
   L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.;
   Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.;
   Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.;
   Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.;
   Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.;
   Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.;
   Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett,
   R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.;
   Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.;
   Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.;
   Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.;
   Fletcher, M.; Fotopoulos, N.; Fournier, J. -D.; Franco, S.; Frasca,
   S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill,
   K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.;
   González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.;
   Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl,
   M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy,
   R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan,
   S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim,
   K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.;
   Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo,
   J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis,
   M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran,
   M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.;
   Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala,
   N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan,
   D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors,
   G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.;
   Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki,
   E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao,
   H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller,
   J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra,
   C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell,
   J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.;
   Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.;
   Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield,
   R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.;
   Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.;
   Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.;
   Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker,
   D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov,
   D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.;
   Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.;
   Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor,
   R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas,
   M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari,
   S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres,
   C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò,
   D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.;
   Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.;
   Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward,
   R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West,
   M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting,
   B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..93l2003A    Altcode: 2016arXiv160203839T
  On September 14, 2015, at 09∶50:45 UTC the two detectors of
  the Laser Interferometer Gravitational-Wave Observatory (LIGO)
  simultaneously observed the binary black hole merger GW150914. We
  report the results of a matched-filter search using relativistic
  models of compact-object binaries that recovered GW150914 as the
  most significant event during the coincident observations between
  the two LIGO detectors from September 12 to October 20, 2015 GW150914
  was observed with a matched-filter signal-to-noise ratio of 24 and a
  false alarm rate estimated to be less than 1 event per 203000 years,
  equivalent to a significance greater than 5.1 σ .

---------------------------------------------------------
Title: Tests of General Relativity with GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.;
   Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen,
   S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe,
   A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant,
   T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks,
   A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.;
   Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt,
   T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin,
   S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave,
   I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.;
   DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier,
   J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.;
   Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda,
   P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar,
   S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre,
   B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.;
   González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef,
   C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco,
   G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.;
   Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.;
   Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry,
   M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild,
   S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.;
   Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.;
   Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey,
   B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.;
   Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas,
   G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.;
   Ju, L.; Haris, M. K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis,
   E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.;
   Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.;
   Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.;
   Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King,
   P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel,
   V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.;
   Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz,
   B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.;
   Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.;
   Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine,
   B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.;
   Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.;
   Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.;
   Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.;
   Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera,
   S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.;
   Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero,
   E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins,
   H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.;
   Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.;
   Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev,
   S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.;
   Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.;
   Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling,
   R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.;
   Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.;
   Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.;
   Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse,
   M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.;
   Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand,
   J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf,
   L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass,
   S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.;
   Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.;
   Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.;
   Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner,
   J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.;
   Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.;
   Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Hemberger, D. A.;
   Kidder, L. E.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky,
   S.; Zlochower, Y.; LIGO Scientific; Virgo Collaborations
2016PhRvL.116v1101A    Altcode: 2016arXiv160203841T
  The LIGO detection of GW150914 provides an unprecedented opportunity
  to study the two-body motion of a compact-object binary in the
  large-velocity, highly nonlinear regime, and to witness the final merger
  of the binary and the excitation of uniquely relativistic modes of the
  gravitational field. We carry out several investigations to determine
  whether GW150914 is consistent with a binary black-hole merger in
  general relativity. We find that the final remnant's mass and spin,
  as determined from the low-frequency (inspiral) and high-frequency
  (postinspiral) phases of the signal, are mutually consistent with
  the binary black-hole solution in general relativity. Furthermore,
  the data following the peak of GW150914 are consistent with the
  least-damped quasinormal mode inferred from the mass and spin of the
  remnant black hole. By using waveform models that allow for parametrized
  general-relativity violations during the inspiral and merger phases,
  we perform quantitative tests on the gravitational-wave phase in the
  dynamical regime and we determine the first empirical bounds on several
  high-order post-Newtonian coefficients. We constrain the graviton
  Compton wavelength, assuming that gravitons are dispersed in vacuum in
  the same way as particles with mass, obtaining a 90%-confidence lower
  bound of 10<SUP>13</SUP> km . In conclusion, within our statistical
  uncertainties, we find no evidence for violations of general relativity
  in the genuinely strong-field regime of gravity.

---------------------------------------------------------
Title: GW151226: Observation of Gravitational Waves from a
    22-Solar-Mass Binary Black Hole Coalescence
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.;
   Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer,
   C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.;
   Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan,
   C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.;
   Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.;
   Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.;
   Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.;
   Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng,
   C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.;
   Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara,
   F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.;
   Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.;
   Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa,
   C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman,
   S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni,
   G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.;
   DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore,
   L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di
   Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.;
   Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.;
   Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.;
   Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.;
   Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.;
   Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.;
   Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.;
   Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.;
   Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.;
   Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro,
   J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta,
   A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.;
   Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.;
   Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson,
   J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann,
   A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.;
   Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.;
   Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.;
   Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza,
   F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones,
   R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki,
   S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.;
   Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim,
   Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim,
   Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.;
   Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger,
   C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey,
   B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi,
   A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.;
   Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.;
   Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee,
   R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel,
   I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani,
   M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan,
   A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.;
   Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone,
   L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.;
   Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff,
   R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee,
   Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.;
   Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson,
   T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen,
   A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin,
   M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.;
   Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy,
   R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti,
   A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.;
   Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.;
   Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.;
   Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.;
   Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles,
   K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi,
   A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano,
   R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger,
   A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.;
   Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.;
   Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.;
   Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.;
   Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.;
   Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.;
   Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun,
   L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.;
   Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.;
   Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.;
   Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo,
   L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand,
   J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf,
   L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass,
   S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.;
   Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré,
   A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.;
   Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.;
   Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.;
   Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner,
   J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.;
   Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis,
   J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel,
   H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu,
   G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert,
   M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu,
   X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger,
   D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi,
   B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration
2016PhRvL.116x1103A    Altcode: 2016arXiv160604855T
  We report the observation of a gravitational-wave signal produced
  by the coalescence of two stellar-mass black holes. The signal,
  GW151226, was observed by the twin detectors of the Laser
  Interferometer Gravitational-Wave Observatory (LIGO) on December
  26, 2015 at 03:38:53 UTC. The signal was initially identified
  within 70 s by an online matched-filter search targeting binary
  coalescences. Subsequent off-line analyses recovered GW151226 with
  a network signal-to-noise ratio of 13 and a significance greater
  than 5 σ . The signal persisted in the LIGO frequency band for
  approximately 1 s, increasing in frequency and amplitude over about
  55 cycles from 35 to 450 Hz, and reached a peak gravitational
  strain of 3. 4<SUB>-0.9</SUB><SUP>+0.7</SUP>×10<SUP>-22</SUP>
  . The inferred source-frame initial black hole masses
  are 14.2<SUB>-3.7</SUB><SUP>+8.3</SUP> M<SUB>⊙</SUB> and
  7. 5<SUB>-2.3</SUB><SUP>+2.3</SUP> M<SUB>⊙</SUB>, and the final black
  hole mass is 20.8<SUB>-1.7</SUB><SUP>+6.1</SUP> M<SUB>⊙</SUB>. We
  find that at least one of the component black holes has spin greater
  than 0.2. This source is located at a luminosity distance of 44
  0<SUB>-190</SUB><SUP>+180</SUP> Mpc corresponding to a redshift of
  0.0 9<SUB>-0.04</SUB><SUP>+0.03</SUP>. All uncertainties define a 90%
  credible interval. This second gravitational-wave observation provides
  improved constraints on stellar populations and on deviations from
  general relativity.

---------------------------------------------------------
Title: Spectral characterization and differential rotation study of
    active CoRoT stars
Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.
2016A&A...590A..47N    Altcode: 2016arXiv160306502N
  The CoRoT space telescope observed nearly 160 000 light curves. Among
  the most outstanding is that of the young, active planet host star
  CoRoT-2A. In addition to deep planetary transits, the light curve of
  CoRoT-2A shows strong rotational variability and a superimposed beating
  pattern. To study the stars that produce such an intriguing pattern of
  photometric variability, we identified a sample of eight stars with
  rotation periods between 0.8 and 11 days and photometric variability
  amplitudes of up to 7.5%, showing a similar CoRoT light curve. We
  also obtained high-resolution follow-up spectroscopy with TNG/SARG
  and carried out a spectral analysis with SME and MOOG. We find that
  the color dependence of the light curves is consistent with rotational
  modulation due to starspots and that latitudinal differential rotation
  provides a viable explanation for the light curves, although starspot
  evolution is also expected to play an important role. Our MOOG and SME
  spectral analyses provide consistent results, showing that the targets
  are dwarf stars with spectral types between F and mid-K. Detectable
  Li I absorption in four of the targets confirms a low age of 100-400
  Myr also deduced from gyrochronology. Our study indicates that the
  photometric beating phenomenon is likely attributable to differential
  rotation in fast-rotating stars with outer convection zones.

---------------------------------------------------------
Title: VizieR Online Data Catalog: DIB and NaD spectra of 3 nearby
    stars (Kohl+, 2016)
Authors: Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.
2016yCat..35910020K    Altcode:
  The present data collection contains coadded spectra of tau Boo,
  HD 33608 and alpha CrB. This data was used to obtain the equivalent
  widths of interstellar features. <P />The spectra show the wavelength
  regions around the Na D lines and around 5780Å. The latter location
  corresponds to a wavelength range where a strong diffuse interstellar
  band (DIB) is found in the spectrum of the early-type supergiant HD
  183143. <P />Each single spectrum has been corrected for telluric
  absorption and the wavelength axis has been shifted to the barycentric
  reference frame. However, the data has not been corrected for radial
  velocity of the star. <P />The spectra have been acquired at the 1.2m
  Tigre telescope located in La Luz, Mexico. The spectral resolution of
  the HEROS spectrograph is 20000. <P />A detailed description of the
  spectra is given in the aforementioned paper. <P />(2 data files).

---------------------------------------------------------
Title: Stratospheric age of air variations between 1600 and 2100
Authors: Muthers, S.; Kuchar, A.; Stenke, A.; Schmitt, J.; Anet,
   J. G.; Raible, C. C.; Stocker, T. F.
2016GeoRL..43.5409M    Altcode:
  The current understanding of preindustrial stratospheric age of air
  (AoA), its variability, and the potential natural forcing imprint
  on AoA is very limited. Here we assess the influence of natural
  and anthropogenic forcings on AoA using ensemble simulations for
  the period 1600 to 2100 and sensitivity simulations for different
  forcings. The results show that from 1900 to 2100, CO<SUB>2</SUB>
  and ozone-depleting substances are the dominant drivers of AoA
  variability. With respect to natural forcings, volcanic eruptions cause
  the largest AoA variations on time scales of several years, reducing
  the age in the middle and upper stratosphere and increasing the age
  below. The effect of the solar forcing on AoA is small and dominated
  by multidecadal total solar irradiance variations, which correlate
  negatively with AoA. Additionally, a very weak positive relationship
  driven by ultraviolett variations is found, which is dominant for the
  11 year cycle of solar variability.

---------------------------------------------------------
Title: Optical microflaring on the nearby flare star binary UV Ceti
Authors: Schmitt, J. H. M. M.; Kanbach, G.; Rau, A.; Steinle, H.
2016A&A...589A..48S    Altcode:
  We present extremely high time resolution observations of the visual
  flare star binary UV Cet obtained with the Optical Pulsar Timing
  Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory
  (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that
  uses Single Photon Avalanche Diodes to measure the arrival times of
  individual optical photons. The time resolution of the observations
  presented here was 4 μs, allowing to resolve the typical millisecond
  variability time scales associated with stellar flares. We report the
  detection of very short impulsive bursts in the blue band with well
  resolved rise and decay time scales of about 2 s. The overall energetics
  put these flares at the lower end of the known flare distribution of
  UV Cet.

---------------------------------------------------------
Title: High spectral resolution monitoring of Nova V339 Delphini
    with TIGRE (Corrigendum)
Authors: De Gennaro Aquino, I.; Schröder, K. -P.; Mittag, M.; Wolter,
   U.; Jack, D.; Eenens, P.; González-Pérez, J. N.; Hempelmann, A.;
   Schmitt, J. H. M. M.; Hauschildt, P. H.; Rauw, G.
2016A&A...589C...4D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: GW150914: The Advanced LIGO Detectors in the Era of First
    Discoveries
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond,
   C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose,
   S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky,
   V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann,
   M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister,
   T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.;
   Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies,
   G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent,
   T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo,
   R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di
   Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke,
   T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.;
   Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.;
   Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman;
   Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill,
   K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart,
   M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.;
   Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.;
   Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak,
   D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.;
   Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.;
   Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.;
   Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.;
   King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel,
   V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.;
   Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell,
   J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja,
   S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re,
   V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze,
   D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar,
   A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.;
   Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.;
   Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen,
   B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine,
   D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.;
   Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang,
   H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.;
   Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.;
   Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan,
   J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap,
   M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.;
   Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvL.116m1103A    Altcode: 2016arXiv160203838T
  Following a major upgrade, the two advanced detectors of the Laser
  Interferometer Gravitational-wave Observatory (LIGO) held their
  first observation run between September 2015 and January 2016. With
  a strain sensitivity of 10<SUP>-23</SUP>/√{Hz } at 100 Hz, the
  product of observable volume and measurement time exceeded that of all
  previous runs within the first 16 days of coincident observation. On
  September 14, 2015, the Advanced LIGO detectors observed a transient
  gravitational-wave signal determined to be the coalescence of
  two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102
  (2016)], launching the era of gravitational-wave astronomy. The event,
  GW150914, was observed with a combined signal-to-noise ratio of 24 in
  coincidence by the two detectors. Here, we present the main features
  of the detectors that enabled this observation. At full sensitivity,
  the Advanced LIGO detectors are designed to deliver another factor
  of 3 improvement in the signal-to-noise ratio for binary black hole
  systems similar in mass to GW150914.

---------------------------------------------------------
Title: GW150914: Implications for the Stochastic Gravitational-Wave
    Background from Binary Black Holes
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger,
   B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht,
   A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya,
   T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten,
   H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati,
   L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister,
   T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva;
   Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri,
   R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.;
   Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.;
   Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani,
   G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.;
   Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte,
   A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.;
   Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.;
   Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal
   Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman,
   N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies,
   G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.;
   De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent,
   T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo,
   R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di
   Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski,
   G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas,
   R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du,
   Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler,
   A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.;
   Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke,
   T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.;
   Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.;
   Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman;
   Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.;
   Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro,
   J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.;
   Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.;
   Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker,
   J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke,
   M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick,
   T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.;
   Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.;
   Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.;
   Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.;
   King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel,
   V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.;
   Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.;
   Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell,
   J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.;
   Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.;
   Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber,
   E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers,
   D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.;
   Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.;
   Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.;
   Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.;
   Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin,
   S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.;
   Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor,
   R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas,
   M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari,
   S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.;
   Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi,
   M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvL.116m1102A    Altcode: 2016arXiv160203847T
  The LIGO detection of the gravitational wave transient GW150914,
  from the inspiral and merger of two black holes with masses ≳30
  M<SUB>⊙</SUB>, suggests a population of binary black holes with
  relatively high mass. This observation implies that the stochastic
  gravitational-wave background from binary black holes, created
  from the incoherent superposition of all the merging binaries in
  the Universe, could be higher than previously expected. Using
  the properties of GW150914, we estimate the energy density of
  such a background from binary black holes. In the most sensitive
  part of the Advanced LIGO and Advanced Virgo band for stochastic
  backgrounds (near 25 Hz), we predict Ω<SUB>GW</SUB>(f =25 Hz
  )=1. 1<SUB>-0.9</SUB><SUP>+2.7</SUP>×10<SUP>-9</SUP> with 90%
  confidence. This prediction is robustly demonstrated for a variety of
  formation scenarios with different parameters. The differences between
  models are small compared to the statistical uncertainty arising from
  the currently poorly constrained local coalescence rate. We conclude
  that this background is potentially measurable by the Advanced LIGO and
  Advanced Virgo detectors operating at their projected final sensitivity.

---------------------------------------------------------
Title: The α CrB binary system: A new radial velocity curve,
    apsidal motion, and the alignment of rotation and orbit axes
Authors: Schmitt, J. H. M. M.; Schröder, K. -P.; Rauw, G.; Hempelmann,
   A.; Mittag, M.; González-Pérez, J. N.; Czesla, S.; Wolter, U.;
   Jack, D.
2016A&A...586A.104S    Altcode:
  We present a new radial velocity curve for the two components of
  the eclipsing spectroscopic binary α CrB. This binary consists of
  two main-sequence stars of types A and G in a 17.3599-day orbit,
  according to the data from our robotic TIGRE facility that is located
  in Guanajuato, Mexico. We used a high-resolution solar spectrum to
  determine the radial velocities of the weak secondary component by
  cross-correlation and wavelength referencing with telluric lines for
  the strongly rotationally broadened primary lines (v sin(I) = 138
  km s<SUP>-1</SUP>) to obtain radial velocities with an accuracy of a
  few hundred m/s. We combined our new RV data with older measurements,
  dating back to 1908 in the case of the primary, to search for evidence
  of apsidal motion. We find an apsidal motion period between 6600 and
  10 600 yr. This value is consistent with the available data for both
  the primary and secondary and is also consistent with the assumption
  that the system has aligned orbit and rotation axes.

---------------------------------------------------------
Title: All-sky search for long-duration gravitational wave transients
    with initial LIGO
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.;
   Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.;
   Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune,
   C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski,
   C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch,
   J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.;
   Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.;
   Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.;
   Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady,
   P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.;
   Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.;
   Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy,
   C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo,
   J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.;
   Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz,
   J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C.; Baiardi, L. Cerboni; Cerretani,
   G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen,
   H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.;
   Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.;
   Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti,
   L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.;
   Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw,
   E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.;
   Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.;
   Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.;
   Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco,
   S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill,
   K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.;
   Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.;
   Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera,
   V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack,
   M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.;
   Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim,
   J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.;
   Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Leonardi, M.; Leong, J. R.;
   Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.;
   Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi,
   A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo,
   G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma,
   Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano,
   V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion,
   F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli,
   F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.;
   Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid,
   M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo,
   G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.;
   McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors,
   G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.;
   Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohapatra, S. R. P.;
   Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.;
   Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee,
   D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray,
   P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.;
   Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton,
   G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera,
   F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.;
   Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.;
   O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier,
   H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant,
   B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni,
   O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad,
   J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov,
   G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi,
   P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.;
   Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.;
   Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter,
   O.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt,
   J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck,
   A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott,
   S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna,
   G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar,
   M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.;
   Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg,
   D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh,
   A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.;
   Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.;
   Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.;
   Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun,
   L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini,
   A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.;
   Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.;
   Tiwari, S.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.;
   Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò,
   D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev,
   D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.;
   Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf,
   L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel,
   A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.;
   Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt,
   D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vinet, J. -Y.; Vitale,
   S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.;
   Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh,
   S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.;
   Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein,
   A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.;
   Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright,
   J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu,
   H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri,
   J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao,
   C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvD..93d2005A    Altcode: 2015arXiv151104398T
  We present the results of a search for long-duration gravitational
  wave transients in two sets of data collected by the LIGO Hanford and
  LIGO Livingston detectors between November 5, 2005 and September
  30, 2007, and July 7, 2009 and October 20, 2010, with a total
  observational time of 283.0 days and 132.9 days, respectively. The
  search targets gravitational wave transients of duration 10-500 s
  in a frequency band of 40-1000 Hz, with minimal assumptions about
  the signal waveform, polarization, source direction, or time of
  occurrence. All candidate triggers were consistent with the expected
  background; as a result we set 90% confidence upper limits on the rate
  of long-duration gravitational wave transients for different types of
  gravitational wave signals. For signals from black hole accretion disk
  instabilities, we set upper limits on the source rate density between
  3.4 ×1 0<SUP>-5</SUP> and 9.4 ×1 0<SUP>-4</SUP> Mpc<SUP>-3</SUP>
  yr<SUP>-1</SUP> at 90% confidence. These are the first results from
  an all-sky search for unmodeled long-duration transient gravitational
  waves.

---------------------------------------------------------
Title: Simulating the escaping atmospheres of hot gas planets in
    the solar neighborhood
Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.
2016A&A...586A..75S    Altcode: 2015arXiv151109341S
  Absorption of high-energy radiation in planetary thermospheres is
  generally believed to lead to the formation of planetary winds. The
  resulting mass-loss rates can affect the evolution, particularly of
  small gas planets. We present 1D, spherically symmetric hydrodynamic
  simulations of the escaping atmospheres of 18 hot gas planets in the
  solar neighborhood. Our sample only includes strongly irradiated
  planets, whose expanded atmospheres may be detectable via transit
  spectroscopy using current instrumentation. The simulations were
  performed with the PLUTO-CLOUDY interface, which couples a detailed
  photoionization and plasma simulation code with a general MHD
  code. We study the thermospheric escape and derive improved estimates
  for the planetary mass-loss rates. Our simulations reproduce the
  temperature-pressure profile measured via sodium D absorption in
  HD 189733 b, but show still unexplained differences in the case of
  HD 209458 b. In contrast to general assumptions, we find that the
  gravitationally more tightly bound thermospheres of massive and compact
  planets, such as HAT-P-2 b are hydrodynamically stable. Compact
  planets dispose of the radiative energy input through hydrogen
  Lyα and free-free emission. Radiative cooling is also important
  in HD 189733 b, but it decreases toward smaller planets like GJ 436
  b. Computing the planetary Lyα absorption and emission signals from the
  simulations, we find that the strong and cool winds of smaller planets
  mainly cause strong Lyα absorption but little emission. Compact and
  massive planets with hot, stable thermospheres cause small absorption
  signals but are strong Lyα emitters, possibly detectable with the
  current instrumentation. The absorption and emission signals provide
  a possible distinction between these two classes of thermospheres
  in hot gas planets. According to our results, WASP-80 and GJ 3470
  are currently the most promising targets for observational follow-up
  aimed at detecting atmospheric Lyα absorption signals. <P />Simulated
  atmospheres are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A75">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A75</A>

---------------------------------------------------------
Title: Prospects for Observing and Localizing Gravitational-Wave
    Transients with Advanced LIGO and Advanced Virgo
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin,
   P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai,
   K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.;
   Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.;
   Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune,
   C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski,
   C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann,
   G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.;
   Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch,
   J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.;
   Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.;
   Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.;
   Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady,
   P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani,
   G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen,
   H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.;
   Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.;
   Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti,
   L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.;
   Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.;
   Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.;
   Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.;
   Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton,
   T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.;
   Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw,
   E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.;
   Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.;
   Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori,
   I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.;
   Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey,
   R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill,
   K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.;
   Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.;
   Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar,
   S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.;
   Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.;
   Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.;
   Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.;
   Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.;
   Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim,
   J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.;
   Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck,
   S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko,
   M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan,
   B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia,
   A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.;
   Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee,
   C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.;
   Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li,
   T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.;
   Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.;
   Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch,
   R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod,
   D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana,
   E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey,
   A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia,
   I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans,
   G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.;
   Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.;
   Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann,
   P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci,
   D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.;
   Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.;
   Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.;
   Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad,
   J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.;
   Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov,
   L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke,
   V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.;
   Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.;
   Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau,
   T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.;
   Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.;
   Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.;
   Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan,
   K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.;
   Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.;
   Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.;
   Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling,
   R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott,
   J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev,
   A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah,
   S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer,
   L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.;
   Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu,
   B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.;
   Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.;
   Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.;
   Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales,
   T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.;
   Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.;
   Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.;
   Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.;
   Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso,
   F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.;
   Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.;
   Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van
   Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth,
   M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.;
   Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra,
   S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick,
   C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016LRR....19....1A    Altcode:
  We present a possible observing scenario for the Advanced LIGO and
  Advanced Virgo gravitational-wave detectors over the next decade, with
  the intention of providing information to the astronomy community to
  facilitate planning for multi-messenger astronomy with gravitational
  waves. We determine the expected sensitivity of the network to
  transient gravitational-wave signals, and study the capability of the
  network to determine the sky location of the source. We report our
  findings for gravitational-wave transients, with particular focus on
  gravitational-wave signals from the inspiral of binary neutron-star
  systems, which are considered the most promising for multi-messenger
  astronomy. The ability to localize the sources of the detected signals
  depends on the geographical distribution of the detectors and their
  relative sensitivity, and 90% credible regions can be as large as
  thousands of square degrees when only two sensitive detectors are
  operational. Determining the sky position of a significant fraction of
  detected signals to areas of 5 deg<SUP>2</SUP> to 20 deg<SUP>2</SUP>
  will require at least three detectors of sensitivity within a factor of
  ∼ 2 of each other and with a broad frequency bandwidth. Should the
  third LIGO detector be relocated to India as expected, a significant
  fraction of gravitational-wave signals will be localized to a few
  square degrees by gravitational-wave observations alone.

---------------------------------------------------------
Title: Observation of Gravitational Waves from a Binary Black
    Hole Merger
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.;
   Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari,
   R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal,
   N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca,
   A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain,
   M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.;
   Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.;
   Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda,
   V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.;
   Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.;
   Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare,
   R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz,
   O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen,
   S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe,
   A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork,
   R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.;
   Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.;
   Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani,
   F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.;
   Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton,
   P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini,
   A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.;
   Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.;
   Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt,
   T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.;
   Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza,
   H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra,
   D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.;
   DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.;
   Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma,
   I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever,
   R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo,
   T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.;
   Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel,
   T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone,
   V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr,
   B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.;
   Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro,
   F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio,
   R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco, S.; Frasca,
   S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey,
   V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe,
   M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.;
   Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.;
   Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz,
   R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.;
   Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty,
   R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray,
   C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote,
   H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.;
   Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall,
   B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.;
   Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry,
   G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.;
   Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng,
   I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak,
   D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.;
   Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.;
   Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.;
   Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.;
   Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.;
   Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani,
   K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.;
   Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.;
   Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.;
   Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian,
   F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.;
   Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.;
   Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.;
   Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King,
   P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.;
   Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos,
   A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.;
   Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar,
   P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry,
   M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.;
   London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand,
   M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück,
   H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.;
   Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.;
   Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi,
   V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.;
   Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.;
   Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason,
   K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.;
   McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver,
   J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer,
   R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick,
   C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.;
   Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.;
   Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra,
   S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller,
   C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.;
   Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak,
   R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert,
   A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz,
   A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.;
   Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.;
   Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram,
   Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway,
   D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai,
   S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.;
   Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.;
   Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.;
   Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi,
   V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj,
   M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov,
   L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin,
   J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.;
   Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.;
   Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen,
   B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash,
   B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.;
   Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta,
   A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati,
   Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar,
   M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.;
   Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg,
   D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.;
   Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith,
   J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.;
   Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley,
   A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer,
   D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.;
   Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.;
   Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels,
   B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.;
   Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.;
   Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.;
   Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie,
   C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali,
   M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom,
   M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.;
   van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro,
   M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.;
   Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.;
   Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.;
   Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker,
   M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.;
   Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei,
   L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.;
   Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.;
   White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems,
   P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.;
   Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu,
   G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.;
   Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin,
   M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang,
   Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw,
   S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016PhRvL.116f1102A    Altcode: 2016arXiv160203837T
  On September 14, 2015 at 09:50:45 UTC the two detectors of the
  Laser Interferometer Gravitational-Wave Observatory simultaneously
  observed a transient gravitational-wave signal. The signal
  sweeps upwards in frequency from 35 to 250 Hz with a peak
  gravitational-wave strain of 1.0 ×10<SUP>-21</SUP>. It matches
  the waveform predicted by general relativity for the inspiral and
  merger of a pair of black holes and the ringdown of the resulting
  single black hole. The signal was observed with a matched-filter
  signal-to-noise ratio of 24 and a false alarm rate estimated to be
  less than 1 event per 203 000 years, equivalent to a significance
  greater than 5.1 σ . The source lies at a luminosity distance of 41
  0<SUB>-180</SUB><SUP>+160</SUP> Mpc corresponding to a redshift z =0.0
  9<SUB>-0.04</SUB><SUP>+0.03</SUP> . In the source frame, the initial
  black hole masses are 3 6<SUB>-4</SUB><SUP>+5</SUP>M<SUB>⊙</SUB>
  and 2 9<SUB>-4</SUB><SUP>+4</SUP>M<SUB>⊙</SUB> , and the final
  black hole mass is 6 2<SUB>-4</SUB><SUP>+4</SUP>M<SUB>⊙</SUB> ,
  with 3. 0<SUB>-0.5</SUB><SUP>+0.5</SUP>M<SUB>⊙</SUB> c<SUP>2</SUP>
  radiated in gravitational waves. All uncertainties define 90% credible
  intervals. These observations demonstrate the existence of binary
  stellar-mass black hole systems. This is the first direct detection
  of gravitational waves and the first observation of a binary black
  hole merger.

---------------------------------------------------------
Title: Measuring rotation periods of solar-like stars using TIGRE. A
    study of periodic CaII H+K S-index variability
Authors: Hempelmann, A.; Mittag, M.; Gonzalez-Perez, J. N.; Schmitt,
   J. H. M. M.; Schröder, K. P.; Rauw, G.
2016A&A...586A..14H    Altcode:
  Context. The rotation period of a star is a key parameter both for
  the stellar dynamo that generates magnetic fields as well as for
  stellar differential rotation. <BR /> Aims: We present the results
  from the first year of monitoring a sample of solar-like stars by
  the TIGRE facility in Guanajuato (Mexico), which will study rotation
  in solar analogs. <BR /> Methods: TIGRE is an automatically operating
  1.2 m telescope equipped with an Échelle spectrograph with a spectral
  resolution of 20 000, which covers a spectral range of between 3800 and
  8800 Å. A main task is the monitoring the stellar activity of cool
  stars, mainly in the emission cores of the CaII H and K lines. We
  observed a number of stars with a sampling between 1-3 days over
  one year. <BR /> Results: A total number of 95 stars were observed
  between August 1 2013 and July 31 2014, the total number of spectra
  taken for this program was appoximately 2700. For almost a third of the
  sample stars the number of observations was rather low (less than 20),
  mainly because of bad weather. Fifty-four stars show a periodic signal
  but often with low significance. Only 24 stars exhibit a significant
  period. We interpret these signals as stellar rotation. For about
  half of them the rotation periods were already previously known,
  in which case our period measurements are usually in good agreement
  with the literature values. Besides the periodic signals, trends are
  frequently observed in the time series. <BR /> Conclusions: TIGRE
  is obviously able to detect stellar rotation periods in the CaII H+K
  emission cores when the time series contains a sufficient number of
  data points. However, this is frequently not achievable during the
  wet summer season in Guanajuato. Hence, future estimates of rotation
  periods will concentrate on stars that are observable during the winter
  season from October until April.

---------------------------------------------------------
Title: Astrophysical Implications of the Binary Black-hole Merger
    GW150914
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy,
   M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
   Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.;
   Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen,
   B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.;
   Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.;
   Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone,
   P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.;
   Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga,
   J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos,
   I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.;
   Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell,
   C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.;
   Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare,
   R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans,
   S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn,
   J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.;
   Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.;
   Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.;
   Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.;
   Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet,
   A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown,
   D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.;
   Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer,
   R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo,
   J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.;
   Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva
   Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani,
   G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin,
   S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen,
   H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.;
   Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.;
   Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon,
   P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.,
   Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.;
   Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.;
   Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward,
   D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton,
   J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.;
   Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier,
   M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa,
   R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di
   Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio,
   A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari,
   S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers,
   J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry,
   S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.;
   Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.;
   Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.;
   Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.;
   Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.;
   Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca,
   S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke,
   T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard,
   H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.;
   Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.;
   Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman;
   Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill,
   K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff,
   P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green,
   A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.;
   Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson,
   R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney,
   M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.;
   Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.;
   Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze,
   M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.;
   Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge,
   K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.;
   Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.;
   Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner,
   S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta,
   R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer,
   B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.;
   Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.;
   Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.;
   Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.;
   Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur,
   T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel,
   D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski,
   A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.;
   Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun;
   Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.;
   Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.;
   Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry,
   M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.;
   Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee,
   H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.;
   Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.;
   Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.;
   Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.;
   Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma,
   Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.;
   Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.;
   Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.;
   Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov,
   D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.;
   Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams,
   S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell,
   G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.;
   Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman,
   R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi,
   K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.;
   Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova,
   K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.;
   Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.;
   Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell,
   J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver,
   M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.;
   Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.;
   Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh,
   A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.;
   Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.;
   Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky,
   L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.;
   Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price,
   L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi,
   G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James,
   R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.;
   Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read,
   J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew,
   H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.;
   Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.;
   Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.;
   Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki,
   T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.;
   Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.;
   Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt,
   P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber,
   E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers,
   D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.;
   Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.;
   Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.;
   Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal,
   A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.;
   Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep,
   T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.;
   Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.;
   Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun,
   L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.;
   Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini,
   A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.;
   Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.;
   Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.;
   Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi,
   M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.;
   Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel,
   N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.;
   Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.;
   Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade,
   M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang,
   M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn,
   T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.;
   White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.;
   Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.;
   Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin,
   M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.;
   Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.;
   LIGO Scientific Collaboration; Virgo Collaboration
2016ApJ...818L..22A    Altcode: 2016arXiv160203846T
  The discovery of the gravitational-wave (GW) source GW150914 with the
  Advanced LIGO detectors provides the first observational evidence for
  the existence of binary black hole (BH) systems that inspiral and merge
  within the age of the universe. Such BH mergers have been predicted
  in two main types of formation models, involving isolated binaries
  in galactic fields or dynamical interactions in young and old dense
  stellar environments. The measured masses robustly demonstrate that
  relatively “heavy” BHs (≳ 25 {M}<SUB>⊙ </SUB>) can form in
  nature. This discovery implies relatively weak massive-star winds and
  thus the formation of GW150914 in an environment with a metallicity
  lower than about 1/2 of the solar value. The rate of binary-BH (BBH)
  mergers inferred from the observation of GW150914 is consistent with the
  higher end of rate predictions (≳ 1 Gpc<SUP>-3</SUP> yr<SUP>-1</SUP>)
  from both types of formation models. The low measured redshift (z≃
  0.1) of GW150914 and the low inferred metallicity of the stellar
  progenitor imply either BBH formation in a low-mass galaxy in the local
  universe and a prompt merger, or formation at high redshift with a
  time delay between formation and merger of several Gyr. This discovery
  motivates further studies of binary-BH formation astrophysics. It also
  has implications for future detections and studies by Advanced LIGO
  and Advanced Virgo, and GW detectors in space.

---------------------------------------------------------
Title: How do starspots influence the transit timing variations of
    exoplanets? Simulations of individual and consecutive transits
Authors: Ioannidis, P.; Huber, K. F.; Schmitt, J. H. M. M.
2016A&A...585A..72I    Altcode: 2015arXiv151003276I
  Transit timing variations (TTVs) of exoplanets are normally interpreted
  as the consequence of gravitational interaction with additional bodies
  in the system. However, TTVs can also be caused by deformations of
  the system transits by starspots, which might thus pose a serious
  complication in their interpretation. We therefore simulate transit
  light curves deformed by spot-crossing events for different properties
  of the stellar surface and the planet, such as starspot position,
  limb darkening, planetary period, and impact parameter. Mid-transit
  times determined from these simulations can be significantly shifted
  with respect to the input values; these shifts cannot be larger
  than 1% of the transit duration and depend very strongly on the
  longitudinal position of the spot during the transit and the transit
  duration. Consequently, TTVs with amplitudes larger than the above
  limit are very unlikely to be caused by starspots. We also investigate
  whether TTVs from sequences of consecutive transits with spot-crossing
  anomalies can be misinterpreted as the result of an additional body
  in the system. We use the Generalized Lomb-Scargle periodogram to
  search for periods in TTVs and conclude that low-amplitude TTVs with
  statistically significant periods around active stars are the most
  problematic cases. In those cases where the photometric precision
  is high enough to inspect the transit shapes for deformations it
  should be possible to identify TTVs caused by starspots; however,
  especially for cases with low signal-to-noise in transit (TSNR ≲ 15)
  light curves it becomes quite difficult to reliably decide whether
  these periods come from starspots, physical companions in the system,
  or if they are random noise artifacts.

---------------------------------------------------------
Title: Modelling telluric line spectra in the optical and infrared
    with an application to VLT/X-Shooter spectra
Authors: Rudolf, N.; Günther, H. M.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2016A&A...585A.113R    Altcode: 2015arXiv151104641R
  Context. Earth's atmosphere imprints a large number of telluric
  absorption and emission lines on astronomical spectra, especially
  in the near infrared, that need to be removed before analysing the
  affected wavelength regions. <BR /> Aims: These lines are typically
  removed by comparison to A- or B-type stars used as telluric standards
  that themselves have strong hydrogen lines, which complicates the
  removal of telluric lines. We have developed a method to circumvent
  that problem. <BR /> Methods: For our IDL software package tellrem we
  used a recent approach to model telluric absorption features with the
  line-by-line radiative transfer model (LBLRTM). The broad wavelength
  coverage of the X-Shooter at VLT allows us to expand their technique
  by determining the abundances of the most important telluric molecules
  H<SUB>2</SUB>O, O<SUB>2</SUB>, CO<SUB>2</SUB>, and CH<SUB>4</SUB>
  from sufficiently isolated line groups. For individual observations
  we construct a telluric absorption model for most of the spectral
  range that is used to remove the telluric absorption from the object
  spectrum. <BR /> Results: We remove telluric absorption from both
  continuum regions and emission lines without systematic residuals for
  most of the processable spectral range; however, our method increases
  the statistical errors. The errors of the corrected spectrum typically
  increase by 10% for S/N ~ 10 and by a factor of two for high-quality
  data (S/N ~ 100), I.e. the method is accurate on the percent
  level. <BR /> Conclusions: Modelling telluric absorption can be an
  alternative to the observation of standard stars for removing telluric
  contamination. <P />Based on observations collected at the European
  Southern Observatory, Paranal, Chile, 085.C-0764(A) and 60.A-9022(C).The
  tellrem package is only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113</A>

---------------------------------------------------------
Title: Energy-limited escape revised. The transition from strong
    planetary winds to stable thermospheres
Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.
2016A&A...585L...2S    Altcode: 2015arXiv151109348S
  Gas planets in close proximity to their host stars experience
  photoevaporative mass loss. The energy-limited escape concept is
  generally used to derive estimates for the planetary mass-loss
  rates. Our photoionization hydrodynamics simulations of the
  thermospheres of hot gas planets show that the energy-limited escape
  concept is valid only for planets with a gravitational potential lower
  than log <SUB>10</SUB>(-Φ<SUB>G</SUB>)&lt; 13.11 erg g<SUP>-1</SUP>
  because in these planets the radiative energy input is efficiently
  used to drive the planetary wind. Massive and compact planets with
  log <SUB>10</SUB>(-Φ<SUB>G</SUB>) ≳ 13.6 erg g<SUP>-1</SUP> exhibit
  more tightly bound atmospheres in which the complete radiative energy
  input is re-emitted through hydrogen Lyα and free-free emission. These
  planets therefore host hydrodynamically stable thermospheres. Between
  these two extremes the strength of the planetary winds rapidly declines
  as a result of a decreasing heating efficiency. Small planets undergo
  enhanced evaporation because they host expanded atmospheres that expose
  a larger surface to the stellar irradiation. We present scaling laws
  for the heating efficiency and the expansion radius that depend on
  the gravitational potential and irradiation level of the planet. The
  resulting revised energy-limited escape concept can be used to derive
  estimates for the mass-loss rates of super-Earth-sized planets as well
  as massive hot Jupiters with hydrogen-dominated atmospheres.

---------------------------------------------------------
Title: X-ray to NIR emission from AA Tauri during the dim
    state. Occultation of the inner disk and gas-to-dust ratio of the
    absorber
Authors: Schneider, P. C.; France, K.; Günther, H. M.; Herczeg, G.;
   Robrade, J.; Bouvier, J.; McJunkin, M.; Schmitt, J. H. M. M.
2015A&A...584A..51S    Altcode: 2015arXiv150905007S
  AA Tau is a well-studied, nearby classical T Tauri star, which is
  viewed almost edge-on. A warp in its inner disk periodically eclipses
  the central star, causing a clear modulation of its optical light
  curve. The system underwent a major dimming event beginning in 2011
  caused by an extra absorber, which is most likely associated with
  additional disk material in the line of sight toward the central
  source. We present new XMM-Newton X-ray, Hubble Space Telescope
  FUV, and ground-based optical and near-infrared data of the system
  obtained in 2013 during the long-lasting dim phase. The line width
  decrease of the fluorescent H<SUB>2</SUB> disk emission shows that
  the extra absorber is located at r &gt; 1 au. Comparison of X-ray
  absorption (N<SUB>H</SUB>) with dust extinction (A<SUB>V</SUB>),
  as derived from measurements obtained one inner disk orbit (eight
  days) after the X-ray measurement, indicates that the gas-to-dust
  ratio as probed by the N<SUB>H</SUB> to A<SUB>V</SUB> ratio of the
  extra absorber is compatible with the ISM ratio. Combining both
  results suggests that the extra absorber, i.e., material at r &gt;
  1 au, has no significant gas excess in contrast to the elevated
  gas-to-dust ratio previously derived for material in the inner region
  (≲0.1 au). <P />Appendices are available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201425583/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Modeling Europa's Dust Plumes
Authors: Southworth, B.; Kempf, S.; Schmidt, J.
2015AGUFM.P11C2113S    Altcode:
  The discovery of Europa maintaining a probably sporadic water vapor
  plume constitutes a huge scientific opportunity for NASA's upcoming
  mission to this Galilean moon. Measuring the properties of material
  emerging from interior sources offers a unique chance to understand
  conditions at Europa's subsurface ocean. Exploiting results obtained
  for the Enceladus plume, we adjust the ejection model by Schmidt
  et al. [2008] to the conditions at Europa. In this way, we estimate
  properties of a possible, yet unobserved dust component of the Europa
  plume. For a size-dependent speed distribution of emerging ice particles
  we use the model from Kempf et al. [2010] for grain dynamics, modified
  to run simulations of plumes on Europa. Specifically, we model emission
  from the two plume locations determined from observations by Roth
  et al. [2014] and also from other locations chosen at the closest
  approach of low-altitude flybys investigated in the Europa Clipper
  study. This allows us to estimate expected fluxes of ice grains
  on the spacecraft. We then explore the parameter space of Europa
  dust plumes with regard to particle speed distribution parameters,
  plume location, and spacecraft flyby elevation. Each parameter set
  results in a 3-dimensional particle density structure through which
  we simulate flybys, and a map of particle fallback ('snowfall') on
  the surface of Europa. Due to the moon's high escape speed, a Europa
  plume will eject few to no particles that can escape its gravity, which
  has several further consequences: (i) For given ejection velocity a
  Europa plume will have a smaller scale height, with a higher particle
  number densities than the plume on Enceladus, (ii) plume particles will
  not feed the diffuse Galilean dust ring, (iii) the snowfall pattern
  on the surface will be more localized about the plume location, and
  will not induce a global m = 2 pattern as seen on Enceladus, and (iv)
  safely observing an active plume will require low altitude flybys,
  preferably at 50-100 km. Our simulations provide an extensive library
  documenting the possible structure of Europa dust plumes, which can be
  quickly refined as more data on Europa dust plumes are collected. The
  attached image shows example number density profiles for two particle
  size distributions of slope α ejected from a Roth et al. plume,
  with the Clipper E35 flyby overlaid.

---------------------------------------------------------
Title: Evidence for survival of the α cluster structure in light
    nuclei through the fusion process
Authors: Vadas, J.; Steinbach, T. K.; Schmidt, J.; Singh, Varinderjit;
   Haycraft, C.; Hudan, S.; deSouza, R. T.; Baby, L. T.; Kuvin, S. A.;
   Wiedenhöver, I.
2015PhRvC..92f4610V    Altcode:
  Background: Despite the importance of light-ion fusion in
  nucleosynthesis, a limited amount of data exist regarding the
  de-excitation following fusion for such systems. <P />Purpose: To
  explore the characteristics of α emission associated with the decay
  of light fused systems at low excitation energy. <P />Method: α
  particles were detected in coincidence with evaporation residues (ER)
  formed by the fusion of <SUP>18</SUP>O and <SUP>12</SUP>C nuclei. Both
  α particles and ERs were identified on the basis of their energy and
  time-of-flight. ERs were characterized by their energy spectra and
  angular distributions while the α particles were characterized by
  their energy spectra, angular distributions, and cross sections. <P
  />Results: While the energy spectra and angular distributions for the
  α particles are relatively well reproduced by the statistical model
  codes, evapor and pace4 the measured cross section is substantially
  underpredicted by the models. Examination of the relative α emission
  probability for similar systems reveals that this underprediction is
  a more general feature of such light-ion reactions. <P />Conclusion:
  Comparison of the measured relative α cross section at low E<SUB>c .m
  .</SUB> for <SUP>18</SUP>O+<SUP>12</SUP>C ,<SUP>16</SUP>O+<SUP>12</SUP>C
  , and <SUP>16</SUP>O+<SUP>13</SUP>C indicates that the α cluster
  structure of the initial projectile and target nuclei influences the
  α emission following fusion. The underprediction of the relative α
  emission by the statistical model codes emphasizes that the failure
  of these models to account for α cluster structure is significant.

---------------------------------------------------------
Title: Compositional Mapping of Europa's Surface with SUDA
Authors: Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama,
   R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt,
   J.; Zolotov, M. Y.; Tucker, S.; Hoxie, V. C.; Kohnert, R.
2015AGUFM.P13E..07K    Altcode:
  The Surface Mass Analyzer (SUDA) measures the composition of ballistic
  dust particles populating the thin exospheres that were detected
  around each of the Galilean moons. Since these grains are direct
  samples from the moons' icy surfaces, unique composition data will
  be obtained that will help to define and constrain the geological
  activities on and below the moons' surface. SUDA will make a vital
  contribution to NASA's mission to Europa and provide key answers to its
  main scientific questions about the surface composition, habitability,
  the icy crust, and exchange processes with the deeper interior of the
  Jovian icy moon Europa. SUDA is a time-of- flight, reflectron-type
  impact mass spectrometer, optimised for a high mass resolution which
  only weakly depends on the impact location. The small size, low mass
  and large sensitive area meet the challenging demands of mission to
  Europa. A full-size prototype SUDA instrument was built in order to
  demonstrate its performance through calibration experiments at the dust
  accelerator at NASA's IMPACT institute at Boulder, CO, with a variety of
  cosmo-chemically relevant dust analogues. The effective mass resolution
  of m/Δm of 150-300 is achieved for mass range of interest m = 1-150.

---------------------------------------------------------
Title: The nature of the 2014-2015 dim state of RW Aurigae revealed
    by X-ray, optical, and near-IR observations
Authors: Schneider, P. C.; Günther, H. M.; Robrade, J.; Facchini, S.;
   Hodapp, K. W.; Manara, C. F.; Perdelwitz, V.; Schmitt, J. H. M. M.;
   Skinner, S.; Wolk, S. J.
2015A&A...584L...9S    Altcode: 2015arXiv151101688S
  The binary system RW Aur consists of two classical T Tauri stars
  (CTTSs). The primary recently underwent its second observed major
  dimming event (ΔV ~ 2 mag). We present new, resolved Chandra
  X-ray and UKIRT near-IR (NIR) data as well as unresolved optical
  photometry obtained in the dim state to study the gas and dust
  content of the absorber causing the dimming. The X-ray data show
  that the absorbing column density increased from N<SUB>H</SUB>&lt;
  0.1 × 10<SUP>22</SUP>cm<SUP>-2</SUP> during the bright state to ≈2
  × 10<SUP>22</SUP>cm<SUP>-2</SUP> in the dim state. The brightness
  ratio between dim and bright state at optical to NIR wavelengths shows
  only a moderate wavelength dependence and the NIR color-color diagram
  suggests no substantial reddening. Taken together, this indicates gray
  absorption by large grains (≳1 μm) with a dust mass column density of
  ≳2 × 10<SUP>-4</SUP> g cm<SUP>-2</SUP>. Comparison with N<SUB>H</SUB>
  shows that an absorber responsible for the optical/NIR dimming and the
  X-ray absorption is compatible with the ISM's gas-to-dust ratio, i.e.,
  that grains grow in the disk surface layers without largely altering
  the gas-to-dust ratio. Lastly, we discuss a scenario in which a common
  mechanism can explain the long-lasting dimming in RW Aur and recently
  in AA Tau. <P />Appendix A is available in electronic form at <A
  href="http://www.aanda.org/10.1051/0004-6361/201527237/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Modeling Europa's dust plumes
Authors: Southworth, B. S.; Kempf, S.; Schmidt, J.
2015GeoRL..4210541S    Altcode:
  The discovery of Jupiter's moon Europa maintaining a probably sporadic
  water vapor plume constitutes a huge scientific opportunity for NASA's
  upcoming mission to this Galilean moon. Measuring properties of material
  emerging from interior sources offers a unique chance to understand
  conditions at Europa's subsurface ocean. Exploiting results obtained for
  the Enceladus plume, we simulate possible Europa plume configurations,
  analyze particle number density and surface deposition results,
  and estimate the expected flux of ice grains on a spacecraft. Due to
  Europa's high escape speed, observing an active plume will require
  low-altitude flybys, preferably at altitudes of 5-100 km. At higher
  altitudes a plume may escape detection. Our simulations provide an
  extensive library documenting the possible structure of Europa dust
  plumes, which can be quickly refined as more data on Europa dust plumes
  are collected.

---------------------------------------------------------
Title: Correlation between speed and size for ejecta from
    hypervelocity impacts
Authors: Sachse, M.; Schmidt, J.; Kempf, S.; Spahn, F.
2015JGRE..120.1847S    Altcode:
  Ejecta created in hypervelocity impacts of micrometeoroids on
  atmosphereless bodies are an efficient source for circumplanetary
  and interplanetary dust. The impact erodes the target surface and
  releases material into space. The ejecta are typically micron sized
  and populate a dust cloud around the parent body, whose number density
  decreases with increasing distance from the target. Unbound particles
  escape and add to the planetary dust environment. Here we explore the
  influence of a correlation between the fragment size and the ejection
  speed, such that larger fragments are (on average) launched with lower
  speeds. This behavior is suggested by theoretical considerations and
  impact experiments. We find that such a correlation provides a dynamical
  filter that removes large ejecta from high altitudes. The effect is
  stronger for bigger ejecta and for more massive parent bodies. Our
  results suggest that large particles found in the circumplanetary
  and interplanetary dust environment either originate from impacts on
  smaller moons, impacts of unusually large or fast impactors, or an
  entirely different process of dust production.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Simulations of hot gas planets
    atmospheres (Salz+, 2016)
Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.
2015yCat..35860075S    Altcode:
  The following tables contain the simulation results from the
  publication. Each table contains a 1D spherically symmetric,
  hydrodynamically escaping thermosphere of a hot gas planet. The
  atmospheres contain hydrogen and helium, and no molecules. The
  simulations were performed with the PLUTO-CLOUDY interface (Salz et al.,
  Cat. J/A+A/576/A21). Each table contains a header, which specifies the
  system parameters, that where used for the simulations. The simulation
  region extends to 12/15 planetary radii, but the atmospheres are
  only approximately valid up to the Roche-lobe height, above which
  the spherical approximation is invalid. The Roche-lobe height is
  also given in the header. In the cases of WASP-10 b and WASP-8 b the
  atmospheres are hydrodynamically stable and the atmospheres extend
  only up to the exobase defined for proton-proton scattering as given
  in the publication. <P />(17 data files).

---------------------------------------------------------
Title: Enceladus Icy Jet Analyzer (ENIJA) : Search for life with
    a high resolution TOF-MS for in situ characterization of high dust
    density regions
Authors: Srama, R.; Postberg, F.; Henkel, H.; Klopfer, T.; Li,
   Y.; Simolka, J.; Bugiel, S.; Kempf, S.; Hillier, J.; Khawaja, N.;
   Trieloff, M.; Abel, B.; Moragas-Klostermeyer, G.; Strack, H.; Schmidt,
   J.; Soja, R.; Sternovsky, Z.; Spohn, T.
2015EPSC...10..769S    Altcode:
  ENIJA was developed to search for the prebiotic molecules and
  biogenic key compounds like amino acids in the plumes of Saturn's
  moon Enceladus. ENIJA records time-of-flight mass spectra in the range
  between 1 and 2000 u produced by high-velocity impacts of individual
  grains onto a metal target. The spectrometer has a measurement mode for
  cations or anions formed upon impact, with concurrent determination of
  the mass of the detected grains. Detection of elemental and molecular
  species over such a wide mass range permits clear characterization
  of particle chemistry, simultaneously covering individual ions like
  H+, C-, Oand complex organics with masses of many hundred u. ENIJA
  is sensitive to water ice, minerals, metals, organic particles, and
  mixtures of these components. The instrument is based on the principle
  of impact ionization and optimized for the analysis of high dust fluxes
  and number densities as typically occur during Enceladus plume crossings
  or in cometary comae. The mass resolution is m/dm &gt; 970 for typical
  plume particles in the size range 0.01 to 100 μm. The instrument mass
  and peak power is 3.5 kg and 14.2 W, respectively. The instrument is
  part of the model payload for the mission "Enceladus Life Finder" (ELF).

---------------------------------------------------------
Title: Energy-limited escape revisited: A transition from strong
    planetary winds to stable thermospheres
Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.
2015tyge.conf...80S    Altcode:
  Hot Jupiters are thought to suffer from mass loss through
  planetary winds powered by strong high-energy irradiation. These
  photoevaporative winds can affect planetary evolution. We carried out
  photoionization-hydrodynamics simulations of the thermospheres of hot
  gas planets in the solar neighborhood using our new interface between
  the PLUTO and CLOUDY codes called TPCI. These detailed simulations
  reveal efficient radiative cooling in the atmospheres of massive and
  compact Jovian planets, whose gravitational potential surpasses the
  critical limit of log_{10}( -Φ_{G}) &gt; 13.11 erg g^{-1}. In contrast
  to widely-made assumptions, our modeling shows that planets like HAT-P-2
  b host stable thermospheres in radiative equilibrium, whereas smaller
  gas giants, indeed, show considerable mass-loss rates. Hence, the
  heating efficiency of the absorption of EUV radiation in the planetary
  thermospheres depends on the gravitational potential of the planet. We
  present a scaling law for the heating efficiencies that can be used
  in the well-known energy-limited escape formula and provides easily
  accessible mass-loss estimates for a wide range of irradiated planets
  from super-Earth type planets to the most massive hot Jupiters. The
  trend of the heating efficiency versus the gravitational potential is
  reflected in the planetary Lyα absorption and emission signals. These
  signals can be used to distinguish between two types of thermospheres
  in hot gas planets: strong, cool planetary winds with Lyα absorption
  and hot, stable thermospheres with Lyα emission.

---------------------------------------------------------
Title: The center-to-limb variation across the Fraunhofer lines of
    HD 189733. Sampling the stellar spectrum using a transiting planet
Authors: Czesla, S.; Klocová, T.; Khalafinejad, S.; Wolter, U.;
   Schmitt, J. H. M. M.
2015A&A...582A..51C    Altcode: 2015arXiv150905657C
  The center-to-limb variation (CLV) describes the brightness of
  the stellar disk as a function of the limb angle. Across strong
  absorption lines, the CLV can vary quite significantly. We obtained
  a densely sampled time series of high-resolution transit spectra of
  the active planet host star HD 189733 with UVES. Using the passing
  planetary disk of the hot Jupiter HD 189733 b as a probe, we study
  the CLV in the wings of the Ca ii H and K and Na i D<SUB>1</SUB> and
  D<SUB>2</SUB> Fraunhofer lines, which are not strongly affected by
  activity-induced variability. In agreement with model predictions, our
  analysis shows that the wings of the studied Fraunhofer lines are limb
  brightened with respect to the (quasi-)continuum. The strength of the
  CLV-induced effect can be on the same order as signals found for hot
  Jupiter atmospheres. Therefore, a careful treatment of the wavelength
  dependence of the stellar CLV in strong absorption lines is highly
  relevant in the interpretation of planetary transit spectroscopy. <P
  />Based on observations made with UVES at the ESO VLT Kueyen telescope
  under program 089.D-0701(A).

---------------------------------------------------------
Title: High spectral resolution monitoring of Nova V339 Delphini
    with TIGRE
Authors: De Gennaro Aquino, I.; Schröder, K. -P.; Mittag, M.; Wolter,
   U.; Jack, D.; Eenens, P.; González-Pérez, J. N.; Hempelmann, A.;
   Schmitt, J. H. M. M.; Hauschildt, P. H.; Rauw, G.
2015A&A...581A.134D    Altcode:
  <BR /> Aims: We investigate the early development of the classical nova
  <ASTROBJ>V339 Del</ASTROBJ> (<ASTROBJ>Nova Delphini 2013</ASTROBJ>)
  through high-resolution optical spectroscopy. To study the structure of
  the ejecta, we focus on the evolution of the absorption and emission
  features and the changes within the line profiles. <BR /> Methods: We
  obtained spectra with the robotic 1.2 m telescope TIGRE equipped with
  the HEROS spectrograph (R = 20 000, wavelength coverage from 3800 to
  8800 Å). Our data set covers the outburst from 3 until 121 days after
  discovery. <BR /> Results: We provide a qualitative analysis of the
  spectra, describing the line profiles evolution and providing a rich
  list of identified lines. During the optically thick phase, we detected
  several blue-shifted absorption features from s-processed elements,
  whose origin is unclear. The presence of strong lines from C/O and the
  absence of Neon features confirm that the nature of the central white
  dwarf is a CO type. The later "nebular" phase spectra show evidence of
  the non-spherical, inhomogeneous structure of the ejecta. The detailed
  evolution of the line profiles and appearance of high ionization species
  (e.g. N III, O III, He II, [Fe VII]) are direct consequences of the
  re-ionization of the ejecta during the peak of the soft X-ray emission.

---------------------------------------------------------
Title: Astrophysics Source Code Library Enhancements
Authors: Hanisch, R. J.; Allen, A.; Berriman, G. B.; DuPrie, K.;
   Mink, J.; Nemiroff, R. J.; Schmidt, J.; Shamir, L.; Shortridge, K.;
   Taylor, M.; Teuben, P. J.; Wallin, J.
2015ASPC..495..453H    Altcode: 2015adass..24..453H; 2014arXiv1411.2031H
  The Astrophysics Source Code Library (ASCL)<SUP>1</SUP> is a free
  online registry of codes used in astronomy research; it currently
  contains over 900 codes and is indexed by ADS. The ASCL has recently
  moved a new infrastructure into production. The new site provides a
  true database for the code entries and integrates the WordPress news
  and information pages and the discussion forum into one site. Previous
  capabilities are retained and permalinks to ascl.net continue to
  work. This improvement offers more functionality and flexibility than
  the previous site, is easier to maintain, and offers new possibilities
  for collaboration. This paper covers these recent changes to the ASCL.

---------------------------------------------------------
Title: Time series of high-resolution spectra of SN 2014J observed
    with the TIGRE telescope
Authors: Jack, D.; Mittag, M.; Schröder, K. -P.; Schmitt, J. H. M. M.;
   Hempelmann, A.; González-Pérez, J. N.; Trinidad, M. A.; Rauw, G.;
   Cabrera Sixto, J. M.
2015MNRAS.451.4104J    Altcode: 2015arXiv150600938J
  We present a time series of high-resolution spectra of the Type
  Ia supernova 2014J, which exploded in the nearby galaxy M82. The
  spectra were obtained with the HEROS échelle spectrograph installed
  at the 1.2-m TIGRE telescope. We present a series of 33 spectra with
  a resolution of R ≈ 20 000, which covers the important bright phases
  in the evolution of SN 2014J during the period from 2014 January 24 to
  April 1. The spectral evolution of SN 2014J is derived empirically. The
  expansion velocities of the Si II P-Cygni features were measured and
  show the expected decreasing behaviour, beginning with a high velocity
  of 14 000 km s<SUP>-1</SUP> on January 24. The Ca II infrared triplet
  feature shows a high-velocity component with expansion velocities of
  &gt;20 000 km s<SUP>-1</SUP> during the early evolution apart from the
  normal component showing similar velocities as Si II. Further broad
  P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II
  and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp
  Na I D doublet absorption components. Our analysis suggests interesting
  substructures in the interstellar medium of the host galaxy M82, as
  well as in our Milky Way, confirming other work on this SN. We were
  able to identify the interstellar absorption of M82 in the lines
  of Ca II H &amp; K at 3933 and 3968 Å as well as K I at 7664 and
  7698 Å. Furthermore, we confirm several diffuse interstellar bands,
  at wavelengths of 6196, 6283, 6376, 6379and 6613 Å and give their
  measured equivalent widths.

---------------------------------------------------------
Title: Simultaneous X-ray and optical spectroscopy of the Oef
    supergiant λ Cephei
Authors: Rauw, G.; Hervé, A.; Nazé, Y.; González-Pérez, J. N.;
   Hempelmann, A.; Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P.;
   Gosset, E.; Eenens, P.; Uuh-Sonda, J. M.
2015A&A...580A..59R    Altcode: 2015arXiv150507714R
  Context. Probing the structures of stellar winds is of prime importance
  for the understanding of massive stars. Based on their optical spectral
  morphology and variability, it has been suggested that the stars in
  the Oef class feature large-scale structures in their wind. <BR />
  Aims: High-resolution X-ray spectroscopy and time-series of X-ray
  observations of presumably single O-type stars can help us understand
  the physics of their stellar winds. <BR /> Methods: We have collected
  XMM-Newton observations and coordinated optical spectroscopy of the
  O6 Ief star λ Cep to study its X-ray and optical variability and to
  analyse its high-resolution X-ray spectrum. We investigate the line
  profile variability of the He ii λ 4686 and Hα emission lines in our
  time series of optical spectra, including a search for periodicities. We
  further discuss the variability of the broadband X-ray flux and analyse
  the high-resolution spectrum of λ Cep using line-by-line fits as well
  as a code designed to fit the full high-resolution X-ray spectrum
  consistently. <BR /> Results: During our observing campaign, the He
  ii λ 4686 line varies on a timescale of ~18 h. On the contrary,
  the Hα line profile displays a modulation on a timescale of 4.1
  days which is likely the rotation period of the star. The X-ray flux
  varies on timescales of days and could in fact be modulated by the
  same 4.1-day period as Hα, although both variations are shifted in
  phase. The high-resolution X-ray spectrum reveals broad and skewed
  emission lines as expected for the X-ray emission from a distribution
  of wind-embedded shocks. Most of the X-ray emission arises within less
  than 2 R<SUB>∗</SUB> above the photosphere. <BR /> Conclusions:
  The properties of the X-ray emission of λ Cep generally agree with
  the expectations of the wind-embedded shock model. There is mounting
  evidence for the existence of large-scale structures that modulate the
  Hα line and about 10% of the X-ray emission of λ Cep. <P />Based on
  observations collected with XMM-Newton, an ESA science mission with
  instruments and contributions directly funded by ESA member states
  and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico)
  and the 1.5 m telescope at Observatoire de Haute Provence (France).

---------------------------------------------------------
Title: A permanent, asymmetric dust cloud around the Moon
Authors: Horányi, M.; Szalay, J. R.; Kempf, S.; Schmidt, J.; Grün,
   E.; Srama, R.; Sternovsky, Z.
2015Natur.522..324H    Altcode:
  Interplanetary dust particles hit the surfaces of airless bodies
  in the Solar System, generating charged and neutral gas clouds,
  as well as secondary ejecta dust particles. Gravitationally bound
  ejecta clouds that form dust exospheres were recognized by in
  situ dust instruments around the icy moons of Jupiter and Saturn,
  but have hitherto not been observed near bodies with refractory
  regolith surfaces. High-altitude Apollo 15 and 17 observations of a
  `horizon glow' indicated a putative population of high-density small
  dust particles near the lunar terminators, although later orbital
  observations yielded upper limits on the abundance of such particles
  that were a factor of about 10<SUP>4</SUP> lower than that necessary to
  produce the Apollo results. Here we report observations of a permanent,
  asymmetric dust cloud around the Moon, caused by impacts of high-speed
  cometary dust particles on eccentric orbits, as opposed to particles
  of asteroidal origin following near-circular paths striking the Moon
  at lower speeds. The density of the lunar ejecta cloud increases
  during the annual meteor showers, especially the Geminids, because
  the lunar surface is exposed to the same stream of interplanetary dust
  particles. We expect all airless planetary objects to be immersed in
  similar tenuous clouds of dust.

---------------------------------------------------------
Title: TPCI: the PLUTO-CLOUDY Interface . A versatile coupled
    photoionization hydrodynamics code
Authors: Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.;
   Czesla, S.; Schmitt, J. H. M. M.
2015A&A...576A..21S    Altcode: 2015arXiv150206517S
  We present an interface between the (magneto-) hydrodynamics
  code PLUTO and the plasma simulation and spectral synthesis code
  CLOUDY. By combining these codes, we constructed a new photoionization
  hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well
  suited to simulate photoevaporative flows under strong irradiation. The
  code includes the electromagnetic spectrum from X-rays to the radio
  range and solves the photoionization and chemical network of the
  30 lightest elements. TPCI follows an iterative numerical scheme:
  first, the equilibrium state of the medium is solved for a given
  radiation field by CLOUDY, resulting in a net radiative heating or
  cooling. In the second step, the latter influences the (magneto-)
  hydrodynamic evolution calculated by PLUTO. Here, we validated the
  one-dimensional version of the code on the basis of four test problems:
  photoevaporation of a cool hydrogen cloud, cooling of coronal plasma,
  formation of a Strömgren sphere, and the evaporating atmosphere of
  a hot Jupiter. This combination of an equilibrium photoionization
  solver with a general MHD code provides an advanced simulation
  tool applicable to a variety of astrophysical problems. <P />A
  copy of the code is available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21</A>

---------------------------------------------------------
Title: High-energy irradiation and mass loss rates of hot Jupiters
    in the solar neighborhood
Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M.
2015A&A...576A..42S    Altcode: 2015arXiv150200576S
  Giant gas planets in close proximity to their host stars experience
  strong irradiation. In extreme cases photoevaporation causes a
  transonic, planetary wind and the persistent mass loss can possibly
  affect the planetary evolution. We have identified nine hot Jupiter
  systems in the vicinity of the Sun, in which expanded planetary
  atmospheres should be detectable through Lyα transit spectroscopy
  according to predictions. We use X-ray observations with Chandra
  and XMM-Newton of seven of these targets to derive the high-energy
  irradiation level of the planetary atmospheres and the resulting mass
  loss rates. We further derive improved Lyα luminosity estimates for
  the host stars including interstellar absorption. According to our
  estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest
  mass loss rates, exceeding the mass loss rate of HD 209458 b, where
  an expanded atmosphere has been confirmed. Furthermore, seven out of
  nine targets might be amenable to Lyα transit spectroscopy. Finally,
  we check the possibility of angular momentum transfer from the hot
  Jupiters to the host stars in the three binary systems among our sample,
  but find only weak indications for increased stellar rotation periods
  of WASP-77 and HAT-P-20.

---------------------------------------------------------
Title: Spectroscopic variability of two Oe stars
Authors: Rauw, G.; Morel, T.; Nazé, Y.; Eversberg, T.; Alves, F.;
   Arnold, W.; Bergmann, T.; Correia Viegas, N. G.; Fahed, R.; Fernando,
   A.; González-Pérez, J. N.; Gouveia Carreira, L. F.; Hempelmann, A.;
   Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Mittag,
   M.; Moffat, A. F. J.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez
   Gallego, J.; Dos Santos, E. M.; Schanne, L.; Schmitt, J. H. M. M.;
   Schröder, K. -P.; Stahl, O.; Stober, Ba.; Stober, Be.; Vollmann, K.
2015A&A...575A..99R    Altcode: 2015arXiv150101377R
  Context. The two Oe stars HD 45 314 and HD 60 848 have recently been
  found to exhibit very different X-ray properties: whilst HD 60 848
  has an X-ray spectrum and the emission level typical of most OB stars,
  HD 45 314 features a much harder and brighter X-ray emission, making
  it a so-called γ Cas analogue. <BR /> Aims: Monitoring the optical
  spectra could provide hints towards the origin of these very different
  behaviours. <BR /> Methods: We analyse a large set of spectroscopic
  observations of HD 45 314 and HD 60 848, extending over 20 years. We
  further attempt to fit the Hα line profiles of both stars with a simple
  model of emission line formation in a Keplerian disk. <BR /> Results:
  Strong variations in the strengths of the Hα, Hβ, and He i λ 5876
  emission lines are observed for both stars. In the case of HD 60 848,
  we find a time lag between the variations in the equivalent widths of
  these lines, which is currently not understood. The emission lines are
  double peaked with nearly identical strengths of the violet and red
  peaks. The Hα profile of this star can be successfully reproduced by
  our model of a disk seen under an inclination of 30°. In the case of
  HD 45 314, the emission lines are highly asymmetric and display strong
  line profile variations. We find a major change in behaviour between
  the 2002 outburst and the one observed in 2013. This concerns both the
  relationship between the equivalent widths of the various lines and
  their morphologies at maximum strength (double-peaked in 2002 versus
  single-peaked in 2013). Our simple disk model fails to reproduce the
  observed Hα line profiles of HD 45 314. <BR /> Conclusions: Our results
  further support the interpretation that Oe stars do have decretion
  disks similar to those of Be stars. Whilst the emission lines of HD 60
  848 are explained well by a disk with a Keplerian velocity field, the
  disk of HD 45 314 seems to have a significantly more complex velocity
  field that could be another signature of the phenomenon that produces
  its peculiar X-ray emission.

---------------------------------------------------------
Title: Modeling Europa's Dust Plume
Authors: Southworth, B.; Kempf, S.; Schmidt, J.; Horanyi, M.
2015LPI....46.2729S    Altcode: 2015LPICo1832.2729S
  We explore the parameter space of potential dust plumes on Europa,
  simulating active plumes and the results of spacecraft flybys.

---------------------------------------------------------
Title: LDEX Observation of the Dust Environment of the Moon
Authors: Horanyi, M.; Szalay, J.; Kempf, S.; Schmidt, J.; Gruen, E.;
   Srama, R.; Sternovsky, Z.
2015LPI....46.1684H    Altcode: 2015LPICo1832.1684H
  The talk will report on the analysis of the observations of Lunar Dust
  Experiment (LDEX) onboard the recently completed LADEE mission.

---------------------------------------------------------
Title: How Much Dust Does Enceladus Eject?
Authors: Kempf, S.; Horanyi, M.; Schmidt, J.; Southworth, B.
2015LPI....46.1938K    Altcode: 2015LPICo1832.1938K
  We performed numerical simulations of the Enceladus dust plume to
  constrain the dust production rate and to verify whether the plume
  constitutes a dusty plasma.

---------------------------------------------------------
Title: VizieR Online Data Catalog: The PLUTO CLOUDY Interface (TPCI)
    (Salz+, 2015)
Authors: Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.;
   Czesla, S.; Schmitt, J. H. M. M.
2015yCat..35760021S    Altcode: 2015yCat..35769021S
  The code is publicly available
  at http://www.hs.uni-hamburg.de/DE/Ins/Per/Salz/ and available
  here. Please check the quick start document in the docs directory for
  further information. <P />(1 data file).

---------------------------------------------------------
Title: Monitoring the Behavior of Star Spots Using Photometric Data
Authors: Ioannidis, P.; Schmitt, J. H. M. M.
2015csss...18..429I    Altcode:
  We use high accuracy photometric data to monitor the behavior of star
  spots . We develop an algorithm to determine the size and longitude
  of spots or spot groups, using Kepler light curves . Our algorithm
  separates the light curve in rotational-period sized intervals and
  calculates the size and longitude of the star spots by using limb
  darkened spot crossing models. The results can then be used to identify
  populations of spots, active regions on the stellar surface, mean spot
  lifetimes or even evidence for activity cycle evidences. To check the
  efficiency of our code we calculate the spot positions and sizes for
  the planet host star Kepler-210 .

---------------------------------------------------------
Title: First Results of the TIGRE Chromospheric Activity Survey
Authors: Mittag, M.; Hempelmann, A.; Gonzalez-Perez, J. N.; Schmitt,
   J. H. M. M.
2015csss...18..549M    Altcode:
  We present the first results of the stellar activity
  survey with TIGRE (Telescopio Internacional de Guanajuato,
  Robótico-Espectroscópico). This long term program was started in
  August 2013 with the monitoring of a larger number of stars. We
  aim at measuring the short- and long-term variability of stellar
  activity for stars of different spectral types and luminosity classes,
  using indicators of different spectral lines (mainly Ca II S-Index,
  Ca II IR triplet, H_α and sodium D). A transformation equation
  of the TIGRE S-Index into the Mount Wilson S-index was derived in
  order to compare our results to the vast body of existing S-index
  measurements. Furthermore, the correlation between the S-index and
  the lines of the Ca II IR triplet has been studied, based on strictly
  simultaneous observations.

---------------------------------------------------------
Title: A Tale of Two Exoplanets: the Inflated Atmospheres of the
    Hot Jupiters HD 189733 b and CoRoT-2 b
Authors: Poppenhaeger, K.; Wolk, Scott J.; Schmitt, J. H. M. M.
2015csss...18..733P    Altcode: 2014arXiv1408.3385P
  Planets in close orbits around their host stars are subject to strong
  irradiation. High-energy irradiation, originating from the stellar
  corona and chromosphere, is mainly responsible for the evaporation of
  exoplanetary atmospheres. We have conducted multiple X-ray observations
  of transiting exoplanets in short orbits to determine the extent and
  heating of their outer planetary atmospheres. In the case of HD 189733
  b, we find a surprisingly deep transit profile in X-rays, indicating
  an atmosphere extending out to 1.75 optical planetary radii. The X-ray
  opacity of those high-altitude layers points towards large densities or
  high metallicity. We preliminarily report on observations of the Hot
  Jupiter CoRoT-2 b from our Large Program with XMM-Newton, which was
  conducted recently. In addition, we present results on how exoplanets
  may alter the evolution of stellar activity through tidal interaction.

---------------------------------------------------------
Title: A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary
    System BX Tri
Authors: Perdelwitz, V.; Czesla, S.; Robrade, J.; Schmitt, J. H. M. M.
2015csss...18..121P    Altcode:
  We present the first detailed X-ray study of the close dMe binary system
  BX Tri, whose optical variation has been continously monitored in the
  frame of the DWARF project (Pribulla et al.(2012)). We observed BX
  Tri with XMM-Newton for two full orbital periods and confirm that the
  system is an ultra-active M-dwarf binary showing frequent flares and
  an X-ray luminosity close to the saturation limit. The strong magnetic
  activity could have influenced the angular momentum evolution of the
  system via magnetic braking.

---------------------------------------------------------
Title: Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades
Authors: Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.
2015csss...18..561S    Altcode:
  Using spectra taken by the robotic telescope “TIGRE” (see Fig. 1 and
  the TIGRE-poster presented by Schmitt et al. at this conference) and its
  mid-resolution (R=20,000) HEROS double-channel echelle spectrograph,
  we present our measurements of the solar Ca II H&amp;K chromospheric
  emission. Using moonlight, we applied the calibration and definition of
  the Mt. Wilson S-index , which allows a direct comparison with historic
  observations, reaching back to the early 1960's. At the same time,
  coming from the same EUV emitting plage regions, the Ca II H&amp;K
  emission is a good proxy for the latter, which is of interest as a
  forcing factor in climate models. Our measurements probe the weak,
  asynchronous activity cycle 24 around its 2nd maximum during the
  past winter. Our S-values suggest that this maximum is the lowest
  in chromospheric emission since at least 60 years -- following the
  longest and deepest minimum since a century. Our observations suggest a
  similarly long-term (on a scale of decades) low of the far-UV radiation,
  which should be considered by the next generation of climate models. The
  current, very interesting activity behaviour calls for a concerted
  effort on long-term solar monitoring.

---------------------------------------------------------
Title: Exoplanetary System HD 189733 - Chromosphere, Transit, Activity
Authors: Krejcova, T.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M.
2015csss...18..779K    Altcode:
  We present a study of the temporal evolution of the chromospherically
  sensitive lines in the transiting exoplanetary system HD 189733 using
  high-resolution UVES spectra. With its fast temporal cadence of only 45
  s and its wide spectral coverage, our time series is ideal to study the
  influence of the transiting planetary disk on chromospheric lines . We
  measured the equivalent width and central line depression of the Ca II H
  and K lines, Hα, and the Ca II infrared triplet. While all these lines
  show temporal evolution on a scale potentially induced by the occulting
  planetary disk, strong intrinsic stellar variability prevents us from
  uniquely ascribing the observed variation to the planetary transit.

---------------------------------------------------------
Title: Compositional Mapping of a Satellite Surface with a Dust
    Mass Spectrometer
Authors: Schmidt, J.; Kempf, S.
2014AGUFM.P43B3978S    Altcode:
  Measuring the composition of cosmic dust in the vicinity of icy
  satellites provides unique insight into the physical and chemical
  conditions at its origin as demonstrated by Cassinis dust detector [4,
  3]. Information about the geological activities on and below a moons
  surface is contained in the types and amounts of organic and inorganic
  components embedded in the dominant surface material. The basic idea
  of the proposed compositional mapping [2] is that moons without an
  atmosphere are wrapped in clouds of dust particles (roughly micron
  sized) ejected by micro-meteroid impacts from the moons surfaces
  [1]. The composition of these dust particles can be analysed by an
  orbiter instrument. The ejecta particles move on ballistic trajectories
  and most of them recollide with the moon. As a consequence, an almost
  isotropic dust cloud forms around the moon. From the statistics
  of the particles in the cloud, one can constrain their location of
  origin on the surface. Thus, from their composition one can conclude,
  with given probability, on the composition of a certain part of the
  surface. In this way, recording a large sample of dust grains with an
  orbiter, it will be possible to resolve compositional variations on the
  surface and relate them to topological features.[1] Krueger et al.,
  Nature, 399, 1999.[2] Postberg et al., Planetary and Space Science,
  59, 2011.[3] Postberg et al., Nature, 459, 2009.[4] Postberg et al.,
  Icarus, 183, 2006.

---------------------------------------------------------
Title: Science goals and mission concept for the future exploration
    of Titan and Enceladus
Authors: Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin,
   F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.;
   Geppert, W. D.; Lebreton, J. -P.; Lefevre, A.; Livengood, T. A.; Mandt,
   K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo,
   R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom,
   J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.;
   Wagner, R. J.; West, R. A.; Westlake, J. H.
2014P&SS..104...59T    Altcode:
  Saturn's moons, Titan and Enceladus, are two of the Solar System's
  most enigmatic bodies and are prime targets for future space
  exploration. Titan provides an analogue for many processes relevant to
  the Earth, more generally to outer Solar System bodies, and a growing
  host of newly discovered icy exoplanets. Processes represented include
  atmospheric dynamics, complex organic chemistry, meteorological cycles
  (with methane as a working fluid), astrobiology, surface liquids and
  lakes, geology, fluvial and aeolian erosion, and interactions with
  an external plasma environment. In addition, exploring Enceladus
  over multiple targeted flybys will give us a unique opportunity
  to further study the most active icy moon in our Solar System as
  revealed by Cassini and to analyse in situ its active plume with
  highly capable instrumentation addressing its complex chemistry and
  dynamics. Enceladus' plume likely represents the most accessible samples
  from an extra-terrestrial liquid water environment in the Solar system,
  which has far reaching implications for many areas of planetary and
  biological science. Titan with its massive atmosphere and Enceladus
  with its active plume are prime planetary objects in the Outer Solar
  System to perform in situ investigations. In the present paper, we
  describe the science goals and key measurements to be performed by
  a future exploration mission involving a Saturn-Titan orbiter and a
  Titan balloon, which was proposed to ESA in response to the call for
  definition of the science themes of the next Large-class mission in
  2013. The mission scenario is built around three complementary science
  goals: (A) Titan as an Earth-like system; (B) Enceladus as an active
  cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues
  for the origin of life. The proposed measurements would provide a step
  change in our understanding of planetary processes and evolution, with
  many orders of magnitude improvement in temporal, spatial, and chemical
  resolution over that which is possible with Cassini-Huygens. This
  mission concept builds upon the successes of Cassini-Huygens and takes
  advantage of previous mission heritage in both remote sensing and in
  situ measurement technologies.

---------------------------------------------------------
Title: Estimates for uncharged nanograins in Enceladus' plume
Authors: Meier, P.; Kriegel, H.; Motschmann, U. M.; Schmidt, J.;
   Spahn, F.; Hill, T. W.; Dong, Y.; Jones, G. H.
2014AGUFM.P31B3991M    Altcode:
  Enceladus' plume provides a unique laboratory for dust-plasma
  interactions. Negatively charged nanograins, which represent the
  vast majority of grains, have been measured by Cassini Plasma
  Spectrometer (CAPS). Even a small fraction of positively charged
  nanograins has been detected by CAPS. However, there is a crucial
  lack of information on uncharged grains. Thus, no information on the
  total grain production rate of Enceladus or its total contribution
  to Saturn's E-ring are available yet. We present an estimation of
  uncharged grains as well as a total grain production rate by an
  analytical model and simulations. First, we derive an analytical
  model from basic equations of grain charging and quasi-neutrality
  connecting the amount of uncharged grains to negatively and positively
  charged grains. A first estimate for uncharged grains then results
  from the ratio of negatively-to-positively charged nanograins. For
  more accurate estimations we compare results from combined dust
  and plasma simulations with our analytical ones and CAPS data for
  charged nanograins to determine Enceladus' total grain production rate
  and a global profile of uncharged nanograins in the plume. The dust
  simulations of the plume and the plasma simulations with A.I.K.E.F. for
  plasma-plume interactions are performed iteratively allowing for the
  different time scales for dust and plasma dynamics.

---------------------------------------------------------
Title: Plumes and Jets: Constraints on Vents and Eruption Dynamics
    from Observations and Models
Authors: Schmidt, J.
2014AGUFM.P51F..05S    Altcode:
  Plume activity of Enceladus has been monitored by Cassini for
  nearly one decade after their discovery (see Science, 2006,
  311, special issue). Thus, crucial properties of the vapor dust
  plumes are constrained in a fairly detailed manner. In this paper I
  discuss implications for vent geometries, gas and grain dynamics and
  condensation in the vents. Vapor source rates on the order of 100 to
  1000kg/s were derived from remote and in-situ data [2, 3, 4, 1, 17]
  and distortions in the B field [10, 15]). Gas ejection speeds from
  500m/s to 1000m/s [18, 4] (escape speed 240m/s) indicate supersonic
  gas flow. Evidence for supersonic gas jets is directly seen in UVIS
  data [3]. Dust production rates between 5 to 50kg/s have been inferred
  [16, 8]. These do not yet include mass in jets of very fine nano-grains
  [9, 8, 7]. The dust plume exhibits scale heights that suggest ejection
  speeds on the order of 100m/s [13, 16, 6], i.e. well below the escape
  velocity. Larger grains have smaller ejection spees populating the lower
  parts of the plume [6, 16]. Salt has been identified in grains on the
  percent level [14] so that they cannot form alone by condensation from
  vapor. The detailed distribution of dust sources and jet orientations
  on the south polar terrain was derived from images and compared to
  temperature distributions and to the expected tidal stress pattern from
  modelling [12]. A recent observations show that plume brightness varies
  roughly by a factor of three with the orbital period of Enceladus,
  suggesting that ejection strength is tidally controlled [11, 5]. A
  similar variation in the gas discharge is expected but has not yet been
  observed to date. Remarkably, there is no such correlation of orbital
  phase and the observed scale height of dust jets. [1] Dong et al,
  JGR, 116, 2011[2] Hansen et al, Science, 311, 2006. [3] Hansen et al,
  Nature, 456, 2008.[4] Hansen et al, GRL, 38, 2011.[5] Hedman et al,
  Nature, 2013.[6] Hedman et al, ApJ, 693, 2009.[7] Hill et al, JGR, 117,
  2012.[8] Ingersoll and Ewald, Icarus, 216, 2011.[9] Jones et al, GRL,
  36, 2009.[10] Meier et al, submitted to PSS, 2014.[11] Nimmo et al,
  AstronJ, 148, 2014.[12] Porco et al, AstronJ, 148, 2014.[13] Porco
  et al, Science, 311, 2006.[14] Postberg et al, Nature, 474, 2011.[15]
  Saur et al, GRL, 35, 2008.[16] Schmidt et al, Nature, 451, 2008.[17]
  Smith et al, JGR, 115, 2010.[18] Tian et al, Icarus, 188, 2007.

---------------------------------------------------------
Title: Modeling Europa's Dust Plume
Authors: Southworth, B.; Schmidt, J.; Horanyi, M.; Kempf, S.
2014AGUFM.P53B4017S    Altcode:
  The discovery of Europa maintaining a probably periodic water plume
  located at its south polar terrain constitutes a huge scientific
  opportunity for an upcoming mission to this Galilean moon. Measuring
  the properties of material emerging from interior sources offers an
  unique scientific opportunity to understand the conditions at Europa's
  subsurface ocean. Remarkably, the water column density of 1020 m-2
  for the Europa plume is similar to the density of Enceladus' water
  plume of (0.9 +- 0.23)1020m-2. This finding strongly suggests that
  Europa's plume, similar to Enceladus, also contains a few mass percent
  of water ice particles which are formed by (i) nucleation within the
  vapor streaming through fractures in Europa's ice crust and (ii) by
  mantle growth on shock-frozen droplets on the interface of the moon's
  subsurface ocean. We adjusted the Enceladus plume model by Schmidt et
  al. (2008) to the conditions at Europa and derive the size-dependent
  speed distribution of the emerging ice particles.We furthermore derived
  the 3-dimensional structure of the ice particle plume and computed
  the snowfall pattern of the ice particles on Europa's surface.

---------------------------------------------------------
Title: Masses and activity of AB Doradus B a/b. The age of the AB
    Dor quadruple system revisited
Authors: Wolter, U.; Czesla, S.; Fuhrmeister, B.; Robrade, J.; Engels,
   D.; Wieringa, M.; Schmitt, J. H. M. M.
2014A&A...570A..95W    Altcode:
  We present a multiwavelength study of the close binary AB Dor Ba/b
  (Rst137B). Our study comprises astrometric orbit measurements, optical
  spectroscopy, X-ray and radio observations. Using all available adaptive
  optics images of AB Dor B taken with VLT/NACO from 2004 to 2009, we
  tightly constrain its orbital period to 360.6 ± 1.5 days. We present
  the first orbital solution of Rst 137B and estimate the combined mass of
  AB Dor Ba+b as 0.69<SUP>+0.02</SUP><SUB>-0.24</SUB> M<SUB>⊙</SUB>,
  slightly exceeding previous estimates based on IR photometry. Our
  determined orbital inclination of Rst 137B is close to the axial
  inclination of AB Dor A inferred from Doppler imaging. Our VLT/UVES
  spectra yield high rotational velocities of ≥30 km s<SUP>-1</SUP>
  for both components Ba and Bb, in accord with previous measurements,
  which corresponds to rotation periods significantly shorter than one
  day. Our combined spectral model, using PHOENIX spectra, yields an
  effective temperature of 3310 ± 50 K for the primary and approximately
  60 K less for the secondary. The optical spectra presumably cover a
  chromospheric flare and show that at least one component of Rst 137B
  is significantly active. Activity and weak variations are also found
  in our simultaneous XMM-Newton observations, while our ATCA radio data
  yield constant fluxes at the level of previous measurements. Using
  evolutionary models, our newly determined stellar parameters confirm
  that the age of Rst 137B is between 50 and 100 Myr. <P />Based on
  observations collected at the European Southern Observatory, Paranal,
  Chile, 383.D-1002(A) and the ESO Science Archive Facility. Using data
  obtained with XMM-Newton, an ESA science mission with instruments and
  contributions directly funded by ESA Member states and NASA. Using data
  obtained with the Australia Telescope Compact Array (ATCA) operated
  by the Commonwealth Scientific and Industrial Research Organisation
  (CSIRO).

---------------------------------------------------------
Title: TIGRE: A new robotic spectroscopy telescope at Guanajuato,
    Mexico
Authors: Schmitt, J. H. M. M.; Schröder, K. -P.; Rauw, G.; Hempelmann,
   A.; Mittag, M.; González-Pérez, J. N.; Czesla, S.; Wolter, U.;
   Jack, D.; Eenens, P.; Trinidad, M. A.
2014AN....335..787S    Altcode:
  TIGRE is a new robotic spectroscopy telescope located in central
  Mexico at the La Luz Observatory of the University of Guanajuato. The
  1.2 m telescope is fiber-coupled to an échelle spectrograph with a
  spectral resolving power exceeding 20 000 over most of the covered
  spectral range between 3800 Å and 8800 Å, with a small gap of 130
  Å around 5800 Å. TIGRE operates robotically, i.e. it (normally)
  carries out all observations without any human intervention, including,
  in particular, the target selection in any given observing night. In
  this paper we describe the properties of the TIGRE instrumentation and
  its technical realization, as well as our first operational experience
  with the performance and efficiency of the overall system. Finally,
  we present some examples of recent TIGRE observations.

---------------------------------------------------------
Title: A multiwavelength study of the hierarchical triple HD 181068. A
    test bed for studying star-planet interaction?
Authors: Czesla, S.; Huber, K. F.; Schneider, P. C.; Schmitt,
   J. H. M. M.
2014A&A...570A.115C    Altcode: 2014arXiv1408.2988C
  HD 181068 is the only compact, triply eclipsing, hierarchical triple
  system containing a giant star that is known to date. With its central,
  highly active G-type giant orbited by a close pair of main-sequence
  dwarfs, the system is ideal for studying tidal interactions. We
  carried out a multiwavelength study to characterize the magnetic
  activity of the HD 181068 system. To this end, we obtained in-
  and out-of-eclipse X-ray snapshots with XMM-Newton and an optical
  spectrum, which we analyzed along with the Kepler light curve. The
  primary giant shows strong quiescent X-ray emission at a level of 2
  × 10<SUP>31</SUP> erg s<SUP>-1</SUP>, an S-index of 0.41 ± 0.01,
  and marked white-light flares releasing up to 6 × 10<SUP>38</SUP>
  erg in the Kepler band. During the second X-ray observation, we found
  a three-times elevated - yet decaying - level of X-ray emission, which
  might be due to an X-ray flare. The high level of magnetic activity
  is compatible with the previously reported absence of solar-like
  oscillations in the giant, whose atmosphere, however, undergoes
  tidally induced oscillations imposed by the changing configuration
  of the dwarf-binary. We found that the driving force exciting these
  oscillations is comparable to the disturbances produced by a typical
  hot Jupiter, making the system a potential test bed for studying the
  effects of tidal interactions also present in planetary systems.

---------------------------------------------------------
Title: Sub-barrier enhancement of fusion as compared to a microscopic
    method in O18+C12
Authors: Steinbach, T. K.; Vadas, J.; Schmidt, J.; Haycraft, C.;
   Hudan, S.; deSouza, R. T.; Baby, L. T.; Kuvin, S. A.; Wiedenhöver,
   I.; Umar, A. S.; Oberacker, V. E.
2014PhRvC..90d1603S    Altcode: 2014arXiv1407.6031S
  Background: Measurement of the energy dependence of the fusion
  cross section at sub-barrier energies provides an important test for
  theoretical models of fusion. <P />Purpose: The aim of the study is
  to extend the measurement of fusion cross sections in the sub-barrier
  domain for the O18+C12 system, and to use the new experimental data to
  confront microscopic calculations of fusion. <P />Method: Evaporation
  residues produced in fusion of O18 ions with C12 target nuclei were
  detected with good geometric efficiency and identified by measuring
  their energy and time-of-flight. Theoretical calculations with a
  density-constrained time-dependent Hartree-Fock (DC-TDHF) theory
  include for the first time the effect of pairing on the fusion cross
  section. <P />Results: Comparison of the measured fusion excitation
  function with the predictions of the DC-TDHF calculations reveal that
  the experimental data exhibit a smaller decrease in cross section with
  decreasing energy than is theoretically predicted. <P />Conclusion:
  The larger cross sections observed at the lowest energies measured
  indicate a larger tunneling probability for the fusion process. This
  larger probability can be associated with a smaller, narrower fusion
  barrier than presently included in the theoretical calculations.

---------------------------------------------------------
Title: CARMENES instrument overview
Authors: Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt,
   R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.;
   Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.;
   Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.;
   Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.;
   Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla,
   S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí,
   D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.;
   Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.;
   González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther,
   E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H. -J.; Hatzes,
   A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.;
   Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.;
   Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.;
   Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun,
   W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí,
   B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.;
   Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar,
   R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo,
   V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V. -M.;
   Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.;
   Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode,
   P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.;
   Rodríguez-Pérez, E.; Rohloff, R. -R.; Rosich, A.; Sánchez-Blanco,
   E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.;
   Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano,
   E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich,
   R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.;
   Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del
   Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales,
   J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.
2014SPIE.9147E..1FQ    Altcode:
  This paper gives an overview of the CARMENES instrument and of the
  survey that will be carried out with it during the first years of
  operation. CARMENES (Calar Alto high-Resolution search for M dwarfs
  with Exoearths with Near-infrared and optical Echelle Spectrographs)
  is a next-generation radial-velocity instrument under construction
  for the 3.5m telescope at the Calar Alto Observatory by a consortium
  of eleven Spanish and German institutions. The scientific goal of the
  project is conducting a 600-night exoplanet survey targeting ~ 300 M
  dwarfs with the completed instrument. The CARMENES instrument consists
  of two separate echelle spectrographs covering the wavelength range
  from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by
  fibers from the Cassegrain focus of the telescope. The spectrographs
  are housed in vacuum tanks providing the temperature-stabilized
  environments necessary to enable a 1 m/s radial velocity precision
  employing a simultaneous calibration with an emission-line lamp
  or with a Fabry-Perot etalon. For mid-M to late-M spectral types,
  the wavelength range around 1.0 μm (Y band) is the most important
  wavelength region for radial velocity work. Therefore, the efficiency
  of CARMENES has been optimized in this range. The CARMENES instrument
  consists of two spectrographs, one equipped with a 4k x 4k pixel CCD
  for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe
  detectors for the range from 0.95 - 1.7μm. Each spectrograph will
  be coupled to the 3.5m telescope with two optical fibers, one for
  the target, and one for calibration light. The front end contains a
  dichroic beam splitter and an atmospheric dispersion corrector, to
  feed the light into the fibers leading to the spectrographs. Guiding
  is performed with a separate camera; on-axis as well as off-axis
  guiding modes are implemented. Fibers with octagonal cross-section
  are employed to ensure good stability of the output in the presence
  of residual guiding errors. The fibers are continually actuated to
  reduce modal noise. The spectrographs are mounted on benches inside
  vacuum tanks located in the coudé laboratory of the 3.5m dome. Each
  vacuum tank is equipped with a temperature stabilization system
  capable of keeping the temperature constant to within +/-0.01°C
  over 24 hours. The visible-light spectrograph will be operated near
  room temperature, while the near-IR spectrograph will be cooled to
  ~ 140 K. The CARMENES instrument passed its final design review in
  February 2013. The MAIV phase is currently ongoing. First tests at
  the telescope are scheduled for early 2015. Completion of the full
  instrument is planned for the fall of 2015. At least 600 useable
  nights have been allocated at the Calar Alto 3.5m Telescope for the
  CARMENES survey in the time frame until 2018. A data base of M stars
  (dubbed CARMENCITA) has been compiled from which the CARMENES sample
  can be selected. CARMENCITA contains information on all relevant
  properties of the potential targets. Dedicated imaging, photometric,
  and spectroscopic observations are underway to provide crucial data
  on these stars that are not available in the literature.

---------------------------------------------------------
Title: The X-ray properties of lambda Cep, a true twin of zeta Pup?
Authors: Rauw, G.; Nazé, Y.; Gonzalez-Perez, N.; Hempelmann, A.;
   Mittag, M.; Schmitt, J.; Schröder, K.; Hervé, A.; Eenens, P.;
   Gosset, E.
2014xru..confE.168R    Altcode:
  Oef stars are O-stars that display a double-peaked He II λ 4686
  line in their optical spectra, suggesting that the inner part of the
  stellar wind is co-rotating with the star. This hypothesis is also often
  used to explain their ubiquitous spectral variability in the optical
  domain. In this context, the fact that the high-resolution X-ray spectra
  of ζ Pup (O4Ief) meet the expectations of the wind-embedded shock
  model, assuming a spherically symmetric wind came as a surprise. To
  understand what is going on, we have obtained a 300 ksec observation
  of λ Cephei, the second brightest Oef star. This observation not
  only allows to collect the RGS high-resolution spectrum of the star,
  but further enables us to search for X-ray variability. To correlate
  the potential X-ray variability with that of the optical spectrum
  of λ Cep, we monitored the optical spectrum simultaneously with the
  TIGRE telescope. We present here the first results of this campaign,
  both in terms of the line profiles in the RGS spectrum and the search
  for X-ray variability in correlation with the optical variations.

---------------------------------------------------------
Title: X-Ray Emission from the Super-Earth Host GJ 1214
Authors: Lalitha, S.; Poppenhaeger, K.; Singh, K. P.; Czesla, S.;
   Schmitt, J. H. M. M.
2014ApJ...790L..11L    Altcode: 2014arXiv1407.2741L
  Stellar activity can produce large amounts of high-energy
  radiation, which is absorbed by the planetary atmosphere leading
  to irradiation-driven mass loss. We present the detection and an
  investigation of high-energy emission in a transiting super-Earth
  host system, GJ 1214, based on XMM-Newton observations. We derive
  an X-ray luminosity of L<SUB>X</SUB> = 7.4 × 10<SUP>25</SUP> erg
  s<SUP>-1</SUP> and a corresponding activity level of log (L<SUB>X</SUB>
  /L <SUB>bol</SUB>) ~ -5.3. Further, we determine a coronal temperature
  of about ~3.5 MK, which is typical for coronal emission of moderately
  active low-mass stars. We estimate that GJ 1214 b evaporates at a
  rate of 1.3× 10<SUP>10</SUP> g s<SUP>-1</SUP> and has lost a total
  of ≈2-5.6 M <SUB>⊕</SUB>.

---------------------------------------------------------
Title: X-ray studies of circumstellar material around classical T
    Tauri stars
Authors: Schneider, C.; Robrade, J.; Günther, M.; Schmitt, J.
2014xru..confE.185S    Altcode:
  I will present recent XMM-Newton observations of accreting, young
  stars. These so-called classical T Tauri stars are surrounded by
  protoplanetary accretion disks and drive outflows or even powerful
  jets. Currently, the structure of these two components is not well
  understood, both observationally and theoretically. X-ray data
  are particularly useful to study these circumstellar structures
  as they provide complementary information to classical, longer
  wavelengths observations. I will show results of our new X-ray programs
  targeting prototypical young stellar systems and discuss them in the
  multi-wavelength context.

---------------------------------------------------------
Title: Puzzling fluorescent emission from Orion
Authors: Czesla, S.; Schmitt, J.
2014xru..confE..55C    Altcode:
  Fluorescent X-ray emission allows to study cool material surrounding
  active, young stars. We analyzed fluorescent iron Kalpha-line emission
  in a sample of 106 young stars in Orion with a special emphasis on its
  temporal behavior. Along with a total of 23 detections of fluorescent
  emission, we found a wide variety of temporal behavior: While the
  fluorescent emission is associated with soft X-ray flares in some
  cases, it also appears as a (quasi) persistent feature -- sometimes in
  otherwise quiescent periods. This temporal behavior often challenges
  photoionization as the sole origin of the fluorescent emission. As
  alternative formation mechanisms demand, however, immense amounts of
  energy to explain the observations, we conclude that photoionization
  in combination with suitable source geometries represents the most
  plausible configuration to explain the observed fluorescent emission.

---------------------------------------------------------
Title: SCALABLE- Innovative Scalable Large Deployable Antenna
    Reflector
Authors: Ihle, Alexander; Datashvili, L.; Schmidt, J.; Hartmann, D.;
   Proietti Zolla, P.; Santiago-Prowald, J.
2014ESASP.727E.177I    Altcode:
  Europe is lacking a competitive product for large deployable antenna
  reflectors to embark on a commercial program. Need is identified to
  cover antenna applications from 4 up to 18 meter and frequencies from
  UHF up to Ka band. In particular the need for a scalable design concept,
  able to cover the small diameter range, but with growth potentials
  up to 18 m diameter, has been recognised. Up to now, most activities
  focused on general topics on mission needs and concept level, or
  specific topics like tensegrity structures or RF reflective surface
  materials. The INNOVATIVE SCALABLE LARGE DEPLOYABLE ANTENNA REFLECTORS
  activity is taking into account the reflector dish and the overall
  reflector assembly including systems engineering related aspects
  with the goal to identify, design and demonstrate the mechanical
  feasibility of a European large antenna reflector. Eventually, a
  deployable demonstrator reflector dish will be developed, manufactured
  and tested. The paper shall give an overview on the current and upcoming
  tasks of this activity.

---------------------------------------------------------
Title: Highlights and discoveries of the Cosmic Dust Analyser (CDA)
    during its 15 years of exploration
Authors: Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.;
   Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton,
   M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino,
   M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn,
   F.; Sterken, V.; Trieloff, M.
2014EPSC....9..506S    Altcode:
  The interplanetary space probe Cassini/Huygens reached Saturn in July
  2004 after seven years of cruise phase. Today, the German-lead Cosmic
  Dust Analyser (CDA) is operated continuously for 10 years in orbit
  around Saturn. During the cruise phase CDA measured the interstellar
  dust flux at one AU distance from the Sun, the charge and composition
  of interplanetary dust grains and the composition of the Jovian
  nanodust streams. The first discovery of CDA related to Saturn was
  the measurement of nanometer sized dust particles ejected by its
  magnetosphere to interplanetary space with speeds higher than 100
  km/s. Their origin and composition was analysed and an their dynamical
  studies showed a strong link to the conditions of the solar wind plasma
  flow. A recent surprising result was, that stream particles stem from
  the interior of Enceladus. Since 2004 CDA measured millions of dust
  impacts characterizing the dust environment of Saturn. The instrument
  showed strong evidence for ice geysers located at the south pole
  of Saturn's moon Enceladus in 2005. Later, a detailed compositional
  analysis of the salt-rich water ice grains in Saturn's E ring system
  lead to the discovery of liquid water below the icy crust connected to
  an ocean at depth feeding the icy jets. CDA was even capable to derive
  a spatially resolved compositional profile of the plume during close
  Enceladus flybys. A determination of the dust-magnetosphere interaction
  and the discovery of the extended E ring allowed the definition of
  a dynamical dust model of Saturn's E ring describing the observed
  properties. The measured dust density profiles in the dense E ring
  revealed geometric asymmetries. Cassini performed shadow crossings in
  the ring plane and dust grain charges were measured in shadow regions
  delivering important data for dust-plasma interaction studies. In the
  last years, dedicated measurement campaigns were executed by CDA to
  monitor the flux of interplanetary and interstellar dust particles
  reaching Saturn. Currently, the composition of interstellar grains
  and the meteoroid flux into the Saturnian system are in analysis.

---------------------------------------------------------
Title: Excess noise in synthetic stellar occultation data from N-body
    simulations of Saturn's rings
Authors: Salo, H.; Schmidt, J.
2014EPSC....9..744S    Altcode:
  The excess variance in stellar occultation measurements, as compared
  to that expected from Poisson statistics, provides an useful tool for
  extracting information of the ring particle size distribution [1] and/or
  the tendency of particles to form transient aggregates (e.g. [2]). We
  compare the excess variance calculated from N-body simulations with
  formulae derived in literature [1]. Besides highlighting some basic
  dependencies, we illustrate how the destruction of selfgravity wake
  structures at satellite density waves crests might manifest as a local
  reduction of effective particle size.

---------------------------------------------------------
Title: Compositional differentiation of Enceladus' plume
Authors: Khawaja, N.; Postberg, F.; Schmidt, J.
2014EPSC....9..446K    Altcode:
  The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled
  Enceladus' plume ice particles emanated directly from Enceladus'
  fractured south polar terrain (SPT), the so-called "Tiger Stripes",
  during two consecutive flybys (E17 and E18) in 2012. The spacecraft
  passed through the dense plume with a moderate velocity of ~7.5km/s,
  horizontally to the SPT with a closest approach (CA) at an altitude
  of ~75km almost directly over the south pole. In both flybys, spectra
  were recorded during a time interval of ~ ±3 minutes with respect to
  the closest approach achieving an average sampling rate of about 0.6
  sec-1. We assume that the spacecraft passed through the plume during an
  interval of about ±60(sec) from the CA. Particles encountered before
  and after this period are predominately from the E-ring background in
  which Enceladus is embedded. Most CDA TOF-mass spectra are identified
  as one of three compositional types: (i) almost pure water (ii) organic
  rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed
  from a count database for compositional mapping of the plume along
  the space-craft trajectory. In BCA, counts of each spectrum type are
  integrated for a certain interval of time (box size). The integral
  of counts represents frequencies of compositional types in absolute
  abundances, which are converted later into proportions. This technique
  has been proven to be a suitable for inferring the compositional
  profiles from an earlier flyby (E5) [1]. The inferred compositional
  profiles show similar trends on E17 and E18. The abundances of
  different compositional types in the plume clearly differ from the
  Ering background and imply a compositional differentiation inside
  the plume. Following up the work of Schmidt et al, 2008 and Postberg
  et al, 2011 we can link different compositional types to different
  origins. The E17/E18 results are compared with the E5 flyby in 2008,
  which yielded the currently best compositional profile [2] but was
  executed at much higher velocity (~17.6km/s) and a very different,
  highly inclined, flyby geometry.

---------------------------------------------------------
Title: Modelling of Resonantly Forced Density Waves in Dense
    Planetary Rings
Authors: Lehmann, M.; Schmidt, J.; Salo, H.
2014EPSC....9..424L    Altcode:
  Density wave theory, originally proposed to explain the spiral structure
  of galactic disks, has been applied to explain parts of the complex
  sub-structure in Saturn's rings, such as the wavetrains excited
  at the inner Lindblad resonances (ILR) of various satellites. The
  linear theory for the excitation and damping of density waves
  in Saturn's rings is fairly well developed (e.g. Goldreich &amp;
  Tremaine [1979]; Shu [1984]). However, it fails to describe certain
  aspects of the observed waves. The non-applicability of the linear
  theory is already indicated by the "cusplike" shape of many of the
  observed wave profiles. This is a typical nonlinear feature which is
  also present in overstability wavetrains (Schmidt &amp; Salo [2003];
  Latter &amp; Ogilvie [2010]). In particular, it turns out that the
  detailed damping mechanism, as well as the role of different nonlinear
  effects on the propagation of density waves remain intransparent. First
  attemps are being made to investigate the excitation and propagation
  of nonlinear density waves within a hydrodynamical formalism, which
  is also the natural formalism for describing linear density waves. A
  simple weakly nonlinear model, derived from a multiple-scale expansion
  of the hydrodynamic equations, is presented. This model describes the
  damping of "free" spiral density waves in a vertically integrated fluid
  disk with density dependent transport coefficients, where the effects
  of the hydrodynamic nonlinearities are included. The model predicts
  that density waves are linearly unstable in a ring region where the
  conditions for viscous overstability are met, which translates to a
  steep dependence of the shear viscosity with respect to the disk's
  surface density. The possibility that this dependence could lead to a
  growth of density waves with increasing distance from the resonance,
  was already mentioned in Goldreich &amp; Tremaine [1978]. Sufficiently
  far away from the ILR, the surface density perturbation caused by the
  wave, is predicted to saturate to a constant value due to the effects
  of nonlinear viscous damping. A qualitatively similar behaviour has
  also been predicted for the damping of nonlinear density waves, as
  described within a streamline formalism (Borderies, Goldreich &amp;
  Tremaine [1985]). The damping lengths which follow from the weakly
  nonlinear model depend more or less strongly on a set of different
  input parameters, such as the viscosity and the surface density of the
  unperturbed ring state. Further, they depend on the wave's amplitude
  at resonance. For a real wave, which has been excited by an external
  satellite, this amplitude can be deduced from the magnitude of the
  satellite's forcing potential. Appart from that, hydrodynamical
  simulations are being developed to study the nonlinear damping of
  resonantly forced density waves.

---------------------------------------------------------
Title: Kepler-210: An active star with at least two planets
Authors: Ioannidis, P.; Schmitt, J. H. M. M.; Avdellidou, Ch.; von
   Essen, C.; Agol, E.
2014A&A...564A..33I    Altcode: 2014arXiv1403.3238I
  We report the detection and characterization of two short-period,
  Neptune-sized planets around the active host star Kepler-210. The
  host star's parameters derived from those planets are (a) mutually
  inconsistent and (b) do not conform to the expected host star
  parameters. We furthermore report the detection of transit timing
  variations (TTVs) in the O-C diagrams for both planets. We explore
  various scenarios that explain and resolve those discrepancies. A
  simple scenario consistent with all data appears to be one that
  attributes substantial eccentricities to the inner short-period
  planets and that interprets the TTVs as due to the action of another,
  somewhat longer period planet. To substantiate our suggestions,
  we present the results of N-body simulations that modeled the
  TTVs and that checked the stability of the Kepler-210 system. <P
  />Tables 5-8 are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A33">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A33</A>

---------------------------------------------------------
Title: Estimation of aggregation processes for dust in the Enceladus
    vents
Authors: Dzhanoev, A.; Schmidt, J.; Spahn, F.
2014EPSC....9..755D    Altcode:
  We investigate the possibility of dust aggregation processes when
  icy grains are transported by water vapor streams in the subsurface
  vents of Saturn's active moon Enceladus to space. Dust aggregates, or
  non-spherical dust grains, generally establish up to ten times higher
  equilibrium charges than a spherical grain of the same mass when exposed
  to equivalent charging conditions. This indicates that dust charging
  models with spherical grains lead to a net charge underestimation. The
  effect might be important if one likes to verify if dust charging can
  account for the misfit between ion and electron densities inferred
  from data taken by the Cassini-Langmuir probe in the E ring and in the
  Enceladus plume [1]. Furthermore, an increased charge-to-mass ratio,
  and a reduced bulk density for dust in Saturn's inner magnetosphere
  will affect to some degree the dynamics of these grains in the E ring
  region. This will alter the size-dependent lifetimes of particles,
  which ultimately determine the steady state size- distribution of E
  ring grains.

---------------------------------------------------------
Title: SUDA: A Dust Mass Spectrometer for Compositional Surface
    Mapping for a Mission to Europa
Authors: Kempf, S.; Altobelli, N.; Briois, C.; Grün, E.; Horanyi,
   M.; Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Tobie, G.;
   Zolotov, M.
2014EPSC....9..229K    Altcode:
  We developed a dust mass spectrometer to measure the composition of
  ballistic dust particles populating the thin exospheres that were
  detected around each of the Galilean moons. Since these grains are
  direct samples from the moons' icy surfaces, unique composition data
  will be obtained that will help to define and constrain the geological
  activities on and below the moons? surface. The proposed instrument will
  make a vital contribution to NASA's planned Europa Clipper mission and
  provide key answers to its main scientific questions about the surface
  composition, habitability, the icy crust, and exchange processes
  with the deeper interior of the Jovian icy moon Europa. The SUrface
  Dust Aanalyser (SUDA) is a time-offlight, reflectron-type impact mass
  spectrometer, optimised for a high mass resolution which only weakly
  depends on the impact location. The small size (268×250×171 mm3),
  low mass (&lt; 4 kg) and large sensitive area (220 cm2) makes the
  instrument well suited for the challenging demands of the Europa Clipper
  mission. A full-size prototype SUDA instrument was built in order to
  demonstrate its performance through calibration experiments at the dust
  accelerator at NASA's IMPACT institute at Boulder, CO with a variety of
  cosmochemically relevant dust analogues. The effective mass resolution
  of m/∆m of 200-250 is achieved for mass range of interest m = 1-250.

---------------------------------------------------------
Title: Compositional Mapping of Europa's Surface with a Dust Mass
    Spectrometer
Authors: Kempf, S.; Altobelli, N.; Briois, C.; Cassidy, T.; Grün,
   E.; Horanyi, M.; Postberg, F.; Schmidt, J.; Shasharina, S.; Srama,
   R.; Sternovsky, Z.
2014LPICo1774.4052K    Altcode:
  We developed a detector to measure the composition Europa's dust
  exosphere. Because these grains are samples from Europa’s surface,
  unique information will be obtained about the surface as well as
  geological activities on and below the surface.

---------------------------------------------------------
Title: VizieR Online Data Catalog: KOI-676 transits for planets b
    and c (Ioannidis+, 2014)
Authors: Ioannidis, P.; Schmitt, J. H. M. M.; Avdellidou, Ch.; von
   Essen, C.; Agol, E.
2014yCat..35640033I    Altcode: 2014yCat..35649033I
  This is a list of Kepler-210b and Kepler-210c mid-transit times for
  each epoch of the short and long cadence Kepler data, along with their
  error, the epoch number and the predicted from the ephemeris value. <P
  />(4 data files).

---------------------------------------------------------
Title: Exoplanet transits in X-rays: a new observational window to
    the exoplanetary atmosphere
Authors: Poppenhaeger, Katja; Wolk, S. J.; Schmitt, J.
2014AAS...22320705P    Altcode:
  Exoplanets in short-period orbits are subject to strong irradiation
  from their host star and can lose mass through evaporation. The main
  driver for this evaporation is high-energy emission from the host
  star. However, it is observationally unclear where in the exoplanetary
  atmosphere the bulk of the high-energy radiation is absorbed, and the
  energy budget for the evaporation is not well constrained. We have
  observed seven transits of the Hot Jupiter HD 189733 b in front of its
  host star, using X-ray observations with Chandra and XMM-Newton. We
  detect the exoplanetary transit in X-rays for the first time. We find
  a surprisingly large X-ray transit depth of 6-8%, in stark contrast
  to an optical transit depth of only 2.4%. We can trace this back to
  extended outer atmosphere layers of the planet which reach out to 1.75
  optical planetary radii in altitude. We are able to derive density and
  temperature estimates for the outer planetary atmosphere, as well as a
  revised energy budget for planetary evaporation due to the large X-ray
  absorbing radius. These observations, together with accepted further
  programs in the X-ray regime, will allow us to build a comprehensive
  picture of the atmospheres of strongly irradiated exoplanets.

---------------------------------------------------------
Title: DN Tauri - coronal activity and accretion in a young low-mass
    CTTS
Authors: Robrade, J.; Güdel, M.; Günther, H. M.; Schmitt, J. H. M. M.
2014A&A...561A.124R    Altcode: 2013arXiv1311.4461R
  Context. Classical T Tauri stars (CTTSs) are young, accreting low-mass
  stars; their X-ray emission differs from that of their main-sequence
  counterparts in a number of aspects. <BR /> Aims: We study the specific
  case of DN Tau, a young M0-type accreting CTTS, to extend the range
  of young CTTSs studied with high-resolution X-ray spectroscopy at
  lower masses and to compare its high-energy properties with those of
  similar objects. <BR /> Methods: We use a deep XMM-Newton observation
  of DN Tau to investigate its X-ray properties and X-ray generating
  mechanisms. Specifically, we examine the presence of X-ray emission from
  magnetic activity and accretion shocks. We also compare our new X-ray
  data with UV data taken simultaneously and with X-ray/UV observations
  performed before. <BR /> Results: We find that the X-ray emission from
  DN Tau is dominated by coronal plasma generated via magnetic activity,
  but also clearly detect a contribution of the accretion shocks to
  the cool plasma component at ≲2 MK as consistently inferred from
  density and temperature analysis. Typical phenomena of active coronae,
  such as flaring, the presence of very hot plasma at 30 MK, and an
  abundance pattern showing the inverse FIP effect, are seen on DN
  Tau. Strong variations in the emission measure of the cooler plasma
  components between the 2005 and 2010 data point to accretion related
  changes; in contrast, the hotter coronal plasma component is virtually
  unchanged. The UV light curve taken simultaneously is in general not
  related to the X-ray brightness, but exhibits clear counterparts during
  the observed X-ray flares. <BR /> Conclusions: The X-ray properties of
  DN Tau are similar to those of more massive CTTSs, but its low mass and
  large radius associated with its youth shift the accretion shocks to
  lower temperatures, reducing their imprint in the X-ray regime. DN Tau's
  overall X-ray properties are dominated by strong magnetic activity.

---------------------------------------------------------
Title: Planet Hunters: Kepler by Eye
Authors: Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.;
   Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish,
   M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.
2014AAS...22310301S    Altcode:
  Planet Hunters (http://www.planethunters.org), part of the Zooniverse's
  (http://www.zooniverse.org) collection of online citizen science
  projects, uses the World Wide Web to enlist the general public to
  identify transits in the pubic Kepler light curves. Planet Hunters
  utilizes human pattern recognition to identify planet transits that
  may be missed by automated detection algorithms looking for periodic
  events. Referred to as ‘crowdsourcing’ or ‘citizen science’,
  the combined assessment of many non-expert human classifiers with
  minimal training can often equal or best that of a trained expert and
  in many cases outperform the best machine-learning algorithm. Visitors
  to the Planet Hunters' website are presented with a randomly selected
  ~30-day light curve segment from one of Kepler’s ~160,000 target stars
  and are asked to draw boxes to mark the locations of visible transits
  in the web interface. 5-10 classifiers review each 30-day light curve
  segment. Since December 2010, more than 260,000 volunteers world wide
  have participated, contributing over 20 million classifications. We
  have demonstrated the success of a citizen science approach with
  the project’s more than 20 planet candidates, the discovery of
  PH1b, a transiting circumbinary planet in a quadruple star system,
  and the discovery of PH2-b, a confirmed Jupiter-sized planet in the
  habitable zone of a Sun-like star. I will provide an overview of Planet
  Hunters, highlighting several of project's most recent exoplanet and
  astrophysical discoveries. Acknowledgements: MES was supported in part
  by a NSF AAPF under award AST-1003258 and a American Philosophical
  Society Franklin Grant. We acknowledge support from NASA ADAP12-0172
  grant to PI Fischer.

---------------------------------------------------------
Title: Cool, warm and hot outflows from CTTS: The FUV view of DG Tau
Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther,
   H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M.
2014EPJWC..6408007S    Altcode:
  Classical T Tauri stars (CTTSs) drive strong outflows with temperatures
  from about 10<SUP>3</SUP> K up to a few 10<SUP>6</SUP> K. These outflows
  regulate the angular momentum balance and are therefore tightly related
  to the accretion process. However, the outflow driving and heating
  mechanisms are not well understood. We present new HST data of the
  "prototypical" jet-driving CTTS DG Tau tracing the low-temperature
  outflow with fluorescently excited far-UV molecular hydrogen emission
  and the high-temperature part with C IV emission. We find that the
  spatial distribution of the low-temperature plasma is V-shaped
  consistent with molecular disk-wind models. Low-velocity shocks
  (v<SUB>shock</SUB> ~ 30 km s<SUP>-1</SUP>) are probably the pumping
  source for the FUV H<SUB>2</SUB> lines. The hot plasma (T &gt;
  10<SUP>5</SUP> K) is located close to the jet axis at a distance of
  40 AU from the driving source and spatially offset from standard
  (optical) jet-tracers like [S II] or [O I]. It does not show any
  hints for proper-motion contrasting typical jet properties. The
  high-temperature plasma is unlikely caused by a hot stellar wind and
  we propose that the stationary heating is caused by internal shocks
  or magnetic reconnection.

---------------------------------------------------------
Title: A multi-wavelength view of AB Doradus outer atmosphere
    . Simultaneous X-ray and optical spectroscopy at high cadence
Authors: Lalitha, S.; Fuhrmeister, B.; Wolter, U.; Schmitt,
   J. H. M. M.; Engels, D.; Wieringa, M. H.
2013A&A...560A..69L    Altcode: 2013arXiv1309.4933L
  <BR /> Aims: We study the chromosphere and corona of the ultra-fast
  rotator <ASTROBJ>AB Dor A</ASTROBJ> at high temporal and spectral
  resolution using simultaneous observations with XMM-Newton in the
  X-rays, VLT/UVES in the optical, and the ATCA in the radio. Our optical
  spectra have a resolving power of ~50 000 with a time cadence of ~1
  min. Our observations continuously cover more than one rotational
  period and include both quiescent periods and three flaring events
  of different strengths. <BR /> Methods: From the X-ray observations
  we investigated the variations in coronal temperature, emission
  measure, densities, and abundance. We interpreted our data in terms
  of a loop model. From the optical data we characterised the flaring
  chromospheric material using numerous emission lines that appear
  in the course of the flares. A detailed analysis of the line shapes
  and line centres allowed us to infer physical characteristics of the
  flaring chromosphere and to coarsely localise the flare event on the
  star. <BR /> Results: We specifically used the optical high-cadence
  spectra to demonstrate that both turbulent and Stark broadening are
  present during the first ten minutes of the first flare. Also, in the
  first few minutes of this flare, we find short-lived (one to several
  minutes) emission subcomponents in the Hα and Ca ii K lines, which
  we interpret as flare-connected shocks owing to their high intrinsic
  velocities. Combining the space-based data with the results of our
  optical spectroscopy, we derive flare-filling factors. Finally,
  comparing X-ray, optical broadband, and line emission, we find
  a correlation for two of the three flaring events, while there
  is no clear correlation for one event. Also, we do not find any
  correlation of the radio data to any other observed data. <P />Based
  on observations collected at the European Southern Observatory,
  Paranal, Chile, 383.D-1002A and on observations obtained with
  XMM-Newton, an ESA science mission with instruments and contributions
  directly funded by ESA member states and NASA.Full Table 6 and
  reduced data are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A69">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A69</A>

---------------------------------------------------------
Title: Observations of ejecta clouds produced by impacts onto Saturn's
    rings (Invited)
Authors: Tiscareno, M. S.; Mitchell, C. J.; Murray, C.; Di Nino, D.;
   Hedman, M. M.; Schmidt, J.; Burns, J. A.; Cuzzi, J. N.; Porco, C.;
   Beurle, K.; Evans, M. W.
2013AGUFM.P21E..02T    Altcode:
  We report the first observations of impact ejecta clouds at Saturn's
  rings by the Cassini spacecraft, making Saturn's rings the second
  location outside the Earth-Moon system (after Jupiter's atmosphere)
  at which impacts have been observed in process, and the first with
  sufficient numbers for population statistics. There is very little
  previous knowledge of meteoroids in the outer solar system, and
  no direct knowledge of particles in the size range probed by this
  work (larger than dust but smaller than moons). The observed dusty
  clouds are due to impacts onto the rings that occurred between 1
  and 50 hours before the clouds were observed. The largest of these
  clouds was observed twice; its brightness and cant angle evolved in
  a manner consistent with this hypothesis. Several arguments suggest
  that these clouds cannot be due to the primary impact of one solid
  meteoroid onto the rings, but rather to the impact of a compact
  stream of Saturn-orbiting material derived from previous breakup of a
  meteoroid. The responsible interplanetary meteoroids were initially
  between 1 cm and several meters in size, and their influx rate is
  consistent with the sparse prior knowledge of smaller meteoroids in
  the outer solar system.

---------------------------------------------------------
Title: High-precision stellar limb-darkening measurements. A transit
    study of 38 Kepler planetary candidates
Authors: Müller, H. M.; Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt,
   J. H. M. M.
2013A&A...560A.112M    Altcode:
  Context. Planetary transit light curves are influenced by a variety of
  fundamental parameters, such as the orbital geometry and the surface
  brightness distribution of the host star. Stellar limb darkening
  (LD) is therefore among the key parameters of transit modeling. In
  many applications, LD is presumed to be known and modeled based
  on synthetic stellar atmospheres. <BR /> Aims: We measure LD in a
  sample of 38 Kepler planetary candidate host stars covering effective
  temperatures between 3000 K and 8900 K with a range of surface gravities
  from 3.8 to 4.7. In our study we compare our measurements to widely
  used theoretically predicted quadratic limb-darkening coefficients
  (LDCs) to check their validity. <BR /> Methods: We carried out a
  consistent analysis of a unique stellar sample provided by the Kepler
  satellite. We performed a Markov chain Monte Carlo (MCMC) modeling
  of low-noise, short-cadence Kepler transit light curves, which yields
  reliable error estimates for the LD measurements in spite of the highly
  correlated parameters encountered in transit modeling. <BR /> Results:
  Our study demonstrates that it is impossible to measure accurate LDCs by
  transit modeling in systems with high impact parameters (b ≳ 0.8). For
  the majority of the remaining sample objects, our measurements agree
  with the theoretical predictions, considering measurement errors and
  mutual discrepancies between the theoretical predictions. Nonetheless,
  theory systematically overpredicts our measurements of the quadratic
  LDC u<SUB>2</SUB> by about 0.07. Systematic errors of this order for
  LDCs would lead to an uncertainty on the order of 1% for the derived
  planetary parameters. <BR /> Conclusions: We find that it is adequate to
  set the commonly used theoretical LDCs as fixed parameters in transit
  modeling. Furthermore, it is even indispensable to use theoretical
  LDCs in the case of transiting systems with a high impact parameter,
  since the host star's LD cannot be determined from their transit light
  curves. <P />Table 3 and appendices are available in electronic form
  at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: The impact of Enceladus' plasma environment on the dust plume
Authors: Meier, P.; Kriegel, H.; Motschmann, U. M.; Schmidt, J.;
   Spahn, F.; Hill, T. W.; Dong, Y.; Jones, G. H.
2013AGUFM.P53B1852M    Altcode:
  Enceladus' plume is a unique laboratory to explore plasma-dust
  interactions. In this work, we combine Monte-Carlo simulations
  of Enceladus' dust plume with hybrid simulations of its plasma
  environment. These simulations are performed iteratively with respect to
  the different time scales for dust and plasma dynamics. On the one hand,
  the hybrid simulations need a sophisticated dust plume model to explain
  the magnetometer measurements at Enceladus. On the other hand, the dust
  simulations need a detailed local plasma environment for generating
  a realistic dust plume. The plasma densities determine the charging
  currents of the dust, while the EM-fields are required for the grain
  dynamics through the Lorentz force. Since our dust size distribution
  peaks in the nanometer regime, our model focuses on the nanograins. The
  resulting dust density profiles are in good agreement with nanograin
  densities obtained by CAPS for the E3 and E5 flyby. Furthermore, we
  discuss the impact of the individual dust source types (tiger stripes,
  jets) as well as the location of the maximum charge density and the
  grain charge time.

---------------------------------------------------------
Title: Ejecta clouds from meteoroid impacts on Saturn's rings:
    Constraints on the orbital elements and size of the projectiles
Authors: Schmidt, J.; Tiscareno, M. S.
2013AGUFM.P23D1820S    Altcode:
  Debris clouds, providing direct evidence for meteoritic ring erosion,
  were observed for the first time in Cassini images of Saturn's rings
  (Tiscareno et al., Science (2013), 340, 460). One feature was observed
  in two images taken about 24 hours apart, allowing to constrain the
  time evolution of the cloud. The details of the time evolution suggest
  that these clouds cannot be due to the primary impact of one solid
  meteoroid onto the rings, but rather are due to the impact of a compact
  stream of Saturn-orbiting material derived from previous breakup of a
  meteoroid. In this paper we give new estimates for the orbital elements
  of this compact stream and the size of the primary meteoroid.

---------------------------------------------------------
Title: X-ray irradiation and mass-loss of the hot Jupiter WASP-43b
Authors: Czesla, S.; Salz, M.; Schneider, P. C.; Schmitt, J. H. M. M.
2013A&A...560A..17C    Altcode:
  We report the X-ray detection of the low-mass K7V star WASP-43,
  which is orbited by a hot Jupiter in one of the closest exoplanet
  orbits known to date. The high mean density of the planet implies a
  massive core with ≈130 M<SUB>⊕</SUB>, yielding a heavy-element
  mass-fraction of 20%. From an 18 ks long XMM-Newton observation,
  we derive an X-ray luminosity of 6.7<SUP>+3.5</SUP><SUB>-3.3</SUB>
  × 10<SUP>27</SUP> ergss<SUP>-1</SUP>, which puts WASP-43 among the
  active K-stars, which is compatible with its relatively young age
  derived in previous studies. The X-ray luminosity translates into a
  soft X-ray flux of (10.2 ± 5.4) × 10<SUP>3</SUP> erg cm<SUP>-2</SUP>
  s<SUP>-1</SUP> at the substellar point. According to our modeling, the
  combined X-ray and extreme ultraviolet flux may trigger mass-loss at
  a rate of up to ≈10<SUP>12</SUP> gs<SUP>-1</SUP> via energy-limited
  atmospheric escape. We infer that it is unlikely that the planet has
  lost more than 2.5% of its current mass through that channel and that
  activity-induced mass-loss has not substantially altered its evolution.

---------------------------------------------------------
Title: X-ray activity cycle on the active ultra-fast rotator AB
    Doradus A?. Implication of correlated coronal and photometric
    variability
Authors: Lalitha, S.; Schmitt, J. H. M. M.
2013A&A...559A.119L    Altcode: 2013arXiv1311.1380L
  Context. Although chromospheric activity cycles have been studied in
  a larger number of late-type stars for quite some time, very little
  is known about coronal activity-cycles in other stars and their
  similarities or dissimilarities with the solar activity cycle. <BR
  /> Aims: While it is usually assumed that cyclic activity is present
  only in stars of low to moderate activity, we investigate whether the
  ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial
  magnetic activity in essentially all wavelength bands, exhibits an
  X-ray activity cycle in analogy to its photospheric activity cycle of
  about 17 years and possible correlations between these bands. <BR />
  Methods: We analysed the combined optical photometric data of AB Dor
  A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton
  X-ray observations of AB Dor A to study the long-term evolution of
  magnetic activity in this active K dwarf over nearly three decades and
  searched for X-ray activity cycles and related photometric brightness
  changes. <BR /> Results: AB Dor A exhibits photometric brightness
  variations ranging between 6.75 &lt; V<SUB>mag</SUB> ≤ 7.15 while the
  X-ray luminosities range between 29.8 &lt; log L<SUB>X</SUB> [erg/s]
  ≤ 30.2 in the 0.3-2.5 keV. As a very active star, AB Dor A shows
  frequent X-ray flaring, but in the long XMM-Newton observations a kind
  of basal state is attained very often. This basal state probably varies
  with the photospheric activity-cycle of AB Dor A, which has a period of
  ~17 years, but the X-ray variability amounts at most to a factor of ~2,
  which is, much lower than the typical cycle amplitudes found on the Sun.

---------------------------------------------------------
Title: KOI-676: An active star with two transiting planets and a
    third possible candidate detected with TTV
Authors: Ioannidis, P.; Schmitt, J.; Avdellidou, C.; von Essen, C.;
   Eric, A.
2013hell.conf...40I    Altcode:
  We report the detection and characterization of two short period,
  Neptune sized planets, around the active star KOI-676. The orbital
  elements of both planets are not the expected ones, as they lead to
  miscalculation of the stellar parameters. We discuss various scenarios
  which could cause that discrepancy and we suggest that the reason is
  most probably the high eccentricities of the orbits. We use the Transit
  Timing Variations, detected in both planets' O-C diagrams to support
  our theory, while due to the lack of autocorrelation in their pattern
  we suggest the existence of a third, more massive, mutual inclined,
  outer perturber. To clarify our suggestions we use n-body simulations
  to model the TTVs and check the stability of the system.

---------------------------------------------------------
Title: HST far-ultraviolet imaging of DG Tauri. Fluorescent molecular
    hydrogen emission from the wide opening-angle outflow
Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther,
   H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M.
2013A&A...557A.110S    Altcode: 2013arXiv1307.2846S
  One of the most thoroughly studied jets from all young stellar objects
  is the jet of DG Tau, which we imaged in the far-ultraviolet with
  the Hubble Space Telescope for the first time. These high spatial
  resolution images were obtained with long-pass filters and allow us
  to construct images tracing mainly H<SUB>2</SUB> and C iv emission. We
  find that the H<SUB>2</SUB> emission appears as a limb-brightened cone
  with additional emission close to the jet axis. The length of the rims
  is about 0.″3 or 42 AU before their brightness strongly drops, and
  the opening angle is about 90°. Comparing our far-ultraviolet data
  with near-infrared data we find that the fluorescent H<SUB>2</SUB>
  emission probably traces the outer, cooler part of the disk wind
  while an origin of the H<SUB>2</SUB> emission in the surface layers
  (atmosphere) of the (flared) disk is unlikely. Furthermore, the spatial
  shape of the H<SUB>2</SUB> emission shows little variation over six
  years which suggests that the outer part of the disk wind is rather
  stable and probably not associated with the formation of individual
  knots. The C iv image shows that the emission is concentrated towards
  the jet axis. We find no indications for additional C iv emission at
  larger distances, which strengthens the association with the X-ray
  emission observed to originate within the DG Tau jet.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Emission lines in a flare of AB
    Dor A (Lalitha+, 2013)
Authors: Lalitha, S.; Fuhrmeister, B.; Wolter, U.; Schmitt,
   J. H. M. M.; Engels, D.; Wieringa, M. H.
2013yCat..35600069L    Altcode: 2013yCat..35609069L
  We present a identification catalog of chromospheric emission lines in
  the optical range for two flares on AB Dor A, with event 1 being larger
  than event 3. An additional flare event 2 is not described here because
  of its overlap with event 1. All lines are identified in an flare-
  only spectrum, i.e. with a quiescent spectrum subtracted. The data were
  obtained with ESO's Kueyen telescope equipped with the UVES spectrograph
  on November 25/26 in 2009. The instrument was operated in dichroic mode
  (spectral coverage from 3720 to 4945 and from 5695 to 9465 AA). We
  tabulate measured wavelength, line flux and FWHM for every line and
  also provide the rest wavelength from the Moore catalog which was used
  for identification (Moore, 1972, Nat. Stand. Ref. Data. Ser., 40). Few
  lines were identified with the NIST database. <P />(2 data files).

---------------------------------------------------------
Title: The Exogenous Dust Populations in the Saturnian's System:
    a CDA Inventory
Authors: Altobelli, N.; Kempf, S.; Postberg, F.; Schmidt, J.; Sterken,
   V.; Soja, R.; Fiege, K.; Moragas, G.; Srama, R.; Grün, E.
2013EPSC....8..677A    Altcode:
  The analysis of different CDA subsystems data, acquired since SOI,
  reveals that the Saturnian system is permanently crossed by dust
  grains originating from the Interplanetary medium, as well as from
  the neighboring interstellar medium surrounding the Solar System. We
  observe two main types of particles: on the one hand, those with
  low injection velocity with respect to Saturn, and whose flux is
  significantly enhanced by gravitation focusing. On the other hand,
  particles with fast injection velocities, essentially unperturbed by
  gravitation focusing. In the slow category, we use our data to test
  the hypothesis that the Kuiper Belt or TNOs/Centaurs are sources of the
  detected dust grains. As for the main component of the 'fast population'
  our data suggest interstellar dust (ISD), with grains also possibly
  released by Oort Cloud type comets.

---------------------------------------------------------
Title: Transit Observations of the Hot Jupiter HD 189733b at X-Ray
    Wavelengths
Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.; Wolk, S. J.
2013ApJ...773...62P    Altcode: 2013arXiv1306.2311P
  We present new X-ray observations obtained with Chandra ACIS-S of the HD
  189733 system, consisting of a K-type star orbited by a transiting Hot
  Jupiter and an M-type stellar companion. We report a detection of the
  planetary transit in soft X-rays with a significantly deeper transit
  depth than observed in the optical. The X-ray data favor a transit
  depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While
  we are able to exclude several possible stellar origins for this deep
  transit, additional observations will be necessary to fully exclude the
  possibility that coronal inhomogeneities influence the result. From
  the available data, we interpret the deep X-ray transit to be caused
  by a thin outer planetary atmosphere which is transparent at optical
  wavelengths, but dense enough to be opaque to X-rays. The X-ray radius
  appears to be larger than the radius observed at far-UV wavelengths,
  most likely due to high temperatures in the outer atmosphere at which
  hydrogen is mostly ionized. We furthermore detect the stellar companion
  HD 189733B in X-rays for the first time with an X-ray luminosity of log
  L<SUB>X</SUB> = 26.67 erg s<SUP>-1</SUP>. We show that the magnetic
  activity level of the companion is at odds with the activity level
  observed for the planet-hosting primary. The discrepancy may be caused
  by tidal interaction between the Hot Jupiter and its host star.

---------------------------------------------------------
Title: Exoplanet transits in X-rays - a new observational window to
    exoplanetary atmospheres
Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.; Wolk, S. J.
2013prpl.conf2G010P    Altcode:
  Many exoplanets orbit their host stars at close distances, with
  orbital periods of only a few days. The incident stellar flux can
  deposit sufficient energy in those planetary atmosphere to lift parts
  of it out of the planet's gravitational well, causing substantial mass
  loss. And indeed, mass loss of atomic hydrogen has been observed in UV
  spectral lines for several planets. However, at the temperatures thought
  to be present in the planetary outer atmospheres, hydrogen is mostly
  ionized, so that these measurements lose their sensitivity at higher
  planetary altitudes. Here we present the first X-ray detection of an
  exoplanetary transit in front of its host star; we find a surprisingly
  deep X-ray transit with three times the optical transit depth. This can
  be traced back to thin outer atmosphere layers of the planet, which are
  transparent at optical wavelengths but opaque to X-ray photons. The
  planetary atmosphere is thus X-ray opaque out to radii of 1.75 times
  the optical radius. Due to the larger energy input of X-ray photons
  into the planetary atmosphere, we derive a twice as large planetary
  mass loss rate than thought before. Further observations will allow us
  to detect individual element species in the outer planetary atmosphere,
  using transit profiles in different X-ray energy bands.

---------------------------------------------------------
Title: Qatar-1: indications for possible transit timing variations
Authors: von Essen, C.; Schröter, S.; Agol, E.; Schmitt, J. H. M. M.
2013A&A...555A..92V    Altcode: 2013arXiv1309.1457V
  <BR /> Aims: Variations in the timing of transiting exoplanets provide
  a powerful tool for detecting additional planets in the system. Thus,
  the aim of this paper is to discuss the plausibility of transit timing
  variations (TTVs) on the Qatar-1 system by means of primary transit
  light curves analysis. Furthermore, we provide an interpretation of the
  timing variation. <BR /> Methods: We observed Qatar-1 between March
  2011 and October 2012 using the 1.2 m OLT telescope in Germany and
  the 0.6 m PTST telescope in Spain. We present 26 primary transits of
  the hot Jupiter Qatar-1b. In total, our light curves cover a baseline
  of 18 months. <BR /> Results: We report on indications for possible
  long-term TTVs. Assuming that these TTVs are true, we present two
  different scenarios that could explain them. Our reported ~190 days
  TTV signal can be reproduced by either a weak perturber in resonance
  with Qatar-1b, or by a massive body in the brown dwarf regime. More
  observations and radial velocity monitoring are required to better
  constrain the perturber's characteristics. We also refine the ephemeris
  of Qatar-1b, which we find to be T<SUB>0</SUB> = 2456157.42204 ±
  0.0001 BJD<SUB>TDB</SUB> and P = 1.4200246 ± 0.0000007 days, and
  improve the system orbital parameters. <P />Tables of the transit
  observations are only available at the CDS via anonymous ftp to <A
  href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A>
  (ftp://130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A92">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A92</A>

---------------------------------------------------------
Title: What do the Mt. Wilson stars tell us about solar activity?
Authors: Schröder, K. -P.; Mittag, M.; Hempelmann, A.;
   González-Pérez, J. N.; Schmitt, J. H. M. M.
2013A&A...554A..50S    Altcode:
  We relate the evolutionary status and mass of the Mt. Wilson project
  stars with the type and strength of stellar activity as established
  in decades of monitoring their chromospheric Ca II K line emission. We
  specifically derive their positions in the Hertzsprung-Russell-diagram
  (HRD) from Hipparcos parallaxes and SIMBAD B - V data, considering
  and correcting for the effects of different individual stellar
  metallicities, and place different activity groups of the Mt. Wilson
  stars on a common set of Z = 0.02 evolution tracks to obtain a
  quantitative picture of their relative evolutionary status and mass
  distribution. We find that, first, the downturn in stellar activity
  does not depend on absolute age but instead decreases with the
  relative age as stars advance on the main sequence and thus confirm
  theoretical expectations, while the most active of the irregularly
  variable stars are found to scatter around the zero-age main-sequence
  (ZAMS). Moderately active stars, both with clear cycles like the Sun and
  those without a dominant activity period, populate the 2nd quarter of
  main-sequence (MS) evolution. Almost inactive stars are mostly in their
  3rd quarter of MS evolution and seem to represent stellar analogues
  of the solar Maunder minimum state. Totally inactive stars are all
  in the final quarter of their MS evolution and make up for over 70%
  of the Mt. Wilson stars that far evolved (the remainders being only
  weakly active). Most of these are more massive and younger than the
  Sun. Accordingly, less massive stars did not have enough time to
  significantly decrease their activity, since they generally evolve
  more slowly. We find, second, that the Sun is near an apparent upper
  mass limit for cyclic activity on the MS, because there are no cyclic
  MS stars much above one solar mass, at least not in the Mt. Wilson
  sample. Once put in proper perspective with the other Mt. Wilson
  stars, the Sun indeed ought to be approaching a gradual transition
  from moderate cyclic activity to a weak, Maunder-minimum-type state, as
  historic Maunder-type minima seem to indicate already. In addition, the
  apparent upper mass limit for MS stars to solar-like cyclic activity,
  not much above one solar mass, is providing dynamo theory with an
  interesting new challenge.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Transit timing variations on
    Qatar-1 (von Essen+, 2013)
Authors: von Essen, C.; Schroter, S.; Agol, E.; Schmitt, J. H. M. M.
2013yCat..35550092V    Altcode: 2013yCat..35559092V
  The OLT data were taken between March 2011 and October 2012 using an
  Apogee Alta U9000 CCD with a 9'x9' field of view. <P />The PTST data
  were taken between May and August 2012 using a Santa Barbara CCD with
  a 30'x30' field of view in a 3x3 binning and a Baade R-band filter
  setup. <P />(2 data files).

---------------------------------------------------------
Title: Chromospheric Activity in Cool Stars: Open Questions
Authors: Schröder, K. -P.; Schmitt, J. H. M. M.
2013ASPC..472..225S    Altcode:
  Despite a wealth of observational insight into chromospheric physics
  obtained in the past decades, a number of fundamental questions
  remain to be answered. On some of them we seem to make progress,
  others are motivation for ongoing research: is there a well-defined
  “zero-point” of magnetic stellar activity, and by which heating
  processes is the basal chromospheric flux created? Or: how did the
  Sun look like during the Maunder Minimum, and when is the next one
  due? And are activity cycles of cool giants caused by a solar-type
  dynamo, despite a very different internal structure? What makes magnetic
  stellar activity be still (or again?) at work in such very evolved stars
  — should not all angular momentum have been consumed? To find some
  answers, the Hamburg Robotic Telescope, equipped with a high-resolution
  (20,000) spectrograph, will start regular operation at its final site
  in Guanajuato, central Mexico, this year (2012), in part to resume
  the legendary Mt. Wilson stellar activity monitoring project.

---------------------------------------------------------
Title: Outer Atmospheres of Low Mass Stars — Flare Characteristics.
Authors: Lalitha, S.; Schmitt, J. H. M. M.
2013ASPC..472..231L    Altcode:
  We compare the coronal properties during flares on active low mass
  stars CN Leonis, AB Doradus A and Proxima Centauri observed with
  XMM-Newton. From the X-ray data we analyze the temporal evolution
  of temperature, emission measure and coronal abundance. The nature of
  these flares are with secondary events following the first flare peak in
  the light curve, raising the question regarding the involved magnetic
  structure. We infer from the plasma properties and the geometry of
  the flaring structure that the flare originates from a compact arcade
  rather than in a single loop.

---------------------------------------------------------
Title: Dust OrbiTrap Sensor (DOTS) for In-Situ Analysis of Airless
    Planetary Bodies
Authors: Briois, C.; Thissen, R.; Engrand, C.; Altwegg, K.;
   Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chapuis, C.; Cottin, H.;
   Grün, E.; Grand, N.; Henkel, H.; Kempf, S.; Lebreton, J. P.; Makarov,
   A.; Postberg, F.; Srama, R.; Schmidt, J.; Szopa, C.; Thirkell, L.;
   Tobie, G.; Wurz, P.; Zolotov, M. E.
2013LPI....44.2888B    Altcode: 2013LPICo1719.2888B
  We are developing a high-resolution Fourier Transform-Orbitrap-based
  mass spectrometer for in situ analysis of dust from airless solar
  system bodies.

---------------------------------------------------------
Title: iSAP: Interactive Sparse Astronomical Data Analysis Packages
Authors: Starck, J. -L.; Bobin, J.; Sureau, F.; Schmitt, J.; Fourt,
   O.; Moudden, Y.; Abrial, P.
2013ascl.soft03029S    Altcode: 2013ascl.soft03029F
  iSAP consists of three programs, written in IDL, which together
  are useful for spherical data analysis. MR/S (MultiResolution on the
  Sphere) contains routines for wavelet, ridgelet and curvelet transform
  on the sphere, and applications such denoising on the sphere using
  wavelets and/or curvelets, Gaussianity tests and Independent Component
  Analysis on the Sphere. MR/S has been designed for the PLANCK project,
  but can be used for many other applications. SparsePol (Polarized
  Spherical Wavelets and Curvelets) has routines for polarized wavelet,
  polarized ridgelet and polarized curvelet transform on the sphere,
  and applications such denoising on the sphere using wavelets and/or
  curvelets, Gaussianity tests and blind source separation on the
  Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS
  (Multi-Scale Variance Stabilizing Transform on the Sphere), designed
  initially for the FERMI project, is useful for spherical mono-channel
  and multi-channel data analysis when the data are contaminated by a
  Poisson noise. It contains routines for wavelet/curvelet denoising,
  wavelet deconvolution, multichannel wavelet denoising and deconvolution.

---------------------------------------------------------
Title: HST FUV C iv observations of the hot DG Tauri jet
Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther,
   H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M.
2013A&A...550L...1S    Altcode: 2012arXiv1212.6363S
  Protostellar jets are tightly connected to the accretion process
  and regulate the angular momentum balance of accreting star-disk
  systems. The DG Tau jet is one of the best-studied protostellar jets
  and contains plasma with temperatures ranging over three orders of
  magnitude within the innermost 50 AU of the jet. We present new Hubble
  Space Telescope (HST) far-ultraviolet (FUV) long-slit spectra spatially
  resolving the C iv emission (T ~ 10<SUP>5</SUP> K) from the jet for
  the first time, in addition to quasi-simultaneous HST observations of
  optical forbidden emission lines ([O i], [N ii], [S ii], and [O iii])
  and fluorescent H<SUB>2</SUB> lines. The C iv emission peaks at ≈
  42 AU from the stellar position and has a FWHM of ≈ 52 AU along
  the jet. Its deprojected velocity of around 200 km s<SUP>-1</SUP>
  decreases monotonically away from the driving source. In addition, we
  compare our HST data with the X-ray emission from the DG Tau jet. We
  investigate the requirements to explain the data by an initially hot
  jet compared to local heating. Both scenarios indicate a mass loss
  by the T ~ 10<SUP>5</SUP> K jet of ~10<SUP>-9</SUP> M<SUB>⊙</SUB>
  yr<SUP>-1</SUP>, i.e., between the values for the lower temperature
  jet (T ≈ 10<SUP>4</SUP> K) and the hotter X-ray emitting part (T
  ≳ 10<SUP>6</SUP> K). However, a simple initially hot wind requires
  a large launching region (~1 AU), and we therefore favor local heating.

---------------------------------------------------------
Title: Ca II H+K fluxes from S-indices of large samples: a reliable
    and consistent conversion based on PHOENIX model atmospheres
Authors: Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P.
2013A&A...549A.117M    Altcode:
  Context. Historic stellar activity data based on chromospheric line
  emission using O.C. Wilson's S-index reach back to the 1960ies and
  represent a very valuable data resource both in terms of quantity
  and time-coverage. However, these data are not flux-calibrated and
  are therefore difficult to compare with modern spectroscopy and to
  relate to quantitative physics. <BR /> Aims: In order to make use of
  the rich archives of Mount Wilson and many other S-index measurements
  of thousands of main sequence stars, subgiants and giants in terms of
  physical Ca II H+K line chromospheric surface fluxes and the related
  R-index, we seek a new, simple but reliable conversion method of the
  S-indices. A first application aims to obtain the (empirical) basal
  chromospheric surface flux to better characterise stars with minimal
  activity levels. <BR /> Methods: We collect 6024 S-indices from six
  large catalogues from a total of 2530 stars with well-defined parallaxes
  (as given by the Hipparcos catalogue) in order to distinguish between
  main sequence stars (2133), subgiants (252) and giants (145), based on
  their positions in the Hertzsprung-Russell diagram. We use the spectra
  of a grid of PHOENIX model atmospheres to obtain the photospheric
  contributions to the S-index. To convert the latter into absolute Ca
  II H+K chromospheric line flux, we first derive new, colour-dependent
  photospheric flux relations for, each, main sequence, subgiant and
  giant stars, and then obtain the chromospheric flux component. In this
  process, the PHOENIX models also provide a very reliable scale for the
  physical surface flux. <BR /> Results: For very large samples of main
  sequence stars, giants and subgiants, we obtain the chromospheric Ca
  II H+K line surface fluxes in the colour range of 0.44 &lt; B - V &lt;
  1.6 and the related R-indices. We determine and parametrize the lower
  envelopes, which we find to well coincide with historic work on the
  basal chromospheric flux. There is good agreement in the apparently
  simpler cases of inactive giants and subgiants, and distinguishing
  different luminosity classes proves important. Main sequence stars,
  surprisingly, show a remarkable lack of inactive chromospheres in the
  B - V range of 1.1 to 1.5. Finally, we intoduce a new, "pure" and
  universal activity indicator: a derivative of the R-index based on
  the non-basal, purely activity-related Ca II H+K line surface flux,
  which puts different luminosity classes on the same scale. <BR />
  Conclusions: The here presented conversion method can be used to
  directly compare historical S-indices with modern chromospheric Ca
  II H+K line flux measurements, in order to derive activity records
  over long periods of time or to establish the long-term variability of
  marginally active stars, for example. The numerical simplicity of this
  conversion allows for its application to very large stellar samples.

---------------------------------------------------------
Title: 50 (38) years of stellar X-ray astronomy .
Authors: Schmitt, J. H. M. M.
2013MmSAI..84..532S    Altcode: 2013MmSAI..84..531S
  Hot plasmas emit most of their radiative output at soft X-ray
  energies. The discovery of soft X-ray emission from our Sun was thus not
  really surprising, since the high temperature of the solar corona had
  previously been inferred from the correct interpretation of the observed
  forbidden line emission from a variety of highly ionized ions. The
  detection of X-ray emission from thousands of solar-like stars at X-ray
  luminosities substantially above the emission levels observed from
  the Sun was not anticipated and came as a real surprise. Systematic
  surveys of stellar X-ray emission among all stars located in the
  Hertzsprung-Russell diagram have demonstrated that the appearance
  of hot coronae is a universal phenomenon occurring in all cool stars
  with outer convection zones. When put in the stellar context, the Sun
  turns out to be a relatively inactive star due to its slow rotation and
  advanced age. Young and more rapidly rotating stars are ubiquitously
  found to exhibit much increased X-ray luminosities compared to the Sun,
  and this finding suggests that the high-energy environment of our Sun
  was quite different when it was young and when our solar system was
  formed, compared to the high-energy environment we encounter today.

---------------------------------------------------------
Title: SUDA: A Dust Mass Spectrometer for compositional surface
    mapping for the JUICE mission to the Galilean moons
Authors: Kempf, S.; Briois, C.; Cottin, H.; Engrand, C.; Gruen, E.;
   Hand, K. P.; Henkel, H.; Horanyi, M.; Lankton, M. R.; Lebreton, J.;
   Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.;
   Tobie, G.; Szopa, C.; Zolotov, M. Y.
2012AGUFM.P51A2015K    Altcode:
  We developed a dust mass spectrometer to measure the composition of
  ballistic dust particles populating the thin exospheres that were
  detected around each of the Galilean moons. Since these grains are
  direct samples from the moons' icy surfaces, unique composition data
  will be obtained that will help to define and constrain the geological
  activities on and below the moons' surface. The proposed instrument
  will make a vital contribution to ESA's planned JUICE mission and
  provide key answers to its main scientific questions about the surface
  composition, habitability, the icy crust, and exchange processes
  with the deeper interior of the Jovian icy moons Europa, Ganymede,
  and Callisto. The SUrface Dust Aanalyser (SUDA) is a time-of-flight,
  reflectron-type impact mass spectrometer, opti-mised for a high mass
  resolution which only weakly depends on the impact location. The small
  size (268×250×171 mm3), low mass (&lt; 4 kg) and large sen-sitive
  area (220 cm2) makes the instrument well suited for the challenging
  demands of the JUICE mission to the Galilean moons Europa, Ganymede,
  and Callisto. A full-size prototype SUDA instrument was built in order
  to demonstrate its performance through calibra-tion experiments at
  the Heidelberg dust accelerator with a variety of cosmo-chemically
  relevant dust ana-logues. The effective mass resolution of m/Δm of
  150-200 is achieved for mass range of interest m = 1-150.

---------------------------------------------------------
Title: SUDA: A Dust Mass Spectrometer for Surface Mapping for the
    JUICE Mission to the Galilean Moons
Authors: Kempf, S.; Briois, C.; Cottin, H.; Engrand, C.; Grün, E.;
   Hand, K.; Henkel, H.; Horanyi, M.; Lankton, M.; Lebreton, J. -P.;
   Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.;
   Tobie, G.; Szopa, C.; Zolotov, M.
2012LPICo1683.1134K    Altcode:
  We developed a mass spectrometer to measure the composition of the
  dust exospheres of the Galilean moons. Since the grains are samples
  from the moons' surfaces, unique information is obtained about the
  geological activities on and below the crust.

---------------------------------------------------------
Title: Compositional Mapping of the Galilean Moons by Mass
    Spectrometry of Dust Ejecta
Authors: Postberg, F.; Briois, C.; Cottin, H.; Engrand, C.; Grün, E.;
   Hand, K.; Henkel, H.; Horányi, M.; Kempf, S.; Lankton, M.; Lebreton,
   J. -P.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.; Tobie,
   G.; Szopa, C.; Zolotov, M.
2012LPICo1683.1099P    Altcode:
  In situ detector analyzing the chemistry of rocky/icy dust particles
  as samples of planetary objects from where they were ejected by
  micrometeoroid bombardment. As the ballistic grains can be traced back
  to surface, compositional maps can be achieved.

---------------------------------------------------------
Title: Dust Mass Spectrometer for Compositional Mapping of the
    Galilean Moons
Authors: Sternovsky, Zoltan; Kempf, S.; Briois, C.; Cottin, H.;
   Engrand, C.; Horanyi, M.; Gruen, E.; Hand, K.; Henkel, H.; Lebreton,
   J.; Postbert, F.; Schmidt, J.; Srama, R.; Thissen, R.; Tobie, G.;
   Szopa, C.; Zolotov, M.
2012DPS....4411218S    Altcode:
  We present the SUDA (Surface Dust Analyzer) instrument that will
  provide detailed answers to the main goals of ESA's JUICE mission
  about habitability, surface composition and exchange processes with
  the interior. The surfaces of the icy moons of Jupiter can be analyzed
  to unprecedented mass resolution and sensitivity down to the ppm level
  using modern dust analyzer instruments. The measurement method is based
  on analyzing the chemical composition of dust particles released from
  the surfaces of the moons. These dust particles populate the exosphere
  with densities sufficient for obtaining a valuable compositional
  picture even from a few flybys. The SUDA instrument is well suited
  for the detection of water ice particles with traces of the expected
  hydrated minerals such as sodium carbonates and magnesium sulphates,
  hydrated sodium chloride, and of organic materials. The value of a dust
  analyzer is well demonstrated by Cassini's Cosmic Dust Analyzer that
  has analyzed Enceladus's plume particles and E ring grains. SUDA is
  a time-of-flight, reflectron-type impact mass spectrometer, optimized
  for high mass resolution. The small size (268×250×171 mm3), low mass
  (&lt; 4 kg) and large sensitive area (220 cm2) makes the instrument
  well suited for the challenging demands of the JUICE mission. A
  full-size prototype was used to demonstrate the performance through
  calibration experiments with a variety of cosmochemically relevant
  dust analogues. The effective mass resolution of m/Δm of 150- 200 is
  achieved for mass range of interest m = 1-150.

---------------------------------------------------------
Title: Multichannel Poisson denoising and deconvolution on the sphere:
    application to the Fermi Gamma-ray Space Telescope
Authors: Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.;
   Grenier, I.
2012A&A...546A.114S    Altcode: 2012arXiv1206.2787S
  A multiscale representation-based denoising method for spherical data
  contaminated with Poisson noise, the multiscale variance stabilizing
  transform on the sphere (MS-VSTS), has been previously proposed. This
  paper first extends this MS-VSTS to spherical two and one dimensions
  data (2D-1D), where the two first dimensions are longitude and latitude,
  and the third dimension is a meaningful physical index such as energy or
  time. We then introduce a novel multichannel deconvolution built upon
  the 2D-1D MS-VSTS, which allows us to get rid of both the noise and
  the blur introduced by the point spread function (PSF) in each energy
  (or time) band. The method is applied to simulated data from the Large
  Area Telescope (LAT), the main instrument of the Fermi Gamma-ray Space
  Telescope, which detects high energy gamma-rays in a very wide energy
  range (from 20 MeV to more than 300 GeV), and whose PSF is strongly
  energy-dependent (from about 3.5 at 100 MeV to less than 0.1 at 10 GeV).

---------------------------------------------------------
Title: Real-Time Tropical Cyclone Prediction Using Coamps-Tc
Authors: Doyle, J. D.; Jin, Y.; Hodur, R. M.; Chen, S.; Jin, H.;
   Moskaitis, J.; Reinecke, A.; Black, P.; Cummings, J.; Hendricks, E.;
   Holt, T.; Liou, C. -S.; Peng, M.; Reynolds, C.; Sashegyi, K.; Schmidt,
   J.; Wang, S.
2012aogs...28...15D    Altcode: 2012agos...28...15D
  A new version of the Coupled Ocean/Atmosphere Mesoscale Prediction
  System for Tropical Cyclones (COAMPS-TC<SUP>TM</SUP>) has been developed
  specifically for forecasting tropical cyclone track, structure, and
  intensity. The COAMPS-TC has been tested in real-time in both coupled
  and uncoupled modes over the past several tropical cyclone seasons
  in the Pacific and Atlantic basins at a horizontal grid spacing of
  5 km. An evaluation of a large sample of real-time forecasts for the
  2010 and 2011 seasons in the Atlantic basin reveals that the COAMPS-TC
  predictions have smaller intensity errors than other real-time dynamical
  models for forecasts beyond the 30 h time. Real-time forecasts for
  Hurricane Irene (2011) illustrate the capability of the model to
  capture both the intensity and the fine-scale features (e.g., eyewall,
  rainbands), in agreement with observations. The results of this research
  highlight the promise of highresolution deterministic and ensemble-based
  approaches for tropical cyclone prediction using COAMPS-TC.

---------------------------------------------------------
Title: Compositional Mapping of the Galilean Moons by Mass
    Spectrometry of Dust Ejecta
Authors: Postberg, Frank; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger,
   H.; Lebreton, J.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.
2012DPS....4410107P    Altcode:
  We present a method to measure composition and origin of ballistic dust
  particles populating the thin exospheres oft he Galilean moons. The
  presence of such particles, generated by the ambient meteoroid
  bombardment that erodes the surface has alredy been detected by
  Galileo spacecraft. As these grains are almost unaltered samples
  from the moons’ surfaces, unique composition data can be obtained
  from a dust spectrometer. The ballistic trajectories can be traced
  back to their region of origin at the surface, which allows in situ
  compositional mapping at flybys or from an orbiter. The well-established
  approach of dust detection by impact ionization has recently shown
  its capabilities by analyzing ice particles expelled by subsurface
  salt water on Saturn’s moon Enceladus. Applying the method on
  micro-meteoroid ejecta of less active moons allow for the qualitative
  and quantitative analysis of samples from various surface areas, thus
  combining the advantages of remote sensing and a lander. The detection
  rates at 200-500 km altitude are on the order of thousand per orbit and
  hundreds per flyby. Thus an orbiter can create a compositional map of
  samples taken from a greater part of the surface, whereas flybies allow
  an investigation of certain areas of interest. The method provides
  chemical characterization of ice and dust particles encountered at
  speeds at 1 km/s and above. It measures the bulk composition oft the
  ice and has ppm-level sensitivity to hydrated salts, most rock forming
  materials, and organic compounds. Key chemical and isotopic constraints
  for varying provinces or geological formations on the surfaces lead
  to better understanding of the body’s geological evolution. Regions
  which were subject to endogenic or exogenic alteration (resurfacing,
  radiation, old/new regions) are distinguished and investigated. In
  particular exchange processes with subsurface oceans on the Galileian
  moons could be determined with high quantitative precision.

---------------------------------------------------------
Title: A Dust Spectrometer for JUICE
Authors: Srama, R.; Kempf, S.; Postberg, F.; Schmidt, J.; Krüger,
   H.; Thissen, R.; Sternosky, Z.; Engrand, C.; Fiege, K.; Hillier,
   J. K.; Horanyi, M.; Khalisi, E.; Mocker, A.; Moragas-Klostermeyer,
   G.; Spahn, F.; Sterken, V.; Grün, E.; Röser, H. P.
2012epsc.conf..839S    Altcode: 2012espc.conf..839S
  The Galileo spacecraft characterised the dust environment in the
  jovian system. The discoveries included an extended dusty ring system,
  the nano-metre sized stream particles originating from the moon Io,
  and the dust exospheres around the Galilean satellites Ganymed, Europa
  and Callisto. The study of the nanodust-magnetosphere interaction and
  the compositional analysis of dust particles ejected by the surfaces
  of Ganymed or Europa offer unique future opportunities. New dust
  instrumentation is a factor of 10 more sensitive than the former
  Galileo detector and adds compositional analysis for moon surface
  studies complementary to neutral gas or ion particle investigations. A
  dust spectrometer is highly sensitive for organic, salty water ice
  and mineral particles. This paper focuses on instrumental aspects of
  this investigation.

---------------------------------------------------------
Title: Geochemistry of Enceladus and the Galilean Moons from in situ
    Analysis of Ejecta
Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.;
   Srama, R.
2012epsc.conf..693P    Altcode: 2012espc.conf..693P
  The contribution of Cassini's dust detector CDA in revealing subsurface
  liquid water on Enceladus has demonstrated how questions in planetary
  science can be addressed by in situ analyses of icy dust particles. As
  the measurements are particularly sensitive to non-ice compounds
  embedded in an ice matrix, concentrations of various salts and organic
  compounds can be identified in different dust populations. This
  has successfully been demonstrated at Enceladus, giving insights
  in the moons subsurface geochemistry. This method can be applied to
  any planetary body that ejects particles to distances suitable for
  spacecraft sensing. The Galilean moons are of particular relevance since
  they are believed to steadily emit grains from their surfaces either
  by active volcanism (Io) or stimulated by micrometeoroid bombardment
  (Europa, Ganymede, Callisto).

---------------------------------------------------------
Title: The 3-dimensional structure of Saturn's E ring inferred from
    Cassini CDA observations
Authors: Kempf, S.; Horanyi, M.; Juhasz, A.; Cruz, A.; Srama, R.;
   Postberg, F.; Spahn, F.; Schmidt, J.
2012epsc.conf..701K    Altcode: 2012espc.conf..701K
  Seven years of Cassini observations dramatically changed our
  understanding of Saturn's diffuse dust ring . Before Cassini's insertion
  into its orbit around Saturn in 2004, the E ring was thought to extend
  from 3RS to 7RS (Saturn radius RS = 60 330km) and to be dominantly
  composed of micron-sized water ice grains. In-situ observations by
  Cassini's Cosmic Dust Analsyer (CDA) showed, however, that the ring
  extens at least until Titan's Orbit (≈ 20RS) and that the ring
  particle population ranges between a few nanometers and few tens of
  micrometers [15]. Recent observations by the Cassini camera ISS and
  by CDA revealed a complex ring morphology [3, 7]. The radial density
  profile of the ring turned out to depend on the longitude relative to
  Sun. On the morning side the ring's density peak is inside the orbit
  of the ring's source moon Enceladus, while on the evening side the
  density peak is exterior of Enceladus's orbit.

---------------------------------------------------------
Title: The vertical structure of the Daphnis wakes
Authors: Seiß, M.; Salo, H.; Hoffmann, H.; Spahn, F.; Schmidt, J.
2012epsc.conf..957S    Altcode: 2012espc.conf..957S
  When Saturn approached its equinox in August 2009 the Sun cast
  long shadows onto the ring-plane. Many shadows are caused by local
  vertical perturbations of the otherwise thin disk. The shadows at
  the Keeler gap edge are, for example, caused by Daphnis' gravitational
  perturbations. It has been proposed that these large vertical structures
  (more than 1 km) are caused by the inclination of Daphnis' orbit
  [1]. Here we show the possibility that also the ring-moon Daphnis on
  a non-inclined orbit is able to produce these vertical structures. We
  performed N-body particle simulations and found that particle collisions
  in the wake crests can significantly increase the vertical dispersion
  velocity and therefore the height of the corresponding structures. In
  the case of the Keeler gap edges this can lead to vertical excursions
  of the ring particles larger than 1 km. We compare and discuss the
  importance of both processes (moon inclination and particle collisions)
  for the vertical structure of the Keeler gap edges.

---------------------------------------------------------
Title: Dynamics of particles in central Encke ringlet
Authors: Sun, K. -L.; Spahn, F.; Schmidt, J.
2012epsc.conf..710S    Altcode: 2012espc.conf..710S
  The Encke gap is a 320 km wide division in the Saturn A ring centered
  at 133,581 km. There are at least 3 ringlets in Encke gap, and the
  central one shares the orbit with Pan [1]. Observations suggest that
  these ringlets are mainly composed of micronsized particles [2]. The
  lifetime of these particles are restricted, mechanisms must be at work
  to replenish these ringlets. The kinetic balance of dust production,
  dynamical evolution, and loss of dust has been investigated in
  [3]. In this work, we focus on the particle dynamics in the Encke
  gap. Our results show that in the central Encke ringlet: (1) The solar
  radiation pressure provides a minimum particle radius of 7μm; (2)
  The plasma drag force pushes particle outward in a rate of ∼ 1km/yr;
  (3) Particles are in a 'modified' horseshoe orbit which is the result
  of horseshoe orbit plus plasma drag, this orbit prevent particles to
  reach large co-rotational longitudes of Pan.

---------------------------------------------------------
Title: Coronal activity cycles in nearby G and K stars. XMM-Newton
    monitoring of 61 Cygni and α Centauri
Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F.
2012A&A...543A..84R    Altcode: 2012arXiv1205.3627R
  Context. While we have ample evidence of stellar analogues to the
  solar activity cycle for chromospheric activity, very little is known
  about stellar coronal cycles and their possible similarities to the
  solar behavior. <BR /> Aims: An ongoing X-ray monitoring program of
  solar-like stars with XMM-Newton is performed to investigate coronal
  activity cycles. <BR /> Methods: We used X-ray observations of the
  nearby binaries 61 Cyg A/B (K5V and K7V) and α Cen A/B (G2V and K1V)
  to study the long-term evolution of magnetic activity in weakly to
  moderately active G + K dwarfs over nearly a decade. Specifically
  we searched for X-ray activity cycles and related coronal changes
  and compared them to the solar behavior. <BR /> Results: For 61
  Cyg A we find a regular coronal activity cycle analog to its 7.3
  yr chromospheric cycle. The X-ray brightness variations are with a
  factor of three significantly lower than on the Sun, yet the changes
  of coronal properties resemble the solar behavior, with stronger
  variations occurring in the respective hotter plasma components. 61
  Cyg B does not show a clear cyclic coronal trend so far, but the
  X-ray data match the more irregular chromospheric cycle. The two α
  Cen stars exhibit significant long-term X-ray variability. α Cen A
  shows indications for cyclic variability of an order of magnitude
  with a period of about 12-15 years; the α Cen B data suggest an
  X-ray cycle with an amplitude of about six to eight and a period
  of 8-9 years. The sample stars exhibit X-ray luminosities ranging
  between L<SUB>X</SUB> ≲ 1 × 10<SUP>26</SUP> - 3 × 10<SUP>27</SUP>
  erg s<SUP>-1</SUP> in the 0.2-2.0 keV band and have coronae dominated
  by cool plasma with variable average temperatures of around 1.0 -
  2.5 MK. <BR /> Conclusions: Coronal activity cycles are apparently a
  common phenomenon in older, slowly rotating G and K stars. The spectral
  changes of the coronal X-ray emission over the cycles are solar-like
  in all studied targets. <P />Appendix A is available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: Magnetic activity of cool stars in the Hertzsprung-Russell
    diagram
Authors: Schmitt, J. H. M. M.
2012IAUS..286..296S    Altcode:
  I review the X-ray emission from cool stars with outer convection
  zones in comparison to the Sun with a focus on the properties of
  low-activity stars. I present the recent results of long-term X-ray
  monitoring which demonstrate the existence of X-ray cycles on stars
  with known calcium cycles. The evidence of a minimum stellar X-ray flux
  is presented and arguments are put forward for the view that the Sun
  in its extended minimum between 2008 - 2009 behaved very much like a
  Maunder-minimum Sun.

---------------------------------------------------------
Title: Soft X-ray emission as diagnostics for Maunder minimum stars
Authors: Poppenhaeger, Katja; Schmitt, Jürgen H. M. M.
2012IAUS..286..346P    Altcode:
  The identification of stars in a Maunder minimum state purely
  from their chromospheric emission (for example in Ca II lines) has
  proven to be difficult. Photospheric contributions, metallicities
  and possible deviations from the main sequence stage may lead to
  very low values of the traditional chromospheric activity indicators,
  while no Maunder minimum state may be present. X-ray observations can
  be a key tool for identifying possible Maunder minimum stars: We have
  detected very soft X-ray emission from low-temperature coronal plasma,
  similar to emission from solar coronal holes, in several stars with
  very low chromospheric activity indicators. The coronal properties
  inferred from X-ray observations can therefore yield a crucial piece
  of information to verify Maunder minimum states in stars.

---------------------------------------------------------
Title: The evolution of the X-ray emission of HH 2. Investigating
    heating and cooling processes
Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M.
2012A&A...542A.123S    Altcode: 2012arXiv1205.3905S
  Young stellar objects often drive powerful bipolar outflows, which
  evolve on timescales of a few years. An increasing number of these
  outflows has been detected in X-rays implying the existence of million
  degree plasma almost co-spatial with the lower temperature gas observed
  in the optical and near-infrared. The details of the heating and cooling
  processes of the X-ray emitting part of these so-called Herbig-Haro
  objects are still ambiguous, e.g., whether the cooling is dominated by
  expansion, radiation, or thermal conduction. We present a second epoch
  Chandra observation of the first X-ray detected Herbig-Haro object
  (HH 2) and derive the proper-motion of the X-ray emitting plasma and
  its cooling history. We argue that the most likely explanation for
  the constancy of the X-ray luminosity, the alignment with the optical
  emission and the proper-motion is that the cooling is dominated by
  radiative losses leading to cooling times exceeding a decade. We explain
  that a strong shock caused by fast material ramming into slower gas in
  front of it about ten years ago can explain the X-ray emission while
  being compatible with the available multi-wavelength data of HH 2.

---------------------------------------------------------
Title: A Possible Detection of Occultation by a Proto-planetary
    Clump in GM Cephei
Authors: Chen, W. P.; Hu, S. C. -L.; Errmann, R.; Adam, Ch.; Baar, S.;
   Berndt, A.; Bukowiecki, L.; Dimitrov, D. P.; Eisenbeiß, T.; Fiedler,
   S.; Ginski, Ch.; Gräfe, C.; Guo, J. K.; Hohle, M. M.; Hsiao, H. Y.;
   Janulis, R.; Kitze, M.; Lin, H. C.; Lin, C. S.; Maciejewski, G.;
   Marka, C.; Marschall, L.; Moualla, M.; Mugrauer, M.; Neuhäuser,
   R.; Pribulla, T.; Raetz, St.; Röll, T.; Schmidt, E.; Schmidt, J.;
   Schmidt, T. O. B.; Seeliger, M.; Trepl, L.; Briceño, C.; Chini, R.;
   Jensen, E. L. N.; Nikogossian, E. H.; Pandey, A. K.; Sperauskas, J.;
   Takahashi, H.; Walter, F. M.; Wu, Z. -Y.; Zhou, X.
2012ApJ...751..118C    Altcode: 2012arXiv1203.5271T
  GM Cephei (GM Cep), in the young (~4 Myr) open cluster Trumpler 37,
  has been known to be an abrupt variable and to have a circumstellar
  disk with a very active accretion. Our monitoring observations in
  2009-2011 revealed that the star showed sporadic flare events, each
  with a brightening of &lt;~ 0.5 mag lasting for days. These brightening
  events, associated with a color change toward blue, should originate
  from increased accretion activity. Moreover, the star also underwent
  a brightness drop of ~1 mag lasting for about a month, during which
  time the star became bluer when fainter. Such brightness drops seem
  to have a recurrence timescale of a year, as evidenced in our data and
  the photometric behavior of GM Cep over a century. Between consecutive
  drops, the star brightened gradually by about 1 mag and became blue at
  peak luminosity. We propose that the drop is caused by the obscuration
  of the central star by an orbiting dust concentration. The UX Orionis
  type of activity in GM Cep therefore exemplifies the disk inhomogeneity
  process in transition between the grain coagulation and the planetesimal
  formation in a young circumstellar disk.

---------------------------------------------------------
Title: The high-energy environment in the super-Earth system CoRoT-7
Authors: Poppenhaeger, K.; Czesla, S.; Schröter, S.; Lalitha, S.;
   Kashyap, V.; Schmitt, J. H. M. M.
2012A&A...541A..26P    Altcode: 2012arXiv1203.4080P
  High-energy irradiation of exoplanets has been identified to be
  a key influence on the stability of these planets' atmospheres. So
  far, irradiation-driven mass-loss has been observed only in two Hot
  Jupiters, and the observational data remain even more sparse in the
  super-Earth regime. We present an investigation of the high-energy
  emission in the CoRoT-7 system, which hosts the first known transiting
  super-Earth. To characterize the high-energy XUV radiation field into
  which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed
  a 25 ks XMM-Newton observation of the host star. Our analysis yields the
  first clear (3.5σ) X-ray detection of CoRoT-7. We determine a coronal
  temperature of ≈ 3 MK and an X-ray luminosity of 3 × 10<SUP>28</SUP>
  erg s<SUP>-1</SUP>. The level of XUV irradiation on CoRoT-7b amounts
  to ≈37 000 erg cm<SUP>-2</SUP> s<SUP>-1</SUP>. Current theories for
  planetary evaporation can only provide an order-of-magnitude estimate
  for the planetary mass loss; assuming that CoRoT-7b has formed as a
  rocky planet, we estimate that CoRoT-7b evaporates at a rate of about
  1.3 × 10<SUP>11</SUP> g s<SUP>-1</SUP> and has lost ≈4-10 earth
  masses in total.

---------------------------------------------------------
Title: Publisher's Note: Anisotropies in the diffuse gamma-ray
    background measured by the Fermi LAT [Phys. Rev. D 85, 083007 (2012)]
Authors: Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet,
   J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
   Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon,
   J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro,
   G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi,
   J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Palma, F.;
   Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.;
   Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara,
   E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini,
   D.; Germani, S.; Giglietto, N.; Giroletti, M.; Glanzman, T.; Godfrey,
   G.; Gomez-Vargas, G. A.; Grégoire, T.; Grenier, I. A.; Grove, J. E.;
   Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hayashi, K.;
   Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.;
   Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard,
   M.; Linden, T.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco,
   F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.;
   Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.;
   Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss,
   E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.;
   Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pesce-Rollins,
   M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.;
   Reimer, A.; Reimer, O.; Roth, M.; Sbarra, C.; Schmitt, J.; Sgrò,
   C.; Siegal-Gaskins, J.; Siskind, E. J.; Spandre, G.; Spinelli, P.;
   Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer,
   J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja,
   E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.;
   Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang,
   Z.; Zimmer, S.; Komatsu, E.
2012PhRvD..85j9901A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Soft Coronal X-Rays from β Pictoris
Authors: Günther, H. M.; Wolk, S. J.; Drake, J. J.; Lisse, C. M.;
   Robrade, J.; Schmitt, J. H. M. M.
2012ApJ...750...78G    Altcode: 2012arXiv1203.3242G
  A-type stars are expected to be X-ray dark, yet weak emission has
  been detected from several objects in this class. We present new
  Chandra/HRC-I observations of the A5 V star β Pictoris. It is
  clearly detected with a flux of (9 ± 2) × 10<SUP>-4</SUP> counts
  s<SUP>-1</SUP>. In comparison with previous data this constrains the
  emission mechanism and we find that the most likely explanation is an
  optically thin, collisionally dominated, thermal emission component
  with a temperature around 1.1 MK. We interpret this component as a
  very cool and dim corona, with log L<SUB>X</SUB> /L <SUB>bol</SUB>
  = -8.2 (0.2-2.0 keV). Thus, it seems that β Pictoris shares more
  characteristics with cool stars than previously thought.

---------------------------------------------------------
Title: Basal chromospheric flux and Maunder Minimum-type stars:
    the quiet-Sun chromosphere as a universal phenomenon
Authors: Schröder, K. -P.; Mittag, M.; Pérez Martínez, M. I.;
   Cuntz, M.; Schmitt, J. H. M. M.
2012A&A...540A.130S    Altcode: 2012arXiv1202.3314S
  <BR /> Aims: We demonstrate the universal character of the quiet-Sun
  chromosphere among inactive stars (solar-type and giants). By
  assessing the main physical processes, we shed new light on some common
  observational phenomena. <BR /> Methods: We discuss measurements of the
  solar Mt. Wilson S-index, obtained by the Hamburg Robotic Telescope
  around the extreme minimum year 2009, and compare the established
  chromospheric basal Ca II K line flux to the Mt. Wilson S-index data
  of inactive ("flat activity") stars, including giants. <BR /> Results:
  During the unusually deep and extended activity minimum of 2009, the Sun
  reached S-index values considerably lower than in any of its previously
  observed minima. In several brief periods, the Sun coincided exactly
  with the S-indices of inactive ("flat", presumed Maunder Minimum-type)
  solar analogues of the Mt. Wilson sample; at the same time, the solar
  visible surface was also free of any plages or remaining weak activity
  regions. The corresponding minimum Ca II K flux of the quiet Sun and
  of the presumed Maunder Minimum-type stars in the Mt. Wilson sample
  are found to be identical to the corresponding Ca II K chromospheric
  basal flux limit. <BR /> Conclusions: We conclude that the quiet-Sun
  chromosphere is a universal phenomenon among inactive stars. Its
  mixed-polarity magnetic field, generated by a local, "fast" turbulent
  dynamo finally provides a natural explanation for the minimal soft
  X-ray emission observed for inactive stars. Given such a local dynamo
  also works for giant chromospheres, albeit on longer length scales,
  i.e., l ∝ R/g, with R and g as stellar radius and surface gravity,
  respectively, the existence of giant spicular phenomena and the
  guidance of mechanical energy toward the acceleration zone of cool
  stellar winds along flux-tubes have now become traceable.

---------------------------------------------------------
Title: Light Curves of Planetary Transits: How About Ellipticity?
Authors: von Essen, Carolina; Huber, Klaus F.; Schmitt, Jürgen
   H. M. M.
2012IAUS..282..133V    Altcode:
  The observation of transit light curves has become a key technique in
  the study of exoplanets, since modeling the resulting transit photometry
  yields a wealth of information on the planetary systems. Considering
  that the limited accuracy of ground-based photometry does directly
  translate into uncertainties in the derived model parameters, simplified
  spherical planet models were appropriate in the past. With the advent
  of space-based instrumentation capable of providing photometry of
  unprecedented accuracy, however, a need for more realistic models
  has arisen.

---------------------------------------------------------
Title: Anisotropies in the diffuse gamma-ray background measured by
    the Fermi LAT
Authors: Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet,
   J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
   Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon,
   J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro,
   G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.;
   Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi,
   J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Palma, F.;
   Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.;
   Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara,
   E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini,
   D.; Germani, S.; Giglietto, N.; Giroletti, M.; Glanzman, T.; Godfrey,
   G.; Gomez-Vargas, G. A.; Grégoire, T.; Grenier, I. A.; Grove, J. E.;
   Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hayashi, K.;
   Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.;
   Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard,
   M.; Linden, T.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco,
   F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.;
   Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.;
   Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss,
   E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.;
   Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pesce-Rollins,
   M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.;
   Reimer, A.; Reimer, O.; Roth, M.; Sbarra, C.; Schmitt, J.; Sgrò,
   C.; Siegal-Gaskins, J.; Siskind, E. J.; Spandre, G.; Spinelli, P.;
   Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer,
   J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja,
   E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.;
   Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang,
   Z.; Zimmer, S.; Komatsu, E.
2012PhRvD..85h3007A    Altcode: 2012arXiv1202.2856A
  The contribution of unresolved sources to the diffuse gamma-ray
  background could induce anisotropies in this emission on small
  angular scales. We analyze the angular power spectrum of the
  diffuse emission measured by the Fermi Large Area Telescope at
  Galactic latitudes |b|&gt;30° in four energy bins spanning 1-50
  GeV. At multipoles ℓ≥155, corresponding to angular scales ≲2°,
  angular power above the photon noise level is detected at &gt;99.99%
  confidence level in the 1-2 GeV, 2-5 GeV, and 5-10 GeV energy bins,
  and at &gt;99% confidence level at 10-50 GeV. Within each energy
  bin the measured angular power takes approximately the same value
  at all multipoles ℓ≥155, suggesting that it originates from
  the contribution of one or more unclustered source populations. The
  amplitude of the angular power normalized to the mean intensity in
  each energy bin is consistent with a constant value at all energies,
  C<SUB>P</SUB>/⟨I⟩<SUP>2</SUP>=9.05±0.84×10<SUP>-6</SUP>sr,
  while the energy dependence of C<SUB>P</SUB> is consistent with the
  anisotropy arising from one or more source populations with power-law
  photon spectra with spectral index Γ<SUB>s</SUB>=2.40±0.07. We
  discuss the implications of the measured angular power for gamma-ray
  source populations that may provide a contribution to the diffuse
  gamma-ray background.

---------------------------------------------------------
Title: SARIM PLUS—sample return of comet 67P/CG and of interstellar
    matter
Authors: Srama, R.; Krüger, H.; Yamaguchi, T.; Stephan, T.;
   Burchell, M.; Kearsley, A. T.; Sterken, V.; Postberg, F.; Kempf,
   S.; Grün, E.; Altobelli, N.; Ehrenfreund, P.; Dikarev, V.; Horanyi,
   M.; Sternovsky, Z.; Carpenter, J. D.; Westphal, A.; Gainsforth, Z.;
   Krabbe, A.; Agarwal, J.; Yano, H.; Blum, J.; Henkel, H.; Hillier,
   J.; Hoppe, P.; Trieloff, M.; Hsu, S.; Mocker, A.; Fiege, K.; Green,
   S. F.; Bischoff, A.; Esposito, F.; Laufer, R.; Hyde, T. W.; Herdrich,
   G.; Fasoulas, S.; Jäckel, A.; Jones, G.; Jenniskens, P.; Khalisi,
   E.; Moragas-Klostermeyer, G.; Spahn, F.; Keller, H. U.; Frisch,
   P.; Levasseur-Regourd, A. C.; Pailer, N.; Altwegg, K.; Engrand, C.;
   Auer, S.; Silen, J.; Sasaki, S.; Kobayashi, M.; Schmidt, J.; Kissel,
   J.; Marty, B.; Michel, P.; Palumbo, P.; Vaisberg, O.; Baggaley, J.;
   Rotundi, A.; Röser, H. P.
2012ExA....33..723S    Altcode: 2012ExA...tmp...12S
  The Stardust mission returned cometary, interplanetary and (probably)
  interstellar dust in 2006 to Earth that have been analysed in Earth
  laboratories worldwide. Results of this mission have changed our view
  and knowledge on the early solar nebula. The Rosetta mission is on its
  way to land on comet 67P/Churyumov-Gerasimenko and will investigate for
  the first time in great detail the comet nucleus and its environment
  starting in 2014. Additional astronomy and planetary space missions will
  further contribute to our understanding of dust generation, evolution
  and destruction in interstellar and interplanetary space and provide
  constraints on solar system formation and processes that led to the
  origin of life on Earth. One of these missions, SARIM-PLUS, will provide
  a unique perspective by measuring interplanetary and interstellar dust
  with high accuracy and sensitivity in our inner solar system between
  1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full
  characterisation of individual micrometeoroids (flux, mass, charge,
  trajectory, composition) and collects and returns these samples to
  Earth for a detailed analysis. The opportunity to visit again the
  target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko,
  and to investigate its dusty environment six years after Rosetta
  with complementary methods is unique and strongly enhances and
  supports the scientific exploration of this target and the entire
  Rosetta mission. Launch opportunities are in 2020 with a backup window
  starting early 2026. The comet encounter occurs in September 2021 and
  the reentry takes place in early 2024. An encounter speed of 6 km/s
  ensures comparable results to the Stardust mission.

---------------------------------------------------------
Title: Saturn's egg-shaped E ring
Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Schmidt,
   J.; Spahn, F.; Horanyi, M.
2012EGUGA..1411409K    Altcode:
  Saturn's diffuse E ring is unique in many ways. Not only its enormous
  size encompassing the icy moons Mimas, Enceladus, Tethys, Dione,
  Rhea and even Titan is remarkable, but also its unique property to be
  composed of narrowly size-distributed grains centered in the interval
  between 0.3 and 3 microns. Cassini measurements revealed that the ring
  is primarily fed by water ice grains emerging from the geologically
  active south pole region of the ring moon Enceladus. Recent data
  acquired by the Cassini Cosmic Dust Analyser (CDA) revealed another
  unique property of this enigmatic ring: the morphology of the inner
  dense E ring shows a pronounced dependence on the local time. Towards
  the Sun (i.e noon) the radial density profile of the ring is compressed
  inwards, while at local midnight the radial density profile flares
  out. This implies that the E ring does not have circular, disk-like
  morphology but has an egg-shaped appearance. Also the particle size
  distribution seems to depend on the local time. Observations by the
  Cassini camera ISS are consistent with the CDA conclusion.

---------------------------------------------------------
Title: Dust Spectroscopy of the Jovian Satellites
Authors: Sternovsky, Z.; Gruen, E.; Horanyi, M.; Kempf, S.; Postberg,
   F.; Schmidt, J.
2012LPI....43.2929S    Altcode:
  Dust instruments can be used for surface composition measurements of
  Europa and Ganymede.

---------------------------------------------------------
Title: A consistent analysis of three years of ground- and space-based
    photometry of TrES-2
Authors: Schröter, S.; Schmitt, J. H. M. M.; Müller, H. M.
2012A&A...539A..97S    Altcode: 2012arXiv1205.0969S
  The G0V dwarf TrES-2A, which is transited by a hot Jupiter, is
  one of the main short-cadence targets of the Kepler telescope and,
  therefore, among the photometrically best-studied planetary systems
  known today. Given the near-grazing geometry of the planetary orbit,
  TrES-2 offers an outstanding opportunity to search for changes in its
  orbital geometry. Our study focuses on the secular change in orbital
  inclination reported in previous studies. We present a joint analysis of
  the first four quarters of Kepler photometry together with the publicly
  available ground-based data obtained since the discovery of TrES-2b in
  2006. We use a common approach based on the latest information regarding
  the visual companion of TrES-2A and stellar limb darkening to further
  refine the orbital parameters. We find that the Kepler observations rule
  out a secular inclination change of previously claimed order as well
  as variations of the transit timing, however, they also show slight
  indication for further variability in the inclination which remains
  marginally significant. <P />Appendix A is available in electronic
  form at <A href="http://www.aanda.org">http://www.aanda.org</A>

---------------------------------------------------------
Title: The extended chromosphere of CoRoT-2A. Discovery and analysis
    of the chromospheric Rossiter-McLaughlin effect
Authors: Czesla, S.; Schröter, S.; Wolter, U.; von Essen, C.; Huber,
   K. F.; Schmitt, J. H. M. M.; Reichart, D. E.; Moore, J. P.
2012A&A...539A.150C    Altcode:
  The young G7V dwarf CoRoT-2A is transited by a hot Jupiter and
  among the most active planet host-stars known to date. We report on
  the first detection of a chromospheric Rossiter-McLaughlin effect
  observed in the Ca ii H and K emission-line cores. In Ca ii H and K,
  the transit lasts 15% longer than that observed in visual photometry,
  indicating that chromospheric emission extends 100 000 km beyond the
  photosphere. Our analysis is based on a time series of high-resolution
  UVES spectra obtained during a planetary transit and simultaneously
  obtained photometry observed with one of the PROMPT telescopes. The
  chromospheric Rossiter-McLaughlin effect provides a new tool to
  spatially resolve the chromospheres of active planet host-stars. <P
  />Based on observations obtained with UVES at the ESO VLT Kueyen
  telescope (program ID 385.D-0426).

---------------------------------------------------------
Title: Estimating transiting exoplanet masses from precise optical
    photometry
Authors: Mislis, D.; Heller, R.; Schmitt, J. H. M. M.; Hodgkin, S.
2012A&A...538A...4M    Altcode: 2011arXiv1112.2008M
  We present a theoretical analysis of the optical light curves (LCs)
  for short-period high-mass transiting extrasolar planet systems. Our
  method considers the primary transit, the secondary eclipse, and the
  overall phase shape of the LC between the occultations. Phase variations
  arise from (i) reflected and thermally emitted light by the planet;
  (ii) the ellipsoidal shape of the star due to the gravitational pull
  of the planet; and (iii) the Doppler shift of the stellar light as the
  star orbits the center of mass of the system. Our full model of the
  out-of-eclipse variations contains information about the planetary mass,
  orbital eccentricity, the orientation of periastron and the planet's
  albedo. For a range of hypothetical systems we demonstrate that the
  ellipsoidal variations (ii) can be large enough to be distinguished
  from the remaining components and that this effect can be used to
  constrain the planet's mass. To detect the ellipsoidal variations, the
  LC requires a minimum precision of 10<SUP>-4</SUP>, which coincides
  with the precision of the Kepler mission. As a test of our approach,
  we consider the Kepler LC of the transiting object HAT-P-7. We are
  able to estimate the mass of the companion, and confirm its planetary
  nature solely from the LC data. Future space missions, such as PLATO and
  the James Webb Space Telescope with even higher photometric precision,
  will be able to reduce the errors in all parameters. Detailed modeling
  of any out-of-eclipse variations seen in new systems will be a useful
  diagnostic tool prior to the requisite ground based radial velocity
  follow-up.

---------------------------------------------------------
Title: Búsqueda de exoplanetas: ?`Cuán confiables son las
    observaciones obtenidas mediante telescopios terrestres?
Authors: von Essen, C.; Páez, R. I.; Schmitt, J. H. M. M.
2012BAAA...55..411V    Altcode:
  The main goal of this work is to present a model that generates
  synthetic light curves of primary transits, comparable to real
  observations, to study transit timing variations (TTV). Considering
  that we can observe the sky from different virtual observatories, we
  simulated observations of primary transits caused by a hot-Jupiter. We
  artificially added a perturbation caused by an Earth-like exoplanet in
  a 3:2 mean motion resonance. These simulations would allow to analyze
  the degree of distorsion that the light curves admit, in order to
  recover back the induced signal by the exoplanet. FULL TEXT IN SPANISH

---------------------------------------------------------
Title: The ultracool dwarf DENIS-P J104814.7-395606. Chromospheres
    and coronae at the low-mass end of the main-sequence
Authors: Stelzer, B.; Alcalá, J.; Biazzo, K.; Ercolano, B.;
   Crespo-Chacón, I.; López-Santiago, J.; Martínez-Arnáiz, R.;
   Schmitt, J. H. M. M.; Rigliaco, E.; Leone, F.; Cupani, G.
2012A&A...537A..94S    Altcode: 2011arXiv1111.6880S
  Context. Several diagnostics ranging from the radio to the X-ray band
  are suitable for investigating the magnetic activity of late-type
  stars. Empirical connections between the emission at different
  wavelengths place constraints on the nature and efficiency of the
  emission mechanism and the physical conditions in different atmospheric
  layers. The activity of ultracool dwarfs, at the low-mass end of
  the main-sequence, is poorly understood. <BR /> Aims: We perform
  a multi-wavelength study of one of the nearest M9 dwarfs, DENIS-P
  J104814.7-395606 (4 pc), to examine its position within the group
  of magnetically active ultracool dwarfs, and, in general, advance
  our understanding of these objects by comparing them to early-M type
  dwarf stars and the Sun. <BR /> Methods: We obtained an XMM-Newton
  observation of DENIS-P J104814.7-395606 and a broad-band spectrum from
  the ultraviolet to the near-infrared with X-Shooter. From this dataset,
  we derive the X-ray properties, stellar parameters, kinematics, and the
  emission-line spectrum tracing chromospheric activity. We integrate
  these data by compiling the activity parameters of ultracool dwarfs
  from the literature. <BR /> Results: Our deep XMM-Newton observation
  provides the first X-ray detection of DENIS-P J104814.7-395606 (log
  L<SUB>x</SUB> = 25.1), as well as the first measurement of its V band
  brightness (V = 17.35 mag). The flux-flux relations between X-ray
  and chromospheric activity indicators are here for the first time
  extended into the regime of the ultracool dwarfs. The approximate
  agreement of DENIS-P J104814.7-395606 and other ultracool dwarfs with
  flux-flux relations for early-M dwarfs suggests that the same heating
  mechanisms work in the atmospheres of ultracool dwarfs, albeit weaker
  as judged from their lower fluxes. The observed Balmer decrements of
  DENIS 1048-3956 are compatible with optically thick plasma in local
  thermal equilibrium (LTE) at low, nearly photospheric temperature or
  optically thin LTE plasma at 20 000 K. Describing the decrements with
  case B recombination requires different emitting regions for Hα and
  the higher Balmer lines. The high observed Hα/Hβ flux ratio is also
  poorly fitted by the optically thin models. We derive a similarly
  high value for the Hα/Hβ ratio of vB 10 and LHS 2065 and conclude
  that this may be a characteristic of ultracool dwarfs. We add DENIS-P
  J104814.7-395606 to the list of ultracool dwarfs detected in both
  the radio and the X-ray band. The Benz-Güdel relation between radio
  and X-ray luminosity of late-type stars is well-known to be violated
  by ultracool dwarfs. We speculate on the presence of two types of
  ultracool dwarfs with distinct radio and X-ray behaviors.

---------------------------------------------------------
Title: A magnetic cycle of τ Bootis? The coronal and chromospheric
    view
Authors: Poppenhaeger, K.; Günther, H. M.; Schmitt, J. H. M. M.
2012AN....333...26P    Altcode: 2013arXiv1303.0311P
  τ Bootis is a late F-type main sequence star orbited by a Hot
  Jupiter. During the last years spectropolarimetric observations led
  to the hypothesis that this star may host a global magnetic field that
  switches its polarity once per year, indicating a very short activity
  cycle of only one year duration. In our ongoing observational campaign,
  we have collected several X-ray observations with XMM-Newton and optical
  spectra with TRES/FLWO in Arizona to characterize τ Boo's corona and
  chromosphere over the course of the supposed one-year cycle. Contrary
  to the spectropolarimetric reconstructions, our observations do not
  show indications for a short activity cycle.

---------------------------------------------------------
Title: X-rays at the End of the Main Sequence
Authors: Robrade, J.; Schmitt, J. H. M. M.
2011ASPC..448.1231R    Altcode: 2011csss...16.1231R
  We present results from XMM-Newton and Chandra observations of very
  low-mass stars. These X-ray observations quite frequently detect,
  besides large flares, also their quasi-quiescent emission. Our
  analysis shows that stars down to the bottom of the main sequence
  are able to generate X-ray emission at high activity levels of log
  L<SUB>X</SUB>/L<SUB>bol</SUB> = -3 … -4, similar to more massive
  stars operating a solar-type dynamo. However, in very low-mass stars
  the highly active phase may persist over Gyr, significantly longer than
  for more massive stars or brown dwarfs. We further discuss examples
  of strong X-ray flares produced by these stars. Altogether, the X-ray
  properties require the presence of an efficient dynamo mechanism that
  is capable of generating the igneous coronae of very low-mass stars.

---------------------------------------------------------
Title: Transit and Spectral Studies of CoRoT-2
Authors: Wolter, U.; Czesla, S.; Schröter, S.; Huber, K.; Schmitt,
   J. H. M. M.
2011ASPC..448.1043W    Altcode: 2011csss...16.1043W
  A transiting planet acts as a sharply defined shutter that scans the
  surface of its host star. Based on very-low-noise photometry from the
  CoRoT satellite and high-resolution spectra taken with VLT/UVES we
  employ this shutter to resolve surface features of the highly active
  G-type star CoRoT-2a which is transited by the planet CoRoT-2b. We
  shortly discuss the age of the CoRoT-2 system based on the equivalent
  width of the Li I λ 6708 Å line of 140 ± 1 mÅ.

---------------------------------------------------------
Title: The Bipolar X-Ray Jet of the Classical T Tauri Star DG Tau
Authors: Güdel, M.; Audard, M.; Bacciotti, F.; Bary, J. S.; Briggs,
   K. R.; Cabrit, S.; Carmona, A.; Codella, C.; Dougados, C.; Eislöffel,
   J.; Gueth, F.; Günther, H. M.; Herczeg, G.; Kundurthy, P.; Matt,
   S. P.; Mutel, R. L.; Ray, T.; Schmitt, J. H. M. M.; Schneider, P. C.;
   Skinner, S. L.; van Boekel, R.
2011ASPC..448..617G    Altcode: 2011csss...16..617G; 2011arXiv1101.2780G
  We report on new X-ray observations of the classical T Tauri star DG
  Tau. DG Tau drives a collimated bi-polar jet known to be a source of
  X-ray emission perhaps driven by internal shocks. The rather modest
  extinction permits study of the jet system to distances very close
  to the star itself. Our initial results presented here show that the
  spatially resolved X-ray jet has been moving and fading during the past
  six years. In contrast, a stationary, very soft source much closer
  (≍ 0.15-0.2″) to the star but apparently also related to the jet
  has brightened during the same period. We report accurate temperatures
  and absorption column densities toward this source, which is probably
  associated with the jet base or the jet collimation region.

---------------------------------------------------------
Title: Hybrid simulations of Enceladus' plasma interaction: a
    multi-instrument survey
Authors: Kriegel, H.; Simon, S.; Motschmann, U. M.; Saur, J.; Neubauer,
   F. M.; Schmidt, J.; Teolis, B. D.; Dougherty, M. K.
2011AGUFMSM21B2018K    Altcode:
  We present an improved model of the interaction between Enceladus'
  plume and Saturn's magnetospheric plasma using the hybrid simulation
  code A.I.K.E.F. (adaptive ion kinetic electron fluid). For the first
  time, we combine measurements from multiple instruments of Cassini:
  we use a Monte-Carlo model to describe the neutral density in the
  plume in agreement with INMS data. The magnetospheric upstream density
  is obtained from RPWS measurements. We also compare the density and
  velocity profiles measured within the interaction region against
  our simulation results. Moreover, it has recently been shown that
  the influence of the electron-absorbing dust grains in the plume on
  the plasma structures and magnetic field perturbations including the
  Alfvén wings has to be taken into account [Simon et al., 2011, Kriegel
  et al., 2011]. Therefore, we now include a dust density obtained by
  modeling of CDA data. By comparing our simulations with magnetometer
  observations (MAG), we constrain the amount of electrons absorbed by
  the dust as well as the variability of the plume between the various
  Enceladus flybys. Furthermore, we discuss initial results for the
  recent encounters E14 - E16.

---------------------------------------------------------
Title: Results of the First Observations with the Hamburg Robotic
    Telescope
Authors: Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Schmitt,
   J. H. M. M.; Hall, J. C.
2011ASPC..448.1187M    Altcode: 2011csss...16.1187M
  The results of the first scientific observations with the Hamburg
  Robotic Telescope (HRT) are presented. These observations were performed
  between October 2008 and August 2009. The goals of this program
  were a test of the observational performance of the telescope and the
  creation of a transformation equation from the HRT S-index to the Mount
  Wilson S-index. The mean of the deviations between the transformed HRT
  S-Indices and the corresponding Mount Wilson S-Indices is ≍4%. These
  deviations can be -- at least partially -- explained by stellar
  variability and the non-simultaneity of the observations. Furthermore,
  the first monitoring of several stars was performed.

---------------------------------------------------------
Title: Star-planet interactions and selection effects from planet
    detection methods
Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.
2011AN....332.1052P    Altcode: 2013arXiv1303.0307P
  Planets may have effects on their host stars by tidal or magnetic
  interaction. Such star-planet interactions are thought to enhance the
  activity level of the host star. However, stellar activity also affects
  the sensitivity of planet detection methods. Samples of planet-hosting
  stars which are investigated for such star-planet interactions are
  therefore subject to strong selection effects which need to be taken
  into account.

---------------------------------------------------------
Title: The cosmic dust analyser onboard cassini: ten years of
    discoveries
Authors: Srama, R.; Kempf, S.; Moragas-Klostermeyer, G.; Altobelli,
   N.; Auer, S.; Beckmann, U.; Bugiel, S.; Burton, M.; Economomou, T.;
   Fechtig, H.; Fiege, K.; Green, S. F.; Grande, M.; Havnes, O.; Hillier,
   J. K.; Helfert, S.; Horanyi, M.; Hsu, S.; Igenbergs, E.; Jessberger,
   E. K.; Johnson, T. V.; Khalisi, E.; Krüger, H.; Matt, G.; Mocker, A.;
   Lamy, P.; Linkert, G.; Lura, F.; Möhlmann, D.; Morfill, G. E.; Otto,
   K.; Postberg, F.; Roy, M.; Schmidt, J.; Schwehm, G. H.; Spahn, F.;
   Sterken, V.; Svestka, J.; Tschernjawski, V.; Grün, E.; Röser, H. -P.
2011CEAS....2....3S    Altcode: 2018arXiv180204772S
  The interplanetary space probe Cassini/Huygens reached Saturn in July
  2004 after 7 years of cruise phase. The German cosmic dust analyser
  (CDA) was developed under the leadership of the Max Planck Institute
  for Nuclear Physics in Heidelberg under the support of the DLR
  e.V. This instrument measures the interplanetary, interstellar and
  planetary dust in our solar system since 1999 and provided unique
  discoveries. In 1999, CDA detected interstellar dust in the inner
  solar system followed by the detection of electrical charges of
  interplanetary dust grains during the cruise phase between Earth and
  Jupiter. The instrument determined the composition of interplanetary
  dust and the nanometre-sized dust streams originating from Jupiter's
  moon Io. During the approach to Saturn in 2004, similar streams of
  submicron grains with speeds in the order of 100 km/s were detected
  from Saturn's inner and outer ring system and are released to the
  interplanetary magnetic field. Since 2004 CDA measured more than one
  million dust impacts characterising the dust environment of Saturn. The
  instrument is one of the three experiments which discovered the active
  ice geysers located at the south pole of Saturn's moon Enceladus in
  2005. Later, a detailed compositional analysis of the water ice grains
  in Saturn's E ring system led to the discovery of large reservoirs of
  liquid water (oceans) below the icy crust of Enceladus. Finally, the
  determination of the dust-magnetosphere interaction and the discovery
  of the extended E ring (at least twice as large as predicted) allowed
  the definition of a dynamical dust model of Saturn's E ring describing
  the observed properties. This paper summarizes the discoveries of a
  10-year story of success based on reliable measurements with the most
  advanced dust detector flown in space until today. This paper focuses
  on cruise results and findings achieved at Saturn with a focus on flux
  and density measurements. CDA discoveries related to the detailed dust
  stream dynamics, E ring dynamics, its vertical profile and E ring
  compositional analysis are published elsewhere (see Hus et al. in
  AIP Conference Proccedings 1216:510-513, 2010; Hsu et al. in Icarus
  206:653-661, 2010; Kempf et al. in Icarus 193:420, 2008; 206(2):446,
  2010; Postberg et al. in Icarus 193(2):438, 2008; Nature 459:1098,
  2009; Nature, 2011, doi: 10.1038/nature10175).

---------------------------------------------------------
Title: Geophysics and Geochemistry of Enceladus and the Galilean
    Moons from Analysis of Ejected Ice Particles
Authors: Postberg, F.; Schmidt, J.; Hillier, J.; Kempf, S.; Srama,
   R.; Sternovsky, Z.; Horanyi, M.; Gruen, E.
2011AGUFM.P22B..07P    Altcode:
  The contribution of Cassini's dust detector CDA in revealing
  subsurface liquid water on Enceladus has demonstrated how questions
  in planetary science can be addressed by in-situ analysis of icy
  dust particles. Since the measurements are particularly sensitive
  to compounds embedded in an ice matrix, CDA detected minerals from
  Enceladus rocky core in ejected ice grains which were previously
  dissolved in water. The chemical characterisation of ice particles
  in Saturn's E ring and during traversals through the plume of
  Enceladus revealed different compositional types. The concentrations
  of various salts and organic compounds vary between different dust
  populations. Spatially resolved plume measurements showed that salt-rich
  ice grains are more abundant close to the surface and are the vast
  majority of the ejected solid mass. The composition suggests that
  these grains are frozen spray from subsurface liquid reservoirs which
  have conserved the liquid's composition. The Galilean satellites are
  another prime target for this kind of science. Although not active
  as Enceladus and Io, the Galileo space craft revealed that Europa,
  Ganymede, and Callisto are enshrouded by icy dust lifted from their
  surfaces by micro-meteroid bombardment. It is relatively easy to analyze
  these particles as samples of planetary surfaces at flyby's or from an
  orbiter. The detected particles can be traced back accurately to the
  point of ejection at the surface. Thus, information on the elemental and
  molecular composition can be acquired and linked to specific features
  on the surface. Especially on Europa and Ganymed resurfacing events and
  exchange processes with a subsurface ocean could be determined with
  sensitivity for trace compounds unachievable by remote sensing. As
  an active satellite distributing its 'volcanic ashes' all over the
  Jovian system, Io is of course an easy object for geochemistry by dust
  analysis. The monitoring of Io's dust emission does neither require
  a specific flyby geometry nor a specific instrument pointing. Already
  during Cassini's Jupiter flyby in 2001 analysis of tiny grains emitted
  by Io gave insights into Io's volcanic chemistry.

---------------------------------------------------------
Title: Compositional Mapping of Planetary moons by Mass Spectrometry
    of Dust Ejecta
Authors: Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger,
   H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.
2011AGUFM.P42A..07P    Altcode:
  Classical methods to analyze the surface composition of planetary
  objects from a space craft are IR and gamma ray spectroscopy and
  neutron backscatter measurements. We present a complementary method
  to analyze rocky or icy dust particles as samples of planetary objects
  from where they were ejected. Such particles, generated by the ambient
  meteoroid bombardment that erodes the surface, are naturally present on
  all atmosphereless moons and planets - they are enshrouded in clouds
  of ballistic dust particles. In situ mass spectroscopic analysis of
  these grains impacting on to a detector on a spacecraft reveals their
  composition as characteristic samples of planetary surfaces at flybys
  or from an orbiter. The well established approach of dust detection
  by impact ionization has recently shown its capabilities by analyzing
  ice particles expelled by subsurface salt water on Saturn's moon
  Enceladus. Applying the method on micro-meteoroid ejecta of less active
  moons would allow for the qualitative and quantitative analysis of a
  huge number of samples from various surface areas, thus combining the
  advantages of remote sensing and a lander. Utilizing the heritage of the
  dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety
  of improved, low-mass lab-models have been build and tested. They allow
  the chemical characterization of ice and dust particles encountered
  at speeds as low as 1 km/s and an accurate reconstruction of their
  trajectories. Depending on the sampling altitude, a dust trajectory
  sensor can trace back the origin of each analyzed grain with about 10
  km accuracy at the surface. Since achievable detection rates are on
  the order of thousand per orbit, an orbiter can create a compositional
  map of samples taken from a greater part of the surface. Flybies allow
  an investigation of certain surface areas of interest. Dust impact
  velocities are in general sufficiently high for impact ionization at
  orbiters about planetary objects with a radius of at least 1000km and
  with only a thin or no atmosphere. Thus, this method is ideal on a
  spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The
  approach has a ppm-level sensitivity to salts and many rock forming
  materials as well as water and organic compounds. It provides key
  chemical and isotopic constraints for varying provinces or geological
  formations on the surfaces, leading to better understanding of the
  body's geological evolution. Regions which were subject to endogenic
  or exogenic alteration (resurfacing, radiation, old/new regions) could
  be distinguished and investigated. In particular exchange processes
  with subsurface ocean on the Galileian moons could be determined with
  high quantitative precision.

---------------------------------------------------------
Title: Problems with the equation for viscous damping of density waves
Authors: Schmidt, J.; Salo, H.; Spahn, F.
2011AGUFM.P13B1674S    Altcode:
  Numerous resonances with external satellites excite density waves in
  Saturn's rings. A theoretical expression for the damping of these waves,
  when they propagate away from the resonance location, is derived from
  a fluid model (GT78: Goldreich and Tremaine, 1978, Icarus, 34, 240, see
  also: Shu et al., 1984, in Planetary Rings). The magnitude of the shear
  viscosity of Saturn's rings is inferred from comparison of this theory
  to the actual damping length of density waves observed in various data
  sets (e.g. Esposito et al., 1983, Lissauer et al., 1984, Tiscareno et
  al., 2007). In the theoretical expression for the damping length the
  fluid's bulk viscosity enters (in addition to the shear viscosity) as
  well as the dependence of both viscosities on the density of the ring
  matter. However, generally the bulk viscosity and the effects of the
  density dependences are neglected when the shear viscosity is inferred
  from the data. It has already been pointed out in the original paper
  (GT78) that this neglect lacks adequate justification. This raises
  the question in how far the inferred viscosities are representative
  for the rings. In particular, if one takes into acount the density
  dependence of the viscosities, the expression for the viscous damping
  transforms into a relation that is equivalent to the stability criterion
  for viscous overstability. In this case the theory implies that there
  might be ring regions where density waves do not damp at all but grow
  in amplitude (GT78). In this paper we re-derive the expression for the
  wave damping, including the terms stemming from the density dependence
  of the viscosities. We discuss their effect in the light of the presence
  of self-gravity wakes in the rings, contributing to viscosity, the
  probable detection of viscous overstability in parts of Saturn's ring
  system, and the behaviour of the Janus/Epimetheus m:m-1 wavetrains.

---------------------------------------------------------
Title: X-rays from HH 154
Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M.
2011ASPC..448..729S    Altcode: 2011csss...16..729S
  Protostellar jets are observed during all stages of early stellar
  evolution. X-rays originating within these outflows have been observed
  only from ten such objects and require shock velocities of about 500
  km s<SUP>-1</SUP>. L1551 IRS 5, the driving source of the Herbig-Haro
  object 154, is heavily absorbed. Therefore, one can study the outflow
  close to the launching zone without contaminating light from the power
  source. We present a new third epoch Chandra observation of HH 154
  which shows that the majority of the X-ray emission is concentrated
  within a small region close to the driving source over a timespan
  of 8 years. Reheating or replenishment of the plasma is required in
  order to explain the observations. The evolution of the temperature
  of the X-ray emitting plasma suggests that the heating occurs within
  the innermost region (∼150 AU) of the outflow.

---------------------------------------------------------
Title: The Structure of Saturn's E ring as seen by Cassini CDA
Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Postberg,
   F.; Horanyi, M.; Schmidt, J.; Spahn, F.
2011epsc.conf.1643K    Altcode: 2011DPS....43.1643K
  The Cassini onboard dust detector, CDA, measures the mass, speed,
  charge, and composition of individual ring particles. Thus, the size
  and speed distribution of the E ring particles can be derived from
  CDA measurements obtained during Cassini's ring traversals. Because
  there is a close connection between the ring particle dynamics and the
  distribution of ring particle speeds, CDA provides precious information
  about the processes sculpting the ring. Here we present speed and size
  distributions measured inside and outside the orbit of the dominating
  ring particle source, the active ring moon Enceladus. We also present
  radial density profiles of the inner E ring obtained during equatorial
  ring traversals, which show a pronounced dependence of the ring
  structure on the hour angle.

---------------------------------------------------------
Title: The Snows of Enceladus
Authors: Schenk, P.; Schmidt, J.; White, O.
2011epsc.conf.1358S    Altcode: 2011DPS....43.1358S
  The icy south polar plumes of Enceladus make for a spectacular
  effect in the Saturn system (e.g., the Ering), but also profoundly
  alter the surface of Enceladus itself. Recent models of the plume
  particle dynamics predict that the heavier particles will reaccrete,
  effectively "snowing" fine-grained debris back onto the surface in
  discrete patterns [1], depending on the actual distribution of ejection
  sites. The densest fallout pattern is dominated by two scytheshaped
  lobes extending northward from the South-Polar-Terrains along the 40
  and 220W longitudes. Recent color mapping of Enceladus demonstrates
  that IR/UV color asymmetries across the surface match these predicted
  patterns astonishingly well [2]. Theory and observation therefore
  confirm the apparent formation of a blanket of very small particles
  covering most of the surface of Enceladus to different depths, depending
  on location and plume source changes.

---------------------------------------------------------
Title: The Ballistic Spreading of Debris Clouds over a Planetary Ring
Authors: Schmidt, J.
2011epsc.conf.1782S    Altcode: 2011DPS....43.1782S
  I develop a theoretical model for the evolution of a debris cloud,
  spreading from the location of the impact. For simplicity the details
  of the disruption are not addressed. I start with an isotropic model,
  assuming that a 30 km/s hypervelocity projectile, perhaps centimeter
  to decimeter sized, hits and destroys a ring particle (perhaps meter
  to tens of meters in size), leading to a cloud of debris spreading
  uniformly from the point of impact, with power law distributed speeds
  of ejection. This conceptually simple model allows us to study basic
  properties of the evolution of the cloud. Effects of anisotropy,
  arising from the direction of the projectile and the effect of momentum
  conservation, can be incorporated without principal difficulty in an
  improved model.

---------------------------------------------------------
Title: Multi-wavelength observations of Proxima Centauri
Authors: Fuhrmeister, B.; Lalitha, S.; Poppenhaeger, K.; Rudolf, N.;
   Liefke, C.; Reiners, A.; Schmitt, J. H. M. M.; Ness, J. -U.
2011A&A...534A.133F    Altcode: 2011arXiv1109.1130F
  <BR /> Aims: We report simultaneous observations of the nearby flare
  star Proxima Centauri with VLT/UVES and XMM-Newton over three nights
  in March 2009. Our optical and X-ray observations cover the star's
  quiescent state, as well as its flaring activity and allow us to
  probe the stellar atmospheric conditions from the photosphere into
  the chromosphere, and then the corona during its different activity
  stages. <BR /> Methods: Using the X-ray data, we investigate variations
  in coronal densities and abundances and infer loop properties for an
  intermediate-sized flare. The optical data are used to investigate the
  magnetic field and its possible variability, to construct an emission
  line list for the chromosphere, and use certain emission lines to
  construct physical models of Proxima Centauri's chromosphere. <BR />
  Results: We report the discovery of a weak optical forbidden Fe xiii
  line at 3388 Å during the more active states of Proxima Centauri. For
  the intermediate flare, we find two secondary flare events that may
  originate in neighbouring loops, and discuss the line asymmetries
  observed during this flare in H i, He i, and Ca ii lines. The high
  time-resolution in the Hα line highlights strong temporal variations in
  the observed line asymmetries, which re-appear during a secondary flare
  event. We also present theoretical modelling with the stellar atmosphere
  code PHOENIX to construct flaring chromospheric models. <P />Based on
  observations collected at the European Southern Observatory, Paranal,
  Chile, 082.D-0953A and on observations obtained with XMM-Newton, an
  ESA science mission with instruments and contributions directly funded
  by ESA Member states and NASA.Full Table 6 is only available at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133</A>

---------------------------------------------------------
Title: Dynamics and kinetics of narrow dusty ringlets
Authors: Sun, K. L.; Spahn, F.; Schmidt, J.
2011epsc.conf..864S    Altcode: 2011DPS....43..864S
  Several narrow dusty rings have been discovered in the Saturn system,
  such as the F ring, ringlets in the C Ring, the Cassini division, and
  the Encke Gap [1] [2]. The kinky and clumpy structures in the F ring
  are considered as the result of embedded moonlets which are dynamically
  dominated by shepherding moons [3]. Similar features are found in
  Encke ringlets which we hypothesize to be associated with embedded
  moonlets [4] [5]. On the other hand, these ringlets are believed to be
  composed of micron-sized particles [6], which are strongly perturbed by
  solar radiation pressure and their lifetime is restricted. Therefore
  mechanisms must be at work to replenish these ringlets. We develop a
  model for the kinetic balance of dust production, dynamical evolution,
  and sinks by assuming that dust is freed and annihilated by moonlets
  embedded in the ringlet. The dynamics of particles ejected from these
  putative moonlets is explored and the contribution of impact-ejecta
  to the ringlet is estimated [7] [8]. We found that the optical depth
  sustained by embedded moonlets is too low (orders of magnitude),
  indicating that other sources or processes should be responsible for
  supporting the Encke ringlet.

---------------------------------------------------------
Title: How does Saturn's moons influence the velocity dispersion in
    the A ring
Authors: Seiß, M.; Schmidt, J.; Spahn, F.
2011epsc.conf.1408S    Altcode: 2011DPS....43.1408S
  Saturn's moons perturb the rings due to their gravitational interactions
  with the ring material. Here, we present a model which accounts for the
  heating of the ring material due to these perturbations. The results
  emphasize the importance of the moon Prometheus for the velocity
  dispersion in the outer A ring of Saturn, which is probably 10 times
  higher than in the innermost A ring. An enhanced velocity dispersion
  would in turn lead to an enhanced production of smaller debris particles
  by knocking them off from larger parent bodies. This could lead to an
  increasing optical depth and brightness and limit the observability of
  the selfgravity wakes in the outer A ring. Furthermore, the velocity
  dispersion can be strongly enhanced in the vicinity of the major
  resonances (e.g. Janus 5:4) explaining the observed halos around them.

---------------------------------------------------------
Title: Dust spectrometry in the Jovian System
Authors: Srama, R.; Kempf, S.; Postberg, F.; Schmidt, J.; Krüger,
   H.; Thissen, R.; Sternovsky, Z.; Engrand, C.; Fiege, K.; Horanyi, M.;
   Khalisi, E.; Mocker, A.; Moragas-Klostermeyer, G.; Otto, K.; Spahn,
   F.; Sterken, V.; Grün, E.; Röser, H. P.
2011epsc.conf.1502S    Altcode: 2011DPS....43.1502S
  The Galileo spacecraft characterised the dust environment in the jovian
  system. The discoveries included an extended dusty ring system, the
  nano-metre sized stream particles originating from the moon Io, and
  the dust exospheres around the Galilean satellites Ganymed, Europa and
  Callisto [2]. The study of the nanodust-magnetosphere interaction and
  the compositional analysis of dust particles ejected by the surfaces
  of Ganymed or Europa offer unique future opportunities. New dust
  instrumentation is a factor of 10 more sensitive then the former
  Galileo detector and adds compositional analysis for moon surface
  studies complementary to neutral gas or ion particle investigations. A
  dust spectrometer performs complementary measurements with respect to
  neutral gas or ion investigations and is highly sensitive for organic,
  salty water ice and mineral particles.

---------------------------------------------------------
Title: Dynamics of Enceladus' Plume Particles and the Compositional
    Profile of the Plume
Authors: Schmidt, J.; Postberg, F.; Hillier, J. K.; Kempf, S.;
   Srama, R.
2011epsc.conf..806S    Altcode: 2011DPS....43..806S
  The Cosmic Dust Analyzer (CDA) onboard the CASSINI spacecraft obtained
  in-situ compositional measurements of freshly ejected particles in
  the Enceladus plume. A main result is that the proportion of salt
  rich particles is significantly enhanced in the plume, relative to
  the abundance inferred previously in the E ring[1]. We show how this
  compositional profile in the plume, as well as the relative depletion
  in the E ring, arises as a consequence of a size-dependent dynamical
  filtering of particles. The generally larger size of salt rich
  grains (as compared to salt poor particles) leads to their enhanced
  concentration in the lower parts of the plume. From our model we infer
  the proportion of salt rich grains in the total flux of dust produced at
  Enceladus. We find that the dominant part of the dust mass is salt rich.

---------------------------------------------------------
Title: Adhesion and collisional release of particles in dense
    planetary rings
Authors: Bodrova, A.; Schmidt, J.; Spahn, F.; Brilliantov, N.
2011epsc.conf..964B    Altcode: 2011DPS....43..964B
  We propose a simple theoretical model for aggregative and fragmentative
  collisions in Saturn's dense rings. In this model the ring matter
  consists of a bimodal size distribution: large (meter sized) boulders
  and a population of smaller particles (tens of centimetres down to
  dust). The small particles can adhesively stick to the boulders and
  can be released as debris in binary collisions of their carriers. To
  quantify the adhesion force we use the JKR theory [1]. The rates of
  release and adsorption of particles are calculated, depending on
  material parameters, sizes, and plausible velocity dispersions of
  carriers and debris particles. In steady state we obtain an expression
  for the amount of free debris relative to the fraction still attached
  to the carriers. In terms of this conceptually simple model a paucity
  of subcentimeter particles in Saturn's rings [2] can be understood
  as a consequence of the increasing strength of adhesion (relative to
  inertial forces) for decreasing particle size. In this case particles
  smaller than a certain critical radius rcr remain tightly attached
  to the surfaces of larger boulders, even when the boulders collide
  at their typical speed. Furthermore, we find that already a mildly
  increased velocity dispersion of the carrier-particles may significantly
  enhance the fraction of free debris particles, in this way increasing
  the optical depth of the system.

---------------------------------------------------------
Title: The salty spray of Enceladus - Implications for the plume
    formation
Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.;
   Srama, R.
2011epsc.conf..642P    Altcode: 2011DPS....43..642P
  Here we discuss the consequences of this and other recent results for
  the processes forming the plume. Previous Cassini observations were
  compatible with a variety of plume formation scenarios and contributions
  from "dry" sources (such as ice sublimation or clathrate decomposition)
  were viable. A plume source dominated by micron sized salt-rich ice
  grains, as reported here, eliminates significant contributions from dry,
  sodium poor sources and severely constrains or rules out non-liquid
  models in their present form. The resent measurements strongly imply
  that a salt-water reservoir with a large, but probably non-contiguous
  or porous, evaporating surface1,4,5 injects most of the matter forming
  the plume. The relatively low abundance of non-soluable gases6,7 in
  the plume is in agreement with a contribution from warm ice-sublimation
  to the gas flux.

---------------------------------------------------------
Title: Photometric modeling of viscous overstability in Saturn's rings
Authors: Salo, H.; Schmidt, J.
2011epsc.conf.1771S    Altcode: 2011DPS....43.1771S
  The viscous overstability of dense planetary rings offers a plausible
  mechanism for the generation of observed ~ 150 m radial density
  variations in the B and the inner A ring of Saturn [1, 12]. Viscous
  overstability, in the form of spontaneous growth of axisymmetric
  oscillations, arises naturally in N-body simulations, in the limit
  of high impact frequency and moderately weak selfgravity [4, 8, 9,
  10]. For example, a selfgravitating system of identical particles with
  internal density ~ half of solid ice, becomes overstable for optical
  depths τ &gt; 1, forming oscillations on about 100 meter scale. Like
  self-gravity wakes (with typical ~ 20° trailing pitch angle),
  overstable oscillations lead to alongitude-dependent brightness of
  the rings. Due to their axisymmetric nature, the expected longitude
  of minimum brightness is shifted closer to ring ansae (for small
  phase angles). Moreover, according to simulations, the axisymmetric
  oscillations may coexist with the inclined selfgravity wake structures,
  which can lead to complicated photometric behavior as a function of
  illumination and viewing geometries, depending on properties of the
  simulated system. For example, at low viewing elevations, the vertical
  thickenings associated with the density crests should cast shadows
  on the nearby ring particles (see Fig. 1 for an example; darker areas
  are due to shadows, not due to depletion of particles). Though these
  shadows would be unresolved, they might still affect the integrated
  brightness at certain geometries. The overstable systems may also
  exhibit amplitude variations (in km-scales), arising from the mutual
  beating patterns of the basic sub-km overstable oscillations [3]. Such
  modulations of oscillation amplitude may lead to associated brightness
  variations. New results of photometric modeling of viscously overstable
  dynamical simulations systems are reported, related to the above
  mentioned topics. The Monte Carlo method of [5] is used, previously
  applied to modeling of photometric signatures of selfgravity wakes
  [6, 2], scattering properties of propeller structures [11], and most
  recently to the interpretation of elevation-angle dependent opposition
  effect seen in HST data [7]. In particular, the possible observable
  signatures of amplitude modulations and vertical splashing are explored.

---------------------------------------------------------
Title: Quasi-stable neutralinos at the LHC
Authors: Bobrovskyi, S.; Buchmüller, W.; Hajer, J.; Schmidt, J.
2011JHEP...09..119B    Altcode: 2011arXiv1107.0926B
  We study supersymmetric extensions of the Standard Model with small
  R-parity and lepton number violating couplings which are naturally
  consistent with primordial nucleosynthesis, thermal leptogenesis
  and gravitino dark matter. We consider supergravity models where
  the gravitino is the lightest superparticle followed by a bino-like
  next-to-lightest superparticle (NLSP). Extending previous work we
  investigate in detail the sensitivity of LHC experiments to the R-parity
  breaking parameter ζ for various gluino and squark masses. We perform
  a simulation of signal and background events for the generic detector
  &lt;Literal&gt;DELPHES&lt;/Literal&gt; for which we implement the
  finite NLSP decay length. We find that for gluino and squark masses
  accessible at the LHC, values of ζ can be probed which are one to two
  orders of magnitude smaller than the present upper bound obtained from
  astrophysics and cosmology.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Proxima Cen chromospheric emission
    lines (Fuhrmeister+, 2011)
Authors: Fuhrmeister, B.; Lalitha, S.; Poppenhaeger, K.; Rudolf, N.;
   Liefke, C.; Reiners, A.; Schmitt, J. H. M. M.; Ness, J. -U.
2011yCat..35340133F    Altcode: 2011yCat..35349133F
  We present an extensive identification catalog of chromospheric emission
  lines in the optical range for a flare on Proxima Centauri. The data
  were obtained with ESO's Kueyen telescope equipped with the UVES
  spectrograph on March 9/10, 11/12, 13/14 in 2009. The instrument was
  operated in dichroic mode (spectral coverage from 3290 to 4500 and
  from 6400 to 10080Å). We tabulate measured wavelength, line flux
  and FWHM for every line and also provide the rest wavelength from
  the Moore catalog which was used for identification (Moore, 1972,
  Nat. Stand. Ref. Data. Ser., 40). Few lines were identified with the
  NIST database. <P />(1 data file).

---------------------------------------------------------
Title: A new flare star member candidate in the Pleiades cluster
Authors: Moualla, M.; Schmidt, T. O. B.; Neuhäuser, R.; Hambaryan,
   V. V.; Errmann, R.; Trepl, L.; Broeg, Ch.; Eisenbeiss, T.; Mugrauer,
   M.; Marka, C.; Adam, C.; Ginski, C.; Pribulla, T.; Rätz, S.; Schmidt,
   J.; Berndt, A.; Maciejewski, G.; Röll, T.; Hohle, M. M.; Tetzlaff,
   N.; Fiedler, S.; Baar, S.
2011AN....332..661M    Altcode: 2011arXiv1108.6278M
  We present a new flare star, which was discovered during our survey on
  a selected field at the edge of the Pleiades cluster. The field was
  observed in the period 2007-2010 with three different CCD-cameras at
  the University Observatory Jena with telescopes from 25 to 90 cm. The
  flare duration is almost one hour with an amplitude in the R-band of
  about 1.08 mag. The location of the flare star in a color-magnitude
  diagram is consistent with age and distance of the Pleiades. In the
  optical PSF of the flare star there are two 2MASS objects (unresolved
  in most images in the optical Jena PSF), so it is not yet known which
  one of them is responsible for this flare. The BV RIJHK colors yield
  spectral types of M1 and M2 with extinction being A<SUB>V</SUB> =
  0.231 ± 0.024 mag and A<SUB>V</SUB> = 0.266 ± 0.020 for those two
  stars, consistent with the Pleiades cluster.

---------------------------------------------------------
Title: The corona and companion of CoRoT-2a. Insights from X-rays
    and optical spectroscopy
Authors: Schröter, S.; Czesla, S.; Wolter, U.; Müller, H. M.; Huber,
   K. F.; Schmitt, J. H. M. M.
2011A&A...532A...3S    Altcode: 2011arXiv1106.1522S
  CoRoT-2 is one of the most unusual planetary systems known to date. Its
  host star is exceptionally active, showing a pronounced, regular pattern
  of optical variability caused by magnetic activity. The transiting hot
  Jupiter, CoRoT-2b, shows one of the largest known radius anomalies. We
  analyze the properties and activity of CoRoT-2a in the optical and
  X-ray regime by means of a high-quality UVES spectrum and a 15 ks
  Chandra exposure both obtained during planetary transits. The UVES data
  are analyzed using various complementary methods of high-resolution
  stellar spectroscopy. We characterize the photosphere of the host star
  by deriving accurate stellar parameters such as effective temperature,
  surface gravity, and abundances. Signatures of stellar activity, Li
  abundance, and interstellar absorption are investigated to provide
  constraints on the age and distance of CoRoT-2. Furthermore, our
  UVES data confirm the presence of a late-type stellar companion to
  CoRoT-2a that is gravitationally bound to the system. The Chandra data
  provide a clear detection of coronal X-ray emission from CoRoT-2a,
  for which we obtain an X-ray luminosity of 1.9 × 10<SUP>29</SUP> erg
  s<SUP>-1</SUP>. The potential stellar companion remains undetected in
  X-rays. Our results indicate that the distance to the CoRoT-2 system
  is ≈270 pc, and the most likely age lies between 100 and 300 Ma. Our
  X-ray observations show that the planet is immersed in an intense
  field of high-energy radiation. Surprisingly, CoRoT-2a's likely coeval
  stellar companion, which we find to be of late-K spectral type, remains
  X-ray dark. Yet, as a potential third body in the system, the companion
  could account for CoRoT-2b's slightly eccentric orbit. <P />Based on
  observations obtained with UVES at the ESO VLT Kueyen telescope (program
  ID 385.D-0426) and the Chandra X-ray Observatory (obs. ID 10989).

---------------------------------------------------------
Title: The Young Exoplanet Transit Initiative (YETI)
Authors: Neuhäuser, R.; Errmann, R.; Berndt, A.; Maciejewski, G.;
   Takahashi, H.; Chen, W. P.; Dimitrov, D. P.; Pribulla, T.; Nikogossian,
   E. H.; Jensen, E. L. N.; Marschall, L.; Wu, Z. -Y.; Kellerer, A.;
   Walter, F. M.; Briceño, C.; Chini, R.; Fernandez, M.; Raetz, St.;
   Torres, G.; Latham, D. W.; Quinn, S. N.; Niedzielski, A.; Bukowiecki,
   Ł.; Nowak, G.; Tomov, T.; Tachihara, K.; Hu, S. C. -L.; Hung, L. W.;
   Kjurkchieva, D. P.; Radeva, V. S.; Mihov, B. M.; Slavcheva-Mihova,
   L.; Bozhinova, I. N.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek,
   Ľ.; Krushevska, V.; Movsessian, T.; Harutyunyan, H.; Downes, J. J.;
   Hernandez, J.; Hoffmeister, V. H.; Cohen, D. H.; Abel, I.; Ahmad,
   R.; Chapman, S.; Eckert, S.; Goodman, J.; Guerard, A.; Kim, H. M.;
   Koontharana, A.; Sokol, J.; Trinh, J.; Wang, Y.; Zhou, X.; Redmer, R.;
   Kramm, U.; Nettelmann, N.; Mugrauer, M.; Schmidt, J.; Moualla, M.;
   Ginski, C.; Marka, C.; Adam, C.; Seeliger, M.; Baar, S.; Roell, T.;
   Schmidt, T. O. B.; Trepl, L.; Eisenbeiß, T.; Fiedler, S.; Tetzlaff,
   N.; Schmidt, E.; Hohle, M. M.; Kitze, M.; Chakrova, N.; Gräfe,
   C.; Schreyer, K.; Hambaryan, V. V.; Broeg, C. H.; Koppenhoefer, J.;
   Pandey, A. K.
2011AN....332..547N    Altcode: 2011arXiv1106.4244N
  We present the Young Exoplanet Transit Initiative (YETI), in which
  we use several 0.2 to 2.6-m telescopes around the world to monitor
  continuously young (≤100 Myr), nearby (≤1 kpc) stellar clusters
  mainly to detect young transiting planets (and to study other
  variability phenomena on time-scales from minutes to years). The
  telescope network enables us to observe the targets continuously for
  several days in order not to miss any transit. The runs are typically
  one to two weeks long, about three runs per year per cluster in two
  or three subsequent years for about ten clusters. There are thousands
  of stars detectable in each field with several hundred known cluster
  members, e.g. in the first cluster observed, Tr-37, a typical cluster
  for the YETI survey, there are at least 469 known young stars detected
  in YETI data down to R=16.5 mag with sufficient precision of 50
  millimag rms (5 mmag rms down to R=14.5 mag) to detect transits,
  so that we can expect at least about one young transiting object in
  this cluster. If we observe ∼10 similar clusters, we can expect to
  detect ∼10 young transiting planets with radius determinations. The
  precision given above is for a typical telescope of the YETI network,
  namely the 60/90-cm Jena telescope (similar brightness limit, namely
  within ± 1 mag, for the others) so that planetary transits can
  be detected. For targets with a periodic transit-like light curve,
  we obtain spectroscopy to ensure that the star is young and that the
  transiting object can be sub-stellar; then, we obtain Adaptive Optics
  infrared images and spectra, to exclude other bright eclipsing stars
  in the (larger) optical PSF; we carry out other observations as needed
  to rule out other false positive scenarios; finally, we also perform
  spectroscopy to determine the mass of the transiting companion. For
  planets with mass and radius determinations, we can calculate the mean
  density and probe the internal structure. We aim to constrain planet
  formation models and their time-scales by discovering planets younger
  than ∼100 Myr and determining not only their orbital parameters,
  but also measuring their true masses and radii, which is possible
  so far only by the transit method. Here, we present an overview and
  first results.

---------------------------------------------------------
Title: A Correlation Between Host Star Activity and Planet Mass for
    Close-in Extrasolar Planets?
Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.
2011ApJ...735...59P    Altcode: 2011arXiv1106.0189P
  The activity levels of stars are influenced by several stellar
  properties, such as stellar rotation, spectral type, and the presence
  of stellar companions. Analogous to binaries, planetary companions are
  also thought to be able to cause higher activity levels in their host
  stars, although at lower levels. Especially in X-rays, such influences
  are hard to detect because coronae of cool stars exhibit a considerable
  amount of intrinsic variability. Recently, a correlation between the
  mass of close-in exoplanets and their host star's X-ray luminosity
  has been detected, based on archival X-ray data from the ROSAT All-Sky
  Survey. This finding has been interpreted as evidence for star-planet
  interactions. We show in our analysis that this correlation is caused by
  selection effects due to the flux limit of the X-ray data used and due
  to the intrinsic planet detectability of the radial velocity method,
  and thus does not trace possible planet-induced effects. We also show
  that the correlation is not present in a corresponding complete sample
  derived from combined XMM-Newton and ROSAT data.

---------------------------------------------------------
Title: New X-ray observations of IQ Aurigae and α<SUP>2</SUP> Canum
    Venaticorum. Probing the magnetically channeled wind shock model in
    A0p stars
Authors: Robrade, J.; Schmitt, J. H. M. M.
2011A&A...531A..58R    Altcode: 2011arXiv1105.3688R
  <BR /> Aims: We re-examine the scenario of X-ray emission from
  magnetically confined/channeled wind shocks (MCWS) for Ap/Bp stars,
  a model originally developed to explain the ROSAT detection of the
  A0p star IQ Aur. <BR /> Methods: We present new X-ray observations of
  the A0p stars α<SUP>2</SUP> CVn (Chandra) and IQ Aur (XMM-Newton) and
  discuss our findings in the context of X-ray generating mechanisms of
  magnetic, chemically peculiar intermediate mass stars. <BR /> Results:
  The X-ray luminosities of IQ Aur with log L<SUB>X</SUB> = 29.6 erg
  s<SUP>-1</SUP> and α<SUP>2</SUP> CVn with log L<SUB>X</SUB> ≲
  26.0 erg s<SUP>-1</SUP> differ by at least three orders of magnitude,
  although both are A0p stars. By studying a sample of comparison stars,
  we find that X-ray emission is preferably generated by more massive
  objects such as IQ Aur. Besides a strong, cool plasma component,
  significant amounts of hot (&gt;10 MK) plasma are present during
  the quasi-quiescent phase of IQ Aur; moreover, diagnostics of
  the UV sensitive f/i line ratio in He-like O vii triplet point to
  X-ray emitting regions well above the stellar surface of IQ Aur. In
  addition we detect a large flare from IQ Aur with temperatures up to
  ~100 MK and a peak X-ray luminosity of log L<SUB>X</SUB> ≈ 31.5 erg
  s<SUP>-1</SUP>. The flare, showing a fast rise and e-folding decay time
  of less than half an hour, originates in a fairly compact structure
  and is accompanied by a significant metallicity increase. The X-ray
  properties of IQ Aur cannot be described by wind shocks only and
  require the presence of magnetic reconnection. This is most evident
  in the, to our knowledge, first X-ray flare reported from an A0p
  star. <BR /> Conclusions: Our study indicates that the occurrence the
  of X-ray emission in A0p stars generated by magnetically channeled
  wind shocks depends on stellar properties such as luminosity, which
  promote a high mass loss rate, whereas magnetic field configuration
  and transient phenomena refine their appearance. While we cannot rule
  out unknown close companions, the X-ray emission from IQ Aur can be
  described consistently in the MCWS scenario, in which the very strong
  magnetic confinement of the stellar wind has led to the build-up of
  a rigidly rotating disk around the star, where magnetic reconnection
  and centrifugal breakout events occur.

---------------------------------------------------------
Title: The X-ray puzzle of the L1551 IRS 5 jet
Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M.
2011A&A...530A.123S    Altcode: 2011arXiv1105.1663S
  Protostars are actively accreting matter and they drive spectacular,
  dynamic outflows, which evolve on timescales of years. X-ray emission
  from these jets has been detected only in a few cases and little is
  known about its time evolution. We present a new Chandra observation
  of L1551 IRS 5's jet in the context of all available X-ray data of
  this object. Specifically, we perform a spatially resolved spectral
  analysis of the X-ray emission and find that (a) the total X-ray
  luminosity is constant over almost one decade, (b) the majority of
  the X-rays appear to be always located close to the driving source,
  (c) there is a clear trend in the photon energy as a function of the
  distance to the driving source indicating that the plasma is cooler
  at larger distances and (d) the X-ray emission is located in a small
  volume which is unresolved perpendicular to the jet axis by Chandra. A
  comparison of our X-ray data of the L1551 IRS 5 jet both with models
  as well as X-ray observations of other protostellar jets shows that
  a base/standing shock is a likely and plausible explanation for the
  apparent constancy of the observed X-ray emission. Internal shocks
  are also consistent with the observed morphology if the supply of jet
  material by the ejection of new blobs is sufficiently constant. We
  conclude that the study of the X-ray emission of protostellar jet
  sources allows us to diagnose the innermost regions close to the
  acceleration region of the outflows.

---------------------------------------------------------
Title: A salt-water reservoir as the source of a compositionally
    stratified plume on Enceladus
Authors: Postberg, F.; Schmidt, J.; Hillier, J.; Kempf, S.; Srama, R.
2011Natur.474..620P    Altcode:
  The discovery of a plume of water vapour and ice particles emerging
  from warm fractures (`tiger stripes') in Saturn's small, icy moon
  Enceladus raised the question of whether the plume emerges from a
  subsurface liquid source or from the decomposition of ice. Previous
  compositional analyses of particles injected by the plume into Saturn's
  diffuse E ring have already indicated the presence of liquid water,
  but the mechanisms driving the plume emission are still debated. Here
  we report an analysis of the composition of freshly ejected particles
  close to the sources. Salt-rich ice particles are found to dominate
  the total mass flux of ejected solids (more than 99 per cent) but
  they are depleted in the population escaping into Saturn's E ring. Ice
  grains containing organic compounds are found to be more abundant in
  dense parts of the plume. Whereas previous Cassini observations were
  compatible with a variety of plume formation mechanisms, these data
  eliminate or severely constrain non-liquid models and strongly imply
  that a salt-water reservoir with a large evaporating surface provides
  nearly all of the matter in the plume.

---------------------------------------------------------
Title: Coronal properties of planet-bearing stars (Corrigendum)
Authors: Poppenhaeger, K.; Robrade, J.; Schmitt, J. H. M. M.
2011A&A...529C...1P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A search for star-planet interactions in the υ Andromedae
    system at X-ray and optical wavelengths
Authors: Poppenhaeger, K.; Lenz, L. F.; Reiners, A.; Schmitt,
   J. H. M. M.; Shkolnik, E.
2011A&A...528A..58P    Altcode: 2010arXiv1010.5632P
  Context. Close-in, giant planets are expected to influence their host
  stars via tidal or magnetic interaction. But are these effects in
  X-rays strong enough in suitable targets known so far to be observed
  with today's instrumentation? <BR /> Aims: The υ And system, an
  F8V star with a Hot Jupiter, was observed to undergo cyclic changes
  in chromospheric activity indicators with its innermost planet's
  period. We aim to investigate the stellar chromospheric and coronal
  activity over several months. <BR /> Methods: We therefore monitored
  the star in X-rays as well as at optical wavelengths to test coronal
  and chromospheric activity indicators for planet-induced variability,
  making use of the Chandra X-ray Observatory as well as the echelle
  spectrographs FOCES and HRS at Calar Alto (Spain) and the Hobby-Eberly
  Telescope (Texas, US). <BR /> Results: The stellar activity level is
  low, as seen both in X-rays as in Ca ii line fluxes; the chromospheric
  data show variability with the stellar rotation period. We do not find
  activity variations in X-rays or in the optical that can be traced back
  to the planet. <BR /> Conclusions: Gaining observational evidence of
  star-planet interactions in X-rays remains challenging.

---------------------------------------------------------
Title: The Compositional Profile of Enceladus Icy Dust Plume from
    Cassini In-Situ Measurements
Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.;
   Srama, R.
2011LPI....42.1849P    Altcode:
  Measurements by Cassini’s dust detector during Enceladus plume
  crossings show strong variations in structure and composition. Salt-rich
  ice grains clearly dominate Enceladus’ solid emissions strongly
  favoring an abundant liquid water source close to the icy surface.

---------------------------------------------------------
Title: eROSITA on SRG. A X-ray all-sky survey mission
Authors: Cappelluti, N.; Predehl, P.; Böhringer, H.; Brunner, H.;
   Brusa, M.; Burwitz, V.; Churazov, E.; Dennerl, K.; Finoguenov, A.;
   Freyberg, M.; Friedrich, P.; Hasinger, G.; Kenziorra, E.; Kreykenbohm,
   I.; Lamer, G.; Meidinger, N.; Mühlegger, M.; Pavlinsky, M.; Robrade,
   J.; Santangelo, A.; Schmitt, J.; Schwope, A.; Steinmitz, M.; Strüder,
   L.; Sunyaev, R.; Tenzer, C.
2011MSAIS..17..159C    Altcode: 2010arXiv1004.5219C
  eROSITA (extended ROentgen Survey with an Imaging Telescope Array)
  is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG)
  mission which is scheduled for launch in late 2012. eROSITA is
  fully approved and funded by the German Space Agency DLR and the
  Max-Planck-Society. The design driving science is the detection
  of 50 - 100 thousands Clusters of Galaxies up to redshift z 1.3 in
  order to study the large scale structure in the Universe and test
  cosmological models, especially Dark Energy. This will be accomplished
  by an all-sky survey lasting for four years plus a phase of pointed
  observations. At the time of writing the instrument development is
  currently in phase C/D.

---------------------------------------------------------
Title: X-rays, Blue Compact Dwarf Galaxies, and Star Formation
Authors: Gorski, Mark; Kaaret, P.; Schmitt, J.
2011AAS...21725830G    Altcode: 2011BAAS...4325830G
  Blue compact dwarf galaxies are analogs to the unevolved galaxies in the
  early universe, for which the correlation between star formation rate
  (SFR) and X-ray luminosity are largely unknown. We have selected five
  blue compact dwarf galaxies (BCD's) with metallicities &lt;0.07 solar
  and distances less than 15 Mpc. X-ray luminosities are derived from
  Chandra data, while SFR data was found in the literature. An established
  correlation exists between the SFR and X-ray luminosity of galaxies
  with similar metallicities to the Milky Way. Our data suggest that,
  for a given X-ray luminosity, the correlation indicates an SFR that
  is 7 to 15 times greater than the SFR found through infrared and Hα
  calibrations for our metal deficient BCD's. We also fit all sources with
  an X-ray luminosity function that fits well above a certain luminosity,
  but below which overestimates the number of sources.

---------------------------------------------------------
Title: Study of optical microvariability in the blazar 1ES1011+496
Authors: Sosa, M. S.; von Essen, C.; Cellone, S. A.; Andruchow, I.;
   Schmitt, J. H. M. M.
2011BAAA...54..333S    Altcode:
  We carried out a study of photometric variability of the blazar
  1ES1011+496 using the 1.20 m Oskar Lühning telescope located at Ham-
  burger Sternwarte Institute, Germany. This object has been detected
  at hight energies ( 200 GeV), so it is of interest to characterize its
  behavior in the optical range. We obtained the light curves in B, V and
  R bands through dif- ferential photometry, with a time resolution of
  15 minutes over 8 nights. We did not detect inter-night variability,
  but we detected a marginally sig- nificant variability in temporal
  scales of a few days.

---------------------------------------------------------
Title: Enceladus Dust Production - New Insights from Cassini
Authors: Kempf, S.; Schmidt, J.; Srama, R.; Postberg, F.; Spahn, F.;
   Horanyi, M.
2010AGUFM.P33A1562K    Altcode:
  In the light of the Cassini mission to Saturn, the moon Enceladus
  turned out to be one of the most intriguing bodies in the solar
  system. Data returned by several instruments on the spacecraft provide
  compelling evidence that this moon is unusually active and is capable of
  maintaining a pronounced ice volcanism. In particular, measurements of
  the spatial distribution of the plume particles recorded by Cassini's
  dust detector CDA provided the first evidence for a local source of
  ice grains in the moon's south polar terrain. However, atmosphere-free
  bodies like Enceladus are also expected to maintain a dust exosphere
  populated by ejecta particles produced by meteoroid impacts onto the
  moon's surface. Surprisingly, close Cassini flybys on the Saturnian
  moons Rhea, Dione, and Enceladus provided no unambiguous evidence
  for a dust exosphere around these moons. This is in contrast to the
  predictions by the standard model for ejecta exospheres, which matches
  the density profiles of the exospheres of the Galilean satellites
  measured by the Galileo dust detector. Knowledge of the contribution of
  ejecta particles to the Enceladus mass production is of great importance
  for estimating the minimum duration of the Enceladus plume activity
  as well as the age of Saturn's E ring. To this aim we reanalyzed data
  obtained during close Cassini flybys at Enceladus and Rhea. We also
  present new measurements of the radial ring profile, which shows no
  density enhancements at the orbital distances of the embedded ring
  moons Tethys, Dione, and Rhea. Our analysis suggests that the vast
  majority of the ring particles originates from the Enceladus dust plume.

---------------------------------------------------------
Title: Asteroseismology of solar-type stars with Kepler I: Data
    analysis
Authors: Karoff, C.; Chaplin, W. J.; Appourchaux, T.; Elsworth, Y.;
   Garcia, R. A.; Houdek, G.; Metcalfe, T. S.; Molenda-Żakowicz, J.;
   Monteiro, M. J. P. F. G.; Thompson, M. J.; Christensen-Dalsgaard, J.;
   Gilliland, R. L.; Kjeldsen, H.; Basu, S.; Bedding, T. R.; Campante,
   T. L.; Eggenberger, P.; Fletcher, S. T.; Gaulme, P.; Handberg, R.;
   Hekker, S.; Martic, M.; Mathur, S.; Mosser, B.; Regulo, C.; Roxburgh,
   I. W.; Salabert, D.; Stello, D.; Verner, G. A.; Belkacem, K.; Biazzo,
   K.; Cunha, M. S.; Gruberbauer, M.; Guzik, J. A.; Kupka, F.; Leroy,
   B.; Ludwig, H. -G.; Mathis, S.; Noels, A.; Noyes, R. W.; Roca Cortes,
   T.; Roth, M.; Sato, K. H.; Schmitt, J.; Suran, M. D.; Trampedach,
   R.; Uytterhoeven, K.; Ventura, R.
2010AN....331..972K    Altcode: 2010arXiv1005.0507K
  We report on the first asteroseismic analysis of solar-type stars
  observed by Kepler. Observations of three G-type stars, made at
  one-minute cadence during the first 33.5 days of science operations,
  reveal high signal-to-noise solar-like oscillation spectra in all three
  stars: About 20 modes of oscillation can clearly be distinguished
  in each star. We discuss the appearance of the oscillation spectra,
  including the presence of a possible signature of faculae, and the
  presence of mixed modes in one of the three stars.

---------------------------------------------------------
Title: Compositional profile of the Enceladian ice plume from in
    situ measurements
Authors: Schmidt, J.; Postberg, F.; Kempf, S.; Hillier, J.; Srama, R.
2010AGUFM.P33A1565S    Altcode:
  Data obtained by the Cassini spacecraft during recent close flybys of
  Enceladus will be presented. Prior compositional measurements of E ring
  grains with Cassini's Cosmic Dust Analyser (CDA) suggested salt-rich
  water as the dominant source of Enceladus' famous plume. Although the
  E ring dust population is dominated by ice particles stemming from
  Enceladus it was unclear if their composition might have been altered
  in comparison to freshly ejected particles. Moreover, it was not clear
  if the populations ejected into the E ring are not prone to selection
  effects (e.g. that certain species preferably escape the moon whereas
  others preferably fall back). During 2008 and 2009 Cassini passed
  deep into the plumes on several occasions, allowing the CDA team to
  analyse the compositions of freshly ejected plume particles for the
  first time. From this information a compositional profile of the plume
  has been inferred. The compositional grain types found within the E
  ring also dominate the plume. However, the profile along Cassini’s
  trajectory shows strong variations, in particular a steep increase of
  salt rich grains close to Enceladus’ surface. The measurement shows
  that salt rich particles indeed dominate the mass production of the
  Enceladian dust plumes. Our refined numerical modelling, including gas
  and dust dynamics and production, successfully reproduces the measured
  compositional profile of the plume. The best fit requires supersonic,
  collimated jets as well as a slow diffuse plume component which is in
  good agreement with recent UVIS observations. Our results can only be
  reproduced with a liquid water plume source.

---------------------------------------------------------
Title: Symposium 2010 report
Authors: Schmidt, J.
2010MNSSA..69..195S    Altcode:
  Detailed report of biennial ASSA Symposium held in 2010

---------------------------------------------------------
Title: Follow-on to Charles Affair - NRF Establishes Astronomy Desk
Authors: Schmidt, J.
2010MNSSA..69..202.    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: An algorithm for correcting CoRoT raw light curves
Authors: Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther,
   E. W.; Pätzold, M.
2010A&A...522A..86M    Altcode: 2010arXiv1008.0300M
  We introduce the CoRoT detrend algorithm (CDA) for detrending CoRoT
  stellar light curves. The algorithm CDA has the capability to remove
  random jumps and systematic trends encountered in typical CoRoT
  data in a fully automatic fashion. Since enormous jumps in flux can
  destroy the information content of a light curve, such an algorithm is
  essential. From a study of 1030 light curves in the CoRoT IRa01 field,
  we developed three simple assumptions upon which CDA is based. We
  describe the algorithm analytically and provide some examples of
  how it works. We demonstrate the functionality of the algorithm in
  the cases of CoRoT0102702789, CoRoT0102874481, CoRoT0102741994, and
  CoRoT0102729260. Using CDA in the specific case of CoRoT0102729260,
  we detect a candidate exoplanet around the host star of spectral type
  G5, which remains undetected in the raw light curve, and estimate the
  planetary parameters to be R<SUB>p</SUB> = 6.27 R<SUB>E</SUB> and P=
  1.6986 days. <P />The code is only available in electronic form at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A
  href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A86">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A86</A>

---------------------------------------------------------
Title: The Compositional Profile of the Enceladus' Ice Plume
Authors: Postberg, Frank; Schmidt, J.; Hillier, J. K.; Kempf, S.;
   Srama, R.
2010DPS....42.1608P    Altcode: 2010BAAS...42..977P
  Data obtained by the Cassini spacecraft during recent close flybys of
  Enceladus will be presented. Prior compositional measurements of E ring
  grains with Cassini's Cosmic Dust Analyser (CDA) suggested salt-rich
  water as the dominant source of Enceladus' plume. Although the E ring
  dust population is dominated by ice particles stemming from Enceladus
  it was unclear how representative the E ring particles were of the
  original plume grain ensemble. During 2008 and 2009 Cassini passed deep
  into the plumes on several occasions, allowing the CDA team to analyse
  the compositions of freshly ejected plume particles for the first
  time. From this information a compositional profile of the plume has
  been inferred, showing that close to Enceladus' surface its composition
  differs significantly from that of the E ring. The observations can
  only be reproduced with a dominant liquid water plume source.

---------------------------------------------------------
Title: Dynamical and Photometric Simulations of Propeller Features
    in Saturn's A Ring
Authors: Halme, Veli-Pekka; Salo, H.; Sremcevic, M.; Albers, N.;
   Schmidt, J.; Seiss, M.; Spahn, F.
2010DPS....42.5002H    Altcode: 2010BAAS...42.1007H
  The size distribution of Saturn's ring particles can be generally
  described by a power-law size distribution from about 1 cm up to a
  few meters. The existence of larger particles, often called moonlets,
  in the rings is proven by the effects they have on the surrounding
  ring material. If the moonlet is not large enough to clear a gap, it
  will induce a propeller shaped structure, which were first discovered
  in the observation by the Cassini spacecraft. We have made dynamical
  and photometric simulations to get contraints on the properties of
  the propeller features seen in the outer A ring. We also consider the
  assumption, that some loose material is released from the particles
  in fast collisions induced by the moonlet. This debris is the reason
  for the enhanced optical thickness in the propeller features. We show
  that the debris model is able to explain the phase angle dependent
  appearance of the observed propellers on both the lit and the unlit
  side of the rings. <P />This work is supported by the Academy of
  Finland/Graduate School for Astronomy and Space Physics

---------------------------------------------------------
Title: VizieR Online Data Catalog: Algorithm for correcting CoRoT
    raw light curves (Mislis+, 2010)
Authors: Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther,
   E. W.; Patzold, M.
2010yCat..35220086M    Altcode: 2010yCat..35229086M
  Requirements : gfortran (or g77, ifort) compiler <P
  />Input Files : The input files sould be raw CoRoT txt files
  (http://idoc-corot.ias.u-psud.fr/index.jsp) with names CoRoT*.txt <P
  />Run the cda by typing <P />C&gt;: ./cda.csh <P />(code and data sould
  be in the same directory) <P />Output files : CDA creates one ascii
  output file with name - CoRoT*.R.cor for R filter <P />(2 data files).

---------------------------------------------------------
Title: Puzzling fluorescent emission from Orion
Authors: Czesla, S.; Schmitt, J. H. M. M.
2010A&A...520A..38C    Altcode:
  Fluorescent X-ray emission offers a rare possibility for studying cool
  material surrounding active, young stars in the X-ray regime. In this
  work, we develop a new method to search for fluorescent emission and
  analyze its temporal behavior, which we apply to a sample of 106 young,
  active stars in Orion. Our analysis yields a sample of 23 X-ray sources
  with fluorescent emission, including 6 objects already reported on
  in an earlier study. The fluorescent sources show a wide variety of
  temporal behavior. While the fluorescent emission is associated with
  soft X-ray flares in some cases, it sometimes appears as a (quasi)
  persistent feature, or is seen during truly quiescent periods. We
  conclude that fluorescent X-ray emission can be observed in a much
  higher fraction of young, active stars than previously believed. Whether
  photoionization alone is the excitation mechanism of fluorescent X-ray
  emission or if electronic collisional excitation also contributes
  remains debatable. The temporal variability is often hard to reconcile
  with the photoionization model, which remains plausible if we allow
  for suitable geometries. Photoionization is preferred to electronic,
  collisional excitation mainly because the energetics of the latter
  challenge our current physical understanding.

---------------------------------------------------------
Title: The Compositional Profile of the Enceladus Dust Plume
    II. Modeling
Authors: Schmidt, J.; Postberg, F.; Srama, R.; Kempf, S.; Hillier, J.
2010epsc.conf..847S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Large-scale structure of Saturn's E ring and its sources
Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Postberg,
   F.; Schmidt, J.; Spahn, F.
2010epsc.conf..572K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The disk-bearing young star IM Lupi. X-ray properties and
    limits on accretion
Authors: Günther, H. M.; Matt, S. P.; Schmitt, J. H. M. M.; Güdel,
   M.; Li, Z. -Y.; Burton, D. M.
2010A&A...519A..97G    Altcode: 2010arXiv1005.4459G
  Context. Classical T Tauri stars (CTTS) differ in their X-ray signatures
  from older pre-main sequence stars, e.g., weak-lined TTS (WTTS). CTTS
  exhibit a soft excess and deviations from the low-density coronal
  limit in the He-like triplets. <BR /> Aims: We test whether these
  features correlate with either accretion or the presence of a disk
  by observing IM Lup, a disk-bearing object apparently in transition
  between CTTS and WTTS without obvious accretion. <BR /> Methods:
  We analyse a Chandra grating spectrum and additional XMM-Newton
  data of IM Lup and accompanying optical spectra, some of which where
  taken simultaneously with the X-ray observations. We fit the X-ray
  emission lines and decompose the Hα emission line into different
  components. <BR /> Results: In X-rays, IM Lup has a bright and hot
  active corona, where elements with low first-ionisation potential
  are depleted. The He-like Ne ix triplet is in the low-density state,
  but because of the small number of counts in the data a high-density
  scenario cannot be excluded at the 90% confidence level. In terms of
  all its X-ray properties, IM Lup resembles a main-sequence star, but
  is also compatible with CTTS signatures at the 90% confidence level,
  thus we cannot decide whether the soft excess and deviations from
  the low-density coronal limit for the He-like triplets in CTTS are
  produced by accretion or only the presence of a disk. The star IM Lup
  is chromospherically active, which accounts for most of its emission
  in Hα. Despite its low equivalent width, the complexity of the Hα
  line profile is reminiscent of CTTS. We estimate the mass accretion
  rate to be 10<SUP>-11</SUP> M<SUB>⊙</SUB> yr<SUP>-1</SUP>. <P />Based
  on observations obtained with XMM-Newton, an ESA science mission, and
  Chandra, a NASA science mission, both with instruments and contributions
  directly funded by ESA Member States and NASA.

---------------------------------------------------------
Title: The vertical structure of the Daphnis wakes at the Keeler
    gap edge
Authors: Seiß, M.; Salo, H.; Schmidt, J.; Spahn, F.
2010epsc.conf..701S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Compositional Profile of the Enceladian Ice Plume
Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Srama, R.;
   Kempf, S.
2010epsc.conf..687P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: An ingress and a complete transit of HD80606 b
Authors: Hidas, M. G.; Tsapras, Y.; Mislis, D.; Ramaprakash, A. N.;
   Barros, S. C. C.; Street, R. A.; Schmitt, J. H. M. M.; Steele, I.;
   Pollacco, D.; Ayiomamitis, A.; Antoniadis, J.; Nitsos, A.; Seiradakis,
   J. H.; Urakawa, S.
2010MNRAS.406.1146H    Altcode: 2010MNRAS.tmp..808H; 2010arXiv1002.1052H
  We have used four telescopes at different longitudes to obtain
  near-continuous light-curve coverage of the star HD80606 as it was
  transited by its ~4-M<SUB>Jup</SUB> planet. The observations were
  performed during the predicted transit windows around 2008 October 25
  and 2009 February 14. Our data set is unique in that it simultaneously
  constrains the duration of the transit and the planet's period. Our
  Markov Chain Monte Carlo analysis of the light curves, combined
  with constraints from radial-velocity data, yields system parameters
  consistent with previously reported values. We find a planet-to-star
  radius ratio marginally smaller than previously reported, corresponding
  to a planet radius of R<SUB>p</SUB> = 0.921 +/- 0.036R<SUB>Jup</SUB>.

---------------------------------------------------------
Title: Setting up ELP-OA: the polychromatic laser guide star
    demonstrator
Authors: Meilard, N.; Foy, R.; Langlois, M.; Tallon, M.; Thiébaut,
   E.; Petit, A.; Blazit, A.; Blanc, P. -E.; Chombart, J.; Fouche, O.;
   Laloge, A.; Le Van Suu, A.; Regal, X.; Schmitt, J.; Bör, M.
2010SPIE.7736E..1WM    Altcode: 2010SPIE.7736E..63M
  ELP-OA ('Etoile Laser Polychromatique pour l'Optique Adaptative) aims
  at demonstrating the tip-tilt is measurable with a Laser Guide Star
  (LGS) without any natural guide star. This allows a full sky coverage
  down to visible wavelengths. ELP-OA is being setup at Observatoire
  de Haute-Provence (OHP). To create a polychromatic LGS, we use two
  pulsed dye lasers (at 569nm and 589nm) to produce a two-photons
  excitation of sodium atoms in the mesosphere. The chromatism of the
  refractive index of the air yields a difference of the LGS direction
  at different wavelengths. The position differences is proportionnal
  to the tip-tilt. Since the LGS isn't sharp enough to give us a small
  enough error in the differential tip-tilt, we use an interferometric
  projector to improve the high spatial information in the laser
  spot. It requires an adaptive optics working down to 330nm. This one
  is done by post-processing algorithms. Two two aperture projectors
  are used. Each one creates a fringe-modulated LGS, and a better RMS
  error in the LGS position is obtained by measuring the information in a
  normal direction with respect to the fringes. By using a two aperture
  projector, we also strongly decrease the negative effect of the laser
  star elongation in the mesosphere, and the Rayleigh contribution near
  the LGS. We propose a new optimal algorithm to retrieve the tip-tilt
  from simultaneous images at different wavelengths. To enhance the RMS
  error of the measurements, we extend this algorithm to exploit the
  temporal correlation of the turbulence.

---------------------------------------------------------
Title: Poisson denoising on the sphere: application to the Fermi
    gamma ray space telescope
Authors: Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.;
   Grenier, I.
2010A&A...517A..26S    Altcode: 2010arXiv1003.5613S
  The Large Area Telescope (LAT), the main instrument of the Fermi
  gamma-ray Space telescope, detects high energy gamma rays with energies
  from 20 MeV to more than 300 GeV. The two main scientific objectives,
  the study of the Milky Way diffuse background and the detection of point
  sources, are complicated by the lack of photons. That is why we need a
  powerful Poisson noise removal method on the sphere which is efficient
  on low count Poisson data. This paper presents a new multiscale
  decomposition on the sphere for data with Poisson noise, called
  multi-scale variance stabilizing transform on the sphere (MS-VSTS). This
  method is based on a variance stabilizing transform (VST), a transform
  which aims to stabilize a Poisson data set such that each stabilized
  sample has a quasi constant variance. In addition, for the VST used in
  the method, the transformed data are asymptotically Gaussian. MS-VSTS
  consists of decomposing the data into a sparse multi-scale dictionary
  like wavelets or curvelets, and then applying a VST on the coefficients
  in order to get almost Gaussian stabilized coefficients. In this work,
  we use the isotropic undecimated wavelet transform (IUWT) and the
  curvelet transform as spherical multi-scale transforms. Then, binary
  hypothesis testing is carried out to detect significant coefficients,
  and the denoised image is reconstructed with an iterative algorithm
  based on hybrid steepest descent (HSD). To detect point sources,
  we have to extract the Galactic diffuse background: an extension of
  the method to background separation is then proposed. In contrary,
  to study the Milky Way diffuse background, we remove point sources
  with a binary mask. The gaps have to be interpolated: an extension to
  inpainting is then proposed. The method, applied on simulated Fermi
  LAT data, proves to be adaptive, fast and easy to implement.

---------------------------------------------------------
Title: The 16 April 2010 major volcanic ash plume over central Europe:
    EARLINET lidar and AERONET photometer observations at Leipzig and
    Munich, Germany
Authors: Ansmann, A.; Tesche, M.; Groß, S.; Freudenthaler, V.;
   Seifert, P.; Hiebsch, A.; Schmidt, J.; Wandinger, U.; Mattis, I.;
   Müller, D.; Wiegner, M.
2010GeoRL..3713810A    Altcode:
  The optically thickest volcanic ash plume ever measured over Germany
  was monitored with multiwavelength Raman lidars and Sun photometer
  at Leipzig and Munich. When this ash layer, originating from the
  Eyjafjoll eruptions in southern Iceland, crossed Leipzig between 2.5
  and 6 km height on 16 April 2010, the total 500 nm aerosol optical
  depth reached 1.0, and the ash-related optical depth was about
  0.7. Volume light-extinction coefficients (40-75-minute mean values)
  measured over Leipzig and Munich at 355 and 532 nm reached values
  of 400-600 Mm<SUP>-1</SUP> and ash mass concentrations were on the
  order of 1000 ± 350 μg/m<SUP>3</SUP> in the center of the main ash
  layer. Extinction-to-backscatter ratios ranged from 55 ± 5 sr (Munich)
  to 60 ± 5 sr (Leipzig) in the main ash layer, and the particle linear
  depolarization ratio was close to 0.35 at both wavelengths. Rather low
  photometer-derived Ångström exponents (500-1640 nm wavelength range)
  indicated the presence of a significant amount of large ash particles
  with diameters &gt;20 μm.

---------------------------------------------------------
Title: The absence of sub-minute periodicity in classical T Tauri
    stars
Authors: Günther, H. M.; Lewandowska, N.; Hundertmark, M. P. G.;
   Steinle, H.; Schmitt, J. H. M. M.; Buckley, D.; Crawford, S.;
   O'Donoghue, D.; Vaisanen, P.
2010A&A...518A..54G    Altcode: 2010arXiv1005.1885G
  Context. Classical T Tauri stars (CTTS) are young, late-type objects,
  that still accrete matter from a circumstellar disk. Analytical
  treatments and numerical simulations predict instabilities of the
  accretion shock on the stellar surface. <BR /> Aims: We search for
  variability on timescales below a few minutes in the CTTS TW Hya and AA
  Tau. <BR /> Methods: TW Hya was observed with SALTICAM on the Southern
  African Large Telescope (SALT) in narrow-band filters around the Balmer
  jump. The observations were performed in slit mode, which provides a
  time resolution of about 0.1 s. For AA Tau we obtained observations
  with OPTIMA, a single photon-counting device with even better time
  resolution. <BR /> Results: Small-scale variability typically lasts
  a few seconds, however, no significant periodicity is detected. We
  place a 99% confidence upper limit on the pulsed fraction of the
  lightcurves. The relative amplitude is below 0.001 for TW Hya in the
  frequency range 0.02-3 Hz in the 340 nm filter and 0.1-3 Hz in the 380
  nm filter. The corresponding value for AA Tau is an amplitude of 0.005
  for 0.02-50 Hz. <BR /> Conclusions: The relevant timescales indicate
  that shock instabilites should not be seen directly in our optical and
  UV observations, but the predicted oscialltions would induce observable
  variations in the reddening. We discuss how the magnetic field could
  stabilise the accretion shock. <P />Based on observations obtained at
  the Southern African Large Telescope (SALT) and Skinakas observatory,
  Greece. <P />unknown author type, collab unknown author type, collab
  unknown author type, collab unknown author type, collab unknown author
  type, collab unknown author type, collab

---------------------------------------------------------
Title: X-raying the AU Microscopii debris disk
Authors: Schneider, P. C.; Schmitt, J. H. M. M.
2010A&A...516A...8S    Altcode: 2010arXiv1003.5562S
  AU Mic is a young, nearby X-ray active M-dwarf with an edge-on debris
  disk. Debris disk are the successors to the gaseous disks usually
  surrounding pre-main sequence stars which form after the first few
  Myrs of their host stars' lifetime, when - presumably - also the
  planet formation takes place. Since X-ray transmission spectroscopy is
  sensitive to the chemical composition of the absorber, features in the
  stellar spectrum of AU Mic caused by its debris disk can in principle
  be detected. The upper limits we derive from our high resolution
  Chandra LETGS X-ray spectroscopy are on the same order as those from
  UV absorption measurements, consistent with the idea that AU Mic's
  debris disk possesses an inner hole with only a very low density of
  sub-micron sized grains or gas.

---------------------------------------------------------
Title: X-ray emission from the remarkable A-type star HR 8799
Authors: Robrade, J.; Schmitt, J. H. M. M.
2010A&A...516A..38R    Altcode: 2010arXiv1004.1318R
  We investigate a Chandra observation of the remarkable planet-bearing
  A5 V star HR 8799, more precisely classified as a kA5 hF0 mA5 star. We
  search for intrinsic X-ray emission, a diagnostic for studying the
  possible activity of intermediate-mass stars. In the regime of mid/late
  A-type stars a strong decline in magnetic activity occurs towards hotter
  stars because of the vanishing of the outer convection zone. We clearly
  detect HR 8799 at soft X-ray energies with the ACIS-S detector in a
  10 ks exposure; minor X-ray brightness variability is present during
  the observation. The coronal plasma is described well by a model
  with a temperature of around 3 MK and an X-ray luminosity of about
  L<SUB>X</SUB> = 1.3 × 10<SUP>28</SUP> erg/s in the 0.2-2.0 keV band,
  corresponding to an activity level of log L<SUB>X</SUB>/L<SUB>bol</SUB>
  ≈ -6.2. Altogether, these findings point to a rather weakly active
  and given a RASS detection, long-term stable X-ray emitting star. The
  X-ray emission from HR 8799 resembles those of late A/early F-type
  stars, in agreement with its classification on the basis of hydrogen
  lines and its effective temperature determination and thus resolving
  the apparent discrepancy with the standard picture of magnetic activity
  that predicts mid A-type stars to be virtually X-ray dark.

---------------------------------------------------------
Title: Coronal properties of planet-bearing stars
Authors: Poppenhaeger, K.; Robrade, J.; Schmitt, J. H. M. M.
2010A&A...515A..98P    Altcode: 2010arXiv1003.5802P
  Context. Do extrasolar planets affect the activity of their host
  stars? Indications for chromospheric activity enhancement have
  been found for a handful of targets, but in the X-ray regime,
  conclusive observational evidence is still missing. <BR /> Aims:
  We want to establish a sound observational basis to confirm or
  reject major effects of Star-Planet Interactions (SPI) in stellar
  X-ray emissions. <BR /> Methods: We therefore conduct a statistical
  analysis of stellar X-ray activity of all known planet-bearing stars
  within 30 pc distance for dependencies on planetary parameters such
  as mass and semimajor axis. <BR /> Results: In our sample, there
  are no significant correlations of X-ray luminosity or the activity
  indicator L_X/L_bol with planetary parameters which cannot be explained
  by selection effects. <BR /> Conclusions: Coronal SPI seems to be a
  phenomenon which might only manifest itself as a strong effect for a
  few individual targets, but not to have a major effect on planet-bearing
  stars in general.

---------------------------------------------------------
Title: Surface, Subsurface and Atmosphere Exchanges on the Satellites
    of the Outer Solar System
Authors: Tobie, G.; Giese, B.; Hurford, T. A.; Lopes, R. M.; Nimmo,
   F.; Postberg, F.; Retherford, K. D.; Schmidt, J.; Spencer, J. R.;
   Tokano, T.; Turtle, E. P.
2010SSRv..153..375T    Altcode: 2010SSRv..tmp...49T
  The surface morphology of icy moons is affected by several processes
  implicating exchanges between their subsurfaces and atmospheres
  (if any). The possible exchange of material between the subsurface
  and the surface is mainly determined by the mechanical properties
  of the lithosphere, which isolates the deep, warm and ductile ice
  material from the cold surface conditions. Exchanges through this
  layer occur only if it is sufficiently thin and/or if it is fractured
  owing to tectonic stresses, melt intrusion or impact cratering. If
  such conditions are met, cryomagma can be released, erupting fresh
  volatile-rich materials onto the surface. For a very few icy moons
  (Titan, Triton, Enceladus), the emission of gas associated with
  cryovolcanic activity is sufficiently large to generate an atmosphere,
  either long-lived or transient. For those moons, atmosphere-driven
  processes such as cryovolcanic plume deposition, phase transitions
  of condensable materials and wind interactions continuously re-shape
  their surfaces, and are able to transport cryovolcanically generated
  materials on a global scale. In this chapter, we discuss the physics
  of these different exchange processes and how they affect the evolution
  of the satellites’ surfaces.

---------------------------------------------------------
Title: Multiwavelength observations of a giant flare on CN
    Leonis. III. Temporal evolution of coronal properties
Authors: Liefke, C.; Fuhrmeister, B.; Schmitt, J. H. M. M.
2010A&A...514A..94L    Altcode: 2010arXiv1003.4128L
  Context. Stellar flares affect all atmospheric layers from the
  photosphere over chromosphere and transition region up into the
  corona. Simultaneous observations in different spectral bands allow to
  obtain a comprehensive picture of the environmental conditions and the
  physical processes going on during different phases of the flare. <BR
  /> Aims: We investigate the properties of the coronal plasma during
  a giant flare on the active M dwarf CN Leo observed simultaneously
  with the UVES spectrograph at the VLT and XMM-Newton. <BR /> Methods:
  From the X-ray data, we analyze the temporal evolution of the coronal
  temperature and emission measure, and investigate variations in electron
  density and coronal abundances during the flare. Optical Fe XIII line
  emission traces the cooler quiescent corona. <BR /> Results: Although
  of rather short duration (exponential decay time τ_LC &lt; 5 min),
  the X-ray flux at flare peak exceeds the quiescent level by a factor of
  ≈100. The electron density averaged over the whole flare is greater
  than 5 × 10<SUP>11</SUP> cm<SUP>-3</SUP>. The flare plasma shows an
  enhancement of iron by a factor of ≈2 during the rise and peak phase
  of the flare. We derive a size of &lt;9000 km for the flaring structure
  from the evolution of the the emitting plasma during flare rise, peak,
  and decay. <BR /> Conclusions: The characteristics of the flare plasma
  suggest that the flare originates from a compact arcade instead of a
  single loop. The combined results from X-ray and optical data further
  confine the plasma properties and the geometry of the flaring structure
  in different atmospheric layers. <P />Based on observations collected
  at the European Southern Observatory, Paranal, Chile, 077.D-0011(A)
  and on observations obtained with XMM-Newton, an ESA science mission
  with instruments and contributions directly funded by ESA Member States
  and NASA.

---------------------------------------------------------
Title: Planetary eclipse mapping of CoRoT-2a. Evolution, differential
    rotation, and spot migration
Authors: Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M.
2010A&A...514A..39H    Altcode: 2010arXiv1002.4113H
  The lightcurve of CoRoT-2 shows substantial rotational modulation and
  deformations of the planet's transit profiles caused by starspots. We
  consistently model the entire lightcurve, including both rotational
  modulation and transits, stretching over approximately 30 stellar
  rotations and 79 transits. The spot distribution and its evolution
  on the noneclipsed and eclipsed surface sections are presented and
  analyzed, making use of the high resolution achievable under the transit
  path. We measure the average surface brightness on the eclipsed section
  to be (5±1)% lower than on the noneclipsed section. Adopting a solar
  spot contrast, the spot coverage on the entire surface reaches up
  to 19% and a maximum of almost 40% on the eclipsed section. Features
  under the transit path, i.e. close to the equator, rotate with a period
  close to 4.55 days. Significantly higher rotation periods are found for
  features on the noneclipsed section indicating a differential rotation
  of ΔΩ &gt; 0.1. Spotted and unspotted regions in both surface sections
  concentrate on preferred longitudes separated by roughly 180°.

---------------------------------------------------------
Title: Three-dimensional MHD Model Of Active Region Loop Oscillations
    With Background Flow
Authors: Ofman, Leon; Schmidt, J.; Wang, T.
2010AAS...21630204O    Altcode:
  Recent observations by Hinode satellite show that oscillating coronal
  loops with periods of several minutes contain cool flowing material
  at 100 km/s. The flow may affects significantly the oscillations and
  the damping of the wave energy. We model the oscillating loops with
  background flow in 3D MHD model of a bi-polar active region, that
  includes the effects of loop curvature and chromospheric boundary
  conditions. The oscillations are excited impulsively by a velocity
  pulse. We study the effects of flow magnitude, and loop parameters
  on the excitation and damping of the oscillations. The results of the
  parametric study have implication for coronal seismology, and for wave
  heating of active region coronal loops.

---------------------------------------------------------
Title: The Asteroseismic Potential of Kepler: First Results for
    Solar-Type Stars
Authors: Chaplin, W. J.; Appourchaux, T.; Elsworth, Y.; García,
   R. A.; Houdek, G.; Karoff, C.; Metcalfe, T. S.; Molenda-Żakowicz,
   J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Brown, T. M.;
   Christensen-Dalsgaard, J.; Gilliland, R. L.; Kjeldsen, H.; Borucki,
   W. J.; Koch, D.; Jenkins, J. M.; Ballot, J.; Basu, S.; Bazot, M.;
   Bedding, T. R.; Benomar, O.; Bonanno, A.; Brandão, I. M.; Bruntt,
   H.; Campante, T. L.; Creevey, O. L.; Di Mauro, M. P.; Doǧan,
   G.; Dreizler, S.; Eggenberger, P.; Esch, L.; Fletcher, S. T.;
   Frandsen, S.; Gai, N.; Gaulme, P.; Handberg, R.; Hekker, S.; Howe,
   R.; Huber, D.; Korzennik, S. G.; Lebrun, J. C.; Leccia, S.; Martic,
   M.; Mathur, S.; Mosser, B.; New, R.; Quirion, P. -O.; Régulo, C.;
   Roxburgh, I. W.; Salabert, D.; Schou, J.; Sousa, S. G.; Stello, D.;
   Verner, G. A.; Arentoft, T.; Barban, C.; Belkacem, K.; Benatti, S.;
   Biazzo, K.; Boumier, P.; Bradley, P. A.; Broomhall, A. -M.; Buzasi,
   D. L.; Claudi, R. U.; Cunha, M. S.; D'Antona, F.; Deheuvels, S.;
   Derekas, A.; García Hernández, A.; Giampapa, M. S.; Goupil, M. J.;
   Gruberbauer, M.; Guzik, J. A.; Hale, S. J.; Ireland, M. J.; Kiss,
   L. L.; Kitiashvili, I. N.; Kolenberg, K.; Korhonen, H.; Kosovichev,
   A. G.; Kupka, F.; Lebreton, Y.; Leroy, B.; Ludwig, H. -G.; Mathis, S.;
   Michel, E.; Miglio, A.; Montalbán, J.; Moya, A.; Noels, A.; Noyes,
   R. W.; Pallé, P. L.; Piau, L.; Preston, H. L.; Roca Cortés, T.;
   Roth, M.; Sato, K. H.; Schmitt, J.; Serenelli, A. M.; Silva Aguirre,
   V.; Stevens, I. R.; Suárez, J. C.; Suran, M. D.; Trampedach, R.;
   Turck-Chièze, S.; Uytterhoeven, K.; Ventura, R.; Wilson, P. A.
2010ApJ...713L.169C    Altcode: 2010arXiv1001.0506C
  We present preliminary asteroseismic results from Kepler on three G-type
  stars. The observations, made at one-minute cadence during the first
  33.5 days of science operations, reveal high signal-to-noise solar-like
  oscillation spectra in all three stars: about 20 modes of oscillation
  may be clearly distinguished in each star. We discuss the appearance of
  the oscillation spectra, use the frequencies and frequency separations
  to provide first results on the radii, masses, and ages of the stars,
  and comment in the light of these results on prospects for inference
  on other solar-type stars that Kepler will observe.

---------------------------------------------------------
Title: Quiescent and flaring X-ray emission from the nearby M/T
    dwarf binary SCR 1845-6357
Authors: Robrade, J.; Poppenhaeger, K.; Schmitt, J. H. M. M.
2010A&A...513A..12R    Altcode: 2010arXiv1002.2389R
  <BR /> Aims: X-ray emission is an important diagnostics to study
  magnetic activity in very low mass stars that are presumably fully
  convective and have an effectively neutral photosphere. <BR /> Methods:
  We investigate an XMM-Newton observation of SCR 1845-6357, a nearby,
  ultracool M 8.5 / T 5.5 dwarf binary. The binary is unresolved in
  the XMM detectors, but the X-ray emission is very likely from the M
  8.5 dwarf. We compare its flaring emission to those of similar very
  low mass stars and additionally present an XMM observation of the M 8
  dwarf VB 10. <BR /> Results: We detect quasi-quiescent X-ray emission
  from SCR 1845-6357 at soft X-ray energies in the 0.2-2.0 keV band, as
  well as a strong flare with a count rate increase of a factor of 30
  and a duration of only 10 min. The quasi-quiescent X-ray luminosity
  of log L<SUB>X</SUB> = 26.2 erg/s and the corresponding activity
  level of log L<SUB>X</SUB>/L<SUB>bol</SUB> = -3.8 point to a fairly
  active star. Coronal temperatures of up to 5 MK and frequent minor
  variability support this picture. During the flare, which is accompanied
  by a significant brightening in the near-UV, plasma temperatures of
  25-30 MK are observed and an X-ray luminosity of L<SUB>X</SUB> = 8
  × 10<SUP>27</SUP> erg/s is reached. <BR /> Conclusions: The source
  SCR 1845-6357 is a nearby, very low mass star that emits X-rays at
  detectable levels in quasi-quiescence, implying the existence of a
  corona. The high activity level, coronal temperatures and the observed
  large flare point to a rather active star, despite its estimated age
  of a few Gyr.

---------------------------------------------------------
Title: An Evolving View of Saturn’s Dynamic Rings
Authors: Cuzzi, J. N.; Burns, J. A.; Charnoz, S.; Clark, R. N.;
   Colwell, J. E.; Dones, L.; Esposito, L. W.; Filacchione, G.; French,
   R. G.; Hedman, M. M.; Kempf, S.; Marouf, E. A.; Murray, C. D.;
   Nicholson, P. D.; Porco, C. C.; Schmidt, J.; Showalter, M. R.; Spilker,
   L. J.; Spitale, J. N.; Srama, R.; Sremčević, M.; Tiscareno, M. S.;
   Weiss, J.
2010Sci...327.1470C    Altcode:
  We review our understanding of Saturn’s rings after nearly 6 years
  of observations by the Cassini spacecraft. Saturn’s rings are
  composed mostly of water ice but also contain an undetermined reddish
  contaminant. The rings exhibit a range of structure across many spatial
  scales; some of this involves the interplay of the fluid nature and
  the self-gravity of innumerable orbiting centimeter- to meter-sized
  particles, and the effects of several peripheral and embedded moonlets,
  but much remains unexplained. A few aspects of ring structure change on
  time scales as short as days. It remains unclear whether the vigorous
  evolutionary processes to which the rings are subject imply a much
  younger age than that of the solar system. Processes on view at Saturn
  have parallels in circumstellar disks.

---------------------------------------------------------
Title: Multi-band transit observations of the TrES-2b exoplanet
Authors: Mislis, D.; Schröter, S.; Schmitt, J. H. M. M.; Cordes,
   O.; Reif, K.
2010A&A...510A.107M    Altcode: 2009arXiv0912.4428M
  We present a new data set of transit observations of the TrES-2b
  exoplanet taken in spring 2009, using the 1.2 m Oskar-Lühning telescope
  (OLT) of Hamburg Observatory and the 2.2 m telescope at Calar Alto
  Observatory using BUSCA (Bonn University Simultaneous CAmera). Both
  the new OLT data, taken with the same instrumental setup as our data
  taken in 2008, as well as the simultaneously recorded multicolor
  BUSCA data confirm the low inclination values reported previously,
  and in fact suggest that the TrES-2b exoplanet has already passed
  the first inclination threshold (i<SUB>min,1</SUB> = 83.417°)
  and is not eclipsing the full stellar surface any longer. Using
  the multi-band BUSCA data we demonstrate that the multicolor light
  curves can be consistently fitted with a given set of limb darkening
  coefficients without the need to adjust these coefficients, and
  further, we can demonstrate that wavelength dependent stellar radius
  changes must be small as expected from theory. Our new observations
  provide further evidence for a change of the orbit inclination of the
  transiting extrasolar planet TrES-2b reported previously. We examine
  in detail possible causes for this inclination change and argue that
  the observed change should be interpreted as nodal regression. While
  the assumption of an oblate host star requires an unreasonably large
  second harmonic coefficient, the existence of a third body in the form
  of an additional planet would provide a very natural explanation for
  the observed secular orbit change. Given the lack of clearly observed
  short-term variations of transit timing and our observed secular nodal
  regression rate, we predict a period between approximately 50 and 100
  days for a putative perturbing planet of Jovian mass. Such an object
  should be detectable with present-day radial velocity (RV) techniques,
  but would escape detection through transit timing variations. <P
  />Photometric transit data are only available in electronic form at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A
  href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A107">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A107</A>

---------------------------------------------------------
Title: VizieR Online Data Catalog: TrES-2b multi-band transit
    observations (Mislis+, 2010)
Authors: Mislis, D.; Schroeter, S.; Schmitt, J. H. M. M.; Cordes,
   O.; Reif, K.
2010yCat..35100107M    Altcode: 2010yCat..35109107M
  The OLT data were taken on 11 April 2009 using a 3Kx3K CCD with a 1x1
  FOV and an I-band filter as in our previous observing run (Paper I,
  Mislis &amp; Schmitt, 2009, Cat. &lt;J/A+A/500/L45&gt;). The Calar Alto
  data were taken on 28 May 2009 using BUSCA and the 2.2m telescope. <P
  />(1 data file).

---------------------------------------------------------
Title: Multi-wavelength observations of a giant flare on CN
    Leonis. II. Chromospheric modelling with PHOENIX
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H.
2010A&A...511A..83F    Altcode:
  <BR /> Aims: In M dwarfs, optical emission lines and continua are
  sensitive to changing chromospheric conditions, e.g., during flares. To
  study flare conditions for an observed spectrum, a comparison to
  synthesised spectra from model atmospheres is needed. <BR /> Methods:
  Using the stellar atmosphere code PHOENIX, we computed a set of 41 1D
  NLTE parameterised chromospheric models including the photosphere and
  parts of the transition region. By comparison of a linear combination
  of the synthesised spectra and a quiescent (observed) chromosphere to
  observed UVES/VLT spectra of a giant flare of the M 5.5 dwarf CN Leo
  (Gl406), we find the best-fitting flare model chromosphere. <BR />
  Results: Our model spectra give a fairly good overall description of
  the observed continua and emission lines. In the best-fitting model,
  the temperature minimum is deep in the atmosphere resulting in high
  electron pressure for the chromospheric flaring area. The inferred
  chromospheric filling factor of the flare is about 3 percent, which
  declines during the flare. The photospheric flare filling factor is
  about 0.3 percent. <P />Based on observations collected at the European
  Southern Observatory, Paranal, Chile, 077.D-0011(A) and on observations
  obtained with XMM-Newton, an ESA science mission with instruments and
  contributions directly funded by ESA Member States and NASA.

---------------------------------------------------------
Title: Surface, Subsurface and Atmosphere Exchanges on the Satellites
    of the Outer Solar System
Authors: Tobie, G.; Giese, B.; Hurford, T. A.; Lopes, R. M.; Nimmo,
   F.; Postberg, F.; Retherford, K. D.; Schmidt, J.; Spencer, J. R.;
   Tokano, T.; Turtle, E. P.
2010soss.book..373T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Solar-Stellar Connection
Authors: Schmitt, J. H. M. M.
2010ASSP...19..332S    Altcode: 2010mcia.conf..332S
  The presence of strong magnetic fields on the solar surface has been
  known for more than 100 years, ever since Hale (1908) was the first to
  measure solar magnetic fields through the Zeeman effect. The coronal
  heating problem was established in the 30s and early 40s of the last
  century, when Grotrian and Edlén (see the discussion in Edlén (1945)
  on this issue) realized from the identification of so-called forbidden
  lines that the very outer layers of the Sun were much hotter than
  its photosphere. However, the connection between magnetic fields and
  coronal heating was not firmly made until the 70s, when the hundreds of
  high-resolution Skylab X-ray images of the Sun (Zombeck et al. 1978)
  demonstrated the extreme spatial inhomogeneity of its X-ray emission
  and the close association of X-ray activity with bipolar regions on
  its surface.

---------------------------------------------------------
Title: Faint dusty rings and streams: In-situ observations with
    Cassini at Saturn
Authors: Srama, Ralf; Ahrens, T.; Altobelli, N.; Burton, M.; Economou,
   T.; Graps, A.; Grün, E.; Helfert, S.; Horanyi, M.; Hsu, S.; Johnson,
   T.; Kempf, S.; Krüger, H.; Mocker, A.; Moragas-Klostermeyer, G.;
   Postberg, F.; Roy, M.; Schmidt, J.; Spahn, F.; Sterken, V.; Strub, P.
2010cosp...38..580S    Altcode: 2010cosp.meet..580S
  Cassini's dust detector CDA investigates Saturn's environment since
  2004. The icy moons, primarily Enceladus, release submicron sized
  dust feeding the outer ring system of Saturn. The dust particles
  released distribute widely in the saturnian system according to
  gravitational, poynting-robertson, radiation pressure or plasma drag
  forces. The grains are electrically charged and sputtering changes the
  mass distribution with time. The CDA instrument measures the speed,
  mass, charge, composition and trajectory of individual dust grains in
  Saturn's ring system. This talk presents a global picture of the dust
  measurements onboard Cassini.

---------------------------------------------------------
Title: The Data Reduction Pipeline of the Hamburg Robotic Telescope
Authors: Mittag, Marco; Hempelmann, Alexander; González-Pérez,
   José Nicolás; Schmitt, Jürgen H. M. M.
2010AdAst2010E...6M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Fast and transient phenomena in stellar magnetospheres /
    flare stars
Authors: Schmitt, J.
2010htra.confE..22S    Altcode: 2010PoS...108E..22S
  No abstract at ADS

---------------------------------------------------------
Title: Flare star observations with OPTIMA
Authors: Schmitt, J.
2010htra.confE..21S    Altcode: 2010PoS...108E..21S
  No abstract at ADS

---------------------------------------------------------
Title: Long-term evolution of Saturn's E ring particles (Invited)
Authors: Kempf, S.; Beckmann, U.; Strub, P.; Srama, R.;
   Moragas-Klostermeyer, G.; Schmidt, J.; Spahn, F.; Roy, M.; Burton,
   M. E.
2009AGUFM.P54A..01K    Altcode:
  Obviously, there is an intimate connection between the dynamics of the
  particles and the spatial structure of a diffuse ring. The particle
  dynamics determines the distribution of their orbital elements, which
  in turn governs the spatial density of the ring particles. However,
  the relation between the dynamics of individual particles and the ring
  properties is neither necessarily simple nor can this relation be
  derived without prior knowledge directly from in-situ or telescopic
  observations. Data obtained by "local" in-situ measurements as well
  as by "global" camera observations only reflect the conditions
  within the observed volume element, which are the result of a
  complex superposition of particles of different origin, age, size,
  and dynamical properties. As a consequence, the interpretation of
  ring data always requires knowledge of the ring's orbital element
  distribution, which has to be obtained by other means. Numerical
  simulations of the ring particle ensemble may provide the missing
  link between empirical observation and the concealed nature of the
  ring. The present work attempts to derive the distribution of the
  orbital elements of Saturn's diffuse E ring from numerical simulations
  of individual ring particles. The results will then be applied to data
  recently obtained by the Cassini dust detector.

---------------------------------------------------------
Title: The Chandra X-ray view of the power sources in Cepheus A
Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M.
2009A&A...508..321S    Altcode: 2009arXiv0909.5592S
  The central part of the massive star-forming region Cepheus A contains
  several radio sources which indicates multiple outflow phenomena,
  yet the driving sources of the individual outflows have not been
  identified. We present a high-resolution Chandra observation of this
  region that shows the presence of bright X-ray sources with luminosities
  of L<SUB>X</SUB> ≳ 10<SUP>30</SUP> erg s<SUP>-1</SUP>, consistent
  with active pre-main sequence stars, while the strong absorption
  hampers the detection of less luminous objects. A new source has
  been discovered located on the line connecting H2 emission regions at
  the eastern and western parts of Cepheus A. This source could be the
  driving source of HH 168. We present a scenario relating the observed
  X-ray and radio emission.

---------------------------------------------------------
Title: 51 Pegasi - a planet-bearing Maunder minimum candidate
Authors: Poppenhäger, K.; Robrade, J.; Schmitt, J. H. M. M.; Hall,
   J. C.
2009A&A...508.1417P    Altcode: 2009arXiv0911.4862P
  We observed 51 Peg, the first detected planet-bearing star, in a 55 ks
  XMM-Newton pointing and in 5 ks pointings each with Chandra HRC-I and
  ACIS-S. The star has a very low count rate in the XMM observation,
  but is clearly visible in the Chandra images due to the detectors'
  different sensitivity at low X-ray energies. This allows a temperature
  estimate for 51 Peg's corona of T⪉ 1 MK; the detected ACIS-S photons
  can be plausibly explained by emission lines of a very cool plasma near
  200 eV. The constantly low X-ray surface flux and the flat-activity
  profile seen in optical Ca II data suggest that 51 Peg is a Maunder
  minimum star; an activity enhancement due to a Hot Jupiter, as proposed
  by recent studies, seems to be absent. The star's X-ray fluxes in
  different instruments are consistent with the exception of the HRC
  Imager, which might have a larger effective area below 200 eV than
  given in the calibration.

---------------------------------------------------------
Title: Chandra observation of Cepheus A: the diffuse emission of HH
    168 resolved
Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M.
2009A&A...508..717S    Altcode: 2009arXiv0909.5326S
  X-ray emission from massive stellar outflows has been detected in
  several cases. We present a Chandra observation of HH 168 and show
  that the soft X-ray emission from a plasma of 0.55 keV within HH 168
  is diffuse. The X-ray emission is observed on two different scales:
  Three individual, yet extended, regions are embedded within a complex
  of low X-ray surface brightness. Compared to the bow shock the emission
  is displaced against the outflow direction. We show that there is no
  significant contribution from young stellar objects (YSOs) and discuss
  several shock scenarios that can produce the observed signatures. We
  establish that the X-ray emission of HH 168 is excited by internal
  shocks in contrast to simple models, which expect the bow shock to be
  the most X-ray luminous.

---------------------------------------------------------
Title: A planetary eclipse map of CoRoT-2a. Comprehensive lightcurve
    modeling combining rotational-modulation and transits
Authors: Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M.
2009A&A...508..901H    Altcode: 2009arXiv0909.3256H
  We analyze the surface structure of the planet host star CoRoT-2a
  using a consistent model for both the “global” (i.e., rotationally
  modulated) lightcurve and the transit lightcurves, using data provided
  by the CoRoT mission. After selecting a time interval covering
  two stellar rotations and six transits of the planetary companion
  CoRoT-2b, we have adopted a “strip” model of the surface to
  reproduce the photometric modulation inside and outside the transits
  simultaneously. Our reconstructions show that it is possible to achieve
  appropriate fits for the entire subinterval using a low-resolution
  surface model with 36 strips. The surface reconstructions indicate
  that the brightness on the eclipsed section of the stellar surface is
  (6±1)% lower than the average brightness of the remaining surface. This
  result suggests a concentration of stellar activity in a band around
  the stellar equator similar to the behavior observed on the Sun.

---------------------------------------------------------
Title: Rings Research in the Next Decade
Authors: Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.;
   Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.;
   Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.;
   Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi,
   M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray,
   C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.;
   Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.;
   Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.
2009DPS....41.1632T    Altcode:
  The study of planetary ring systems is a key component of planetary
  science for several reasons: 1) The evolution and current states
  of planets and their satellites are affected in many ways by rings,
  while 2) conversely, properties of planets and moons and other solar
  system populations are revealed by their effects on rings; 3) highly
  structured and apparently delicate ring systems may be bellwethers,
  constraining various theories of the origin and evolution of their
  entire planetary system; and finally, 4) planetary rings provide
  an easily observable analogue to other astrophysical disk systems,
  enabling real "ground truth” results applicable to disks much
  more remote in space and/or time, including proto-planetary disks,
  circum-stellar disks, and even galaxies. <P />Significant advances have
  been made in rings science in the past decade. The highest-priority
  rings research recommendations of the last Planetary Science Decadal
  Survey were to operate and extend the Cassini orbiter mission at Saturn;
  this has been done with tremendous success, accounting for much of the
  progress made on key science questions, as we will describe. Important
  progress in understanding the rings of Saturn and other planets has
  also come from Earth-based observational and theoretical work, again as
  prioritized by the last Decadal Survey. <P />However, much important
  work remains to be done. At Saturn, the Cassini Solstice Mission must
  be brought to a successful completion. Priority should also be placed
  on sending spacecraft to Neptune and/or Uranus, now unvisited for
  more than 20 years. At Jupiter and Pluto, opportunities afforded by
  visiting spacecraft capable of studying rings should be exploited. On
  Earth, the need for continued research and analysis remains strong,
  including in-depth analysis of rings data already obtained, numerical
  and theoretical modeling work, laboratory analysis of materials and
  processes analogous to those found in the outer solar system, and
  continued Earth-based observations.

---------------------------------------------------------
Title: How stellar activity affects the size estimates of extrasolar
    planets
Authors: Czesla, S.; Huber, K. F.; Wolter, U.; Schröter, S.; Schmitt,
   J. H. M. M.
2009A&A...505.1277C    Altcode: 2009arXiv0906.3604C
  Light curves have long been used to study stellar activity and have
  more recently become a major tool in the field of exoplanet research. We
  discuss the various ways in which stellar activity can influence transit
  light curves, and study the effects using the outstanding photometric
  data of the CoRoT-2 exoplanet system. We report a relation between the
  “global” light curve and the transit profiles, which turn out to be
  shallower during high spot coverage on the stellar surface. Furthermore,
  our analysis reveals a color dependence of the transit light curve
  compatible with a wavelength-dependent limb darkening law as observed on
  the Sun. Taking into account activity-related effects, we redetermine
  the orbit inclination and planetary radius and find the planet to be
  ≈3% larger than reported previously. Our findings also show that
  exoplanet research cannot generally ignore the effects of stellar
  activity.

---------------------------------------------------------
Title: Long--term evolution of Saturn's E ring particles
Authors: Kempf, S.; Beckmann, U.; Strubb, P.; Schmidt, J.; Spahn, F.
2009epsc.conf..424K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Salt-Ice Grains from Enceladus' Plumes: Frozen Samples of a
    Subsurface Ocean
Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.;
   Beinsen, A.; Abel, B.; Buck, U.; Srama, R.
2009epsc.conf..411P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Ice volcanism on Enceladus: From simulations to observations
Authors: Strub, P.; Kempf, S.; Beckmann, U.; Schmidt, J.
2009epsc.conf..493S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Transit mapping of a starspot on CoRoT-2. Probing a stellar
    surface with planetary transits
Authors: Wolter, U.; Schmitt, J. H. M. M.; Huber, K. F.; Czesla, S.;
   Müller, H. M.; Guenther, E. W.; Hatzes, A. P.
2009A&A...504..561W    Altcode: 2009arXiv0906.4140W
  We analyze variations in the transit lightcurves of CoRoT-2b,
  a massive hot Jupiter orbiting a highly active G star. We use one
  transit lightcurve to eclipse-map a photospheric spot occulted by
  the planet. In this case study we determine the size and longitude
  of the eclipsed portion of the starspot and systematically study
  the corresponding uncertainties. We determine a spot radius between
  4.5° and 10.5° on the stellar surface and the spot longitude with a
  precision of about ± 1 degree. Given the well-known transit geometry
  of the CoRoT-2 system, this implies a reliable detection of spots on
  latitudes typically covered by sunspots; the size of the modelled
  spot is comparable to large spot groups on the Sun. We discuss the
  future potential of eclipse mapping by planetary transits for the
  high-resolution analysis of stellar surface features.

---------------------------------------------------------
Title: Salt-Ice Grains from Enceladus' Plumes: Frozen Samples of
    Subsurface Water
Authors: Postberg, Frank; Kempf, S.; Schmidt, J.; Brilliantov, N.;
   Beinsen, A.; Abel, B.; Buck, U.; Srama, R.
2009DPS....41.6402P    Altcode:
  Compositional measurements by Cassini's dust detector (CDA) of ice
  particles emitted from Saturn's active moon Enceladus into the E ring
  are presented. Our detection of sodium salts within the grains provides
  evidence for mineral enriched liquid water deep below the moon's icy
  surface (Postberg et al., Nature 2009). <P />In nearly all particles
  we found sodium (Na) in varying concentrations. Most spectra also show
  potassium (K) in lower abundance. In particles that are particularly
  sodium rich, sodium salts (like NaCl and NaHCO3) are identified as
  Na bearing components. This is only plausible if the plume source is
  liquid water that is or has been linked to an ocean in contact with the
  rocky material of Enceladus' core. The abundance of minerals as well as
  the inferred basic pH of those grains exhibit a compelling similarity
  with the predicted composition of an Enceladus ocean (Zolotov, GRL
  2007). The Na-rich ice particles expelled through the plumes into the
  E ring are frozen droplets of a salt-water reservoir possibly still
  in contact with a large ocean. <P />Together with recent measurement
  of Enceladian plume vapor by Cassini-INMS (Waite et al., Nature 2009)
  and Earth bound spectroscopy (Schneider et al., Nature 2009), a detailed
  compositional picture of both gas and solid phases of the plume is at
  hand for the first time. The results provide strict constraints for
  plume models which have to include gas and grain production as well
  as their subsequent ejection into the E ring. The observations now
  produce a consistent picture of plume mechanics based on evaporation
  of liquid water as the main plume driver but also involving other
  processes. Violently erupting geysers from water in the cracks close to
  the surface can be ruled out, whereas large evaporating water surfaces
  deep below the ice crust provide the most plausible scenarios.

---------------------------------------------------------
Title: On the Distribution of Particle Sizes in Saturn's Rings
Authors: Brilliantov, N. V.; Krapivsky, P.; Schmidt, J.; Spahn, F.
2009epsc.conf..656B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: High-resolution spectroscopy of cool stars
Authors: Schmitt, J.
2009hrxs.confE..38S    Altcode:
  I will review main results of high-resolution spectroscopy of cool
  stars with XMM-Newton and Chandra. Spectroscopic determinations of
  temperature, density and elemental abundances will be discussed and
  the results for various classes of stars presented. Specific issues
  discussed include densities of CTTS, the solar and stellar neon problem,
  CNO abundances of young and evolved stars and the measurement of flare
  plasma densities.

---------------------------------------------------------
Title: Fine jet structure of electrically charged grains in Enceladus'
    plume
Authors: Jones, G. H.; Arridge, C. S.; Coates, A. J.; Lewis, G. R.;
   Kanani, S.; Wellbrock, A.; Young, D. T.; Crary, F. J.; Tokar, R. L.;
   Wilson, R. J.; Hill, T. W.; Johnson, R. E.; Mitchell, D. G.; Schmidt,
   J.; Kempf, S.; Beckmann, U.; Russell, C. T.; Jia, Y. D.; Dougherty,
   M. K.; Waite, J. H.; Magee, B. A.
2009GeoRL..3616204J    Altcode:
  By traversing the plume erupting from high southern latitudes on
  Saturn's moon Enceladus, Cassini orbiter instruments can directly sample
  the material therein. Cassini Plasma Spectrometer, CAPS, data show that
  a major plume component comprises previously-undetected particles of
  nanometer scales and larger that bridge the mass gap between previously
  observed gaseous species and solid icy grains. This population is
  electrically charged both negative and positive, indicating that
  subsurface triboelectric charging, i.e., contact electrification
  of condensed plume material may occur through mutual collisions
  within vents. The electric field of Saturn's magnetosphere controls
  the jets' morphologies, separating particles according to mass and
  charge. Fine-scale structuring of these particles' spatial distribution
  correlates with discrete plume jets' sources, and reveals locations of
  other possible active regions. The observed plume population likely
  forms a major component of high velocity nanometer particle streams
  detected outside Saturn's magnetosphere.

---------------------------------------------------------
Title: Spectrum-RG astrophysical project
Authors: Pavlinsky, M.; Sunyaev, R.; Churazov, E.; Vikhlinin, A.;
   Sazonov, S.; Revnivtsev, M.; Arefiev, V.; Lapshov, I.; Akimov, V.;
   Levin, V.; Buntov, M.; Semena, N.; Grigorovich, S.; Babyshkin, V.;
   Predehl, P.; Hasinger, G.; Böhringer, H.; Schmitt, J.; Santangelo,
   A.; Schwope, A.; Wilms, J.
2009SPIE.7437E..08P    Altcode: 2009SPIE.7437E...6P
  The Spectrum-Roentgen-Gamma mission will be launched in the 2012 year
  into a L2 orbit with Soyuz launcher and Fregat buster from Baikonur. The
  mission will conduct all-sky survey with X-ray mirror telescopes eROSITA
  and ART-XC up to 11 keV. It will allow detection of about 100 thousand
  clusters of galaxies and discovery large scale Universe structure. It
  will also discover all obscured accreting Black Holes in nearby galaxies
  and many (about 3 millions) new distant AGN. Then it is planned to
  observe dedicated sky regions with high sensitivity and thereafter to
  perform follow-up pointed observations of selected sources.

---------------------------------------------------------
Title: Long-term stability of spotted regions and the activity-induced
    Rossiter-McLaughlin effect on V889 Herculis. A synergy of photometry,
    radial velocity measurements, and Doppler imaging
Authors: Huber, K. F.; Wolter, U.; Czesla, S.; Schmitt, J. H. M. M.;
   Esposito, M.; Ilyin, I.; González-Pérez, J. N.
2009A&A...501..715H    Altcode: 2009arXiv0904.1572H
  Context: The young active G-dwarf star V889 Herculis (HD 171488)
  shows pronounced spots in Doppler images as well as large variations in
  photometry and radial velocity (RV) measurements. However, the lifetime
  and evolution of its active regions are not well known. <BR />Aims:
  We study the existence and stability of active regions on the star's
  surface using complementary data and methods. Furthermore, we analyze
  the correlation of spot-induced RV variations and Doppler images. <BR
  />Methods: Photometry and high-resolution spectroscopy are used to
  examine stellar activity. A CLEAN-like Doppler imaging (DI) algorithm
  is used to derive surface reconstructions. We study high-precision RV
  curves to determine their modulation due to stellar activity in analogy
  to the Rossiter-McLaughlin effect. To this end we develop a measure for
  the shift of a line's center and compare it to RV measurements. <BR
  />Results: We show that large spotted regions are present on V889
  Her for more than one year, remaining similar in their large scale
  structure and position. This applies to several time periods of our
  observations, which cover more than a decade. We use DI line profile
  reconstructions to identify the influence of long-lasting starspots on
  RV measurements. In this way we verify the RV curve's agreement with
  our Doppler images. Based on long-term RV data we confirm V889 Her's
  rotation period of 1.3371 ± 0.0002 days.

---------------------------------------------------------
Title: Detection of orbital parameter changes in the TrES-2 exoplanet?
Authors: Mislis, D.; Schmitt, J. H. M. M.
2009A&A...500L..45M    Altcode: 2009arXiv0905.4030M
  We report a possible change in the orbit parameters of the TrES-2
  exoplanet. With a period of 2.470621 days, the TrES-2 exoplanet exhibits
  almost “grazing” transits 110.4 min duration as measured in 2006
  by Holman and collaborators. We observed two transits of TrES-2
  in 2008 using the 1.2 m Oskar-Lühning telescope (OLT) of Hamburg
  observatory employing CCD photometry in an i-band and a near to
  R-band filter. A careful lightcurve analysis including a re-analysis
  of the 2006 observations shows that the current transit duration has
  shortened since 2006 by ≈3.16 min. Although the new observations
  were taken in a different filter we argue that the observed change in
  transit duration time cannot be attributed to the treatment of limb
  darkening. If we assume the stellar and planetary radii to be constant,
  a change in orbit inclination is the most likely cause of this change
  in transit duration. <P />Full Table 1 is only available in electronic
  form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/L45

---------------------------------------------------------
Title: Sodium salts in E-ring ice grains from an ocean below the
    surface of Enceladus
Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.;
   Beinsen, A.; Abel, B.; Buck, U.; Srama, R.
2009Natur.459.1098P    Altcode:
  Saturn's moon Enceladus emits plumes of water vapour and ice particles
  from fractures near its south pole, suggesting the possibility of
  a subsurface ocean. These plume particles are the dominant source
  of Saturn's E ring. A previous in situ analysis of these particles
  concluded that the minor organic or siliceous components, identified in
  many ice grains, could be evidence for interaction between Enceladus'
  rocky core and liquid water. It was not clear, however, whether
  the liquid is still present today or whether it has frozen. Here we
  report the identification of a population of E-ring grains that are
  rich in sodium salts (~0.5-2% by mass), which can arise only if the
  plumes originate from liquid water. The abundance of various salt
  components in these particles, as well as the inferred basic pH,
  exhibit a compelling similarity to the predicted composition of a
  subsurface Enceladus ocean in contact with its rock core. The plume
  vapour is expected to be free of atomic sodium. Thus, the absence of
  sodium from optical spectra is in good agreement with our results. In
  the E ring the upper limit for spectroscopy is insufficiently sensitive
  to detect the concentrations we found.

---------------------------------------------------------
Title: Synchronization mechanism of sharp edges in rings of Saturn
Authors: Shepelyansky, D. L.; Pikovsky, A. S.; Schmidt, J.; Spahn, F.
2009MNRAS.395.1934S    Altcode: 2009MNRAS.tmp..540S; 2008arXiv0812.4372S
  We propose a new mechanism which explains the existence of enormously
  sharp edges in the rings of Saturn. This mechanism is based on the
  synchronization phenomenon due to which the epicycle rotational phases
  of particles in the ring, under certain conditions, become synchronized
  with the phase of external satellite, e.g. with the phase of Mimas
  in the case of the outer B ring edge. This synchronization eliminates
  collisions between particles and suppresses the diffusion induced by
  collisions by orders of magnitude. The minimum of the diffusion is
  reached at the centre of the synchronization regime corresponding to
  the ratio 2:1 between the orbital frequency at the edge of B ring and
  the orbital frequency of Mimas. The synchronization theory gives the
  sharpness of the edge in a few tens of meters that is in agreement
  with available observations.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Observations of transits of the
    TrES-2 exoplanet (Mislis+, 2009)
Authors: Mislis, D.; Schmitt, J. H. M. M.
2009yCat..35009045M    Altcode:
  We observed two transits of TrES-2 (on UT 2008 May 28 and September
  18), corresponding to epochs E=263, 312 of the ephemeris given by O'
  Donovan et al. (2006ApJ...651L..61O) <P />(1 data file).

---------------------------------------------------------
Title: How the Enceladus Dust Jets Form Saturn's E Ring
Authors: Kempf, S.; Uwe, B.; Schmidt, J.; Postberg, F.; Srama, R.
2009AGUSM.P32A..05K    Altcode:
  Pre--Cassini models of Saturn's E ring failed to reproduce its peculiar
  vertical structure inferred from earth-bound observations. After the
  discovery of an active ice- volcanism of Saturn's icy moon Enceladus
  the relevance of the directed injection of particles for the vertical
  ring structure of the E ring was swiftly recognised. However, simple
  models for the delivery of particles from the plume to the ring predict
  a too small vertical ring thickness and overestimate the amount of the
  injected dust. Here we report on numerical simulations of grains leaving
  the plume and populating the dust torus of Enceladus. We run a large
  number of dynamical simulations including gravity and Lorentz force
  to investigate the earliest phase of the ring particle life span. The
  evolution of the electrostatic charge carried by the initially uncharged
  grains is treated selfconsistently. Freshly ejected plume particles
  are moving in almost circular orbits because the Enceladus orbital
  speed exceeds the particles' ejection speeds by far. Only a small
  fraction of grains that leave the Hill sphere of Enceladus survive
  the next encounter with the moon. The flux and the size distribution
  of the surviving grains, replenishing the ring particle reservoir,
  differs significantly from the flux and the size distribution of
  the ejected plume particles. Our numerical simulations reproduce the
  vertical ring profile measured by the Cassini dust instrument CDA. From
  our simulations we calculate the deposition rates of plume particles
  hitting Enceladus' surface. We find that at a distance of 100 m from
  a jet a 10 m sized ice boulder should be covered by plume particles
  in 105 to 106 years.

---------------------------------------------------------
Title: Stellar and galactic environment survey (SAGE)
Authors: Barstow, M. A.; Burleigh, M. R.; Bannister, N. J.; Lapington,
   J. S.; Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.; Auchere,
   F.; Bode, M. F.; Bromage, G. E.; Gibson, B.; Collier Cameron, A.;
   Cassatella, A.; Delmotte, F.; Ravet, M. -F.; Doyle, J. G.; Jeffery,
   C. S.; Gaensicke, B.; Jordan, C.; Kappelmann, N.; Werner, K.;
   Lallement, R.; de Martino, D.; Matthews, S. A.; Phillips, K. J. H.;
   Del Zanna, G.; Orio, M.; Pace, E.; Pagano, I.; Schmitt, J. H. M. M.;
   Welsh, B. Y.
2009Ap&SS.320..231B    Altcode: 2008Ap&SS.tmp..161B
  This paper describes a proposed high resolution soft X-ray and
  Extreme Ultraviolet (EUV) spectroscopy mission to carry out a survey
  of Stellar and Galactic Environments (SAGE). The payload is based on
  novel diffraction grating technology which has already been proven in
  a sub-orbital space mission and which is ready to fly on a satellite
  platform with minimal development. Much of the technical detail of
  the instrumentation has been reported elsewhere and we concentrate
  our discussion here on the scientific goals of a SAGE base-line
  mission, demonstrating the scientific importance of high resolution
  spectroscopy in the Extreme Ultraviolet for the study of stars and
  the local interstellar medium.

---------------------------------------------------------
Title: Altair - the “hottest” magnetically active star in X-rays
Authors: Robrade, J.; Schmitt, J. H. M. M.
2009A&A...497..511R    Altcode: 2009arXiv0903.0966R
  Context: The onset of stellar magnetic activity is related to the
  operation of dynamo processes that require the development of an
  outer convective layer. This transition of stellar interior structure
  is expected to occur in late A-type stars. <BR />Aims: The A7 star
  Altair is one of the hottest magnetically active stars. Its proximity
  to the Sun allows a detailed investigation of a corona in X-rays for
  a star with a shallow convection zone. <BR />Methods: We used a deep
  XMM-Newton observation of Altair and analyzed X-ray light curves,
  spectra, and emission lines. We investigated the temporal behavior
  and properties of the X-ray emitting plasma and studied the global
  coronal structure of Altair. <BR />Results: Altair's corona with an
  X-ray luminosity of L_X=1.4× 10<SUP>27</SUP> erg/s and an activity
  level of log L_X/L_bol= -7.4 is located predominantly at low latitude
  regions and exhibits X-ray properties that are overall very similar to
  those of other weakly active stars. The X-ray emission is dominated by
  cool plasma (1-4 MK) at low density, and elemental abundances exhibit a
  solar-like FIP effect and Ne/O ratio. The X-ray brightness varies by 30%
  over the observation, most likely due to rotational modulation and minor
  activity; in contrast, no strong flares or significant amounts of hot
  plasma were detected. The X-ray activity level of Altair is apparently
  close to the saturation level, which is reduced by roughly four orders
  of magnitude when compared to late-type stars. <BR />Conclusions:
  With its fast rotation, Altair provides an inefficient, but very stable
  dynamo that mainly operates in convective layers below its “cooler”
  surface areas around the equator. This dynamo mechanism results in
  magnetic activity and leads to X-ray properties that are similar to
  those of the quiescent Sun, despite very different underlying stars.

---------------------------------------------------------
Title: X-ray emission from the M9 dwarf 1RXS
    J115928.5-524717. Quasi-quiescent coronal activity at the end of
    the main-sequence
Authors: Robrade, J.; Schmitt, J. H. M. M.
2009A&A...496..229R    Altcode: 2009arXiv0901.3027R
  Aims: X-ray emission is an important diagnostic for studying
  magnetic activity in presumably fully convective, very low-mass stars
  with virtually neutral photospheres. <BR />Methods: We analyse an
  XMM-Newton observation of 1RXS J115928.5-524717, an ultracool dwarf
  with spectral type M9, and compare its X-ray properties to those
  of other similar very late-type stars. <BR />Results: We clearly
  detected 1RXS J115928.5-524717 at soft X-ray energies in all EPIC
  detectors. Only minor variability was present during the observation
  and we attribute the X-ray emission to quasi-quiescent activity. The
  coronal plasma is described well by a two-temperature model at solar
  metallicity with temperatures of 2 MK and 6 MK and an X-ray luminosity
  of about L<SUB>X</SUB> = 1.0 × 10<SUP>26</SUP> erg/s in the 0.2-2.0
  keV band. The corresponding activity level of log L_X/L_bol≈ -4.1
  points to a moderately active star. Altogether, X-ray activity from very
  low-mass stars shows similar trends as more massive stars, despite their
  different interior structure. <BR />Conclusions: The nearby star 1RXS
  J115928.5-524717 is, after LHS 2065, the second ultracool M9 dwarf
  that emits X-rays at detectable levels in quasi-quiescence. While
  faint in absolute numbers, both stars are relatively X-ray active,
  implying an efficient dynamo mechanism that is capable of creating
  magnetic activity and coronal X-ray emission.

---------------------------------------------------------
Title: EDGE: Explorer of diffuse emission and gamma-ray burst
    explosions
Authors: Piro, L.; den Herder, J. W.; Ohashi, T.; Amati, L.; Atteia,
   J. L.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.;
   Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.;
   Briggs, M.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Campana,
   S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri,
   A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusumano,
   G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari,
   L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi,
   M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.;
   Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.;
   Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in't Zand, J.;
   Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de
   Korte, P. A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu,
   R.; Macculi, C.; Makishima, K.; Matt, G.; Mazzotta, P.; McCammon,
   D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.;
   Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien,
   P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.;
   Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.;
   Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra,
   R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmitt, J.; Sciortino, S.;
   Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri,
   G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.;
   Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.;
   Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N.
2009ExA....23...67P    Altcode: 2008ExA...tmp....9P
  How structures of various scales formed and evolved from the early
  Universe up to present time is a fundamental question of astrophysical
  cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the
  baryons from the early generations of massive stars by Gamma-Ray Burst
  (GRB) explosions, through the period of galaxy cluster formation,
  down to the very low redshift Universe, when between a third and
  one half of the baryons are expected to reside in cosmic filaments
  undergoing gravitational collapse by dark matter (the so-called warm
  hot intragalactic medium). In addition EDGE, with its unprecedented
  capabilities, will provide key results in many important fields. These
  scientific goals are feasible with a medium class mission using existing
  technology combined with innovative instrumental and observational
  capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with
  a high spectral resolution. This enables the study of their star-forming
  and host galaxy environments and the use of GRBs as back lights of large
  scale cosmological structures; (b) observing and surveying extended
  sources (galaxy clusters, WHIM) with high sensitivity using two wide
  field of view X-ray telescopes (one with a high angular resolution
  and the other with a high spectral resolution). The mission concept
  includes four main instruments: a Wide-field Spectrometer (0.1-2.2 eV)
  with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager
  (0.3-6 keV) with high angular resolution (HPD = 15”) constant over
  the full 1.4 degree field of view, and a Wide Field Monitor (8-200 keV)
  with a FOV of ¼ of the sky, which will trigger the fast repointing to
  the GRB. Extension of its energy response up to 1 MeV will be achieved
  with a GRB detector with no imaging capability. This mission is proposed
  to ESA as part of the Cosmic Vision call. We will outline the science
  drivers and describe in more detail the payload of this mission.

---------------------------------------------------------
Title: Stellar And Galactic Environment survey (SAGE)
Authors: Barstow, M. A.; Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.;
   Auchere, F.; Bannister, N. J.; Bode, M. F.; Bromage, G. E.; Burleigh,
   M. R.; Collier Cameron, A.; Cassatella, A.; Delmotte, F.; Doyle, J. G.;
   Gaensicke, B.; Gibson, B.; Jeffery, C. S.; Jordan, C.; Kappelmann,
   N.; Lallement, R.; Lapington, J. S.; de Martino, D.; Matthews, S. A.;
   Orio, M.; Pace, E.; Pagano, I.; Phillips, K. J. H.; Ravet, M. -F.;
   Schmitt, J. H. M. M.; Welsh, B. Y.; Werner, K.; Del Zanna, G.
2009ExA....23..169B    Altcode: 2008ExA...tmp...25B
  This paper describes a proposed high resolution soft X-ray and Extreme
  Ultraviolet spectroscopy mission to carry out a survey of Stellar
  and Galactic Environments (SAGE). The payload is based on novel
  diffraction grating technology which has already been proven in a
  sub-orbital space mission and which is ready to fly on a satellite
  platform with minimal development. We discuss the goals of a SAGE
  base-line mission and demonstrate the scientific importance of high
  resolution spectroscopy in the Extreme Ultraviolet for the study of
  stars and the local interstellar medium.

---------------------------------------------------------
Title: Erratum: Kronos: exploring the depths of Saturn with probes
    and remote sensing through an international mission
Authors: Marty, B.; Guillot, T.; Coustenis, A.; Achilleos, N.; Alibert,
   Y.; Asmar, S.; Atkinson, D.; Atreya, S.; Babasides, G.; Baines, K.;
   Balint, T.; Banfield, D.; Barber, S.; Bézard, B.; Bjoraker, G. L.;
   Blanc, M.; Bolton, S.; Chanover, N.; Charnoz, S.; Chassefière, E.;
   Colwell, J. E.; Deangelis, E.; Dougherty, M.; Drossart, P.; Flasar,
   F. M.; Fouchet, T.; Frampton, R.; Franchi, I.; Gautier, D.; Gurvits,
   L.; Hueso, R.; Kazeminejad, B.; Krimigis, T.; Jambon, A.; Jones,
   G.; Langevin, Y.; Leese, M.; Lellouch, E.; Lunine, J.; Milillo, A.;
   Mahaffy, P.; Mauk, B.; Morse, A.; Moreira, M.; Moussas, X.; Murray, C.;
   Mueller-Wodarg, I.; Owen, T. C.; Pogrebenko, S.; Prangé, R.; Read,
   P.; Sanchez-Lavega, A.; Sarda, P.; Stam, D.; Tinetti, G.; Zarka, P.;
   Zarnecki, J.; Schmidt, J.; Salo, H.
2009ExA....23..977M    Altcode: 2008ExA...tmp...34M
  No abstract at ADS

---------------------------------------------------------
Title: The CN Leo flare census
Authors: Liefke, Carolin; Fuhrmeister, Birgit; Schmitt, Jürgen
   H. M. M.
2009AIPC.1094..608L    Altcode: 2009csss...15..608L
  We investigate the frequency and amplitude distribution of flares on
  the actice M dwarf CN Leo observed simultaneously in coronal X-rays,
  chromospheric line emission, and the photospheric optical continuum. We
  find that most of the larger events are visible in all atmospheric
  layers, these are equivalent to solar white light flares. Several
  smaller events are only visible in the chromospheric lines, which
  corresponds to solar H-alpha flares. One event is very strong in
  X-rays, but only weak in the chromospheric lines and invisible in the
  photospheric continuum, indicating a rather large scale height of the
  flaring loop. We find no obvious correlation of the flare amplitudes
  and decay times in the different atmospheric layers. We also search
  for time delays between the different wavelength bands and probe the
  occurrence of the Neupert effect.

---------------------------------------------------------
Title: The enigmatic X-rays from the Herbig star HD 163296: Jet,
    accretion, or corona?
Authors: Günther, H. M.; Schmitt, J. H. M. M.
2009A&A...494.1041G    Altcode: 2008arXiv0812.0285G
  Context: Herbig Ae/Be stars (HAeBe) are pre-main sequence objects
  in the mass range 2 M<SUB>⊙</SUB> &lt; M<SUB>*</SUB> &lt; 8
  M<SUB>⊙</SUB>. Their X-ray properties are uncertain and, as yet,
  unexplained. <BR />Aims: We want to elucidate the X-ray generating
  mechanism in HAeBes. <BR />Methods: We present an XMM-Newton observation
  of the HAeBe HD 163296. We analyse the light curve, the broad band
  and the grating spectra, fit emission measures and abundances and
  apply models for accretion and wind shocks. <BR />Results: We find
  three temperature components ranging from 0.2 keV to 2.7 keV. The
  O VII He-like triplet indicates an X-ray formation region in a low
  density environment with a weak UV photon field, i.e. above the stellar
  surface. This makes an origin in an accretion shock unlikely; instead
  we suggest a shock at the base of the jet for the soft component and a
  coronal origin for the hot component. A mass outflow of dot M_shock ≈
  10<SUP>-10</SUP> M<SUB>⊙</SUB> yr<SUP>-1</SUP> is sufficient to power
  the soft X-rays. <BR />Conclusions: HD 163296 is thought to be single,
  so this data represent genuine HAeBe X-ray emission. HD 163296 might be
  prototypical for its class. <P />Based on observations obtained with
  XMM-Newton, an ESA science mission with instruments and contributions
  directly funded by ESA Member States and NASA.

---------------------------------------------------------
Title: The Jupiter-Io interaction as a model for
    star-planet-interaction (SPI)?
Authors: Schmitt, J. H. M. M.
2009AIPC.1094..473S    Altcode: 2009csss...15..473S
  The magnetic interaction between Jupiter and its Galilean moons is
  observationally established in quite some detail and theoretically
  reasonably well understood. In-situ measurements from various spacecraft
  are available to support the theoretical models. I discuss to what
  extent the concepts developed to understand these interactions can be
  transferred to star planet interactions (SPI).

---------------------------------------------------------
Title: Altair-the hottest `cool' star in X-rays
Authors: Robrade, J.; Schmitt, J. H. M. M.
2009AIPC.1094..620R    Altcode: 2009csss...15..620R
  We present first results from a deep (130 ks) XMM-Newton observation
  of Altair and study the coronal X-ray properties of a late A-type
  star for the first time in detail. We find that Altair's thin outer
  convective layer and its fast rotation generate a corona that resembles
  those of low activity stars of later spectral type. Cool plasma at low
  density produces weak X-ray emission that shows moderate variability
  on timescales of hours to days. We find a neon to oxygen abundance
  ratio of Ne/O ~0.2, similar to other inactive stars and the Sun.

---------------------------------------------------------
Title: Ca II HK emission in rapidly rotating stars. Evidence for an
    onset of the solar-type dynamo
Authors: Schröder, C.; Reiners, A.; Schmitt, J. H. M. M.
2009A&A...493.1099S    Altcode:
  We present measurements of chromospheric Ca ii H&amp;K activity for
  481 solar-like stars. To determine the activity we used the Mount
  Wilson method and a newly developed method which allows to also
  measure Ca ii H&amp;K emission features in very rapidly rotating
  stars. The new technique determines the activity by comparing the line
  shapes from known inactive slowly rotating template stars that have
  been artificially broadened to spectra of rapid rotators. We have
  analyzed solar-like stars ranging from T_eff = 5000 to 7800 K with
  rotational velocities up to 190 km s<SUP>-1</SUP> in our sample of
  FOCES and FEROS spectra. The effects of the rotational broadening on
  the two methods have been quantified. Our method has proven to produce
  consistent results where S-Index values are available and offers the
  possibility to measure the chromospheric activity at the onset of the
  solar-like dynamo. <P />Table 2 is only available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/1099

---------------------------------------------------------
Title: Analysis of the Central X-ray Source in DG Tau
Authors: Schneider, P. Christian; Schmitt, Jürgen H. M. M.
2009ASSP...13..615S    Altcode: 2009pjc..book..615S
  As a stellar X-ray source DG Tau shows two rather unusual features:
  A resolved X-ray jet [2] and an X-ray spectrum best described by two
  thermal components with different absorbing column densities, a so
  called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort
  to understand the properties of the central X-ray source in DG Tau a
  detailed position analysis was carried out.

---------------------------------------------------------
Title: New X-ray detections of Herbig stars
Authors: Stelzer, B.; Robrade, J.; Schmitt, J. H. M. M.; Bouvier, J.
2009A&A...493.1109S    Altcode: 2008arXiv0810.1836S
  Context: The interpretation of X-ray detections from Herbig Ae/Be stars
  is disputed as it is not clear whether these intermediate-mass pre-main
  sequence stars are able to drive a dynamo and ensuing phenomena of
  magnetic activity. Alternative X-ray production mechanisms, related
  to stellar winds, star-disk magnetospheres, or unresolved late-type
  T Tauri star companions have been proposed. <BR />Aims: The companion
  hypothesis can be tested by resolving Herbig stars in X-rays from their
  known visual secondaries. Furthermore, their global X-ray properties
  (such as detection rate, luminosity, temperature, variability) may
  give clues to the emission mechanism by comparison to other types of
  stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but
  more evolved main-sequence A- and B-type stars, and with respect to
  model predictions. <BR />Methods: In a series of papers we have been
  investigating high-resolution X-ray Chandra images of Herbig Ae/Be
  and main-sequence B-type stars where known close visual companions
  are spatially separated from the primaries. <BR />Results: Here we
  report on six as yet unpublished Chandra exposures from our X-ray
  survey of Herbig stars. The target list comprises six Herbig stars
  with known cool companions, and three other A/B-type stars that are
  serendipitously in the Chandra field-of-view. In this sample we record a
  detection rate of 100%; i.e. all A/B-type stars display X-ray emission
  at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios
  confirms that HAeBes have hotter and/or more absorbed X-ray emitting
  plasma than more evolved B-type stars. <BR />Conclusions: Radiative
  winds are ruled out as an exclusive emission mechanism on the basis
  of the high X-ray temperatures. Confirming earlier results, the X-ray
  properties of Herbig Ae/Be stars are not vastly different from those of
  their late-type companion stars (if such are known). The diagnostics
  provided by the presently available data leave it open whether the
  hard X-ray emission of Herbig stars is due to young age or indicative
  of further coronally active low-mass companion stars. In the latter
  case, our detection statistics imply a high fraction of higher order
  multiple systems among Herbig stars.

---------------------------------------------------------
Title: Sodium Salts in Ice Grains from Enceladus' Plumes: Evidence
    for an Ocean below the Moon's Surface
Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brillantov, N.; Beinsen,
   A.; Abel, B.; Buck, U.; Srama, R.
2008AGUFM.P14A..03P    Altcode:
  One key requirement for the formation of life on Enceladus, is
  liquid water below its icy surface. Although measurements and model
  calculations for Enceladus plume source suggest temperatures close
  to the melting point, direct evidence for liquid water has not been
  produced so far. We present compositional measurements by Cassini's
  dust detector of ice particles emitted from Saturn's cryo-volcanic
  moon Enceladus into the E ring. Since sodium is considered as crucial
  tracer for an Enceladus ocean, our detection of sodium salts within the
  grains provide the first evidence for mineral enriched liquid water
  below the moon's icy surface. In nearly all particles detected in
  situ by the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft,
  we found sodium (Na) in varying concentrations. Most spectra also show
  potassium (K) in lower abundance. In mass spectra that are particularly
  sodium rich, sodium salts (like NaCl and NaHCO3) are identified as
  Na bearing components. This is only possible if the plume source is
  liquid water that is or has been in contact with the rocky material
  of Enceladus' core. The abundance of minerals as well as the inferred
  basic pH value of those grains exhibit a compelling similarity with
  the predicted composition of an Enceladus ocean. As for terrestrial
  oceans, sodium (Na+) and chloride (Cl-) are expected to be the most
  abundant components, followed by hydrogen carbonate (HCO3-). From the
  compositional analysis, models for grain production and ejection can
  be derived which give new insights into dynamic, subsurface processes.

---------------------------------------------------------
Title: Discovery of X-ray emission from the eclipsing brown-dwarf
    binary 2MASS J05352184-0546085
Authors: Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M.
2008A&A...491..851C    Altcode: 2008arXiv0809.4129C
  The eclipsing brown-dwarf binary system 2MASS J05352184-0546085 is a
  case sui generis. For the first time, it allows a detailed analysis of
  the individual properties of young brown dwarfs, in particular, masses,
  and radii, and the temperature ratio of the system components can be
  determined accurately. The system shows a “temperature reversal" with
  the more massive component being the cooler one, and both components
  are found to be active. We analyze X-ray images obtained by Chandra and
  XMM-Newton containing 2MASS J05352184-0546085 in their respective field
  of view. The Chandra observatory data show a clear X-ray source at the
  position of 2MASS J05352184-0546085, whereas the XMM-Newton data suffer
  from contamination from other nearby sources, but are consistent with
  the Chandra detection. No indications of flaring activity are found in
  either of the observations (together ≈70 ks), and we thus attribute
  the observed flux to quiescent emission. With an X-ray luminosity
  of 3×10<SUP>28</SUP> erg/s we find an L_X/L_bol-ratio close to the
  saturation limit of 10<SUP>-3</SUP> and an L_X/L_Hα-ratio consistent
  with values obtained from low-mass stars. The X-ray detection of 2MASS
  J05352184-0546085 reported here provides additional support for the
  interpretation of the temperature reversal in terms of magnetically
  suppressed convection, and suggests that the activity phenomena of
  young brown dwarfs resemble those of their more massive counterparts.

---------------------------------------------------------
Title: On the formation of sodium bearing E ring ice grains on
    Enceladus.
Authors: Schmidt, J.; Brilliantov, N.; Postberg, F.; Kempf, S.;
   Beinsen, A.; Buck, U.; Abel, B.; Srama, R.
2008AGUFM.P23B1371S    Altcode:
  Small but significant concentrations of sodium have been detected by
  the Cassini CDA in mass spectra of E ring ice grains. Since Enceladus'
  plume is the dominant source of the E ring, this sodium must come from
  the interior of Enceladus. This is consistent with a plume originating
  from a liquid reservoir that has been, or is, in contact with the rocky
  core of the satellite, since in this case the liquid is expected to
  be enriched in minerals (Zolotov, GRL, 2007). However, the physical
  processes how these minerals find their way into the ice grains of
  Enceladus' plume are less clear. In this talk we discuss possible
  scenarios and relate them to the concentrations found in CDA data.

---------------------------------------------------------
Title: Saturn's E ring as seen by the Cassini dust detector
Authors: Kempf, S.; Srama, R.; Beckmann, U.; Schmidt, J.
2008AGUFM.P32A..03K    Altcode:
  The data returned by the Cassini spacecraft drastically changed
  our picture of Saturn's diffuse E ring - the largest known ring in
  the Solar system. Since Cassini is equipped with a dust detector it
  became possible for the first time to investigate the evolution cycle
  of the Saturnian dust. There are two processes feeding the ring with
  fresh dust: collisions of micrometeoroids with the surfaces of icy
  moons and dust injection by the recently discovered ice volcanoes
  on the moon Enceladus. After injection into the ring the particles
  spend most of their lifespan as ring particles. Finally, the grains
  get lost by collisions with the main rings or with the moons. More
  interesting, some of the ring particles interact strongly with Saturn's
  magnetic field and will finally form fast dust streams, which were
  discovered by Cassini during her approach to Saturn. We are still at
  the beginning of our understanding of the physical processes relevant
  for the dust life cycle. However, Cassini already provided us with
  some of the major pieces to accomplish a comprehensive picture. Here,
  on numerical simulations of the long term evolution of ring particles,
  which are based on most recent Cassini data. We show that most of the
  ring particles slowly migrate outwards until they get locked in the
  vicinity of the Rhea orbit.

---------------------------------------------------------
Title: Overstability in Saturn's Rings
Authors: Spahn, F.; Schmidt, J.; Salo, H.; Sremcevic, M.
2008AGUFM.P32A..09S    Altcode:
  Overstability was predicted as a spontaneous instability for Saturn's
  rings about ten years ago (Schmit and Tscharnuter, 1995, Icarus). If
  the ring is overstabl e, it develops axisymmetric waves of one hundred
  meters to kilometers in length. Such waves were indeed found in data
  obtained by the Cassini Radio Science Subsystem (Thomson et al., GRL,
  2007) and the Ultraviolet Imaging Spectrograph (Colwell et al., Icarus,
  2007). We review theoretical aspects of overstability using simple
  hydrodynamic models and simulations. In this approach overstable modes
  are found to form travelling nonlinear wavetrains. Due to the effect
  of self-gravity, the wavelength assumes a value of roughly one hundred
  particle diameters.

---------------------------------------------------------
Title: Coronal properties of the EQ Pegasi binary system
Authors: Liefke, C.; Ness, J. -U.; Schmitt, J. H. M. M.; Maggio, A.
2008A&A...491..859L    Altcode: 2008arXiv0810.0150L
  Context: The activity indicators of M dwarfs are distinctly different
  for early and late types. The coronae of early M dwarfs display high
  X-ray luminosities and temperatures, a pronounced inverse FIP effect,
  and frequent flaring to the extent that no quiescent level can be
  defined in many cases. For late M dwarfs, fewer but more violent
  flares have been observed, and the quiescent X-ray luminosity is
  much lower. <BR />Aims: To probe the relationship between coronal
  properties with spectral type of active M dwarfs, we analyze the M3.5
  and M4.5 components of the EQ Peg binary system in comparison with
  other active M dwarfs of spectral types M0.5 to M5.5. <BR />Methods: We
  investigate the timing behavior of both components of the EQ Peg system,
  reconstruct their differential emission measure, and investigate the
  coronal abundance ratios based on emission-measure independent line
  ratios from their Chandra HETGS spectra. Finally we test for density
  variations in different states of activity. <BR />Results: The X-ray
  luminosity of EQ Peg A (M3.5) is by a factor of 6-10 brighter than
  that of EQ Peg B (M4.5). Like most other active M dwarfs, the EQ Peg
  system shows an inverse FIP effect. The abundances of both components
  are consistent within the errors; however, there seems to be a tendency
  toward the inverse FIP effect being less pronounced in the less active
  EQ Peg B when comparing the quiescent state of the two stars. This trend
  is supported by our comparison with other M dwarfs. <BR />Conclusions:
  As the X-ray luminosity decreases with later spectral type, so do
  coronal temperatures and flare rate. The amplitude of the observed
  abundance anomalies, i.e. the inverse FIP effect, declines; however,
  clear deviations from solar abundances remain.

---------------------------------------------------------
Title: The X-ray cycle in the solar-type star HD 81809. XMM-Newton
    observations and implications for the coronal structure
Authors: Favata, F.; Micela, G.; Orlando, S.; Schmitt, J. H. M. M.;
   Sciortino, S.; Hall, J.
2008A&A...490.1121F    Altcode: 2008arXiv0806.2279F
  Context: The 11-yr cycle is the best known manifestation of the Sun's
  activity. While chromospheric cycles have been studied in a number of
  solar-like stars, very little is known about how these are reflected
  in the cyclical behavior of the coronal X-ray emission in stars other
  than the Sun. <BR />Aims: Our long-term XMM-Newton program of long-term
  monitoring of a solar-like star with a well-studied chromospheric cycle,
  HD 81809, aims to study whether an X-ray cycle is present, along with
  studying its characteristics and its relation to the chromospheric
  cycle. <BR />Methods: Regular observations of HD 81809 were performed
  with XMM-Newton, spaced by 6 months from 2001 to 2007. We studied
  the variations in the resulting coronal luminosity and temperature,
  and compared them with the chromospheric Ca ii variations. We also
  modeled the observations in terms of a mixture of active regions,
  using a methodology originally developed to study the solar corona. <BR
  />Results: Our observations show a well-defined cycle with an amplitude
  exceeding 1 dex and an average luminosity approximately one order of
  magnitude higher than in the Sun. The behavior of the corona of HD
  81809 can be modeled well in terms of varying coverage of solar-like
  active regions, with a larger coverage than for the Sun, showing it
  to be compatible with a simple extension of the solar case.

---------------------------------------------------------
Title: The nature of the soft X-ray source in DG Tauri
Authors: Schneider, P. C.; Schmitt, J. H. M. M.
2008A&A...488L..13S    Altcode: 2008arXiv0807.2156S
  The classical T Tauri star DG Tau shows all typical signatures of
  X-ray activity and, in particular, harbors a resolved X-ray jet. DG
  Tau's jet is one of the most well studied jets of young stellar
  objects, having been observed for more than 25 years by a variety of
  instruments. We demonstrate that its soft and hard X-ray components
  are separated spatially by approximately 0.2 arcsec by deriving the
  spatial offset between both components from the event centroids of
  the soft and hard photons utilizing the intrinsic energy-resolution
  of the Chandra ACIS-S detector. We also demonstrate that this offset
  is physical and cannot be attributed to an instrumental origin or to
  low counting statistics. Furthermore, the location of the derived soft
  X-ray emission peak coincides with emission peaks observed for optical
  emission lines, suggesting that both soft X-rays and optical emission
  have the same physical origin.

---------------------------------------------------------
Title: How the Enceladus dust plume forms Saturn's E ring
Authors: Beckmann, U.; Kempf, S.; Schmidt, J.
2008epsc.conf..773B    Altcode:
  Before Cassini, dynamical models of Saturn's E ring [1] failed to
  reproduce its peculiar vertical structure inferred from earth-bound
  observations [2]. After the discovery of an active ice-volcanism in
  the south pole terrain of Saturn's icy moon Enceladus the relevance of
  these particles for the vertical ring structure was swiftly recognise
  [3, 4]. However, ad-hoc models for the plume particle injection predict
  too a small vertical ring thickness and overestimate the amount of the
  injected dust. Here we report on numerical simulations of the plume
  particles ejection into the ring. We run a large number of dynamical
  simulations including gravity and Lorentz force to investigate the
  earliest phase of the ring particle life span. The evolution of
  electrostatic charge carried by the initially uncharged grains is
  treated selfconsistently. Freshly ejected plume particles are moving in
  almost circular orbits because the Enceladus orbital speed exceeds the
  particles' ejection speeds by far. Only a small number of the ejected
  grains survives against re-collision with the moon during their first
  orbit. Because of this, the flux as well as the size distribution of
  the plume particles replenishing the ring particle reservoir differs
  significantly from the size distribution and flux of the Enceladus dust
  plumes. Our numerical simulations reproduce the vertical ring profile
  measured by the Cassini dust instrument CDA [4] and is consistent with
  edge-on images obtained by the Cassini camera ISS [5]

---------------------------------------------------------
Title: The Origin and Dynamics of Heliotropic Ringlets in Saturnian
    System
Authors: Makuch, Martin; Flassig, R. J.; Schmidt, J.; Seiss, M.;
   Spahn, F.
2008DPS....40.2104M    Altcode: 2008BAAS...40..423M
  Recently, several faint ringlets in the Saturnian ring system were
  found to have particular orientation relative to the Sun. The Encke
  Gap ringlets as well as the ringlet in the outer rift of the Cassini
  division were found to have distinct spatial displacement of several
  tens of kilometers away from Saturn toward Sun. <P />We investigate
  the dynamics of circumplanetary dust particles with sizes in the range
  of 1-100 microns. These small particles are strongly perturbed by
  non-gravitational forces as solar radiation pressure and planetary
  oblateness on short time-scales. The combined influence of these
  forces causes periodical evolution of grains' orbital eccentricity and
  precession of pericenter. We show that this interaction results in a
  stationary eccentric ringlet oriented with its apocenter toward the Sun,
  which is consistent with observational findings. In conjunction with
  this heliotropic dynamics, we can give a limit for the expected smallest
  grain size in the Encke Gap of about 10 microns. <P />The results of our
  analytical theory were compared with numerical simulations. We trace
  the trajectories of a dust grains created by impact ejecta mechanism
  from a parent bodies. We estimate lifetimes for the ringlet particles
  which are mainly limited by collisions with the dense rings and the
  source bodies. Modeling the equilibrium between particle sources
  and sinks we find the resulting strength of the source flux which
  is expected to be observed in the ringlet. Our analytical as well as
  numerical results indicate, that Pan is a very inefficient source for
  the main ringlet in the Encke Gap. <P />We propose the main ringlet
  to be maintained by embedded moonlets with size of hundreds of meters
  placed on stable orbits in the central ringlet region. These embedded
  moonlets might also play a role in forming the azimuthal variations
  in optical depth of the Encke Gap ringlets.

---------------------------------------------------------
Title: VizieR Online Data Catalog: CaII HK emission in rapidly
    rotating stars (Schroeder+, 2009)
Authors: Schroeder, C.; Reiners, A.; Schmitt, J. H. M. M.
2008yCat..34931099S    Altcode:
  The basic data and chromosperic activity measurements for 480
  stars. Given are the S-index and log R(hk) measured with the
  Mount-Wilson method and with the new template method. <P />(1 data
  file).

---------------------------------------------------------
Title: The shadow of Saturn's icy satellites in the E ring
Authors: Schmidt, J.; Sremcevic, M.
2008epsc.conf..756S    Altcode:
  We analyze shadows that Saturnian satellites cast in the E ring,
  a faint, broad dust ring composed of icy grains. The brightness
  contrast of a moon's shadow relative to the surrounding ring allows to
  infer local properties of the size distribution of ring particles. We
  derive the shadow contrast from a large number of Cassini images of
  Enceladus taken in various filters in a range of phase angles 144 to
  164 degrees. For Tethys and Dione we identify a clear shadow in images
  with phase angles larger than 160 degrees. From the data we obtain
  the number density of E ring grains at the orbits of Tethys and Dione
  relative to the one near Enceladus. The latter we constrain from the
  variation of the shadow contrast with color and phase angle. From the
  Enceladus data we construct the phase curve of the E ring dust between
  144 and 164 degrees. We compare to data obtained from Earth-bound
  observations by de Pater et al 2004 and in situ measurements by the
  Cosmic Dust Analyzer onboard Cassini.

---------------------------------------------------------
Title: N-body Survey of Viscous Overstability in Saturn's Rings
Authors: Salo, Heikki J.; Schmidt, J.; Sremcevic, M.; Sremcevic, M.;
   Spahn, F.
2008DPS....40.3003S    Altcode: 2008BAAS...40..445S
  The viscous overstability of dense collisional rings offers a
  promising explanation for the small scale radial density variations
  in the B and the inner A ring of Saturn. Viscous overstability, in
  the form of spontaneous growth of axisymmetric oscillations, was first
  directly demonstrated in the selfgravitating N-body simulations (Salo
  etal. 2001). In contrast to previous isothermal hydrodynamical analysis
  (Schmit &amp; Tscharnuter 1995), which suggested that practically any
  dense ring should be overstable, our N-body simulations indicated that a
  steep rise of viscosity with optical depth was required. In particular,
  a selfgravitating system of identical particles following the Bridges
  etal. (1984) elasticity formula was found to become overstable for
  optical depths τ &gt; 1., forming oscillations in about 100 meter
  scale. In these simulations the axisymmetric oscillations were found to
  coexist with the inclined selfgravity wake structures. In addition, a
  basically similar overstability was seen in nongravitating simulations,
  but shifted to very high optical depths, or in simulations were
  just the vertical selfgravity was included, leading to an enhanced
  impact frequency and viscosity. Although an improved non-isothermal
  hydrodynamical analysis (Spahn et al. 2000, Schmidt et al. 2001)
  was able to describe quantitatively these non-selfgravitating cases,
  even in the weakly nonlinear regime (Schmidt &amp; Salo, 2003),
  a reliable study of realistic selfgravitating rings must rely on
  numerical experiments. <P />We report the results of a new N-body
  survey of viscous overstability. For example, we study the optical
  depth and gravity strength regimes which lead to the excitation of
  overstability, co-existence of overstabilities and gravity wakes,
  or to the suppression of overstability in the case of very strong
  wakes. Also the effects of various factors (particle elasticity,
  surface friction and adhesion, size distribution) on the threshold
  density required for the triggering of overstability are investigated
  This study is supported by the Academy of Finland

---------------------------------------------------------
Title: LORA, the first in-situ mission into an astrophysical disk:
    Saturn's rings.
Authors: Charnoz, S.; Burns, J.; Christou, A.; Coustenis, A.; Colwell,
   J.; Cuzzi, J.; Evans, M.; Ferrari, C.; Guillot, T.; Hedman, M.;
   Leyrat, C.; Marty, B.; Murray, C.; Rodriguez, S.; Salo, H.; Schmidt,
   J.; Spilker, L.; Tiscareno, M.
2008epsc.conf..619C    Altcode:
  Saturn's rings are a perfect example of an astrophysical disk,
  exhibiting dynamical processes common to all disks and at all
  scales. Whereas they are observed since the XVIIth century, they
  are still poorly understood. What is their origin? What is their
  total mass? What is their lifetime? What is a ring particle? Is
  their accretion close to the rings' edge ?. To help answer these
  fundamental questions, a critical data would be direct in-situ images
  of the rings'micro-structure, down to 10 cm scale. In addition, direct
  observation of gravitational instabilities at ~50m scale would help
  better understand fundamental accretion processes that happened in our
  protoplanetary disk 4.5 Gy ago. Thus, we introduce the LORA mission
  (Landers On Rings Array): an array of nano-probes dropped into the
  rings and with a minimal payload (camera + communication system). The
  LORA mission could be part of a larger mission to Saturn. By carefully
  designing the trajectory to the rings, different questions could be
  easily answered. The nano-probes could explore different regions of the
  rings simultaneously, thus giving clues on the physics of particulate
  disks in different density regimes. We present the different options,
  and technological requirements of this simple mission to the most
  exotic object of our Solar System.

---------------------------------------------------------
Title: Sodium discovered in Icy E ring Particles - Indicator for an
    Ocean Below Enceladus' Surface
Authors: Postberg, F.; Kempf, S.; Briliantov, N.; Schmidt, J.; Buck,
   U.; Srama, R.
2008epsc.conf..778P    Altcode:
  The Cassini dust detector CDA has recorded insitu thousands of
  mass spectra predominantly of submicron sized grains populating
  Saturn's E ring. In general the spectra exhibit a variety of different
  compositions, which can be classified into different dust-families. The
  compositional analysis of E ring particles is of special interest
  since the ice-volcanoes of the moon Enceladus are the major source
  replenishing the faint ring. They provide - otherwise inaccessible -
  information about dynamic and geochemical processes below the moon's
  icy surface. Here we report on the discovery of a sodium-rich water
  ice population in the E ring. Sodium chloride (NaCl) is identified
  as the major Na bearing compound. This finding has strong geological
  implications since NaCl is expected to be the major component dissolved
  if liquid water is interacting with the rocky moon-core (Zolotov,
  Icarus, 2007). The particles' composition inferred from the Na-rich
  spectra implies that the reservoir which feeds the plumes is or was
  in contact with Enceladus' rocky core. Besides the Na-rich E ring
  population, which amounts to about 5% of the detections, most of
  the other E ring spectra also exhibit traces of Na. They hint at a
  sodium content several orders of magnitude lower than the Na-rich ice
  species. This result implies that two populations, Na-rich and Na-poor,
  reflect different mechanisms of particle creation below Enceladus'
  surface. The Na content as well as the Na/K ratio identified in Na-rich
  ice particles is in very good agreement with the predictions for an
  Enceladus Ocean (Zolotov, Icarus, 2007). Our calculations show that
  the water vapour above such a liquid phase is depleted in sodium by a
  factor of about 10-6. The main E ring population likely is created by
  condensation of plume vapour within the vent channels of the ice crust
  (Schmidt et al, Nature, 2008). We suggest that the Na-poor particles
  condense from water vapour that evaporated from water with an ocean
  like salt concentration. The vapour contains traces of Na which is
  then found in the particles.

---------------------------------------------------------
Title: The Origin and Dynamics of Heliotropic Ringlets in Saturnian
    System
Authors: Makuch, M.; Flassig, R. J.; Schmidt, J.; Seiß, M.; Spahn, F.
2008epsc.conf..762M    Altcode:
  Recently, several faint ringlets in the Saturnian ring system were
  found to have particular orientation relative to the Sun. The Encke
  Gap ringlets as well as the ringlet in the outer rift of the Cassini
  division were found to have distinct spatial displacement of several
  tens of kilometers away from Saturn toward Sun [1]. In our study
  we investigate the dynamics of circumplanetary dust particles
  with sizes in the range of 1-100 μm. These small particles are
  strongly perturbed by non-gravitational forces. In particular by
  solar radiation pressure and planetary oblateness on time-scales
  in the order of days. The combined influence of these forces causes
  periodical evolution of grains' orbital eccentricity and precession
  of pericenter, which can be shown by secular perturbation theory. We
  show that this interaction results in a stationary eccentric ringlet
  oriented with its apocenter toward the Sun, which is consistent with
  observational findings. In conjunction with this heliotropic dynamics,
  we can give a limit for the expected smallest grain size in the Encke
  Gap of about 10 microns. The results of our analytical theory were
  compared with numerical simulations. We trace the trajectories of a
  dust grains created by impact ejecta mechanism from a parent body. We
  estimate lifetimes for the ringlet particles which are mainly limited
  by collisions with the dense rings and the source bodies. Modeling the
  equilibrium between particle sources and sinks we find the resulting
  strength of the source flux which is expected to be observed in the
  ringlet. Our analytical as well as numerical results indicate, that
  Pan is a very inefficient source for the main ringlet in the Encke
  Gap. However, Pan possibly serves as the main source for the outer and
  inner ringlets. The main ringlet is shown to be maintained by embedded
  moonlets with size of hundreds of meters placed on stable orbits in the
  central ringlet region, which are cased by Pan in the gravity field
  of Saturn. These embeddedmoonletsmight also play a role in forming
  the azimuthal variations in optical depth of the Encke Gap ringlets.

---------------------------------------------------------
Title: Wakes Induced by a Moonlet on an Eccentric Orbit
Authors: Seiss, Martin; Salo, H.; Spahn, F.; Schmidt, J.
2008DPS....40.2108S    Altcode: 2008BAAS...40R.424S
  Large moonlets embedded in a planetary ring can create gaps going around
  the whole circumference almost void of material. Two examples have
  been identified in Saturn's A-ring to date: Pan in the Encke gap and
  Daphnis in the Keeler gap. The gravity of the moons induces wavy-like
  structures (wakes) at the gap edges. Observations by the ISS imaging
  team revealed deviations of the edge form from the basic sinusoidal
  model. Gap edges perturbed by resonances, and alternatively, a moonlet
  on an eccentric orbit are suitable to explain the observations. <P
  />Here we present results of N-particle box simulations of a gap edge
  including collisions where the edge is perturbed by a moonlet on an
  eccentric orbit. We especially compare the results with analytical
  predictions and non-collisional streamline kinematics. Further, the
  resulting streamlines are compared with the corresponding density
  isolines, showing that both can deviate significantly from each
  other. Additionally, based on these numerical experiments we investigate
  the damping behavior at the gap edge and draw conclusions for the
  analytical modeling of the wakes and for interpretation of Cassini data.

---------------------------------------------------------
Title: Quiescent X-ray emission from the M9 dwarf LHS 2065
Authors: Robrade, J.; Schmitt, J. H. M. M.
2008A&A...487.1139R    Altcode: 2008arXiv0806.3863R
  Aims: X-ray emission is an important diagnostics to study magnetic
  activity in very low mass stars that are presumably fully convective and
  have an effectively neutral photosphere. <BR />Methods: We investigate
  an archival XMM-Newton observation of LHS 2065, an ultracool dwarf with
  spectral type M9. <BR />Results: We clearly detect LHS 2065 at soft
  X-ray energies in less than 1 h effective exposure time above the 3σ
  level with the PN and MOS1 detector. No flare signatures are present and
  we attribute the X-ray detection to quasi-quiescent activity. From the
  PN data we derived an X-ray luminosity of L<SUB>X</SUB> = 2.2 ± 0.7
  × 10<SUP>26</SUP> erg/s in the 0.3-0.8 keV band, the corresponding
  activity level of log L_X/L_bol≈ -3.7 points to a rather active
  star. Indications for minor variability and possible accompanying
  spectral changes are present, however the short exposure time and poor
  data quality prevents a more detailed analysis. <BR />Conclusions: LHS
  2065 is one of the coolest and least massive stars that emits X-rays
  at detectable levels in quasi-quiescence, implying the existence of
  a corona.

---------------------------------------------------------
Title: Multiwavelength observations of a giant flare on CN
    Leonis. I. The chromosphere as seen in the optical spectra
Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M.; Reiners, A.
2008A&A...487..293F    Altcode: 2008arXiv0807.2025F
  Aims: Flares on dM stars contain plasmas at very different temperatures
  and thus affect a wide wavelength range in the electromagnetic
  spectrum. While the coronal properties of flares are studied best in
  X-rays, the chromosphere of the star is observed best in the optical
  and ultraviolet ranges. Therefore, multiwavelength observations are
  essential to study flare properties throughout the atmosphere of
  a star. <BR />Methods: We analysed simultaneous observations with
  UVES/VLT and XMM-Newton of the active M5.5 dwarf CN Leo (Gl 406)
  exhibiting a major flare. The optical data cover the wavelength
  range from 3000 to 10 000 Å. <BR />Results: From our optical data,
  we find an enormous wealth of chromospheric emission lines occurring
  throughout the spectrum. We identify a total of 1143 emission lines,
  out of which 154 are located in the red arm, increasing the number of
  observed emission lines in this red wavelength range by about a factor
  of 10. Here we present an emission line list and a spectral atlas. We
  also find line asymmetries for H I, He I, and Ca II lines. For the
  last, this is the first observation of asymmetries due to a stellar
  flare. During the flare onset, there is additional flux found in the
  blue wing, while in the decay phase, additional flux is found in the
  red wing. We interpret both features as caused by mass motions. In
  addition to the lines, the flare manifests itself in the enhancement
  of the continuum throughout the whole spectrum, inverting the normal
  slope for the net flare spectrum. <P />Based on observations collected
  at the European Southern Observatory, Paranal, Chile, 077.D-0011(A)
  and on observations obtained with XMM-Newton, an ESA science mission
  with instruments and contributions directly funded by ESA Member States
  and NASA. Full Table [see full text] is only available in electronic
  form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/293

---------------------------------------------------------
Title: Neon and oxygen in low activity stars: towards a coronal
    unification with the Sun
Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F.
2008A&A...486..995R    Altcode: 2008arXiv0806.0775R
  Aims: The disagreement between helioseismology and a recent downward
  revision of solar abundances has resulted in a controversy about the
  true neon abundance of the Sun and other stars. We study the coronal
  Ne/O abundance ratios of nearby stars with modest activity levels
  and investigate a possible peculiarity of the Sun among the stellar
  population in the solar neighborhood. <BR />Methods: We used XMM-Newton
  and Chandra data from a sample of weakly and moderately active stars
  with log L_X/L_bol ≈ -5...-7 to investigate high-resolution X-ray
  spectra to determine their coronal Ne/O abundance ratio. We applied
  two linear combinations of strong emission lines from neon and oxygen,
  as well as a global-fitting method for each dataset, and crosschecked
  the derived results. <BR />Results: The sample stars show a correlation
  between their Ne/O ratio and stellar activity in the sense that stars
  with a higher activity level show a higher Ne/O ratio. We find that
  the Ne/O abundance ratio decreases in our sample from values of Ne/O
  ≈ 0.4 down to Ne/O ≈ 0.2-0.25, suggesting that ratios similar to
  “classical” solar values, i.e. Ne/O ≈0.2, are rather common
  for low activity stars. A significantly enhanced neon abundance
  as the solution to the solar modeling problem seems unlikely. <BR
  />Conclusions: From the coronal Ne/O abundance ratios, we find no
  indications of a peculiar position of the Sun among other stars. The
  solar behavior appears to be rather typical of low activity stars.

---------------------------------------------------------
Title: Vibration measurements at the Large Binocular Telescope (LBT)
Authors: Brix, M.; Naranjo, V.; Beckmann, U.; Bertram, R.; Bertram,
   T.; Brynnel, J.; Egner, S.; Gaessler, W.; Herbst, T. M.; Kuerster,
   M.; Rohloff, R. R.; Rost, S.; Schmidt, J.
2008SPIE.7012E..2JB    Altcode: 2008SPIE.7012E..89B
  The Large Binocular Telescope (LBT) is an international collaboration,
  with partners from the United States, Italy, and Germany. The telescope
  uses two 8.4-meter diameter primary mirrors to produce coherent images
  with the combined light along with adaptive optics. The correct
  functioning and optimum performance of the LBT is only achieved
  through a complex interplay of various optical elements. Each
  of these elements has its individual vibration behaviour, and
  therefore it is necessary to characterize the LBT as a distributed
  vibration system. LINC-NIRVANA is a near-infrared image-plane beam
  combiner with advanced, multi-conjugated adaptive optics, and one
  of the interferometric instruments for the Large Binocular Telescope
  (LBT). Its spectral range goes from 1.0 μm to 2.45 μm, therefore the
  requirements for the maximum optical path difference (OPD) are very
  tight (λ/10 ~ 100 nm). <SUP>1</SUP> During two dedicated campaigns,
  the vibrations introduced by various actuators were measured using
  different kinds of sensors. The evaluation of the obtained data allows
  an estimation of the frequency and amplitude contributions of the
  individual vibration sources. Until the final state of the LBT is
  reached, further measurements are necessary to optimize and adapt
  the equipment and also the investigated elements and configurations
  (measurement points and directions, number of sensors, etc.).

---------------------------------------------------------
Title: Pinpointing a stellar X-ray flare using XMM-Newton and VLT/UVES
Authors: Wolter, Uwe; Ness, J. U.; Robrade, J.; Schmitt, J. H. M. M.
2008xru..confE..13W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The SOPHIE spectrograph: design and technical key-points for
    high throughput and high stability
Authors: Perruchot, S.; Kohler, D.; Bouchy, F.; Richaud, Y.; Richaud,
   P.; Moreaux, G.; Merzougui, M.; Sottile, R.; Hill, L.; Knispel, G.;
   Regal, X.; Meunier, J. -P.; Ilovaisky, S.; Le Coroller, H.; Gillet, D.;
   Schmitt, J.; Pepe, F.; Fleury, M.; Sosnowska, D.; Vors, P.; Mégevand,
   D.; Blanc, P. E.; Carol, C.; Point, A.; Laloge, A.; Brunel, J. -C.
2008SPIE.7014E..0JP    Altcode: 2008SPIE.7014E..17P
  SOPHIE is a new fiber-fed echelle spectrograph in operation
  since October 2006 at the 1.93-m telescope of Observatoire de
  Haute-Provence. Benefiting from experience acquired on HARPS (3.6-m
  ESO), SOPHIE was designed to obtain accurate radial velocities (~3 m/s
  over several months) with much higher optical throughput than ELODIE (by
  a factor of 10). These enhanced capabilities have actually been achieved
  and have proved invaluable in asteroseismology and exoplanetology. We
  present here the optical concept, a double-pass Schmidt echelle
  spectrograph associated with a high efficiency coupling fiber system,
  and including simultaneous wavelength calibration. Stability of
  the projected spectrum has been obtained by the encapsulation of
  the dispersive components in a constant pressure tank. The main
  characteristics of the instrument are described. We also give some
  technical details used in reaching this high level of performance.

---------------------------------------------------------
Title: Magnetic fields in A-type stars associated with X-ray emission
Authors: Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.
2008A&A...484..479S    Altcode:
  A common explanation for the observed X-ray emission of A-type stars
  is the presence of a hidden late-type companion. While this assumption
  can be shown to be correct in some cases, a number of lines of evidence
  suggests that low-mass companions cannot be the correct cause for the
  observed activity in all cases. A model explains the X-ray emission
  for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this
  paper we test whether this theoretical model is able to explain the
  observed X-ray emission. We present the observations of 13 A-type
  stars that have been associated with X-ray emission detected by
  ROSAT. To determine the mean longitudinal magnetic field strength we
  measured the circular polarization in the wings of the Balmer lines
  using FORS1. Although the emission of those objects that possess
  magnetic fields fits the prediction of the Babel and Montmerle model,
  not all X-ray detections are connected to the presence of a magnetic
  field. Additionally, the measured magnetic fields do not correlate with
  the X-ray luminosity. Accordingly, the magnetically confined wind shock
  model cannot explain the X-ray emission from all the presented stars.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Emission lines in a giant flare
    of CN Leo (Fuhrmeister+, 2008)
Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M.; Reiners, A.
2008yCat..34870293F    Altcode:
  We present an extensive identification catalog of chromospheric emission
  lines in the optical range for a giant flare on CN Leonis. The data were
  obtained with ESO's Kueyen telescope equipped with the UVES spectrograph
  on May, 19th/20th, 2006. The instrument was operated in dichroic mode
  (spectral coverage from 3050 to 3860 and from 6400 to 10080{AA}). We
  tabulate measured wavelength, line flux and FWHM for every line and
  also provide the rest wavelength from the Moore catalog which was used
  for identification (Moore, 1972, Nat. Stand. Ref. Data. Ser., 40). Few
  lines were identified with the NIST database. <P />(1 data file).

---------------------------------------------------------
Title: The Fainting of α Centauri A, Resolved
Authors: Ayres, Thomas R.; Judge, Philip G.; Saar, Steven H.; Schmitt,
   Jürgen H. M. M.
2008ApJ...678L.121A    Altcode:
  Beginning in 2003, XMM-Newton snapshot monitoring of α Centauri (HD
  128620, 128621: G2 V, K1 V) documented a steady fading of the primary's
  X-ray corona, which had all but disappeared by early 2005. The steep
  decline in L<SUB>X</SUB> was at odds with the previous two decades
  of high-energy measurements, which showed only modest variability of
  the Sun-like star. A Chandra LETGS spectrum in 2007 June, however,
  fully resolved the source of the curious X-ray darkening: a depletion
  of plasma above ~2 MK had substantially depressed the line spectrum
  where the XMM-Newton response peaks (λ lesssim 30 Å), even though the
  overall coronal luminosity, dominated by longer wavelength emissions,
  had declined only slightly. This is reminiscent of the Sun's magnetic
  activity cycle, where the 2-3 MK active regions of sunspot maximum
  give way to the spatially pervasive, but cycle-independent, 1 MK
  "quiet corona" at minimum. This emphasizes that any discussion of
  cyclic coronal variability in low-activity stars will depend crucially
  on the energy coverage of the measurements.

---------------------------------------------------------
Title: Magnetic fields in X-ray emitting A-type stars
Authors: Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.
2008CoSka..38..447S    Altcode: 2007arXiv0712.0173S
  A common explanation for the observed X-ray emission of A-type stars is
  the presence of a hidden late-type companion. While this hypothesis
  can be shown to be correct in some cases, there is also evidence
  suggesting that low-mass companions cannot be the proper cause for
  the observed X-ray activity in all cases. Babel and Montmerle (1997)
  presented a theoretical framework to explain the X-ray emission from
  magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. We test whether
  this theoretical model is capable of explaining the observed X-ray
  emissions. We present observations of 13 A-type stars that have been
  associated with X-ray emission detected by ROSAT. To determine the
  mean longitudinal magnetic field strength we measured the circular
  polarization in the wings of the Balmer lines using FORS 1. Although the
  emission of those objects with magnetic fields does fit the prediction
  of the Babel &amp; Montmerle model, not all X-ray detections are related
  to the presence of a magnetic field. Additionally, the strengths of
  magnetic fields do not correlate with the X-ray luminosity and thus
  the magnetically-confined wind shock model cannot explain the X-ray
  emission from all investigated stars.

---------------------------------------------------------
Title: The Temperature Dependence of the Pointing Model of the
    Hamburg Robotic Telescope
Authors: Mittag, M.; Hempelmann, A.; Gonzalez-Perez, J. N.; Schmitt,
   J. H. M. M.
2008PASP..120..425M    Altcode:
  A first pointing model was determined during commissioning of the
  Hamburg Robotic Telescope in 2005 September. Pointing accuracy better
  than 3″ was achieved with this model in those days. However, in the
  course of the rest of 2005, a systematic increase of the telescope
  mispointing mainly in azimuth was observed having been suggested a
  strong dependence on ambient air temperature. We therefore checked
  this relation between temperature and pointing accuracy by systematic
  observations targeted on temperature. We made 16 pointing-model
  estimates during the year 2006 and correlated the model parameters with
  temperature. While most of the parameters are either not correlated or
  merely weakly correlated with temperature we find a clear temperature
  dependence of a misalignment of the optical axis with the telescope
  tube. We suggest that the M3 mounting is responsible for this.

---------------------------------------------------------
Title: Where are the hot ion lines in classical T Tauri stars formed?
Authors: Günther, H. M.; Schmitt, J. H. M. M.
2008A&A...481..735G    Altcode: 2008arXiv0801.2273G
  Context: Classical T Tauri stars (hereafter CTTS) show a plethora
  of in- and outflow signatures in a variety of wavelength bands. <BR
  />Aims: In order to constrain gas velocities and temperatures, we
  analyse the emission in the hot ion lines. <BR />Methods: We use
  all available archival FUSE spectra of CTTS to measure the widths,
  fluxes and shifts of the detected hot ion lines and complement these
  data with HST/GHRS and HST/STIS data. We present theoretical estimates
  of the temperatures reached in possible emission models such as jets,
  winds, disks and accretion funnels and look for correlations with X-ray
  lines and absorption properties. <BR />Results: We find line shifts in
  the range from -170 km s<SUP>-1</SUP> to +100 km s<SUP>-1</SUP>. Most
  linewidths exceed the stellar rotational broadening. Those CTTS with
  blue-shifted lines also show excess absorption in X-rays. CTTS can be
  distinguished from main sequence (hereafter MS) stars by their large
  ratio of the O VII to O VI luminosities. <BR />Conclusions: No single
  emission mechanism can be found for all objects. The properties of
  those stars with blue-shifted lines are compatible with an origin in
  a shock-heated dust-depleted outflow.

---------------------------------------------------------
Title: A coronal explosion on the flare star CN Leonis
Authors: Schmitt, J. H. M. M.; Reale, F.; Liefke, C.; Wolter, U.;
   Fuhrmeister, B.; Reiners, A.; Peres, G.
2008A&A...481..799S    Altcode: 2008arXiv0801.3752S
  We present simultaneous high-temporal and high-spectral resolution
  observations of the nearby flare star CN Leo at optical and soft X-ray
  wavelengths. During our observing campaign a major flare occurred,
  raising the star's instantaneous energy output by almost three orders
  of magnitude. The flare shows the often observed impulsive behavior,
  with a rapid rise and slow decay in the optical and a broad soft X-ray
  maximum about 200 seconds after the optical flare peak. In addition
  to this usually encountered flare phenomenology we find, however, an
  extremely short (τ _dec ≈ 2 s) soft X-ray peak, which is very likely
  of thermal, rather than nonthermal nature and coincides temporally
  with the optical flare peak. While at hard X-ray energies nonthermal
  bursts are routinely observed on the Sun at flare onset, thermal
  soft X-ray bursts on time scales of seconds have never been observed
  in a solar, nor stellar context. Time-dependent, one-dimensional
  hydrodynamic modeling of this event requires an extremely short energy
  deposition time scale τ _dep of a few seconds to reconcile theory with
  observations, thus suggesting that we are witnessing the results of
  a coronal explosion on CN Leo. Thus the flare on CN Leo provides the
  opportunity to observationally study the physics of the long-sought
  “micro-flares” thought to be responsible for coronal heating.

---------------------------------------------------------
Title: XMM-Newton: The next decade for cool star research
Authors: Schmitt, J. H. M. M.
2008AN....329..206S    Altcode:
  In this article I will highlight selected results from XMM-Newton
  observations of stellar coronae, emphasizing the specific XMM-Newton
  capabilities in terms of high-resolution spectroscopy, its long-look
  capability and its optical monitor. I will focus on results on
  “normal", cool stars and present science areas hitherto largely
  unexploired by XMM-Newton.

---------------------------------------------------------
Title: The E ring in the vicinity of Enceladus. I. Spatial
    distribution and properties of the ring particles
Authors: Kempf, S.; Beckmann, U.; Moragas-Klostermeyer, G.; Postberg,
   F.; Srama, R.; Economou, T.; Schmidt, J.; Spahn, F.; Grün, E.
2008Icar..193..420K    Altcode:
  Saturn's diffuse E ring is the largest ring of the Solar System and
  extends from about 3.1R (Saturn radius R=60,330 km) to at least
  8R encompassing the icy moons Mimas, Enceladus, Tethys, Dione,
  and Rhea. After Cassini's insertion into her saturnian orbit in
  July 2004, the spacecraft performed a number of equatorial as
  well as steep traversals through the E ring inside the orbit of
  the icy moon Dione. Here, we report about dust impact data we
  obtained during 2 shallow and 6 steep crossings of the orbit of
  the dominant ring source—the ice moon Enceladus. Based on impact
  data of grains exceeding 0.9 μm we conclude that Enceladus feeds a
  torus populated by grains of at least this size along its orbit. The
  vertical ring structure at 3.95R agrees well with a Gaussian with a
  full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM
  at 3.95R is due to three-body interactions of dust grains ejected
  by Enceladus' recently discovered ice volcanoes with the moon during
  their first orbit. We find that particles with initial speeds between
  225 and 235 m s <SUP>-1</SUP> relative to the moon's surface dominate
  the vertical distribution of dust. Particles with initial velocities
  exceeding the moon's escape speed of 207 m s <SUP>-1</SUP> but slower
  than 225 m s <SUP>-1</SUP> re-collide with Enceladus and do not
  contribute to the ring particle population. We find the peak number
  density to range between 16×10 m and 21×10 m for grains larger 0.9
  μm, and 2.1×10 m and 7.6×10 m for grains larger than 1.6 μm. Our
  data imply that the densest point is displaced outwards by at least
  0.05R with respect of the Enceladus orbit. This finding provides direct
  evidence for plume particles dragged outwards by the ambient plasma. The
  differential size distribution n(s)ds∼sd-qds for grains &gt;0.9 μm
  is described best by a power law with slopes between 4 and 5. We also
  obtained dust data during ring plane crossings in the vicinity of the
  orbits of Mimas and Tethys. The vertical distribution of grains &gt;0.8
  μm at Mimas orbit is also well described by Gaussian with a FWHM of
  ∼5400 km and displaced southwards by ∼1200 km with respect to the
  geometrical equator. The vertical distribution of ring particles in the
  vicinity of Tethys, however, does not match a Gaussian. We use the FWHM
  values obtained from the vertical crossings to establish a 2-dimensional
  model for the ring particle distribution which matches our observations
  during vertical and equatorial traversals through the E ring.

---------------------------------------------------------
Title: Doppler imaging an X-ray flare on the ultrafast rotator BO
    Mic. A contemporaneous multiwavelength study using XMM-Newton and VLT
Authors: Wolter, U.; Robrade, J.; Schmitt, J. H. M. M.; Ness, J. U.
2008A&A...478L..11W    Altcode: 2007arXiv0712.0899W
  We present an analysis of contemporaneous photospheric, chromospheric
  and coronal structures on the <P />highly active K-dwarf star BO Mic
  (Speedy Mic). We concentrate on a moderate flare that we localize in
  the stellar <P />atmosphere and study its energetics, size and thermal
  behavior. <P />The analysis is based on strictly <P />simultaneous
  X-ray, UV- and optical observations carried out by XMM-Newton and
  the VLT. <P />We use Doppler imaging and related methods <P />for the
  localization of features. <P />Based on X-ray spectroscopy we study
  the <P />the coronal plasma in and outside the flare. <P />The flare
  emits in X-rays and UV, but is not detected in white light; <P />it
  is located at intermediate latitude between an extended spot group
  and <P />the weakly spotted pole. We estimate its height to be below
  0.4 stellar radii, making it <P />clearly distinct in longitude and
  height from the prominences found <P />about two stellar radii above
  the surface. <P />In contrast to BO Mic's photospheric brightness, <P
  />neither its chromospheric nor its X-ray emission show a pronounced
  <P />rotational modulation. <P />Based on observations obtained at
  the ESO VLT Obs. No. 078.D-0865(A) and XMM-Newton Obs. Id. 0400460301
  and 0400460401. Doppler imaging line profiles are only available in
  electronic form at http://www.aanda.org

---------------------------------------------------------
Title: A Catalog of Halo Coronal Mass Ejections from SOHO
Authors: Gopalswamy, N.; Yashiro, S.; Michalek, G.; Xie, H.; Vourlidas,
   A.; Howard, R. A.; Schmidt, J.
2007AGUFMSH51A0262G    Altcode:
  Halo coronal mass ejections (CMEs) have become one of the important
  subsets of CMEs, thanks to the extensive data accumulated by the Solar
  and Heliospheric Observatory (SOHO) mission. Halo CMEs are inherently
  more energetic on the average, so they are important for producing
  geomagnetic storms and solar energetic particle events (Gopalswamy et
  al., 2007). One of the key aspects halo CMEs is their source location,
  which decides whether the halo is symmetric or not. When the source
  is closer to the solar limb, the CMEs tend to become asymmetric halos
  or partial halos. Halos with their sources nearer to the limb are also
  the fastest (because of projection effects), but are less geoeffective
  due to the glancing blow they deliver to Earth's magnetosphere. Thus,
  providing source information to all halo CMEs in a separate catalog is
  useful information in selecting candidate geoeffective CMEs. The second
  important quantity of CMEs is the space speed, which decides the arrival
  time of CMEs at Earth. Since CMEs change their width during their early
  evolution, it is not easy to correct for the projection effects from the
  geometry of eruption. One way of correcting for projection effects is to
  use a cone model for CMEs. There are at least 3 published cone models,
  all of them seem to remove the projection effects reasonably well. The
  geometric parameters of the cone are determined using different methods
  in each model. Here we use the model by Xie et al. (2004), which has
  generally less restrictions, and hence can be applied to more number
  of halos. This paper provides a brief description of the catalog of
  halo CMEs, which resides at the CDAW Data Center, NASA Goddard Space
  Flight Center, Greenbelt, MD. The catalog enhances the existing data
  services at the CDAW Data Center, which participates in the Virtual
  Solar Observatory. Work supported by NASA's Virtual Observatories for
  Solar and Space Physics Data Program. References Gopalswamy et al.,
  JGR, 112, A06112, doi:10.1029/2006JA012149, 2007 Xie et al. JGR, 109,
  A03109, doi: 10.1029/2003JA010226, 2004

---------------------------------------------------------
Title: The vertical structure of Saturn's E ring as a consequence
    of the Enceladus plumes
Authors: Kempf, S.; Beckmann, U.; Postberg, F.; Srama, R.; Schmidt, J.
2007AGUFM.P21B0543K    Altcode:
  Before Cassini dynamical models of Saturn's E ring failed to reproduce
  its peculiar vertical vertical structure as seen by earth-bound
  observations. After the discovery of an active ice-volcanism in the
  south pole area of Saturn's icy moon Enceladus the relevance of these
  particles for the vertical ring structure was rapidly realised. However,
  ad-hoc models for the plume particle injection predict too a small
  vertical ring thickness and overestimate the amount of the injected
  dust. Here we report on numerical simulations of the injection of
  plume particles into the ring. Furthermore, we performed long-term
  simulations to investigate how the initial dynamical properties of
  the injected dust determines the vertical ring profile. We show that
  only plume particles with injection speeds in excess of an effective
  escape speed larger than the three body escape speed of Enceladus are
  populating the E ring. The resulting vertical ring profile matches the
  measurements by the Cassini dust instrument CDA and is consistent with
  edge-on images obtained by the Cassini camera ISS.

---------------------------------------------------------
Title: VizieR Online Data Catalog: X-ray emission from A-type stars
    (Schroeder+, 2007)
Authors: Schroeder, C.; Schmitt, J. H. M. M.
2007yCat..34750677S    Altcode:
  Being fully radiative, stars of spectral type A are not expected to
  harbor magnetic dynamos and hence such stars are not expected to produce
  X-ray emission. Indeed, while the X-ray detection rate of such stars in
  X-ray surveys is low, it is not zero and some of the brighter A-type
  stars have been detected on different occasions and with different
  instruments. To study systematically the puzzle of the X-ray emitting
  A-type stars, we carried out an X-ray study of all A-type stars listed
  in the Bright Star Catalogue using the ROSAT public data archive. We
  found a total of 312 bright A-type stars positionally associated with
  ROSAT X-ray sources; we analyzed the X-ray light curves as well as
  searched for evidence of RV variations to identify possible late-type
  companions producing the X-ray emission. In this paper we present a
  list of X-ray active A-type stars, including the collected data about
  multiplicity, X-ray luminosity and spectral peculiarities. <P />(2
  data files).

---------------------------------------------------------
Title: X-ray emission from A-type stars
Authors: Schröder, C.; Schmitt, J. H. M. M.
2007A&A...475..677S    Altcode:
  Being fully radiative, stars of spectral type A are not expected to
  harbor magnetic dynamos and hence such stars are not expected to produce
  X-ray emission. Indeed, while the X-ray detection rate of such stars in
  X-ray surveys is low, it is not zero and some of the brighter A-type
  stars have been detected on different occasions and with different
  instruments. To study systematically the puzzle of the X-ray emitting
  A-type stars, we carried out an X-ray study of all A-type stars listed
  in the Bright Star Catalogue using the ROSAT public data archive. We
  found a total of 312 bright A-type stars positionally associated with
  ROSAT X-ray sources; we analyzed the X-ray light curves as well as
  searched for evidence of RV variations to identify possible late-type
  companions producing the X-ray emission. In this paper we present a
  list of X-ray active A-type stars, including the collected data about
  multiplicity, X-ray luminosity and spectral peculiarities. <P />Tables
  2 et 3 are only available in electronic form at http://www.aanda.org

---------------------------------------------------------
Title: Wakes Induced By Small Moons In A Planetary Ring
Authors: Seiss, Martin; Salo, H.; Spahn, F.; Schmidt, J.; Sremcevic,
   M.; Albers, N.
2007DPS....39.1003S    Altcode: 2007BAAS...39Q.426S
  S-shaped brightness variations, called propellers, have recently been
  discovered in Saturn's A-ring (Tiscareno et al 2006). These structures
  were predicted by Spahn and Sremcevic (2000) to be caused by tiny moons
  (&lt; 500 meter in diameter) embedded in the rings. These features
  reflect the interplay between moonlet gravity and ring-particle
  collitions. Since all propellers so far were observed in backlit
  geometry, it is not completely clear if the enhanced brightness
  corresponds to the density depleted (gaps) or denser regions (adjacent
  wakes) of the propeller. <P />Results of local box simulations are
  presented. We investigate the azimuthal extent of the moonlet induced
  wake crests for different model parameters, especially its dependence
  on the moonlet size. For very small moonlets the wakes start to damp
  after about two wake cycles near the point of streamline crossing
  in the non-collisional model. We emphasise the differences in the
  azimuthal scaling behaviour between the moonlet-wakes and gaps and
  discuss the results in the context of recent observations.

---------------------------------------------------------
Title: Release of Impact-debris in Perturbed Ring Regions: Dynamical
    and Photometric Simulations.
Authors: Salo, Heikki J.; Schmidt, J.
2007DPS....39.1002S    Altcode: 2007BAAS...39..425S
  The typical impact velocities in Saturn's rings are of the order of
  a <P />few mm/sec. In such a small velocity regime the larger ring
  particles are likely to be covered by a regolith of smaller particles
  (see Albers &amp; Spahn 2005). However, in the perturbed ring regions
  (e.g. due to satellite density waves, strong self-gravity wakes,
  viscous overstabilities) the impact velocities may be sufficiently
  enhanced to lead to a significant release of free regolith debris. We
  explore this possibility via local N-body simulations, keeping track
  of the distribution of debris-producing fast impacts. The potential
  photometric consequences of such free debris are checked with Monte
  Carlo simulations.

---------------------------------------------------------
Title: X-rays from RU Lupi: accretion and winds in classical T
    Tauri stars
Authors: Robrade, J.; Schmitt, J. H. M. M.
2007A&A...473..229R    Altcode: 2007arXiv0706.2879R
  Context: Low-mass stars are known to exhibit strong X-ray emission
  during their early evolutionary stages. This also applies to classical
  T Tauri stars (CTTS), whose X-ray emission differs from that of
  main-sequence stars in a number of aspects. <BR />Aims: We study
  the specific case of RU Lup, a well known accreting and wind-driving
  CTTS. In comparison with other bright CTTS we study possible signatures
  of accretion and winds in their X-ray emission. <BR />Methods: Using
  three XMM-Newton observations of RU Lup, we investigate its X-ray
  properties and their generating mechanisms. High-resolution X-ray
  spectra of RU Lup and other CTTS are compared to main-sequence stars. We
  examine the presence of a cool plasma excess and enhanced plasma density
  in relation to X-rays from accretion shocks and investigate anomalous
  strong X-ray absorption and its connection to winds or circumstellar
  material. <BR />Results: We find three distinguishable levels of
  activity among the observations of RU Lup. While no large flares are
  present, this variability is clearly of magnetic origin due to the
  corresponding plasma temperatures of around 30 MK; in contrast the cool
  plasma component at 2-3 MK is quite stable over a month, resulting in
  a drop of average plasma temperature from 35 MK down to 10 MK. Density
  analysis with the O VII triplet indicates high densities in the cool
  plasma, suggesting accretion shocks to be a significant contributor
  to the soft X-ray emission. No strong overall metal depletion is
  observed, with Ne being more abundant than Fe, that is at solar value,
  and especially O. Excess emission at 6.4 keV during the more active
  phase suggest the presence of iron fluorescence. Additionally RU Lup
  exhibits an extraordinary strong X-ray absorption, incompatible with
  estimates obtained at optical and UV wavelengths. Comparing spectra
  from a sample of main-sequence stars with those of accreting stars we
  find an excess of cool plasma as evidenced by lower O VIII/O VII line
  ratios in all accreting stars. High density plasma appears to be only
  present in low-mass CTTS, while accreting stars with intermediate masses
  (≳2~M<SUB>⊙</SUB>) have lower densities. <BR />Conclusions: In
  all investigated CTTS the characteristics of the cooler X-ray emitting
  plasma are influenced by the accretion process. We suspect different
  accretion rates and amounts of funnelling, possibly linked to stellar
  mass and radius, to be mainly responsible for the different properties
  of their cool plasma component. The exceptional X-ray absorption in
  RU Lup and other CTTS is probably related to the accretion flows and
  an optically transparent wind emanating from the star or the disk.

---------------------------------------------------------
Title: Moonlets In Saturn's A Ring: Fragments Of A Shattered Moon?
Authors: Sremcevic, Miodrag; Schmidt, J.; Salo, H.; Seiss, M.; Spahn,
   F.; Albers, N.
2007DPS....39.1004S    Altcode: 2007BAAS...39R.426S
  The question on the origin and evolution of planetary rings is one
  of the prominent unsolved problems of planetary sciences with direct
  implications for planet-forming processes in preplanetary disks. The
  recent detection of four propeller-shaped features in Saturn's A
  ring (Tiscareno et al., 2006, Nature) proved the presence of large
  boulder-sized moonlets in the rings. Their very existence favours a
  ring creation in a catastrophic disruption of an icy satellite rather
  than a co-genetic origin together with Saturn, since bodies of this
  size can hardly have accreted inside the rings. Here, we report the
  detection of eight new propellers in an Cassini ISS NAC image sequence
  that covers the complete A ring, indicating embedded moonlets with
  radii between 30m-70m. We show that the moonlets found so far are
  concentrated in a narrow 3,000km wide annulus at 130,000km distance
  from Saturn. Compared to the main population of smaller ring particles
  (s&lt;10m) such embedded moonlets have a short lifetime with respect to
  meteoroid impacts. Thus, they are likely the remnants of a shattered
  ring-moon of Pan-size or larger, locally contributing new material to
  the older ring. This supports the theory of catastrophic ring creation
  in a collisional cascade.

---------------------------------------------------------
Title: Dynamics of Enceladus South Pole Ejecta
Authors: Makuch, Martin; Schmidt, J.; Spahn, F.
2007DPS....39.1010M    Altcode: 2007BAAS...39..427M
  The Saturnian moon Enceladus was recently found to be a potent source
  of gas and dust particles. There was an active region observed on the
  south pole of Enceladus with jets spraying material in the space. The
  ejected dust particles are considered to be the main source of the faint
  E ring. <P />In our work we investigate the long-term dynamics of icy
  particles ejected from the south pole of Enceladus. The motion of the
  ejected grains, being subject to many perturbation forces, strongly
  depends on particle properties (e.g. size, charge etc.). We study the
  resulting spatial distribution of particles in the E ring. Primarily
  we focus on the structure of the ring in the vicinity of Enceladus. <P
  />In our study we also concentrated on processes limiting particle
  lifetime. These are mainly collisions with Enceladus and other Saturnian
  satellites or main ring, as well as the sputtering of particles by
  plasma ions bombardment. Modeling the equilibrium between particle
  sources and sinks we found the size distribution which is expected to
  be observed in the E ring.

---------------------------------------------------------
Title: EDGE: explorer of diffuse emission and gamma-ray burst
    explosions
Authors: den Herder, J. W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia,
   J.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.;
   Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.;
   Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.; Campana,
   S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri,
   A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano,
   G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari,
   L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi,
   M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.;
   Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.;
   Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; In't Zand, J.;
   Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de
   Korte, P. A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu,
   R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon,
   D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.;
   Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien,
   P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.;
   Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.;
   Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra,
   R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmidtt, J.; Scioritino, S.;
   Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri,
   G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.;
   Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.;
   Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N.
2007SPIE.6688E..05D    Altcode: 2007SPIE.6688E...4D
  How structures of various scales formed and evolved from the
  early Universe up to present time is a fundamental question of
  astrophysics. EDGE will trace the cosmic history of the baryons from the
  early generations of massive stars by Gamma-Ray Burst (GRB) explosions,
  through the period of galaxy cluster formation, down to the very low
  redshift Universe, when between a third and one half of the baryons are
  expected to reside in cosmic filaments undergoing gravitational collapse
  by dark matter (the so-called warm hot intragalactic medium). In
  addition EDGE, with its unprecedented capabilities, will provide key
  results in many important fields. These scientific goals are feasible
  with a medium class mission using existing technology combined with
  innovative instrumental and observational capabilities by: (a) observing
  with fast reaction Gamma-Ray Bursts with a high spectral resolution (R
  ~ 500). This enables the study of their (star-forming) environment and
  the use of GRBs as back lights of large scale cosmological structures;
  (b) observing and surveying extended sources (galaxy clusters, WHIM)
  with high sensitivity using two wide field of view X-ray telescopes
  (one with a high angular resolution and the other with a high spectral
  resolution). The mission concept includes four main instruments:
  a Wide-field Spectrometer with excellent energy resolution (3 eV at
  0.6 keV), a Wide- Field Imager with high angular resolution (HPD 15")
  constant over the full 1.4 degree field of view, and a Wide Field
  Monitor with a FOV of <SUP>1</SUP>/ <SUB>4</SUB> of the sky, which
  will trigger the fast repointing to the GRB. Extension of its energy
  response up to 1 MeV will be achieved with a GRB detector with no
  imaging capability. This mission is proposed to ESA as part of the
  Cosmic Vision call. We will briefly review the science drivers and
  describe in more detail the payload of this mission.

---------------------------------------------------------
Title: eROSITA
Authors: Predehl, P.; Andritschke, R.; Bornemann, W.; Bräuninger,
   H.; Briel, U.; Brunner, H.; Burkert, W.; Dennerl, K.; Eder, J.;
   Freyberg, M.; Friedrich, P.; Fürmetz, M.; Hartmann, R.; Hartner,
   G.; Hasinger, G.; Herrmann, S.; Holl, P.; Huber, H.; Kendziorra, E.;
   Kink, W.; Meidinger, N.; Müller, S.; Pavlinsky, M.; Pfeffermann,
   E.; Rohé, C.; Santangelo, A.; Schmitt, J.; Schwope, A.; Steinmetz,
   M.; Strüder, L.; Sunyaev, R.; Tiedemann, L.; Vongehr, M.; Wilms, J.;
   Erhard, M.; Gutruf, S.; Jugler, D.; Kampf, D.; Graue, R.; Citterio,
   O.; Valsecci, G.; Vernani, D.; Zimmerman, M.
2007SPIE.6686E..17P    Altcode: 2007SPIE.6686E..36P
  eROSITA (extended ROentgen Survey with an Imaging Telescope Array) will
  be one of three main instruments on the Russian new Spectrum-RG mission
  which is planned to be launched in 2011. The other two instruments are
  the wide field X-ray monitor Lobster (Leicester University, UK) and
  ART-XC (IKI, Russia), an X-ray telescope working at higher energies
  up to 30 keV. A fourth instrument, a micro-calorimeter built by a
  Dutch-Japanese-US collaboration is also in discussion. eROSITA is
  aiming primarily for the detection of 50-100 thousands Clusters of
  Galaxies up to redshifts z &gt; 1 in order to study the large scale
  structure in the Universe and to test cosmological models including
  the Dark Energy. For the detection of clusters, a large effective area
  is needed at low energies (&lt; 2 keV). Therefore, eROSITA consists
  of seven Wolter-I telescope modules. Each mirror module contains 54
  Wolter-I shells with an outer diameter of 360 mm. In the focus of each
  mirror module, a framestore pn-CCD with a size of 3cm × 3cm provides
  a field of view of 1° in diameter. The mission scenario comprises a
  wide survey of the complete extragalactic area and a deep survey in
  the neighborhood of the galactic poles. Both are accomplished by an
  all-sky survey with an appropriate orientation of the rotation axis
  of the satellite in order to achieve the deepest exposures in the
  neighborhood of the galactic poles. A critical issue is the cooling
  of the cameras which need a working temperature of -80°C. This will
  be achieved passively by a system of two radiators connected to the
  cameras by variable conductance heat pipes.

---------------------------------------------------------
Title: Enceladus' Plume: Formation and dynamics of icy Grains
Authors: Schmidt, J.; Brilliantov, N. V.; Spahn, F.; Kempf, S.
2007epsc.conf..808S    Altcode:
  We investigate scenarios for the condensation of ice grains in
  water gas vents at Enceladus' south pole. The gas emanating from the
  polar region escapes from hot subsurface regions to vacuum through
  a system of cracks. By expansion the gas becomes over-saturated and
  condensation sets in. We present a thermodynamically consistent model
  for condensation and particle growth in channels of variable cross
  section, which couples the hydrodynamic equations for the gas with
  thermodynamic equations for the phase transition. For the nucleation
  rates we use relations following from experimental data for water vapor
  at various temperatures and values of the over-saturation. Averaging
  over plausible ranges of parameters of the channel geometry our model
  yields a distribution of particle sizes ranging from a fraction of a
  micron to a few microns. From a probabilistic model for collisions of
  the grains with channel walls and ballistic acceleration in the dilute
  gas stream we derive a speed-size distribution of the grains. Our
  model predicts that large grains can be considerably slower than the
  the satellite's escape velocity, which is in turn smaller than the
  gas speed. Thus, our result can explain why a large fraction of the
  grains falls back to the surface. The sizedistribution is consistent
  with particle-sizes of the E-ring inferred from photometry and in-situ
  measurements. We use the speed-size distribution as input for dynamical
  models of grains ejected into Enceladus' Hill sphere from the south
  polar area. In this way we construct an effective model plume and
  investigate its stratification and brightness.

---------------------------------------------------------
Title: Enceladus' Plume: Formation and dynamics of icy Grains
Authors: Schmidt, J.; Brilliantov, N. V.; Spahn, F.; Kempf, S.
2007epsc.conf..809S    Altcode:
  We investigate scenarios for the condensation of ice grains in
  water gas vents at Enceladus' south pole. The gas emanating from the
  polar region escapes from hot subsurface regions to vacuum through
  a system of cracks. By expansion the gas becomes over-saturated and
  condensation sets in. We present a thermodynamically consistent model
  for condensation and particle growth in channels of variable cross
  section, which couples the hydrodynamic equations for the gas with
  thermodynamic equations for the phase transition. For the nucleation
  rates we use relations following from experimental data for water vapor
  at various temperatures and values of the over-saturation. Averaging
  over plausible ranges of parameters of the channel geometry our model
  yields a distribution of particle sizes ranging from a fraction of a
  micron to a few microns. From a probabilistic model for collisions of
  the grains with channel walls and ballistic acceleration in the dilute
  gas stream we derive a speed-size distribution of the grains. Our
  model predicts that large grains can be considerably slower than the
  the satellite's escape velocity, which is in turn smaller than the
  gas speed. Thus, our result can explain why a large fraction of the
  grains falls back to the surface. The sizedistribution is consistent
  with particle-sizes of the E-ring inferred from photometry and in-situ
  measurements. We use the speed-size distribution as input for dynamical
  models of grains ejected into Enceladus' Hill sphere from the south
  polar area. In this way we construct an effective model plume and
  investigate its stratification and brightness.

---------------------------------------------------------
Title: Icy dust condensation in random channels: Application to
    Enceladus' Plume.
Authors: Brilliantov, N. V.; Schmidt, J.; Spahn, F.
2007epsc.conf..800B    Altcode:
  We investigate scenarios for the condensation of ice grains in
  water gas vents at Enceladus' south pole. The gas emanating from the
  polar region escapes from hot subsurface regions to vacuum through
  a system of cracks. By expansion the gas becomes over-saturated
  and condensation sets in. We present a thermodynamically consistent
  model for condensation and particle growth in channels of variable
  cross section. It couples the hydrodynamic equations for the gas with
  thermodynamic equations for the phase transition. For the nucleation
  rates we use relations following from experimental data for water vapor
  at various temperatures and degrees of the over-saturation.We consider
  cracks or channel with random geometry which are characterized by the
  ratio of the most wide to the most narrow cross section and by the
  minimal characteristic length at which the channel width alters. This
  parameters are assumed to be uniformly distributed. Averaging over
  plausible ranges of parameters of the channel geometry, our model
  yields a distribution of particle sizes ranging from a fraction of
  a micron to a few microns. The observed particle size distribution
  qualitatively corresponds to a power law.

---------------------------------------------------------
Title: Dynamics of Enceladus south pole ejecta
Authors: Makuch, M.; Schmidt, J.; Spahn, F.
2007epsc.conf..798M    Altcode:
  The Saturnian moon Enceladus was recently found to be a potent source
  of gas and dust particles. There was an active region observed on the
  south pole of Enceladus with jets spraying material in the space. The
  ejected dust particles are considered to be the main source of the
  faint E ring. In our work we investigate the long-term dynamics of
  icy particles ejected from the south pole of Enceladus. The motion
  of the ejected grains, being subject to many perturbation forces,
  strongly depends on particle properties (e.g. size, charge etc.).We
  study the resulting spatial distribution of particles in the E
  ring. Primarily we focus on the structure of the ring in the vicinity
  of Enceladus. In our study we also concentrated on processes limiting
  particle lifetime. These are mainly collisions with Enceladus and
  other Saturnian satellites or main ring, as well as the sputtering of
  particles by plasma ions bombardment. Modeling the equilibrium between
  particle sources and sinks we found the size distribution which is
  expected to be observed in the E ring.

---------------------------------------------------------
Title: Dynamical and photometric modeling of dense planetary rings
Authors: Salo, H.; Schmidt, J.
2007epsc.conf..781S    Altcode:
  Planetary rings, with their extremely rich multi-scale structure,
  offer an ideal laboratory for studies of gravitational dynamics and
  collective viscous behavior in nonlinear systems. In addition, their
  observable photometric characteristics provide stringent constraints for
  the physical properties of individual, unseen particles. To facilitate
  such studies, we use a combination of dynamical N-body simulations and
  photometric Monte Carlo ray tracing. In local scales the ring's energy
  balance is governed by the collisional dissipation and the viscous gain
  of energy from systematic orbital rotation. Details of the resulting
  steady-state (velocity dispersion, geometric thickness, viscosity)
  depend on the elastic properties and the internal density of particles,
  as well as on their size distribution. Depending on the implied
  viscosity versus surface density behavior, the ring can be either stable
  or unstable against the growth of local perturbations. In particular,
  if the particles are rather inelastic, as indicated by the Bridges
  et al. (1984, Nature 309,333) laboratory measurements, then dense
  rings can be viscously overstable (Salo et al. 2001, Icarus 153, 295,
  Schmidt et al. 2001, Icarus 153, 316; see also Schmit and Tscharnuter
  1995, Icarus 115, 304, Spahn et al. 2000, Icarus 145, 657): this might
  relate to the axisymmetric structures observed in Saturn's A and B rings
  (see Schmidt et al. and Marouf, Abstracts presented in this conference;
  Porco et al. 2005, Science 307, 1226). Another important diagnostic for
  the local velocity dispersion is provided by the longstudied azimuthal
  brightness variations in both the A and the inner B ring (French et
  al. 2007, Icarus in press). The non-axisymmetric gravity wakes (Salo
  1992, Nature 359, 619; see also Julian and Toomre 1966, ApJ 146, 810)
  provide a natural explanation for these observations (Salo et al. 2004,
  Icarus 170, 70), indicating that the ring is close to threshold of
  gravitational instability. Such wakes also imply longitude-dependence
  of ring optical depth, as verified by recent Cassini RSS (Marouf et
  al. 2005, Eos Trans. AGU, 86, P31D-04), UVIS (Colwell et al. 2006,
  GRL 33, 7201, Colwell et al. 2007, Icarus in press), and VIMS (Hedman
  et al. 2007, AJ 133, 2624) occultations. Even in the uniform regions
  not displaying wakes, the overall photometric properties (dependence
  of ring brightness on elevation and phase angle) can constrain the
  local volume filling factor and the relative vertical distributions of
  different sized particles (Salo and Karjalainen 2003, Icarus 164, 428;
  see also Dones et al. 1993, Icarus 105, 184). This talk will address two
  specific topics in detail: 1) the correspondence between the simulated
  N-body gravity wakes and the idealized geometric models which have
  been used in interpreting the UVIS and VIMS occultations, and 2)
  the expected photometric characteristics of overstable ring regions.

---------------------------------------------------------
Title: Viscous Overstability in Saturn's Rings
Authors: Schmidt, J.; Salo, H.; Colwell, J.
2007epsc.conf..783S    Altcode:
  Viscous overstability is physically an oscillatory instability of
  viscous Keplerian shear flow. For given conditions, the interplay of
  viscous stress and coriolis force leads to the formation of waves in
  the density and velocity profiles of the disk. Overstability has been
  suggested to generate small scale structure on the 100m length scale in
  dense planetary rings, such as Saturn's A and B rings. Now strong hints
  at such small scale structure are indeed found in recent Cassini data
  from RSS (Marouf, talk presented in this session) and UVIS (Colwell
  et al, Icarus 2007), which cannot be attributed to gravitational
  wakes. Moreover, very regular structure of km length is evident in the
  high resolution ISS images from the SOI phase in the B ring (Porco et
  al 2005) and in the A ring. Overstability seems a promising candidate
  to explain these data. But further analysis and modeling is needed
  to verify the idea. In this talk we review basic aspects of viscous
  overstability from theory and simulations. Of principal interest for
  comparison to observation is the role of self-gravity. On the one
  hand self-gravity might induce gravitational wakes on top of regular
  overstable waves. On the other hand self-gravity puts an upper limit
  on the dominant wavelength of overstability, an effect that was already
  noted by Schmit and Tscharnuter 1999.

---------------------------------------------------------
Title: VizieR Online Data Catalog: XMM observations of Cha I dark
    cloud (Robrade+, 2007)
Authors: Robrade, J.; Schmitt, J. H. M. M.
2007yCat..34610669R    Altcode:
  Low-mass stars are known to exhibit strong X-ray emission during the
  early stages of evolution. Nearby star forming regions are ideal targets
  to study the X-ray properties of pre-main sequence stars. Aims. A
  deep XMM-Newton exposure is used to investigate X-ray properties of
  the pre-main sequence population of the Chamaeleon I star forming
  region. The northern-eastern fringe of the Chameleon I dark cloud was
  observed with XMM-Newton, revisiting a region observed with ROSAT 15
  years ago. Centered on the extended X-ray source CHXR 49 we are able
  to resolve it into three major contributing components and to analyse
  their spectral properties. Furthermore, the deep exposure allows not
  only the detection of numerous, previously unknown X-ray sources,
  but also the investigation of variability and the study of the X-ray
  properties for the brighter targets in the field. We use EPIC spectra,
  to determine X-ray brightness, coronal temperatures and emission
  measures for these sources, compare the properties of classical and
  weak-line T Tauri stars and make a comparison with results from the
  ROSAT observation. <P />(1 data file).

---------------------------------------------------------
Title: Wakes induced by small moons in a planetary ring
Authors: Seiß, M.; Salo, H.; Spahn, F.; Schmidt, J.; Sremcevic, M.
2007epsc.conf..778S    Altcode:
  S-shaped density structures, called propellers, have been discoverd
  recently in Saturn's A-ring by the Cassini-ISS cameras (Tiscareno et
  al. 2006). These structures have been predicted by Spahn and Sremcevic
  (2000) to be caused by tiny moons (&lt; 100 meter in diameter) embedded
  in Saturn's rings. This feature reflects the interplay between moonlet
  gravity and ring-particle collitions. So far, it is not satisfiable
  explained if the observed pattern represents the two depleted gaps or
  their adjacent wakes. Results of local box simulations are presented. We
  investigate the azimuthal extent of the wake crests for different model
  parameters, especially its dependence on the moonlet size. The wakes
  start to damp after around two wake cycles agreeing with the start
  of streamline crossing in the non-collisional model.We emphasise the
  differences in the azimuthal scaling behaviour between the wakes and
  gaps and discuss the results in the context of recent observations.

---------------------------------------------------------
Title: Swift X-Ray Observations of Classical Novae
Authors: Ness, J. -U.; Schwarz, G. J.; Retter, A.; Starrfield, S.;
   Schmitt, J. H. M. M.; Gehrels, N.; Burrows, D.; Osborne, J. P.
2007ApJ...663..505N    Altcode: 2007astro.ph..3286N
  The new γ-ray burst (GRB) mission Swift has obtained pointed
  observations of several classical novae in outburst. We analyzed
  all the observations of classical novae from the Swift archive up to
  2006 June 30. We analyzed usable observations of 12 classical novae
  and found 4 nondetections, 3 weak sources, and 5 strong sources. This
  includes detections of two novae exhibiting spectra resembling those of
  supersoft X-ray binary source spectra (SSS), implying ongoing nuclear
  burning on the white dwarf surface. With these new Swift data, we add
  to the growing statistics of the X-ray duration and characteristics
  of classical novae.

---------------------------------------------------------
Title: Simultaneous XMM-Newton and VLT/UVES observations of the
    flare star CN Leonis
Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M.
2007A&A...468..221F    Altcode:
  Aims:We present simultaneous observations with VLT/UVES and XMM-Newton
  of the active M5.5 dwarf CN Leo (Gl 406). The data were gathered
  during three half nights in May 2004 and December 2005, and they
  cover quiescent states, as well as flaring activity. Our main aim
  is to derive coronal properties from X-ray data and to compare these
  to results from the optical Fe XIII line. <BR />Methods: We studied
  simultaneously-measured coronal and chromospheric parameters of CN Leo
  as determined from the XMM-Newton X-ray data, the forbidden optical
  coronal Fe XIII line at 3388 Å, and various optical chromospheric
  emission lines. <BR />Results: We find that different activity
  levels of CN Leo can be traced as well in X-rays as with the Fe XIII
  line. Moreover, the Fe XIII line flux is in good agreement with a
  prediction using the differential emission measure as determined from
  the X-ray spectrum and Fe atomic data. We also present coronal X-ray
  properties for the quiescent and flaring states of CN Leo. During a
  flare two ion{He}{ii} transition region lines are also detected in
  the optical data. <P />Based on observations collected at the European
  Southern Observatory, Paranal, Chile, 076.D-0024(A) and on observations
  obtained with XMM-Newton, an ESA science mission with instruments and
  contributions directly funded by ESA Member States and NASA.

---------------------------------------------------------
Title: Rapid magnetic flux variability on the flare star CN Leonis
Authors: Reiners, A.; Schmitt, J. H. M. M.; Liefke, C.
2007A&A...466L..13R    Altcode: 2007astro.ph..3172R
  We present UVES/VLT observations of the nearby flare star CN Leo
  covering the Wing-Ford FeH band near 1 μm with high spectral
  resolution. Some of the FeH absorption lines in this band are
  magnetically sensitive and allow a measurement of the mean magnetic flux
  on CN Leo. Our observations, covering three nights separated by 48 hours
  each, allow a clear detection of a mean magnetic field of Bf ≈ 2.2
  kG. The differential flux measurements show a night-to-night variability
  with extremely high significance. Finally, our data strongly suggest
  magnetic flux variability on time scales as low as 6 hours in line with
  chromospheric variability. <P />Based on observations <P />collected
  at the European Southern Observatory, Paranal, Chile, 077.D-0011.

---------------------------------------------------------
Title: X-ray emission from classical T Tauri stars: accretion shocks
    and coronae?
Authors: Günther, H. M.; Schmitt, J. H. M. M.; Robrade, J.; Liefke, C.
2007A&A...466.1111G    Altcode: 2007astro.ph..2579G
  Context: Classical T Tauri stars (CTTS) are surrounded by actively
  accreting disks. According to current models material falls along the
  magnetic field lines from the disk with more or less free-fall velocity
  onto the star, where the plasma heats up and generates X-rays. <BR
  />Aims: We want to quantitatively explain the observed high energy
  emission and measure the infall parameters from the data. Absolute
  flux measurements allow to calculate the filling factor and the mass
  accretion rate. <BR />Methods: We use a numerical model of the hot
  accretion spot and solve the conservation equations. <BR />Results:
  A comparison to data from XMM-Newton and Chandra shows that our
  model reproduces the main features very well. It yields for TW Hya a
  filling factor of 0.3% and a mass accretion rate 2×10<SUP>-10</SUP>
  M<SUB>⊙</SUB> {yr}<SUP>-1</SUP>. <P />Based on observations
  obtained with XMM-Newton, an ESA science mission with instruments and
  contributions directly funded by ESA Member States and NASA.

---------------------------------------------------------
Title: The Virtual Space Physics Observatory as a Portal to the
    Heliophysics Great Observatory
Authors: Roberts, D. A.; King, J.; Schmidt, J.; Cornwell, C.;
   McGuire, R.
2007AGUSMSM23A..01R    Altcode:
  NASA's Virtual Space Physics Observatory (VSPO), now sponsored by the
  Space Physics Data Facility at GSFC, is an operational portal to most
  of the frequently accessed Space Physics datasets from current and
  past missions. It includes access to many relevant solar physics data
  products as well as some services (e.g., SSCWeb-based "quick orbits"
  and links to CCMC). The Web interface to the underlying gateway allows
  a user to search for data using criteria such as observation time,
  measurement type, resolution, observatory/spacecraft, and region of
  space observed. It is now directly based on the SPASE data model and
  can harvest new product descriptions and make both the descriptions
  and the products available immediately. VSPO provides direct links to
  data services such that plots and data subsets from CDAWeb or files
  from the Virtual Solar Observatory can be obtained directly through
  the VSPO interface. Direct machine access to datasets allows other
  applications to use VSPO to find and load data. Discipline specific VxOs
  and data center based data systems can provide greater functionality
  for particular datasets, but VSPO provides a simple route to a broad
  range of "Heliphysics Great Observatory" products. It is thus useful
  for a range of tasks, inlcuding browsing data from many missions and
  geophysical/solar indices, obtaining quick downloads of data and plots,
  finding the location of spacecraft, and determining what products are
  available in a given region of space. We will continue to add products,
  harvesting data descriptions from VxOs and working on obtaining access
  to as nearly a complete set of Space and Solar Phsyics datasets as
  possible.

---------------------------------------------------------
Title: Discovery of variable X-ray absorption in the cTTS AA Tauri
Authors: Schmitt, J. H. M. M.; Robrade, J.
2007A&A...462L..41S    Altcode:
  We present XMM-Newton X-ray and UV observations of the classical T
  Tauri star AA Tau covering almost two rotational periods where P_rot
  ∼ 8.5 days. Clear, but uncorrelated variability is found at both
  wavebands. The variability observed at ~2100 Å follows the previously
  known optical period. Spectral analysis of the X-ray data results in
  significant variability in the X-ray absorption such that the times
  of maximal X-ray absorption and UV extinction coincide. Placing the
  coronal emission in regions at low up to moderate magnetic latitudes
  and attribution of the variable X-ray absorption to accretion curtains
  and/or the disk warp provides a consistent physical picture. However,
  the derived X-ray absorption and optical extinction at times of maximal
  optical/UV brightness, i.e. outside occultation, are difficult to
  reconcile, requiring additional absorption in a disk wind or a peculiar
  dust grain distribution.

---------------------------------------------------------
Title: A deep XMM-Newton X-ray observation of the Chamaeleon I
    dark cloud
Authors: Robrade, J.; Schmitt, J. H. M. M.
2007A&A...461..669R    Altcode: 2006astro.ph.10778R
  Context: Low-mass stars are known to exhibit strong X-ray emission
  during the early stages of evolution. Nearby star forming regions
  are ideal targets to study the X-ray properties of pre-main sequence
  stars. <BR />Aims: A deep XMM-Newton exposure is used to investigate
  X-ray properties of the pre-main sequence population of the Chamaeleon
  I star forming region. <BR />Methods: The northern-eastern fringe of
  the Chameleon I dark cloud was observed with XMM-Newton, revisiting a
  region observed with ROSAT 15 years ago. Centered on the extended X-ray
  source CHXR 49 we are able to resolve it into three major contributing
  components and to analyse their spectral properties. Furthermore, the
  deep exposure allows not only the detection of numerous, previously
  unknown X-ray sources, but also the investigation of variability
  and the study of the X-ray properties for the brighter targets
  in the field. We use EPIC spectra, to determine X-ray brightness,
  coronal temperatures and emission measures for these sources, compare
  the properties of classical and weak-line T Tauri stars and make a
  comparison with results from the ROSAT observation. <BR />Results:
  X-ray properties of T Tauri stars in Cha I are presented. The XMM-Newton
  images resolve some previously blended X-ray sources, confirm several
  possible ones and detect many new X-ray targets, resulting in the most
  comprehensive list with 71 X-ray sources in the northern Cha I dark
  cloud. The analysis of medium resolution spectra shows an overlapping
  distribution of spectral properties for classical and weak-line T Tauri
  stars, with the X-ray brighter stars having hotter coronae and a higher
  L_X/L_bol ratio. X-ray luminosity correlates with bolometric luminosity,
  whereas the L_X/L_bol ratio is slightly lower for the classical T Tauri
  stars. Large flares as well as a low iron and a high neon abundance
  are found in both types of T Tauri stars. Abundance pattern, plasma
  temperatures and emission measure distributions during quiescent phases
  are attributed to a high level of magnetic activity as the dominant
  source of their X-ray emission.

---------------------------------------------------------
Title: Modelling the X-rays of classical T Tauri stars. The binary
    CTTS V4046 Sgr
Authors: Günther, H. M.; Schmitt, J. H. M. M.
2007MmSAI..78..359G    Altcode:
  Three classical T Tauri stars (CTTS) have so far been observed with
  high S/N and high resolution X-ray spectroscopy yet: <ASTROBJ>TW
  Hya</ASTROBJ>, <ASTROBJ>BP Tau</ASTROBJ> and <ASTROBJ>V4046
  Sgr</ASTROBJ>. Their spectra indicate high densities and it is
  still a matter of some debate if they are exceptional objects or
  representatives of their class. V4046 Sgr is a close binary consisting
  of two K stars with typical signatures of CTTS. It has been observed
  with Chandra/HETGS for 150 ks. The helium-like triplets of Si, Ne and
  O are clearly detected. Using a 1-dim, stationary, non-equilibrium
  model of the post-shock accretion zone, the emission observed can be
  decomposed in accretion and coronal components. The accretion with
  its comparatively high densities explains unusual f/i ratios in the
  triplets, the coronal component explains the high energy emission at
  temperatures, which cannot be reached in an accretion shock.

---------------------------------------------------------
Title: Magnetic field variations and a giant flare Multiwavelength
    observations of CN Leo
Authors: Liefke, C.; Reiners, A.; Schmitt, J. H. M. M.
2007MmSAI..78..258L    Altcode:
  The M5.5 dwarf CN Leo has been observed simultaneously with XMM-Newton
  and VLT/UVES on three nights in May 2006. Nightly variations of its
  magnetic field are deduced from FeH lines in the UVES spectra. A giant
  flare occurred and is covered in total by all instruments. Time-resolved
  spectroscopy in X-rays traces the development of temperature and
  emission measure of the coronal flaring plasma. Coronal densities log
  n_e &gt; 12 are derived during the flare from the O VII triplet. The
  UVES spectra simultaneously trace the behavior of chromospheric
  and transition region plasmas. Large increases in the fluxes of
  chromospheric emission lines are accompanied by a strong enhancement
  of the continuum level. The Balmer lines show strong broadening and
  lines of the hydrogen Paschen series are observed in emission during
  the flare.

---------------------------------------------------------
Title: X-ray activity cycles in stellar coronae
Authors: Robrade, J.; Schmitt, J. H. M. M.; Hempelmann, A.
2007MmSAI..78..311R    Altcode: 2007astro.ph..2520R
  We present updated results from the ongoing XMM-Newton monitoring
  program of moderately active, solar-like stars to investigate stellar
  X-ray activity cycles; here we report on the binary systems alpha Cen
  A/B and 61 Cyg A/B. For 61 Cyg A we find a coronal X-ray cycle which
  clearly reflects the chromospheric activity cycle and is in phase
  with a ROSAT campaign performed in the 1990s. 61 Cyg A is the first
  example of a persistent coronal cycle observed on a star other than the
  Sun. The changes of its coronal properties during the cycle resemble the
  solar behaviour. The coronal activity of 61 Cyg B is more irregular,
  but also follows the chromospheric activity. Long-term variability
  is also present on alpha Cen A and B. We find that alpha Cen A, a G2
  star very similar to our Sun, fainted in X-rays by at least an order
  of magnitude during the observation program. This behaviour has never
  been observed before on alpha Cen A, but is rather similar to the X-ray
  behaviour of the Sun. The X-ray emission of the alpha Cen system is
  dominated in our observations by alpha Cen B, which might also have
  an activity cycle indicated by a significant fainting since 2005.

---------------------------------------------------------
Title: Coronal activity cycles in 61 Cygni
Authors: Hempelmann, A.; Robrade, J.; Schmitt, J. H. M. M.; Favata,
   F.; Baliunas, S. L.; Hall, J. C.
2006A&A...460..261H    Altcode:
  Context: .While the existence of stellar analogues of the 11 years
  solar activity cycle is proven for dozens of stars from optical
  observations of chromospheric activity, the observation of clearly
  cyclical coronal activity is still in its infancy.<BR /> Aims: .In
  this paper, long-term X-ray monitoring of the binary 61 Cygni is used
  to investigate possible coronal activity cycles in moderately active
  stars. <BR /> Methods: .We are monitoring both stellar components, a K5V
  (A) and a K7V (B) star, of 61 Cyg with XMM-Newton. The first four years
  of these observations are combined with ROSAT HRI observations of an
  earlier monitoring campaign. The X-ray light curves are compared with
  the long-term monitoring of chromospheric activity, as measured by the
  Mt.Wilson CaII H+K S-index. <BR /> Results: .Besides the observation
  of variability on short time scales, long-term variations of the X-ray
  activity are clearly present. For 61 Cyg A we find a coronal cycle
  which clearly reflects the well-known and distinct chromospheric
  activity cycle. The changes of coronal properties during the cycle
  resemble the solar behaviour. The coronal activity of 61 Cyg B also
  follows the chromospheric variability, although a pronounced sinusoidal
  chromospheric cycle of large amplitude is not noticeable. This is also
  reflected in the XMM-Newton observations with a rather complex long-term
  variability during that time.<BR /> Conclusions: .61 Cyg A is the
  first star where a persistent coronal activity cycle has been observed.

---------------------------------------------------------
Title: Simultaneous optical and X-ray observations of a giant flare
    on the ultracool dwarf LP 412-31
Authors: Stelzer, B.; Schmitt, J. H. M. M.; Micela, G.; Liefke, C.
2006A&A...460L..35S    Altcode: 2006astro.ph.10582S
  Cool stars are known to produce flares probably as a result of
  the magnetic reconnection in their outer atmospheres. We present
  simultaneous XMM-Newton optical V band and X-ray observations of the
  M8 dwarf LP 412-31. During the observation a giant flare occurred, with
  an optical amplitude of 6 mag and total energy of 3 × 10<SUP>32</SUP>
  erg in both the V band and soft X-rays. Both flare onset and flare decay
  were completely covered in both wavebands with a temporal resolution
  of 20 s, allowing determination of the flare time scales, as well
  as a study of the temperature evolution of the flaring plasma. The
  data are consistent with an impulsive energy release followed by
  radiative cooling without any further energy release during the decay
  phase. Our analysis suggests that the optical flare originates from a
  small fraction of the surface of LP 412-31, while the characteristic
  scale size of the flaring X-ray plasma is of the order of the stellar
  radius or larger. The absence of any small-scale variability in the
  light curve suggests a non-standard flare number energy distribution.

---------------------------------------------------------
Title: X-ray accretion signatures in the close CTTS binary V4046
    Sagittarii
Authors: Günther, H. M.; Liefke, C.; Schmitt, J. H. M. M.; Robrade,
   J.; Ness, J. -U.
2006A&A...459L..29G    Altcode: 2006astro.ph.10121G
  We present Chandra HETGS observations of the classical T Tauri star
  (CTTS) <ASTROBJ>V4046 Sgr</ASTROBJ>. The He-like triplets of O VII,
  Ni IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya
  and BP Tau, the forbidden lines of O VII and Ne IX are weak compared
  to the intercombination line, indicating high plasma densities in the
  X-ray emitting regions. The Si XIII triplet, however, is within the
  low-density limit, in agreement with the predictions of the accretion
  funnel infall model with an additional stellar corona. V4046 Sgr
  is the first close binary exhibiting these features. Together with
  previous high-resolution X-ray data on <ASTROBJ>TW Hya</ASTROBJ> and
  <ASTROBJ>BP Tau</ASTROBJ>, and in contrast to <ASTROBJ>T Tau</ASTROBJ>,
  now three out of four CTTS show evidence of accretion funnels.

---------------------------------------------------------
Title: On the origin of the X-ray emission from Herbig Ae/Be stars
Authors: Stelzer, B.; Micela, G.; Hamaguchi, K.; Schmitt, J. H. M. M.
2006A&A...457..223S    Altcode: 2006astro.ph..5590S
  Context: .Herbig Ae/Be stars are fully radiative and not expected
  to support dynamo action analogous to their convective lower-mass
  counterparts, the T Tauri stars. Alternative X-ray production
  mechanisms, related to stellar winds or star-disk magnetospheres have
  been proposed, but their X-ray emission has remained a mystery. <BR />
  Aims: .A study of Herbig Ae/Be stars' global X-ray properties (such
  as detection rate, luminosity, temperature, variability), helps to
  constrain the emission mechanism by comparison to other types of stars,
  e.g. similar-age but lower-mass T Tauri stars, similar-mass but more
  evolved main-sequence A- and B-type stars, and with respect to model
  predictions. <BR /> Methods: .We performed a systematic search for
  Chandra archival observations of Herbig Ae/Be stars. The superior
  spatial resolution of this satellite with respect to previous X-ray
  instrumentation has allowed us to also examine the possible role
  of late-type companions in generating the observed X-rays. <BR />
  Results: .In the total sample of 17 Herbig Ae/Be stars, 8 are resolved
  from X-ray emitting faint companions or other unrelated X-ray bright
  objects within 10”. The detection fraction of Herbig Ae/Be stars is
  76%, but decreases to 35% if all emission is attributed to further
  known and unresolved companions. The spectral analysis confirms the
  high X-ray temperatures (∼ 20 MK) and large range of fractional X-ray
  luminosities (log{L_x/L_*}) of this class derived from earlier studies
  of individual objects. <BR /> Conclusions: .Radiative winds are ruled
  out as an emission mechanism on the basis of the high temperatures. The
  X-ray properties of Herbig Ae/Be stars are not vastly different
  from those of their late-type companion stars (if such are known),
  nor from other young late-type stars used for comparison. Therefore,
  either a similar kind of process takes place in both classes of objects,
  or there must be as yet undiscovered companion stars.

---------------------------------------------------------
Title: The coronal Ne/O abundance of α Centauri
Authors: Liefke, C.; Schmitt, J. H. M. M.
2006A&A...458L...1L    Altcode: 2006astro.ph..9015L
  Recent improvements in the modeling of solar convection and line
  formation led to downward revisions of the solar photospheric abundances
  of the lighter elements, which in turn led to changes in the radiative
  opacity of the solar interior and hence to conflicts with the solar
  convection zone depth as inferred from helioseismic oscillation
  frequencies. An increase of the solar Ne/O abundance to values as
  observed for nearby stars has been proposed as a solution. Because of
  the absence of strong neon lines in the optical, neon abundances are
  difficult to measure and the correct solar and stellar Ne/O abundances
  are currently hotly debated. Based on X-ray spectra obtained with
  XMM-Newton, we determine a reference value of Ne/O for the inactive,
  solar-like star α Cen (primarily α Cen B, which is the dominant
  component in X-rays), with three independent, line-based methods,
  using differential emission measure reconstruction and an emission
  measure-independent method. Our results indicate a value of ≈ 0.28 for
  A_Ne/A<SUB>O</SUB> in α Cen, approximately twice the value measured
  for the Sun, but still below the average value obtained for other
  stars. The low Ne/O abundance of the Sun is peculiar when compared to
  α Cen and other stars; our results emphasize the necessity to obtain
  more and accurate Ne/O abundance measurements of low activity stars.

---------------------------------------------------------
Title: V723 Cassiopeiae
Authors: Ness, J. -U.; Starrfield, S.; Schwarz, G.; Vanlandingham,
   K.; Wagner, R. M.; Lyke, J.; Woodward, C. E.; Lynch, D. K.; Krautter,
   J.; Schmitt, J. H. M. M.
2006CBET..598....1N    Altcode:
  J.-U. Ness and S. Starrfield, Arizona State University; G. Schwarz
  and K. Vanlandingham, West Chester University; R. M. Wagner, LBT
  Observatory; J. Lyke, Keck Observatory; C. E. Woodward, University
  of Minnesota; D. K. Lynch, The Aerospace Corporation; J. Krautter,
  Landessternwarte, Heidelberg-Koenigstuhl; and J. H. M. M. Schmitt,
  Hamburger Sternwarte, report that four SWIFT XRT observations of V723
  Cas (N Cas 1995) were obtained between July 9 and July 14 with a total
  observing time of 8700 seconds. The count rate was significantly lower
  than in January 2006 (cf. IAUC 8676), declining from 0.024 counts/s
  in January to 0.01-0.015 counts/s in July. A Kolmogorov-Smirnov test
  detected no significant difference in the spectral shape when compared
  to the super-soft-source spectrum that was seen in January. Preliminary
  blackbody models reveal the same effective temperature of 312000
  K but a smaller radius. The estimated bolometric luminosity is 2
  x 10**(36) erg/s. The AAVSO visual light curve over the past year
  shows no significant long-term variability exceeding about 0.2 mag
  (V approximately 15.0) although short-term fluctuations appear to
  be present. This nova has been bright for more than 11 years, and
  the lower luminosity may indicate that nuclear burning on the white
  dwarf is turning off. Alternatively, renewed accretion is maintaining
  a permanent, albeit highly variable, super-soft-source state. Continued
  monitoring at all wavelengths is urged.

---------------------------------------------------------
Title: Alpha Centauri and the Abundance of Neon in the Local Universe
Authors: Schmitt, J.
2006hrxs.confE..36S    Altcode:
  The solar neon abundance has recently become the focal point of
  some controversy involving photospheric abundance determinations
  using sophisticated 3D-modelling of the solar photosphere and
  helioseismology. Lowering the solar oxygen abundance lowers the opacity
  in the solar interior and destroys the remarkably good agreement
  between predicted and observed solar oscillations. An ad hoc increase
  in the solar Ne abundance would save the situation and the - from the
  point of view of helioseismology - required general enhancement of
  the cosmic neon abundance has been suggested to actually exist on the
  basis of high-resolution spectra of (mostly active) stars. I present the
  XMM-Newton RGS spectrum of the nearby low activity star Alpha Centauri
  with a specific analysis of its Ne/O abundance ratio, its connection
  to the solar neon abundance and the neon abundance of the local cosmos.

---------------------------------------------------------
Title: eROSITA
Authors: Predehl, P.; Hasinger, G.; Böhringer, H.; Briel, U.; Brunner,
   H.; Churazov, E.; Freyberg, M.; Friedrich, P.; Kendziorra, E.; Lutz,
   D.; Meidinger, N.; Pavlinsky, M.; Pfeffermann, E.; Santangelo, A.;
   Schmitt, J.; Schuecker, P.; Schwope, A.; Steinmetz, M.; Strüder,
   L.; Sunyaev, R.; Wilms, J.
2006SPIE.6266E..0PP    Altcode: 2006SPIE.6266E..19P
  eROSITA (extended ROentgen Survey with an Imaging Telescope Array) will
  be one out of three main instruments on the Russian new Spectrum-RG
  mission which will be launched in the timeframe 2010-2011 into an
  equatorial Low Earth Orbit. The other two instruments are the wide
  field X-ray monitor Lobster (Leicester University, UK) and ART (IKI,
  Russia), an X-ray concentrator based on a Kumakhov optics. eROSITA
  consists of seven Wolter-I telescope modules similar to the German
  mission ABRIXAS which failed in 1999 and ROSITA, a telescope which was
  planned to be installed on the International Space Station ISS. Unlike
  these, the eROSITA telescope modules will be extended by adding another
  27 mirror shells to the already existing ABRIXAS design. This will
  increase the effective area by a factor of ~5 at low energies. The
  additional shells do not contribute to the area at higher energies (
  &gt; 5 keV) due to the relative large grazing angles. Here we stay with
  the old ABRIXAS/ROSITA effective area. However, the primary scientific
  goal has changed since ABRIXAS: we are now aiming primarily for the
  detection of 50-100 thousands Clusters of Galaxies up to redshifts
  z &gt; 1 in order to study the large scale structure in the Universe
  and test cosmological models including the Dark Energy, which was not
  yet known at ABRIXAS times. For the detection of clusters, a large
  effective area is needed at low (&lt; 2 kev) energies. The mission
  scenario comprises a wide survey of the complete extragalactic area
  and a deep survey in the neighborhood of the Galactic Poles. Both are
  accomplished by an all-sky survey with a tilt of the rotation axis
  in order to shift the deepest exposures away from the ecliptic poles
  towards the galactic poles.

---------------------------------------------------------
Title: XMM-Newton X-ray spectroscopy of classical T Tauri stars
Authors: Robrade, J.; Schmitt, J. H. M. M.
2006A&A...449..737R    Altcode: 2006astro.ph..1234R
  We present results from a comparative study of XMM-Newton observations
  of four classical T Tauri stars (CTTS), namely <ASTROBJ>BP
  Tau</ASTROBJ>, <ASTROBJ>CR Cha</ASTROBJ>, <ASTROBJ>SU Aur</ASTROBJ>
  and <ASTROBJ>TW Hya</ASTROBJ>. In these objects coronal, i.e. magnetic,
  activity and as recently shown, magnetically funneled accretion are
  the processes likely to be responsible for the generation of X-ray
  emission. Variable X-ray emission with luminosities in the order of
  10<SUP>30</SUP> erg/s is observed for all targets. We investigate
  light curves as well as medium and high-resolution X-ray spectra
  to determine the plasma properties of the sample CTTS and to study
  the origin of their X-ray emission and its variability. The emission
  measure distributions and observed temperatures differ significantly
  and the targets are dominated either by plasma at high densities as
  produced by accretion shocks or by predominantly hotter plasma of
  coronal origin. Likewise the variability of the X-ray luminosity is
  found to be generated by both mechanisms. Cool plasma at high densities
  is found in all stars with detected O VII triplet emission, prevented
  only for SU Aur due to strong absorption. A general trend is present
  in the abundance pattern, with neon being at solar value or enhanced
  while oxygen, iron and most other metals are depleted, pointing to
  the presence of the inverse FIP effect in active coronae and possibly
  grain formation in evolved disks. We find that both accretion shocks
  and coronal activity contribute to the observed X-ray emission of
  the targets. While coronal activity is the dominant source of X-ray
  activity in the majority of the CTTS, the fraction for each process
  differs significantly between the individual objects.

---------------------------------------------------------
Title: X-ray Activity Cycles in Stellar Coronae
Authors: Robrade, J.; Schmitt, J. H. M. M.; Hempelmann, A.; Favata, F.
2006ESASP.604..105R    Altcode: 2006xru..conf..105R
  No abstract at ADS

---------------------------------------------------------
Title: "Propellers" in Saturns Rings? The missing Link?
Authors: Spahn, F.; Salo, H.; Schmidt, J.; Seiss, M.; Sremcevic, M.
2006epsc.conf..298S    Altcode:
  To date it is not clear how planetary rings have formed. Have they
  either accreted cogenetically with their central planet and its
  satellite system or has a catastrophic disruption of a parent body
  (satellite, comet) created these magnificent cosmic structures? Based
  upon dynamical arguments the former scenario would ab initio exclude the
  existence of boulders larger than a few 10 meters in diameter because
  they cannot stand the planet's tides and collisions. Consequently,
  if there were such moonlets with sizes between 50 meters up to
  few kilometers in diameter in the rings a strong argument pro the
  hypothesis of a "violent birth" of these cosmic disks would have
  been found! In order to improve or even enable the detectability of
  such moonlets, we have modeled structures created by such larger ring
  boulders. We derived a hydrodynamical model describing the combination
  of counteracting processes of gravitational scattering and nonlinear
  viscous diffusion. A formation of a "propeller-shaped" structure (Spahn
  &amp; Sremcevic; A&amp;A 358 (2000), 368) interfered with density
  wakes have been obtained which scale in radial direction with the Hill
  radius and azimuthally with the ratio of mass to viscosity of the ring
  material (Sremcevic et al.; MNRAS 337 (2002), 1139). The formation
  of the "propellers" flanked by density wakes have been confirmed by
  numerical particle simulations (Seiss et al. GRL 32 (2005)). These
  results have been used to search for small embedded satellites in
  Saturn's rings in the Cassini imaging data (ISS). Two kilometer sized
  moonlets have already been detected in Saturn's A ring - Pan and Daphnis
  - which both show all essential density features and scalings. However,
  these two isolated,large ring-boulders cannot serve yet as a proof
  for an extended size-distribution which is expected to result from
  a catastrophic disruption of an icy satellite. The detection of four
  "Propellers" pointing to moonlets of ca. 40 - 120 metres in size by
  Tiscareno et al. (Nature 440 (2006), 648; Spahn &amp; Schmidt, ibid,
  p. 614) seems to close the gap in the knowledge - providing a strong
  argument in favour of the "catastrophic disruption" origin scenario.

---------------------------------------------------------
Title: Dust Sources of Saturn's E Ring
Authors: Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.;
   Sremcevic, M.
2006epsc.conf..533S    Altcode:
  The recent detection of a dust plume at Enceladus' south pole sheds new
  light on the origin of the E ring of Saturn. The particles probably
  condense from gas vents escaping from a system of cracks covering
  the south pole that appears unusually hot in the Cassini infrared
  experiments. The main fraction of the E ring dust is created in these
  gas vents. Still, significant amounts of dust should originate from
  grains ejected by hypervelocity impacts of E ring particles (ERPs),
  or alternatively, of interplanetary dust grains (IDPs) on the Saturnian
  moons embedded in the E ring. We estimate the contributions of impactor
  -ejecta created dust at these various satellites in the ring, relative
  to the production rate of grains in the plume at Enceladus. Furthermore,
  we compare the amount of dust created by both projectile families -
  ERPs and IDPs - and predict that one can clearly discriminate between
  the ejecta raised by either projectile families in the data of the
  Cassini dust detector (CDA) collected at close flybys with the moons
  embedded in the E ring.

---------------------------------------------------------
Title: Dust Emission from Enceladus' South Pole: Cassini CDA
    Measurements and Modeling
Authors: Schmidt, J.; Brilliantov, N.; Spahn, F.; Kempf, S.
2006epsc.conf..606S    Altcode:
  Dust measurements with the Cassini Cosmic Dust Analyzer (CDA) during
  the flyby E11 with Enceladus in 2005 indicated a strongly enhanced
  dust production at the satellite's south pole. Moreover, in the south
  polar region other Cassini experiments identified an unusually hot
  surface temperature and water gas expanding from the satellite. It
  is believed, that this dust plume is the dominant source of Saturn's
  E-ring. Using the CDA data, our dynamic models of dust ejection from
  Enceladus can constrain the mass production rate of dust, the plume
  structure, and properties of the ejection mechanism. In particular, in
  our integrations we use distributions of particle sizes and velocities
  as starting conditions, which derive from a model of condensation of
  dust particles in a gas vent, which is presented in a talk given by
  N. Brilliantov in this session.

---------------------------------------------------------
Title: Quantitative model for the Enceladus plume
Authors: Brilliantov, N. V.; Schmidt, J.; Spahn, F.
2006epsc.conf..293B    Altcode:
  According to recent observations by the Cassini mission the anomalously
  hot south pole region of Enceladus is an abundant source of the
  water vapor and dust plumes seen by the spacecraft instruments. It is
  also believed that the fast particles of the plumes give the major
  contribution to the E-ring. We develop a quantitative model of the
  vapor and dust vent, which predicts the velocity of the gas, the size
  distribution of ice particles and their velocity distribution. The
  model allows to describe the structure of the plume, particle density
  in the plume and the size distribution of particles, contributing to
  the E-ring. The model uses a thermodynamic approach and is based on
  the following main presumptions: First, we postulate that the ice
  particles originate in a vapor stream which flows through cracks
  (channels) in the ice shield that covers Enceladus surface. The
  gas accelerating in the cracks expands into vacuum and becomes
  undercooled (oversaturated). Moving in a channel the gas achieves
  a constant velocity and density, corresponding to expansion of an
  ideal gas into vacuum. Second, we postulate that the gas stream may
  be considered as stationary, at least on the time scale of the plume
  observation. Moreover, we assume that at the bottom of the cracks,
  from where the vapor starts to expand it is in equilibrium with
  ice and water, that is, at the triple point. This fixes the density
  and speed of the vapor flux in the channels. The Reynolds number,
  estimated for a crack width ∼ 0.1 - 10 m, indicates that the flux
  might be turbulent. Third, we assume that the growth rate of grains
  condensed from the gas does not depend on their velocities, but only
  on the density and temperature of the vapor. Finally, we assume that
  particles hit the channel walls (due to the turbulent diffusion in the
  stream, or varying tilt of the channel walls) and loose their velocity
  upon collisions. These collisions with the walls are modeled as a
  random Poissonian process, parametrized by the mean time between the
  successive collisions. We solve the equation of motion for a growing
  particle in a stream for this model and average over all possible
  collision sequences of the particle with the walls. As a result we
  obtain analytical expressions for the particle size and velocity
  distributions. From these we numerically calculate the density
  distribution in the plume and the size distribution of particles
  escaping the satellite and feeding the E-ring.

---------------------------------------------------------
Title: X-ray Emission from Classical T Tauri Stars
Authors: Schmitt, J. H. M. M.
2006ESASP.604E...1S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Anomalous X-ray line ratios in the cTTS TW Hydrae
Authors: Ness, J. -U.; Schmitt, J. H. M. M.
2005A&A...444L..41N    Altcode: 2005astro.ph.10749N
  The cTTS TW Hya has been observed with high-resolution X-ray
  spectrometers. Previously found high densities inferred from He-like
  f/i triplets strongly suggested the detected X-ray emission to be
  dominated by an accretion shock. Because of their radiation field
  dependence He-like f/i ratios do not provide unambiguous density
  diagnostics. Here we present additional evidence for high densities
  from ratios of Fe xvii lines. Key Fe xvii line ratios in TW Hya deviate
  from theoretical expectations at low densities as well as from the
  same measurements in a large sample of stellar coronae. However, a
  quantitative assessment of densities is difficult because of atomic
  physics uncertainties. In addition, estimates of low optical depth in
  line ratios sensitive to resonance scattering effects also support a
  high-density emission scenario in the X-ray emitting regions of cTTS.

---------------------------------------------------------
Title: An X-ray emission-line spectrum of Nova V382Velorum 1999
Authors: Ness, J. -U.; Starrfield, S.; Jordan, C.; Krautter, J.;
   Schmitt, J. H. M. M.
2005MNRAS.364.1015N    Altcode: 2005astro.ph.10039N; 2005MNRAS.tmp..988N
  We report on the analysis of an X-ray grating spectrum of the Classical
  Nova V382Vel (1999), obtained with the Low Energy Transmission Grating
  (LETG)+HRC-S instrument onboard Chandra, which shows emission lines
  dominating over any continuum. Lines of Si, Mg, Ne, O, N and C are
  identified, but no Fe lines are detected. The total luminosity in
  the lines is ~4 × 10<SUP>27</SUP>ergs<SUP>-1</SUP> (corrected for
  N<SUB>H</SUB>= 1.2 × 10<SUP>21</SUP>cm<SUP>-2</SUP>). The lines have
  broad profiles with full width at half-maximum corresponding to a
  velocity ~2900 +/-200kms<SUP>-1</SUP>. Some structure is identified
  in the profiles, but for different elements we find different
  profile structures. While lines of O show a broadened Gaussian
  profile, those of Ne are double-peaked, suggesting a fragmented
  emitting plasma. Using the emission measure distribution, we derive
  relative element abundances and find abundances of Ne and N that
  are significantly enhanced relative to that of O, while Fe is not
  overabundant. The lack of any source emission longwards of 50Åand
  the OVIII Ly<SUB>α</SUB>/Ly<SUB>β</SUB> line ratio supports previous
  values of the hydrogen column density. We find weak continuum emission
  from the white dwarf, consistent with a blackbody spectrum with an
  upper limit to the temperature of T= 3 × 10<SUP>5</SUP>K, assuming a
  source radius of 6000km. The upper limit for the integrated blackbody
  luminosity is 2 × 10<SUP>36</SUP>ergs<SUP>-1</SUP>. The BeppoSAX and
  Chandra ACIS observations of V382Vel show that the nova was bright
  and in the Super-Soft phase as late as 1999 December 30. Our LETG
  observation obtained 6 weeks later, as well as all subsequent X-ray
  observations, showed a remarkable fading to a nearly pure emission
  line phase which suggests that nuclear burning on the white dwarf
  had turned off by February. In the absence of a photoionizing source,
  the emission lines were formed in a collisionally ionized and excited
  expanding shell.

---------------------------------------------------------
Title: X-rays from α Centauri - The darkening of the solar twin
Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F.
2005A&A...442..315R    Altcode: 2005astro.ph..8260R
  We present first results from five XMM-Newton observations of the
  binary system α Centauri, which has been observed in snapshot like
  exposures of roughly two hours each during the last two years. In all
  our observations the X-ray emission of the system is dominated by α
  Cen B, a K1 star. The derived light curves of the individual components
  reveal variability on short timescales and a flare was discovered on α
  Cen B during one observation. A PSF fitting algorithm is applied to the
  event distribution to determine the brightness of each component during
  the observations. We perform a spectral analysis with multi-temperature
  models to calculate the X-ray luminosities. We investigate long term
  variability and possible activity cycles of both stars and find the
  optically brighter component α Cen A, a G2 star very similar to our
  Sun, to have fainted in X-rays by at least an order of magnitude during
  the observation program, a behaviour never observed before on α Cen
  A, but rather similar to the X-ray behaviour observed with XMM-Newton
  on HD 81809. We also compare our data with earlier spatially resolved
  observations performed over the last 25 years.

---------------------------------------------------------
Title: E Ring Sources - Cassini Flybys with Enceladus
Authors: Spahn, F.; Albers, N.; Dikarev, V.; Economu, T.; Grün,
   E.; Hoerning, M.; Kempf, S.; Krivov, A. V.; Makuch, M.; Schmidt, J.;
   Seiss, M.; Srama, R.; Sremcevic, M.
2005LPICo1280..132S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: PHOENIX model chromospheres of mid- to late-type M dwarfs
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H.
2005A&A...439.1137F    Altcode: 2005astro.ph..5375F
  We present semi-empirical model chromospheres computed with the
  atmosphere code PHOENIX. The models are designed to fit the observed
  spectra of five mid- to late-type M dwarfs. Next to hydrogen lines
  from the Balmer series we used various metal lines, e.g. from Fe i,
  for the comparison between data and models. Our computations show that
  an NLTE treatment of C, N, O impacts on the hydrogen line formation,
  while NLTE treatment of less abundant metals such as nickel influences
  the lines of the considered species itself. For our coolest models we
  investigated also the influence of dust on the chromospheres and found
  that dust increases the emission line flux. Moreover we present an
  (electronically published) emission line list for the spectral range
  of 3100 to 3900 and 4700 to 6800 Å for a set of 21 M dwarfs and brown
  dwarfs. The line list includes the detection of the Na i D lines in
  emission for a L3 dwarf.

---------------------------------------------------------
Title: Detection of X-ray emission from β Pictoris with XMM-Newton:
    a cool corona, a boundary layer or what?
Authors: Hempel, M.; Robrade, J.; Ness, J. -U.; Schmitt, J. H. M. M.
2005A&A...440..727H    Altcode:
  β Pictoris (<ASTROBJ>HR 2020</ASTROBJ>) is the most prominent prototype
  of stars with circumstellar disks and has generated particular interest
  in the framework of young planetary systems. Given its spectral
  type A5, stellar activity is not expected. Nevertheless, resonance
  lines of C iii and O vi typical for a chromosphere and transition
  region have been unambiguously detected with FUSE. We present results
  from an XMM-Newton observation of β Pic and find evidence for X-ray
  emission. In particular, we detected an emission of O vii at 21.6 Å
  with the MOS detectors. These findings present a challenge for the
  development of both stellar activity and disk models. We discuss and
  investigate various models to explain the observed emission including
  the presence of a cool corona and a boundary layer.

---------------------------------------------------------
Title: Density Structures Induced by Small Moonlets in Saturn's
    Dense Rings
Authors: Seiss, M.; Schmidt, J.; Salo, H.; Spahn, F.; Sremcevic, M.
2005DPS....37.6404S    Altcode: 2005BAAS...37..767S
  We used the method of local box simulations to investigate the density
  perturbationsin a planetary ring as a consequence of the presence
  of an embedded small moonlet.We verified the formation of a S-shaped
  density structure (propeller interfered with wakes) predicted by Spahn
  and Sremcevic, Astron. Astrophys. 358 (2000), 368, and Sremcevic et
  al. MNRAS 337 (2002), 1139, which scales in radial direction with the
  Hill radius and in azimuthal direction with the mass of the satellite
  over the viscosity of the ring material. The "propeller" is adorned with
  density wakes leading as well as trailing the moonlet. <P />The results
  may be used to detect small embedded satellites in Saturn's rings in
  the Cassini imaging data (ISS) and in the occultations carried out by
  the ultra-violet-spectrometer Cassini (UVIS). Some density features
  described with our modeling have recently been confirmed with the
  Cassini-ISS cameras which uncovered a satellite of about 7 kilometer
  in diameter (S/2005 S1) revolving in the Keeler gap. Additionally,
  this example affirms fairly well the radial scaling of the Keeler gap
  predicted by the theory. <P />In case of a detection of further embedded
  bodies the theoretical scalings enable estimates for their mass as
  well as for the viscosity of the surrounding ring material. Further
  detections of moonlets might provide implications for an origin of
  Saturn's rings by a catastrophic disruption of parent bodies.

---------------------------------------------------------
Title: On the nature of the X-ray source in GK Persei
Authors: Vrielmann, S.; Ness, J. -U.; Schmitt, J. H. M. M.
2005A&A...439..287V    Altcode: 2005astro.ph..5070V
  We report XMM-Newton observations of the intermediate polar (IP)
  GK Per on the rise to the 2002 outburst and compare them to Chandra
  observations during quiescence. The asymmetric spin light curve
  implies an asymmetric shape of a semi-transparent accretion curtain
  and we propose a model for its shape. A low Fe xvii (λλ15.01/15.26
  Å) line flux ratio confirms the need for an asymmetric geometry and
  significant effects of resonant line scattering. Medium resolution PN
  spectra in outburst and ACIS-S spectra in quiescence can both be fitted
  with a leaky absorber model for the post shock hard X-ray emission,
  a black body (outburst) for the thermalized X-ray emission from the
  white dwarf and an optically thin spectrum. The difference in the leaky
  absorber emission between high and low spin as well as quasi-periodic
  oscillation (QPO) or flares states can be fully explained by a variation
  in the absorbing column density. For the explanation of the difference
  between outburst and quiescence a combination of the variation of the
  column density and the electron and ion densities is necessary. The
  Fe fluorescence at 6.4 keV with an equivalent width of 447 eV and a
  possible Compton scattering contribution in the red wing of the line
  is not significantly variable during spin cycle or on QPO periods,
  i.e. a significant portion of the line originates in the wide accretion
  curtains. High-resolution RGS spectra reveal a number of emission
  lines from H-like and He-like elements. The lines are broader than the
  instrumental response with a roughly constant velocity dispersion for
  different lines, indicating identical origin. He-like emission lines
  are used to give values for the electron densities of log n<SUB>e</SUB>
  ∼ 12. We do not detect any variation in the emission lines during
  the spin cycle, implying that the lines are not noticeably obscured
  or absorbed. We conclude that they originate in the accretion curtains
  and that accretion might take place from all azimuths.

---------------------------------------------------------
Title: The Magnetic Properties of an L Dwarf Derived from Simultaneous
    Radio, X-Ray, and Hα Observations
Authors: Berger, E.; Rutledge, R. E.; Reid, I. N.; Bildsten, L.;
   Gizis, J. E.; Liebert, J.; Martín, E.; Basri, G.; Jayawardhana, R.;
   Brandeker, A.; Fleming, T. A.; Johns-Krull, C. M.; Giampapa, M. S.;
   Hawley, S. L.; Schmitt, J. H. M. M.
2005ApJ...627..960B    Altcode: 2005astro.ph..2384B
  We present the first simultaneous, multiwavelength observations of
  an L dwarf, the L3.5 candidate brown dwarf 2MASS J00361617+1821104,
  conducted with the Very Large Array, the Chandra X-Ray Observatory,
  and the Kitt Peak 4 m telescope. We detect strongly variable
  and periodic radio emission (P=3 hr) with a fraction of about
  60% circular polarization. No X-ray emission is detected to a
  limit of L<SUB>X</SUB>/L<SUB>bol</SUB>&lt;~2×10<SUP>-5</SUP>,
  several hundred times below the saturation level observed in early
  M dwarfs. Similarly, we do not detect Hα emission to a limit of
  L<SUB>Hα</SUB>/L<SUB>bol</SUB>&lt;~2×10<SUP>-7</SUP>, the deepest for
  any L dwarf observed to date. The ratio of radio to X-ray luminosity
  is at least 4 orders of magnitude in excess of that observed in a
  wide range of active stars (including M dwarfs), providing the first
  direct confirmation that late-M and L dwarfs violate the radio/X-ray
  correlation. The radio emission is due to gyrosynchrotron radiation
  in a large-scale magnetic field of about 175 G, which is maintained
  on timescales longer than 3 yr. The detected 3 hr period may be due
  to (1) the orbital motion of a companion at a separation of about 5
  stellar radii, similar to the configuration of RS CVn systems, (2)
  an equatorial rotation velocity of about 37 km s<SUP>-1</SUP> and an
  anchored, long-lived magnetic field, or (3) periodic release of magnetic
  stresses in the form of weak flares. In the case of orbital motion, the
  magnetic activity may be induced by the companion, possibly explaining
  the unusual pattern of activity and the long-lived signal. We conclude
  that fully convective stars can maintain a large-scale and stable
  magnetic field, but the lack of X-ray and Hα emission indicates that
  the atmospheric conditions are markedly different than in early-type
  stars and even M dwarfs. Similar observations are therefore invaluable
  for probing both the internal and external structure of low-mass stars
  and substellar objects, and for providing constraints on dynamo models.

---------------------------------------------------------
Title: X-ray properties of active M dwarfs as observed by XMM-Newton
Authors: Robrade, J.; Schmitt, J. H. M. M.
2005A&A...435.1073R    Altcode: 2005astro.ph..4145R
  We present a comparative study of X-ray emission from a sample of active
  M dwarfs with spectral types using XMM-Newton observations of two single
  stars, AD Leonis and EV Lacertae, and two unresolved binary systems,
  AT Microscopii and EQ Pegasi. The light curves reveal frequent flaring
  during all four observations. We perform a uniform spectral analysis
  and determine plasma temperatures, abundances and emission measures in
  different states of activity. Applying multi-temperature models with
  variable abundances separately to data obtained with the EPIC and RGS
  detectors we are able to investigate the consistency of the results
  obtained by the different instruments onboard XMM-Newton. We find that
  the X-ray properties of the sample M dwarfs are very similar, with the
  coronal abundances of all sample stars following a trend of increasing
  abundance with increasing first ionization potential, the inverse
  FIP effect. The overall metallicities are below solar photospheric
  ones but appear consistent with the measured photospheric abundances
  of M dwarfs like these. A significant increase in the prominence of
  the hotter plasma components is observed during flares while the cool
  plasma component is only marginally affected by flaring, pointing to
  different coronal structures. AT Mic, probably a young pre-main-sequence
  system, has the highest X-ray luminosity and exhibits also the hottest
  corona. While results of EQ Peg and EV Lac are presented here for
  the first time, AT Mic and AD Leo have been investigated before with
  different analysis approaches, allowing a comparison of the results.

---------------------------------------------------------
Title: Detection of red line asymmetries in LHS 2034
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H.
2005A&A...436..677F    Altcode:
  We report very pronounced line asymmetries during a long duration flare
  on the dM6 star LHS 2034 (AZ Cnc). While all lines of the Balmer series
  and all strong He i lines show these asymmetries, the metal lines do
  not. This can be explained with the help of PHOENIX model chromospheres
  considering the formation depth of the lines involved. Moreover,
  the asymmetries persist over about one hour changing shape and
  amplitude. Fitting the asymmetries with an additional broad Gaussian
  component leads us to the scenario of a series of downward propagating
  condensations that decelerate due to the higher density of the lower
  chromosphere. In addition, similar but weaker line asymmetries were
  found in LHS 2397a.

---------------------------------------------------------
Title: Localizing plages on BO Mic. Rapid variability and rotational
    modulation of stellar Ca H&amp;K core emission
Authors: Wolter, U.; Schmitt, J. H. M. M.
2005A&A...435L..21W    Altcode:
  We have obtained a densely sampled time series of Ca ii H&amp;K
  line profiles of the ultrafast rotating K-dwarf star <ASTROBJ>BO
  Mic</ASTROBJ>. Taken at high resolution, the spectra reveal pronounced
  variations of the emission core profiles. We interpret these variations
  as signs of concentrated chromospherically active regions, in analogy to
  solar plages. We further interpret the variations as partly due to the
  rapid growth and decay of plages, while other variations appear to be
  caused by plages moved over the visible stellar disk by rotation. The
  equivalent width of the Ca K core emission changes approximately in
  anti-phase to the photospheric brightness, suggesting an association
  of the chromospheric plage regions with pronounced dark photospheric
  spots. We believe that further analysis of the presented spectral time
  series will lead to a chromospheric Doppler image of BO mic.

---------------------------------------------------------
Title: VizieR Online Data Catalog: PHOENIX model chromospheres of
    M dwarfs (Fuhrmeister+, 2005)
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H.
2005yCat..34391137F    Altcode:
  We present an extensive identification catalog of chromospheric emission
  lines in the optical range. The data were obtained with ESO's Kueyen
  telescope equipped with the UVES spectrograph from March, 13th to 16th
  in 2002. The instrument was operated in dichroic mode (spectral coverage
  from 3030 to 3880 and from 4580 to 6680{AA}). The data for the stars
  Prox Cen, UV Ceti and LHS 292 were obtained with the same instrument
  in winter 2000/2001 with a monochroic setup providing only the blue
  part of the spectrum. We tabulated measured wavelength, equivalent
  width (EW) and FWHM for every line and star and also provide the rest
  wavelength from the Moore catalog which was used for identification
  (Moore 1972). Few lines were identified with the NIST database. The
  spectra were all corrected for radial velocity besides Kelu-1, DENIS-P
  J1058.7-1548 and 2MASSI J1315309-264951. DENIS-P J1058.7-1548 has no
  detected lines, and therefore no data in the table. <P />(2 data files).

---------------------------------------------------------
Title: Doppler imaging of Speedy Mic using the VLT. Fast spot
    evolution on a young K-dwarf star
Authors: Wolter, U.; Schmitt, J. H. M. M.; van Wyk, F.
2005A&A...435..261W    Altcode: 2005astro.ph..4104W
  We study the short-term evolution of starspots on the
  ultrafast-rotating star HD 197890 (“Speedy Mic” = BO Mic, K 0-2
  V, P<SUB>rot</SUB>=0.380 d) based on two Doppler images taken about
  13 stellar rotations apart. Each image is based on spectra densely
  sampling a single stellar rotation. The images were reconstructed
  by our Doppler imaging code CLDI (Clean-like Doppler imaging) from
  line profiles extracted by spectrum deconvolution. Our Doppler images
  constructed from two independent wavelength ranges agree well on scales
  down to 10° on the stellar surface. In conjunction with nearly parallel
  V-band photometry our observations reveal a significant evolution of
  the spot pattern during as little as two stellar rotations. We suggest
  that such a fast spot evolution demands care when constructing Doppler
  images of highly active stars based on spectral time series extending
  over several stellar rotations. The fast intrinsic spot evolution on
  BO Mic impedes the determination of a surface differential rotation;
  in agreement with earlier results by other authors we determine an
  upper limit of | α | &lt; 0.004 ± 0.002.

---------------------------------------------------------
Title: Localizing Plages on BO Mic, First steps towards chromospheric
    Doppler imaging
Authors: Wolter, U.; Schmitt, J. H. M. M.
2005astro.ph..4107W    Altcode:
  We have obtained a densely sampled time series of CaII H&amp;K line
  profiles of the ultrafast rotating K-dwarf star BO Mic. Taken at high
  resolution, the spectra reveal pronounced variations of the emission
  core profiles. We interpret these variations as signs of concentrated
  chromospherically active regions, in analogy to solar plages. We
  further interpret the variations as partly due to the rapid growth and
  decay of plages, while other variations appear to be caused by plages
  moved over the visible stellar disk by rotation. The equivalent width
  of the Ca K core emission changes approximately in anti-phase to the
  photospheric brightness, suggesting an association of the chromospheric
  plage regions with pronounced dark photospheric spots. We believe that
  further analysis of the presented spectral time series will lead to
  a chromospheric Doppler image of BO mic.

---------------------------------------------------------
Title: Modeling M-dwarf chromospheres with PHOENIX
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H.
2005ESASP.560..559F    Altcode: 2005csss...13..559F
  No abstract at ADS

---------------------------------------------------------
Title: X-ray emission from A-type stars
Authors: Schröder, C.; Schmitt, J. H. M. M.; Hempel, M.; Ness, J. -U.
2005ESASP.560..955S    Altcode: 2005csss...13..955S
  No abstract at ADS

---------------------------------------------------------
Title: The NEXXUS database - X-ray properties of nearby stars
Authors: Liefke, C.; Schmitt, J. H. M. M.
2005ESASP.560..755L    Altcode: 2005csss...13..755L
  No abstract at ADS

---------------------------------------------------------
Title: Analysis of Ca II emission lines in active stars
Authors: Kaiser, C.; Hempel, M.; Schmitt, J. H. M. M.; Reiners, A.
2005ESASP.560..693K    Altcode: 2005csss...13..693K
  No abstract at ADS

---------------------------------------------------------
Title: Magnetic activity in early-type stars?
Authors: Schmitt, J. H. M. M.; Groote, D.; Czesla, S.
2005ESASP.560..943S    Altcode: 2005csss...13..943S
  No abstract at ADS

---------------------------------------------------------
Title: β Pictoris, far-UV emission lines, and a boundary layer
Authors: Hempel, M.; Ness, J. -U.; Robrade, J.; Schmitt, J. H. M. M.
2005ESASP.560..639H    Altcode: 2005csss...13..639H
  No abstract at ADS

---------------------------------------------------------
Title: X-ray spectroscopy of M dwarfs
Authors: Robrade, J.; Schmitt, J. H. M. M.
2005ESASP.560..921R    Altcode: 2005csss...13..921R
  No abstract at ADS

---------------------------------------------------------
Title: X-rays from accretion shocks in T Tauri stars: The case of
    BP Tau
Authors: Schmitt, J. H. M. M.; Robrade, J.; Ness, J. -U.; Favata,
   F.; Stelzer, B.
2005A&A...432L..35S    Altcode: 2005astro.ph..3144S
  We present an XMM-Newton observation of the classical T Tauri star
  BP Tau. In the XMM-Newton RGS spectrum the O vii triplet is clearly
  detected with a very weak forbidden line indicating high plasma
  densities and/or a high UV flux environment. At the same time concurrent
  UV data point to a small hot spot filling factor suggesting an accretion
  funnel shock as the site of the X-ray and UV emission. Together with
  the X-ray data on TW Hya these new observations suggest such funnels
  to be a general feature in classical T Tauri stars.

---------------------------------------------------------
Title: The Hamburg Robotic Telescope: a test report
Authors: Hempelmann, A.; Gonzalezperez, J. N.; Schmitt, J. H. M. M.;
   Hagen, H. J.
2005ESASP.560..643H    Altcode: 2005csss...13..643H
  No abstract at ADS

---------------------------------------------------------
Title: Strong latitudinal shear in the shallow convection zone  of
    a rapidly rotating A-star
Authors: Reiners, A.; Hünsch, M.; Hempel, M.; Schmitt, J. H. M. M.
2005A&A...430L..17R    Altcode: 2004astro.ph.12225R
  We have derived the mean broadening profile of the star V 102 in the
  region of the open cluster IC 4665 from high resolution spectroscopy. At
  a projected equatorial rotation velocity of v sin i = (105 ± 12) km
  s<SUP>-1</SUP> we find strong deviation from classical rotation. We
  discuss several scenarios, the most plausible being strong differential
  rotation in latitudinal direction. For this scenario we find a
  difference in angular velocity of ΔΩ = 3.6 ± 0.8 rad d<SUP>-1</SUP>
  (ΔΩ/Ω = 0.42 ± 0.09). From the Hα line we derive a spectral type
  of A9 and support photometric measurements classifying IC 4665 V 102
  as a non-member of IC 4665. At such early spectral type this is the
  strongest case of differential rotation observed so far. Together
  with three similar stars, IC 4665 V 102 seems to form a new class
  of objects that exhibit extreme latitudinal shear in a very shallow
  convective envelope. <P />Based on observations carried out at the
  European Southern Observatory, Paranal, 71.D-0127(A).

---------------------------------------------------------
Title: On the sizes of stellar X-ray coronae
Authors: Ness, J. -U.; Güdel, M.; Schmitt, J. H. M. M.; Audard, M.;
   Telleschi, A.
2004A&A...427..667N    Altcode: 2004astro.ph..7231N
  Spatial information from stellar X-ray coronae cannot be assessed
  directly, but scaling laws from the solar corona make it possible
  to estimate sizes of stellar coronae from the physical parameters
  temperature and density. While coronal plasma temperatures have
  long been available, we concentrate on the newly available density
  measurements from line fluxes of X-ray lines measured for a large sample
  of stellar coronae with the Chandra and XMM-Newton gratings. We compiled
  a set of 64 grating spectra of 42 stellar coronae. Line counts of
  strong H-like and He-like ions and Fe XXI lines were measured with the
  CORA single-purpose line fitting tool by \cite{newi02}. Densities are
  estimated from He-like f/i flux ratios of O VII and Ne IX representing
  the cooler (1-6 MK) plasma components. The densities scatter between
  log n<SUB>e</SUB> ≈ 9.5-11 from the O VII triplet and between log
  n<SUB>e</SUB> ≈ 10.5-12 from the Ne IX triplet, but we caution that
  the latter triplet may be biased by contamination from Fe XIX and
  Fe XXI lines. We find that low-activity stars (as parameterized by
  the characteristic temperature derived from H- and He-like line flux
  ratios) tend to show densities derived from O VII of no more than
  a few times 10<SUP>10</SUP> cm<SUP>-3</SUP>, whereas no definitive
  trend is found for the more active stars. Investigating the densities
  of the hotter plasma with various Fe XXI line ratios, we found that
  none of the spectra consistently indicates the presence of very high
  densities. We argue that our measurements are compatible with the
  low-density limit for the respective ratios (≈ 5× 10<SUP>12</SUP>
  cm<SUP>-3</SUP>). These upper limits are in line with constant pressure
  in the emitting active regions. We focus on the commonly used \cite{rtv}
  scaling law to derive loop lengths from temperatures and densities
  assuming loop-like structures as identical building blocks. We derive
  the emitting volumes from direct measurements of ion-specific emission
  measures and densities. Available volumes are calculated from the
  loop-lengths and stellar radii, and are compared with the emitting
  volumes to infer filling factors. For all stages of activity we find
  similar filling factors up to 0.1. <P />Appendix A is only available
  in electronic form at http://www.edpsciences.org

---------------------------------------------------------
Title: a Radial Velocity Search for P-Modes in VIR
Authors: Martic, M.; Lebrun, J. C.; Appourchaux, T.; Schmitt, J.
2004ESASP.559..563M    Altcode: 2004astro.ph..9126M; 2004soho...14..563M
  Spectroscopic high-resolution observations were performed with
  fiber-fed cross-dispersed echelle spectrographs in order to measure
  the fluctuations in radial velocities of a sample of bright stars
  that are likely to undergo solar-like oscillations. Here we report
  the results for beta Vir (HR4540) from two observing runs carried out
  in February 2002 with FEROS at the ESO 1.52 m telescope in La Silla
  (Chile) and ELODIE spectrograph at 1.93 OHP telescope (Observatoire de
  Haute Provence, France). The analysis of the time series of Doppler
  shifts from both sites has revealed the presence of an excess power
  around 1.7 mHz. We discuss the interpretation of this data set in
  terms of possible p-mode oscillations.

---------------------------------------------------------
Title: Stars: Twisting Exteriors - Turbulent Interiors
Authors: Wolter, Uwe; Schmitt, J. H. M. M.
2004ANS...325...27W    Altcode: 2004ANS...325..D11W
  No abstract at ADS

---------------------------------------------------------
Title: A numerical study of two interacting coronal mass ejections
Authors: Schmidt, J.; Cargill, P.
2004AnGeo..22.2245S    Altcode:
  The interaction in the solar wind between two coronal mass ejections
  (CMEs) is investigated using numerical simulations. We show that the
  nature of the interaction depends on whether the CME magnetic structures
  interact, but in all cases the result is an equilisation of the speed
  of the two CMEs. In the absence of magnetic interaction, the forward
  shock of the faster trailing CME interacts with the slow leading CME,
  and accelerates it. When the two CMEs have magnetic fields with the same
  sense of rotation, magnetic reconnection occurs between the two CMEs,
  leading to the formation of a single magnetic structure: in the most
  extreme cases, one CME "eats" the other. When the senses of rotation
  are opposite, reconnection does not occur, but the CMEs collide in
  a highly non-elastic manner, again forming a single structure. The
  possibility of enhanced particle acceleration in such processes
  is assessed. The presence of strong magnetic reconnection provides
  excellent opportunities for the acceleration of thermal particles,
  which then form a seed population for further acceleration at the CME
  shocks. The presence of a large population of seed particles will thus
  lead to an overall increase in energetic particle fluxes, as suggested
  by some observations.

---------------------------------------------------------
Title: Detection and high-resolution spectroscopy of a huge flare
    on the old M 9 dwarf DENIS 104814.7-395606.1
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.
2004A&A...420.1079F    Altcode: 2004astro.ph..3617F
  We report a flare on the M 9 dwarf DENIS 104814.7-395606.1, whose
  mass places it directly at the hydrogen burning limit. The event was
  observed in a spectral sequence during 1.3 h. Line shifts to bluer
  wavelengths were detected in H<SUB>α</SUB>, H<SUB>β</SUB>, and in
  the Na I D lines, indicating mass motions. In addition we detect a
  flux enhancement on the blue side of the two Balmer lines in the last
  spectrum of our series. We interpret this as rising gas cloud with a
  projected velocity of about 100 km s<SUP>-1</SUP> which may lead to mass
  ejection. The higher Balmer lines H<SUB>γ</SUB> to H<SUB>8</SUB> are
  not seen due to our instrumental setup, but in the last spectrum there
  is strong evidence for H<SUB>9</SUB> being in emission. <P />Based on
  observations collected at the European Southern Observatory, Paranal,
  68.D-0166A, Chile.

---------------------------------------------------------
Title: Measurements of Differential Rotation in Cool Stars
Authors: Reiners, A.; Schmitt, J. H. M. M.
2004IAUS..215..138R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Membership, rotation, and lithium abundances in the open
    clusters NGC 2451 A and B
Authors: Hünsch, M.; Randich, S.; Hempel, M.; Weidner, C.; Schmitt,
   J. H. M. M.
2004A&A...418..539H    Altcode:
  High-resolution spectra of 30 late-type and 9 early-type candidate
  members of the young (∼50-80 Myr) open clusters NGC 2451 A and B
  have been analyzed in order to complement our previous photometric
  and X-ray study. Cluster membership of these X-ray selected stars
  has been confirmed or rejected on the basis of radial velocity and
  Hα chromospheric emission. The metallicity of both clusters seems
  to be about solar - contrary to previous investigations. Lithium
  abundances have been determined by two different methods, namely
  curve-of-growth techniques and spectrum synthesis, yielding quite
  consistent results. The pattern of Li abundances versus effective
  temperature resembles that of the equally-old Alpha Per cluster,
  i.e., little Li depletion is seen for solar-type and earlier-type
  stars, while towards cooler stars Li is more and more depleted,
  possibly showing a star-to-star scatter below ∼ 5200 K. The hottest
  star in our sample shows a Li abundance ∼0.5 dex higher than the
  meteoritic value. Rotational velocities have been determined in order
  to investigate the supposed dependence of activity and Li depletion
  on rotation. <P />Based on observations performed at the European
  Southern Observatory, La Silla/Chile.

---------------------------------------------------------
Title: X-ray emission from a metal depleted accretion shock onto
    the classical T Tauri star TW Hya
Authors: Stelzer, B.; Schmitt, J. H. M. M.
2004A&A...418..687S    Altcode: 2004astro.ph..2108S
  We present the X-ray spectrum of TW Hya observed at high and
  intermediate spectral resolution with the Reflection Grating
  Spectrometer (RGS) and the European Photon Imaging Camera (EPIC)
  onboard the XMM-Newton satellite. TW Hya is the first classical T
  Tauri star for which simultaneous X-ray data with both high spectral
  resolution and high sensitivity were obtained, thus allowing to
  probe the X-ray emission properties of stars in the early pre-main
  sequence phase. Despite TW Hya's high X-ray luminosity in excess of
  10<SUP>30</SUP> erg/s its X-ray spectrum is dominated by emission
  lines from rather cool plasma (T ≈ 3 MK), and only little emission
  measure is present at high temperatures (T ≈ 10 MK). We determine
  photon fluxes for the emission lines in the high resolution spectrum,
  confirming the earlier result from Chandra that the predominant emission
  is from neon and oxygen, with comparatively weak iron lines. Further,
  the line ratios of He-like triplets of nitrogen, oxygen and neon
  require densities of n_e ∼ 10<SUP>13</SUP> cm<SUP>-3</SUP>, about
  two orders of magnitude higher than for any other star observed so
  far at high spectral resolution. Finally, we find that nearly all
  metals are underabundant with respect to solar abundances, while
  the abundances of nitrogen and neon are enhanced. The high plasma
  density, the (comparatively) low temperature, and peculiar chemical
  abundances in the X-ray emitting region on TW Hya are untypical for
  stellar coronae. An alternative X-ray production mechanism is therefore
  called for and a natural explanation is an accretion column depleted
  of grain forming elements. The metal depletion could be either due to
  the original molecular cloud that formed TW Hya or due to a settling
  of dust in the circumstellar disk of TW Hya.

---------------------------------------------------------
Title: Is T Leonis a superoutbursting intermediate polar?
Authors: Vrielmann, S.; Ness, J. -U.; Schmitt, J. H. M. M.
2004A&A...419..673V    Altcode: 2004astro.ph..2565V
  We present an XMM-Newton analysis of the cataclysmic variable T Leo. The
  X-ray light curve shows sinusoidal variation on a period P<SUB>x</SUB>
  equal to 0.89<SUP>+0.14</SUP><SUB>-0.10</SUB> times the previously
  spectroscopically determined orbital period. Furthermore, we find
  a signal in the power spectrum at 414 s that could be attributed to
  the spin period of the white dwarf. If true, T Leo would be the first
  confirmed superoutbursting intermediate polar (IP). The spin profile
  is double-peaked with a peak separation of about 1/3 spin phases. This
  appears to be a typical feature for IPs with a small magnetic field and
  fast white dwarf rotation. <P />An alternative explanation is that the
  414 s signal is a Quasi-periodic Oscillation (QPO) that is caused by
  mass transfer variation from the secondary, a bright region (“blob”)
  rotating in the disc at a radius of approximately 9R<SUB>wd</SUB> or -
  more likely - a travelling wave close to the inner disc edge of a dwarf
  nova with a low field white dwarf. <P />The XMM-Newton RGS spectra
  reveal double peaked emission for the O VIII Ly α line. Scenarios
  in the IP and dwarf nova model are discussed (an emitting ring in the
  disc, bright X-ray spot on disc edge, or emitting accretion funnels),
  but the intermediate polar model is favoured. Supported is this idea
  by the finding that only the red peak appears to be shifted and the
  “blue” peak is compatible with the rest wavelength. The red peak
  thus is caused by emission from the northern accretion spot when it
  faces the observer. Instead, the peak at the rest wavelength is caused
  when the southern accretion funnel is visible just on the lower edge
  of the white dwarf - with the velocity of the accreting material being
  perpendicular to the line of sight.

---------------------------------------------------------
Title: Solar and Stellar Plasmas
Authors: Schmitt, J. H. M. M.
2004AIPC..703..184S    Altcode:
  Stellar X-ray astronomy is a new branch of X-ray astronomy that emerged
  over the last few decades. With the advent of soft X-ray imagery
  X-ray emission was found from many thousands of solar-like stars, thus
  showing the presence of very hot plasma with temperatures far above the
  stellar photospheric temperatures. With the new generation of X-ray
  telescopes the physical properties of these plasmas can be diagnosed
  and analyzed. This talk provides a review of the occurrence of X-ray
  emission in the HR-diagram and an overview of the physical properties
  of stellar coronae as diagnosed from high-resolution spectroscopy.

---------------------------------------------------------
Title: Discovery of X-ray flaring on the magnetic Bp-star σ Ori E
Authors: Groote, D.; Schmitt, J. H. M. M.
2004A&A...418..235G    Altcode: 2004astro.ph..2437G
  We report the detection of an X-ray flare on the Bp star σ Ori E with
  the ROSAT high resolution imager (HRI). The flare is shown to have
  likely occurred on the early-type star, rather than on an hypothesized
  late-type companion. We derive flare parameters such as total energy
  release, coarse estimates of size and density, and also present
  arguments for a magnetic origin of the flare. We place our observations
  in the context of a magnetic character of Bp-type stars and speculate
  on a common physical basis and connection between Bp and Be stars.

---------------------------------------------------------
Title: High-amplitude, long-term X-ray variability in the solar-type
star HD 81809: The beginning of an X-ray activity cycle?
Authors: Favata, F.; Micela, G.; Baliunas, S. L.; Schmitt, J. H. M. M.;
   Güdel, M.; Harnden, F. R., Jr.; Sciortino, S.; Stern, R. A.
2004A&A...418L..13F    Altcode: 2004astro.ph..3142F
  We present the initial results from our XMM-Newton program aimed at
  searching for X-ray activity cycles in solar-type stars. HD 81809 is
  a G2-type star (somewhat more evolved than the Sun, and with a less
  massive companion) with a pronounced 8.2 yr chromospheric cycle,
  as evident from from the Mt. Wilson program data. We present here
  the results from the initial 2.5 years of XMM-Newton observations,
  showing that large amplitude (a factor of ≃10) modulation is present
  in the X-ray luminosity, with a clearly defined maximum in mid 2002
  and a steady decrease since then. The maximum of the chromospheric
  cycle took place in 2001; if the observed X-ray variability is the
  initial part of an X-ray cycle, this could imply a phase shift between
  chromospheric and coronal activity, although the current descent into
  chromospheric cycle minimum is well reflected into the star's X-ray
  luminosity. The observations presented here provide clear evidence
  for the presence of large amplitude X-ray variability coherent with
  the activity cycle in the chromosphere in a star other than the Sun.

---------------------------------------------------------
Title: X-ray emission from Saturn
Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Wolk, S. J.; Dennerl,
   K.; Burwitz, V.
2004A&A...418..337N    Altcode: 2004astro.ph..1270N
  We report the first unambiguous detection of X-ray emission
  originating from Saturn with a Chandra observation, duration 65.5
  ks with ACIS-S3. Beyond the pure detection we analyze the spatial
  distribution of X-rays on the planetary surface, the light curve, and
  some spectral properties. The detection is based on 162 cts extracted
  from the ACIS-S3 chip within the optical disk of Saturn. We found no
  evidence for smaller or larger angular extent. The expected background
  level is 56 cts, i.e., the count rate is (1.6 ± 0.2)× 10<SUP>-3</SUP>
  cts/s. The extracted photons are rather concentrated towards the equator
  of the apparent disk, while both polar caps have a relative photon
  deficit. The inclination angle of Saturn during the observation was
  ∼-27<SUP>o</SUP>, so that the northern hemisphere was not visible
  during the complete observation. In addition, it was occulted by the
  ring system. We found a small but significant photon excess at one edge
  of the ring system. The light curve shows a small dip twice at identical
  phases, but rotational modulation cannot be claimed at a significant
  level. Spectral modeling results in a number of statistically, but
  not necessarily physically, acceptable models. The X-ray flux level we
  calculate from the best-fit spectral models is ∼6.8× 10<SUP>-15</SUP>
  erg cm<SUP>-2</SUP> s<SUP>-1</SUP> (in the energy interval 0.1-2 keV),
  which corresponds to an X-ray luminosity of ∼8.7× 10<SUP>14</SUP>
  erg s<SUP>-1</SUP>. A combination of scatter processes of solar X-rays
  require a relatively high albedo favoring internal processes, but a
  definitive explanation remains an open issue.

---------------------------------------------------------
Title: NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission
    among nearby solar-like stars
Authors: Schmitt, J. H. M. M.; Liefke, C.
2004A&A...417..651S    Altcode: 2003astro.ph..8510S
  We present a final summary of all ROSAT X-ray observations of nearby
  stars. All available ROSAT observations with the ROSAT PSPC, HRI and
  WFC have been matched with the CNS4 catalog of nearby stars and the
  results gathered in the Nearby X-ray and XUV-emitting Stars data base,
  available via www from the Home Page of the Hamburger Sternwarte at
  the URL http://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. New
  volume-limited samples of F/G-stars (d<SUB>lim</SUB> = 14 pc), K-stars
  (d<SUB>lim</SUB> = 12 pc), and M-stars (d<SUB>lim</SUB> = 6 pc) are
  constructed within which detection rates of more than 90% are obtained;
  only one star (GJ 1002) remains undetected in a pointed follow-up
  observation. F/G-stars, K-stars and M-stars have indistinguishable
  surface X-ray flux distributions, and the lower envelope of the observed
  distribution at F<SUB>X</SUB> ≈ 10<SUP>4</SUP> erg/cm<SUP>2</SUP>/s
  is the X-ray flux level observed in solar coronal holes. Large
  amplitude variations in X-ray flux are uncommon for solar-like stars,
  but maybe more common for stars near the bottom of the main sequence;
  a large amplitude flare is reported for the M star LHS 288. Long term
  X-ray light curves are presented for α Cen A/B and Gl 86, showing
  variations on time scales of weeks and demonstrating that α Cen B is
  a flare star. <P />Tables 1-3 are also available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651

---------------------------------------------------------
Title: Fe XIII coronal line emission in cool M dwarfs
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Wichmann, R.
2004A&A...417..701F    Altcode: 2004astro.ph..1102F
  We report on a search for the Fe XIII forbidden coronal line at 3388.1
  Å in a sample of 15 M-type dwarf stars covering the whole spectral
  class as well as different levels of activity. A clear detection was
  achieved for LHS 2076 during a major flare and for CN Leo, where the
  line had been discovered before. For some other stars the situation
  is not quite clear. For CN Leo we investigated the timing behaviour
  of the Fe XIII line and report a high level of variability on a
  timescale of hours which we ascribe to microflare heating. <P />Based
  on observations collected at the European Southern Observatory, Paranal,
  Chile, 68.D-0166A.

---------------------------------------------------------
Title: VizieR Online Data Catalog: NEXXUS ROSAT survey of coronal
    X-ray (Schmitt+, 2004)
Authors: Schmitt, J. H. M. M.; Liefke, C.
2004yCat..34170651S    Altcode:
  We present a final summary of all ROSAT X-ray observations of nearby
  stars. All available ROSAT observations with the ROSAT PSPC, HRI and
  WFC have been matched with the CNS4 catalog of nearby stars and the
  results gathered in the NEarby X-ray and XUV-emitting Stars (NEXXUS)
  data base. New volume-limited samples of F/G-stars (table 1), K-stars
  (table 2), and M-stars (table 3) are constructed within which detection
  rates of more than 90% are obtained. <P />(3 data files).

---------------------------------------------------------
Title: Coronal abundances from high-resolution X-ray data: The case
    of Algol
Authors: Schmitt, J. H. M. M.; Ness, J. -U.
2004A&A...415.1099S    Altcode: 2003astro.ph.10594S
  We discuss the determination of elemental abundances from high
  resolution X-ray data. We emphasize the need for an accurate
  determination of the underlying temperature structure and advocate
  the use of a line ratio method which allows us to utilize, first,
  the strongest lines observed in the X-ray spectra, and second, lines
  that span a rather wide temperature range. We point out the need to
  use continuous emission measure distributions and show via example
  that modeling in terms of individual temperature components yields
  errors of more than 50%. We stress the need to derive differential
  emission measure distributions based on physical assumptions and
  considerations. We apply our methods to the Chandra LETGS spectrum
  of Algol and show that nitrogen is considerably enhanced compared to
  cosmic abundances by a factor of 2 while carbon is depleted by at least
  a factor of 25. Iron, silicon, and magnesium, are all depleted compared
  to cosmic abundances, while the noble gas neon has the relatively
  highest abundance.

---------------------------------------------------------
Title: The crustal structure of the Dead Sea Transform
Authors: Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.;
   Al-Amoush, H.; Babeyko, A.; Bartov, Y.; Baumann, M.; Ben-Avraham, Z.;
   Bock, G.; Bribach, J.; El-Kelani, R.; Förster, A.; Förster, H. -J.;
   Frieslander, U.; Garfunkel, Z.; Grunewald, S.; Götze, H. J.; Haak, V.;
   Haberland, Ch.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Jäckel,
   K. -H.; Kesten, D.; Kind, R.; Maercklin, N.; Mechie, J.; Mohsen, A.;
   Neubauer, F. M.; Oberhänsli, R.; Qabbani, I.; Ritter, O.; Rümpker,
   G.; Rybakov, M.; Ryberg, T.; Scherbaum, F.; Schmidt, J.; Schulze,
   A.; Sobolev, S.; Stiller, M.; Thoss, H.; Weckmann, U.; Wylegalla, K.
2004GeoJI.156..655W    Altcode:
  To address one of the central questions of plate tectonics-How do large
  transform systems work and what are their typical features?-seismic
  investigations across the Dead Sea Transform (DST), the boundary between
  the African and Arabian plates in the Middle East, were conducted
  for the first time. A major component of these investigations was
  a combined reflection/refraction survey across the territories of
  Palestine, Israel and Jordan. The main results of this study are:
  (1) The seismic basement is offset by 3-5 km under the DST, (2) The
  DST cuts through the entire crust, broadening in the lower crust, (3)
  Strong lower crustal reflectors are imaged only on one side of the DST,
  (4) The seismic velocity sections show a steady increase in the depth
  of the crust-mantle transition (Moho) from ~26 km at the Mediterranean
  to ~39 km under the Jordan highlands, with only a small but visible,
  asymmetric topography of the Moho under the DST. These observations can
  be linked to the left-lateral movement of 105 km of the two plates in
  the last 17 Myr, accompanied by strong deformation within a narrow zone
  cutting through the entire crust. Comparing the DST and the San Andreas
  Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal
  reflectors and a deep reaching deformation zone both occur around the
  DST and the SAF. The fact that such lower crustal reflectors and deep
  deformation zones are observed in such different transform systems
  suggests that these structures are possibly fundamental features of
  large transform plate boundaries.

---------------------------------------------------------
Title: Spatially resolved X-ray emission of EQ Pegasi
Authors: Robrade, J.; Ness, J. -U.; Schmitt, J. H. M. M.
2004A&A...413..317R    Altcode: 2003astro.ph.10600R
  We present an analysis of an XMM-Newton observation of the M dwarf
  binary EQ Pegasi with a special focus on the spatial structure of the
  X-ray emission and the analysis of light curves. Making use of data
  obtained with EPIC (European Photon Imaging Camera) we were for the
  first time able to spatially resolve the two components in X-rays and
  to study the light curves of the individual components of the EQ Peg
  system. During the observation a series of moderate flares was detected,
  where it was possible to identify the respective flaring component.

---------------------------------------------------------
Title: Studying the evolution of the hot universe with the X-ray
    evolving universe spectroscopy mission - XEUS
Authors: Parmar, A. N.; Hasinger, G.; Arnaud, M.; Barcons, X.;
   Barret, D.; Böhringer, H.; Blanchard, A.; Cappi, M.; Comastri, A.;
   Courvoisier, T.; Fabian, A. C.; Fiore, F.; Georgantopoulos, I.;
   Grandi, P.; Griffiths, R.; Hornstrup, A.; Kawai, N.; Koyama, K.;
   Makishima, K.; Malaguti, G.; Mason, K. O.; Motch, C.; Mendez, M.;
   Ohashi, T.; Paerels, F.; Piro, L.; Ponman, T.; Schmitt, J.; Sciortino,
   S.; Trinchieri, G.; van der Klis, M.; Ward, M.
2004AdSpR..34.2623P    Altcode:
  Europe is one of the major partners building the International Space
  Station (ISS) and European industry, together with ESA, is responsible
  for many station components including the Columbus Orbital Facility,
  the Automated Transport Vehicle, two connecting modules and the European
  Robotic Arm. Together with this impressive list of contributions there
  is a strong desire within the ESA Member States to benefit from this
  investment by utilizing the unique capabilities of the ISS to perform
  world-class science. XEUS is one of the astronomical applications
  being studied by ESA to utilize the capabilities of the ISS. XEUS
  will be a long-term X-ray observatory with an initial mirror area of
  6 m <SUP>2</SUP> at 1 keV that will be expanded to 30 m <SUP>2</SUP>
  following a visit to the ISS. The 1 keV spatial resolution is expected
  to be 2-5″ half-energy-width. XEUS will consist of separate detector
  and mirror spacecraft (MSC) aligned by active control to provide a
  focal length of 50 m. A new detector spacecraft, complete with the
  next generation of instruments, will also be added after visiting
  the ISS. The limiting 0.1-2.5 keV sensitivity will then be 4 × 10
  <SUP>-18</SUP> erg cm <SUP>-2</SUP> s <SUP>-1</SUP>, around 200 times
  better than XMM-Newton, allowing XEUS to study the properties of the
  hot baryons and dark matter at high redshift.

---------------------------------------------------------
Title: Analysis of Ca II Emission Lines
Authors: Hempel, M.; Reiners, A.; Schmitt, J. H. M. M.; Kaiser, C.
2004IAUS..219..878H    Altcode: 2003IAUS..219E.187H
  Stellar activity is closely connected to time-variable emission in
  Ca H &amp; K lines. Since these lines are easily accessible with
  high sensitivity from ground-based telescopes they provide the
  means to most easily investigate activity cycles for a large number
  of stars. The analysis of suchlike profiles using the S-index is a
  well-known method to monitor stellar activity. Alternatively one can
  trace the signatures of chromospheric emission lines differentially
  using sophisticated theoretical line profiles. We have analysed Ca H
  and K spectra of a sample of G stars obtained with the ESO 3.6m CES
  system and present results from our analysis of chromospheric activity
  using PHOENIX models.

---------------------------------------------------------
Title: Detection of Saturnian X-ray emission with XMM-Newton
Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Robrade, J.
2004A&A...414L..49N    Altcode: 2003astro.ph.12479N
  The giant planet Saturn was observed by XMM-Newton in September
  2002. We present and analyse these XMM-Newton observations and compare
  our findings to the Chandra observations of Saturn. Contamination
  of the XMM-Newton data by optical light is found to be severe in the
  medium and thin filters, but with the thick filter all optical light
  is sufficiently blocked and the signal observed in this filter is
  interpreted as genuine X-ray emission, which is found to qualitatively
  and quantitatively resemble Saturn's Chandra spectrum very well.

---------------------------------------------------------
Title: X-rays from M-type Giants-Signs of Late Stellar Activity?
Authors: Hünsch, M.; Konstantinova-Antova, R.; Schmitt, J. H. M. M.;
   Schröder, K. -P.; Kolev, D.; de Medeiros, J. -R.; Lèbre, A.; Udry, S.
2004IAUS..219..223H    Altcode: 2003IAUS..219E.273H
  M-type giants -- either on the RGB or the AGB -- are generally not
  known to exhibit significant stellar activity. Yet in the course of the
  ROSAT All-Sky survey a few such stars have been detected as luminous
  X-ray sources. We report recent Chandra observations that have ruled
  out the possibility of spurious identifications. First results from
  our optical spectroscopic follow-up study indicate variability in
  H-alpha and Ca I 6572 A lines that may be related to chromospheric
  activity. CORAVEL and ELODIE observations reveal faster rotation than
  usual and small-amplitude radial-velocity variations indicating binary
  nature for some of these stars. Chromospheric and coronal emission
  seems to be variable on rather short timescales. There are no hints
  for the stars being symbiotic systems up to now.

---------------------------------------------------------
Title: X-ray Emission from Single Stars
Authors: Schmitt, J. H. M. M.
2004IAUS..219..187S    Altcode: 2003IAUS..219E.206S
  I will present the results of extensive surveys for X-ray emission
  from solar-like stars in the solar vicinity. The main results of these
  studies are: (a) All stars main sequence stars with outer convection
  zones are surrounded by hot coronae; (b) There exists a minimal
  X-ray surface flux similar to the surface flux from coronal holes;
  (c) Large variations in X-ray flux are uncommon at least for stars of
  spectral type earlier than M. The X-ray properties of stars will be
  compared to those of the Sun and it will be explored to what extent
  the magnetic activity paradigm holds for stars of type A and earlier
  and for stars below the MS cut off.

---------------------------------------------------------
Title: Search of extra-solar planets with the spectrograph EMILIE
    and AAA system
Authors: Bouchy, F.; Schmitt, J.; Bertaux, J. L.; Connes, P.
2004IAUS..202...63B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: New Results on Age, Activity and Chemical Composition of the
    Open Clusters NGC 2451 A and B
Authors: Hünsch, M.; Randich, S.; Weidner, C.; Hempel, M.; Schmitt,
   J. H. M. M.
2004IAUS..219..980H    Altcode: 2003IAUS..219E.144H
  We have conducted a detailed study of the open clusters NGC 2451 A and
  B which are located along the same line of sight at 206pc and 370pc
  distance respectively. Although belonging to the nearest clusters
  they have not been much investigated until present due to strong
  contamination by field stars. ROSAT X-ray observations and optical
  UBVR photometry are used to identify cluster members by means of X-ray
  emission and colour-magnitude diagrams. For the first time the range
  of known probable cluster members has been extended to main sequence
  stars of spectral class M. Isochrone fitting yields an age of 50 to
  80 Myrs for NGC 2451 A and about 50 Myrs for NGC 2451 B consistent
  with the X-ray luminosity distribution functions. Except from the
  occurence of four flares the stars of both clusters do not show strong
  long-term X-ray variability exceeding a factor 5 over a time span of
  1 to 3 years. High-resolution spectra obtained with FEROS confirmed
  membershipof most of the X-ray selected cluster member candidates by
  means of radial velocity and allowed to obtain rotational velocities
  as well as metallicities and lithium abundances.

---------------------------------------------------------
Title: A spatially resolved limb flare on Algol B observed with
    XMM-Newton
Authors: Schmitt, J. H. M. M.; Ness, J. -U.; Franco, G.
2003A&A...412..849S    Altcode: 2003astro.ph..8394S
  We report XMM-Newton observations of the eclipsing binary Algol A (B8V)
  and B (K2III). The XMM-Newton data cover the phase interval 0.35-0.58,
  i.e., specifically the time of optical secondary minimum, when the
  X-ray dark B-type star occults a major fraction of the X-ray bright
  K-type star. During the eclipse a flare was observed with complete
  light curve coverage. The decay part of the flare can be well described
  with an exponential decay law allowing a rectification of the light
  curve and a reconstruction of the flaring plasma region. The flare
  occurred near the limb of Algol B at a height of about 0.1 R<SUB>*</SUB>
  with plasma densities of a few times 10<SUP>11</SUP> cm<SUP>-3</SUP>
  consistent with spectroscopic density estimates. No eclipse of the
  quiescent X-ray emission is observed leading us to the conclusion that
  the overall coronal filling factor of Algol B is small.

---------------------------------------------------------
Title: Differential rotation in rapidly rotating F-stars
Authors: Reiners, A.; Schmitt, J. H. M. M.
2003A&A...412..813R    Altcode: 2003astro.ph..9616R
  We obtained high quality spectra of 135 stars of spectral types F
  and later and derived “overall” broadening functions in selected
  wavelength regions utilizing a Least Squares Deconvolution (LSD)
  procedure. Precision values of the projected rotational velocity v \sini
  were derived from the first zero of the Fourier transformed profiles and
  the shapes of the profiles were analyzed for effects of differential
  rotation. The broadening profiles of 70 stars rotating faster than
  v \sini = 45 km s<SUP>-1</SUP> show no indications of multiplicity
  nor of spottedness. In those profiles we used the ratio of the first
  two zeros of the Fourier transform q_2/q_1 to search for deviations
  from rigid rotation. In the vast majority the profiles were found to
  be consistent with rigid rotation. Five stars were found to have flat
  profiles probably due to cool polar caps, in three stars cuspy profiles
  were found. Two out of those three cases may be due to extremely rapid
  rotation seen pole on, only in one case (v \sini = 52 km s<SUP>-1</SUP>)
  is solar-like differential rotation the most plausible explanation
  for the observed profile. These results indicate that the strength
  of differential rotation diminishes in stars rotating as rapidly as
  v \sini &gt;~ 50 km s<SUP>-1</SUP>. <P />Table A.1 is only available
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or
  via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813 <P />Based
  on observations collected at the European Southern Observatory, La
  Silla, 69.D-0015(B).

---------------------------------------------------------
Title: Detection of Differential Rotation in ψ Cap with Profile
    Analysis
Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M.
2003csss...12..275R    Altcode:
  Differential rotation has been detected on the fast rotator ψ Cap
  (F5 V) using line profile analysis. The Fourier transforms of both Fe
  I λ5775 and Si I λ5772 are used to obtain a projected rotational
  velocity of v sin{i} = 42 ± 1 km s<SUP>-1</SUP>. Modelling of the
  Fourier transformed profiles shows that the combined effects of
  equatorial velocity, inclination and differential rotation dominate
  the line profile while limb darkening and turbulence velocities have
  only minor effects. Rigid rotation is shown to be inconsistent with
  the measured profiles. Modelling the line profiles analogous to solar
  differential rotation we find a differential rotation parameter of α =
  0.15 ± 0.1 comparable to the solar case. To our knowledge this is the
  first successful measurement of differential rotation through line
  profile analysis. A check with an observable directly obtained from
  the Fourier transform shows the internal consistency of our results.

---------------------------------------------------------
Title: Influence of UV Radiation Fields on Density Diagnostics with
    He-like Triplets
Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen,
   A. J. J.
2003csss...12..265N    Altcode:
  Spectroscopic density diagnostics based on He-like triplets
  are routinely used to investigate the solar corona. With the new
  instrumentation onboard Chandra and XMM this method of analysis can
  also be applied to stellar coronae. In collision-dominated plasmas
  the forbidden line f (1s2s <SUP>3</SUP>S<SUB>1</SUB> rightarrow
  1s<SUP>2</SUP> <SUP>1</SUP>S<SUB>0</SUB>), disappears at high densities,
  and the intercombination line i (1s2p <SUP>3</SUP>P<SUB>2,1</SUB>
  rightarrow 1s<SUP>2</SUP>1<SUP>S</SUP><SUB>0</SUB>) increases at higher
  densities at the expense of the forbidden line. Therefore, the ratio
  f/i is used as a sensitive indicator of electron density. However,
  depopulation of the forbidden line compared to the intercombination
  line, is not always an indicator for high densities, it might also
  indicate that the depopulation of the forbidden line level (1s2s
  <SUP>3</SUP>S<SUB>1</SUB> rightarrow 1s2p <SUP>3</SUP>P<SUB>2,1</SUB>)
  is due to a UV radiation field instead of the collisions in a
  high-density plasma. We illustrate this effect with IUE measurements
  of Capella, Procyon, Algol and α Cen A and α Cen B and a simulation
  showing the trend of the radiation fields when regarding stars with
  different surface temperatures. Focusing on the triplets of C V, N VI,
  O VII and Ne IX, we show that the radiation fields can have significant
  influence on the density analysis of the low-Z He-like ions of C, N and
  O. We present Chandra LETGS measurements and calculate the densities
  accounting for the measured radiation fields and neglecting them. The
  sources of the UV radiation are assumed to be the respective stellar
  surfaces, but in the case of Algol the radiation is supplied by the
  companion B star. A detailed investigation of whether the observed
  part of Algol's corona is actually illuminated by the radiation field
  of the B star, is necessary.

---------------------------------------------------------
Title: STELLA: Status Report
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Hagen, H.; Strassmeier,
   K.; Arlt, K.; Granzer, T.; Hildebrandt, G.; Weber, M.; Woche, M.
2003csss...12.1085H    Altcode:
  STELLA is a joint project between the Hamburger Sternwarte and
  the Astrophysical Institute Potsdam for an automatically operating
  spectroscopic telescope. The scientific goals are observation and
  monitoring of stellar activity. By agreement with the Astrophysical
  Institute of the Canary Islands, STELLA will be installed at the Teide
  Observatory on the island of Tenerife. The actual progress in design
  and construction of the telescope, the instruments and the control
  software is presented in this report.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Rotation in F-stars (Reiners+,
    2003)
Authors: Reiners, A.; Schmitt, J. H. M. M.
2003yCat..34120813R    Altcode:
  We obtained high quality spectra of 135 stars of spectral types F
  and later and derived "overall" broadening functions in selected
  wavelength regions utilizing a Least Squares Deconvolution (LSD)
  procedure. Precision values of the projected rotational velocity vsini
  were derived from the first zero of the Fourier transformed profiles and
  the shapes of the profiles were analyzed for effects of differential
  rotation. The broadening profiles of 70 stars rotating faster than
  vsini=45km/s show no indications of multiplicity nor of spottedness. In
  those profiles we used the ratio of the first two zeros of the Fourier
  transform q2/q1 to search for deviations from rigid rotation. In the
  vast majority the profiles were found to be consistent with rigid
  rotation. Five stars were found to have flat profiles probably due to
  cool polar caps, in three stars cuspy profiles were found. Two out of
  those three cases may be due to extremely rapid rotation seen pole on,
  only in one case (vsini=52km/s) solar-like differential rotation is
  the most plausible explanation for the observed profile. These results
  indicate that the strength of differential rotation diminishes in
  stars rotating as rapidly as vsini&gt;50km/s. <P />(1 data file).

---------------------------------------------------------
Title: Stellar Activity in the Gould Belt
Authors: Hempel, M.; Berghöfer, T. W.; Schmitt, J. H. M. M.
2003csss...12..805H    Altcode:
  We have used the database of X-ray sources detected in the ROSAT PSPC
  pointed observations to search for active late-type stars associated
  with the Gould Belt. Our cross-correlation with the Tycho-2 catalogue
  shows an enhancement of X-ray sources positionally coincident with
  the Gould Belt. Compared to an other study based on the ROSAT all-sky
  survey we find a substantially larger stellar surface density at
  the position of the Gould Belt, which is consistent with the higher
  sensitivity of this data. Furthermore, we find an anticorrelation of
  longitudinal stellar surface density with intervening ISM.

---------------------------------------------------------
Title: High resolution spectroscopy of circumstellar material around
    A stars
Authors: Hempel, M.; Schmitt, J. H. M. M.
2003A&A...408..971H    Altcode:
  We have analysed a time series of high resolution spectra (R=217 000)
  of the CaII K line of 9 stars which are candidates for the presence
  of circumstellar material from our previous studies. We have searched
  for variable narrow absorption components similar to those extensively
  studied in the case of beta Pictoris. Our data show long-term variations
  in the spectra of HR 2550 and HR 3685 which can be attributed to the
  dynamics of circumstellar gas. About one third of the sample stars
  show variable line absorption but only beta Pictoris seems to exhibit
  uniquely strong variations on short (nightly) timescales. In order to
  examine possible interstellar contributions we compared our results
  with interstellar data from the literature. The column densities of
  our absorption features are up to three orders of magnitude higher than
  those found for the Local Interstellar Cloud. <P />Based on observations
  collected at the European Southern Observatory, La Silla, Chile.

---------------------------------------------------------
Title: Interaction Of Magnetic Clouds In The Inner Heliosphere
Authors: Romashets, E.; Cargill, P.; Schmidt, J.
2003AIPC..679..794R    Altcode:
  A method of potentials has been used in the past for the calculation of
  the force acting on isolated magnetic bodies in solar corona and inner
  heliosphere, where large gradients of magnetic pressure exist. Since
  recent observations showed that coronal mass ejections (CME) can leave
  the Sun more frequently than was expected before 1995, it is clear that
  interactions between CMEs can play important role in the formation of
  geo-effective structures near the Earth's orbit. We present here an
  evaluation of two interacting CMEs and the field distribution around
  them, using potential solution in bi-cylindrical coordinates.

---------------------------------------------------------
Title: Coronal densities and temperatures for cool stars in different
    stages of activity
Authors: Ness, J. -U.; Audard, M.; Schmitt, J. H. M. M.; Güdel, M.
2003AdSpR..32..937N    Altcode:
  With the advent of the new X-ray missions Chandra and XMM-Newton,
  high-resolution spectroscopy has become available for studies of
  stellar coronae. Individual lines can be used as diagnostic tools for
  measuring densities and temperatures in coronal plasma. In addition
  to the overall X-ray luminosity, spectroscopic properties can be
  used for a classification of coronal X-ray emitters. In this paper
  we focus on density diagnostics measured with the He-like triplets
  and measurements from ratios of H-like and He-like lines yielding a
  characteristic plasma temperature. We test the assumption of optically
  thin plasma emission using the Fe xvil emission lines at 15.03 and
  15.27 Å. We find that tha assumption of optically thin plasma is valid
  for all targets in our sample. Deviations from theoretical ratios can
  be explained by unidentified blending of the 15.27 Å line. From the
  results of our analysis we conclude that the stars with low activity
  are all quite similar with low temperatures and low densities. The
  plasma with a low overall emission measure is not connected with high
  density regions but occupies larger volumes. For the active stars we
  measure higher temperatures but two scenarios for the densities. We
  measure relatively low densities for all active RS CVn systems and
  higher densities for all the other active stars except for β Ceti. We
  conclude that large available volumes (as in RS CVn stars and β Ceti)
  are completely filled with emitting plasma and only limited volumes in
  combination with high emission measures require mechanisms producing
  plasma with higher densities.

---------------------------------------------------------
Title: VizieR Online Data Catalog: X-ray study of NGC 2451 A and
    B. (Huensch+ 2003)
Authors: Huensch, M.; Weidner, C.; Schmitt, J. H. M. M.
2003yCat..34020571H    Altcode:
  The ROSAT X-ray observations were carried out at three different epochs
  between 1992 and 1996. Two PSPC (called "A" and "B") and one HRI ("H")
  observations were scheduled on NGC 2451. <P />(3 data files).

---------------------------------------------------------
Title: Are stellar coronae optically thin in X-rays?. A systematic
    investigation of opacity effects
Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Audard, M.; Güdel, M.;
   Mewe, R.
2003A&A...407..347N    Altcode: 2003astro.ph..6308N
  The relevance of resonant scattering in the solar corona has always been
  discussed controversially. Ratios of emission lines from identical ions
  but different oscillator strengths have been used in order to estimate
  damping of resonance lines due to possible resonant scattering, i.e.,
  absorption by photo-excitation and re-emission out of the line of
  sight. The analysis of stellar spectra in analogy to previous works
  for the Sun is possible now with XMM-Newton and Chandra grating spectra
  and requires this issue to be considered again. In this work we present
  a sample of 45 X-ray spectra obtained for 26 stellar coronae with the
  RGS on board XMM-Newton and the LETGS and HETGS on board Chandra. We
  use ratios of the Fe XVII lines at 15.27 Å and 16.78 Å lines to
  the resonance line at 15.03 Å as well as the He-like f/r ratio of O
  VII and Ne IX to measure optical depth effects and compare them with
  ratios obtained from optically thin plasma atomic databases such as
  MEKAL, Chianti, and APEC. From the Fe XVII line ratios we find no
  convincing proof for resonance line scattering. Optical depths are
  basically identical for all kinds of stellar coronae and we conclude
  that identical optical depths are more probable when effects from
  resonant scattering are generally negligible. The 15.27/15.03 Åratio
  shows a regular trend suggesting blending of the 15.27 Åline by a
  cooler Fe line, possibly Fe XVI. The He-like f/r ratios for O and Ne
  show no indication for significant damping of the resonance lines. We
  mainly attribute deviations from the atomic databases to still uncertain
  emissivities which do not agree well with laboratory measurements and
  which come out with differing results when accounting for one or the
  other side effect. We attribute the discrepancies in the solar data to
  geometrical effects from observing individual emitting regions in the
  solar corona but only overall emission for stellar coronae including
  photons eventually scattered into the line of sight.

---------------------------------------------------------
Title: Field zero-age main-sequence stars in the solar neighbourhood:
    where have they come from?
Authors: Wichmann, R.; Schmitt, J. H. M. M.
2003MNRAS.342.1021W    Altcode: 2003astro.ph..3326W
  In the course of an all-sky survey for young stars in the solar
  neighbourhood, we have found a tight kinematic group of 10 F-G type
  zero-age main-sequence stars in the field. Here we discuss the origin
  of these stars. Backtracking the space motions of these stars, we argue
  that likely candidates for the parent association are the Perseus OB3
  (Per OB3), Upper Centaurus-Lupus (UCL) and Lower Centaurus-Crux (LCC)
  associations, and that we are witnessing the ongoing diffusion of
  (at least one of) these associations into the field.

---------------------------------------------------------
Title: Two-site simultaneous observations of solar-like stellar
    oscillations in radial velocities  with a Fabry-Pérot calibration
    system
Authors: Bertaux, J. -L.; Schmitt, J.; Lebrun, J. -C.; Bouchy, F.;
   Guibert, S.
2003A&A...405..367B    Altcode:
  We report simultaneous measurements of the radial velocity V<SUB>r</SUB>
  of a star, zeta Herculis, with two different telescopes and
  spectrometer systems, both located at Observatoire de Haute Provence,
  France. We believe that we detected for the first time in a solar
  type star a correlated signal in the time series of V<SUB>r</SUB>
  observed simultaneously with the two different instruments, due to
  the stellar oscillations. The objective of our observations was to
  compare the performance of the two systems, for the detection of
  stellar oscillations (astero-seismology). Both systems use a large
  portion of the visible spectrum of the star to increase the number
  of spectral lines on which to compute variations of V<SUB>r</SUB>,
  and a white-light channelled spectrum produced by a Fabry-Pérot as
  a calibration of spectrometer drifts. The two calibration systems
  that we designed and implemented are however different. With the
  193 cm telescope, we calibrated the ELODIE spectrometer with a fixed
  Fabry-Pérot, while for the EMILIE spectrometer, we use the full AAA
  (Astronomical Absolute Accelerometer) system of Pierre Connes, with a
  tunable Fabry-Pérot and various servo-controls. We first show, with
  three stars observed with ELODIE (Procyon, eta Cas and zeta Her),
  that the auto-correlation function on a single-night time series
  is clearly significant when the periodogram shows significant peaks
  (Procyon and zeta Her), while for eta Cas, nothing significant is seen
  in the periodogram nor in the auto-correlation function. Then we show
  evidence of the correlation of the two simultaneous, but independent,
  time-series obtained on a single night on zeta Her, that we believe
  is the first reported clear case of simultaneous detection of stellar
  oscillations (solar type), which paves the way to future multi-site
  observations with a network of longitude spread telescopes. Finally,
  the observed fluctuations are compared, yielding an estimate of the
  instrumental (plus atmospheric effects) short term random error: &lt;2.1
  m s<SUP>-1</SUP> for EMILIE + AAA system, and &lt;2.9 m s<SUP>-1</SUP>
  for ELODIE + fixed Fabry-Pérot system. <P />Based on observations
  obtained at the Observatoire de Haute-Provence (CNRS, France).

---------------------------------------------------------
Title: Delayed onset of the 2002 Indian monsoon
Authors: Flatau, M. K.; Flatau, P. J.; Schmidt, J.; Kiladis, G. N.
2003GeoRL..30.1768F    Altcode: 2003GeoRL..30ASC13F
  We show that there is a set of dynamical predictors, which facilitate
  forecasting of a delayed monsoon onset. The main dynamical contributor
  is the early May propagation of the “bogus onset Intraseasonal
  Oscillation” which triggers a set of events precluding the
  climatological monsoon onset. We analyze in detail the 2002 monsoon
  onset and show that it followed a pattern described in our previous
  study. We notice that the 2003 monsoon onset followed very similar
  pattern and was delayed.

---------------------------------------------------------
Title: First X-ray Detection from Saturn with Chandra
Authors: Ness, Jan-Use; Schmitt, Jürgen H. M. M.; Wolk, Scott J.;
   Dennerl, Konrad; Burwitz, Vadim
2003ANS...324....6N    Altcode: 2003ANS...324..A06N
  No abstract at ADS

---------------------------------------------------------
Title: Evidence for coronal activity cycles on 61 Cygni A and B
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Baliunas, S. L.;
   Donahue, R. A.
2003A&A...406L..39H    Altcode:
  We investigate a four-and-one-half year time-series of ROSAT HRI
  pointed observations of 61 Cyg A and B and compare the X-ray light
  curves with the chromospheric Ca HK variability. The ROSAT sampling
  rate was two pointings per year and typical errors lie in the range
  of 5-10%. The chromospheric cycles are well-known for both stars from
  the Mt. Wilson Ca HK survey. Although the time basis of our ROSAT
  observations is shorter than the 7-and 12-year cycles of components A
  and B, respectively, we find the long-term trend of coronal activity in
  close correlation with the chromospheric activity during the observation
  period, between 1993 and 1998. The chromospheric activity increased
  through maximum activity down to a minimum for component A, and from
  maximum to minimum activity for component B. The same behaviour is
  observed for the X-ray light curves but with much higher amplitudes
  by factors 2.5-3. The remaining scatter observed around low-order
  regression curves of coronal activity is small. We conclude that both
  stars do show coronal cycles and that coronal cycles are the dominant
  source of variability for 61 Cygni.

---------------------------------------------------------
Title: Ultra-high-resolution Spectroscopy of Circum-stellar Disks
    around A-type Stars
Authors: Hempel, M.; Schmitt, J. H. M. M.
2003ANS...324R...9H    Altcode: 2003ANS...324..A21H
  No abstract at ADS

---------------------------------------------------------
Title: Analysis of Ca II Emission Lines
Authors: Hempel, Marc; Schmitt, Jürgen H. M. M.; Kaiser, Clarissa
2003ANS...324..134H    Altcode: 2003ANS...324..P47H
  No abstract at ADS

---------------------------------------------------------
Title: X-ray Variability in the ROSAT All-Sky Survey
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.
2003ANS...324...32F    Altcode: 2003ANS...324b..32F; 2003ANS...324..F14F
  No abstract at ADS

---------------------------------------------------------
Title: Spatially Resolved Quiescent and Flaring X-ray Emission from
    EQ Peg A/B
Authors: Robrade, Jan; Ness, Jan-Uwe; Schmitt, J. H. M. M.
2003ANS...324R..17R    Altcode: 2003ANS...324c..17R; 2003ANS...324..B15R
  No abstract at ADS

---------------------------------------------------------
Title: An X-ray study of the open clusters NGC 2451 A and B
Authors: Hünsch, M.; Weidner, C.; Schmitt, J. H. M. M.
2003A&A...402..571H    Altcode:
  We have conducted a detailed study of the object NGC 2451,
  which actually consists of two different open clusters A and
  B along the same line of sight at 206 pc and 370 pc distance,
  respectively. Although belonging to the nearest clusters, they have
  not been much investigated until present due to strong contamination
  by field stars. ROSAT X-ray observations and optical UBVR photometry
  are used to identify cluster members by means of X-ray emission and
  colour-magnitude diagrams. The identified stars concentrate nicely
  around the expected main sequences in the colour-magnitude diagram
  at the distances derived from astrometric investigations. Altogether,
  39 stars are identified as member candidates of the nearer cluster A,
  49 stars as member candidates of the more distant cluster B, and 22
  faint stars are probably members of either of the two clusters, but
  due to large errors it is not clear to which one they belong. Further
  40 stars identified with X-ray sources are probably non-members. For
  the first time, the range of known probable cluster members of NGC
  2451 A and B has been extended downwards the main sequence to stars
  of spectral class M. Isochrone fitting yields an age of 50 to 80 Myrs
  for NGC 2451 A and ~50 Myrs for NGC 2451 B, consistent with the X-ray
  luminosity distribution functions, which are comparable to other
  clusters in the same age range. Except from the occurence of four
  flares, the stars of both clusters do not show strong long-term X-ray
  variability exceeding a factor 5 over a time span of 1 to 3 years. <P
  />Based on observations performed by the ROSAT X-ray observatory and
  the European Southern Observatory. <P />Tables 3-6 are only available
  in electronic form at http://www.edpsciences.org

---------------------------------------------------------
Title: A systematic study of X-ray variability in the ROSAT all-sky
    survey
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.
2003A&A...403..247F    Altcode: 2003astro.ph..3106F
  We present a systematic search for variability among the ROSAT
  All-Sky Survey (RASS) X-ray sources. We generated lightcurves for
  about 30 000 X-ray point sources detected sufficiently high above
  background. For our variability study different search algorithms
  were developed in order to recognize flares, periods and trends,
  respectively. The variable X-ray sources were optically identified
  with counterparts in the SIMBAD, the USNO-A2.0 and NED data bases,
  but a significant part of the X-ray sources remains without cataloged
  optical counterparts. Out of the 1207 sources classified as variable 767
  (63.5%) were identified with stars, 118 (9.8%) are of extragalactic
  origin, 10 (0.8%) are identified with other sources and 312 (25.8%)
  could not uniquely be identified with entries in optical catalogs. We
  give a statistical analysis of the variable X-ray population and present
  some outstanding examples of X-ray variability detected in the ROSAT
  all-sky survey. Most prominent among these sources are white dwarfs,
  apparently single, yet nevertheless showing periodic variability. Many
  flares from hitherto unrecognised flare stars have been detected as
  well as long term variability in the BL Lac 1E1757.7+7034. <P />The
  complete version of Table 7 is only available in electronic form at
  the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
  via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/247

---------------------------------------------------------
Title: Imaging capabilities of hypertelescopes with a pair of
    micro-lens arrays
Authors: Gillet, S.; Riaud, P.; Lardière, O.; Dejonghe, J.; Schmitt,
   J.; Arnold, L.; Boccaletti, A.; Horville, D.; Labeyrie, A.
2003A&A...400..393G    Altcode:
  We verify the imaging performance of hypertelescopes on the sky, using a
  new scheme for pupil densification. To avoid seeing limitations, we used
  a miniature version with a 10 cm aperture containing 78 sub-apertures
  of 1 mm size, arrayed periodically as a square grid. The pupil
  densification is achieved with a pair of micro-lens arrays, where each
  pair of facing lenses behaves like a tiny demagnifying telescope. We
  have tested the direct snapshot performance with laboratory-simulated
  multiple stars and observed the binary star Castor (alpha Gem). We
  measured a separation of 3.8 arcsec and a magnitude difference of
  0.85 which is in agreement with current orbital data. This verified
  the theoretical expectations for hypertelescopes in terms of field
  of view and fluxes and qualified the new optical implementation for
  future arrays at the scale of meters and beyond.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Variability in the ROSAT All-Sky
    Survey (Fuhrmeister+, 2003)
Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.
2003yCat..34030247F    Altcode:
  We present a systematic search for variability among the ROSAT All-Sky
  Survey (RASS) X-ray sources. We generated lightcurves for about 30000
  X-ray point sources detected sufficiently high above background. For our
  variability study different search algorithms were developed in order
  to recognize flares, periods and trends, respectively. The variable
  X-ray sources were optically identified with counterparts in the SIMBAD,
  the USNO-A2.0 and NED data bases, but a significant part of the X-ray
  sources remains without cataloged optical counterparts. A complete
  list of the 1207 variable sources we found is presented here. <P />(1
  data file).

---------------------------------------------------------
Title: XEUS: the x-ray evolving universe spectroscopy mission
Authors: Parmar, Arvind N.; Hasinger, G.; Arnaud, Monique; Barcons,
   X.; Barret, D.; Blanchard, A.; Boehringer, H.; Cappi, M.; Comastri,
   A.; Courvoisier, T.; Fabian, A. C.; Georgantopoulos, I.; Griffiths,
   R.; Kawai, Nobuyuki; Koyama, K.; Makishima, K.; Malaguti, P.; Mason,
   K. O.; Motch, C.; Mendez, Mariano; Ohashi, T.; Paerels, F.; Piro,
   L.; Schmitt, J.; van der Klis, M.; Ward, M.
2003SPIE.4851..304P    Altcode:
  XEUS is under study by ESA as part of the Horizon 2000+ program
  to utilize the International Space Station (ISS) for astronomical
  applications. XEUS will be a long-term x-ray observatory with an
  initial mirror area of 6 m<SUP>2</SUP> at 1 keV that will be expanded
  to 30 m<SUP>2</SUP> following a visit to the ISS. The 1 keV spatial
  resolution is expected to be 2-5" half-energy-width. XEUS will consist
  of separate detector and mirror spacecraft aligned by active control to
  provide a focal length of 50 m. A new detector spacecraft, complete with
  the next generation of instruments, will also be added after visiting
  the ISS. The limiting sensitivity will then be 4×10<SUP>-18</SUP> erg
  cm<SUP>-2</SUP>s<SUP>-1</SUP>, around 200 times better than XMM-Newton,
  allowing XEUS to study the properties of the hot baryons and dark
  matter at high redshift.

---------------------------------------------------------
Title: Nearby young stars
Authors: Wichmann, R.; Schmitt, J. H. M. M.; Hubrig, S.
2003A&A...399..983W    Altcode:
  We present the results of an extensive all-sky survey of nearby stars of
  spectral type F8 or later in a systematic search of young (zero-age main
  sequence) objects. Our sample has been derived by cross-correlating the
  ROSAT All-Sky Survey and the TYCHO catalogue, yielding a total of 754
  candidates distributed more or less randomly over the sky. Follow-up
  spectroscopy of these candidate objects has been performed on 748 of
  them. We have discovered a tight kinematic group of ten stars with
  extremely high lithium equivalent widths that are presumably younger
  than the Pleiades, but again distributed rather uniformly over the
  sky. Furthermore, about 43 per cent of our candidates have detectable
  levels of lithium, thus indicating that these are relatively young
  objects with ages not significantly above the Pleiades age. <P />Based
  on observations collected at the European Southern Observatory, Chile
  (ESO No. 62.I-0650, 66.D-0159(A), 67.D-0236(A)).

---------------------------------------------------------
Title: New spectroscopic binaries among nearby stars
Authors: Wichmann, R.; Schmitt, J. H. M. M.; Hubrig, S.
2003A&A...400..293W    Altcode:
  In the course of surveying a large number of nearby (~50 pc or less)
  stars for indicators of youth, we have discovered a number of hitherto
  unknown spectroscopic binaries. Here we present a list of these new
  binaries with pertinent data. Two of these (HD 143705 and HD 89959)
  have been observed six times each, and their respective radial velocity
  curves are discussed. <P />Based on observations collected at the
  European Southern Observatory, Chile (ESO No. 62.I-0650, 66.D-0159(A),
  67.D-0236(A)).

---------------------------------------------------------
Title: Rotation and differential rotation in field F- and G-type stars
Authors: Reiners, A.; Schmitt, J. H. M. M.
2003A&A...398..647R    Altcode:
  We present a detailed study of rotation and differential rotation
  analyzing high resolution high S/N spectra of 142 F-, G- and
  early K-type field stars. Using Least Squares Deconvolution we
  obtain broadening profiles for our sample stars and use the Fourier
  transform method to determine projected rotational velocities v sin
  i. Distributions of rotational velocities and periods are studied in the
  HR-diagram. For a subsample of 32 stars of spectral type F0-G0 we derive
  the amount of differential rotation in terms of alpha = (Omega_Equator
  - Omega_Pole )/Omega_Equator . We find evidence for differential
  rotation in ten of the 32 stars. Differential rotation seems to be
  more common in slower rotators, but deviations from rigid rotation
  are also found in some fast rotators. We search for correlations
  between differential rotation and parameters relevant for stellar
  activity and show indications against strong differential rotation
  in very active stars. We derive values of Delta P and Delta Omega ,
  which support a period dependence of differential rotation. Derived
  lap times 2pi /Delta Omega are of the order of 20 d and contradict
  the assumption that constant lap times of the order of the solar one
  ( ~ 130 d) are the rule in stars that are thought to harbour magnetic
  dynamos. <P />Based on observations collected at the European Southern
  Observatory, La Silla. <P />Tables 3 and A1 are only available at
  the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or
  via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/647

---------------------------------------------------------
Title: Differential Rotation in a Larger Sample of Cool Stars
Authors: Reiners, A.; Schmitt, J. H. M. M.
2003IAUS..210P.E23R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: High Resolution Spectra of Circumstellar Disks of a Stars
Authors: Hempel, Marc; Schmitt, Jürgen H. M. M.
2003IAUS..221P.136H    Altcode:
  IRAS observations have shown that about 20% of all A stars are
  surrounded by dust. Detailed abundance studies of IRAS sources revealed
  A stars with narrow absorption features in the Ca II K line which are
  attributed to the presence of circumstellar gas. This is of particular
  interest in the framework of the formation of planetary systems. In
  the case of the prototype with circumstellar material -Beta Pictoris-
  these narrow absorption features are a well-studied phenomenon. Their
  variability on short timescales corresponds with the scenario of
  falling evaporating bodies (FEB) approaching the star. Information
  on the variability of prominent narrow absorptions in Ca K of other
  A stars is scarce. Investigation of column densities and spectral
  variations using high-resolution spectroscopy provides an excellent tool
  to tackle the question whether these features are of circumstellar or
  rather interstellar origin. Furthermore it allows to both investigate
  the FEB scenario and the dynamics of the circumstellar gas. We present
  results from a time series of Ca K observations carried out with the
  ESO 3.6-m telescope equipped with the CES at a resolution of 217000 and
  report the detection of spectral variation in some stars attributable
  to infalling gas.

---------------------------------------------------------
Title: Accretion signatures in the X-ray spectrum of TW Hya
Authors: Stelzer, Beate; Schmitt, Jürgen H. M. M.
2003ASSL..299..177S    Altcode: 2003oils.conf..177S
  No abstract at ADS

---------------------------------------------------------
Title: Coronal density diagnostics with Helium-like triplets:
    Chandra-LETG observations of Algol, Capella, Procyon, ∈ Eri,
    α Cen A&amp;B, and UX Ari
Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen,
   A. J. J.; van der Meer, R. L. J.; Burwitz, V.; Predehl, P.; Brinkman,
   A. C.
2002ASPC..277..127N    Altcode: 2002sccx.conf..127N
  No abstract at ADS

---------------------------------------------------------
Title: A Large Flare on EQ Peg Simultaneously Observed in the X-Ray
    and Optical Wavebands
Authors: Katsova, M. M.; Livshits, M. A.; Schmitt, J. H. M. M.
2002ASPC..277..515K    Altcode: 2002sccx.conf..515K
  No abstract at ADS

---------------------------------------------------------
Title: The joint XMM-Newton and Chandra view of YY Gem
Authors: Stelzer, B.; Burwitz, V.; Neuhäuser, R.; Audard, M.; Schmitt,
   J. H. M. M.
2002ASPC..277..215S    Altcode: 2001astro.ph..9413S; 2002sccx.conf..215S
  We have observed the flare star YY Gem simultaneously with XMM-Newton
  and Chandra as part of a multi-wavelength campaign aiming at a study
  of variability related to magnetic activity in this short-period
  eclipsing binary. Here we report on the first results from the analysis
  of the X-ray spectrum. The vicinity of the star provides high enough
  S/N in the CCD cameras onboard XMM-Newton to allow for time-resolved
  spectroscopy. Since the data are acquired simultaneously they allow
  for a cross-calibration check of the performance of the XMM-Newton
  RGS and the LETGS on Chandra.

---------------------------------------------------------
Title: Influence of radiation fields on the density diagnostics
    Chandra-LETGS observations of Algol and Procyon
Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen,
   A. J. J.
2002ASPC..277..545N    Altcode: 2002sccx.conf..545N
  No abstract at ADS

---------------------------------------------------------
Title: VizieR Online Data Catalog: Rotational velocities of F and
    G stars (Reiners+, 2003)
Authors: Reiners, A.; Schmitt, J. H. M. M.
2002yCat..33980647R    Altcode:
  We present a detailed study of rotation and differential rotation
  analyzing high resolution high S/N spectra of 142 F-, G- and early
  K-type field stars. Using Least Squares Deconvolution we obtain
  broadening profiles for our sample stars and use the Fourier transform
  method to determine projected rotational velocities vsini. Distributions
  of rotational velocities and periods are studied in the HR-diagram. For
  a subsample of 32 stars of spectral type F0-G0 we derive the amount
  of differential rotation. We find evidence for differential rotation
  in ten of the 32 stars. <P />The observations were done with the ESO
  3.6m telescope at La Silla, Chile, in October 2000, October 2001 and
  April 2002. The CES instrument (resolution 235000) was used, in the
  wavelength regions 577-581nm and 322.5-627nm. <P />(2 data files).

---------------------------------------------------------
Title: Coronal density diagnostics with Helium-like triplets:
    CHANDRA-LETGS observations of Algol, Capella, Procyon, epsilon Eri,
    alpha Cen A&amp;B, UX Ari, AD Leo, YY Gem, and HR 1099
Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.;
   Raassen, A. J. J.; van der Meer, R. L. J.; Predehl, P.; Brinkman, A. C.
2002A&A...394..911N    Altcode: 2002astro.ph..9033N
  We present an analysis of ten cool stars (Algol, Capella, Procyon,
  epsilon Eri, alpha Cen A&amp;B, UX Ari, AD Leo, YY Gem, and HR 1099)
  observed with the Low Energy Transmission Grating Spectrometer (LETGS)
  on board the Chandra X-ray Observatory. This sample contains all cools
  stars observed with the LETGS presently available to us with integration
  times sufficiently long to warrant a meaningful spectral analysis. Our
  sample comprises inactive, moderately active, and hyperactive stars and
  samples the bulk part of activity levels encountered in coronal X-ray
  sources. We use the LETGS spectra to carry out density and temperature
  diagnostics with an emphasis on the H-like and the He-like ions. We
  find a correlation between line flux ratios of the Ly<SUB>alpha</SUB>
  and He-like resonance lines with the mean X-ray surface flux. We
  determine densities using the He-like triplets. For all stars we find
  no significant deviations from the low-density limit for the ions of
  Ne, Mg, and Si, while the measured line ratios for the ions of C, N,
  and O do show evidence for departures from the low-density limit in the
  active stars, but not in the inactive stars. Best measurements can be
  made for the O VII triplet where we find significant deviations from
  the low-density limit for the stars Algol, Procyon, YY Gem, epsilon
  Eri, and HR 1099. We discuss the influence of radiation fields on
  the interpretation of the He-like triplet line ratios in the low-Z
  ions, which is relevant for Algol, and the influence of dielectronic
  satellite lines, which is relevant for Procyon. For the active stars
  YY Gem, epsilon Eri, and HR 1099 the low f/i ratios can unambiguously
  be attributed to high densties in the range 1-3*E<SUP>10</SUP>
  cm<SUP>-3</SUP> at O VII temperatures. We find our LETGS spectra to
  be an extremely useful tool for plasma diagnostics of stellar coronae.

---------------------------------------------------------
Title: Evidence for strong differential rotation in Li-depleted fast
    rotating F-stars
Authors: Reiners, A.; Schmitt, J. H. M. M.
2002A&A...393L..77R    Altcode:
  We report the detection of strong differential rotation on ten fast
  rotating (v sin i &gt; 10 km s<SUP>-1</SUP>) stars of spectral types
  F0-G0 using the Fourier Transform Method, in three cases we find alpha
  &gt; 20%. Among the six differential rotators with v sin i &gt; 15 km
  s<SUP>-1</SUP>, five have Li abundances of log epsilon (Li) &lt; 1.5,
  for one object no Li abundance is available to our knowledge. No
  differentially rotating star with high Li abundance was found,
  although the average Li abundance of fast rotators in the literature
  is log epsilon (Li) &gt; 2.0. Our results suggest that Li-depleted
  fast rotators tend to show differential rotation. Interpreting high
  rotational velocity as indicator of youth, this finding supports
  the idea of the connection between mixing processes and differential
  rotation during magnetic breaking in F-stars. Based on observations
  collected at the European Southern Observatory, La Silla.

---------------------------------------------------------
Title: Simultaneous X-ray spectroscopy of YY Gem with Chandra and
    XMM-Newton
Authors: Stelzer, B.; Burwitz, V.; Audard, M.; Güdel, M.; Ness,
   J. -U.; Grosso, N.; Neuhäuser, R.; Schmitt, J. H. M. M.; Predehl,
   P.; Aschenbach, B.
2002A&A...392..585S    Altcode: 2002astro.ph..6429S
  We report on a detailed study of the X-ray spectrum of the nearby
  eclipsing spectroscopic binary YY Gem. Observations were obtained
  simultaneously with both large X-ray observatories, XMM-Newton and
  Chandra. We compare the high-resolution spectra acquired with the
  Reflection Grating Spectrometer onboard XMM-Newton and with the Low
  Energy Transmission Grating Spectrometer onboard Chandra, and evidence
  in direct comparison the good performance of both instruments in
  terms of wavelength and flux calibration. The strongest lines in the
  X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate
  the presence of a low-temperature component (1-4 MK) with density
  n_e &lt;= 2x 10<SUP>10</SUP> cm<SUP>-3</SUP>. The X-ray lightcurve
  reveals two flares and a dip corresponding to the secondary eclipse. An
  increase of the density during phases of high activity is suggested from
  time-resolved spectroscopy. Time-resolved global fitting of the European
  Photon Imaging Camera CCD spectrum traces the evolution of temperature
  and emission measure during the flares. These medium-resolution spectra
  show that temperatures &gt; 10<SUP>7</SUP> K are relevant in the corona
  of YY Gem although not as dominant as the lower temperatures represented
  by the strongest lines in the high-resolution spectrum. Magnetic
  loops with length on the order of 10<SUP>9</SUP> cm, i.e., about 5%
  of the radius of each star, are inferred from a comparison with a
  one-dimensional hydrodynamic model. This suggests that the flares did
  not erupt in the (presumably more extended) inter-binary magnetosphere
  but are related to one of the components of the binary.

---------------------------------------------------------
Title: Planetary Rings
Authors: Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic,
   A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones,
   L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French,
   R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.;
   Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson,
   S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.;
   Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport,
   N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker,
   L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.
2002ASPC..272..263G    Altcode: 2002fsse.conf..263G
  The past two decades have witnessed dramatic changes in our view
  and understanding of planetary rings. We now know that each of the
  giant planets in the Solar System possesses a complex and unique
  ring system. Recent studies have identified complex gravitational
  interactions between the rings and their retinues of attendant
  satellites. Among the four known ring systems, we see elegant examples
  of Lindblad and corotation resonances (first invoked in the context
  of galactic disks), electromagnetic resonances, spiral density waves
  and bending waves, narrow ringlets which exhibit internal modes due to
  collective instabilities, sharp-edged gaps maintained via tidal torques
  from embedded moonlets, and tenuous dust belts created by meteoroid
  impact onto, or collisions between, parent bodies. Yet, as far as we
  have come, our understanding is far from complete. The fundamental
  questions confronting ring scientists at the beginning of the
  twenty-first century are those regarding the origin, age and evolution
  of the various ring systems, in the broadest context. Understanding
  the origin and age requires us to know the current ring properties,
  and to understand the dominant evolutionary processes and how they
  influence ring properties. Here we discuss a prioritized list of
  the key questions, the answers to which would provide the greatest
  improvement in our understanding of planetary rings. We then outline
  the initiatives, missions, and other supporting activities needed
  to address those questions, and recommend priorities for the coming
  decade in planetary ring science.

---------------------------------------------------------
Title: Can star spots mimic differential rotation?
Authors: Reiners, A.; Schmitt, J. H. M. M.
2002A&A...388.1120R    Altcode:
  The search for stellar differential rotation in Fourier-transformed
  profiles utilizes subtle deviations from the standard rotation
  profile. We investigate the influence of stellar spots on the
  results obtained with the Fourier Transform Method. Different spot
  configurations, especially polar spots, are examined, and their
  influence on Fourier-transformed line profiles studied. We found that
  polar spots cannot mimic solar-like differential rotation and are thus
  not critical for the use of the Fourier Transform Method. Although
  not indicated by Doppler imaging, other configurations may occur on
  stellar surfaces and their influence on the analysis is discussed. A
  symmetric distribution of spots in an activity belt leads - in a small
  region of the parameter space - to line profiles that are very similar
  to the signatures produced by differential rotation.

---------------------------------------------------------
Title: Carbon and nitrogen abundances in the coronae of Algol B and
other evolved stars: Evidence for CNO-cycle processed material
Authors: Schmitt, J. H. M. M.; Ness, J. -U.
2002A&A...388L..13S    Altcode:
  Using the Ly<SUB>alpha </SUB>-lines of carbon and nitrogen measured in
  Chandra Low Energy Transmission Grating Spectrometer (LETGS) spectra we
  study the coronal abundances of these elements in a sample of late-type
  stars including dwarf stars, the prototypical eclipsing binary Algol,
  the single giant beta Cet, and three RS CVn binaries. In the main
  sequence stars of our sample the flux ratio R<SUB>NC</SUB> between
  the Ly<SUB>alpha </SUB>-lines of nitrogen and carbon is below unity,
  while R<SUB>NC</SUB> is found to be ~8.5 for beta Cet and &gt;23.3
  for Algol. These values are more than an order of magnitude larger
  than expected from a solar abundance plasma in collisional equilibrium
  regardless of the chosen temperature structure. We therefore interpret
  the anomalously large R<SUB>NC</SUB>-ratios as being due to the exposure
  of CNO-cycle processed material at the surfaces and in the coronae of
  Algol and beta Cet.

---------------------------------------------------------
Title: Chandra LETGS observation of the active binary Algol
Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.;
   Predehl, P.
2002A&A...387.1032N    Altcode: 2002astro.ph..3431N
  A high-resolution spectrum obtained with the low-energy transmission
  grating onboard the Chandra observatory is presented and analyzed. Our
  analysis indicates very hot plasma with temperatures up to T~ 15-20 MK
  from the continuum and from ratios of hydrogen-like and helium-like
  ions of Si, Mg, and Ne. In addition lower temperature material is
  present since O VII and N VI are detected. Two methods for density
  diagnostics are applied. The He-like triplets from N VII to Si XIII
  are used and densities around 10<SUP>11</SUP> cm<SUP>-3</SUP> are
  found for the low temperature ions. Taking the UV radiation field from
  the B star companion into account, we find that the low-Z ions can be
  affected by the radiation field quite strongly, such that densities of
  3x 10<SUP>10</SUP> cm<SUP>-3</SUP> are also possible, but only assuming
  that the emitting plasma is immersed in the radiation field. For the
  high temperature He-like ions only low density limits are found. Using
  ratios of Fe XXI lines produced at similar temperatures are sensitive
  to lower densities but again yield only low density limits. We thus
  conclude that the hot plasma has densities below 10<SUP>12</SUP>
  cm<SUP>-3</SUP>. Assuming a constant pressure corona we show that the
  characteristic loop sizes must be small compared to the stellar radius
  and that filling factors below 0.1 are unlikely.

---------------------------------------------------------
Title: On the feasibility of the detection of differential rotation
    in stellar absorption profiles
Authors: Reiners, A.; Schmitt, J. H. M. M.
2002A&A...384..155R    Altcode:
  Stellar differential rotation invokes subtle effects on line absorption
  profiles which can be best studied in the Fourier domain. Detailed
  calculations of the behavior of Fourier transformed profiles with
  respect to varying differential rotation, limb darkening and inclination
  angles are presented. The zero positions of the Fourier transform are
  found to be very good tracers of differential rotation. The ratio of
  the first two zero positions sigma <SUB>2</SUB>/sigma <SUB>1</SUB> can
  be easily measured and is a reliable parameter to deduce the amount of
  differential rotation. It is shown that solar-like differential rotation
  (equatorial regions have larger angular velocity then polar regions)
  has an unambigious signature in the Fourier domain and that in certain
  cases it can easily be distinguished from limb darkening effects. A
  simple procedure is given allowing the determination of the amount of
  differential rotation by the knowledge of the first two zero positions
  of a line profile's Fourier transform alone (i.e., without the need
  for thorough atmospheric modelling), under the assumption of a linear
  limb darkening law with a limb darkening coefficient of epsilon = 0.6.

---------------------------------------------------------
Title: Development of 300 g scintillating calorimeters
Authors: Frank, T.; Angloher, G.; Bruckmayer, M.; Cozzini, C.; di
   Stefano, P.; Hauff, D.; Pröbst, F.; Schmidt, J.; Seidel, W.
2002AIPC..605..501F    Altcode:
  The sensitivity for WIMP detection can be improved by an ability to
  efficiently discriminate the γ and β backgrounds from the nuclear
  recoil signals. The CRESST phase II detectors will achieve this
  discrimination by means of simultaneous measurement of phonons and
  scintillation light. We report on the development of a 300 g detector
  module consisting of two separate calorimeters fitted with tungsten
  phase transition thermometers. A 300 g CaWO<SUB>4</SUB> crystal serves
  as the target material in which a recoiling WIMP creates both phonons
  and scintillation light. Phonons are detected by a thermometer on the
  CaWO<SUB>4</SUB> crystal. A second smaller detector in close proximity
  detects the scintillation light. Measurements with this setup will be
  presented. .

---------------------------------------------------------
Title: Results of Spectrograph EMILIE with the AAA System on
    Solar-Like Oscillations
Authors: Bouchy, F.; Schmitt, J.; Bertaux, J. -L.; Connes, P.
2002ASPC..259..472B    Altcode: 2002rnpp.conf..472B; 2002IAUCo.185..472B
  No abstract at ADS

---------------------------------------------------------
Title: Determination of The Cometary Mass Flux Onto The Rosetta
    Spacecraft When In Orbit About Wirtanen
Authors: Pätzold, M.; Häusler, B.; Schmitt, J.; Wennmacher, A.
2002EGSGA..27.2485P    Altcode:
  One of the science objectives of the Rosetta Radio Science Investigation
  (RSI) ex- periment is the determination of the total cometary mass
  flux (gas and dust) onto the Rosetta spacecraft when in orbit about
  the nucleus of comet Wirtanen starting in 2012. The RSI experiment
  will use the spacecrafts radio carrier frequencies at X-band (8.4
  GHz) and S-band (2.3 GHz) in order to measure slight changes in the
  relative velocity between the spacecraft and the ground station on
  Earth (Doppler effect) induced by the perturbing force of the cometary
  gas and dust flow onto the spacecraft. These per- turbing force is
  estimated based on the observed gas and dust production rates (3 AU
  to perihelion) from the last Wirtanen apparition. The gas flow will be
  the dominant perturber of the spacecraft orbit, the force will exceed
  even the gravity attraction of the nucleus if the comet is within two
  astronomical units heliocentric distance.

---------------------------------------------------------
Title: X-ray emission from the ultracool dwarf LHS 2065
Authors: Schmitt, J. H. M. M.; Liefke, C.
2002A&A...382L...9S    Altcode:
  We report the results of a 68 ks long X-ray observation of the M9V
  ultracool dwarf star LHS 2065 with the ROSAT high resolution imager
  (HRI). During the observations a major X-ray flare occurred with a
  peak X-ray luminosity of 4 x 10<SUP>27</SUP> erg/s and a total soft
  energy release of 2 x 10<SUP>31</SUP> erg. In addition, another flare
  with smaller peak X-ray luminosity and energy release occurred. The
  X-ray observations were carried out half a year apart. In the first
  half of the observations no significant X-ray emission from LHS 2065
  could be detected, while in the second half in addition to flares
  also quiescent X-ray emission at a level of 2.3 x 10<SUP>26</SUP>
  erg/s was seen. LHS 2065 belongs to the coolest hydrogen burning stars
  known. The ROSAT observations show that coronal emission may be quite
  common even among such very late-type stars.

---------------------------------------------------------
Title: Coronal densities and temperatures for cool stars in different
    stages of activity
Authors: Ness, J.; Audard, M.; Schmitt, J.; Güdel, M.
2002cosp...34E.463N    Altcode: 2002cosp.meetE.463N
  Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
  Paul Scherer Institut, Würenlingen &amp;Villigen, 5232 Villigen
  PSI, SwitzerlandWith the advent of the new X-ray missions Chandra
  and XMM-Newton, highresolution spectroscopy has become available for
  studies of stellar coronae. Individual lines can be used as diagnostics
  tools for measuring densities and temperatures in coronal plasmas. In
  addition to the X-ray luminosity, spectroscopic properties can be used
  as tracers for the classification of coronal X-ray emitters. In this
  presentation we will focus on density diagnostics measured with the
  He-like triplets and temperature measurements from ratios of H-like and
  He-like lines. Our findings are that the cool stars with low activity
  are all quite similar with low temperatures and low densities. For the
  active stars we measure both low and high densities. The temperatures
  measured with the line ratios of H-like and He-like ions are higher
  for the more active stars in general, but low-temperature lines are
  also identified in those stars. From our findings we conclude that
  inactive stars are generally very similar to the Sun, but a variety
  of coronal structure must be assumed for the active stars.

---------------------------------------------------------
Title: Determination of the cometary mass flux onto the Rosetta
    spacecraft when in orbit about comet Wirtanen
Authors: Paetzold, M.; Eidel, W.; Haeusler, B.; Schmitt, J.
2002cosp...34E2379P    Altcode: 2002cosp.meetE2379P
  One of the science objectives of the Rosetta Radio Science
  Investigations (RSI) experiment is the determination of the total
  cometary mass flux (gas and dust) onto the Rosetta spacecraft when in
  orbit about the nucleus of comet Wirtanen, starting in 2012. The RSI
  experiment will use the spacecrafts radio carrier frequencies at X-band
  (8.4 GHz) and S-band (2.3 GHz) in order to measure slight changes in the
  relative velocity between the spacecraft and the ground station on Earth
  (Doppler effect) induced by perturbing forces, mainly the gas and dust
  flow onto the spacecraft. The cometary mass flux is estimated based
  on the gas and dust production rates (3 AU to perihelion) observed
  at the last Wirtanen apparition. The gas flow will be the dominant
  perturber of the Rosetta orbit and the force acting on the spacecraft
  will exceed the gravity attraction of the nucleus if the nucleus is
  within two astronomical units heliocentric distance.

---------------------------------------------------------
Title: Ultra-high-resolution spectroscopy of circumstellar disks
    around A-type stars.
Authors: Hempel, M.; Schmitt, J. H. M. M.
2002AGAb...19R..15H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: XEUS-the X-ray evolving universe spectroscopy mission
Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.;
   Arnaud, M.; Barcons, X.; Barret, D.; Blanchard, A.; Böhringer, H.;
   Cappi, M.; Comastri, A.; Courvoisier, T.; Fabian, A. C.; Griffiths,
   R.; Malaguti, P.; Mason, K. O.; Ohashi, T.; Paerels, F.; Piro, L.;
   Schmitt, J.; van der Klis, M.; Ward, M.
2001AIPC..599..842P    Altcode: 2001xase.conf..842P
  XEUS is under study by ESA as part of the Horizon 2000+ program
  to utilize the International Space Station (ISS) for astronomical
  applications. XEUS will be a long-term X-ray observatory with an
  initial mirror area of 6 m<SUP>2</SUP> at 1 keV that will be grown to 30
  m<SUP>2</SUP> following a visit to the ISS. The 1 keV spatial resolution
  is expected to be 2-5<SUP>”</SUP> HEW. XEUS will consist of separate
  detector and mirror spacecraft aligned by active control to provide
  a focal length of 50 m. A new detector spacecraft, complete with the
  next generation of instruments, will also be added after visiting the
  ISS. The limiting sensitivity will then be ~4×10<SUP>-18</SUP> erg
  cm<SUP>-2</SUP> s<SUP>-1</SUP> around 250 times better than XMM. The
  properties of a 350 eV (rest-frame) equivalent width Fe line from a
  10<SUP>44</SUP> erg s<SUP>-1</SUP> AGN will be measurable out to z=10,
  paving the way for detailed spectroscopic X-ray studies of some of
  the earliest known objects. .

---------------------------------------------------------
Title: First spectroscopically confirmed discovery of an extragalactic
    T Tauri star
Authors: Wichmann, R.; Schmitt, J. H. M. M.; Krautter, J.
2001A&A...380L...9W    Altcode:
  We report the first spectroscopic discovery of an extragalactic
  bona-fide T Tauri star. The object, LTS J054427-692659, is a low-mass,
  late-type star located within the LMC dark cloud Hodge II 139. It shows
  Hα emission with an equivalent width of 78 Å, in line with galactic
  T Tauri stars, but in excess of any main-sequence dwarf star. The
  only known plausible interpretation of LTS J054427-692659 is a LMC T
  Tauri star. Based on observations collected at the European Southern
  Observatory, Chile (ESO No. 62.I-0607, 64.P-0150(C), 66.C-0196(A)).

---------------------------------------------------------
Title: Numerical simulations of interplanetary magnetic clouds
Authors: Cargill, P. J.; Schmidt, J.
2001AGUFMSH11D..08C    Altcode:
  We have carried out MHD simulations of the evolution of the class of
  CMEs known as magnetic clouds. It has been shown that such CMEs survive
  as flux ropes during their interaction with the solar wind. However,
  their shape at 1 AU depends on both their initial density and
  relative velocity with respect to the solar wind, and in no cases does
  cylindrical symmetry survive the interaction of the flux rope with the
  solar wind. We have investigated magentic reconnection between a CME and
  the solar wind, for the case of propagation in a uni-directional field
  and along a current sheet. Reconnection happens asymmetrically in the
  former case, and either on both or neither side in the latter. Finally,
  we have carried out a systematic study of the effective drag force
  operating on a CME. The drag coefficient is of order unity, but the
  actual motion is also influenced by the virtual mass effect.

---------------------------------------------------------
Title: The STELLA project: two 1.2m robotic telescopes for
    simultaneous high-resolution Echelle spectroscopy and imaging
    photometry
Authors: Strassmeier, K. G.; Granzer, T.; Weber, M.; Woche, M.;
   Hildebrandt, G.; Bauer, S. -M.; Paschke, J.; Roth, M. M.; Washuettl,
   A.; Arlt, K.; Stolz, P. A.; Schmitt, J. H. M. M.; Hempelmann, A.;
   Hagen, H. -J.; Ruder, H.; Palle, P. L.; Arnay, R.
2001AN....322..287S    Altcode:
  We present an overview and a brief report on the status of the STELLA
  project (abbreviation for STELLar Activity). The STELLA-I telescope
  will be the first robotic telescope that feeds a bench-mounted
  high-resolution Echelle spectrograph with a set of 50 and 100 μm
  fibres and provides spectral resolutions of up to 47,000 with a
  1 arcsec slit. The spectrograph is a white-pupil design located
  in a separated temperature-controlled room to guarantee long-term
  stability. The building will have a roll-off roof and is capable to
  host two telescopes. First light for STELLA-I is planned for summer
  2002. STELLA-II is foreseen to be a photometric imaging telescope for
  the optical and near-infrared wavelengths and will follow in 2003.

---------------------------------------------------------
Title: Determination of the cometary mass flux on the Rosetta
    spacecraft
Authors: Paetzold, M.; Wennmacher, A.; Schmitt, J.; Haeusler, B.;
   Bird, Michael K.; Neubauer, F. M.; Aksnes, K.
2001DPS....33.5723P    Altcode: 2001BAAS...33Q1148P
  One of the science objectives of the Rosetta Radio Science
  Investigations (RSI) experiment is the determination of the cometary
  mass flux (gas and dust) onto the Rosetta spacecraft intended to orbit
  the nucleus of comet P/Wirtanen starting in 2012. The RSI experiment
  will use the spacecraft's radio carrier frequencies at X-band and
  S-band in order to measure slight changes of the orbit velocity via
  the Doppler effect induced by the perturbation forces of gas and dust
  flow. These forces are estimated along the comet orbit from 4 AU to
  perihelion based on observed or estimated values of the gas and dust
  production rates for comet P/Wirtanen. It turns out that the gas flow
  might be the dominant perturber. Limits and sensitivities will be given.

---------------------------------------------------------
Title: Decadal Survey: Planetary Rings Panel
Authors: Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.;
   Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.;
   Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher,
   P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.;
   Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.;
   Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.;
   Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi,
   M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton,
   D. P.; Giuliatti-Winter, S.; French, R. G.
2001DPS....33.1420G    Altcode: 2001BAAS...33Q1057G
  The National Research Council's Committee on Planetary and Lunar
  Exploration(COMPLEX) met earlier this year to begin the organization of
  a major activity, "A New Strategy for Solar System Exploration." Several
  members of the planetary rings community formed an ad hoc panel
  to discuss the current state and future prospects for the study of
  planetary rings. In this paper we summarize fundamental questions
  of ring science, list the key science questions expected to occupy
  the planetary rings community for the decade 2003-2013, outline the
  initiatives, missions, and other supporting activities needed to
  address those questions, and recommend priorities.

---------------------------------------------------------
Title: Detection of differential rotation in psi Cap with profile
    analysis
Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M.
2001A&A...376L..13R    Altcode: 2001astro.ph..7332R
  We report detection of differential rotation on the F5 dwarf psi Cap
  using line profile analysis. The Fourier transform of both Fe I lambda
  5775 and Si I lambda 5772 are used to obtain a projected rotational
  velocity of v sin i=42+/-1 km s<SUP>-1</SUP>. Modelling of the Fourier
  transformed profiles shows that the combined effects of equatorial
  velocity, inclination and differential rotation dominate the line
  profile while limb darkening and turbulence velocities have only minor
  effects. Rigid rotation is shown to be inconsistent with the measured
  profiles. Modelling the line profiles analogous to solar differential
  rotation we find a differential rotation parameter of alpha =0.15+/-0.1
  (15+/-10%) comparable to the solar case. To our knowledge this is the
  first successful measurement of differential rotation through line
  profile analysis. Based on observations collected at the European
  Southern Observatory, La Silla (65.L-0101).

---------------------------------------------------------
Title: Microwave plasma emission of a flare on AD Leo
Authors: Stepanov, A. V.; Kliem, B.; Zaitsev, V. V.; Fürst, E.;
   Jessner, A.; Krüger, A.; Hildebrandt, J.; Schmitt, J. H. M. M.
2001A&A...374.1072S    Altcode: 2001astro.ph..6369S
  An intense radio flare on the dMe star AD Leo, observed with the
  Effelsberg radio telescope and spectrally resolved in a band of 480
  MHz centred at 4.85 GHz is analysed. A lower limit of the brightness
  temperature of the totally right handed polarized emission is estimated
  as T_b ~ 5*E<SUP>10</SUP> K (with values T_bga3 *E<SUP>13</SUP>
  K considered to be more probable), which requires a coherent radio
  emission process. In the interpretation we favour fundamental plasma
  radiation by mildly relativistic electrons trapped in a hot and
  dense coronal loop above electron cyclotron maser emission. This
  leads to densities and magnetic field strengths in the radio source
  of n ~ 2*E<SUP>11</SUP> cm<SUP>-3</SUP> and B ~ 800 G. Quasi-periodic
  pulsations during the decay phase of the event suggest a loop radius
  of r ~ 7*E<SUP>8</SUP> cm. A filamentary corona is implied in which
  the dense radio source is embedded in hot thin plasma with temperature
  T&gt;=2*E<SUP>7</SUP> K and density n_ext&lt;=10<SUP>-2</SUP>n. Runaway
  acceleration by sub-Dreicer electric fields in a magnetic loop is
  found to supply a sufficient number of energetic electrons.

---------------------------------------------------------
Title: Ground-based observation of emission lines from the corona
    of a red-dwarf star
Authors: Schmitt, J. H. M. M.; Wichmann, R.
2001Natur.412..508S    Altcode:
  All `solar-like' stars are surrounded by coronae, which
  contain magnetically confined plasma at temperatures above
  10<SUP>6</SUP>K. (Until now, only the Sun's corona could be observed in
  the optical-as a shimmering envelope during a total solar eclipse.) As
  the underlying stellar `surfaces'-the photospheres-are much cooler, some
  non-radiative process must be responsible for heating the coronae. The
  heating mechanism is generally thought to be magnetic in origin, but is
  not yet understood even for the case of the Sun. Ultraviolet emission
  lines first led to the discovery of the enormous temperature of the
  Sun's corona, but thermal emission from the coronae of other stars has
  hitherto been detectable only from space, at X-ray wavelengths. Here
  we report the detection of emission from highly ionized iron (Fe XIII
  at 3,388.1Å) in the corona of the red-dwarf star CN Leonis, using
  a ground-based telescope. The X-ray flux inferred from our data is
  consistent with previously measured X-ray fluxes, and the non-thermal
  line width of 18.4kms<SUP>-1</SUP> indicates great similarities between
  solar and stellar coronal heating mechanisms. The accessibility and
  spectral resolution (45,000) of the ground-based instrument are much
  better than those of X-ray satellites, so a new window to the study
  of stellar coronae has been opened.

---------------------------------------------------------
Title: Gravity field determination of a Comet Nucleus: Rosetta
    at P/Wirtanen
Authors: Pätzold, M.; Häusler, B.; Wennmacher, A.; Aksnes, K.;
   Anderson, J. D.; Asmar, S. W.; Barriot, J. -P.; Boehnhardt, H.; Eidel,
   W.; Neubauer, F. M.; Olsen, O.; Schmitt, J.; Schwinger, J.; Thomas, N.
2001A&A...375..651P    Altcode:
  One of the prime objectives of the Rosetta Radio Science Investigations
  (RSI) experiment is the determination of the mass, the bulk density and
  the low degree and order gravity of the nucleus of comet P/Wirtanen, the
  target object of the international Rosetta mission. The RSI experiment
  will use the spacecraft's radio carrier frequencies at X-band (8.4
  GHz) and S-band (2.3 GHz) in order to measure slight changes of
  the orbit velocity via the classical Doppler effect induced by the
  gravity attraction of the comet nucleus. Based on an estimate of the
  background Doppler noise, it is expected that a mass determination
  (assuming a representative radius of 700 m and a bulk density of
  500 kg/m<SUP>3</SUP>) at an accuracy of 0.1% can be achieved if the
  spacecraft's orbit is iteratively reduced below 7 km altitude. The
  gravity field of degree and order two can be detected for reasonable
  tracking times below 5 km altitude. The major competing forces acting
  on the spacecraft are the radiation pressure and the gas mass flux
  from cometary activity. While the radiation pressure may be predicted,
  it is recommended to begin a gravity mapping campaign well before the
  onset of outgassing activity (&gt;3.25 AU heliocentric distance). Radial
  acceleration by water outgassing is larger by orders of magnitude than
  the accelerations from the low degree and order gravity field and will
  mask the contributions from the gravity field.

---------------------------------------------------------
Title: Röntgenemission und Koronen kühler Sterne
Authors: Schmitt, Jürgen H. M. M.
2001S&W....40..544S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Observing solar-like oscillations with ELODIE spectrograph
Authors: Martić, M.; Lebrun, J. C.; Schmitt, J.; Bertaux, J. L.;
   Appourchaux, T.
2001sf2a.conf..219M    Altcode:
  We have used ELODIE fiber-fed cross-dispersed echelle spectrograph
  and the 1.93m-telescope of Observatoire de Haute Provence to obtain
  precise Doppler measurements of a sample of bright stars that are
  likely to undergo solar-like oscillations. Here we report the results
  for Procyon from three observing runs (5, 10 and 15 nights) in Decembre
  1997, Novembre 1998, and January 1999. The individual frequencies of
  p-modes were searched in the interval of excess power around 1 mHz found
  in the frequency spectra of each time series. The echelle diagram of
  the observed and predicted p-mode frequencies from the standard model
  (Chaboyer et al., 1999) for Procyon A is presented. We show also some
  preliminary results for two other solar-like stars (eta Cas and z Her).

---------------------------------------------------------
Title: ROSAT all-sky survey of W Ursae Majoris stars and the problem
    of supersaturation
Authors: Stȩpień, K.; Schmitt, J. H. M. M.; Voges, W.
2001A&A...370..157S    Altcode:
  From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for
  57 W UMa type contact systems. In our sample we detected three stars
  which are the shortest period main sequence binaries ever found as
  X-ray sources. For stars with (B-V)_0 &lt; 0.6 the normalized X-ray
  flux decreases with a decreasing color index but for (B-V)_0 &gt;
  0.6 a plateau is reached, similar to the saturation level observed
  for single, rapidly rotating stars. The X-ray flux of W UMa stars
  is about 4-5 times weaker than that of the fastest rotating single
  stars. Because early type, low activity variables have longer periods,
  an apparent period-activity relation is seen among our stars, while
  cool stars with (B-V)_0 &gt; 0.6 and rotation periods between 0.23 and
  0.45 days do not show any such relation. The lower X-ray emission of
  the single, ultra fast rotators (UFRs) and W UMa stars is interpreted
  as the result of a decreased coronal filling factor. The physical
  mechanisms responsible for the decreased surface coverage differs
  for UFRs and W UMa systems. For UFRs we propose strong polar updrafts
  within a convection zone, driven by nonuniform heating from below. The
  updrafts should be accompanied by large scale poleward flows near the
  bottom of the convective layer and equatorward flows in the surface
  layers. The flows drag dynamo generated fields toward the poles and
  create a field-free equatorial region with a width depending on the
  stellar rotation rate. For W UMa stars we propose that a large scale
  horizontal flow embracing both stars will prevent the magnetic field
  from producing long-lived structures filled with hot X-ray emitting
  plasma. The decreased activity of the fastest rotating UFRs increases
  the angular momentum loss time scale of stars in a supersaturated
  state. Thus the existence of a period cutoff and a limiting mass of
  W UMa stars can be naturally explained.

---------------------------------------------------------
Title: Helium-like triplet density diagnostics. Applications to
    CHANDRA-LETGS X-ray observations of Capella and Procyon
Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen,
   A. J. J.; Porquet, D.; Kaastra, J. S.; van der Meer, R. L. J.; Burwitz,
   V.; Predehl, P.
2001A&A...367..282N    Altcode: 2000astro.ph.12223N
  Electron density diagnostics based on the triplets of helium-like C
  v, N vi, and O vii are applied to the X-ray spectra of Capella and
  Procyon measured with the Low Energy Transmission Grating Spectrometer
  (LETGS) on board the Chandra X-ray Observatory. New theoretical
  models for the calculation of the line ratios between the forbidden
  (f), intercombination (i), and the resonance (r) lines of the
  helium-like triplets are used. The (logarithmic) electron densities
  (in cgs units) derived from the f/i ratios for Capella are &lt;9.38
  cm<SUP>-3</SUP> for O vii (2sigma upper limit) (f/i=4.0+/- 0.25),
  9.86+/-0.12 cm<SUP>-3</SUP> for N vi (f/i=1.78+/- 0.25), and 9.42+/-
  0.21 cm<SUP>-3</SUP> for C v (f/i=1.48+/- 0.34), while for Procyon we
  obtain 9.28<SUP>+0.4</SUP><SUB>-9.28</SUB> cm<SUP>-3</SUP> for O vii
  (f/i=3.28+/- 0.3), 9.96+/- 0.23 cm<SUP>-3</SUP> for N vi (f/i=1.33+/-
  0.28), and &lt;8.92 cm<SUP>-3</SUP> for C v (f/i=0.48+/- 0.12). These
  densities are quite typical of densities found in the solar active
  regions, and also pressures and temperatures in Procyon's and Capella's
  corona at a level of T ~ 10<SUP>6</SUP> K are quite similar. We find no
  evidence for densities as high as measured in solar flares. Comparison
  of our Capella and Procyon measurements with the Sun shows little
  difference in the physical properties of the layers producing the C
  v, N vi, and O vii emission. Assuming the X-ray emitting plasma to
  be confined in magnetic loops, we obtain typical loop length scales
  of {L_Capella} &gt;= 8 {L_Procyon} from the loop scaling laws,
  implying that the magnetic structures in Procyon and Capella are
  quite different. The total mean surface fluxes emitted in the helium-
  and hydrogen-like ions are quite similar for Capella and Procyon,
  but exceed typical solar values by one order of magnitude. We thus
  conclude that Procyon's and Capella's coronal filling factors are
  larger than corresponding solar values.

---------------------------------------------------------
Title: XEUS - The X-ray evolving universe spectroscopy mission *
Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.; Arnaud,
   M.; Barcons, X.; Barret, D.; Blanchard, A.; Böhringer, H.; Cappi, M.;
   Comastri, A.; Courvoisier, T.; Fabian, A. C.; Griffiths, R.; Kawai,
   N.; Koyama, K.; Makishima, K.; Malaguti, P.; Mason, K. O.; Ohashi,
   T.; Paerels, F.; Piro, L.; Schmitt, J.; van der Klis, M.; Ward, M.
2001cghr.confE..70P    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Stellar Activity in the Gould Belt
Authors: Hempel, M.; Berghöfer, T.; Schmitt, J. H. M. M.
2001AGM....18.P191H    Altcode: 2001AGAb...18R.230H
  The Gould Belt is a disk-like structure with an inclination i =
  27<SUP>o</SUP> and an ascending node l<SUB>Ω</SUB> = 282<SUP>o</SUP>
  with respect to the galactic plane where an enhancement of young stars
  and associated interstellar matter can be found. The existence of the
  Gould Belt as a physical entity is controversial and its formation is as
  yet puzzling. A cross-correlation of the ROSAT All-Sky Survey sources
  with the Tycho catalog has shown that a concentration of active stars
  seems to be associated with the Gould Belt system. On the basis of
  the Second ROSAT Source Catalog of Pointed Observations we investigate
  variations of the distribution of X-ray emitting stars along the Gould
  Belt. Due to the high sensitivity of the data our in-depth analysis
  allows to examine the properties of the stars in more detail than in
  previous studies. We present our results which serve as the basis for
  forthcoming photometric and spectroscopic observations.

---------------------------------------------------------
Title: Magnetic Activity in Cool Non-degenerate Dwarf Stars
Authors: Schmitt, J. H. M. M.
2001ASPC..248..199S    Altcode: 2001mfah.conf..199S
  No abstract at ADS

---------------------------------------------------------
Title: Observing solar-like oscillations: α CMi, η Cas A and ζ
    Her A
Authors: Martić, M.; Lebrun, J. C.; Schmitt, J.; Appourchaux, T.;
   Bertaux, J. L.
2001ESASP.464..431M    Altcode: 2001soho...10..431M
  We have used ELODIE fiber-fed cross-dispersed echelle spectrograph
  and the 1.93m-telescope of Observatoire de Haute Provence to obtain
  precise Doppler measurements of a sample of bright stars that are
  likely to undergo solar-like oscillations. Here we report the results
  for Procyon from three observing runs carried out in December 1997,
  November 1998, and January 1999. We show also some preliminary results
  for two other solar-like stars (η Cas A and ζ Her A).

---------------------------------------------------------
Title: A Long BeppoSAX Observation of YY Gem (CD-ROM Directory:
    contribs/tagliaf)
Authors: Tagliaferri, G.; Covino, S.; Panzera, M. R.; Pallavicini,
   R.; Schmitt, J. H. M. M.
2001ASPC..223.1177T    Altcode: 2001csss...11.1177T
  No abstract at ADS

---------------------------------------------------------
Title: Stellar Coronae
Authors: Schmitt, J. H. M. M.
2001IAUS..203..475S    Altcode:
  The last two decades have seen the emergence of a new field in stellar
  astrophysics: Stellar X-ray astronomy. With soft X-ray imagery X-ray
  emission was found from many thousands of solar-like stars. I will
  summarize the most important findings of X-ray surveys of late
  type stars and put those into the context of the solar-stellar
  connection. Similarities and difference between solar and stellar
  X-ray emission will be discussed. The results of eclipse observations
  to determine stellar structure will be reviewed, and recent results
  of X-ray spectroscopy (with Chandra and XMM-Newton) will be discussed
  mostly from the point of view of density diagnostics.

---------------------------------------------------------
Title: Detection of Differential Rotation in the Fast Rotator ψ
    Cap through Line Profile Analysis
Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M.
2001AGM....18S0706R    Altcode: 2001AGAb...18Q..78R
  Detection of differential rotation on the F5 dwarf ψ Cap using
  line profile analysis is reported. Fourier transforms of the two
  absorption lines Si I λ5772 and Fe I λ5775 were used independently to
  obtain a projected rotational velocity of 42 ± 1km s<SUP>-1</SUP>. A
  parameter study on the transformed profile showed that limb darkening
  and turbulence velocities only yield small effects. Combination of
  equatorial velocity and differential rotation dominates the line
  profiles' shape. Rigid rotation is shown to be inconsistent with the
  used profile, a differential effect of α = 0.15 ± 0.1 (15 ± 10%)
  was found; it appears that the differential rotation law is similar
  to the solar case. This finding contradicts the expectation that
  differential rotation in general is weaker in fast rotators.

---------------------------------------------------------
Title: Nearby young stars: First results (CD-ROM Directory:
    contribs/wichmann)
Authors: Wichmann, R.; Schmitt, J. H. M. M.
2001ASPC..223..552W    Altcode: 2001csss...11..552W
  No abstract at ADS

---------------------------------------------------------
Title: The STELLA Project: a 1.2m Robotic Telescope for
    High-resolution Echelle Spectroscopy
Authors: Strassmeier, K. G.; Granzer, T.; Weber, M.; Woche, M.;
   Hildebrandt, J.; Arlt, K.; Washuettl, A.; Bauer, S. -M.; Paschke,
   J.; Roth, M.; Schmitt, J. H. M. M.; Hempelmann, A.; Hagen, A.
2001AGM....18.P232S    Altcode:
  In this poster, we present a brief overview and report on the status
  of the STELLA project (abbreviation for STELLar Activity; see also
  poster by Weber et al.). The STELLA telescope at the Teide Observatory
  on the Island of Tenerife will be the first robotic telescope that
  feeds a bench-mounted echelle spectrograph with a set of 50 and 100μm
  fibres and provides resolutions of between 50,000 and 25,000. The
  spectrograph is a FEROS-like design and will be located in a separated
  temperature-controlled room within the STELLA building to guarantee
  long-term stability. The building will be a roll-off roof building
  capable of hosting two telescopes. First light for STELLA-1 is planned
  for fall 2002.

---------------------------------------------------------
Title: Solar-like Oscillations on Procyon (CD-ROM Directory:
    contribs/martic)
Authors: Martic, M.; Lebrun, J. -C.; Schmitt, J.; Bertaux, J. L.;
   Barban, C.; Michel, E.; Baglin, A.
2001ASPC..223..703M    Altcode: 2001csss...11..703M
  No abstract at ADS

---------------------------------------------------------
Title: Analysis of Large Stellar Flares: Generalized Evidence
for Compact Loops with Sustained Heating (CD-ROM Directory:
    contribs/favata)
Authors: Favata, F.; Reale, F.; Micela, G.; Sciortino, S.; Maggio,
   A.; Schmitt, J. H. M. M.
2001ASPC..223.1133F    Altcode: 2001csss...11.1133F
  No abstract at ADS

---------------------------------------------------------
Title: X-Ray Emission from the Ursa Major Group Detected in the
ROSAT All Sky Survey (CD-ROM Directory: contribs/stern)
Authors: Stern, R. A.; Schmitt, J. H. M. M.; Voges, W.
2001ASPC..223.1497S    Altcode: 2001csss...11.1497S
  No abstract at ADS

---------------------------------------------------------
Title: MOSAIC Observations of Active Late-Type Stars in the Rosette
Nebula (CD-ROM Directory: contribs/berghof)
Authors: Berghöfer, T. W.; Christian, D. J.; Schmitt, J. H. M. M.
2001ASPC..223.1380B    Altcode: 2001csss...11.1380B
  No abstract at ADS

---------------------------------------------------------
Title: STELLA: An Automatic Spectroscopic Telescope for Monitoring
Stellar Activity (CD-ROM Directory: contribs/hempelma)
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Rüdiger, G.; Rebolo, R.
2001ASPC..223.1651H    Altcode: 2001csss...11.1651H
  No abstract at ADS

---------------------------------------------------------
Title: Search for p-mode Frequencies on Procyon A
Authors: Martic, M.; Lebrun, J. C.; Schmitt, J.; Bertaux, J. L.
2001IAUS..203..121M    Altcode:
  Following the recent evidence for the presence of an excess of
  power around 1 mHz in the frequency spectrum of the Doppler shift
  measurements for Procyon (Martic et al., 1999), we searched for
  individual frequencies of p-modes from three independent observing runs
  (5, 10 and 15 nights). All observations (Decembre 1997, Novembre 1998,
  January 1999) were made with the ELODIE fibre-fed cross-dispersed
  echelle spectrograph on the 1.93 m telescope at Observatoire de Haute
  Provence. The individual peaks in clean spectra of each time series
  in the interval of excess power are compared with the predicted p-mode
  frequencies from stellar models (Chaboyer et al., 1999) for Procyon A.

---------------------------------------------------------
Title: Simultaneous ROSAT XRT and WFC observations of a sample of
    active dwarf stars
Authors: Tsikoudi, V.; Kellett, B. J.; Schmitt, J. H. M. M.
2000MNRAS.319.1136T    Altcode:
  The X-ray observations of the ROSAT-PSPC All-Sky Survey have revealed
  bright and energetic coronae for a number of late-type main-sequence
  stars, many of them flare stars. We have detected 31 X-ray flares on 14
  stars. A search for simultaneous X-ray and EUV (extreme ultraviolet)
  flares using ROSAT Wide Field Camera survey data revealed a large
  number of simultaneous flares. These results indicate that the heating
  mechanisms of the X-ray and EUV-emitting regions of the stellar coronae
  are similar. We find X-ray quiescent variability for nine of the 14
  stars and simultaneous X-ray and EUV quiescent variability for seven
  of these nine stars. These results imply that the stellar coronae are
  in a continuous state of low-level activity. There are tight linear
  correlations of X-ray flare luminosity with the `quiescent' X-ray as
  well as with the stellar bolometric luminosity. The similarity between
  the X-ray-to-EUV quiescent and flare luminosity ratios suggests that the
  two underlying spectra are also similar. Both are indeed consistent with
  the previously determined Einstein two-temperature models. We suggest
  that both the variability and spectral results could indicate that
  the quiescent emission is composed of a multitude of unresolved flares.

---------------------------------------------------------
Title: Origins, Structure, and Evolution of Magnetic Activity in
the Cool Half of the H--R Diagram: Progress Report on a Major HST
    STIS Stellar Survey
Authors: Ayres, T. R.; Brown, A.; Drake, S. A.; Dupree, A. K.; Guedel,
   M.; Guinan, E.; Harper, G. M.; Jordan, C.; Linsky, J. L.; Reimers,
   D.; Schmitt, J. H. M. M.; Simon, T.
2000AAS...197.4407A    Altcode: 2000BAAS...32.1472A
  In early October 2000, HST completed a year and a half long ultraviolet
  spectral survey of late-type stars with its Space Telescope Imaging
  Spectrograph (STIS). Thirteen stars were observed, ranging over
  spectral types F7--K0 on the main sequence, F8--G8 in the giant branch,
  and G0--G8 in the supergiants. A total of 72 observation sequences
  were executed, some consisting of several independent exposures
  (up to 13: in the case of HR 1099, recorded during a long grating
  observation by Chandra ). Spectra were taken in the medium resolution
  echelle modes (E140M, E230M: R ~ 30--40,000) below about 2500 Å,
  and in the high-resolution echelle mode (E230H: R ~ 10<SUP>5</SUP>)
  between 2500--3000 Å. For each target, about 70% of the exposure
  time was devoted to the key E140M interval (1150--1700 Å). Although
  the observations were collected primarily to study the magnetically
  disturbed outer atmospheres of late-type stars, they also are valuable
  for investigating the local interstellar medium through UV absorptions
  in H 1, O 1, Fe 2, and Mg 2, and for measuring the cosmologically
  significant D/H ratio. We present examples of the superb spectra
  resulting from the program, and discuss some of the new insights we
  have gained concerning plasma dynamics in the 10<SUP>5</SUP> K layers
  of the stellar “transition zone;” the super-rotational broadening
  of the Si 4, C 4, and N 5 emissions in Hertzsprung gap giants; and the
  spectral peculiarities of the “hybrid chromosphere” supergiants. This
  work was supported by grant GO-08280.01-97A from STScI. Observations
  were from the NASA/ESA HST, collected at the STScI, operated by AURA,
  under contract NAS5-26555.

---------------------------------------------------------
Title: The structure of Algol's corona: a consistent scenario for
    the X-ray and radio emission
Authors: Favata, F.; Micela, G.; Reale, F.; Sciortino, S.; Schmitt,
   J. H. M. M.
2000A&A...362..628F    Altcode:
  We present a systematic analysis of the four known large X-ray flares
  detected to date on the eclipsing binary system Algol, using an approach
  based on hydrodynamic simulations of decaying flaring loops including
  sustained heating. This method yields, for the large BeppoSAX Algol
  flare of Aug. 1997 (where a geometrical estimate of the size of the
  flaring region is available) a more reliable size than approaches
  based on the free decay of the flaring loop. For the three flares
  analyzed here (one observed by EXOSAT, one by GINGA and one by ROSAT)
  we show that indeed sustained heating is present in all cases, so
  that the size of the flaring region is always smaller than previously
  derived. No evidence for the very long loops previously found through
  quasi-static analysis methods (extending out to several stellar radii)
  is found. Instead, the flaring corona of Algol is found to be rather
  compact. By comparing the imaging VLBI observations of the radio
  corona of Algol with the recent location of the Algol flare seen by
  BeppoSAX and with with present results, a consistent model of the
  Algol corona is deduced: the corona is essentially concentrated onto
  the polar regions of the K star in Algol, with a more compact (smaller
  than the star) flaring component and a perhaps somewhat more extended
  (comparable {in size} to the star) quiescent corona.

---------------------------------------------------------
Title: Viscous overstability in Saturn's B-ring: selfgravitating
    simulations.
Authors: Salo, H.; Schmidt, J.; Spahn, F.
2000DPS....32.4909S    Altcode: 2000BAAS...32R1089S
  Local simulations with up to 60 \ 000 selfgravitating dissipatively
  colliding particles indicate that dense rings with τ &gt; 1 can
  be overstable, with parameter values appropriate for Saturn's B
  ring. These axisymmetric oscillations, with scale ~ 100 meters
  generally coexist with inclined Julian-Toomre type wakes. Similar
  oscillatory behavior is also obtained in an approximation where the
  particle-particle gravity is replaced by an enhanced frequency of
  vertical oscillations, Ω <SUB>z/Ω </SUB> &gt;1. These systems can
  be more easily studied analytically, as in the absence of wakes they
  possess a spatially uniform ground state. To facilitate quantitative
  hydrodynamical studies of overstability we have measured the transport
  coefficients (shear viscosity ν , bulk viscosity ζ and kinetic heat
  conductivity κ ) for systems with Ω <SUB>z/Ω =3.6,</SUB> \ 2.0, \
  1.0. Both local and nonlocal contributions to momentum and energy flux
  are taken into account, the latter being dominant in dense systems with
  large impact frequency. In this limit we find ζ /ν ≈ 2, κ /ν ≈
  4. The dependency of pressure, viscosity and dissipation on density
  and kinetic temperature changes is also estimated. Simulations indicate
  that the condition for overstability is β &gt; β <SUB>cr</SUB> ~ 1,
  where β =dlog(ν )/dlog(τ ). This condition is more stringent than
  the β <SUB>cr</SUB> ~ 0 suggested by the linear stability analysis in
  Schmit and Tscharnuter (1995, Icarus 115: 304), where the system was
  assumed to stay isothermal even when perturbed. However, it agrees
  with the non-isothermal analysis in Spahn et al. (2000, Icarus 145:
  657). The increased stability is partially due to the inclusion
  of temperature oscillations in the analysis, and partially to bulk
  viscosity exceeding shear viscosity. A detailed comparison between
  simulations and hydrodynamical analysis is given in an accompanying
  presentation by Schmidt et al.

---------------------------------------------------------
Title: First Results of the Chandra-LETGS
Authors: Predehl, P.; Aschenbach, B.; Braeuninger, H.; Burkert,
   W.; Burwitz, V.; Hartner, G.; Truemper, J.; Schmitt, J. H. M. M.;
   Brinkman, A. C.; Gunsing, C. J. T.
2000adnx.conf...11P    Altcode:
  We present the first results obtained with the Low Energy Transmission
  Grating Spectrometer (LETGS) onboard the Chandra X-ray Observatory. The
  LETGS covers the wavelength range between 5 and 175 A (2.5-0.07 keV)
  with a spectral resolution of about 0.06 A. A number of calibration
  measurements were carried out in order to determine the instrument's
  performance, i.e., spectral resolution, the wavelength scale accuracy,
  and the effective area. The spectral resolution of the instrument,
  dominated by the angular resolution of the mirror, is as specified and
  predicted on the basis of preflight measurements. The calibration of
  the effective area is still an ongoing process. A serious problem for
  the LETGS is the high background of the HRC-S detector which serves
  as readout of the grating spectra. The 'First Light' observation of
  the star Capella shows a beautiful line-rich spectrum. He-like triplet
  diagnostics could be applied for the first time to a star other than
  the Sun.

---------------------------------------------------------
Title: Viscous Overstability in the B-ring: Hydrodynamic Modeling
    and Local Simulation
Authors: Schmidt, J.; Salo, H.; Spahn, F.
2000DPS....32.4908S    Altcode: 2000BAAS...32Q1089S
  Viscous overstability was suggested to cause radial structure in an
  opaque planetary ring (Schmit and Tscharnuter, Icarus, 1995, 115,
  p304). We extended that model by the hydrodynamic heat flow equation
  (Spahn et al., Icarus, 2000, 145, p657) and used expressions for the
  transport coefficients determined in direct N-particle simulations
  of a dense ring (see the accompanying poster by Salo et al.). The
  overstable modes of the extended model are in good quantitative
  agreement with the overstability observed in simulations where the
  disk's self-gravity is included via an enhancement of the frequency
  of vertical oscillations. In the model ring (meter sized smooth
  spherical particles, Bridges' velocity dependent inelasticity law
  for ice spheres) overstability sets in for optical depths larger
  than about one. In particular, the growth rates in the linear regime
  are predicted correctly by the hydrodynamic model, as well as the
  critical wavelength (wavelengths larger than about 100m are unstable),
  and the phase--shifts between the perturbations of density and radial
  and tangential velocities. A weakly nonlinear stability analysis of
  the isothermal hydrodynamic model yields a nonlinear saturation of
  the growth of the overstable modes and predicts standing waves to be
  unstable with respect to traveling waves. This is also observed in
  our simulations.

---------------------------------------------------------
Title: Rosat All-Sky Survey Faint Source Catalogue
Authors: Voges, W.; Aschenbach, B.; Boller, T.; Brauninger, H.;
   Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.;
   Haberl, F.; Hartner, G.; Hasinger, G.; Pfeffermann, E.; Pietsch, W.;
   Predehl, P.; Schmitt, J.; Trumper, J.; Zimmermann, U.
2000IAUC.7432....3V    Altcode: 2000IAUC.7432C...1V; 2000IAUC.7432R...1V; 2000IAUC.7432S...1V
  W. Voges, B. Aschenbach, T. Boller, H. Brauninger, U. Briel,
  W. Burkert, K. Dennerl, J. Englhauser, R. Gruber, F. Haberl,
  G. Hartner, G. Hasinger, E. Pfeffermann, W. Pietsch, P. Predehl,
  J. Schmitt, J. Trumper, and U. Zimmermann, Max-Planck-Institut
  fur Extraterrestrische Physik, Garching, report: "The ROSAT
  All-Sky Survey Faint Source Catalogue (RASS-FSC) has been
  released and is available through the World Wide Web (at
  http://wave.xray.mpe.mpg.de/rosat/catalogues/rass-fsc/)
  and via anonymous ftp (host ftp.xray.mpe.mpg.de, directory
  rosat/catalogues/rass-fsc). This catalogue is derived from the all-sky
  survey performed during the ROSAT mission in the energy band 0.1-2.4
  keV, and 105 924 sources are catalogued, representing the faint
  extension to the RASS bright-source catalogue (RASS-BSC; cf. IAUC
  6420; Voges et al. 1999, A.Ap. 349, 389). The sources contain at
  least six source photons and have a detection likelihood, -ln (1-P),
  of at least 7, where P is the probability of source detection. For
  each source we provide the ROSAT name, the position in equatorial
  coordinates, the positional error, the source countrate and error,
  the background countrate, exposure time, date of observation,
  two hardness ratios and errors, extent and likelihood of extent,
  and likelihood of detection. Questions or comments may be directed
  to survey@xray.mpe.mpg.de."

---------------------------------------------------------
Title: VizieR Online Data Catalog: ROSAT All-Sky Survey Faint Source
    Catalog (Voges+ 2000)
Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Brauninger, H.;
   Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.;
   Haberl, F.; Hartner, G.; Hasinger, G.; Pfeffermann, E.; Pietsch, W.;
   Predehl, P.; Schmitt, J.; Trumper, J.; Zimmermann, U.
2000yCat.9029....0V    Altcode:
  The ROSAT All-Sky Survey Faint Source Catalogue (RASS-FSC) is derived
  from the all-sky survey performed during the ROSAT mission in the
  energy band 0.1-2.4 keV. 105,924 sources are catalogued and represent
  the faint extension to the RASS bright source catalogue (RASS-BSC,
  1999A&amp;A...349..389V, See Cat. ). The sources have a detection
  likelihood of at least 7 and contain at least 6 source photons. (The
  likelihood of source detection is defined as L = -ln(1-P), with P =
  probability of source detection). <P />For each source we provide the
  ROSAT name, the position in equatorial coordinates, the positional
  error, the source countrate and error, the background countrate,
  exposure time, date of observation, hardness-ratios HR1 and HR2 and
  errors, extent and likelihood of extent, and likelihood of detection. <P
  />Questions or comments may be directed to xray-info(at)mpe.mpg.de <P
  />(1 data file).

---------------------------------------------------------
Title: Erratum: "A calibration of the ROSAT HRI UV leak"
    [Astron. Astrophys., Vol. 342, No. 1, p. L17 - L20 (Feb 1999)].
Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.; Hünsch, M.
2000A&A...357..387B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: An X-Ray Flare Detected on the M8 Dwarf VB 10
Authors: Fleming, Thomas A.; Giampapa, Mark S.; Schmitt, Jürgen
   H. M. M.
2000ApJ...533..372F    Altcode: 2000astro.ph..2065F
  We have detected an X-ray flare on the very low mass star VB 10
  (GL 752 B; M8V) using the ROSAT High Resolution Imager. VB 10 is
  the latest type (lowest mass) main-sequence star known to exhibit
  coronal activity. X-rays were detected from the star during a single
  1.1 ks segment of an observation that lasted 22 ks in total. The
  energy released by this flare is on the order of 10<SUP>27</SUP> ergs
  s<SUP>-1</SUP>. This is at least 2 orders of magnitude greater than the
  quiescent X-ray luminosity of VB 10, which has yet to be measured. This
  X-ray flare is very similar in nature to the far-ultraviolet flare
  that was observed by Linsky et al. using the Goddard High Resolution
  Spectrograph onboard the Hubble Space Telescope. We discuss reasons
  for the extreme difference between the flare and quiescent X-ray
  luminosities, including the possibility that VB 10 has no quiescent
  (10<SUP>6</SUP> K) coronal plasma at all.

---------------------------------------------------------
Title: Ausgrabungen am Sternenhimmel. Zeitbegriff und Tierkreis
    der Maya.
Authors: Schmidt, J.
2000S&WSp...5...70S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A ROSAT pointed observation of the Chamaeleon II dark cloud
Authors: Alcalá, J. M.; Covino, E.; Sterzik, M. F.; Schmitt,
   J. H. M. M.; Krautter, J.; Neuhäuser, R.
2000A&A...355..629A    Altcode:
  A deep 13.5 ksec ROSAT PSPC pointed observation in the Chamaeleon II
  (Cha II) cloud is reported. 40 X-ray sources are detected of which
  14 can be identified with previously known young stellar objects
  (YSOs), namely IRAS sources, classical T Tauri stars and weak T Tauri
  stars. From spectroscopic follow-up observations, four new weak T Tauri
  candidates have been found. The X-ray sources are mainly located on
  the north-east of the cloud and their spatial distribution follows the
  lanes of the 100mu m dust emission. Their X-ray properties are similar
  to those of low-mass PMS stars. None of the protostar candidates in Cha
  II has been detected in the ROSAT pointed observation, in agreement with
  the ASCA observations results. The X-ray detection rates indicate that
  the weak T Tauri stars (WTTS) are less numerous than the classical T
  Tauri stars (CTTS), contrarily to the findings in Chamaeleon I (Cha
  I) and other star forming regions where the WTTS may outnumber the
  CTTS. The latter result could be a consequence of the fact that Cha II
  is in an earlier evolutionary stage as compared to Cha I, as conjectured
  by previous studies. The Cha II young stellar objects (YSOs) are, on
  the average, slightly less X-ray luminous than those in Cha I, but the
  normalised X-ray luminosity distribution functions of the two regions
  are not significantly different. Based on observations with the European
  Southern Observatory, La Silla, Chile under proposal number 55.E-0792

---------------------------------------------------------
Title: XEUS - The X-ray Evolving Universe Spectroscopy Mission
Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.;
   Arnaud, M.; Barcons, X.; Barret, D.; Blanchard, A.; Bohringer, H.;
   Cappi, M.; Comastri, A.; Courvousier, T.; Fabian, A. C.; Griffiths,
   R.; Malaguti, P.; Mason, K. O.; Ohashi, T.; Paerels, F.; Piro, L.;
   Schmitt, J.; van der Klis, M.; Ward, M.
2000lssx.proc..295P    Altcode: 1999astro.ph.11494P
  XEUS is under study by ESA as part of the Horizon 2000+ program
  to utilize the International Space Station (ISS) for astronomical
  applications. XEUS will be a long-term X-ray observatory with an initial
  mirror area of 6m2 at 1 keV that will be grown to 30m2 following a
  visit to the ISS. The 1 keV spatial resolution is expected to be 2-5”
  HEW. XEUS will consist of separate detector and mirror spacecraft
  aligned by active control to provide a focal length of 50m. A new
  detector spacecraft, complete with the next generation of instruments,
  will also be added after visiting the ISS. The limiting sensitivity
  will then be ~4 10-18 erg/cm2/s - around 250 times better than XMM,
  allowing XEUS to study the properties of the hot baryons and dark
  matter at high redshift.

---------------------------------------------------------
Title: A search for X-ray emission from Saturn, Uranus and Neptune
Authors: Ness, J. -U.; Schmitt, J. H. M. M.
2000A&A...355..394N    Altcode: 2000astro.ph..1131N
  We present an analysis of X-ray observations of the trans-Jovian planets
  Saturn, Uranus and Neptune with the ROSAT PSPC in comparison with X-ray
  observations of Jupiter. For the first time a marginal X-ray detection
  of Saturn was found and 95% confidence upper limits for Uranus and
  Neptune were obtained. These upper limits show that Jupiter-like X-ray
  luminosities can be excluded for all three planets, while they are
  consistent assuming intrinsic Saturn-like X-ray luminosities. Similar
  X-ray production mechanisms on all trans-Jovian planets can therefore
  not be ruled out, and spectral shape and total luminosity observed
  from Saturn are consistent with thick-target bremsstrahlung caused by
  electron precipitation as occurring in auroral emission from the Earth.

---------------------------------------------------------
Title: First Light Measurements of Capella with the Low-Energy
    Transmission Grating Spectrometer aboard the Chandra X-Ray Observatory
Authors: Brinkman, A. C.; Gunsing, C. J. T.; Kaastra, J. S.; van
   der Meer, R. L. J.; Mewe, R.; Paerels, F.; Raassen, A. J. J.; van
   Rooijen, J. J.; Bräuninger, H.; Burkert, W.; Burwitz, V.; Hartner,
   G.; Predehl, P.; Ness, J. -U.; Schmitt, J. H. M. M.; Drake, J. J.;
   Johnson, O.; Juda, M.; Kashyap, V.; Murray, S. S.; Pease, D.; Ratzlaff,
   P.; Wargelin, B. J.
2000ApJ...530L.111B    Altcode: 2000astro.ph..1034B
  We present the first X-ray spectrum obtained by the Low-Energy
  Transmission Grating Spectrometer (LETGS) aboard the Chandra X-Ray
  Observatory. The spectrum is of Capella and covers a wavelength
  range of 5-175 Å (2.5-0.07 keV). The measured wavelength resolution,
  which is in good agreement with ground calibration, is Δλ~=0.06 Å
  (FWHM). Although in-flight calibration of the LETGS is in progress, the
  high spectral resolution and unique wavelength coverage of the LETGS
  are well demonstrated by the results from Capella, a coronal source
  rich in spectral emission lines. While the primary purpose of this
  Letter is to demonstrate the spectroscopic potential of the LETGS, we
  also briefly present some preliminary astrophysical results. We discuss
  plasma parameters derived from line ratios in narrow spectral bands,
  such as the electron density diagnostics of the He-like triplets of
  carbon, nitrogen, and oxygen, as well as resonance scattering of the
  strong Fe XVII line at 15.014 Å.

---------------------------------------------------------
Title: Stellar X-Ray Astronomy: Perspectives for the New Millenium
Authors: Schmitt, Jürgen H. M. M.
2000RvMA...13..115S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Structures in Planetary Rings  Stability and Gravitational
    Stattering
Authors: Spahn, F.; Schmidt, J.; Sremcevic, M.
2000LNP...557..507S    Altcode: 2000sppc.conf..507S
  Two alternative theoretical approaches for the explanation of the
  irregular structure in the A and B ring of Saturn are presented: An
  oscillatory viscous instability and a model for gravitational stattering
  of the ring-matter at large (&gt; 100m) ring- boulders. The former
  effect is based on a certain property of the transport of momentum
  in presence of Keplerian shear. The second process, in principle,
  represents a "fingerprint" of the size-distribution of the largest
  particles in the ring, caused by their gravitational action onto the
  population of smaller ring-particles.

---------------------------------------------------------
Title: First Results of the EMILIE Spectrograph with the AAA System
    on Extrasolar Planets
Authors: Schmitt, J.; Bouchy, F.; Bestaux, J. L.
2000ASPC..219..607S    Altcode: 2000dpp..conf..607S
  No abstract at ADS

---------------------------------------------------------
Title: Solar-Like Oscillations of Procyon A: Stellar Models and Time
    Series Simulations versus Observations
Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Lebrun,
   J. C.; Baglin, A.; Bertaux, J. L.
2000ASPC..203..461B    Altcode: 2000ilss.conf..461B; 2000IAUCo.176..461B
  The aim of this paper (further developed in Barban et al. 1999) is to
  present new evidence of the possible stellar origin of the observed
  excess power in the power spectrum of Procyon A presented in Martic
  et al. (1999) by comparing these observational data with theoretical
  predictions and numerical simulations.

---------------------------------------------------------
Title: Stellar X-ray Astronomy with Xeus
Authors: Schmitt, J. H. M. M.
2000ASPC..198..537S    Altcode: 2000scac.conf..537S
  No abstract at ADS

---------------------------------------------------------
Title: Origins, Structure, and Evolution of Magnetic Activity in
the Cool Half of the H--R Diagram: an HST STIS Survey
Authors: Ayres, T. R.; Brown, A.; Drake, S. A.; Dupree, A. K.; Guedel,
   M.; Guinan, E.; Harper, G. M.; Jordan, C.; Linsky, J. L.; Reimers,
   D.; Schmitt, J. H. M. M.; Simon, T.
1999AAS...195.5013A    Altcode: 1999BAAS...31Q1449A
  In HST's cycle 8, we are carrying out a major ultraviolet spectral
  survey of late-type stars using the powerful capabilities of the
  Space Telescope Imaging Spectrograph (STIS). The origin of the hot
  UV emissions of otherwise cool stars is a fundamental puzzle in
  astrophysics. Magnetic phenomena---at the heart of chromospheric and
  coronal activity, and perhaps wind driving as well---play a central
  role in many cosmic settings. Our objective is to obtain high-quality
  ultraviolet spectra of a diverse collection of F--K stars, of all
  luminosity classes. Such a major project was unthinkable before
  STIS, but now is practical given the high resolution, broad spectral
  coverage, and sensitivity of the second generation spectrograph. Here,
  we discuss our choice of the thirteen targets; the observing strategy
  (which captures the entire UV spectrum between 1150--3000 Angstroms
  at resolutions λ /δ λ 30--100*E<SUP>3</SUP> with good S/N); and
  preliminary results for the several targets observed to date (ζ Dor, F7
  V, 1 May 1999, 2 CVZ orbits; V711 Tau, K1 IV+G5 IV, 15 September 1999, 5
  orbits; β Cam, G0 I, 19 September 1999, 4 CVZ orbits). The observation
  of V711 Tau (HR 1099) was carried out during a long transmission grating
  pointing by the Chandra X-ray Observatory, in support of its “Emission
  Line Project.” This work was supported by grant GO-08280.01-97A from
  STScI. Observations were from the NASA/ESA HST, collected at the STScI,
  operated by AURA, under contract NAS5-26555.

---------------------------------------------------------
Title: X-Ray Emission from the Ursa Major Group Detected in the
    ROSAT All Sky Survey
Authors: Stern, R. A.; Schmitt, J. H. M. M.; Voges, W.; Stauffer, J. R.
1999AAS...195.4710S    Altcode: 1999BAAS...31.1442S
  We discuss the X-ray properties of members of the Ursa Major Moving
  Group detected in the ROSAT All Sky Survey (RASS). More than 80% of the
  solar-type (F8-G8) UMa Group members or candidates listed by Montes et
  al. are seen in the RASS data. We will compare the X-ray luminosities
  of the UMa Group (age 300 Myr) with those of other young clusters,
  and examine the issues of group membership and possible contamination
  by young field stars in the detected sample. This work was supported
  in part by the Lockheed Martin Indepedent Research program

---------------------------------------------------------
Title: VizieR Online Data Catalog: ROSAT All-Sky Bright Source
    Catalogue (1RXS) (Voges+ 1999)
Authors: Voges, W.; Aschenbach, B.; Boller, T.; Braeuninger, H.;
   Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.;
   Haberl, F.; Hartner, G.; Hasinger, G.; Kuerster, M.; Pfeffermann, E.;
   Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Truemper,
   J.; Zimmermann, H. U.
1999yCat.9010....0V    Altcode:
  The ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision
  1RXS) is derived from the all-sky survey performed during the first
  half year (1990/91) of the ROSAT mission. 18,806 sources are catalogued
  (five sources were removed compared to the 18,811 sources of the 1996
  version), down to a limiting ROSAT PSPC count-rate of 0.05cts/s in
  the 0.1-2.4keV energy band, with a detection likelihood of at least
  15 and with at least 15 source photons. For 94% of the sources visual
  inspection confirmed the results of the standard processing with
  respect to existence and position; the remaining 6% were re-analysed
  and appropriately flagged. At a brightness limit of 0.1cts/s (8,547
  sources) the catalogue represents a sky coverage of 92%. Broad
  band images are available for a subset of the flagged sources from
  http://www.rosat.mpe-garching.mpg.de/survey/rass-bsc . <P />Questions
  or comments may be directed to &lt;xray-info(at)mpe.mpg.de&gt; <P
  />(14 data files).

---------------------------------------------------------
Title: Evidence for global pressure oscillations on Procyon
Authors: Martić, M.; Schmitt, J.; Lebrun, J. -C.; Barban, C.; Connes,
   P.; Bouchy, F.; Michel, E.; Baglin, A.; Appourchaux, T.; Bertaux,
   J. -L.
1999A&A...351..993M    Altcode:
  Precise Doppler measurements of the star Procyon (alpha CMi, HR
  2943) have been obtained with the ELODIE fiber-fed cross-dispersed
  echelle spectrograph on the 1.93 m telescope at Observatoire de Haute
  Provence. Here, we present the analysis of data from 10 days observing
  run carried out in November 1998. We detect significant excess in
  the power between 0.5-1.5 mHz in the periodograms of the time series
  of mean Doppler shifts. Observations of eta Cas made with the same
  instrument during the same time interval and in almost identical
  night conditions show a flat spectrum in this frequency range,
  indicating that the excess of Doppler signal seen on Procyon is of
  stellar origin. When data from the whole run are jointly analyzed,
  a period analysis places an upper limit of 0.50-0.60 ms<SUP>-1</SUP>
  for the amplitude of oscillations, while the frequency cutoff is around
  1.5 mHz. The power evidently drops near 0.55 and 1.5 mHz on the average
  of unfiltered power spectra of individual nights, which is consistent
  with the expected p-mode oscillation properties for Procyon. Several
  equispaced peaks in frequency are recurrent in the power spectra of two
  independent segments of 4 and 3 contiguous nights; the most probable
  frequency spacing seems to be 55 mu Hz. In conclusion, we now have an
  instrument set-up which is sufficiently stable and fast to be used for
  a multi-site campaign involving instruments with comparable velocity
  precisions, to detect the oscillation modes of sun-like stars. Based
  on observations obtained at the Observatoire de Haute-Provence (CNRS,
  France)

---------------------------------------------------------
Title: The stellar content of soft X-ray
    surveys. II. Cross-correlation of the ROSAT All-Sky Survey with the
    Tycho and Hipparcos catalogs
Authors: Guillout, P.; Schmitt, J. H. M. M.; Egret, D.; Voges, W.;
   Motch, C.; Sterzik, M. F.
1999A&A...351.1003G    Altcode:
  We present the result of the cross-correlation of the ROSAT All-Sky
  Survey with the Tycho and Hipparcos catalogs. The constructed RASS
  - Tycho (RasTyc) and RASS - Hipparcos (RasHip) samples respectively
  consist of 13 875 and 6 200 matches and represent the largest and most
  comprehensive samples of stellar X-ray sources constructed so far. The
  X-ray horizon allows to probe distances up to about 200 pc for F - G
  RasTyc - RasHip stars younger than 100 Myr but only to 80 pc or less for
  older ones. The magnitude limit of the optical catalogs determine the
  horizon for K - M RasTyc - RasHip stars which are sampled only within
  about 50 pc (or less) of the Sun whatever their ages are. We compare
  the Hipparcos and RasHip HR-diagrams and discuss the differences. X-ray
  selection strengthens the Zero Age Main Sequence but evolved stars are
  detected as well. We compute detection rate, mean Fx/Fopt and X-ray
  luminosity with an unprecedented color bin resolution for on (between
  the Zero and Terminal Age Main Sequence i.e. class V) and off (above the
  Terminal Age Main Sequence i.e. class III) main sequence regions. Once
  corrected for Fx/Fopt bias, the detection rate is remarkably constant
  for G-M on main sequence stars but reveals a peak of detection for
  F-type stars. Detection rate in the A-type stars region is compatible
  with those computed for F-M stars, as expected if a late type companion
  is responsible for the X-ray emission. High mass stars evolving along
  the post-main sequence evolutionary tracks are clearly detected in the
  main sequence turnoff and blue part of the “clump" while no significant
  detection arises on the cool side. Theoretical considerations naturally
  explain these observations. We address the question of the presence of
  very young stars in the solar neighborhood and derive an upper limit
  on the number of “possible" isolated pre-main sequence stars in the
  RasTyc-RasHip samples. Finally we discuss briefly the pending questions
  for which the RasTyc and RasHip samples are likely to give new insight.

---------------------------------------------------------
Title: Solar-like oscillations of Procyon A: stellar models and time
    series simulations versus observations
Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Lebrun,
   J. C.; Baglin, A.; Bertaux, J. L.
1999A&A...350..617B    Altcode:
  The aim of this paper is to discuss the possible stellar origin of
  the observed excess power presented in Martic et al. (\cite{martic})
  by comparing these observational data with theoretical predictions
  and numerical simulations. Stellar models are calculated for
  Procyon A with appropriate physics for this star and with the
  revised astrometric mass (1.46 +/- 0.04) M<SUB>sun</SUB> found by
  Girard (\cite{girard98}). For these models, we compute the expected
  oscillation spectra for l=0,1,2 modes including mnot =0 according to
  theoretical amplitude predictions. Time-series are then simulated,
  in the same conditions as the observations, and compared by Fourier
  analysis with the observed ones. We show that the characteristics of
  the signal are in good agreement with what should be expected for such
  observing runs and we emphasize the importance of obtaining multi-site
  observations for this star. We confirm the presence of a periodic
  pattern in the Fourier spectrum, this pattern being interpreted as
  the so-called large separation. Based on observations collected at
  the Observatoire de Haute-Provence (CNRS, France).

---------------------------------------------------------
Title: Spectroscopic analysis of a super-hot giant flare observed
    on Algol by BeppoSAX on 30 August 1997
Authors: Favata, F.; Schmitt, J. H. M. M.
1999A&A...350..900F    Altcode: 1999astro.ph..9041F
  We present an X-ray observation of the eclipsing binary Algol,
  obtained with the BeppoSAX observatory. During the observation a
  huge flare was observed, exceptional both in duration as well as in
  peak plasma temperature and total energy release. The wide spectral
  response of the different BeppoSAX instruments, together with the
  long decay time scale of the flare, allowed us to perform a detailed
  time-resolved X-ray spectroscopic analysis of the flare. We derive the
  physical parameters of the emitting region together with the plasma
  density applying different methods to the observed flare decay. The
  X-ray emission from the flare is totally eclipsed during the secondary
  optical eclipse, so that the size of the emitting region is strongly
  constrained (as described in a companion paper) on purely geometrical
  arguments. The size of the flare thus derived is much smaller than
  the size derived from the analysis of the evolution of the spectral
  parameters using the quasi-static cooling formalism, showing that the
  time evolution of the flare is determined essentially from the temporal
  profile of the heating, with the intrinsic decay of the flaring loop
  having little relevance. The analysis of the decay with the technique
  recently developed for solar flares by \cite*{rbp+97} on the other hand
  is in much better agreement with the eclipse-derived constraints. The
  very high signal-to-noise of the individual spectra strongly constrains
  some of the derived physical parameters. In particular, very significant
  evidence for a three-fold increase in coronal abundance and for a large
  increase in absorbing column density during the initial phases of the
  flare evolution is present.

---------------------------------------------------------
Title: Influence of the initial motion of ejecta and of plasma drag
    on the shape of Saturn's E ring.
Authors: Thiessenhusen, K. U.; Spahn, F.; Schmidt, J.; Krivov, A. V.
1999BAAS...31.1141T    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Influence of the Initial Motion of Ejecta and of Plasma Drag
    on the Shape of Saturn's E Ring
Authors: Thiessenhusen, K. U.; Spahn, F.; Schmidt, J.; Krivov, A.
1999DPS....31.4409T    Altcode:
  Saturn's E ring consists mostly of micron sized particles ejected from
  the surface of the moon Enceladus. Their long-term evolution is mainly
  determined by Saturn's gravity, electromagnetic forces and radiation
  pressure. We studied the influence of additional forces, e.g., plasma
  drag as well as the influence of the initial motion of the particles
  on their long--term evolution. The most of the observed E ring features
  can be explained by the inclusion of these two effects in the existing
  models for the dynamics of the ring particles. The initial motion of
  particles ejected from Enceladus causes a vertical ring extension in
  good accordance with the observed ring height profile. Plasma drag
  and an ejection of dust preferentially in the direction of Enceladus'
  motion lead to a radially asymmetric density profile of the ring,
  also in qualitative agreement with the observations. This work has
  been supported by Deutsches Zentrum fur Luft-- und Raumfahrt (DLR).

---------------------------------------------------------
Title: Effects of heat flux and nonlocal transport on the viscous
    overstability in Saturns B ring
Authors: Schmidt, J.; Salo, H.; Spahn, F.; Petzschmann, O.
1999DPS....31.4407S    Altcode:
  We investigate the viscous overstability in the hydrodynamical
  approximation of a thin, dense, and self gravitating planetary ring. We
  generalize existing models in two ways. First, in addition to the
  balance equations for mass and momentum we take into account the
  balance law for the energy of the random motion, i.e. we allow for a
  thermal mode in a stability analysis of the stationary state. Second,
  we incorporate the effects of nonlocal transport of momentum and heat,
  and include the nonlocal pressure in the stress tensor. We compare
  the growth rates of harmonic perturbations of the linearized balance
  equations to growth rates obtained from event driven, local N-body
  simulations.

---------------------------------------------------------
Title: Continuous heating of a giant X-ray flare on Algol
Authors: Schmitt, J. H. M. M.; Favata, F.
1999Natur.401...44S    Altcode: 1999astro.ph..9040S
  Giant stellar flares can release large amounts of energy within a few
  days: X-ray emission alone can be up to ten per cent of the star's
  bolometric luminosity. These flares exceed the luminosities of the
  largest solar flares by many orders of magnitude, which suggests that
  the underlying physical mechanisms supplying the energy are different
  from those on the Sun. Magnetic coupling between the components in a
  binary system or between a young star and an accretion disk has been
  proposed as a prerequisite for giant flares. Here we report X-ray
  observations of a giant flare on Algol B, a giant star in an eclipsing
  binary system. We observed a total X-ray eclipse of the flare, which
  demonstrates that the plasma was confined to Algol B, and reached
  a maximum height of 0.6 stellar radii above its surface. The flare
  occurred around the south pole of Algol B, and energy must have been
  released continuously throughout its life. We conclude that a specific
  extrastellar environment is not required for the presence of a flare,
  and that the processes at work are therefore similar to those on
  the Sun.

---------------------------------------------------------
Title: The ROSAT all-sky survey bright source catalogue
Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Bräuninger, H.;
   Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.;
   Haberl, F.; Hartner, G.; Hasinger, G.; Kürster, M.; Pfeffermann, E.;
   Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trümper,
   J.; Zimmermann, H. U.
1999A&A...349..389V    Altcode: 1999astro.ph..9315V; 2009A&A...500..563V
  We present the ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC,
  revision 1RXS) derived from the all-sky survey performed during the
  first half year (1990/91) of the ROSAT mission. 18,811 sources are
  catalogued (i) down to a limiting ROSAT PSPC count-rate of 0.05 cts
  s(-1) in the 0.1-2.4 keV energy band, (ii) with a detection likelihood
  of at least 15 and (iii) at least 15 source counts. The 18,811 sources
  underwent both an automatic validation and an interactive visual
  verification process in which for 94% of the sources the results of the
  standard processing were confirmed. The remaining 6% have been analyzed
  using interactive methods and these sources have been flagged. Flags are
  given for (i) nearby sources; (ii) sources with positional errors; (iii)
  extended sources; (iv) sources showing complex emission structures; and
  (v) sources which are missed by the standard analysis software. Broad
  band (0.1-2.4 keV) images are available for sources flagged by (ii),
  (iii) and (iv). For each source the ROSAT name, position in equatorial
  coordinates, positional error, source count-rate and error, background
  count-rate, exposure time, two hardness-ratios and errors, extent
  and likelihood of extent, likelihood of detection, and the source
  extraction radius are provided. At a brightness limit of 0.1 cts s(-1)
  (8,547 sources) the catalogue represents a sky coverage of 92%. The
  RASS-BSC, the table of possible identification candidates, and the broad
  band images are available in electronic form (Voges et al. 1996a) via
  http://wave.xray.mpe.mpg.de/rosat/catalogues/rass-bsc. The RASS-BSC
  and the identification table are also available in electronic form
  at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
  or via http://cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: Coordinated radio continuum observations of comets Hyakutake
    and Hale-Bopp from 22 to 860 GHz
Authors: Altenhoff, W. J.; Bieging, J. H.; Butler, B.; Butner,
   H. M.; Chini, R.; Haslam, C. G. T.; Kreysa, E.; Martin, R. N.;
   Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W. L.; Schmidt,
   J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; Thum, C.; von Kap-Herr,
   A.; Wiesemeyer, H.; Wink, J. E.; Zylka, R.
1999A&A...348.1020A    Altcode:
  We have observed both Comets Hyakutake and Hale-Bopp close to perigee
  with several telescopes at frequencies between 30 and 860 GHz for an
  extended period of time. The observed “light" curves can be described
  as a simple function of heliocentric and geocentric distances without
  any outburst or noticeable variability with time. Our most sensitive
  diameter estimate for C/Hyakutake resulted in an upper limit of 2.1
  km. The nuclear diameter of C/Hale-Bopp was determined to 44.2 km after
  separation from the halo emission. The central part of both halos can
  be represented by a Gaussian with a linear size at half power points
  of 1870 and 11080 km for Hyakutake and Hale-Bopp, respectively. The
  spectral index for both comets is alpha = 2.8, indicating a similar
  particle size distributions in the halo of these comets. For Hale-Bopp
  the extended emission could be traced to more than 10(5) km from its
  nucleus. The derived masses, contained in the halo depend strongly
  on the assumed physical properties of the halo particles. With kappa
  (1mm) = 75 cm(2) /g, possibly more appropriate for comets, a halo mass
  of 6 10(10) g is derived for Hyakutake and of 8 10(12) g for Hale-Bopp.

---------------------------------------------------------
Title: VizieR Online Data Catalog: ROSAT all-sky survey catalogue
    of OB stars (Berghoefer+ 1996)
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P.
1999yCat..41180481B    Altcode:
  For the detailed statistical analysis of the X-ray emission of hot
  stars we selected all stars of spectral type O and B listed in the
  Yale Bright Star Catalogue and searched for them in the ROSAT All-Sky
  Survey. In this paper we describe the selection and preparation of
  the data and present a compilation of the derived X-ray data for a
  complete sample of bright OB stars. <P />(2 data files).

---------------------------------------------------------
Title: The ROSAT all-sky survey catalogue of the nearby stars
Authors: Hünsch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W.
1999A&AS..135..319H    Altcode:
  We present X-ray data for all entries of the Third Catalogue of
  Nearby Stars \cite[(Gliese &amp; Jahreiss 1991)]{gli91} that have been
  detected as X-ray sources in the ROSAT all-sky survey. The catalogue
  contains 1252 entries yielding an average detection rate of 32.9
  percent. In addition to count rates, source detection parameters,
  hardness ratios, and X-ray fluxes we also list X-ray luminosities
  derived from Hipparcos parallaxes. Catalogue also available at
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
  http://cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: Search for X-ray emission from bona-fide and candidate
    brown dwarfs
Authors: Neuhäuser, R.; Briceño, C.; Comerón, F.; Hearty, T.;
   Martín, E. L.; Schmitt, J. H. M. M.; Stelzer, B.; Supper, R.; Voges,
   W.; Zinnecker, H.
1999A&A...343..883N    Altcode: 1998astro.ph.12436N
  Following the recent classification of the X-ray detected object V410
  x-ray 3 with a young brown dwarf candidate (Briceño et al. 1998) and
  the identification of an X-ray source in Chamaeleon as young bona-fide
  brown dwarf (Neuhäuser &amp; Comerón 1998), we investigate all ROSAT
  All-Sky Survey and archived ROSAT PSPC and HRI pointed observations with
  bona-fide or candidate brown dwarfs in the field of view with exposure
  times ranging from 0.13 to 221 ks, including dedicated 64 ks and 42 ks
  deep ROSAT HRI pointed observations on the low-mass star BRI 0021-0214
  and the brown dwarf Calar 3, respectively. Out of 26 bona-fide brown
  dwarfs, one is newly detected in X-rays, namely rho Oph GY 202. Also,
  four out of 57 brown dwarf candidates studied here are detected in
  X-rays, namely the young Taurus brown dwarf candidates MHO-4, MHO-5,
  V410 Anon 13, and V410 x-ray 3. The M9.5-type star BRI 0021-0214 is
  not detected. In the appendix, we also present catalogued, but as yet
  unnoticed B- and R-band data for some of the objects studied here.

---------------------------------------------------------
Title: A calibration of the ROSAT HRI UV leak
Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.; Hünsch, M.
1999A&A...342L..17B    Altcode:
  The purpose of this paper is to present a detailed investigation of
  the Ultraviolet and visible sensitivity of the high-resolution imager
  (HRI) onboard the ROSAT X-ray satellite. We provide observational
  evidence that a recently published model (Zombeck et al. 1997) of the
  out-of-band quantum efficiency of the HRI overpredicts the detector
  response longward of approximately 4000 Angstroms. The contamination
  of the HRI is limited to the UV bandpass below approximately 4000
  Angstroms. Based on the optical properties of our target stars, our
  ROSAT HRI and PSPC observations, and UV fluxes measured with the TD1
  satellite, we provide an accurate calibration for the UV leak flux
  and present formulae to estimate UV leak count rates based on UV
  (1965 Angstroms) fluxes or stellar U magnitudes.

---------------------------------------------------------
Title: Very young stars in the solar vicinity
Authors: Wichmann, R.; Schmitt, J. H. M. M.
1999noao.prop...76W    Altcode:
  New surveys and catalogues like the ROSAT All-Sky Survey (RASS) and the
  TYCHO/HIPPARCOS catalogues have opened the unprecedented opportunity
  to search for new stellar populations. We are interested in the
  population of very young (ZAMS/PMS) stars in the solar vicinity. We
  propose to use the Coude Feed telescope with the Coude spectrograph
  to obtain high-resolution spectroscopy on a sample of x-ray active,
  nearby stars (obtained by cross-correlating the TYCHO-catalogue with the
  RASS), in order to identify very young stars among them. The proposed
  spectroscopic observations - together with TYCHO/HIPPARCOS parallaxes
  and TYCHO photometry -, will allow us to determine the evolutionary
  status of these stars, investigate the galactic star forming history
  in the solar vicinity, and to cast light on the still controversial
  issue of the nature of the numerous weak-line T Tauri stars found
  recently around nearby star forming regions.

---------------------------------------------------------
Title: Resolving X-ray Spectral Variations in η Carinae
Authors: Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.;
   Davidson, K.; Damineli, A.; Viotti, R.; Schmitt, J. H. M. M.
1999ASPC..179...46C    Altcode: 1999ecm..conf...46C
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT All-Sky Survey observations of IRAS selected T Tauri
    star candidates
Authors: Hearty, T.; Neuhäuser, R.; Schmitt, J. H. M. M.; Voges, W.
1999hxra.conf..395H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Search for X-ray emission from Saturn, Uranus and Neptune
Authors: Ness, J. U.; Schmitt, J. H. M. M.
1999AGAb...15...18N    Altcode: 1999AGM....15..B07N
  We present an analysis of X-ray observations of the trans-Jovian
  planets Saturn, Uranus and Neptune with the ROSAT PSPC in comparison
  with X-ray observations of Jupiter. For the first time a marginal
  X-ray detection of Saturn was found and 95 % confidence upper limits
  for Uranus and Neptune were obtained. From these upper limits we
  argue that Jupiter-like X-ray emission can be excluded for all three
  planets while they are consistent assuming intrinsic Saturn-like X-ray
  brightnesses. Similar X-ray production mechanisms on all trans-Jovian
  planets can therefore not be ruled out, and spectral shape and total
  luminosity are consistent with thick-target bremsstrahlung caused by
  electron precipitation as occurring in auroral emission from the Earth.

---------------------------------------------------------
Title: Diffuse X-ray Background Maps from the ROSAT All-Sky Survey
Authors: McCammon, D.; Egger, R.; Freyberg, M. J.; Plucinsky, P. P.;
   Sanders, W. T.; Schmitt, J. H. M. M.; Snowden, S. L.; Trümper, J.;
   Voges, W.
1999hxra.conf..274M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray Emission from Normal Stars
Authors: Schmitt, J. H. M. M.
1999hxra.conf..371S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Possible Detection of P-Mode Oscillations on Procyon
Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Bouchy,
   F.; Lebrun, J. C.; Connes, P.; Bertaux, J. L.; Baglin, A.
1999ASPC..185..177B    Altcode: 1999psrv.conf..177B; 1999IAUCo.170..177B
  Absolute accelerometry is a technique developed by P. Connes (1985)
  to detect small radial-velocity changes. We observed Procyon with
  a preliminary version of the Absolute Astronomical Accelerometer
  (AAA) coupled with the spectrograph ELODIE at the 193 cm telescope
  of the Observatoire de Haute Provence (France) during 8 nights
  December 97-January 98. Here, we present results of a search for
  solar-like oscillations in Procyon and the performance of the AAA
  for asteroseismology.

---------------------------------------------------------
Title: A search for star formation in the translucent clouds MBM7
    and MBM55
Authors: Hearty, T.; Magnani, L.; Caillault, J. -P.; Neuhäuser, R.;
   Schmitt, J. H. M. M.; Stauffer, J.
1999A&A...341..163H    Altcode:
  The star formation capability of two molecular clouds at high galactic
  latitude ( | b | &gt; 30(deg) ) is investigated. Possible pre-main
  sequence stars in and around the translucent clouds MBM7 and MBM55 have
  been identified via their X-ray emission by inspecting ROSAT All-Sky
  Survey observations of the clouds and environs and ROSAT pointed
  observations of the high-density cores within the clouds. Follow-up
  optical spectroscopy of the stellar X-ray sources with V &lt;= 15.5
  mag was conducted with the 1.5-m Fred Lawrence Whipple Observatory
  telescope to identify standard signatures of pre-main sequence stars
  (LiI &lt;~mbda6708 Angstroms absorption and Hα emission). We found
  11 stars which have lithium equivalent widths, W(Li), above our
  detection threshold. Three of the stars with lithium also have weak
  Hα emission. Relative ages for the stars with lithium are estimated by
  their position on an W(Li) vs. T_eff diagram. A calibration derived from
  data for several clusters with known ages indicates the stars are older
  than the translucent high-latitude clouds. This conclusion is supported
  by a comparison with theoretical evolutionary tracks of the stars from
  our sample for which we have distance measurements from Hipparcos. We
  find it is unlikely that any of the X-ray active, lithium-rich stars
  we identified have formed in the clouds in question. Theoretical and
  observational arguments support this conclusion and render unlikely
  the possibility that low-extinction translucent clouds are the sites
  of star formation. Table~3 is only available in electronic form at
  the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
  via http://cdsweb.u-strasbg.fr/Abstract.html.

---------------------------------------------------------
Title: Rossi-XTE long-term monitoring of Eta Carinae
Authors: Corcoran, M. F.; Ishibashi, K.; Swank, J. H.; Davidson, K.;
   Petre, R.; Viotti, R.; Schmitt, J. H. M. M.
1999NuPhS..69...33C    Altcode:
  The unstable star η Carinae is arguably the Galaxy's most massive
  known star or an extremely peculiar massive binary. We report first
  results of ~weekly RXTE monitoring of η Car during the 1996 Feb -
  1997 Jun interval, with daily coverage in 1997 Jun-Jul this represents
  the most detailed description of the X-ray emission of this or any
  other massive star. Our RXTE results show a progressive increase in the
  average 2-10keV flux through the observing interval. Most surprisingly,
  we find peaks in the X-ray lightcurve which occur every 85+/-1.2
  days. We consider possible causes of the X-ray variations.

---------------------------------------------------------
Title: Probing the large-scale distribution of X-ray active stars
    with the RASS-Tycho/Hipparcos samples
Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch,
   C.; Neuhäuser, R.
1999hxra.conf..382G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Late-type stars in the ROSAT all-sky survey
Authors: Hünsch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W.
1999hxra.conf..387H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Effects of heat flux and nonlocal transport on the viscous
    overstability in Saturn's B ring.
Authors: Schmidt, J.; Salo, H.; Spahn, F.; Petzschmann, O.
1999BAAS...31S1141S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Catalogues from ROSAT All-Sky Survey and Pointed Observations
Authors: Voges, W.; Boller, Th.; Dennerl, K.; Englhauser, J.;
   Aschenbach, B.; Bräuninger, H.; Briel, U.; Burkert, W.; Gruber,
   R.; Haberl, F.; Hartner, G.; Hasinger, G.; Hasinger, G.; Kürster,
   M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt,
   J. H. M. M.; Siebert, J.; Šimić, D.; Trümper, J.; Zimmermann, H. -U.
1999hxra.conf..282V    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: VizieR Online Data Catalog: MBM 7 and MBM 55 X-ray sources
    (Hearty+ 1999)
Authors: Hearty, T.; Magnani, L.; Caillault, J. -P.; Neuhaeuser, R.;
   Schmitt, J. H. M. M.; Stauffer, J.
1998yCat..33410163H    Altcode:
  The star formation capability of two molecular clouds at high galactic
  latitude (|b|&gt;30°) is investigated. Possible pre-main sequence
  stars in and around the translucent clouds MBM7 and MBM55 have been
  identified via their X-ray emission by inspecting ROSAT All-Sky
  Survey observations of the clouds and environs and ROSAT pointed
  observations of the high-density cores within the clouds. Follow-up
  optical spectroscopy of the stellar X-ray sources with V&lt;=15.5mag was
  conducted with the 1.5-m Fred Lawrence Whipple Observatory telescope to
  identify standard signatures of pre-main sequence stars (LiI λ6708Å
  absorption and Hα emission). We found 11 stars which have lithium
  equivalent widths, W(Li), above our detection threshold. Three of
  the stars with lithium also have weak Hα emission. Relative ages
  for the stars with lithium are estimated by their position on an W(Li)
  vs. T<SUB>eff</SUB> diagram. A calibration derived from data for several
  clusters with known ages indicates that the stars are older than the
  translucent high-latitude clouds. This conclusion is supported by
  a comparison with theoretical evolutionary tracks of the stars from
  our sample for which we have distance measurements from Hipparcos. We
  find it is unlikely that any of the X-ray active, lithium-rich stars
  we identified have formed in the clouds in question. Theoretical and
  observational arguments support this conclusion and render unlikely
  the possibility that low-extinction translucent clouds are the sites
  of star formation. <P />(4 data files).

---------------------------------------------------------
Title: Alpha Centauri: coronal temperature structure and abundances
    from ASCA observations
Authors: Mewe, R.; Drake, S. A.; Kaastra, J. S.; Schrijver, C. J.;
   Drake, J. J.; Guedel, M.; Schmitt, J. H. M. M.; Singh, K. P.; White,
   N. E.
1998A&A...339..545M    Altcode:
  We have analyzed the X-ray spectrum of the nearby binary alpha Cen AB
  (G2V + K1V) that has been obtained from observations with ASCA. The
  coronal temperature structure and abundances have been derived from
  multi-temperature fitting and confirmed by a differential emission
  measure analysis. The corona as seen by ASCA is essentially isothermal
  with a temperature around 0.3 keV, consistent with the evolutionary
  picture of coronae of aging solar-type stars. A comparison between the
  measurements from various instruments indicates a source variability
  in the coronal flux (which precludes the joint fitting of data from
  different instruments taken at different epochs) and temperature
  structure consistent with that discovered in a series of ROSAT
  observations. The elemental abundances agree with solar photospheric
  abundances for Ne, Si, and Fe at 1hbox {\sigma^2 CrB}ma level, while O
  appears to be underabundant by a factor of about 3 relative to solar
  photospheric values, and Mg overabundant by a factor of a few. The
  abundance ratios with respect to Fe are better determined: [O/Fe] =
  0.4+/-0.14 (x solar, etc.), [Mg/Fe] = 4+/-1, [Ne/Fe] = 1+/-0.3, and
  [Si/Fe] = 6+/-4.

---------------------------------------------------------
Title: The ROSAT all-sky survey catalogue of optically bright
    main-sequence stars and subgiant stars
Authors: Huensch, M.; Schmitt, J. H. M. M.; Voges, W.
1998A&AS..132..155H    Altcode:
  We present X-ray data for all main-sequence and subgiant stars
  of spectral types A, F, G, and K and luminosity classes IV and
  V listed in the Bright Star Catalogue that have been detected as
  X-ray sources in the ROSAT all-sky survey; several stars without
  luminosity class are also included. The catalogue contains 980
  entries yielding an average detection rate of 32 percent. In addition
  to count rates, source detection parameters, hardness ratios, and
  X-ray fluxes we also list X-ray luminosities derived from Hipparcos
  parallaxes. The catalogue is also available in electronic form
  via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
  http://cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: ROSAT HRI observations of the intermediate-age open cluster
    IC 4756
Authors: Randich, S.; Singh, K. P.; Simon, T.; Drake, S. A.; Schmitt,
   J. H. M. M.
1998A&A...337..372R    Altcode:
  We have obtained an 88 kilosecond ROSAT HRI exposure of the
  intermediate-age open cluster IC 4756 with the purpose of detecting
  stars in the high luminosity tail (log L_X &gt;= 10(29) erg s(-1) ) of
  its X-ray luminosity distribution. However, only 1 cluster member (HSS
  201) out of the 60 members inside the central high-sensitivity region of
  the HRI field of view (FOV) was detected. This star has spectral type
  A8, suggesting a close binary system with a low mass X-ray emitting
  companion. We compare the distribution of upper limits for F and G-type
  dwarfs in IC 4756 with the X-ray distribution functions of the similarly
  aged Hyades and Praesepe clusters. The results of this statistical
  analysis are inconclusive for G-type stars, but suggest that at least
  F-type stars in IC 4756 are not as X-ray luminous as their Hyades
  counterparts, thus indicating intrinsic differences between the two
  clusters. Finally, our data indicate a deficit of very active binaries
  with respect to both Hyades and Praesepe, and older open clusters.

---------------------------------------------------------
Title: Measurements of transport coefficients of granular gases
    using computer simulations
Authors: Petzschmann, O.; Sremcevic, M.; Schmidt, J.; Spahn, F.
1998BAAS...30.1044P    Altcode:
  It is well known that the equilibrium state of a planetary ring
  is determined by a balance of viscous heating and collisional
  cooling. The ring material consists of granular particles, i.e. the
  inter-particle collisions are dissipative. Therefore, the knowledge of
  the transport coefficients of granular gases is of crucial interest for
  the understanding of the ring dynamics. As a first step, we concentrate
  our work on a granular gas of smooth spheres of unique size and with
  a constant coefficient of restitution. We investigate the transport
  coefficients of granular gases by using N-body simulations and compare
  the results with analytic expressions derived by Jenkins and Richman
  (1985) in the framework of kinetic theory. We find a good agreement with
  the results of Jenkins and Richman that are restricted to nearly elastic
  collisions and purely Newtonian fluids. Using our simulations, we check
  the limitations of their theory. Furthermore, we investigate a sheared
  granular gas with variable restitution, in order to get a more realistic
  expression for the viscosity of the material of a planetry ring.

---------------------------------------------------------
Title: About the optical depth profile of Saturns E ring
Authors: Spahn, F.; Thiessenhusen, K. -U.; Schmidt, J.
1998DPS....30.1704S    Altcode: 1998BAAS...30Q1044S
  The dynamics of dust particles launched from the surface of the
  Saturnian satellite Enceladus is studied. They move influenced by
  Saturn's magnetic field, Sun's radiation and the gravitational fields
  of Enceladus and Saturn. In the latter case also the higher harmonics
  (up to J_2) of gravitational field caused by the oblateness of Saturn
  have been considered. In a first step we have chosen the equilibrium
  gain potential according to Horanyi et al. ( Icarus 97 (1992), 248)
  whereas the size of the dust is a free parameter. A few million
  particles have been simulated according to the ejecta distributions
  caused by interplanetary as well as E ring impactors onto Enceladus
  (Colwell, Icarus 106 (1993), 536). Shortly after launch from Enceladus,
  we found two major streams departing the satellite in almost all
  cases of the ejecta velocity distributions. Most of the material is
  migrating into the E ring in a direction away from Saturn. In this way
  an asymmetry in the radial optical depth profile of the E ring around
  the orbit of Enceladus is initially injected. Long term simulations,
  which have to be run for several seasons of Saturn, should clear
  whether this initially injected radial asymmetry is wiped out by the
  effects of radiation, magnetic field, and oblateness or whether it
  is kept but spread over the whole range of the E ring. Analytically
  estimates of the Gaussian equations for the dynamics of the orbital
  elements point to the latter. The specific shape of the optical depth
  profile of the E ring is then determined by certain sources and sinks
  (all moons and rings) of E ring dust. This is going to be modeled by
  solving numerically a balance equation of Master-type.

---------------------------------------------------------
Title: Discovery of a late-type stellar population associated with
    the Gould Belt
Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch,
   C.; Neuhaeuser, R.
1998A&A...337..113G    Altcode:
  We report the detection of a late-type stellar population in the
  direction of the Gould Belt among stars found by cross-correlating
  the ROSAT All-Sky Survey with the Tycho catalog. Regions of the Gould
  Belt located between l = 195°\ and l = 15°\ exhibit a strong density
  enhancement of X-ray active stars with associated X-ray luminosities
  L<SUB>X</SUB> = 10(30.0+/-0.5) erg s(-1) , typical for very young
  coronae. In contrast, other regions show average galactic plane
  characteristics. Stars accounting for the excess appear to extend
  from the solar vicinity up to about 300 pc towards a quadrant centered
  on l = 240°, but their distance distribution only extends to 180 pc
  from the Sun towards l = 330°. The structure can be understood as a
  disk-like arrangement of stars having the same inclination towards the
  galactic plane as the Gould Belt and extending to its outer boundary. We
  suggest that these stars are the residuals of original associations and
  interpret them as the late-type stellar population of the Gould Belt.

---------------------------------------------------------
Title: Coronal Metallicities of Active Binaries
Authors: Kashyap, V.; Drake, J. J.; Pease, D. O.; Schmitt, J. H. M. M.
1998AAS...192.8201K    Altcode: 1998BAAS...30.1155K
  We analyze EUV and X-ray data on a sample of X-ray active binary stars
  to determine coronal abundances. EUVE spectrometer data are used to
  obtain line fluxes, which are then used to determine Differential
  Emission Measures (DEMs). The continuum emission predicted for these
  DEMs (constrained at high temperatures by measurements in the X-ray
  regime where available) are then compared with EUVE/DS counts to
  derive coronal metallicities. These measurements indicate whether
  the coronae on these stars are metal deficient (the “MAD Syndrome”)
  or subject to the FIP-effect (low First Ionization Potential elements
  have enhanced abundances relative to the photospheres).

---------------------------------------------------------
Title: Vertical Distribution of Temperature and Density in a
    Planetary Ring
Authors: Schmidt, J.; Spahn, F.; Petzschmann, O.; Salo, Heikki
1998BAAS...30.1045S    Altcode:
  We model temperature and density profiles for a dilute planetary ring,
  based on the hydrodynamic balance equations for momentum and energy of
  granular flows. Within our approximation the ring consists of inelastic
  smooth spheres of unique size and mass, while the fluxes of mass,
  momentum and energy are linear functions of the gradients of density,
  velocity and temperature. The phase space distribution function is
  an isotropic Gaussian with additive corrections that are first order
  in these gradients (Jenkins and Richman, Arch. Ration. Mech. Anal.,
  87 (1985)). The resulting system of coupled differential equations
  leads to temperature and density profiles, which depend on the
  coefficient of restitution, a measure for the inelasticity of the
  particle collisions, the optical depth and the shear rate. We compare
  the results to those of the kinetic approach to ring dynamics (Simon
  and Jenkins, Icarus, 110 (1994)) , where the non-isotropic nature of
  the ring system is taken into account by use of a triaxial Gaussian
  velocity distribution. Furthermore we present event driven N-particle
  simulations that confirm the numerical results.

---------------------------------------------------------
Title: X-ray activity and evolutionary status of late-type giants
Authors: Schroeder, K. -P.; Huensch, M.; Schmitt, J. H. M. M.
1998A&A...335..591S    Altcode:
  We study the evolution of stellar activity in a volume-limited sample
  of single giants within 35 pc distance from the Sun as measured
  by the amount of soft X-ray emission. This sample of 36 stars is
  assumed to be complete for absolute magnitude M_V la 3.0 and for
  X-ray luminosities L_x ga 1.5 x 10(28) erg s(-1) . We use ROSAT data
  to determine stellar activity, Hipparcos parallaxes to place stars
  into the HRD, and the empirically well tested evolutionary code by
  P. Eggleton (see Pols et al. 1998) together with Kurucz colour tables
  to derive individual masses and ages. Based on more X-ray data and much
  improved HR diagram positions, we confirm the suggestion by Huensch
  &amp; Schroeder (1996), that stellar activity evolution is strongly
  coupled to stellar mass and that it is a very common feature among
  giants with M ga 1.3 M<SUB>sun</SUB>. Most pointed ROSAT observations
  on the giant branch (GB) and also in the “K giant clump” (with
  masses betweeen about 1.3 and 2.3 M_⊙) resulted in detections at
  typically solar levels. This indicates that magnetic activity mostly
  (for M ga 1.3 M<SUB>sun</SUB>) even survives the He-flash and, possibly,
  also persists on the asymptotic giant branch. The more massive stars
  (ga 3 M_⊙) show even a larger amount of activity in their advanced
  evolutionary stages (blue loop giants).

---------------------------------------------------------
Title: Structural and temporal behavior of biofilms investigated by
    FTIR-ATR spectroscopy
Authors: Schmitt, J.; Fringeli, U. P.; Flemming, H. -C.
1998AIPC..430..312S    Altcode: 1998fts..conf..312S
  The temporal and physiological behavior of bacteria forming biofilms on
  a surface was investigated by FT-IR ATR spectroscopy. Time dependent
  spectra could be attributed to changes in biofilm properties. H-D
  exchange experiments offered insights in structural changes of biofilms
  after chemical treatment with chlorine, used as a desinfectant.

---------------------------------------------------------
Title: Phase-resolved Simultaneous ORFEUS Far-Ultraviolet and ROSAT
    X-Ray Observations of the Active Star AB Doradus
Authors: Schmitt, J. H. M. M.; Cutispoto, G.; Krautter, J.
1998ApJ...500L..25S    Altcode:
  We report phase-resolved simultaneous ORFEUS far-ultraviolet (FUV)
  and ROSAT soft X-ray observations of the rapidly rotating young star AB
  Doradus (HD 36705), obtained with the FUV spectrometer flown on board
  ORFEUS II and the High Resolution Imager (HRI) on board ROSAT. The
  lines of C III at 977 and 1176 Å , O V at 1218 Å, and O VI at 1032
  and 1038 Å, as well as N II at 1085 Å and Si III at 1206 Å, are
  clearly detected in the ORFEUS spectra. The X-ray flux intrinsically
  varied during the observation and FUV and X-ray fluxes are found to
  correlate. No changes in the line profiles are detectable, but the line
  profiles of C III λ977 and O VI λ1032 are definitely broadened with
  respect to the instrumental line profile. The observed broadening does
  not exceed the photospheric v sin i value, suggesting that the observed
  C III and O VI emission, formed at a characteristic temperature of
  ~80,000-300,000 K, is produced close to the star's surface. The C
  III λ1176/λ977 line ratio is found to be larger than that in the
  Sun, indicating electron densities (at ~80,000 K) of n<SUB>e</SUB> ~
  10<SUP>11</SUP> cm<SUP>-3</SUP> or higher.

---------------------------------------------------------
Title: The large-scale distribution of X-ray active stars
Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch,
   C.; Egret, D.; Voges, W.; Neuhaeuser, R.
1998A&A...334..540G    Altcode:
  We analyse the large-scale sky distribution of 8593 X-ray emitting
  stars from the cross-correlation of the ROSAT All-Sky Survey sources
  with the Tycho catalog. We detect a density gradient from the galactic
  plane to the galactic pole which is attributed to the scale height of
  the young late type star population of the galactic disc. The data also
  show a low galactic latitude enhanced feature with respect to mean plane
  density. We fit the observed X-ray stellar surface density with a model
  consisting of a constant background component plus an exponential disc
  and derive for the best fit an inclination i = 27.5(deg) +/- 1(deg)
  and an ascending node l_Ω = 282(deg) +/- 3(deg) with respect to the
  galactic plane. We discuss the Gould belt as a possible explanation
  to account for the observed enhancement. Based on observations made
  with the ESA Hipparcos astrometry satellite

---------------------------------------------------------
Title: Artificial neural networks applied to FTIR and FT-Raman
    spectra in biomedical applications
Authors: Schmitt, J.; Udelhoven, T.; Löchte, T.; Flemming, H. -C.;
   Naumann, D.
1998AIPC..430..260S    Altcode: 1998fts..conf..260S
  Biomedical applications of vibrational spectroscopy developed
  for routine analysis require reliable methods for data
  evaluation. Artificial neural networks open a new perspective for the
  spectra differentiation and identification of biologic samples with
  their small spectral variance. Spectral libraries based on different
  combined neural networks have been developed using FT-IR and FT-Raman
  spectra for bacteria and yeast identification.

---------------------------------------------------------
Title: Discovery of apsidal motion in alpha Coronae Borealis by
    means of ROSAT X-ray eclipse timing
Authors: Schmitt, Juergen H. M. M.
1998A&A...333..199S    Altcode:
  Four ROSAT X-ray observations of the secondary optical minimum of the
  eclipsing binary system alpha CrB taken in 1992, 1993 and 1997 are
  presented. Because of the totality of the X-ray eclipse, the times of
  mid eclipse can be accurately determined from the ROSAT data. The period
  between secondary minima P_s is found to be significantly different
  from the optically well determined period between primary minima P_p,
  thus indicating apsidal motion. The observed value P_s - P_p = 4.8
  +/- 2.1 seconds is, first, shown to be almost exclusively due to the
  primary component, and second, consistent with our current knowledge
  of alpha CrB A. The relativistic contribution to the observed value
  is 0.95 seconds or 17 % of the total effect.

---------------------------------------------------------
Title: An Argument for Zeolites in Mars Rocks and an Earth Analog
Authors: Basu, A.; Schmitt, J.; Crossey, L. J.
1998LPI....29.1041B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray/optical observations of stars with shallow convection
    zones (A8-G2 V)
Authors: Piters, A. J. M.; van Paradijs, J.; Schmitt, J. H. M. M.
1998A&AS..128...29P    Altcode:
  We present Walraven photometry and ROSAT All-Sky Survey data for a
  sample of 173 bright main-sequence stars with spectral types between
  A8V and G2V\@. These observations are part of a study of the onset
  of magnetic surface activity along the main sequence. Values for the
  effective temperature, surface gravity and interstellar reddening have
  been obtained from a comparison of the observed Walraven colours with
  theoretical values. These parameters have been used to derive accurate
  X-ray\ surface flux densities.

---------------------------------------------------------
Title: Modeling the Galactic 3/4 keV X-ray Background
Authors: Freyberg, M. J.; Schmitt, J. H. M. M.
1998LNP...506..311F    Altcode: 1998IAUCo.166..311F; 1998lbb..coll..311F
  We have analyzed the ROSAT PSPC all-sky survey maps of the soft X-ray
  background (SXRB) in the 3/4 keV band. One approach was to study
  the large-scale distribution of the X-ray emission with a multipole
  analysis. Here a significant dipole toward the galactic center region
  was found. This is interpreted in terms of variation of distant X-ray
  emission, e.g. galactic halo. Also a small-scale structure analysis of
  the 3/4 keV X-ray sky has been performed and a new analytic fluctuation
  probability distribution has been derived. No significant excess
  over the expected extragalactic point source contribution has been
  found. Finally, X-ray colours have been used to investigate spectral
  variations of the SXRB.

---------------------------------------------------------
Title: Inference of Stellar Coronal Structure
Authors: Schmitt, J. H. M. M.
1998ASPC..154..463S    Altcode: 1998csss...10..463S
  Unlike the solar corona, stellar coronae cannot be --- directly ---
  spatially resolved at X-ray wavelengths. Yet stellar coronae are likely
  to exhibit similar amounts of structure as the solar corona. Currently
  structural information from such spatially unresolved data can be
  inferred from rotational modulation of the X-ray emission for single
  stars and/or eclipses in the case of binary systems as well as from
  coronal density measurements, which can be obtained from suitably
  chosen density sensitive line ratios. The most powerful information
  on structure is contained in Doppler data, however, the spectral
  resolution of currently X-ray available instrumentation does not
  permit such measurements. I will discuss some of the observations
  obtained, and review the methods used to infer structure from these
  data. Particular emphasis will be placed on the ill-conditioned nature
  of the inversion problem, that makes it rather difficult to infer
  the possibly three-dimensional structure of stellar coronae. Finally
  I will address the prospects of obtaining structural information on
  other stars with the next generation of X-ray telescopes.

---------------------------------------------------------
Title: Catalogues of stellar X-ray emission from the ROSAT all-sky
    survey
Authors: Huensch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W.
1998AGAb...14..123H    Altcode: 1998AGM....14..P49H
  Late-type stars are among the most frequent X-ray sources. Their X-ray
  emission is believed to be thermal emission from hot (&gt;= 10^6 K)
  coronal plasma. It is estimated that about one third of the X-ray
  sources detected in the course of the ROSAT all-sky survey (RASS)
  are late-type stars. Since a close correlation between the solar soft
  X-ray emission and various other solar activity indicators is well
  established, coronal X-ray emission is a very powerful tool for the
  study of stellar activity in general. We have systematically searched
  for X-ray emission from late-type stars of the Bright Star (BSC) and
  Gliese catalogues in the ROSAT all-sky survey. We used positional
  coincidence as criterion for identification of X-ray sources with
  catalogue stars. Based on Monte-Carlo simulations of equal numbers of
  randomly distributed sky positions, we determined the maximum offset
  for a reliable identification to 90 arcseconds. The numbers of X-ray
  detected stars of spectral classes A to M are 450 for BSC giants and
  supergiants, 980 for BSC main-sequence and subgiant stars, and 1242
  for the Gliese stars, corresponding to detection rates of 32%, 12%,
  and 33%, respectively. The resulting catalogues (Huensch et al., 1998,
  A&amp;AS 127, 251 / in press / submitted) form the most comprehensive
  data basis yet available for the study of coronal X-ray emission.

---------------------------------------------------------
Title: ROSAT Catalogues from All-Sky Survey and Pointed Observations
Authors: Voges, W.; Boller, Th.; Dennerl, K.; Englhauser, J.;
   Aschenbach, B.; Bräuninger, H.; Briel, U.; Burkert, W.; Gruber,
   R.; Freyberg, M.; Haberl, F.; Hartner, G.; Hasinger, G.; Kürster,
   M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt,
   J. H. M. M.; Siebert, J.; Šimić, D.; Trümper, J.; Zimmermann, H. -U.
1998sxmm.confE..38V    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT All-Survey Bright Source Catalog
Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Brauninger, H.;
   Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.;
   Haberl, F.; Hartner, G.; Hasinger, G.; Kurster, M.; Pfeffermann, E.;
   Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trumper,
   J.; Zimmermann, U.
1998IAUS..179..433V    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Extremely Active Cool Stars in the Young Open Cluster NGC 2362
Authors: Berghofer, T. W.; Schmitt, J. H. M. M.
1998ASPC..154.2091B    Altcode: 1998csss...10.2091B
  NGC 2362 is one of the youngest open stellar clusters in our
  Galaxy and is centered around the massive O-type star tau CMa. This
  cluster exhibits several hundred cool stars in the pre-main sequence
  phase. We used the ROSAT PSPC and HRI to obtain deep X-ray images of
  NGC 2362. Here we present first results of an in-depth study of the
  X-ray properties of the cool star cluster members.

---------------------------------------------------------
Title: The ROSAT all-sky survey catalogue of optically bright
    late-type giants and supergiants
Authors: Hunsch, M.; Schmitt, J. H. M. M.; Voges, W.
1998A&AS..127..251H    Altcode:
  We present X-ray data for all late-type (A, F, G, K, M) giants
  and supergiants (luminosity classes I to III-IV) listed in the
  Bright Star Catalogue that have been detected in the ROSAT all-sky
  survey. Altogether, our catalogue contains 450 entries of X-ray emitting
  evolved late-type stars, which corresponds to an average detection rate
  of about 11.7 percent. The selection of the sample stars, the data
  analysis, the criteria for an accepted match between star and X-ray
  source, and the determination of X-ray fluxes are described. Catalogue
  only available at CDS via anonymous ftp to cdsarc.u-strasbg.fr
  (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

---------------------------------------------------------
Title: Modeling the galactic 3/4 keV X-ray background
Authors: Freyberg, M. J.; Schmitt, J. H. M. M.
1998LNP...506..309F    Altcode:
  We have analyzed the ROSAT PSPC all-sky survey maps of the soft X-ray
  background (SXRB) in the 3/4 keV band. One approach was to study
  the large-scale distribution of the X-ray emission with a multipole
  analysis. Here a significant dipole toward the galactic center region
  was found. This is interpreted in terms of variation of distant X-ray
  emission, e.g. galactic halo. Also a smallscale structure analysis of
  the 3/4 keV X-ray sky has been performed and a new analytic fluctuation
  probability distribution has been derived. No significant excess
  over the expected extragalactic point source contribution has been
  found. Finally, X-ray colours have been used to investigate spectral
  variations of the SXRB.

---------------------------------------------------------
Title: Asteroseismology with the Absolute Astronomical Accelerometer
(AAA): Preliminary Results
Authors: Barban, C.; Martic, M.; Schmitt, J.; Connes, P.; Michel,
   E.; Baglin, A.; Bertaux, J. L.
1998ASPC..135..366B    Altcode: 1998hcsp.conf..366B
  Absolute accelerometry is a technique developed by P. Connes (1985),
  to detect small radial-velocity changes, involving a CCD spectrograph,
  two lasers and a Fabry-Perot. The final output is a beat frequency
  similar to that from a Doppler radar. To estimate the performance of
  the Absolute Astronomical Accelerometer (AAA) for asteroseismology,
  we made specific observations, i.e. long continuous observing runs,
  with a preliminary version of the AAA coupled with the spectrograph
  Elodie at the T193 (OHP). The reachable accuracy is estimated from
  observations and simulations. It is shown that AAA is a well-suited
  instrument to detect solar-like oscillations in stars. References:
  Connes P.:1985, Astrophys. Sp. Sc., 110, 211.

---------------------------------------------------------
Title: Evolved Stars: What Happens to Activity Off the Main Sequence
Authors: Strassmeier, K. G.; Fekel, F. C.; Gray, D. F.; Hatzes, A. P.;
   Schmitt, J. H. M. M.; Solanki, S. K.
1998ASPC..154..257S    Altcode: 1998csss...10..257S
  Magnetic activity on the main sequence has been well studied, in
  contrast to researches on sub-giants, giants, and supergiant stars. In
  this discussion we will address three main topics associated with
  activity in evolved stars: (1) rotation regimes for evolved stars;
  (2) rotation-activity relations in the H-R diagram; (3) polar spots.

---------------------------------------------------------
Title: The large-scale distribution of X-ray active stars
Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch,
   C.; Neuhaeuser, R.
1998AGAb...14..102G    Altcode: 1998AGM....14..P06G
  One of the major finding of X-ray astronomy is the discovery
  of so-called "active stars". We decided to cross-correlate stellar
  catalogs with the ROSAT All-Sky Suvey (RASS) in order to construct
  samples of objects with known X-ray and optical properties. The cross
  correlation of the RASS and Tycho-Hipparcos catalogs provided us with
  the largest samples (RasTyc and RasHip) of stellar X-ray sources with
  accurate position, magnitude, colors, distance and proper motions
  constructed so far. We present the large-scale sky distribution of
  the brightest RasTyc stars. We detect a density gradient from the
  galactic plane to the galactic pole attributed to the ambient young
  late type star population of the galactic disc. The data also show
  up an enhanced feature with respect to mean plane density. We derive
  an inclination i = 27.5^{\circ} and an ascending node l_{\Omega} =
  282^{\circ} for the exponential disc fitted to the observed X-ray
  stellar surface density. We discuss the Gould belt as a possible
  explanation and show that stars accounting for the observed enhancement
  display X-ray luminosities L<SUB>X</SUB> = 10^{30.0+/-0.5} erg s^{-1},
  typical for very young coronae. Moreover they appear to extend from
  the solar vicinity up to 300 pc or further towards l = 240^\circ but
  their distance distribution only reach 155 pc from the Sun towards l =
  330^\circ. The structure can be understood as a disk-like distribution
  of stars having the same inclination on the galactic plane as the Gould
  belt and extending to its outer boundary. We suggest that these stars
  are the residuals of associations now diluted.

---------------------------------------------------------
Title: Star-Formation at High Galactic Latitude
Authors: Hearty, Thomas; Magnani, Loris; Caillault, Jean-Pierre;
   Neuhauser, Ralph; Schmitt, J. H. M. M.; Stauffer, John
1998ASPC..154.1716H    Altcode: 1998csss...10.1716H
  The star-formation capability of molecular clouds at high galactic
  latitude (|b| &gt; 30 deg) is investigated. Possible pre-main sequence
  stars in and around translucent and dark high-latitude clouds have
  been identified via their X-ray emission by inspecting ROSAT All-Sky
  Survey and ROSAT pointed observations of the cores and surrounding
  regions of the clouds. Follow-up optical spectroscopy of the stellar
  X-ray sources with m_v &lt;~ 15.5 mag was conducted with the 1.5-m Fred
  Lawrence Whipple Observatory telescope to identify standard signatures
  of pre-main sequence stars (i.e., Li 1 lambda6708 AA absorption
  and Hα emission). We found 16 stars near several of the molecular
  clouds which have lithium equivalent widths above our detection
  threshold. Three stars also have weak Hα emission. Relative ages
  for the stars with lithium are estimated by their position on a W(Li)
  vs. T_eff diagram. A calibration derived from data for several clusters
  with known ages indicates the stars are older than the translucent
  high-latitude clouds. We find it is unlikely that most of the X-ray
  active, lithium-rich stars we identified have formed in the clouds
  in question. Theoretical and observational arguments support this
  conclusion and render unlikely the possibility that low-extinction,
  low column density clouds, such as most of the high-latitude clouds
  can support star-formation.

---------------------------------------------------------
Title: Development of an Absolute Accelerometer for Extra-Solar
    Planet Detection
Authors: Schmitt, J.; Connes, P.; Bertaux, J. L.
1998EM&P...81...83S    Altcode: 2000EM&P...81...83S
  The method of stellar radial velocity variations has recently
  shown its capability by the first discovery of several extra-solar
  planets. Accuracies achieved today are in the range 3-10 m/s. The AAA
  (absolute astronomical accelerometer) is an instrument which aims to
  reach the photon noise limit for the measurement of velocity changes,
  with systematic errors of about 1 m/s, long term. The principle is to
  use a servo-controlled CCD spectrograph as a null detector, and to
  register always the lines of the star on the same CCD pixels. Thus,
  systematic errors linked to the Earth-induced large variations are
  cancelled. A tunable Fabry-Perot channelled spectrum is also following
  the star spectrum, while the FP thickness is measured by heterodyne
  detection of the beats between a tunable laser diode and a stabilized
  laser diode. A complete prototype of the instrument is operating with
  laboratory sources and the first results are presented. It is planned
  to use this system with a new spectrograph, to be coupled to the 152
  cm telescope at Observatoire de Haute Provence.

---------------------------------------------------------
Title: Coordinated Observations of Comet Hale-Bopp between 32 and
    860 GHz
Authors: Bieging, J. H.; Mauersberger, R.; Altenhoff, W. J.; Haslam,
   C. G. T.; Kreysa, E.; Schmidt, J.; Schraml, J. B.; Stumpff, P.; von
   Kap-Herr, A.; Butler, B.; McMullin, J.; Butner, H. M.; Martin, R. N.;
   Muders, D.; Peters, W. L.; Sievers, A.; Thum, C.; Wink, J.; Zylka, R.
1997AAS...191.7202B    Altcode: 1997BAAS...29.1319B
  The concept of simultaneous multifrequency continuum observations,
  successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp,
  using the Heinrich Hertz Submillimeter Telescope (HHT) with the four
  color bolometer between 250 and 870 GHz; the IRAM 30m telescope at 250
  GHz; the IRAM Plateau de Bure Interferometer near 90 and 240 GHz; and
  the MPIfR 100m telescope at 32 GHz. Near-simultaneous measurements were
  done between 1997 February 15 and 1997 April 26, mainly concentrated
  in mid-March shortly before perigee of the comet. The measurements
  gave the following preliminary results: (a) interferometer detection
  of the nuclear continuum emission. The derived mean diameter is of the
  order of 50 km. (b) a radio halo with a gaussian HPW of ~ 11 arcsec ,
  corresponding to a diameter of 11000 km at geocentric distance of
  1.2 A.U. (c) a spectral index (SI) of ~ 3.0 of the total signal,
  indicating a particle size distribution in the radio halo between
  0.1 and 3 mm. Assuming an average cometary density of 0.5 g cm(-3)
  , the mass contained in the nucleus is about 3x 10(19) g and 10(12)
  g in the particle halo, inferred from the SI. A more detailed analysis
  is under way, which includes corrections for the various calibration
  scales at the different telescopes and the possible contamination of the
  observed bolometer signal by molecular line emission. We will report
  on the results of this analysis and the implications for the mm --
  submm wavelength radio spectrum of Comet Hale-Bopp.

---------------------------------------------------------
Title: VizieR Online Data Catalog: X-ray/optical observations of
    A8-G2V stars (Piters+ 1998)
Authors: Piters, A. J. M.; van Paradijs, J.; Schmitt, J. H. M. M.
1997yCat..41280029P    Altcode:
  Table 1 lists the sample of 173 stars observed for this study. They
  are selected from the Bright Star Catalogue (Cat. &lt;V/50&gt;),
  with the following selection criteria: - Spectral type between A8
  and G2; no spectral peculiarities noted; not double in spectral type
  classification (e.g., HR 32 with spectral type F2V+F6V is excluded);
  - Luminosity class V; - Right ascension between 0h and 2h, or between
  14h and 24 h, declination south of +10 degrees (defining the region on
  the sky visible during the appointed observation times); - Binaries
  for which both components occurred in the BSC are excluded, if the
  separation is less than 10". Not listed are five stars for which no
  (Walraven photometric and ROSAT X-ray) data are available. These
  are HR 591, HR 5542, HR 6593, HR 8245 and HR 8735. Table 2 lists the
  Walraven photometric (VBLUW) data for all but four stars from Table
  1. Also listed in Table 2 are the effective temperature, surface
  gravity and the reddening, as derived from comparison with theoretical
  colours. Table 5 lists the ROSAT All Sky Survey data for all but 11
  stars from Table 1. For a description of the Walraven photometric
  system, see e.g. &lt;GCPD/11&gt; (3 data files).

---------------------------------------------------------
Title: Coronal and chromospheric emission from cool stars in
    near-simultaneous ROSAT all-sky survey and Mount Wilson data.
Authors: Piters, A. J. M.; Schrijver, C. J.; Schmitt, J. H. M. M.;
   Rosso, C.; Baliunas, S. L.; van Paradijs, J.; Zwaan, C.
1997A&A...325.1115P    Altcode:
  Mt. Wilson Ca II H&amp;K line-core emission fluxes for 215 F-,
  G- and K-type stars were obtained within at most a few days of the
  corresponding ROSAT All-Sky Survey observations. These stars cover wide
  ranges of stellar activity, spectral type and luminosity class. In
  this paper we study the well-known relationship between the Ca II
  H&amp;K line-core emission in excess of the minimum emission and the
  soft X-ray emission. We find that flux densities normalised with the
  bolometric flux densities are the best quantity in which to express
  activity when comparing radiative emission in different temperature
  regimes. We find a power-law relationship, in which the X-ray normalised
  emission varies approximately quadratically with the normalised excess
  Ca II H&amp;K line-core emission. This relationship does not depend on
  luminosity class at least up to luminosity class III, and it does not
  depend on effective temperature. The scatter around this relationship
  is consistent with the measurement errors. The X-ray spectral hardness
  ratios of main-sequence stars increase with the X-ray flux densities;
  a similar trend, but with substantially larger scatter, is also present
  for evolved stars. A comparison between values from different passbands
  of the Mt. Wilson HK spectrophotometer shows that relatively hot stars
  ((B-V)&lt;=0.50) appear to have a Ca II line core emission peak about
  a factor 2 to 3 wider than cooler stars.

---------------------------------------------------------
Title: Simultaneous ORFEUS FUV and ROSAT X-ray observations of the
    young rapid rotator AB Doradus.
Authors: Schmitt, J. H. M. M.; Krautter, J.; Appenzeller, I.; Mandel,
   H.; Wichmann, R.; Barnstedt, J.; Goelz, M.; Grewing, M.; Gringel,
   W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Kraemer, G.
1997A&A...325..249S    Altcode:
  We present simultaneous soft X-ray and FUV observations of the rapidly
  rotating young star AB Doradus (HD 36705), obtained with the position
  sensitive proportional counter (PSPC) on board ROSAT and the FUV/EUV
  spectrometer on board ORFEUS. The X-ray data show that AB Dor was in a
  high state, possibly in a flare, during the FUV observations. The lines
  of CIII at 977Å and OVI at 1032 and 1038Å are clearly detected in
  the ORFEUS spectrum. The overall emission measure distribution of the
  combined FUV and X-ray data is steeply rising. The OVI 1032Å line is
  definitely broadened with respect to the instrumental line profile,
  however, the observed broadening does not exceed the photospheric
  vsin(i)-value. This strongly suggests that the observed OVI emission,
  formed at a characteristic temperature of =~300000K, is produced
  almost exclusively relatively close to the star's surface, and not
  in an extended corotating emission region with scale sizes of a few
  stellar radii.

---------------------------------------------------------
Title: ROSAT Survey Diffuse X-Ray Background Maps. II.
Authors: Snowden, S. L.; Egger, R.; Freyberg, M. J.; McCammon, D.;
   Plucinsky, P. P.; Sanders, W. T.; Schmitt, J. H. M. M.; Trümper,
   J.; Voges, W.
1997ApJ...485..125S    Altcode:
  This paper presents new maps of the soft X-ray background from the
  ROSAT all-sky survey. These maps represent a significant improvement
  over the previous version in that (1) the position resolution of the
  PSPC has been used to improve the angular resolution from ~2° to 12',
  (2) there are six energy bands that divide each of the previous three
  into two parts, and (3) the contributions of point sources have been
  removed to a uniform source flux level over most of the sky. These
  new maps will be available in electronic format later in 1997. <P
  />In this paper we also consider the bright emission in the general
  direction of the Galactic center in the 0.5-2.0 keV band, and the
  apparent absorption trough that runs through it along the Galactic
  plane. We find that while the northern hemisphere data are confused
  by emission from Loop I, the emission seen south of the plane is
  consistent with a bulge of hot gas surrounding the Galactic center (in
  our simple model, a cylinder with an exponential fall-off of density
  with height above the plane). The cylinder has a radial extent of
  ~5.6 kpc. The X-ray emitting gas has a scale height of 1.9 kpc, an
  in-plane electron density of ~0.0035 cm<SUP>-3</SUP>, a temperature
  of ~10<SUP>6.6</SUP> K, a thermal pressure of ~28,000 cm<SUP>-3</SUP>
  K, and a total luminosity of ~2 × 10<SUP>39</SUP> ergs s<SUP>-1</SUP>
  using a collisional ionization equilibrium (CIE) plasma emission model.

---------------------------------------------------------
Title: Simultaneous optical and ROSAT X-ray observations of the
    classical T Tauri star BP Tauri.
Authors: Gullbring, E.; Barwig, H.; Schmitt, J. H. M. M.
1997A&A...324..155G    Altcode:
  The classical T Tauri star BP Tauri has been simultaneously observed
  with UBVRI high-speed photometry at a time resolution of 2sec and with
  the ROSAT PSPC detector during five nights. BP Tauri showed brightness
  variations on time scales ranging from nights to hours both in the
  optical and in the X-ray band, however, the night-to-night variations
  in the optical and X-ray spectral regions were not correlated. On
  one occasion, a short term optical event with an amplitude in U
  of ~0.05mag and a time duration of 1.2-hours occurred, with no
  corresponding increase in the X-ray count rate during the decay of
  the event. In conclusion, the observations show that there are no
  detectable correlations between the optical and X-ray variability
  of BP Tau on time scales ranging from 1-hour to days. We discuss
  the possibility that the optical variability of BP Tau is related to
  accretion of circumstellar material onto the central star, while the
  X-ray emission presumably comes from magnetically active regions.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Near-simultaneous ROSAT and Mt
    Wilson data (Piters+ 1997)
Authors: Piters, A. J. M.; Schrijver, C. J.; Schmitt, J. H. M. M.;
   Rosso, C.; Baliunas, S. L.; van Paradijs, J.; Zwaan, C.
1997yCat..33251115P    Altcode:
  Table 1 lists near-simultaneous X-ray data and Ca II H&amp;K line-core
  emission data from the ROSAT All-Sky Survey and from the Mt. Wilson
  H&amp;K spectrometer, respectively. The stars in this sample are 215
  bright F-, G-, and K-type stars. Table 2 lists the derived excess Ca II
  H&amp;K line-core and the X-ray flux densities for the same stars. (2
  data files).

---------------------------------------------------------
Title: X-ray properties of bright OB-type stars detected in the
    ROSAT all-sky survey.
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Danner, R.;
   Cassinelli, J. P.
1997A&A...322..167B    Altcode:
  The ROSAT all-sky survey has been used to study the X-ray properties
  for all OB-type stars listed in the Yale Bright Star Catalogue. Here
  we present a detailed astrophysical discussion of our analysis of the
  X-ray properties of our complete sample of OB-type stars; a compilation
  of the X-ray data is provided in an accompanying paper (Berghoefer,
  Schmitt &amp; Cassinelli 1996A&amp;AS..118..481B). We demonstrate
  that the “canonical” relation between X-ray and total luminosity
  of L_x_/L_Bol_=~10^-7^ valid for O-type stars extends among the early
  B-type stars down to a spectral type B1-B1.5; for stars of luminosity
  classes I and II the spectral type B1 defines a dividing line for
  early-type star X-ray emission. We discuss the X-ray properties of
  X-ray detected B2-B9 stars (LC III-V) in the context of possible
  companions. We also compare our results to the results obtained from
  Einstein Observatory data and ROSAT pointed observations. We show for
  our sample of stars that X-ray variability is generally not common
  for O-type stars as well as early B-type stars.

---------------------------------------------------------
Title: New "weak-line"--T Tauri stars in Lupus
Authors: Krautter, J.; Wichmann, R.; Schmitt, J. H. M. M.; Alcala,
   J. M.; Neuhauser, R.; Terranegra, L.
1997A&AS..123..329K    Altcode:
  We present first results obtained by a survey of the Lupus star forming
  region in search of new T Tauri stars. This study has been performed on
  the basis of deep pointed ROSAT observations in the Lupus dark clouds
  as well as data from the ROSAT All-Sky-Survey in the surrounding,
  less obscured regions. Our survey covers an area of about 230 square
  degrees, located between 15^h,6^m and 16^h,24^m$ in right ascension
  and between -47^\circ and -32^\circ in declination. Identification
  of ROSAT All-Sky-Survey sources in this area by means of optical
  spectroscopy revealed 89 T Tauri stars, 86 of them "weak-line" T Tauri
  stars (WTTS) not known from previous studies of this region. Our
  pointed ROSAT observations led to the identification of 47 more T
  Tauri stars, giving a total of 136 new T Tauri stars. The large area
  of our study, as compared with previous works, allows us to study the
  spatial distribution of WTTS in this star forming region on a large
  scale. We find the new WTTS to be distributed over the whole area of
  our survey, indicating that their spatial distribution might extend
  well beyond our study area. Contrary to the Lupus T Tauri stars known
  prior to this study, the WTTS discovered by the ROSAT All-Sky-Survey
  are not clustered in the regions of highest extinction, i.e. the
  dark clouds. Based on observations collected at European Southern
  Observatory, La Silla, Chile (observing proposals ESO Nos. 49.7-0010,
  50.7-0109, 51.7-0106, 51.7-0029). Tables 5--12 are only available in
  electronic form at the CDS via anonymous ftp 130.79.128.5 or on www
  at http://cdsweb.u-strasbg.fr/abstract.html.

---------------------------------------------------------
Title: Coordinated Observations of Comet Hale-Bopp between 32 and
    860 GHz
Authors: Wink, J. E.; Altenhoff, W. J.; Bieging, J.; Butler, B.;
   Butner, H.; Haslam, C. G. T.; Kreysa, E.; Martin, R.; Mauersberger,
   R.; McMullin, J.; Muders, D.; Peters, W.; Schmidt, J.; Schraml, J. B.;
   Sievers, A.; Stumpff, P.; von Kapp-Herr, A.; Thum, C.; Zylka, R.
1997EM&P...77..165W    Altcode:
  The concept of simultaneous multifrequency continuum observations,
  successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp,
  using the Heinrich Hertz Submillimeter Telescope (HHT) with the four
  color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240
  Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer
  near 90 and 240 GHz. Near-simultaneous measurements were done between
  February 15 and April 26, 1997, mainly concentrated in mid March
  shortly before perigee of the comet. The measurements gave the following
  preliminary results: Interferometer detection of the nuclear thermal
  emission. If the signal at the longest interferometer spacing of 170
  m is due to thermal emission from the nucleus only, its equivalent
  diameter is ~49 km. If, however, this signal contains a contribution
  from a strongly centrally peaked halo distribution (e.g., r^-2 density
  variation) the diameter may be as low as 35 km. The emission found
  interferometrically was always 5arcsec north and 0.1 sec east from
  the position predicted by Yeoman's solution 55. The comparison of the
  interferometric continuum emission with the simultanously obtained
  molecular line observations (reported on this conference) shows the
  origin of the strongest line emission concentrated on the nucleus. The
  30-m observations show a radio halo with a gaussian FWHP of ~11,
  corresponding to a diameter of 11000 km at geocentric distance of 1.2
  a.u. A spectral index of ~3.0 for the total signal, which may indicate
  a smaller mean particle size than for Hyakutake. Assuming an average
  cometary density of 0.5 gcm^-3, the mass contained in the nucleus is
  ~1-3 10^19 g and 10^12 g in the particle halo.

---------------------------------------------------------
Title: ROSAT and AB Doradus: the first five years.
Authors: Kuerster, M.; Schmitt, J. H. M. M.; Cutispoto, G.; Dennerl, K.
1997A&A...320..831K    Altcode:
  Five and a half years of data from an extensive ROSAT X-ray monitoring
  program devoted to the young K-star AB Dor are presented. Begun
  in mid-1990, this program is aimed at the study of the long-term
  behaviour of coronal flux levels in this very active star. We compare
  the X-ray data with 17 years of V-band brightness monitoring that
  shows a 10-year decline between 1978 and 1989 and a subsequent rise
  phase. In contrast, the X-ray flux, which is very variable on time
  scales of minutes to weeks, exhibits no pronounced long-term trend
  over the 5 1/2-years of the program. This supports the concept of a
  saturated corona. Making use of the ROSAT all-sky survey data and data
  from the most extensive among the available pointed observations we
  also discuss the short-term variablity in relation to the rotational
  time scale. We find evidence for a partial rotational modulation of the
  X-ray flux implying structural inhomogeneities in this saturated corona.

---------------------------------------------------------
Title: The T Tauri star population in the Lupus star forming region.
Authors: Wichmann, R.; Krautter, J.; Covino, E.; Alcala, J. M.;
   Neuhaeuser, R.; Schmitt, J. H. M. M.
1997A&A...320..185W    Altcode:
  In a recent study, some 130 new weak-line T Tauri stars (WTTS) have
  been discovered in the Lupus star forming region (SFR). Some of these
  stars are seen projected onto regions of high obscuration, while others
  are located far from the Lupus dark clouds. In this paper we present
  photometric observations of a large sample of these WTTS. We estimate
  effective temperatures and luminosities for the stars observed, and
  derive masses and ages by comparison with theoretical evolutionary
  tracks. The mean age of WTTS seen in projection against the dark
  clouds is found to be lower than the mean age of WTTS discovered far
  from regions of high obscuration, and yet higher than the mean age
  of the classical T Tauri stars (CTTS) in Lupus. Moreover, while the
  CTTS in Lupus show an unusual predominance of very low-mass stars,
  the WTTS population in Lupus contains many stars with comparatively
  higher masses. Correlations between the X-ray emission and other
  stellar parameters, like bolometric luminosity, radius, mass, and age,
  are studied, and the results are discussed.

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of Active Binary
    Coronae. III. Quiescent Coronal Properties for the BY Draconis-Type
    Binaries
Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.;
   Schmitt, J. H. M. M.
1997ApJ...478..358D    Altcode:
  We present X-ray observations of 35 active late-type BY Draconis
  dwarf binary systems and 28 evolved binary systems, similar in
  nature to the RS Canum Venaticorum systems, obtained with the
  Position Sensitive Proportional Counter (PSPC) during the ROSAT
  All-Sky Survey phase of the mission. Of this sample, 52 targets were
  detected in exposures of roughly 600 s or less. When these new data
  are combined with the earlier results from Dempsey et al. (1993b),
  this survey represents the largest sample of active binary systems
  observed to date at any wavelength, including X-rays. We expand our
  investigation of how coronal properties (e.g., surface flux, luminosity,
  etc.) correlate with stellar parameters (e.g., rotation period, color,
  etc.) and confirm the conclusions of Dempsey et al. (1993b). Rotation
  period provides the best correlation with X-ray surface flux with
  F<SUB>X</SUB>~P<SUP>-0.59+/-0.10</SUP><SUB>rot</SUB> for the entire
  sample. We find no evidence for a “basal” or nonmagnetic X-ray flux
  component. We model the low-resolution pulse-height spectra for 12
  systems with two-temperature thermal plasmas. The derived temperatures
  for the BY Dra systems are identical to those previously derived
  for active evolved giants and subgiants in close binaries (Dempsey
  et al. 1993c). We also show that the dependence of temperature and
  emission measures on rotation period is the same for the dwarf,
  subgiant, and giant binaries.

---------------------------------------------------------
Title: A study of the Chamaeleon star-forming region from the ROSAT
    All-Sky Survey. II. The pre-main sequence population.
Authors: Alcala, J. M.; Krautter, J.; Covino, E.; Neuhaeuser, R.;
   Schmitt, J. H. M. M.; Wichmann, R.
1997A&A...319..184A    Altcode:
  We analyse the nature of the optical counterparts of the ROSAT all-sky
  survey (RASS) X-ray sources identified with new weak-line T Tauri
  (WTTS) stars in the Chamaeleon star forming region (SFR). The new
  WTTS are distributed throughout the whole SFR, while the classical
  T Tauri stars (CTTS) are found only in the cloud cores. Adopting
  a distance of 150pc we derive the stellar parameters and place the
  new WTTS in the HR diagram. By comparison with theoretical pre-main
  sequence (PMS) evolutionary tracks, we find masses in the range of
  0.2-2.5M<SUB>sun</SUB>_ and ages from a few 10^5^yr to 5x10^7^yr. Many
  of the youngest WTTS are located far away from the main Chamaeleon dark
  clouds. By comparing the properties of the new WTTS with those of the
  previously known Chamaeleon members, we obtain the following results: i)
  the new WTTS are, on average, the more massive and luminous PMS stars
  in Chamaeleon, while the Cha II population contains the lower-mass PMS
  stars; ii) for stellar masses between 2.5 and 0.5M<SUB>sun</SUB>_,
  the combined mass distribution of the PMS stars is consistent with
  the initial mass function (IMF) for field stars, but declines rapidly
  for masses between 0.5 and 0.1M<SUB>sun</SUB>_, where the strongest
  selection effects are expected; iii) a weak trend for increasing age
  with increasing angular distance from the cloud cores is observed but
  we cannot establish an age segregation since very young WTTS are also
  found far away from the molecular clouds; iv) the age distributions of
  the new WTTS and the Cha I population are nearly identical, while that
  of the Cha II population is shifted towards younger stars indicating
  that Cha II is probably in an earlier evolutionary phase as compared
  with Cha I and the new WTTS; v) no decrease of the number density of
  WTTS is observed with increasing distance to the clouds; vi) the level
  of X-ray emission of the new WTTS is higher than that of the previously
  known Chamaeleon members, and the fraction of energy released as X-ray
  emission, is higher in the new WTTS than in the Cha I TTS. The latter
  is similar to the X-ray emission level found in open clusters. Finally,
  we discuss possible mechanisms which may give rise to the observed
  spatial distribution of the PMS stars in Chamaeleon.

---------------------------------------------------------
Title: Perspectives of single-molecule magnetic-resonance spectroscopy
Authors: Kohler, J.; Schmidt, J.
1997CRASB.324..373K    Altcode:
  It has been demonstrated recently that it is possible to observe
  the magnetic-resonance signal of a single molecular spin. This
  achievement represents the ultimate sensitivity in electron-spin
  resonance spectroscopy. In this contribution it will be explained
  how a single molecule in a molecular crystal can be selected using
  a cw, narrowband laser and how the magnetic-resonance transition in
  the photo-excited triplet state can be detected as a change in the
  fluorescence intensity. This experiment allows us to check whether
  or not the time-averaged signal of a single molecule is equal to the
  ensemble average, i.e. if the Ergodic Theorem applies. In experiments
  on molecules containing one <SUP>13</SUP>C atom in natural abundance
  the presence of the single <SUP>13</SUP>C nuclear spin ( I= 1/2)
  is visible by the hyperfine splitting. This experiment opens the
  possibility to study the properties of a tingle nuclear spin.

---------------------------------------------------------
Title: Star formation in translucent clouds
Authors: Hearty, Thomas; Magnani, Loris; Caillault, Jean-Pierre;
   Neuhäuser, Ralph; Schmitt, J. H. M. M.; Stauffer, John
1997AIPC..393..461H    Altcode: 1997sfnf.conf..461H
  The star-formation capability of three low-extinction translucent
  molecular clouds (TMCs) at high Galactic latitude is investigated. In
  an attempt to identify possible PMS stars in and around the clouds we
  have analyzed ROSAT All-Sky Survey and PSPC pointed observations of
  these TMCs. Follow-up optical spectroscopy (conducted with the 1.5-m
  Fred Lawrence Whipple Observatory telescope) of the stellar candidates
  with mV&lt;15.5 was performed in order to identify standard signatures
  of pre-main-sequence (PMS) stars. We have found one dozen X-ray bright,
  lithium rich stars near clouds MBM7 and MBM55. However, all of these
  may be part of a slightly older stellar population that has retained
  its lithium. The X-ray sources projected onto cloud MBM40 show no
  signs of youth and are likely part of the X-ray field-star population.

---------------------------------------------------------
Title: An All-Sky Catalog of Faint Extreme Ultraviolet Sources
Authors: Lampton, M.; Lieu, R.; Schmitt, J. H. M. M.; Bowyer, S.;
   Voges, W.; Lewis, J.; Wu, X.
1997ApJS..108..545L    Altcode:
  We present a list of 534 objects detected jointly in the Extreme
  Ultraviolet Explorer (EUVE) 100 Å all-sky survey and in the ROSAT
  X-Ray Telescope 0.25 keV band. The joint selection criterion permits
  use of a low count rate threshold in each survey. This low threshold
  is roughly 60% of the threshold used in the previous EUVE all-sky
  surveys, and 166 of the objects listed here are new EUV sources,
  appearing in neither the Second EUVE Source Catalog nor the ROSAT Wide
  Field Camera Second Catalog. The spatial distribution of this all-sky
  catalog shows three features: an enhanced concentration of objects in
  Ursa Major, where the Galactic integrated H I column reaches its global
  minimum; an enhanced concentration in the third quadrant of the Galaxy
  (l<SUB>II</SUB> from 180° to 270°) including the Canis Major tunnel,
  where particularly low H I columns are found to distances beyond 200
  pc; and a particularly low number of faint objects in the direction
  of the fourth quadrant of the Galaxy, where nearby intervening H I
  columns are appreciable. Of particular interest is the composition
  of the 166 detections not previously reported in any EUV catalog. We
  offer preliminary identifications for 105 of these sources. By far
  the most numerous (81) of the identifications are late-type stars (F,
  G, K, M), while 18 are other stellar types, only five are white dwarfs
  (WDs), and none are extragalactic. The paucity of WDs and extragalactic
  objects may be explained by a strong horizon effect wherein interstellar
  absorption strongly limits the effective new-source search volume and,
  thereby, selectively favors low-luminosity nearby sources over more
  luminous but distant objects.

---------------------------------------------------------
Title: Coronae on solar-like stars.
Authors: Schmitt, J. H. M. M.
1997A&A...318..215S    Altcode:
  The results of a complete and sensitive X-ray survey of all known
  stars of spectral type A, F, and G in the immediate solar vicinity with
  distances less than 13pc are presented. The X-ray data were obtained
  primarily from the ROSAT all-sky survey (RASS); those program stars
  not detected in the RASS data, were subsequently studied in the ROSAT
  pointed observation program. The detection rate among the F stars in
  the sample is 95%, that of the G stars 83%, the non-detections being
  due to survey observations. On the other hand, none of the A-stars
  with spectral type earlier than A7 could be detected even in sensitive
  pointings. I conclude from this that coronal formation in stars with
  surface convection zones is universal. The X-ray luminosities range
  over about four orders of magnitude, and can be well described with
  a log-normal distribution. Large X-ray outputs are correlated with
  kinematic age as assessed from space motions. I show the existence of
  a correlation between the total emitted X-ray surface flux and spectral
  hardness, such that more luminous objects tend to have larger spectral
  hardness, thus implying higher coronal temperatures. The mean X-ray
  surface fluxes span the same range as is observed for various solar
  coronal features, with a rather well-defined minimum X-ray flux being
  present; this minimum X-ray surface flux agrees very well with the X-ray
  surface flux of solar coronal holes. It therefore appears that a coronal
  hole represents the minimum state of "activity" not only for the Sun
  but also for other stars. I discuss a few implications of this finding
  especially with regard to properties of stars in Maunder minima states.

---------------------------------------------------------
Title: Discovery of the sigma Orionis Cluster.
Authors: Walter, F. M.; Wolk, S. J.; Freyberg, M.; Schmitt, J. H. M. M.
1997MmSAI..68.1081W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Time and Energy Dependence of 26-Day Recurrent Decreases
    of &gt;100 MeV Protons in the Inner Southern Heliosphere and its
Correlation to Latitudinal Gradients: Ulysses COSPIN/KET Results
Authors: Kunow, H.; Heber, B.; Raviart, A.; Paizis, C.; Bothmer, V.;
   Droege, W.; Schmidt, J.
1997ICRC....1..381K    Altcode: 1997ICRC...25a.381K
  No abstract at ADS

---------------------------------------------------------
Title: (Erratum) The ROSAT all-sky survey catalogue of optically
    bright OB-type stars.
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P.
1997A&AS..121..212B    Altcode:
  Erratum to Astron. Astrophys. Suppl. Ser. 118 (1996) 481-494.

---------------------------------------------------------
Title: Étude et réalisation en laboratoire d'un accéléromètre
    astronomique absolu
Authors: Schmitt, J.
1997PhDT........36S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Neupert Effect in Active Stellar Coronae: Chromospheric
    Evaporation and Coronal Heating in the dMe Flare Star Binary UV Ceti
Authors: Guedel, Manuel; Benz, Arnold O.; Schmitt, Juergen H. M. M.;
   Skinner, Stephen L.
1996ApJ...471.1002G    Altcode:
  Evidence for coronal heating by chromospheric evaporation in flares
  of active dMe stars is presented through observations of the Neupert
  effect in high-frequency microwaves and soft X-rays. The Neupert
  effect, as originally found in solar flares, manifests itself in
  a close similarity between the soft X-ray light curve and the time
  integral of the simultaneous microwave light curve. It is interpreted
  as the signature of the accumulation of hot plasma due to heating
  by accelerated electrons in the chromosphere. <P />We used the ROSAT
  and ASCA soft X-ray observatories and the Very Large Array (VLA) radio
  telescope (at 6 cm and 3.6 cm wavelengths) to monitor simultaneously the
  nearby dMe flare star binary Gliese 65 A + B = UV Ceti during 9 hours
  on each of two consecutive days. We find several weakly polarized
  radio events that start contemporaneously (within a few minutes)
  with X-ray flares and then peak and decay as the X-ray flares develop
  gradually. A striking similarity to the temporal evolution of solar
  gradual events is found. We argue that the Neupert effect is best
  observed in relatively hard bands of the soft X-ray emission, but that
  its presence can be inferred from the much softer bands commonly used
  for stellar observations by use of the solar analogy. Together with
  spectral hardness observations of soft X-rays, the data suggest the
  operation of chromospheric evaporation on UV Cet. The observations
  thus indicate a causal relation between the nonthermal and thermal
  energies of the underlying electron populations. <P />We find that
  stellar flares are, relative to solar flares, X-ray-weak. The ratio
  between the total energy radiated into the radio and the soft X-ray
  bands closely matches the corresponding ratio between the quiescent
  luminosities of active stars, perhaps implying similar mechanisms and
  similar efficiencies for the quiescent emission and for larger, single
  flares. Estimating the total kinetic energy in the electrons from
  the radio flux, we find that only a part is observed in soft X-rays,
  a discrepancy well known from solar flares.

---------------------------------------------------------
Title: ROSAT Pointed Observations of the Alpha Persei Cluster
Authors: Prosser, Charles F.; Randich, Sofia; Stauffer, Joh R.;
   Schmitt, J. H. M. M.; Simon, Theodore
1996AJ....112.1570P    Altcode:
  We extend the results of a previous ROSAT x-ray raster survey of the
  open cluster α Persei by the analysis of three 22-25 ksec ROSAT PSPC
  pointings in this relatively nearby (d∼170 pc) and young (age ∼50
  Myr) open cluster. The present study reports on those catalogued stars
  in the cluster region which are found to be associated, or possibly
  associated, with an x-ray source. Out of a total of 222 sources,
  approximately 80 sources are identified with a catalogued star. We
  detect all previously known K dwarfs, and a majority of M dwarfs within
  the higher sensitivity, inner PSPC regions. The results from the deep
  pointings are consistent with those from the previous raster survey of
  this cluster in terms of the x-ray luminosities measured for sources in
  common, the detection frequencies among cluster members as a function
  of spectral type, and the distribution of L<SUB>x</SUB> as a function
  of color. The x-ray detections and upper limits provided by the PSPC
  observations have been combined with the raster survey results to create
  a merged raster/PSPC dataset reflecting the x-ray properties of the a
  Per cluster. The V sin i activity relation among G/K members is reviewed
  using the combined dataset. The α Per members with υ sin i&gt; 30 km/s
  all show saturated levels of coronal activity, with the saturation level
  decreasing slowly from log(L<SUB>X</SUB>/L<SUB>bol</SUB>)∼-3 at 50
  km/s to log(L<SUB>X</SUB>/L<SUB>bol</SUB>)∼ 3.4 at 200 km/s. The
  stars with υ sin i &lt;15 km/s, most with only υ sin i upper
  limits, show a wide range in coronal activity (-4.3&lt;L<SUB>X</SUB>/L
  <SUB>bol</SUB>&lt;-2.9) -2.9); we assume that coronal activity in α
  Per increases with increasing rotation rate for υ sin i&lt;15 km/s,
  but the functional form of the relation cannot be determined from
  existing data. The x-ray luminosity distribution functions among F-M
  α Per stars have been recomputed using the merged raster/PSPC dataset
  and compared to the Pleiades. The findings of the raster survey are
  confirmed, with F and G α Per dwarfs clearly exhibiting higher average
  emission than their Pleiades counterparts, while α Per K dwarfs show
  only slightly higher activity. The revised α Per M dwarf XLDF is in
  closer agreement with the Pleiades M dwarf distribution. We discuss
  the apparent detection in x rays of the one evolving blue supergiant
  member of this cluster, α Per itself. In addition, the sensitive PSPC
  observations may have detected x-ray sources associated with very low
  mass candidate cluster members at spectral type ∼MS. We also provide
  a summary of the x-ray flare characteristics (peak ∼10<SUP>31</SUP>
  ergs/s) for three a Per members.

---------------------------------------------------------
Title: Discovery of X-ray and Extreme Ultraviolet Emission from
    Comet C/Hyakutake 1996 B2
Authors: Lisse, C. M.; Dennerl, K.; Englhauser, J.; Harden, M.;
   Marshall, F. E.; Mumma, M. J.; Petre, R.; Pye, J. P.; Ricketts, M. J.;
   Schmitt, J.; Trumper, J.; West, R. G.
1996Sci...274..205L    Altcode:
  During its close approach to Earth, comet C/Hyakutake 1996 B2 was
  observed at extreme ultraviolet and x-ray wavelengths with the Rontgen
  X-ray Satellite and Rossi X-ray Timing Explorer. The emission morphology
  was symmetric with respect to a vector from the comet's nucleus toward
  the sun, but not symmetric around the direction of motion of the comet
  with respect to interplanetary dust. A slowly varying emission and a
  large impulsive event that varied on time scales of 1 to 2 hours were
  observed. An interaction between the comet and the solar wind/solar
  magnetic field seems to be the most likely mechanism for the observed
  emission.

---------------------------------------------------------
Title: VizieR Online Data Catalog: UBVRIcJHKL photometry in Lup
    (Wichmann+ 1997)
Authors: Wichmann, R.; Krautter, J.; Covino, E.; Alcala, J. M.;
   Neuhaeuser, R.; Schmitt, J. H. M. M.
1996yCat..33200185W    Altcode:
  In a recent study, some 130 new weak-line T Tauri stars (WTTS)
  have been discovered in the Lupus star forming region (SFR). Some
  of these stars are seen projected onto regions of high obscuration,
  while others are located far from the Lupus dark clouds. In this
  paper we present photometric observations of a large sample of
  these WTTS. We estimate effective temperatures and luminosities for
  the stars observed, and derive masses and ages by comparison with
  theoretical evolutionary tracks. The photometric observations were
  performed at the ESO 1 m-Telescope during two observing runs in 1993
  (March 10-12) and 1994 (May 1-6) at ESO, La Silla. The typical standard
  deviations are 0.01mag in V, 0.02mag in B-V, 0.04mag in U-B, 0.01 in
  V-R and V-I. For a description of the UBV, (RI)c and JHKL photometric
  systems, see e.g. &lt;GCPD/01&gt;, &lt;GCPD/54&gt; and &lt;GCPD/09&gt;
  (2 data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Cha X-ray sources &amp; optical
    identifications (Alcala+ 1995)
Authors: Alcala, J. M.; Krautter, J.; Schmitt, J. H. M. M.; Covino,
   E.; Wichmann, R.; Mundt, R.
1996yCat..41140109A    Altcode:
  We present the observations of the ROSAT all-sky survey (RASS) in the
  direction of the Chamaeleon cloud complex, as well as the spectroscopic
  identifications of the detected X-ray sources. The main purpose of
  this identification program was the search for low mass pre-main
  sequence stars. Sixteen previously known PMS stars were detected
  with high confidence by ROSAT. Eight are classical T Tauri stars and
  eight are weak-line T Tauri stars. Seventy-seven new weak-line T Tauri
  stars were identified on the basis of the presence of strong Li λ6707
  absorption, spectral type later than F0 and chromospheric emission. We
  give coordinates and count rates of the X-ray sources, and present
  optical spectra and finding charts for the sources identified optically
  as new pre-main sequence stars. Optical UBV(RI)c and near-infrared JHKLM
  photometry for this sample of stars is also provided. In addition, 6
  new dKe-dMe candidates are found among the RASS sources. (1 data file).

---------------------------------------------------------
Title: New weak-line T Tauri stars in Orion from the ROSAT all-sky
    survey.
Authors: Alcala, J. M.; Terranegra, L.; Wichmann, R.; Chavarria-K.,
   C.; Krautter, J.; Schmitt, J. H. M. M.; Moreno-Corral, M. A.; de Lara,
   E.; Wagner, R. M.
1996A&AS..119....7A    Altcode:
  We present results of the spectroscopic and photometric follow-up
  observations of the ROSAT all-sky survey in the direction of the Orion
  cloud complex. The main goal of these observations is the search
  for X-ray emitting pre-main sequence stars. 820 X-ray sources were
  detected with high confidence in about 450 square degrees. The mean
  density of X-ray sources in this region is a factor of about two higher
  than that of the whole RASS. 5% of the RASS sources in this region
  are identified with previously known and likely pre-main sequence
  stars. We have investigated spectroscopically 181 new RASS sources
  widely distributed over the entire cloud complex. On the basis of the
  presence of strong Li I λ6707 absorption, spectral type later than F0
  and chromospheric emission, 112 new weak-line T Tauri stars could be
  found. We present coordinates, X-ray count-rates and finding charts
  of the new PMS. Optical UBV(RI)_KC_, near-infrared JHKLM and uvby-β
  photometry for the new WTTS is also provided. In addition 24 dKe-dMe
  stars were also found on the basis of the RASS data.

---------------------------------------------------------
Title: VizieR Online Data Catalog: New weak-line T Tauri stars in
    Lupus (Krautter+ 1997)
Authors: Krautter, J.; Wichmann, R.; Schmitt, J. H. M. M.; Alcala,
   J. M.; Neuhaeuser, R.; Terranegra, L.
1996yCat..41230329K    Altcode:
  We present first results obtained by a survey of the Lupus star
  forming region in search of new T Tauri stars. This study has been
  performed on the basis of deep pointed ROSAT observations in the
  Lupus dark clouds as well as data from the ROSAT All-Sky-Survey in
  the surrounding, less obscured regions. Our survey covers an area of
  about 230 square degrees, located between 15<SUP>h</SUP>6<SUP>m</SUP>
  and 16<SUP>h</SUP>24<SUP>m</SUP> in right ascension and between -47°
  and -32° in declination. Identification of ROSAT All-Sky-Survey
  sources in this area by means of optical spectroscopy revealed 89 T
  Tauri stars, 86 of them "weak-line" T Tauri stars (WTTS not known from
  previous studies of this region. Our pointed ROSAT observations led to
  the identification of 47 more T Tauri stars, giving a total of 136 new
  T Tauri stars. The large area of our study, as compared with previous
  works, allows us to study the spatial distribution of WTTS in this star
  forming region on alarge scale. We find the new WTTS to be distributed
  over the whole area of our survey, indicating that their spatial
  distribution might extend well beyond our study area. Contrary to the
  Lupus T Tauri stars known prior to this study, the WTTS discovered by
  the ROSAT All-Sky-Survey are not clustered in the regions of highest
  extinction, i.e. the dark clouds. <P />(8 data files).

---------------------------------------------------------
Title: The ROSAT all-sky survey catalogue of optically bright
    OB-type stars.
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P.
1996A&AS..118..481B    Altcode:
  For the detailed statistical analysis of the X-ray emission of hot
  stars we selected all stars of spectral type O and B listed in the
  Yale Bright Star Catalogue and searched for them in the ROSAT All-Sky
  Survey. In this paper we describe the selection and preparation of
  the data and present a compilation of the derived X-ray data for a
  complete sample of bright OB stars.

---------------------------------------------------------
Title: Coronal activity in the Coma Berenices open cluster.
Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C.
1996A&A...313..815R    Altcode:
  We present ROSAT PSPC observations of the ~500Myr old Coma Berenices
  cluster. The X-ray survey in Coma consists of a) a raster scan of
  short duration PSPC pointings, b) ROSAT All-Sky Survey data, and c)
  a 16ksec deep PSPC pointing. The raster scan and the survey data were
  merged together covering an area of about 36 square degrees, while
  the deep pointing was analyzed separately. No major differences were
  found between the two datasets. Our ROSAT observations indicate that
  Coma is much more similar in its X-ray properties to the coeval Hyades
  than to the also coeval Praesepe cluster. As in the Hyades, almost all
  late-F and G stars were detected, also showing a comparable range in
  X-ray luminosity. X-ray luminosity distribution functions (XLDFs) for
  solar-type members are in close agreement with those of the Hyades,
  confirming that the majority of Praesepe's members are less luminous
  than what one would expect for stars of their age. The Coma Berenices
  cluster is known for its apparent deficit of low mass stars of spectral
  type K and later. We present 12 new possible low-mass Coma candidates,
  identified through this X-ray survey.

---------------------------------------------------------
Title: HR 4289 - an X-ray luminous galaxy close to the bright star.
Authors: Huensch, M.; Reimers, D.; Schmitt, J. H. M. M.
1996A&A...313..755H    Altcode:
  Using new optical, UV and X-ray observations we show that the K5
  III star HR 4289, formerly believed to be the only ROSAT All-Sky
  survey detection to the right of the coronal diving line, should not
  be identified with the X-ray source. Pointed ROSAT PSPC observations
  demonstrate that the X-ray source is slightly extended, and locate the
  X-ray source 30" northwest of HR 4289 at the position of a hitherto
  unknown 15nag galaxy. The X-ray spectrum can well be fitted with
  a Raymond-Smith model for a thermal plasma at 6(+/-2)x10^6^K and a
  hydrogen column density of N_H_=3(+/-2)x10^21^cm^-2^. At a distance
  of z=0.016 (96 h_50_^-1^Mpc), the galaxy has an X-ray luminosity of
  L_x_=1.4x10^42^h_50_^-2^erg/s between 0.1 and 2.4keV.

---------------------------------------------------------
Title: VizieR Online Data Catalog: New WTTS in the Chamaeleon complex
    (Alcala+ 1997)
Authors: Alcala, J. M.; Krautter, J.; Covino, E.; Neuhaeuser, R.;
   Schmitt, J. H. M. M.; Wichmann, R.
1996yCat..33190184A    Altcode:
  We analyse the nature of the optical counterparts of the ROSAT all-sky
  survey (RASS) X-ray sources identified with new weak-line T Tauri
  (WTTS) stars in the Chamaeleon star forming region (SFR). The new
  WTTS are distributed throughout the whole SFR, while the classical
  T Tauri stars (CTTS) are found only in the cloud cores. Adopting
  a distance of 150pc we derive the stellar parameters and place the
  new WTTS in the HR diagram. By comparison with theoretical pre-main
  sequence (PMS) evolutionary tracks, we find masses in the range
  of 0.2-2.5M<SUB>⊙</SUB> and ages from a few 10<SUP>5</SUP>yr to
  5x10<SUP>7</SUP>yr. Many of the youngest WTTS are located far away
  from the main Chamaeleon dark clouds. (2 data files).

---------------------------------------------------------
Title: New weak-line T Tauri stars in Taurus-Auriga.
Authors: Wichmann, R.; Krautter, J.; Schmitt, J. H. M. M.; Neuhaeuser,
   R.; Alcala, J. M.; Zinnecker, H.; Wagner, R. M.; Mundt, R.; Sterzik,
   M. F.
1996A&A...312..439W    Altcode:
  On the basis of the ROSAT All-Sky-Survey, a study of the Taurus-Auriga
  star forming region has been performed in order to search for hitherto
  undiscovered TTauri stars. Our study covers an area of about 280
  square degrees, located between 4^h^ and 5^h^ in right ascension
  and between 15deg and 34deg in declination. Identification of ROSAT
  All-Sky Survey sources in this area by means of optical spectroscopy
  revealed 2 new classical T Tauri stars (CTTS) and 66 new weak-line-T
  Tauri stars (WTTS) with W<SUB>lambda</SUB>_(Hα)&lt;=10A. Additional
  pointed ROSAT observations led to the identification of 6 more WTTS
  and 2 CTTS, giving a total of 76 new T Tauri stars. The large area
  of our study, as compared with previous works, allows us to study
  the spatial distribution of WTTS in this star forming region. We
  find the WTTS of our survey to be distributed over the whole region
  investigated. There is a noticeable decline of the surface density from
  south to north within our study area, but the spatial distribution
  extends most probably beyond our study region. No clustering towards
  the population of TTauri stars known prior to ROSAT in Taurus-Auriga
  could be observed. We suggest that the WTTS found in our study might
  in part be somewhat older than the previously known TTauri stars in
  Taurus-Auriga, and that their broad spatial distribution is due to
  the typical velocity dispersion of a few km/s measured for Taurus
  TTauri stars, in which case for some of our WTTS an age on the order
  of 10^7^years would be required for reaching the observed distances
  from the Taurus dark clouds. We estimate a WTTS/CTTS ratio of about
  6 within our study area, but conclude that because of the different
  spatial distribution of WTTS and CTTS this ratio will be most probably
  significantly larger for a more extended area.

---------------------------------------------------------
Title: VizieR Online Data Catalog: Optical Identifications of ROSAT
    EUV Sources (Mason+ 1995)
Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley,
   D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.;
   Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.;
   Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.;
   Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz,
   J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau,
   W.; Wonnacott, D.
1996yCat..82741194M    Altcode:
  Optical identifications for 195 EUV sources located in the ROSAT
  Wide Field Camera all-Sky survey are presented. We list 69 previous
  unknown EUV-emitting white dwarfs, 114 active stars, 7 new magnetic
  cataclysmic variables and 5 active galaxies. Several of the white
  dwarfs have resolved M-type companions, while five are unresolved
  white dwarf/M-star pairs. Finding charts are given for the optical
  counterparts. <P />(4 data files).

---------------------------------------------------------
Title: VizieR Online Data Catalog: Optical Identifications of ROSAT
    EUV Sources (Mason+ 1995)
Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley,
   D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.;
   Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.;
   Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.;
   Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz,
   J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau,
   W.; Wonnacott, D.
1996yCat..72741194M    Altcode:
  Optical identifications for 195 EUV sources located in the ROSAT
  Wide Field Camera all-Sky survey are presented. We list 69 previous
  unknown EUV-emitting white dwarfs, 114 active stars, 7 new magnetic
  cataclysmic variables and 5 active galaxies. Several of the white
  dwarfs have resolved M-type companions, while five are unresolved
  white dwarf/M-star pairs. Finding charts are given for the optical
  counterparts. (1 data file).

---------------------------------------------------------
Title: A Close Look at the Coronal Density of Procyon
Authors: Schmitt, J. H. M. M.; Drake, J. J.; Haisch, B. M.; Stern,
   R. A.
1996ApJ...467..841S    Altcode:
  We derive the coronal density of the nearby star Procyon, using an
  observation with the short- and medium-wavelength spectrometers on board
  the Extreme-Ultraviolet Explorer satellite (EUVE). Specifically, we have
  identified density-sensitive ratios in lines due to iron in ionization
  stages Fe X to Fe XIV, which have been detected in our EUVE spectra. We
  present these observations and analyze these line ratios, paying careful
  attention to line blends or contamination from other extreme-ultraviolet
  (EUV) lines. We show that all the available density-sensitive
  iron line diagnostics are consistent with the interpretation that
  the overall coronal output of Procyon is dominated by regions with a
  coronal density very much resembling densities typically found in active
  regions on the Sun. We estimate that the corona of Procyon is dominated
  by material at a temperature T<SUB>cor</SUB> ∼ 10<SUP>6.2</SUP> K,
  with no significant amount of material above T ∼ 10<SUP>6.8</SUP>
  K; the characteristic density is n<SUB>e</SUB> ∼ 3 x 10<SUP>9</SUP>
  cm<SUP>-3</SUP> the emission measure is EM ∼ 4.5 × 10<SUP>50</SUP>
  cm<SUP>-3</SUP>. We infer a (visible) volume of V<SUB>tot</SUB> ∼ 5
  x 10<SUP>31</SUP> cm<SUP>-3</SUP> assuming the X-ray emission to arise
  from plasma magnetically confined in loops, we deduce that such loops
  have an average height of h ∼ 2 x 10<SUP>9</SUP> cm and cover about
  20% of the stellar surface. Because of the high coronal density and
  the lack of emission measure substantially below T ∼ 10<SUP>6</SUP>
  K, we conclude also that it is unlikely that there exists a cooler,
  acoustically heated subcorona.

---------------------------------------------------------
Title: VizieR Online Data Catalog: T Tauri stars ROSAT survey
    (Neuhaeuser+, 1995)
Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.;
   Wichmann, R.; Krautter, J.
1996yCat..32970391N    Altcode:
  We study the X-ray emission of T Tauri stars (TTS) in Taurus-Auriga
  as observed with the spatially unbiased flux-limited ROSAT All-Sky
  Survey. (8 data files).

---------------------------------------------------------
Title: Forty days in the life of CF Tucanae (=HD 5303). The longest
    stellar X-ray flare observed with ROSAT.
Authors: Kuerster, M.; Schmitt, J. H. M. M.
1996A&A...311..211K    Altcode:
  A ROSAT PSPC observation of an exceptional long-duration flare on
  the partially eclipsing RS CVn-type binary CF Tuc (=HD 5303) is
  presented. With a total duration of 9days this flare is the longest
  coherent stellar X-ray flare ever observed. Also the rise time of
  =~1.5days is exceptional. The event released 1.4x10^37^erg in the PCPC
  bandpass (0.1-2.4keV), thereby making this giant outburst one of the
  most energetic stellar flare events known. The measured e-folding
  decay time of 0.9day implies either a very extended flaring volume
  with low densities or the occurence of reheating. Neither modulation
  on the 2.8day rotation time scale nor eclipses are seen, with the
  immediate implication that either the size of the flaring volume
  was at least comparable to the size of the active star (most likely
  as large as the larger binary component) or that the flare occurred
  within the circumpolar region of its visible pole. Both scenarios
  point at an event whose morphology is quite different from that of
  solar flares. Results from spectral analysis performed with a variety
  of thermal plasma models demonstrate that one-temperature models with
  an unusually low metal abundance of z=0.1 are at least as good as the
  canonical two-temperature models with solar abundances. We present flare
  modelling using two different approaches, i.e. the quasi-static cooling
  loop model by van den Oord &amp; Mewe (1989) describing only the flare
  decay phase and the two-ribbon flare model by Kopp &amp; Poletto (1984).

---------------------------------------------------------
Title: Extreme Ultraviolet Line Emission from Cool Stars: Resonantly
    Scattered or Not---That Is the Question!
Authors: Schmitt, J. H. M. M.; Drake, J. J.; Stern, R. A.
1996ApJ...465L..51S    Altcode:
  A challenge to the classical assumption that the radiative losses from
  stellar coronae are optically thin has been raised by Schrijver, van
  den Oord, &amp; Mewe, who argued that some of the stronger emission
  lines detected in the high-resolution spectra of cool stars observed
  with the Extreme Ultraviolet Explorer (EUVE) satellite are optically
  thick. If they assume all radiation optically thin, an explanation of
  the short-wavelength (SW) part of the EUVE spectrum requires large
  amounts of emission measure at very high temperatures (T ~ 108 K),
  which is unlikely the case for rather inactive stars. We show that the
  soft X-ray pulse height spectrum obtained with the Position Sensitive
  Proportional Counter (PSPC) on board ROSAT is inconsistent with such
  high-temperature emission and inconsistent with the assumption that
  the EUV line emission is optically thick. We further demonstrate via an
  analysis of fit residuals that the observed count fluctuations in the
  EUVE SW spectrum are inconsistent with the hypothesis that the bulk
  of the observed flux arises from a continuum. Therefore, resonance
  scattering does not appear to be required for the interpretation of
  the EUV and X-ray spectra of inactive cool stars.

---------------------------------------------------------
Title: Comet C/1996 B2 (Hyakutake)
Authors: Lisse, C.; Mumma, M.; Petre, R.; Dennerl, K.; Englhauser,
   J.; Schmitt, J.; Truemper, J.
1996IAUC.6433....2L    Altcode:
  C. Lisse, M. Mumma, and R. Petre, NASA Goddard Space Flight Center;
  and K. Dennerl, J. Englhauser, J. Schmitt, and J. Truemper,
  Max-Planck-Institut fur Extraterrestrische Physik, Garching,
  communicate: "Comet C/1996 B2 was observed after its perihelion
  passage with the ROSAT High Resolution Imager from June 22.10 to
  23.77 UT (when Delta = 1.16 AU, r = 1.35 AU, and visual m1 = 7.1)
  for 8900 s. The image, corrected for the proper motion of the comet,
  shows an extended source with a radial extent of at least 8' (400 000
  km). The peak surface brightness was at 0.002 count sE-1 arcminE-2,
  approximately a factor of 5 lower than during the previous ROSAT
  observations in March (IAUC 6373). The reacquisition of C/1996
  B2 after perihelion confirms the continuous behavior of x-ray
  emission in the comet. ROSAT will continue to observe the comet
  until Sept. 8. The scheduled observation times will be posted at
  URL http://www.rosat.mpe-garching.mpg.de/~jer/comets/; simultaneous
  observations at other wavelengths (especially extreme ultraviolet and
  radio) are encouraged."

---------------------------------------------------------
Title: A Search for Star Formation in the Translucent Cloud MBM 40
Authors: Magnani, Loris; Caillault, Jean-Pierre; Hearty, Thomas;
   Stauffer, John; Schmitt, J. H. M. M.; Neuhaeuser, Ralph; Verter,
   Frances; Dwek, Eli
1996ApJ...465..825M    Altcode:
  The star formation status of the translucent high-latitude molecular
  cloud, MBM 40, is explored through analysis of radio, infrared, optical,
  and X-ray data. With a peak visual extinction of 1 to 2 mag, MBM 40
  is an example of a high-latitude cloud near the diffuse/translucent
  demarcation. However, unlike most translucent clouds, MBM 40 exhibits
  a compact morphology and a kinetic energy-to- gravitational potential
  energy ratio near unity. Our radio data, encompassing the CO (J =
  1-0), CS (J = 2-1), and H<SUB>2</SUB>CO 1<SUB>11</SUB>-1<SUB>10</SUB>
  spectral line transitions, reveal that the cloud contains a ridge of
  molecular gas with n ≥ 10<SUP>3</SUP> cm<SUP>-3</SUP>. In addition,
  the molecular data, together with IRAS data, indicate that the mass
  of MBM 40 is ∼40 M<SUB>sun</SUB>. In light of the ever-increasing
  number of recently formed stars far from any dense molecular clouds
  or cores, we searched the environs of MBM 40 for any trace of recent
  star formation. <P />We used the ROSAT All-Sky Survey X-ray data and
  a ROSAT PSPC pointed observation toward MBM 40 to identify 33 stellar
  candidates with properties consistent with pre-main-sequence (PMS)
  stars. Follow-up optical spectroscopy of the candidates with V &lt;
  15.5 was conducted with the 1.5 m Fred Lawrence Whipple Observatory
  telescope in order to identify signatures of T Tauri or pre-mainsequence
  stars (such as the Li 6708 Å resonance line). <P />Since none of
  our optically observed candidates display standard PMS signatures,
  we conclude that MBM 40 displays no evidence of recent or ongoing
  star formation. The absence of high-density molecular cores in the
  cloud and the relatively low column density compared to star-forming
  interstellar clouds may be the principal reasons that MBM 40 is devoid
  of star formation. More detailed comparison between this cloud and
  other, higher extinction translucent and dark clouds may elucidate the
  necessary initial conditions for the onset of low-mass star formation.

---------------------------------------------------------
Title: ROSAT All-Sky Survey Bright Source Catalogue
Authors: Voges, W.; Aschenbach, B.; Boller, T.; Brauninger, H.; Briel,
   U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.;
   Hartner, G.; Hasinger, G.; Kurster, M.; Pfeffermann, E.; Pietsch, W.;
   Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trumper, J.; Zimmermann,
   H. -U.
1996IAUC.6420....2V    Altcode: 1996IAUC.6420R...1V
  W. Voges, B. Aschenbach, T. Boller, H. Brauninger, U. Briel, W. Burkert,
  K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner,
  G. Hasinger, M. Kurster, E. Pfeffermann, W. Pietsch, P. Predehl,
  C. Rosso, J. H. M. M. Schmitt, J. Trumper, and H.-U. Zimmermann,
  Max-Planck-Institut fur Extraterrestrische Physik, Garching, report:
  "The ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision
  1RXS) has been released and is available through the World Wide Web
  (URL http://www.rosat.mpe-garching.mpg.de/survey/rass-bsc/) and
  via anonymous ftp (host ftp.rosat.mpe-garching.mpg.de, directory
  archive/survey/rass-bsc). This catalogue is derived from the all-
  sky survey performed during the first half year of the ROSAT mission
  in 1990-1991; 18 811 sources are catalogued, with a limiting ROSAT
  PSPC countrate of 0.05 cts/s in the energy band 0.1- 2.4 keV. The
  sources have a detection likelihood of at least 15 and contain at
  least 15 source photons. At a brightness limit of 0.1 cts/s (8547
  sources) the catalogue represents a sky coverage of 92 percent. For
  each source are provided the ROSAT name, the position in equatorial
  coordinates, the positional error, the source countrate and error,
  the background countrate, exposure time, hardness-ratios HR1 and
  HR2 and errors, extent and likelihood of extent, and likelihood of
  detection. For 94 percent of the sources, visual inspection confirmed
  the results of the standard processing with respect to existence and
  position; the remaining 6 percent were reanalyzed and appropriately
  flagged. Broadband images are available for a subset of the flagged
  sources. A list containing correlations with other catalogues and
  identifications will follow soon. Questions or comments may be directed
  to survey@rosat.mpe-garching.mpg.de."

---------------------------------------------------------
Title: ROSAT X-ray observations of a complete, volume-limited sample
    of late-type giants.
Authors: Huensch, M.; Schmitt, J. H. M. M.; Schroeder, K. -P.;
   Reimers, D.
1996A&A...310..801H    Altcode:
  We have investigated a complete sample of the nearest 39 late type
  giants (d&lt;=25pc) for which we have probed the X-ray luminosity
  function with unprecedented sensitivity by deep (3...18ksec) ROSAT
  PSPC-observations in the pointed mode, together with ROSAT All-Sky
  survey (RASS) data. We confirm the X-ray dividing line for luminosity
  class III giants as proposed by Haisch et al. (1991, 1992) and we
  find evidence, that essentially all luminosity class III giants
  with B-V&lt;1.2 or spectral type &lt;K3, that is to the hot side of
  the X-ray dividing line in the HR diagram, show X-ray emission with
  typical luminosities of about 10^27^erg/s. A few stars like β Cet have
  considerably higher X-ray luminosities. On the right, cool side of
  the X-ray dividing line, we find only one X-ray emitting star in our
  sample, while the other stars have upper limits for their ratios of
  X-ray to bolometric luminosities as low as logL_x_/L_bol_&lt;=-10. We
  find observational evidence for a minimum X-ray surface flux to the
  left of the dividing line of the order of =~100erg/cm^2^/s, which seems
  to be independent of B-V colour. The data and their implications for
  our understanding of coronae of late-type giants, in particular the
  questions concerning the dividing lines and possible acousting heating
  of the coronae are discussed in some detail.

---------------------------------------------------------
Title: CF Tucanae: Another Case of Coronal MAD Syndrome?
Authors: Schmitt, J. H. M. M.; Stern, R. A.; Drake, J. J.; Kuerster, M.
1996ApJ...464..898S    Altcode:
  We present and discuss an extreme-ultraviolet spectrum of the RS CVn
  binary CF Tuc obtained with the short-wavelength (5W) spectrometer on
  board the Extreme-Ultraviolet Explorer (EUVE) satellite. In addition
  to a continuum, only two spectral lines attributed to Fe XXII and Fe
  XXIII are detected. We show that the EUVE data can be reconciled with
  a solar abundance plasma only if most of CF Tuc's emission measure
  is located at temperatures of ≍10<SUP>8</SUP> K; alternatively, the
  plasma must be iron depleted with most of the emission measure located
  at the peak temperature of the observed line contribution functions. A
  comparison with previously obtained ROSAT PSPC spectra argues strongly
  in favor of the latter situation. As a consequence, we are forced
  to the conclusion that the iron abundance in the corona of CF Tuc is
  reduced with respect to solar values by factors between 5 and 10. The
  reasons for the occurrence of this metal abundance deficiency syndrome
  (MADS) are unclear at present; however, for the specific case of CF
  Tuc, the extremely low coronal iron abundance might possibly result
  from an anomalously low photo spheric iron abundance.

---------------------------------------------------------
Title: ROSAT Soft-X-ray Maps
Authors: Snowden, S. L.; Freyberg, M. J.; Plucinsky, P. P.; Schmitt,
   J. H. M. M.; Trumper, J.; Voges, W.; Edgar, R. J.; McCammon, D.;
   Sanders, W. T.
1996IAUC.6419....2S    Altcode:
  S. L. Snowden, M. J. Freyberg, P. P. Plucinsky, J. H. M. M. Schmitt,
  J. Trumper, and W. Voges, Max-Planck-Institut fur Extraterrestrische
  Physik, Garching; R. J. Edgar, D. McCammon, and W. T. Sanders,
  University of Wisconsin, Madison, report: "The first maps of the
  soft x-ray diffuse background (SXRB) from the ROSAT XRT/PSPC All-Sky
  Survey have been released and are available through the World Wide
  Web (URL http://www.rosat.mpe- garching.mpg.de/survey/sxrb/) and
  via anonymous ftp (host ftp.rosat.mpe-garching.mpg.de, directory
  archive/survey/sxrb). A detailed description of the data and maps has
  appeared in Ap.J. 454, 643 (1995). The maps cover about 98 percent
  of the sky in the bands 0.25, 0.75, and 1.5 keV, with about 2-degree
  angular resolution and high sensitivity for low-surface-brightness,
  extended features. The effects of non-x-ray contamination and x- rays
  of solar-system origin have been eliminated to the greatest possible
  extent, but discrete x-ray sources have not been removed. The
  much-improved angular resolution, statistical precision, and
  completeness of coverage of these maps reveal considerable structure
  over the entire energy range 0.1-2.0 keV that was not observed
  previously. The data compare well with previous all-sky surveys in
  terms of absolute normalization and zero point. For each energy band,
  an intensity map, as well as an exposure map, is available in FITS
  format. All maps were constructed using a Hammer-Aitoff equal-area
  projection in zero-centered galactic coordinates with longitude
  increasing to the left. Questions or comments may be directed to
  sxrb@rosat.mpe-garching.mpg.de."

---------------------------------------------------------
Title: The Coronae of Low-Mass Dwarf Stars
Authors: Giampapa, M. S.; Rosner, R.; Kashyap, V.; Fleming, T. A.;
   Schmitt, J. H. M. M.; Bookbinder, J. A.
1996ApJ...463..707G    Altcode:
  We report the results of our analysis of pointed X-ray observations
  of nearby dMe and dM stars using the position sensitive proportional
  counter (PSPC) on board the ROSA T satellite (Roentgensatellit). In the
  cases of those M dwarf stars where PSPC pulse-height distributions of
  sufficient quality for spectral fitting were obtained, we derive key
  coronal plasma parameters in order to investigate stellar coronal
  structure in more detail. In particular, we utilize temperatures
  and emission measures inferred for one or more distinct components
  as constraints for the development of semiempirical magnetic loop
  models as representations of the coronae of low-mass stars. The
  consistency of these static models as adequate descriptions of the
  coronae of M dwarfs is then examined. <P />We find that the coronae of
  low-mass dwarfs consist of two distinct thermal components: a "soft"
  component with T ∼ 2-4 x 10<SUP>6</SUP> K and a "hard" component
  with T ∼ 10<SUP>7</SUP> K. We find that the pulse- height spectra
  are systematically fitted better with "depleted" abundances compared to
  solar; the high- temperature emission component on dMe stars appears to
  contribute a systematically larger fraction of the total flux than the
  corresponding component in dM stars; and the high-temperature emission
  component on dMe stars is responsible for most of the observed variation
  in the count rate. <P />We have modeled the observed temperature
  components with hydrostatic coronal loop models, and find that: the
  low-temperature components can be modeled with loops of small size (l
  ≪ R<SUB>*</SUB>) and high pressure (Po ); and the high-temperature
  components require solutions with either small filling factors (
  0.1), large loops (1 &gt; R*), and high base pressure (P<SUB>0</SUB>
  &amp;#8819 P<SUB>0</SUB><SUB>sun</SUB>), or very small filling factors
  (∼0.1), small loops (1 &amp;#8819 R<SUB>*</SUB>), and very high
  pressure (P<SUB>0</SUB> ≫ P<SUB>0</SUB><SUB>sun</SUB>)). Based on
  these observational and model results, we conclude that coronal emission
  in dMe stars can be interpreted as arising from quiescent active regions
  (a quiescent, low-temperature component) and compact flaring structures
  (variable, high- temperature component). <P />Our conclusion that the
  coronal geometry for low-mass dwarf stars is dominated by a combination
  of relatively compact, quiescent loop configurations and an unstable
  flaring component has implications for both stellar dynamo theory and
  for our understanding of stellar angular momentum evolution. With regard
  to rotation in late-type stars, which has a direct bearing on dynamo
  action, we know from observations that the lowest mass stars spin down
  (via magnetic braking) more slowly than the more nearly solar-type
  stars. The compact loops we find for the low-temperature component
  suggests a natural explanation for the observed mass dependence of
  angular momentum evolution in late-type, main-sequence stars.

---------------------------------------------------------
Title: Hybrid stars and the reality of "dividing lines" among G to
    K bright giants and supergiants.
Authors: Reimers, D.; Huensch, M.; Schmitt, J. H. M. M.; Toussaint, F.
1996A&A...310..813R    Altcode:
  We present results of pointed ROSAT PSPC observations of 15 hybrid
  stars/candidates, which have been analyzed in a homogenous way. 7 of
  these stars were observed in X-rays for the first time. 12 out of 15
  hybrid stars have been detected as X-ray sources, some of them close to
  the detection limit. We conclude that essentially all hybrid stars as
  defined by the simultaneous presence of transition region line emission
  and cool stellar winds are X-ray sources if exposed sufficiently
  deep. The X-ray luminosities of hybrid stars cover a range between
  2x10^27^ and ~10^30^erg/s. Their X-ray surface fluxes can be as low
  as =~20 erg/cm^2^/s and thus considerably lower than those of normal
  luminosity class (LC) III giants. X-ray spectra of hybrid stars tend
  to be harder than that of normal LC III giants, moreover, the X-ray
  brightest stars have the hardest spectra. We find that for K II giants
  the normalized X-ray flux versus C IV flux obeys a power law with an
  exponent a=2.9, steeper than among normal giants (1.5). Hybrid K II
  stars are X-ray underluminous by a factor of 5 to 20 compared to LC III
  giants at the same level of normalized CIV flux f_CIV_/f_bol_; hybrid G
  supergiants are even more X-ray deficient. We reanalyze the CaII wind
  dividing line and find it vertical at B-V=1.45 for LC III giants. It
  is nearly horizontal between B-V=1.45 and 1.0 (at M_bol_=~-2...-3),
  and not well defined for supergiants with B-V&lt;1.0. We therefore
  suggest that possibly all LC II and Ib G and K giants are hybrid stars
  and that the "dividing line" concept in its simplest form is not valid
  for G/K giants brighter than M_bol_=~-2. Hybrid stars are supposed to
  be evolved intermediate mass stars and their coronal activity may in
  principle be determined by the individual history of each star.

---------------------------------------------------------
Title: Comet C/1996 B2 (Hyakutake)
Authors: Pye, J. P.; West, R. G.; Harden, M.; Ricketts, M.; Dennerl,
   K.; Englhauser, J.; Schmitt, J.; Trumper, J.; Lisse, C.; Mumma, M.;
   Petre, R.
1996IAUC.6394....2P    Altcode:
  J. P. Pye and R. G. West, Leicester University; M. Harden and
  M. Ricketts, Rutherford Appleton Laboratory; K. Dennerl, J. Englhauser,
  J. Schmitt, and J. Trumper, Max-Planck-Institut fur Extraterrestrische
  Physik, Garching; and C. Lisse, M. Mumma, and R. Petre, NASA Goddard
  Space Flight Center, report the discovery of extreme-ultraviolet
  (EUV) emission from comet C/1996 B2 with the ROSAT Wide Field Camera
  (WFC), simultaneously with the x-ray measurements reported by Lisse
  et al. on IAUC 6373: "The WFC measurements were made with the S1A
  filter, nominal bandpass 90-206 eV (14-6 nm). An image can be found
  at http://ledas-www.star.le.ac.uk/rosat-goc/comet/. Bright, diffuse
  emission is seen, roughly coincident with the x-rays and sunward of the
  nucleus, and strongly time-variable in a similar manner. The peak EUV
  surface brightness is of order 0.0004 count sE-1 arcminE-2 as measured,
  or of order 0.003 count sE-1 arcminE-2 when corrected to WFC 'at launch'
  efficiency. The WFC images also show fainter diffuse emission extending
  beyond the edge of the HRI field-of-view (i.e., at about 15'-40' from
  the center of the comet nucleus), forming an arc around the bright
  central region. The ratio of WFC to HRI countrates shows that the
  spectrum in the EUV/x-ray band is rather 'soft' and steeply increasing
  towards low photon energies. This would appear to rule out soft-x-ray
  line-fluorescence as the dominant emission mechanism. For assumed
  spectral shapes of a power law or thermal bremsstrahlung emission,
  the ratio indicates a photon index in the approximate range 2.0-3.0,
  or a temperature of about 0.1-0.4 keV."

---------------------------------------------------------
Title: Coordinated EUVE/ASCA/XTE/VLA Observations of Algol
Authors: Stern, R. A.; Lemen, J. R.; Antunes, S.; Drake, S. A.;
   Nagase, F.; Schmitt, J. H. M. M.; Singh, K. P.; White, N. E.
1996AAS...188.6012S    Altcode: 1996BAAS...28S.921S
  EUVE, ASCA, and XTE observed the eclipsing binary Algol (beta Per)
  from 1--7 Feb 96. EUVE was continuously pointing at Algol (with the
  exception of earth block, SAA passages, etc.) for ~ 2 binary orbits,
  with a net exposure time of 160 ksec, ASCA for ~ 40 ksec net exposure
  in 4 separate pointings, and XTE for ~ 90 ksec in 45 pointings. The
  objective of the combined EUV/X-ray observations is to definitively
  determine the temperature distribution and Fe abundance in the quiescent
  spectrum, and, with luck, catch a flare or two. In addition, ~ 24
  hours of coordinated VLA time were scheduled, with the primary goal
  of comparing the microwave data with the XTE spectrum to search for
  evidence of hard X-ray emission characteristic of microflares. The
  EUVE quicklook lightcurve data in the 70-170 Angstroms \ band show
  evidence of continual variability, most likely from a combination
  of geometric effects (i.e. eclipses and rotational modulation) and
  flaring. One moderate (~ x2) flare is evident in the EUVE data: the
  flare decay should be visible in the (as yet unreduced) XTE data. The
  ASCA data were taken largely during quiescent periods, which will be
  helpful in a combined emission measure and Fe abundance analysis. We
  will discuss preliminary results from this coordinated campaign,
  including first attempts at modeling the combined spectra.

---------------------------------------------------------
Title: Comet C/1996 B2 (Hyakutake)
Authors: Lisse, C.; Mumma, M.; Petre, R.; Dennerl, K.; Schmitt, J.;
   Englhauser, J.; Truemper, J.
1996IAUC.6373....1L    Altcode:
  C. Lisse, M. Mumma, and R. Petre, NASA Goddard Space Flight
  Center; and K. Dennerl, J. Schmitt, J. Englhauser, and J. Truemper,
  Max-Planck-Institut fur Extraterrestrische Physik, Garching, report
  the discovery of x-rays from comet C/1996 B2 with ROSAT -- the first
  such detections from any comet: "The observations took place on nine
  different occasions during Mar. 26-28 (see IAUC 6350). The brightest
  parts of the comet's x-ray image are diffuse but crescent shaped,
  offset sunward by about 6' from the nucleus (projected distance about
  30 000 km), and extend to about +/- 8' (+/- 40 000 km) in the direction
  perpendicular to the sun-comet direction. The observed radiation shows
  a clear x-ray (rather than ultraviolet) signature and is strongly
  time variable on the order of hours. An image can be found under
  http://www.rosat.mpe-garching.mpg.de/~jer/rda/comet/hyakutake.html.
  Preliminary estimates yield peak surface brightness countrates of about
  0.01 count sE-1 arcminE-2, with the comet being at Delta = 0.13 AU. A
  probable mechanism for the observed radiation is scattering of solar
  x-rays by material in the comet's coma. Another possibility is that
  the radiation is derived from energy deposition by the solar wind."

---------------------------------------------------------
Title: VizieR Online Data Catalog: New T Tauri stars in Taurus-Auriga
    (Wichmann+, 1996)
Authors: Wichmann, R.; Krautter, J.; Schmitt, J. H. M. M.; Neuhauser,
   R.; Alcala, J. M.; Zinnecker, H.; Wagner, R. M.; Mundt, R.; Sterzik,
   M. F.
1996yCat..33120439W    Altcode:
  On the basis of the ROSAT All-Sky-Survey, a study of the
  Taurus-Auriga star forming region has been performed in order to
  search for hitherto undiscovered T Tauri stars. Our study covers
  an area of about 280 square degrees, located between 4<SUP>h</SUP>
  and 5<SUP>h</SUP> in right ascension and between 15deg and 34deg
  in declination. Identification of ROSAT All-Sky Survey sources in
  this area by means of optical spectroscopy revealed 2 new classical
  T Tauri stars (CTTS) and 66 new weak-line-T Tauri stars (WTTS) with
  W<SUB>λ</SUB>(Hα)&lt;=10A. Additional pointed ROSAT observations
  led to the identification of 6 more WTTS and 2 CTTS, giving a total
  of 76 new T Tauri stars. The large area of our study, as compared
  with previous works, allows us to study the spatial distribution of
  WTTS in this star forming region. We find the WTTS of our survey to be
  distributed over the whole region investigated. There is a noticeable
  decline of the surface density from south to north within our study
  area, but the spatial distribution extends most probably beyond our
  study region. No clustering towards the population of T Tauri stars
  known prior to ROSAT in Taurus-Auriga could be observed. We suggest
  that the WTTS found in our study might in part be somewhat older than
  the previously known T Tauri stars in Taurus-Auriga, and that their
  broad spatial distribution is due to the typical velocity dispersion
  of a few km/s measured for Taurus T Tauri stars, in which case for
  some of our WTTS an age on the order of 10<SUP>7</SUP>years would
  be required for reaching the observed distances from the Taurus dark
  clouds. We estimate a WTTS/CTTS ratio of about 6 within our study area,
  but conclude that because of the different spatial distribution of
  WTTS and CTTS this ratio will be most probably significantly larger
  for a more extended area. <P />(13 data files).

---------------------------------------------------------
Title: Near-Contact Binary Systems in the ROSAT All-Sky Survey
Authors: Shaw, J. Scott; Caillault, Jean-Pierre; Schmitt, J. H. M. M.
1996ApJ...461..951S    Altcode:
  We have conducted a survey of near-contact binary systems observed
  during the ROSAT All-Sky Survey (RASS). The near-contact binaries
  (NCBs) have an A- or F-type primary, with a companion which is one to
  two spectral types cooler, The systems have periods less than 1 day and
  display strong tidal interaction, but they are not in contact like the
  W UMa systems, There are more than 150 such systems known to exist. We
  have analyzed the RASS data for all (58) of those known to lie within
  400 pc. We report the detection of 14 systems with X-ray count rates
  &gt;0.01 counts s<SUP>-1</SUP>. The X-ray luminosity function for
  the NCBs derived from this sample is very similar to that for A-type
  W UMa systems (derived, admittedly, from only a handful of Einstein
  observations) but appears to be significantly different from those
  of W-type W UMa systems and RS CVn binaries. This is consistent with
  the proposed scenario that the NCBs are evolutionary precursors to
  the A-type W UMa binaries. The mean X-ray luminosity of the NCBs is
  log L<SUB>X</SUB> = 29.3±0.1 ergs s<SUP>-1</SUP>, less than that of
  the RS CVns, but greater than that of normal late-type main-sequence
  stars. The L<SUB>X</SUB>/L<SUB>bol</SUB> values for the handful of stars
  for which bolometric luminosities could be determined are consistent
  with their being near saturation. The detection of these systems may
  help to explain why many presumably single A-type stars were detected
  in the RASS; i.e., the "single" A stars may, in fact, be binaries,
  like the NCBs, with late-type companions.

---------------------------------------------------------
Title: Demonstration of Photon-Noise Limit in Stellar Radial
    Velocities
Authors: Connes, P.; Martic, M.; Schmitt, J.
1996Ap&SS.241...61C    Altcode:
  We have measured apparent fluctuations in stellar radial velocities
  with the ELODIE fiber-fed crossed-dispersion spectrograph and the
  193-cm telescope of Observatoire de Haute-Provence. Within one given
  night, the fluctuations consist of two terms which may be sorted
  out. The first comes from imperfect scrambling of the stellar beam;
  the second arises from photon noise and agrees closely with our
  published calculations. So far, scrambler noise dominates for bright
  stars, but a perfect scrambler could be built by combining adatative
  optics and a single-mode fiber. The photon-noise results confirm that
  extrasolar planetary searching by the radial-velocity technique may
  be implemented with relatively small telescopes for a large number
  of stars. Consequences for the detection of ‘astrophysical noise”
  are discussed.

---------------------------------------------------------
Title: ROSAT observation of a giant X-ray flare on Algol: evidence
    for abundance variations?
Authors: Ottmann, R.; Schmitt, J. H. M. M.
1996A&A...307..813O    Altcode:
  Algol was observed with the PSPC detector onboard ROSAT in August 1992
  for 2.4 binary orbits. In the middle of the observation a giant X-ray
  flare occurred, lasting about half the orbital period. Spectral fits
  with a one-temperature thermal model indicate significant variations
  of the metal abundance Z over the flare. The abundance increases from
  Z=~0.2 to 0.8 during the rise phase, and decreases to Z=~0.4 during
  the decay. Thus, the abundance variation is similar to that recently
  observed by ASCA for a flare on AB Dor. Two-temperature models with the
  abundance fixed at Z=0.3 and 1.0, respectively, cannot fit all phases
  of the flare. During the early flare rise, the plasma temperature and
  density are maximal (T=~10^8^K, n_e_=~5x10^11^cm^-3^), and there is
  evidence for a large temperature gradient. During the flare decay, an
  N_H_ increase by a factor 2 may be present. The flare has a thermal
  energy of 7x10^36^erg, a peak luminosity of 2x10^32^erg/s and is
  classified as two-ribbon. Because of re-heating the flare plasma
  does not cool quasistatically; nevertheless, applying the quasistatic
  cooling method, a loop length of 5x10^11^cm corresponding to a height
  of 0.65R_K_ is derived. From the unique sample of three major flares
  detected in six X-ray observations, the frequency of large X-ray flares
  on Algol is determined as 0.6/P_orb_.

---------------------------------------------------------
Title: VizieR Online Data Catalog: X-ray flare of CF Tuc (=HD 5303)
    (Kuerster+ 1996)
Authors: Kuerster, M.; Schmitt, J. H. M. M.
1996yCat..33110211K    Altcode:
  Solar abundance fits to the quiescent spectra 1-3 and 20-35
  were made with a two-component thermal plasma (model 1a) whereas
  sub-solar abundance fits to the quiescent spectra were made with
  a one-component thermal plasma (model 2a). Modifications of
  these models were used for the flare spectra 4-19 in order to
  account for the `quiescent background'. Thus solar abundance
  fits to the flare spectra were made with a thermal plasma
  of two variable components plus two components kept constant
  at the average quiescent values T_qu,cool=2.46*10<SUP>6</SUP>K,
  EM<SUB>qu,cool</SUB>=0.49*10<SUP>53cm</SUP>-3, T<SUB>qu,hot</SUB>=17.8*
  10<SUP>6</SUP>K, EM<SUB>qu,hot</SUB>=1.95*10<SUP>53cm</SUP>-3,
  and z=1.00 (model 1b). Sub-solar abundance fits to the
  flare spectra were made with a plasma of one variable
  component plus one component kept constant at the average
  quiescent values T<SUB>qu</SUB>=13.0*10<SUP>6</SUP>K,
  EM<SUB>qu</SUB>=5.20*10<SUP>53</SUP>cm<SUP>-3</SUP>, and z=0.10 (model
  2b). In both cases the mean values of spectra 3, and 20-35 were used
  to account for the quiescent emission. (1 data file).

---------------------------------------------------------
Title: Comet C/1996 B2 (Hyakutake)
Authors: Lisse, C.; Dennerl, K.; Schmitt, J.; Cernis, K.; Keen, R.;
   O'Meara, S. J.; Camilleri, P.; Green, D. W. E.; Carver, S.; Morris,
   C. S.
1996IAUC.6350....2L    Altcode:
  C. Lisse, Goddard Space Flight Center; and K. Dennerl and
  J. Schmitt, Max-Planck-Institut fur Extraterrestrische Physik,
  Garching, communicate: "Comet C/1996 B2 will be observed with
  the x-ray satellite ROSAT. The scheduled observing intervals are
  as follows: Mar. 26.493-26.529 UT, 26.626-26.634, 26.638-26.662,
  26.708-26.729, 26.89-26.902, 27.554-27.591, 27.687-27.695, 27.703-
  27.724, 27.772-27.789, 27.841-27.856, 28.417-28.44. Simultaneous
  observations at other wavelengths are encouraged." Naked-eye m1,
  coma-diameter, and tail-length estimates: Mar. 21.93 UT, 0.8, 67', --
  (K. Cernis, Rukainiai, Lithuania); 22.41, 0.9, 1.5 deg, 31 deg (R. Keen,
  Mt. Thorodin, CO); 22.60, 1.0, 90', 30 deg (S. J. O'Meara, Volcano,
  HI); 22.68, 0.3, 70', 40 deg (P. Camilleri, Cobram, Vic., Australia);
  23.30, 0.5, 2 deg, 30 deg (D. W. E. Green, near S. Carver, MA); 23.45,
  0.2, --, 45 deg (C. S. Morris, Whitaker Peak, CA).

---------------------------------------------------------
Title: A Search for Dust Devils on Mars
Authors: Wennmacher, A.; Neubauer, F. M.; Patzold, M.; Schmitt, J.;
   Schulte, K.
1996LPI....27.1417W    Altcode:
  A thorough search through the Viking orbiter images (PDS CD-ROM archive)
  of Mars for dust devils was conducted in support for the High Resolution
  Stereo Camera-Surface Atmosphere Interaction (HRSC-SAI) experiment
  on the Russian Mars-96 spacecraft. So far we focussed on the martian
  areas Arcadia Planitia and the two Viking lander sites where the
  occurence of dust devils has already been reported (by imaging or from
  meteorological data, respectively). Additional events were found which
  were not yet reported elsewhere. The prime parameters (e. g. height,
  diameter etc.) confirm the theoretically predicted trends.

---------------------------------------------------------
Title: Hybrid stars - a new class of X-ray sources.
Authors: Reimers, D.; Hünsch, M.; Schmitt, J. H. M. M.; Toussaint, F.
1996rftu.proc...65R    Altcode:
  The authors present results of pointed ROSAT PSPC observations
  of 15 hybrid stars/candidates, which have been analyzed in
  a homogeneous way. A total of 12 stars have been detected in
  X-rays with apparent fluxes as low as 5×10<SUP>-15</SUP>erg
  cm<SUP>-2</SUP>s<SUP>-1</SUP>. The authors conclude that essentially
  all hybrid stars are X-ray sources if exposed sufficiently deeply. They
  have re-analyzed the Ca II wind dividing line and find a somewhat
  different shape and location.

---------------------------------------------------------
Title: Spectral study of a giant X-ray flare on Algol.
Authors: Ottmann, R.; Schmitt, J. H. M. M.
1996rftu.proc...57O    Altcode:
  During the long ROSAT PSPC observation of Algol in August 1992,
  a giant, long-duration X-ray flare has been detected. Spectral fits
  with a one-temperature thermal model indicate significant variations of
  the metal abundance Z over the flare. Thereby, the abundance increases
  from Z ≅ 0.2 to 0.8 during the rise phase, and again decreases to Z
  ≅ 0.4 during the decay. Further, during the early flare rise, the
  plasma temperature and density are maximal (T ≅ 10<SUP>8</SUP>K,
  n<SUB>e</SUB> ≅ 5×10<SUP>11</SUP>cm<SUP>-3</SUP>). The flare has
  a thermal energy of 7×10<SUP>36</SUP>erg, a peak luminosity of
  2×10<SUP>32</SUP>erg/s and is classified as two-ribbon. Because
  of re-heating the flare plasma does not cool quasistatically;
  nevertheless, applying the quasistatic cooling method, a
  loop length of 5×10<SUP>11</SUP>cm and a flaring volume of
  1×10<SUP>34</SUP>cm<SUP>3</SUP> are derived.

---------------------------------------------------------
Title: New X-ray sources detected among mild barium and S stars.
Authors: Jorissen, A.; Schmitt, J. H. M. M.; Carquillat, J. M.;
   Ginestet, N.; Bickert, K. F.
1996A&A...306..467J    Altcode:
  We report on the detection by ROSAT of X-rays from the mild barium
  star HD 165141 (K0III/IIBa1) and from the S stars HD 35155 (S4,1) and
  HR 363 (S3/2). For the S stars, the X-ray flux is attributed to the
  accretion of the red-giant wind by the white dwarf companion. The strong
  variability observed in the X- and UV fluxes on time scales of both
  hours and months may be due to irregularities in the accretion rate,
  or to variable obscuration by cool gas present in the system. In the
  case of HD 35155, the absence of ROSAT detection at the phase where
  eclipses are observed in the UV and optical domains suggests that
  part of the X-ray variability may be associated with eclipses of the
  compact companion. HD 165141 is more puzzling since this star seems
  to share the properties of RS CVn and barium systems. The properties
  of the X-rays emitted by this system are typical of RS CVn systems, as
  is the photometric period of 35d and the rapid rotation. However, the
  rapid rotation does not seem to be due to synchronism with the orbital
  period, as is usually the case for RS CVn systems. The companion
  appears to be a hot white dwarf rather than a main sequence star,
  with a long orbital period (~5200d), more typical of barium than of
  RS CVn systems. These conflicting properties could be explained if
  this particular barium star formed on the giant branch, accreting
  not only mass but also spin angular momentum. The two giants HR 5692
  (G8IIIBa0.3) and HR 6468 (G8IIIBa0.6) appear to be coronal X-ray
  sources. The barium nature of these stars is questioned, given their
  small Ba indices and their normal DDO photometric indices. Moreover,
  since HR 6468 is a radial-velocity standard star, it is likely not a
  binary star as required for barium stars.

---------------------------------------------------------
Title: Coronal densities from X-ray rotational modulation.
Authors: Güdel, M.; Schmitt, J. H. M. M.
1996rftu.proc...35G    Altcode:
  The authors present a geometric method for estimating lower limits
  of coronal densities based on X-ray rotational modulation of single
  stars. Application to two young, very active solar-like stars yields
  electron densities of several times 10<SUP>10</SUP>cm<SUP>-3</SUP>
  or more.

---------------------------------------------------------
Title: η Carinae: variability in a new light.
Authors: Corcoran, M. F.; Rawley, G. L.; Swank, J. H.; Petre, R.;
   Schmitt, J. H. M. M.
1996rftu.proc...25C    Altcode:
  ROSAT Position Sensitive Proportional Counter (PSPC) observations for
  the first time unequivocally reveal the presence of a compact source
  of hard X-ray emission centered on the peculiar star η Car. These
  observations also show a dramatic change in the hard-band (≥1.6 keV)
  counting rate by a factor of ≡2 in a 4-month interval. ROSAT High
  Resolution Imager (HRI) observations which span the PSPC observations
  also reveal a variable source of X-ray emission centered on η Car. Thus
  strong variability which is a characteristic of η Car in radio through
  IR and visible-band wavelengths is also observed at X-ray energies. The
  authors examine the X-ray lightcurve of η Car using available Einstein,
  ROSAT and ASCA data.

---------------------------------------------------------
Title: An X-ray survey of all nearby late-type giants.
Authors: Hünsch, M.; Schmitt, J. H. M. M.; Schröder, K. -P.;
   Reimers, D.
1996rftu.proc...49H    Altcode:
  The authors have investigated the X-ray luminosity distribution function
  for late-type giants from ROSAT observations of all nearby (d &lt;
  25 pc) G-M giants. Essentially all giants with B-V &lt; 1.2 are X-ray
  sources with luminosities of some 10<SUP>27</SUP>erg s<SUP>-1</SUP>, few
  giants are more X-ray luminous. There is evidence for a minimum X-ray
  surface flux of the order of ≡100 erg cm<SUP>-2</SUP>s<SUP>-1</SUP>,
  which seems to be independent of B-V and is probably not related to
  pure acoustic heating.

---------------------------------------------------------
Title: The Extreme-Ultraviolet Spectrum of the Nearby K Dwarf
    ɛ Eridani
Authors: Schmitt, J. H. M. M.; Drake, J. J.; Stern, R. A.; Haisch,
   B. M.
1996ApJ...457..882S    Altcode:
  We present and discuss the extreme-ultraviolet spectrum of the
  nearby K2 dwarf ɛ Eri obtained with the spectrometers onboard the
  Extreme-Ultraviolet Explorer satellite (EUVE). In the EUVE spectrum of
  ɛ Eri we detect emission lines attributable to iron in the ionization
  stages Fe IX to Fe XXI, thus covering a rather large temperature range
  from less than 10<SUP>6</SUP> K to 10<SUP>7</SUP> K. While the lines
  in the lowest and highest ionization stages are relatively weak, the
  strongest lines detected are from Fe XV and Fe XVI, from which we infer
  a peak in the differential emission measure distribution at coronal
  temperatures of log T<SUB>c</SUB> ∼ 6.4; significant emission measure
  is, however, also present at both higher and lower temperatures. This
  is in contrast to both lower activity stars whose EUV spectra are
  dominated by cooler Fe lines in the range 170-180 Å as well as the
  more active stars whose EUV spectra are dominated by hotter Fe lines
  in the range 110-135 Å. Finally, a density determination using line
  ratios of Fe XIII and Fe XIV results in coronal densities for ɛ Eri
  which are similar to solar active region densities.

---------------------------------------------------------
Title: Discovery of 0.5 million K gas in the center of galaxy
    clusters.
Authors: Lieu, R.; Mittaz, J. P. D.; Bowyer, S.; Lockman, F. J.;
   Hwang, C. -Y.; Schmitt, J. H. M. M.
1996rftu.proc..557L    Altcode:
  An observation of M87, the central galaxy of the Virgo cluster, was
  performed in the 0.065-0.245 keV energy band by the deep survey (DS)
  telescope aboard the Extreme Ultraviolet Explorer (EUVE). A central
  source and an extended emission halo of radius ≡120 kpc are clearly
  visible in the data and represent the first detection of cluster gas
  emission in the EUV. The emission cannot be explained by the well-known
  cluster gas at X-ray temperatures. Instead, it is necessary to introduce
  a second gas component, with temperature between 5×10<SUP>5</SUP>
  and 10<SUP>6</SUP>K. The rapid cooling of plasmas at such temperatures
  implies a mass accretion rate of &gt;300 M<SUB>sun</SUB>/yr. It is
  unlikely that the phenomenon is directly related to a cooling flow,
  which involves a much lower rate of ≡10 M<SUB>sun</SUB>/yr. More
  recently, the authors examined ROSAT PSPC data of other galaxy
  clusters located in directions of low galactic absorption, and found
  that all of them show evidence of extended central emission at T
  ≍ 10<SUP>6</SUP>K. In particular, the Coma cluster, which was also
  detected by the EUVE sky survey, exhibits soft emission out to a radius
  of ≡1 Mpc from the X-ray centroid, with an estimated gas cooling
  (accretion) rate of ≡2×10<SUP>5</SUP>M<SUB>sun</SUB>/yr. This result
  is a major surprise, since Coma does not have a cooling flow.

---------------------------------------------------------
Title: Correlated variability in the X-ray and Hα emission from
    the O4If supergiant ζ Puppis.
Authors: Berghoefer, T. W.; Baade, D.; Schmitt, J. H. M. M.; Kudritzki,
   R. -P.; Puls, J.; Hillier, D. J.; Pauldrach, A. W. A.
1996A&A...306..899B    Altcode:
  The Position Sensitive Proportional Counter (PSPC) onboard the ROSAT
  satellite was used to monitor ζ Pup for 56651seconds spread over
  11days in 1991 October. During the first 8days, 592 high-resolution Hα
  profiles were also obtained simultaneously. In a detailed time series
  analysis we investigate the X-ray observations and the Hα line profiles
  for variability. We find a 1.44c/d (cycles/day) modulation both in the
  Hα line profiles as well as in the X-ray band pass between 0.9 and
  2.0keV; the amplitude of the X-ray variability amounts to +/-6%. Thus,
  our observations provide evidence for periodic variations in the wind
  density at the base of the wind of ζ Pup.

---------------------------------------------------------
Title: ROSAT observations of NGC 2023 and NGC 2024.
Authors: Freyberg, M. J.; Schmitt, J. H. M. M.
1996rftu.proc...31F    Altcode:
  The authors have observed the embedded stellar clusters of NGC 2024 (H
  II region) and NGC 2023 (reflection nebula) in soft X-rays (0.1-2.0 keV)
  both with the ROSAT PSPC and HRI. They analyzed the X-ray properties
  of the numerous detected sources such as luminosities and spectral
  parameters. The overall picture is different for the two star-forming
  regions. While in NGC 2023 only one out of 16 infrared sources was
  found with significance of at least 4σ, a fair fraction of the infrared
  cluster of NGC 2024 is X-ray bright. The authors cross-correlated their
  X-ray sources with sources previously detected at other wavelengths
  (e.g., infrared, Hα). In addition to a high positional correlation of
  the detected sources with K band sources there is no obvious correlation
  of individual infrared and X-ray properties. The authors conclude that
  the X-ray sources are low-mass young stellar objects, deeply embedded
  in the molecular cloud. In NGC 2024 they may contribute significantly
  to the observed ionization.

---------------------------------------------------------
Title: Coronal X-ray emission of late-type MS stars in relation to
    chromospheric activity and magnetic cycles.
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Stepień, K.
1996rftu.proc...45H    Altcode:
  The authors study the relationship between the coronal X-ray
  emission of single, main-sequence F-K stars and the characteristics
  of their magnetic cycles. They use X-ray data primarily from the
  ROSAT all-sky survey as well as data acquired by them in the ROSAT
  pointed program, and the published data of the Mt. Wilson Ca II H+K
  monitoring program. According to the Ca II H+K long-term variability
  characteristics, the authors divide the stars into three groups:
  constant stars, regular variable and irregular (chaotic) variable
  stars. They show that the regular and the irregular stars differ mainly
  in their Rossby-numbers (Ro): regular stars have almost always Ro &lt;
  1 whereas the irregular group is characterised by Ro &gt; 1; further,
  the X-ray surface flux distributions differ significantly between these
  three groups. The authors discuss to what extent stars exhibiting
  constant Ca II fluxes can be considered Maunder minimum stars, and
  demonstrate - in a statistical sense - that cyclic chromospheric
  activity also implies cyclic coronal activity.

---------------------------------------------------------
Title: Young open stellar clusters.
Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.
1996rftu.proc...61R    Altcode:
  The authors discuss about the identification of candidate members
  of young open clusters by means of ROSAT observations. Specifically,
  the results for the IC 2602 and α Persei clusters are presented. In
  the first case, 86 X-ray sources were detected not associated with
  previously known cluster members: photometry and spectroscopy have
  confirmed membership for most of them. In the second case, a PSPC raster
  scan survey in the α Persei region yielded 84 sources which could not
  be identified with known optical counterparts. CCD photometry indicated
  that half of them have colors/magnitudes consistent with membership.

---------------------------------------------------------
Title: Advances in Solar-Stellar Astrophysics
Authors: Haisch, Bernhard; Schmitt, J. H. M. M.
1996PASP..108..113H    Altcode:
  The discovery on stars of coronae and of X-ray emission from
  flares in the 1970's opened up the investigation of stellar
  activity. Solar-stellar astrophysics has now become a two-way
  street. The rich detail of the Sun provides a close-up view of physical
  phenomena, while the stellar observations provide a way to, in effect,
  vary the otherwise fixed solar parameters. In this way we can study
  the evolution of the Sun, the dependence of activity on rotation, and
  the degree of autonomy between magnetic fields and such fundamental
  parameters as mass and age. We present an overview of the Sun as a
  star, stellar coronae along the main sequence, the dividing line for
  evolved stars, rotation-activity relations, activity cycles, flux-flux
  relations, basal acoustic heating, evidence for coronal heating by
  microflaring, and a few facts about flares. (SECTION: Invited Review)

---------------------------------------------------------
Title: Lithium abundance in the open cluster IC 2602
Authors: Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.;
   Stauffer, J. R.; Schmitt, J. H. M. M.
1996ASPC..109..379R    Altcode: 1996csss....9..379R
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observations of open clusters: recent results
Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer,
   J. R.
1996ASPC..109..381R    Altcode: 1996csss....9..381R
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observations of a complete volume-limited sample of
    late-type giants
Authors: Hunsch, M.; Reimers, D.; Schmitt, J. H. M. M.; Schroder,
   K. -P.
1996ASPC..109..531H    Altcode: 1996csss....9..531H
  No abstract at ADS

---------------------------------------------------------
Title: ORFEUS FUV spectra of late-type stars
Authors: Schmitt, J. H. M. M.; Krautter, J.; Appenzeller, I.; Mandel,
   H.; Barnstedt, J.; Golz, M.; Grewing, M.; Gringel, W.; Haas, C.;
   Hopfensitz, W.; Kappelmann, N.; Kramer, G.; Wichmann, R.
1996ASPC..109..287S    Altcode: 1996csss....9..287S
  No abstract at ADS

---------------------------------------------------------
Title: Coordinated EUVE/ASCA/XTE/VLA observations of Algol.
Authors: Stern, R. A.; Lemen, J. R.; Antunes, S.; Drake, S. A.;
   Nagase, F.; Schmitt, J. H. M. M.; Singh, K. P.; White, N. E.
1996BAAS...28..921S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Nonthermal Microwave Emission from F Dwarfs: 71 Tau; alpha For;
    and Open Cluster/Moving Group Membership
Authors: Gudel, M.; Benz, A. O.; Guinan, E. F.; Schmitt, J. H. M. M.
1996ASPC...93..306G    Altcode: 1996ress.conf..306G
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observation of a giant X-ray flare on Algol
Authors: Ottmann, R.; Schmitt, J. H. M. M.
1996ASPC..109..281O    Altcode: 1996csss....9..281O
  No abstract at ADS

---------------------------------------------------------
Title: The Enigmatic FOV Star 47 CAS
Authors: Gudel, M.; Benz, A. O.; Guinan, E. F.; Schmitt, J. H. M. M.
1996ASPC...93..309G    Altcode: 1996ress.conf..309G
  No abstract at ADS

---------------------------------------------------------
Title: Variability of UV Ceti in Radio and Soft X-ray Emission
Authors: Benz, A. O.; Gudel, M.; Schmitt, J. H. M. M.
1996ASPC...93..291B    Altcode: 1996ress.conf..291B
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT Users' Handbook
Authors: Briel, U. G.; Aschenbach, B.; Hasinger, G.; Hippmann,
   H.; Pfeffermann, E.; Predehl, P.; Schmitt, J. H. M. M.; Voges, W.;
   Zimmermann, U.; David, L.; Harnden, F. R.; Kearns, K. E.; Zomback,
   M. V.; Barstow, M. A.; Osborne, J. P.; Pye, J. P.; Watson, M.; West,
   R. G.; Willingdale, R.
1996rouh.book.....B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observations of hybrid stars
Authors: Reimers, D.; Hunsch, M.; Toussaint, F.; Schmitt, J. H. M. M.
1996ASPC..109..537R    Altcode: 1996csss....9..537R
  No abstract at ADS

---------------------------------------------------------
Title: Coronal X-ray emission of cool stars in relation to
    chromospheric activity and magnetic cycles.
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Stȩpień, K.
1996A&A...305..284H    Altcode:
  We study the relationship between the coronal X-ray emission of single,
  main-sequence F-K stars and the characteristics of their magnetic
  cycles. We use X-ray data primarily from the ROSAT all-sky survey (RASS)
  as well as data acquired by us in the ROSAT pointed program, and the
  published data of the Mt. Wilson CaII H+K monitoring program. According
  to their CaII H+K long-term variability characteristics, we divide the
  stars into three groups: non-variable, regular variable and irregular
  (chaotic) variable stars. We show that the regular and the irregular
  stars differ mainly in their Rossby-numbers (Ro): regular stars have
  almost always Ro&lt;1 whereas the irregular group is characterized
  by Ro&gt;1 further, the X-ray surface flux distributions differ
  significantly between these three groups. We discuss to what extent
  stars exhibiting constant Ca II fluxes can be considered "Maunder
  minimum" stars, and demonstrate - in a statistical sense - that cyclic
  chromospheric activity also implies cyclic coronal activity. From a
  reanalysis of the flux-flux relation between the calcium excess flux
  density ({DELTA}F_Ca_) and F_X_, we find different relations between
  the regular and the constant stars on one hand and the irregular stars
  on the other hand. Performing regression analysis in the form of a
  power law, the coefficient κ is derived to be κ=~1 for constant and
  regular stars whereas κ=~2 for the more active irregular stars. We
  discuss our findings in the context of a transition from a nonlinear
  to a linear dynamo regime when going from irregular to regular stars.

---------------------------------------------------------
Title: Eclipse mapping at X-ray wavelengths
Authors: Schmitt, J. H. M. M.
1996IAUS..176...85S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Pointed ROSAT observations in the Lupus dark clouds
Authors: Wichmann, R.; Krautter, J.; Alcala, J. M.; Schmitt,
   J. H. M. M.; Neuhauser, R.; Covino, E.; Terranegra, L.
1996ASPC..109..443W    Altcode: 1996csss....9..443W
  No abstract at ADS

---------------------------------------------------------
Title: Coronal Structwre in M Dwarf Stars
Authors: Giampapa, M. S.; Rosner, R.; Kashyap, V.; Fleming, T. A.;
   Schmitt, J. H. M. M.; Bookbinder, J. A.
1996mpsa.conf...81G    Altcode: 1996IAUCo.153...81G
  No abstract at ADS

---------------------------------------------------------
Title: X-ray observations of comet Hyakutake (C/1996 B2).
Authors: Lisse, C. M.; Mumma, M. J.; Petre, R.; Schmitt, J.;
   Englhauser, J.; Truemper, J.
1996BAAS...28.1196L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X0ray Emission and Rotation of T Tauri Stars
Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen
   H. M. M.
1996LNP...465E.363N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Discovery of Warm Gas in the Virgo Cluster
Authors: Lieu, R.; Mittaz, J. P. D.; Bowyer, S.; Schmitt, J. H. M. M.;
   Lewis, J.
1996aeu..conf...37L    Altcode: 1996IAUCo.152...37L
  No abstract at ADS

---------------------------------------------------------
Title: EUVE spectroscopy of Algol.
Authors: Stern, R. A.; Schmitt, J. H. M. M.; Lemen, J. R.; Pye, J. P.
1996uxsa.conf...97S    Altcode: 1996uxsa.coll...97S
  The authors discuss results from the first extreme ultraviolet spectrum
  of the prototypical eclipsing binary Algol (β Per), obtained with the
  spectrometers on the Extreme Ultraviolet Explorer (EUVE). EUVE observed
  Algol over nearly 1.5 orbital periods (≡4 d). The Algol spectrum in
  the 80 - 350 Å range is dominated by emission lines of Fe XV-XXIV,
  and the He II 304 Å line.

---------------------------------------------------------
Title: The X-ray properties of the young open cluster around α
    Persei.
Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer,
   J. R.
1996A&A...305..785R    Altcode:
  We present ROSAT PSPC pointed observations of the 50Myr old α Per
  open cluster. The X-ray observations, which were carried out as a
  raster scan, cover an area of about 10deg^2^. In total, we detect
  about 160 X-ray sources, 88 of which have an optical counterpart
  (within 30arcsec) associated with α Per cluster candidates. Within
  the central region of our field of view, which is characterized by a
  limiting sensitivity L_X_~10^28.8-29^erg/sec, we detect basically all
  late-F, G and K stars, while the detection rate among the M dwarfs is
  on the order of 60%. Given the sensitivity of our X-ray observations,
  the lower detection rate among the very low mass objects is consistent
  with the ROSAT results obtained for the Pleiades cluster. Although
  stars in each color range show a large spread in X-ray luminosity, the
  maximal X-ray luminosities appear to decrease from the range of late-F
  - G type stars to the M-type dwarfs. We interpret this as due to the
  fact that the maximum X-ray luminosity cannot exceed the saturation
  level L_X_/L_bol_~10^-3^, and is hence a function of the bolometric
  luminosity. The availability of rotational velocities for many of the
  X-ray detected objects permits us to study correlations between rotation
  and X-ray activity. For B-V_o_&gt;0.6, at a given mass, the weakest
  X-ray sources are slow rotators, while the strongest X-ray sources
  are rapid rotators. The relation between L_X_/L_bol_ and rotation we
  find for the α Per low mass stars is the same as previously determined
  for low mass stars in the Pleiades, and a similar relation is found on
  correlating L_X_/L_bol_ with rotation period. Using directly measured
  periods as well as periods estimated from rotational velocities, we
  derive Rossby numbers (R_0_) for stars with B-V_o_&gt;0.3 finding that
  a well-defined relationship between L_X_/L_bol_ and R_0_ is present
  both for early (i.e., F) and late-type stars. A comparison of the
  X-ray luminosity distribution functions (XLDF) for our α Per sample
  and the Pleiades indicates that F and G-type stars in α Per are,
  as a whole, more X-ray luminous than their older counterparts in the
  Pleiades. On the other hand, no significant difference is found between
  the distributions of the K and M-type dwarfs in the two clusters. We
  argue that this finding is a consequence of the longer spin-down
  timescales of later-type objects, and hence of the fact that there
  are more rapid rotators among G stars in α Per than in the Pleiades,
  while this is not the case for K and M dwarfs.

---------------------------------------------------------
Title: First Maps of the Soft X-Ray Diffuse Background from the
    ROSAT XRT/PSPC All-Sky Survey
Authors: Snowden, S. L.; Freyberg, M. J.; Plucinsky, P. P.; Schmitt,
   J. H. M. M.; Truemper, J.; Voges, W.; Edgar, R. J.; McCammon, D.;
   Sanders, W. T.
1995ApJ...454..643S    Altcode:
  This paper presents an initial version of the diffuse background results
  from the ROSA T soft X-ray all-sky survey. These maps cover ∼98% of
  the sky in the ¼ keV, ¾ keV, and 1.5 keV bands, with ∼2° angular
  resolution and high sensitivity for low surface brightness extended
  features. The effects of non-X-ray contamination and X-rays of solar
  system origin have been eliminated to the greatest possible extent,
  but discrete X-ray sources have not been removed. The much improved
  angular resolution, statistical precision, and completeness of coverage
  of these maps reveal considerable structure over the entire 0.1-2.0
  keV energy range that was not observed previously. The data agree well
  with previous all-sky surveys in terms of absolute normalization and
  zero point.

---------------------------------------------------------
Title: A study of the Chamaeleon star forming region from the ROSAT
    all-sky survey. I. X-ray observations and optical identifications.
Authors: Alcala, J. M.; Krautter, J.; Schmitt, J. H. M. M.; Covino,
   E.; Wichmann, R.; Mundt, R.
1995A&AS..114..109A    Altcode:
  We present the observations of the ROSAT all-sky survey (RASS) in the
  direction of the Chamaeleon cloud complex, as well as the spectroscopic
  identifications of the detected X-ray sources. The main purpose of this
  identification program was the search for low mass pre-main sequence
  stars. Sixteen previously known PMS stars were detected with high
  confidence by ROSAT. Eight are classical T Tauri stars and eight are
  weak-line T Tauri stars, Seventy-seven new weak-line T Tauri stars
  were identified on the basis of the presence of strong Li λ 6707
  absorption, spectral type later than F0 and chromospheric emission. We
  give coordinates and count rates of the X-ray sources, and present
  optical spectra and finding charts for the sources identified optically
  as new pre-main sequence stars. Optical UBV(RI)_c_ and near-infrared
  JHKLM photometry for this sample of stars is also provided. In addition,
  6 new dKe-dMe candidates are found among the RASS sources.

---------------------------------------------------------
Title: Erratum - a ROSAT X-Ray Study of the Praesepe Cluster
Authors: Randich, S.; Schmitt, J. H. M. M.
1995A&A...303..322R    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Microwave emission from X-ray bright solar-like stars: the
    F-G main sequence and beyond.
Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O.
1995A&A...302..775G    Altcode:
  A sample of F and G main sequence stars and slightly evolved F and G
  stars, selected as the apparently strongest X-ray sources in their class
  as detected in the ROSAT All-Sky Survey (RASS), has been observed in
  microwaves to search for coronae with strong heating and populations
  of nonthermal particles. The microwave flux densities were observed
  with the VLA at 8.4GHz. Radio emission has been detected from nine
  targets, in both luminosity classes V and IV. Since known or unknown
  cool companions in binary systems may cause spurious results, we have
  checked the available spectroscopic and astrometric data, including
  unpublished CORAVEL observations. There is at least one detected object
  in each of the four spectral and luminosity classes of stars, FIV,
  FV, GIV, and GV for which no known companion can be made responsible
  for the observed emission. A very luminous X-ray and radio source is
  identified with the F0 V star HD 12230, a member of the Pleiades Moving
  Group with an age of the order of 50-70Myr. HD 129333 (EK Dra), a G0 V
  target presumably of the same age, is detected also, and the X-ray and
  radio modulations agree with the optically measured rotation. On the
  other hand, three very old stars that are leaving the main sequence
  and are moving towards the subgiant luminosity class are found to be
  strong X-ray and radio emitters; in the case of HD 20010, an F8 IV star,
  the hypothetical existence of an unknown spectroscopic companion would
  contradict astrometric data. These stars appear to define a new class
  of radio-luminous coronal stars. The observed microwave flux densities
  agree with the ratio of radio to X-ray fluxes of other active coronal
  stars. We report sensitive upper limits for all non-detections, up to an
  order of magnitude lower than in previous surveys. These observations
  yield first systematic evidence that stars close to the solar spectral
  type can maintain considerable nonthermal electron populations in their
  coronae, possibly due to a mechanism that involves coronal heating. They
  provide the crucial link between the study of the solar corona and
  of active coronal stars (the "solar-stellar connection"), and bridge
  the remaining gaps on the radio main sequence between the cooler stars
  and chemically peculiar Ap stars. Further, they support the view that
  young, near-Zero-Age Main-Sequence (ZAMS) stars are able to continually
  produce luminous radio emission after their arrival on the ZAMS. The
  strong activity resurgence in the sample of old stars moving off the
  main sequence may be related to an increase in convective turnover time
  as the internal structuring of the stars changes; this is of potential
  interest for the study of the stellar interior of evolved stars.

---------------------------------------------------------
Title: The corona of the young solar analog EK Draconis.
Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O.; Elias,
   N. M., II
1995A&A...301..201G    Altcode:
  First coronal microwave and new soft X-ray observations of the
  very active, near-Zero-Age Main-Sequence (ZAMS) dG0e star EK Dra =
  HD 129333 show that this analog of the young Sun is more luminous
  in both emissions than most single M-dwarf flare stars. Variations
  in the 8.4GHz flux include modulation with the optically determined
  rotation period of 2.7 days. This result points to a non-uniform
  filling of the corona with energetic electrons due to an incomplete
  coverage of the surface with active regions and a source volume
  that is not concentric with the star. The radio luminosity varying
  between logL_R_=13.6 and 14.6 (L_R_ in erg/s/Hz) shows evidence for
  unpolarized gyrosynchrotron flares, while strongly polarized flares
  were absent during the observations. This star is the first young,
  truly solar-like main sequence G star discovered in microwaves. Having
  just arrived on the main sequence, it conclusively proves that young,
  solar-like G stars can maintain very high levels of radio emission
  after their T Tau phase. The X-ray observations were obtained from the
  ROSAT All-Sky Survey (RASS). The average X-ray luminosity amounts to
  logL_X_=29.9 (L_X_ in erg/s). A Raymond-Smith type plasma model fit
  yields two plasma components at temperatures of 1.9 and 10MK, with
  volume emission measures of 1.2 and 2.5.10^52^cm^-3^, respectively. The
  X-ray light curve is significantly variable, with the photon count rate
  from the cooler plasma being strongly modulated by the rotation period;
  the emission from the hotter plasma is only weakly variable. Modeling
  of the source distribution in the stellar corona yields electron
  densities of the order of 4.10^10^cm^-3^ or higher for the cool plasma
  component. It indicates that a considerable portion of EK Dra's high
  X-ray luminosity is due to high-density plasma rather than large
  emission volume. Parameters for an X-ray flare indicate an electron
  density of 1.75.10^11^cm^-3^ and a source height of (1-2).10^10^cm,
  compatible with a few times the scale height of the cooler plasma
  component.

---------------------------------------------------------
Title: The X-Ray View of the Low-Mass Stars in the Solar Neighborhood
Authors: Schmitt, Juergen H. M. M.; Fleming, Thomas A.; Giampapa,
   Mark S.
1995ApJ...450..392S    Altcode:
  We present the results of a complete and sensitive X-ray survey
  of all known stars of spectral type K and M in the immediate solar
  vicinity with distances less than 7 pc. The X-ray data were obtained
  primarily from the ROSA T all-sky survey (RASS); those program stars
  not detected in the RASS data were subsequently studied with the ROSAT
  pointed observation program. These new X-ray observations resulted
  in a detection rate of almost 94% for all K and M stars within 6
  pc around the Sun, and 87% for K and M dwarfs within 7 pc around
  the Sun. The resulting X-ray luminosity distribution function can be
  well described by a log-normal distribution; the largest and smallest
  X-ray luminosities from our sample stars differ by almost four orders
  of magnitude. We show the existence of a correlation between total
  emitted X-ray luminosity and spectral hardness, such that more luminous
  objects tend to have larger spectral hardness, thus implying higher
  coronal temperatures. A comparison with Einstein data shows the lack of
  significant variability in excess of a factor of 2 in our sample stars.

---------------------------------------------------------
Title: Correlations of Coronal X-Ray Emission with Activity, Mass,
    and Age of the Nearby K and M Dwarfs
Authors: Fleming, Thomas A.; Schmitt, Juergen H. M. M.; Giampapa,
   Mark S.
1995ApJ...450..401F    Altcode:
  Using the ROSAT telescope, we have detected X-ray emission from 87%
  of all known K and M dwarfs within 7 pc of the Sun. Analysis of this
  volume-limited sample of K and M dwarfs reveals no evidence for a
  decrease in coronal heating efficiency (as measured by L<SUB>x</SUB>/L
  <SUB>bol</SUB>) among the lowest mass, presumably fully convective,
  late-M dwarfs. Furthermore, our results indicate that those stars which
  exhibit little chromospheric activity (i.e., dM and dK stars) do indeed
  have cooler and weaker coronae than the more active dMe stars. While
  we also see a correlation between coronal temperature/strength and
  metallicity (and presumably age), no such correlation is seen with
  kinematic class. The latter result leads us to suggest that kinematic
  class is a poor age indicator for the nearby stars.

---------------------------------------------------------
Title: An X-ray study of the young open cluster IC 2602.
Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer,
   J. R.
1995A&A...300..134R    Altcode:
  We present the results of ROSAT PSPC observations of the 30Myr old
  IC 2602 cluster; for the X-ray detected objects the results of a CCD
  photometric survey are also given. In X-rays, we detect a total of
  110 objects within a 11deg^2^ area, above a threshold of typically
  3-5x10^28^erg/sec. 68 of the detected objects have been identified with
  at least one optical counterpart; 44 of these are new optical candidates
  for cluster membership provided by our CCD photometry. Stars of all
  spectral types have been detected, from the very early- types to the
  late-M dwarfs. Soft X-ray luminosities range between about 10^29^erg/sec
  to a few 10^30^erg/sec, with the maximum and average L_X_ decreasing
  with spectral type for B-V larger than ~0.8. Many of the stars redder
  than B-V~0.8 show a L_X_/L_bol_ ratio at about the saturation level
  of 10^-3^. We construct X-ray luminosity distribution functions for
  objects in different color ranges and we compare them with those for
  the Pleiades. F, G, and early-K type candidates in IC 2602 appear to
  be more X-ray luminous than in the Pleiades, while no significant
  difference is seen among late-K and M dwarfs. Under the assumption
  that our IC 2602 sample is not severely affected by incompleteness,
  we argue that the above finding is related to the distribution of
  rotational velocities in the two clusters, with most of the late-type
  stars being fast rotators in both clusters, while, due to different
  spin-down timescales, the earlier type stars in IC 2602 are likely to
  rotate more rapidly than their counterparts in the Pleiades.

---------------------------------------------------------
Title: Long term X-ray variability studies of OB-type stars
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.
1995AdSpR..16c.163B    Altcode: 1995AdSpR..16R.163B
  In order to search for X-ray time variability among early-type stars we
  have investigated ROSAT X-ray data of OB-type stars. Here we present
  typical examples for ROSAT PSPC X-ray light curves of OB-type stars
  covering time scales of 24 hours up to 2.5 years. We show that X-ray
  variability is not common among these stars and discuss our result in
  the context of the model for the X-ray production by shock-heated gas
  present in the winds of these stars.

---------------------------------------------------------
Title: ROSAT All-Sky Survey Observations of the Hyades Cluster
Authors: Stern, Robert A.; Schmitt, Juergen H. M. M.; Kahabka, Peter T.
1995ApJ...448..683S    Altcode:
  We report the results of a complete X-ray survey of the Hyades cluster
  region using the ROSAT All-Sky Survey (RASS). Our survey covers
  over 900 deg<SUP>2</SUP> of the sky. Over 185 optically identified
  Hyads were detected down to a limiting X-ray luminosity of ≍1-2 ×
  10<SUP>28</SUP> ergs s<SUP>-1</SUP> (0.1-1.8 keV); among solar-like
  stars, i.e., mainsequence stars of spectral type G, the RASS detection
  rate is ≍90%. The presence of many binary systems in the cluster is
  a key factor influencing the X-ray luminosity function. Short-period
  (∼ a few days or less) binaries are anomalously X-ray bright, as
  might be expected; however, the X-ray luminosity functions of K and
  possibly M binaries of all types are significantly different from
  their single counterparts, confirming the results of Pye et al. for
  a smaller K star sample drawn from deep ROSAT pointings. Comparison
  with Einstein Observatory studies of a subset of Hyades stars
  demonstrates a general lack of significant (&gt; a factor of 2)
  long-term X-ray variability. This may be the result of the dominance
  of a small-scale, turbulent dynamo in the younger Hyades stars compared
  to the large-scale, cyclic dynamo observed in the Sun.

---------------------------------------------------------
Title: Multifrequency observations of a flare on UV Ceti.
Authors: Stepanov, A. V.; Fuerst, E.; Krueger, A.; Hildebrandt, J.;
   Barwig, H.; Schmitt, J.
1995A&A...299..739S    Altcode:
  Multifrequency observations of the flare of December 31, 1991 on UV
  Ceti are presented. The radio observations were carried out with the
  Effelsberg 100-m radio telescope at 4750MHz, whereas optical photometry
  was performed using the 0.8-m telescope of the Wendelstein Observatory
  in the five UBVRI colors. The radio burst started ~5min after the
  maximum of an optical flare. X-ray emission observed with the ROSAT
  PSPC before and after the optical flare conclusively demonstrates that
  an X-ray flare has occured. Several narrow-bandwidth radio spikes with
  duration of about 0.1s, peak flux density of 250mJy, and &gt;=75% LH
  polarization were recorded. An interpretation of the spikes in terms of
  electron-cyclotron maser emission (ECME) and, alternatively, coherent
  plasma emission is proposed. The flare plasma parameters obtained
  from radio and soft X-ray data are as follows: n_e_=~10^11^/cm-3,
  T_e_=~10^7^K, B=~(200-800)G. Using these values, the escape windows for
  ECME have been calculated at ν=4.75GHz. It has been shown that there
  is actually no "perpendicular" window for the ordinary mode at the
  second and third harmonics of the electron gyrofrequency. The optical
  flare's cross-section area and the temperature of the "cool" plasma
  were found to be 4x10^16^cm^2^ and 16000K, respectively. Possible
  reasons for the time delay between the optical and radio flares as
  well as stellar flare models are discussed.

---------------------------------------------------------
Title: Optical identification of EUV sources from the ROSAT Wide
    Field Camera all-sky survey
Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley,
   D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.;
   Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.;
   Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.;
   Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz,
   J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau,
   W.; Wonnacott, D.
1995MNRAS.274.1194M    Altcode:
  Optical identifications for 195 EUV sources located in the ROSAT Wide
  Field Camera all-sky survey are presented. We list 69 previously unknown
  EUV-emitting white dwarfs, 114 active stars, 7 new magnetic cataclysmic
  variables and 5 active galaxies. Several of the white dwarfs have
  resolved M-type companions, while five are unresolved white dwarf/M-star
  pairs. Finding charts are given for the optical counterparts.

---------------------------------------------------------
Title: Solar-Like M-Class X-Ray Flares on Proxima Centauri Observed
    by the ASCA Satellite
Authors: Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M.
1995Sci...268.1327H    Altcode:
  Because of instrumental sensitivity limits and stellar distances, the
  types of x-ray flares observable on stars have been intrinsically much
  more energetic than those on the sun. Such enormous events are a useful
  extrapolation of the solar phenomenon if the underlying assumption
  is correct that they form a continuous sequence involving similar
  physical processes as on the sun. The Advanced Satellite for Cosmology
  and Astrophysics (ASCA), with its greater sensitivity and high-energy
  response, is now able to test this hypothesis. Direct comparison with
  solar flares measured by the x-ray-monitoring Geostationary Operational
  Environmental Satellites (GOES) is possible. The detection of flares
  on Proxima Centauri that correspond to GOES M-class events on the sun
  are reported.

---------------------------------------------------------
Title: The Carina Nebula in - (Invited Paper)
Authors: Corcoran, M. F.; Swank, J.; Rawley, G.; Petre, R.; Schmitt,
   J.; Day, C.
1995RMxAC...2...97C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT Observations of Open Clusters: Recent Results
Authors: Prosser, C.; Stauffer, J.; Randich, S.; Schmitt, J.;
   Caillault, J. -P.; Stern, R.; Balachandran, S.
1995AAS...186.4913P    Altcode: 1995BAAS...27.1210P
  No abstract at ADS

---------------------------------------------------------
Title: A ROSAT X-ray study of the Praesepe cluster.
Authors: Randich, S.; Schmitt, J. H. M. M.
1995A&A...298..115R    Altcode:
  We present the results of ROSAT PSPC observations of the Praesepe
  cluster. 68 Praesepe candidates have been detected, above a threshold
  of =~2x10^28^erg/s, in the ~4x4deg area of the cluster covered by the
  observations. 56 out of the 68 detected objects are cataloged as high
  probability Praesepe members. Praesepe members of all spectral types
  have been detected with X-ray luminosities ranging from the sensitivity
  limit to approximately 10^30^erg/s in the ROSAT broad band. The highest
  X-ray luminosity has been measured for a very short period W UMa type
  SB2 binary. 2 out of the 4 Praesepe late-type giants have also been
  detected. X-ray luminosity distribution functions have been derived for
  late-type stars in the sample, taking into account both detections and
  upper limits. The main and most surprising finding are the low detection
  rates derived for Praesepe low mass dwarfs. We detected about 30% of
  the F and G stars, and the detection rate among K and M dwarfs is even
  lower. Correspondingly, the luminosity distribution functions for stars
  in selected color intervals are dominated by the contribution of upper
  limits, with the medians below the sensitivity threshold. The comparison
  with the Hyades all-sky survey results shows an evident discrepancy
  between the average X-ray properties of late-type dwarfs in the two
  apparently coeval clusters; such a discrepancy must be an intrinsic one,
  since the observations are characterized by similar sensitivities.

---------------------------------------------------------
Title: ROSAT survey observation of T Tauri stars in Taurus.
Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.;
   Wichmann, R.; Krautter, J.
1995A&A...297..391N    Altcode:
  We study the X-ray emission of T Tauri stars (TTS) in Taurus-Auriga
  as observed with the spatially unbiased flux-limited ROSAT All-Sky
  Survey. Our detection rates are comparable with Einstein Observatory
  results: 43 out of 65 (66%) weak-line TTS (WTTS) and 9 out of 79
  (11%) classical TTS (CTTS) exhibit X-ray emission above the ROSAT
  survey detection limit. Spectral fits give results consistent with
  Raymond-Smith spectra and emission temperatures of ~1keV for both
  CTTS and WTTS. However, we find that CTTS and WTTS have significantly
  different X-ray luminosity functions, even when correcting luminosities
  for individual X-ray spectra (absorption and emission energy). Medians
  of X-ray luminosities log (L_X_/erg/sec) are 29.701+/-0.045 for
  WTTS and 29.091+/-0.032 for CTTS, all in 140pc distance. A strong
  correlation between X-ray surface flux and stellar rotation indicates
  that WTTS are intrinsically more X-ray active than CTTS because
  WTTS rotate faster. However, rotation is not the only parameter that
  determines X-ray activity, we find that X-ray luminosity is correlated
  with stellar mass, bolometric luminosity, effective temperature, and
  stellar age. Furthermore, X-ray emission of CTTS appears to be harder
  than that of WTTS.

---------------------------------------------------------
Title: The spatial distribution of X-ray selected T-Tauri
    stars. I. Orion.
Authors: Sterzik, M. F.; Alcala, J. M.; Neuhaeuser, R.; Schmitt,
   J. H. M. M.
1995A&A...297..418S    Altcode:
  We establish a criterion for selecting low-mass, pre-main sequence
  star candidates from X-ray sources discovered in the ROSAT All-Sky
  Survey. X-ray properties and non-spectroscopic data (hardness ratios
  and X-ray to optical flux ratio) of 187 optically identified X-ray
  sources in the Orion star forming region are used as a training set for
  a non-parametric discrimination analysis. We show that high selection
  reliabilities of weak-line T-Tauri stars (wTTS) can be obtained with
  this method. We utilize the selection procedure to predict the large
  scale spatial distribution of TTS candidates in a 710deg^2^ field
  around the Orion SFR. Five significant surface density enhancements are
  identified, four of them are well matched with OB subgroup associations
  (OB1a, λ-Ori, OB1b, OB1c). A dispersion time of 2-10Myr can be derived
  from their spatial extent, consistent with the ages of the stellar
  component in these regions. We suspect a young stellar cluster in the
  vicinity of NGC 1788, where a high concentration of TTS candidates
  resides. The largest fraction of the predicted wTTS population is
  distributed widely over an area many times greater than that of the
  molecular gas. If these sources really are wTTS, they must be either
  much older than usually assumed or have a high velocity dispersion.

---------------------------------------------------------
Title: ROSAT X-ray observations of the stellar clusters in NGC 2023
    and NGC 2024.
Authors: Freyberg, M. J.; Schmitt, J. H. M. M.
1995A&A...296L..21F    Altcode:
  Soft X-ray emission (0.5-2.0keV) from the star forming regions
  of NGC 2023 and NGC 2024 was detected during pointed ROSAT PSPC
  observations. Nearly all emission from NGC 2024 can be resolved
  into numerous point sources, with a number density (&gt;103 per
  square degree) close to the confusion limit. An X-ray catalog of the
  central region of NGC 2024 is presented. Most of the sources appear
  to be highly absorbed (log(N_H_)~22[cm-2]) low-mass young stellar
  objects(log(L_X_)~29-31[erg/s), deeply embedded in the parent molecular
  cloud. In contrast to NGC 2024, the stellar cluster in NGC 2023 could
  not be detected in X-rays except for its most eastern member (NGC
  2023/S105), especially, the B1.5Vstar HD 37903 appeared much fainter
  than 'generic' early-type stars.

---------------------------------------------------------
Title: Stellar M-Flares Observed by ASCA on Proxima Centauri
Authors: Haisch, B.; Antunes, M.; Schmitt, J. H. M. M.
1995SPD....26.1307H    Altcode: 1995BAAS...27..988H
  No abstract at ADS

---------------------------------------------------------
Title: Discovering new weak-line T Tauri stars in Taurus-Auriga with
    the ROSAT All-Sky Survey.
Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.;
   Wichmann, R.; Krautter, J.
1995A&A...295L...5N    Altcode:
  We analyse ROSAT All-Sky Survey (RASS) observations of a ~10^3^deg2
  area including the Taurus-Auriga star forming region and its
  surroundings. The sample of low-mass pre-main sequence stars detected
  with the spatially complete flux-limited RASS consists mainly of
  weak-emission line T Tauri stars (WTTS). Two thirds of all RASS X-ray
  sources cannot be identified with known stellar or extragalactic
  counterparts. Based on the fraction of spectroscopically identified
  WTTS among a sample of previously unidentified RASS sources, we
  extrapolate a lower limit for the total number of WTTS in and around
  Taurus-Auriga: WTTS outnumber classical TTS by at least a factor of
  8. A selection criterion for WTTS candidates is established based
  on the low-resolution X-ray spectra of identified WTTS. We achive a
  selection reliability of 54%.

---------------------------------------------------------
Title: ASCA observations of X-ray flares on Proxima Centauri
Authors: Antunes, Alex; Haisch, B.; Schmitt, J. H. M. M.
1995AAS...186.2102A    Altcode: 1995BAAS...27..838A
  We present the ASCA observation of several flare events on Proxima
  Centauri during March 18-20 1994. Although the quiescent count rate of
  0.23 cts/sec was too low to unambiguously spot line features, flares
  were clearly distinguished with a higher count rate of approximately
  0.9 cts/sec. These are the first stellar flares observed to overlap
  with ordinary solar flares of class M on the GOES scale (Haisch,
  Antunes and Schmitt, 1995, Science, in press). We compared the
  quiescent data with the flare data, and fit the X-ray emission using
  two-temperature and differential emission measure plasma models. Unlike
  several coronal sources (for example, Algol, AR Lac), the models did
  not require sub-solar abundances. However, abundance determinations
  in the absence of clearly distinguishable lines were uncertain. The
  current results support the premise that the coronal X-ray emission
  is a result of the superposition of many flares.

---------------------------------------------------------
Title: First Detection of X-ray Variability of eta Carinae
Authors: Corcoran, M. F.; Rawley, G. L.; Swank, J. H.; Petre, R.;
   Schmitt, J. H. M. M.
1995AAS...186.2104C    Altcode: 1995BAAS...27..838C
  Recent ROSAT Position Sensitive Proportional Counter (PSPC) observations
  for the first time unequivocally reveal the presence of a compact source
  of hard X-ray emission centered on the peculiar star eta Carinae. These
  observations also show a dramatic change in the hard-band (E &gt;= 1.6
  keV) counting rate by ~ a factor of 2 in a 4-month interval. ROSAT High
  Resolution Imager (HRI) observations which span the PSPC observations
  also reveal a variable source of X-ray emission centered on eta
  Carinae. Thus strong variability which is a characteristic of eta
  Carinae in radio through IR and visible-band wavelengths is also
  observed at X-ray energies. The increase in hard X-ray emission could
  be the result of a tripling of the mass-loss rate in less than 4 months.

---------------------------------------------------------
Title: Coronal X-ray emission and rotation of cool main-sequence
    stars.
Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Schultz, M.; Ruediger,
   G.; Stepien, K.
1995A&A...294..515H    Altcode:
  We analyse the coronal X-ray emission of single main sequence stars
  of spectral type F through M with photometrically (CaII H+K or
  broad-band photometry) determined rotation periods, using X-ray data
  from the ROSAT all-sky survey. Our sample contains both field stars
  in the solar neighbourhood and members of the Pleiades and Hyades
  open clusters. Field stars and members of the two young open clusters
  follow the same rotation-activity relation, i.e., we find no intrinsic
  dependence of coronal activity on age. Assuming a power law relationship
  between coronal X-ray emission and stellar rotation, we estimate
  a power law index close to unity. With a high level of confidence
  (α=0.99), we find a qualitative change in behaviour around Rossby
  number values Ro=~1. For Ro&gt;1, coronal activity drops more rapidly
  with increasing Rossby number as for Ro&lt;1. Assuming an exponential
  relation between the L_X_/L_bol_ ratios and Rossby number, Ro=~1/3 is
  the characteristic Rossby number for a drop of X-ray activity.

---------------------------------------------------------
Title: Absorption of X-ray Emission of T Tauri Stars by Circumstellar
    Material
Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen
   H. M. M.
1995Ap&SS.224...93N    Altcode:
  The study of star forming regions (SFR) allows us to observe many young
  stellar objects with both the same metallicities and distances but
  with different masses. Because of its close distance (∼ 140pc)
  Taurus-Auriga is one of the best studied SFR with more than 100
  well-studied, low-mass, pre-main sequence stars, T Tauri stars
  (TTS). A motivation for studying X-ray emission of T associations is
  to understand the origin of X-rays and coronal activity. The large
  sample observed with the ROSAT All-Sky Survey (RASS) also enables us
  to compare different types of young stars. Other primary goals include
  star formation efficiency and the interaction of young stars with
  their intermediate environment (probed by absorption of X-rays). RASS
  detection rates are comparable withEinstein Observatory results: 43
  out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical
  TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong
  correlation between X-ray surface flux and stellar rotation indicates
  that WTTS are intrinsically more X-ray active than CTTS, because
  WTTS rotate faster. However, rotation is not the only parameter that
  determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS
  of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result
  is that CTTS and WTTS can be discriminated reliably by their X-ray
  spectral hardness ratios. X-ray emission of CTTS appears to be harder,
  partly because of circumstellar absorption. Spectral fits give results
  consistent with Raymond-Smith spectra and emission temperatures of ∼
  1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS
  have significantly different X-ray luminosity functions. Medians of
  absorption corrected X-ray luminosities (logL <SUB> X </SUB> in cgs
  units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS
  are intrinsically more luminous than CTTS, most likely because WTTS
  rotate on average faster than CTTS and are less absorbed. This paper
  concentrates on differences between CTTS and WTTS and indirect clues to
  be drawn from X-ray absorption and hardness ratios about circumstellar
  material around TTS.

---------------------------------------------------------
Title: X-ray emission of T Tauri stars in Taurus from ROSAT survey
    observations.
Authors: Neuhäuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.
1995Ap&SS.223..178N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Multifrequency Analysis of a UV Ceti Flare on 1991 December 31
Authors: Stepanov, A. V.; Fürst, E.; Krüger, A.; Hildebrandt, J.;
   Barwig, H.; Schmitt, J. H. M. M.
1995LNP...454...89S    Altcode: 1995flfl.conf...89S; 1995IAUCo.151...89S
  An analysis of optical, radio and X-ray observations of the flare of
  December 31, 1991 on UV Ceti is presented. Radio spikes at 4750 GHz
  are interpreted in terms of both ECM and plasma emission. Resulting
  parameters of the flare plasma are discussed.

---------------------------------------------------------
Title: A bright X-ray and radio corona on the F0V star 47 Cas?
Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O.
1995A&A...293L..49G    Altcode:
  X-ray and microwave observations of the nearby A7-F0V star 47 Cas
  reveal indications for extraordinarily strong coronal activity,
  characterised by X-ray and radio luminosities of L_X_=2.9x10^30^erg/s
  and L_R_=1.1x10^15^erg/s/Hz, respectively, and the presence of
  very strong X-ray flares. The rapidly rotating star is not known
  to possess a spectroscopic companion that may be held responsible
  for the observed emissions. Interpreting the X-ray modulation as
  rotational modulation and combining the value of the rotation period
  with the optically determined vsini, the stellar radius is found to
  be consistent with the photometrically determined radius. This may
  be the first non-interacting, early F V star discovered as a strong,
  nonthermal radio source. From kinematic arguments, 47 Cas is a likely
  member of the Pleiades Moving Group, and may thus be very young.

---------------------------------------------------------
Title: The ROSAT view of the massive eclipsing 0-type binary system
    29 UW Canis Majoris
Authors: Berghofer, T. W.; Schmitt, J. H. M. M.
1995IAUS..163..382B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Rotationally modulated X-ray emission on the young star P 1724?
Authors: Neuhäuser, R.; Preibisch, Th.; Alcalá, J. M.; Schmitt,
   J. H. M. M.
1995IAUS..176P.197N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The RIASS Coronathon: Joint X-Ray and Ultraviolet Observations
    of Normal F--K Stars
Authors: Ayres, Thomas R.; Fleming, T. A.; Simon, T.; Haisch, B. M.;
   Brown, A.; Lenz, D.; Wamsteker, W.; de Martino, D.; Gonzalez, C.;
   Bonnell, J.; Mas-Hesse, J. M.; Rosso, C.; Schmitt, J. H. M. M.;
   Truemper, J.; Voges, W.; Pye, J.; Dempsey, R. C.; Linsky, J. L.;
   Guinan, E. F.; Harper, G. M.; Jordan, C.; Montesinos, B. M.; Pagano,
   I.; Rodono, M.
1995ApJS...96..223A    Altcode:
  Between 1990 August and 1991 January the ROSAT/IUE All Sky Survey
  (RIASS) coordinated pointings by the International Ultraviolet Explorer
  (IUE) with the continuous X-ray/EUV mapping by the Roentgensatellit
  (ROSAT). The campaign provided an unprecedented multiwavelength
  view of a wide variety of cosmic sources. We report findings for
  F-K stars, a large proportion of the RIASS targets. Forty-eight of
  our 91 'Coronathon' candidates were observed by the IUE during the
  campaign. For stars missed by the IUE, we supplemented the ROSAT survey
  fluxes with archival UV spectra and/or follow-on observations.

---------------------------------------------------------
Title: X-raying the interstellar medium: ROSAT observations of dust
    scattering halos.
Authors: Predehl, P.; Schmitt, J. H. M. M.
1995A&A...293..889P    Altcode: 2009A&A...500..459P
  We have studied X-ray halos around 25 point sources and four supernova
  remnants using ROSAT observations. All sources were observed during the
  ROSAT all-sky survey, 8 point-like sources and 2 supernovae remnants
  have been studied additionally using ROSAT pointed observations. The
  shapes of the X-ray halos were fitted with commonly used dust models
  (e.g., the Mathis-Rumpl-Nordsiek grain size distribution), resulting
  in a determination of the fractional halo intensity, which in turn
  can be converted into a dust column density. From the simultaneously
  obtained X-ray spectra, the cold gas absorption and hence an equivalent
  hydrogen column was determined. A surprisingly good correlation
  exists between the simultaneously measured dust and hydrogen column
  densities, indicating that gas and dust must be to a large extent
  cospatial. For the X-ray sources with known optical counterparts,
  the visual extinction correlates well with the X-ray derived dust
  scattering optical depth τ_sca_: τ_sca_=0.087xA_v_(mag)xE(keV)^-2^
  and N_H_[cm^-2^/A_v_]=1.79x10^21^. The strong correlation between
  both quantities indicates that, with only few exceptions, intrinsic
  absorption by the X-ray source itself does not affect the derived
  absorption column densities. This method offers also the interesting
  possibility of verifying the optical identification of an X-ray source
  by using an X-ray property itself. In particular we find that for Cas
  A the optical extinction and the derived X-ray scattering are on the
  regression line but are too low for the observed absorption. Since Cas
  A's supernova was not observed optically, this supernova event must
  have been obscured by a local dust cloud. Finally, we have found a
  high degree of azimuthal symmetry in all the dust scattering halos of
  our sample, indicating, that the majority of dust grains responsible
  for the halo formation cannot be highly clumped in clouds.

---------------------------------------------------------
Title: The X-ray Universe
Authors: Schmitt, J. H. M. M.
1995fras.conf...69S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Röntgenemission und Aktivität kühler Sterne: Problemstellung
    und ROSAT Ergebnisse.
Authors: Schmitt, J. H. M. M.
1995Stern..71..323S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Coronal structure in CF Tuc
Authors: Kürster, M.; Schmitt, J. H. M. M.
1995IAUS..176P.200K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A dividing line between dM and dMe stars: X-ray surface fluxes
Authors: Mullan, D. J.; Fleming, T. A.; Schmitt, J. H. M. M.
1995IAUS..176P.210M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: EUVE Observations of Algol
Authors: Stern, R. A.; Lemen, J. R.; Schmitt, J. H. M. M.; Pye, J. P.
1994AAS...185.8516S    Altcode: 1994BAAS...26.1462S
  The EUVE satellite spectrometers observed the prototype eclipsing
  binary Algol over nearly 1.5 orbital periods. Effective exposure
  times were 100 ksec and 89 ksec in the short wave (70-180 Angstroms)
  and medium wave (140-370 Angstroms) channels. High temperature (up to
  20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall
  spectrum. In addition, a quiescent continuum is present which increases
  towards shorter wavelengths. Using synthesized spectra of optically
  thin line and continuum emission folded through the instrumental
  response, we have examined constraints on the [Fe/H] coronal abundance
  in Algol. We find that the coronal Fe is underabundant by factors of
  ~2--4 relative to solar photospheric values, unless an unreasonably
  large quantity of coronal plasma at T &gt; 30 MK is present in the
  quiescent spectrum. The latter possibility is, however, inconsistent
  with available X-ray data. Lightcurves of the high temperature EUV
  lines compared to line emission at He II 304 A show considerable
  differences, with much deeper minima present in the He II line during
  both primary and secondary eclipses. Toward the end of the observation
  a moderate flare lasting ~ 6 hours was detected in the high temperature
  Fe emission lines. This work was supported in part by NASA Contract
  NAS5-32492 and by the Lockheed Independent Research Program.

---------------------------------------------------------
Title: Coronal Loop Model Atmospheres for Low Mass Stars
Authors: Giampapa, M.; Rosner, R.; Kashyap, V.; Fleming, T.; Schmitt,
   J.; Bookbinder, J.
1994AAS...185.9807G    Altcode: 1994BAAS...26Q1480G
  We have constructed semi-empirical loop models that best fit key
  coronal parameters derived from ROSAT PSPC observations of selected
  low mass stars. The X-ray pulse-height distributions are represented
  by two dominant components. These include a soft component that is
  characterized by compact loop configurations with loop lengths that are
  one or more orders of magnitude smaller than the stellar radius. By
  contrast, two types of stable solutions can be found for the hard
  component, namely very long loops (much larger than a pressure scale
  height) with large filling factors, and very compact loops with very
  small filling factors. The “long" solutions are physically excluded
  since they violate stability criteria. We identify the “small"
  solutions with compact loop flares. The implications of these results
  for coronal structure and angular momentum evolution in low mass dwarfs
  will be discussed.

---------------------------------------------------------
Title: ASCA Observations of Solar-like M-flares on Proxima Centauri
Authors: Haisch, B.; Antunes, A.; Schmitt, J. H. M. M.
1994AAS...185.4505H    Altcode: 1994BAAS...26.1380H
  Stellar flares have been observed in the X-ray for twenty years, but
  the events must be much larger --- by as much as a factor of 10(4)
  --- than even the most energetic on the Sun in order to be detected
  across the enormous distances. While stellar “superflares” are of
  considerable interest, it is equally important to ascertain whether and
  with what frequency commonplace solar-like events occur on stars. This
  is an important test of the working hypothesis that we are dealing with
  scaled-up versions of the same physical phenomenon. The new Japanese
  ASCA satellite has now succeeded in this, observing very typical
  M-class solar-like flares on the next nearest star, Proxima Centauri.

---------------------------------------------------------
Title: A ROSAT Survey of Near-Contact Binary Systems
Authors: Shaw, J. S.; Caillault, J. -P.; Schmitt, J. H. M. M.
1994AAS...185.8506S    Altcode: 1994BAAS...26Q1460S
  We have conducted a survey of near-contact binary systems observed
  during the ROSAT All-Sky Survey (RASS). The near-contact binaries (NCBs)
  have an A- or F-type primary, with a companion which is one to two
  spectral types cooler. The systems have periods less than one day and
  display strong tidal interaction, but are not in contact like the W UMa
  systems. There are more than 150 such systems known to exist. We have
  analyzed the RASS data for all of those (58) within 400 pc. We report
  the detection of 14 systems with X-ray count rates &gt; 0.01 cts s(-1)
  . The X-ray luminosity function for the NCBs is very similar to that
  for A-type W UMa systems (derived, admittedly, from only a handful of
  EINSTEIN observations), but appears to be significantly different from
  those of W-type W UMa systems and RS CVn binaries. This is consistent
  with the proposed scenario that the NCBs are evolutionary precursors
  to the A-type W UMa binaries. The mean X-ray luminosity of the NCBs
  is log L_x = 29.3+/-0.1 ergs s(-1) , less than that of the RS CVns,
  but greater than that of normal late-type main sequence star s. The
  detection of these systems may help to explain why many presumably
  single A-type stars were detected in the RASS; i.e., the “single"
  A-stars may, in fact, be binaries, like the NCBs, with late-type
  companions. This research was supported in part by NASA Grants NAG
  5-1610 and NAG 5-2095 to the University of Georgia.

---------------------------------------------------------
Title: Are late B-type stars intrinsic X-ray emitters?
Authors: Berghofer, T. W.; Schmitt, J. H. M. M.
1994A&A...292L...5B    Altcode:
  In the ROSAT all-sky survey close to one hundred X-ray sources have
  been identified with late B-type stars of spectral type B7-B9. Previous
  X-ray observations have suggested that stars in this spectral range are
  devoid of X-ray emission. In order to study whether late B-type stars
  represent a new class of X-ray sources or whether the detected X-ray
  emission originates from a companion star we have selected a sample
  of known visual binaries, with a late B-type star as the primary and
  detected in the ROSAT all-sky survey, for follow-up observations with
  the ROSAT High Resolution Imager (HRI). In the first 8 systems studied
  with the HRI we could identify 6 late B-type stars and an Ap star as
  the X-ray source. Our observations cast doubts on the usual argument
  that in the case of an X-ray emitting late B-type star with a late-type
  companion, the X-ray emission always comes from the companion star.

---------------------------------------------------------
Title: Detection of EUV emission from the low activity dwarf HD 4628:
    evidence for a cool corona.
Authors: Mathioudakis, M.; Drake, J. J.; Vedder, P. W.; Schmitt,
   J. H. M. M.; Bowyer, S.
1994A&A...291..517M    Altcode:
  We present observations of low activity late-type stars obtained with
  the Extreme Ultraviolet Explorer (EUVE). These stars are the slowest
  rotators, and acoustic heating may dominate their outer atmospheric
  heating process. We report detection of EUV emission from the low
  activity K dwarf HD 4628 during the EUVE Deep Survey in the Lexan/boran
  band. This detection, in conjunction with the non-detection of this
  object in the ROSAT PSPC all-sky survey, suggests the existence of a
  cool corona with a characteristic temperature of less than 10^6^K. The
  flux and spectral signature are consistent with current theories of
  acoustic heating.

---------------------------------------------------------
Title: ROSAT X-Ray Light Curves of Early-Type Stars. A Search for
    X-Ray Time Variability of OB Stars
Authors: Berghoefer, Thomas W.; Schmitt, Juergen H. M. M.
1994Ap&SS.221..309B    Altcode:
  We have investigated ROSAT X-ray data of OB stars to search for evidence
  of time variability in the X-ray emission from early-type stars. As an
  example for such studies we present a detailed variability analysis
  for our two program starsσ Ori andζ Ori which have been multiply
  observed with ROSAT. The long-term analysis of both stars now covers
  a time range of 2.5 years and includes six pointed PSPC observations,
  an additional pointed HRI observation ofσ Ori and the ROSAT all-sky
  survey data of both stars. Over a long time range the X-ray light curves
  ofσ Ori andζ Ori show no evidence for variability. In the case ofζ
  Ori we detected a moderate increase in X-ray count rate during a period
  of 2 days which can be explained as a strong shock propagating in the
  wind of an O-type star.

---------------------------------------------------------
Title: VizieR Online Data Catalog: ROSAT study of Praesepe (Randish+,
    1995)
Authors: Randich, S.; Schmitt, J. H. M. M.
1994yCat..32980115R    Altcode:
  We present the results of the ROSAT PSC observations of the Praesepe
  cluster. 68 Praesepe candidates have been detected, above a threshold
  of ~2x10<SUP>+28</SUP>erg/s (2x10<SUP>21</SUP>W), in the ~4degx4deg
  area of the cluster covered by the observations. 56 out of the 68
  detected objects are cataloged as high probability Praesepe members. (3
  data files).

---------------------------------------------------------
Title: A long-term X-ray variability study of the O-type stars σ
    Orionis and ζ Orionis.
Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.
1994A&A...290..435B    Altcode:
  X-ray emission in early-type OB stars is thought to be generated
  by shock-heated gas in the radiatively driven wind of these
  stars. Calculations of the X-ray production for such a scenario depend
  on the underlying shock structures, especially the occurrence rate of
  shocks, cooling length and cooling time which directly influence the
  source location of the X-rays in the stellar wind. We present a detailed
  variability analysis of the available ROSAT data for our two program
  stars σ Ori and ζ Ori. The long-term analysis of both stars covers
  a time range of 3 years and includes seven pointed PSPC observations,
  an additional pointed HRI observation for σ Ori and the ROSAT all-sky
  survey data of both stars. In the case of σ Ori we find no evidence
  for variability on all analysed time scales. Over a long time range
  the timing analysis of the X-ray light curve of ζ Ori provides also
  no evidence for variability. Only during a period of 2 days (September
  23-25 1992) did we detect a moderate increase in X-ray count rate by
  ~ 15%.

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of Active Binary Coronae. I. Quiescent
Fluxes for the RS Canum Venaticorum Systems: Erratum
Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.;
   Schmitt, J. H. M. M.
1994ApJS...94..829D    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Spectroscopic Measurement of the Coronal Density of Procyon
Authors: Schmitt, J. H. M. M.; Haisch, B. M.; Drake, J. J.
1994Sci...265.1420S    Altcode:
  One of the open key issues in the astrophysics of stellar coronae is the
  determination of their spatial structure and density. From almost all
  previous measurements, one can infer merely the presence of a corona,
  which for the most energetic stellar coronae may exceed the solar x-ray
  output by as much as five orders of magnitude, but no information can be
  obtained on the densities and hence volumes and sizes of the hot x-ray
  emitting material. A direct spectroscopic measurement of the coronal
  density was obtained for the star Procyon with the spectrometer on
  board the Extreme Ultraviolet Explorer satellite; the ratio of two
  Fe XIV lines at 211.32 and 264.79 angstroms was used to determine
  a density of ~4 x 10^9 to 7 x 10^9 electrons per cubic centimeter,
  which is a factor of 2 to 3 higher than typical solar active region
  densities. From this value, we estimate that ~6 percent of the stellar
  surface is covered with ~7 x 10^4 coronal loops.

---------------------------------------------------------
Title: Doppler imaging with a CLEAN-like approach II. A photospheric
    image of AB Doradus (=HD 36705).
Authors: Kuerster, M.; Schmitt, J. H. M. M.; Cutispoto, G.
1994A&A...289..899K    Altcode:
  In an application of a new CLEAN-like algorithm for the Doppler
  imaging of late-type stars we present the first in our series of
  surface images of the young K0V star AB Dor (=HD 36705). This Doppler
  image results from our discovery of profile variations in photospheric
  CaI and FeI absorption lines. We find star spots concentrated near an
  active latitude of +25deg; one feature also extends towards higher
  latitudes. The reconstructed photospheric features appear as groups
  of small spots rather than as large individual spots. We discuss the
  reality of these groups on the basis of tests carried out on simulated
  data. We compare the two-temperature CLEAN image with a maximum entropy
  reconstruction of AB Dor's surface performed on the same data set. As
  an important test for the derived Doppler image we demonstrate its
  ability to predict the observed light curve which we have obtained from
  contemporaneous photometry. Furthermore, we demonstrate how Doppler
  imaging can be used to determine the stellar inclination.

---------------------------------------------------------
Title: ROSAT observations of star forming regions.
Authors: Krautter, J.; Alcalá, J. M.; Wichmann, R.; Neuhäuser, R.;
   Schmitt, J. H. M. M.
1994RMxAA..29...41K    Altcode:
  X-ray observations of star forming regions carried out by satellite
  observatories have provided us with new insights into the process of
  star formation. llere we summarize the main results obtained by the
  pioneering work with the Einstein satellite, followed by a presentation
  of new achievements by ROSAT, the German X-ray satellite. Although the
  evaluation of the ROSAT data is not completed yet, the ongoing ROSAT
  projects already have yielded some very interesting and new results
  which will be discussed here.

---------------------------------------------------------
Title: Spatially resolved X-ray and radio observations of Castor A+B+C
Authors: Schmitt, J. H. M. M.; Guedel, M.; Predehl, P.
1994A&A...287..843S    Altcode:
  We report on non-simultaneous X-ray (with the ROSAT HRI and PSPC)
  and radio observations (with the VLA) of the visual binary α Gem (=
  Castor A+B). Each component of this visual binary system is itself
  spectroscopic, with an A-type star as primary component. In our radio
  maps we clearly detect a source at the position of Castor A, but not
  at Castor B. Our X-ray observations confirm the previous detection of
  X-ray emission from the Castor A+B system, and indicate that Castor
  A, i.e., the radio source, is also the likely site of the X-ray
  emission. We examine in detail the hypothesis that both the X-ray
  and radio emission from Castor A come from the presumably late-type
  secondary, and show that this hypothesis encounters difficulties. If
  radio and X-ray emission came from the A-type primary, α Gem A would
  be one of the nearest X-ray and radio emitting A-type stars.

---------------------------------------------------------
Title: ROSAT X-Ray Sources in Orion Star Forming Region
Authors: Alcala, J. M.; Krautter, J.; Terranegra, L.; Schmitt,
   J. H. M. M.; Chavarria, C. K.; Covino, E.
1994RMxAA..29..209A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Röntgenemission und Aktivität kühler Sterne: Problemstellung
    und ROSAT-Ergebnisse.
Authors: Schmitt, J. H. M. M.
1994PhyBl..50..454S    Altcode: 1994PhB....50..454S
  No abstract at ADS

---------------------------------------------------------
Title: The First Measurement of Stellar Coronal Abundances: The
    Absence of the FIP Effect in the Corona of Procyon
Authors: Drake, J. J.; Laming, J. M.; Widing, K. G.; Schmitt,
   J. H. M. M.; Haisch, B.; Bowyer, S.
1994AAS...184.0522D    Altcode: 1994BAAS...26..866D
  The unique spectroscopic capabilities of the Extreme Ultraviolet
  Explorer satellite (EUVE), with wavelength coverage from 70--760
  Angstroms at a resolution of ~ 1 Angstroms, permit for the first time
  the scrutiny in the extreme ultraviolet wavelength regime of individual
  spectral lines emitted by the coronae of stars other than the Sun. We
  have performed a detailed analysis of the first EUVE spectroscopic
  observation of the nearby F5 IV star Procyon and have identified
  lines of the elements O, Ne, Mg, Si, S, Fe, and Ni. The emission
  measure distribution, derived from line intensities measured from the
  EUVE spectra and based on the most recent atomic data, has yielded
  estimates of the relative abundances of these elements in the corona
  of Procyon. The results indicate a total absence of a fractionation of
  elements by first ionization potential (FIP), contrary to such as is
  observed in the solar corona (the “FIP Effect”). These results are
  discussed, and the potential for future EUVE spectroscopic investigation
  into the new field of stellar coronal abundances is highlighted. This
  work has been supported by NASA contract NAS5-30180.

---------------------------------------------------------
Title: ROSAT All-Sky Survey Observations of X-Ray Variability in
    Cool Giant Stars
Authors: Haisch, Bernhard; Schmitt, J. H. M. M.
1994ApJ...426..716H    Altcode:
  We have identified 24 active late-type giant stars, including 11 RS CVn
  systems, with soft X-ray count rates high enough to allow the detection
  of statistically significant variability on a Roentgen Satellite
  (ROSAT) orbital timescale (96 minutes) as observed by the Position
  Sensitive Proportional Counter (PSPC) during the all-sky survey. Our
  sensitivity typically lies in the range of 10% - 25%, depending on the
  source count rate. Comparison is made to the daily, nonflare solar soft
  X-ray variability as observed by the Solrad satellites during solar
  minimum in 1969 and solar maximum in 1975. Seven of the 24 stars show
  significant variability; in two of these cases (HR 3922 and HR 8448)
  major flares were observed in which the peak count rate is enhanced by
  at least a factor of 3 above quiescent. While HR 3922 (G5 III) is not
  (yet) classified as an RS CVn star, its flare is more energetic (3 x
  10<SUP>31</SUP> ergs/s) than previously observed RS CVn flares. The
  apparently single giant HR 8167 (G8 III) also shows two flares. While
  one might expect to find an anticorrelation between saturated coronae
  and variability, we find no evidence of this: the two stars in our
  sample with the highest ratio of f<SUB>x</SUB>/f<SUB>v</SUB> both
  show variability. We also point out that Capella (G6 III + F9 III)
  is one of the stars manifesting variability.

---------------------------------------------------------
Title: Rotational modulation and flares on RS Canum Venaticorum and
    BY Draconis stars. XVIII. Coordinated VLA, ROSAT, and IUE observations
    of RS CVn binaries .
Authors: Fox, D. C.; Linsky, J. L.; Veale, A.; Dempsey, R. C.; Brown,
   A.; Neff, J. E.; Pagano, I.; Rodono, M.; Bromage, G. E.; Kuerster,
   M.; Schmitt, J. H. M. M.
1994A&A...284...91F    Altcode:
  As part of a coordinated program of multi-wavelength observations of
  RS CVn close binary systems, we observed 15 systems with the VLA and
  10 systems with IUE, simultaneously or nearly simultaneously with the
  ROSAT All Sky Survey observations of these stars. Of the 22 systems
  observed with ROSAT, three were observed both by IUE and the VLA. The
  principal aim of this program was to check the validity of the existing
  empirical correlations between the radio and soft X-ray emissions of
  their coronae, and between the chromospheric/transition region and
  coronal emissions. Previous studies of these correlations were usually
  based on nonsimultaneous observations and thus might be biased by source
  variability. Radio observations were made at 3.6, 6 and 20 cm. Of the
  15 observed RS CVn systems, we detected 11 with &gt;= 4 σ confidence at
  one or more wavelengths. The IUE observations were made within the RIASS
  (ROSAT-IUE All Sky Survey) program. We present the results of the VLA
  observations, along with the corresponding subsets of the ROSAT PSPC
  X-ray and WFC XUV survey, and RIASS IUE observations. We obtained an
  extended VLA/IUE/ROSAT simultaneous coverage of one system, TY Pyx,
  covering more than one orbital period. These observations reveal that
  the quiescent radio flux of TY Pyx is relatively constant over time
  scales of up to 7 hours, but that it did change by a factor of 3 over
  24 hours, probably due to a flare on 1990 Nov 12. The UV, XUV and X-ray
  fluxes do not show large day-to-day or phase-related variability. The
  observation of the decay phase of a radio flare on EI Eri, with no
  accompanying X-ray or XUV flare, suggests that the lack of a strong
  correlation between X-ray and radio flares previously noted for dMe
  flare stars holds for RS CVn systems as well. We suggest that the
  radio flare may have been due to a coherent emission process such as
  electron cyclotron emission. The simultaneous measurements presented
  here provide a unique test of the general correlation between radio
  and soft X-ray luminosities, L_radio_~L^m^_x_ (Drake et al. 1989)
  with a power-law slope close to unity, which was previously derived
  using data obtained years apart. Our derived slopes are consistent
  with and thus support the general correlations between coronal and
  chromospheric/transition region emissions previously derived from
  nonsimultaneous measurements of a much larger sample of these variable
  sources. However, the importance of simultaneous measurements for
  accurate energy balance calculations is stressed.

---------------------------------------------------------
Title: A long-duration X-ray flare on the RS Canum Venaticorum binary
    AR Lacertae observed with ROSAT.
Authors: Ottmann, R.; Schmitt, J. H. M. M.
1994A&A...283..871O    Altcode:
  The ROSAT X-ray satellite observed AR Lac with the proportional counter
  (PSPC; 0.1-2.4 keV) for 4 d in June 1990, covering the orbital phases
  0.9-2.9. At phase 1.6 a large flare event occurred, followed by two
  smaller events and an enhanced emission lasting at least over one
  orbital period at twice the preflare level. The large flare clearly
  exhibited two distinct rise phases, with the temperature as well as the
  derived electron density and gas pressure being maximal during a first,
  impulsive rise phase (T 88 MK, n<SUB>e</SUB> = 1.7 10<SUP>11</SUP>
  cm<SUP>-3</SUP>, p = 4.1 10<SUP>3</SUP> dyn cm<SUP>-3</SUP>). An
  increase of the hydrogen column density is not present during the whole
  rise phase. The large flare classified as two-ribbon represents one of
  the most energetic X-ray flares ever observed, showing a peak luminosity
  L<SUB>tot</SUB> = 2 10<SUP>32</SUP> erg s<SUP>-1</SUP> and a thermal
  energy E<SUB>tot</SUB> = 1.0 10<SUP>37</SUP> erg. Quasistatic modeling
  of the decay phase of the large flare results in a loop length of L =
  2.5 10<SUP>11</SUP> cm, which corresponds to a loop height H = 8.0
  10<SUP>10</SUP> cm. On the basis of the Alfvén travel time, the two
  smaller flares and the long-duration enhanced emission are expected
  not be triggered by the large flare. The long-duration enhancement
  may be associated with a large amount of emerging magnetic flux at
  the leading hemisphere of the G star.

---------------------------------------------------------
Title: ROSAT Observations of Stellar Flares
Authors: Schmitt, J. H. M. M.
1994ApJS...90..735S    Altcode: 1994IAUCo.142..735S
  X-ray observations of stellar flares obtained during the ROSAT all-sky
  survey as well as in the ROSAT pointing program are discussed. The
  ROSAT all-sky survey allowed -- for the first time -- an unbiased
  search for stellar flares among all types of stars. A fundamentally
  new result obtained is that flares can occur on all types of late-type
  stars, thus supporting the view that the X-ray emission from these
  stars is controlled by magnetic processes. Long-duration flares can
  be studied with the all-sky survey data particularly well, and an
  especially well-observed long-duration flare event on the flare star
  EV Lacertae is presented and discussed in detail. Finally, the issue
  of time variability on the shortest detectable timescales and the
  question of microflaring is discussed using ROSAT data from a pointed
  observation of UV Ceti.

---------------------------------------------------------
Title: ROSAT Observations of the Praesepe Cluster
Authors: Randich, S.; Schmitt, J. H. M. M.
1994ASPC...64..131R    Altcode: 1994csss....8..131R
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT All-Sky Survey Observations of MBM 40 &amp; MBM 55
Authors: Hearty, Thomas; Caillault, J. -P.; Magnani, Loris; Schmitt,
   J. H. M. M.
1994ASPC...64...92H    Altcode: 1994csss....8...92H
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT Results on Hot and Cool Stars (I)
Authors: Schmitt, J. H. M. M.
1994AIPC..313...24S    Altcode: 1994sxrc.conf...24S
  I will present selected highlights from ROSAT observations of stellar
  X-ray emission. Specifically I will discuss the dearth of X-ray emission
  among white dwarfs and new evidence for the occurrence of X-ray emitting
  shocks in the winds of early-type stars. Last I will focus on ROSAT
  observations of the eclipsing cool star binary systems AR Lac, Algol,
  YY Gem and α CrB and the resulting implications for coronal structure
  on these stars.

---------------------------------------------------------
Title: The Extreme Ultraviolet Coronal Spectrum of the Solar-Type
    Star chi 1 Orionis
Authors: Haisch, Bernhard; Drake, Jeremy J.; Schmitt, J. H. M. M.
1994ApJ...421L..39H    Altcode:
  We present an extreme ultraviolet coronal spectrum of the solar-type
  star chi<SUP>1</SUP> Ori (G0 V), one of the first spectra obtained as
  a guest observation using the Extreme Ultraviolet Explorer (EUVE). This
  star is younger and more active than the Sun. Since no large-scale flare
  activity was evident in the simultaneous deep-survey EUV photometry,
  we simulated the spectrum using a solar active region differential
  emission measure (DEM) together with the plasma emissivity code of Mewe,
  Gronenschild, &amp; van den Oord (1985). The spectral simulation was
  normalized to the soft X-ray flux (0.1-2.4 keV) observed during the
  ROSAT all-sky survey and also the EUVE all-sky survey Lexan/B filter
  count rate to generate predicted counts in spectral bins in order to
  identify lines and line blends in the observed spectrum. The difference
  between these two normalizations was found to be less than 20%. We
  also compare both the observed and simulated spectra to the Capella
  observations of Dupree et al. (1993). The accuracy of the emission code
  and of this spectral simulation is demonstrated by its excellent fit to
  the high signal-to-noise ratio data in the short-wavelength spectrum
  of Capella. For chi<SUP>1</SUP> Ori we conclude the following: (1)
  apart from the He II lines, we do not see many of the expected lines
  forming at log T less than or equal to 6.2; (2) in the range log T =
  6.3-6.8 we find reasonable agreement with a spectrum simulating the
  DEM of a solar active region; and (3) material appears to be present
  at temperature as hot as log T = 7.2 (Fe XXIV).

---------------------------------------------------------
Title: A Search for Radio Emission in the Alpha Persei Cluster.
Authors: White, S. M.; Prosser, C. F.; Schmitt, J. H. M. M.
1994ASPC...64..504W    Altcode: 1994csss....8..504W
  No abstract at ADS

---------------------------------------------------------
Title: X-Ray Emission from Chemically Peculiar Stars
Authors: Drake, S. A.; Linsky, J. L.; Schmitt, J. H. M. M.; Rosso, C.
1994ApJ...420..387D    Altcode:
  We have searched the Roentgen Satellite (ROSAT) All-Sky Survey
  (RASS) database at the positions of about 100 magnetic Bp-Ap stars
  of the helium-strong, helium-weak, silicon, and strontium-chromium
  subclasses. We detect X-ray sources at the positions of 10 of these
  stars; in four cases the X-ray emission presumably arises from an
  early-type companion with a radiatively driven wind, while we believe
  that the magnetic chemically peculiar (CP) star is the most likely
  X-ray source (as opposed to a binary companion) in at least three and
  at most five of the six remaining cases. The helium-strong stars have
  X-ray emission levels that are characteristic of the luminous OB stars
  with massive winds (log L<SUB>x</SUB>/L<SUB>bol</SUB> is about -7),
  whereas the He-weak and Si stars (which generally show no evidence
  for significant mass loss) have log L<SUB>x</SUB>/L<SUB>bol</SUB>
  values that can reach as high as about -6. In contrast, we find no
  convincing evidence that the cooler SrCrEu-type CP stars are intrinsic
  X-ray sources. We discuss the X-ray and radio emission properties
  of our sample of CP stars, and argue that both types of emission may
  be magnetospheric in origin; however, there is clearly not a simple
  one-to-one correspondence between them, since many of the magnetic stars
  that are detected radio sources were not detected as X-ray sources in
  the present survey.

---------------------------------------------------------
Title: X-ray properties of early-type stars
Authors: Berghofer, T. W.; Schmitt, J. H. M. M.
1994IAUS..162..200B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The X-Ray Luminosity Function of the Nearby K and M Dwarfs:
    Results from ROSAT
Authors: Fleming, Thomas A.; Schmitt, J. H. M. M.; Giampapa, Mark S.
1994ASPC...64...77F    Altcode: 1994csss....8...77F
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT All-Sky Survey Observations of the Hyades
Authors: Schmitt, J. H. M. M.; Stern, R. A.
1994ASPC...64..134S    Altcode: 1994csss....8..134S
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT Survey Observation of T Tauri Stars in Taurus
Authors: Neuhauser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.
1994ASPC...64..113N    Altcode: 1994csss....8..113N
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT survey sources in star formation regions
Authors: Alcalál, J. M.; Krautter, J.; Wichmann, R.; Schmitt,
   J. H. M. M.; Wagner, R. M.
1994LNP...431..285A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Time variability studies of the X-ray emission from hot stars.
Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.
1994AGAb...10...44B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Eclipsing X-Ray Binary alpha CrB
Authors: Schmitt, J. H. M. M.; Kurster, M.
1994ASPC...64..137S    Altcode: 1994csss....8..137S
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of BY Draconis Coronae
Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.;
   Schmitt, J. H. M. M.
1994ASPC...64...74D    Altcode: 1994csss....8...74D
  No abstract at ADS

---------------------------------------------------------
Title: The High-Energy View of the Nearby Star Procyon
Authors: Schmitt, J. H. M. M.; Haisch, B. M.; Drake, J. J.
1994HEAD...26...13S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: What is the origin of the X-ray emission from late B stars?
Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.
1994AGAb...10...74B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-Ray Emission of T Tauri stars
Authors: Neuhäuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.
1994cddp.conf..159N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Carina Nebula in X-rays
Authors: Corcoran, M. F.; Swank, J.; Rawley, G.; Petre, R.; Schmitt,
   J.; Day, C.
1994AIPC..313..159C    Altcode: 1994sxrc.conf..159C
  New ROSAT PSPC and HRI observations of the Carina Nebula region are used
  to examine the X-ray emission from the discrete sources as well as the
  diffuse hot gas in the Carina Nebula near Eta Carina. The spectral and
  spatial response of the PSPC allow analysis of the 0.1-2.4 keV spectra
  of all the bright point sources in the region and an examination
  of the spectral variation of the diffuse X-rays. Analysis of the
  diffuse emission shows that most of the emission comes from gas at a
  temperature of a few million degrees, but also indicates the presence
  of hot (4E7 K) diffuse gas in an 11 pc region around Eta Car. Eta
  Car shows a 3 component spectrum with temperatures of 1E6 and 4E7
  K. A 0.1×0.2 pc shell of X-ray emitting gas around Eta Car has been
  resolved by the HRI, and comparison of the Einstein HRI and ROSAT HRI
  images supports the suggestion that the soft components originate
  in the shell (which is unresolved by the PSPC) while the hottest
  gas is produced less than an arcsec from the optical star. Spectra
  of the bright O stars are characterized by 2 temperature components
  (1E7 K and 2E6 K) and generally show absorption columns larger than
  the interstellar column. PSPC and ROSAT HRI observations are used to
  examine the L<SUB>X</SUB>/L<SUB>bol</SUB> relation for hot stars in
  the field through the early-B spectral class.

---------------------------------------------------------
Title: X-Ray Emission vs. Rotation for Solar-Type Stars
Authors: Hempelmann, A.; Rudiger, C.; Schultz, M.; Schmitt,
   J. H. M. M.; Stepien, K.
1994ASPC...64...95H    Altcode: 1994csss....8...95H
  No abstract at ADS

---------------------------------------------------------
Title: Simultaneous Optical and ROSAT Soft X-Ray Observations of
    Impulsive Bursts on the Flare Star UV Ceti
Authors: Schmitt, J. H. M. M.; Haisch, Bernhard; Barwig, H.
1993ApJ...419L..81S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Impulsive Soft X-ray Bursts on the Flare Star UV Ceti
Authors: Haisch, B.; Schmitt, J. H. M. M.; Barwig, H.
1993AAS...18312303H    Altcode: 1993BAAS...25R1475H
  We report on a new and unexpected impulsive phenomenon during two
  stellar flares simultaneously observed in soft X-rays by the ROSAT
  Observatory and using ground-based, high-speed optical photometry at
  the Wendelstein Observatory in Bavaria, Germany. SXR bursts follow
  the U- and B-band events by approximately 30 s. We concentrate on
  the correlation of the optical and initial SXR bursts. Statistical
  analysis verifies the significance of these events. They may offer
  an unexpected window on the impulsive phase of stellar flares. This
  would be especially timely since the ASCA Observatory has just begun
  its mission and should be capable of observing stellar flares in some
  detail. While the precise physical implications of our observations
  remain unclear, we argue that our data show the signature of X-ray
  emission from the impulsive phase of a stellar flare rather than that
  of a microflare or a compact loop flare. The curious time relationship
  between the optical and SXR bursts may lend support to a gas-dynamic
  model proposed by Katsova and Livshits.

---------------------------------------------------------
Title: ROSAT PSPC Observations of MBM 40 and MBM 55
Authors: Hearty, T. J.; Caillault, J. -. P.; Magnani, L.; Schmitt,
   J. H. M. M.; Burrows, D. N.; Sanders, W. T.
1993AAS...183.1607H    Altcode: 1993BAAS...25.1315H
  We have analyzed ROSAT PSPC data in the regions of the translucent high
  latitude molecular clouds MBM 40 and MBM 55 in the hope of finding X-ray
  sources which might be tracers of recently formed pre-main sequence
  stars. Since small high density molecular cores have been found in
  these clouds, the possibility that these clouds may be forming low-mass
  stars is enhanced over those translucent molecular clouds without dense
  condensations. We have detected 18 X-ray sources from the ROSAT All-Sky
  Survey within a 15 square degree area centered on the IRAS 100microns
  contours of MBM 40 and 154 sources within a 112 square degree area on
  those of MBM 55. Deeper PSPC pointed observations ( ~ 7-9 ksec) of the
  high density cores in these clouds reveal 16 additional X-ray sources
  in MBM 40 and 16 additional X-ray sources in MBM 55. Our preliminary
  investigation indicates that 82 of these X-ray sources are either
  extragalactic or background or foreground stars. The remaining 122
  may be viable PMS candidates but follow-up optical spectroscopy is
  required to identify their true nature.

---------------------------------------------------------
Title: The Structure of the Coronae of dMe and dM Stars
Authors: Giampapa, M. S.; Schmitt, J. H. M. M.; Fleming, T. A.
1993AAS...183.1507G    Altcode: 1993BAAS...25.1314G
  We discuss results obtained from preliminary coronal loop model
  atmospheres developed on the basis of x-ray pulse-height spectra
  obtained with the ROSAT PSPC. The limited sample is comprised of both
  active dMe stars and quiescent dM stars. An intercomparison of the
  inferred coronal loop parameters for the active and the relatively quiet
  objects will be presented. As reported earlier (Giampapa et al. 1993;
  BAAS, 25, 824), two-temperature fits are required to adequately
  represent the x-ray properties of the dMe stars. In the case of the
  non-dMe stars, the coronal emission measure is dominated by a single,
  relatively soft component. Preliminary estimates of densities, filling
  factors and loop lengths that characterize these separate components
  which define the coronae of low mass dwarf stars will be discussed.

---------------------------------------------------------
Title: Surveying the Hyades with ROSAT
Authors: Stern, R. A.; Schmitt, J. H. M. M.; Kahabka, P. T.
1993AAS...18311001S    Altcode: 1993BAAS...25R1454S
  During the course of the ROSAT All Sky Survey (RASS), the ROSAT PSPC
  surveyed the entire Hyades cluster region, over 30(deg) times 30(deg)
  of the sky. Analysis of the RASS deta reveals over 180 probable or
  possible cluster members which are detected as X-ray sources with an
  X-ray luminosity L_x ga 1--2times 10(28) erg s(-1) . The detection
  rate for the F8-G8 (solar-type) stars is over 90%. All four Hyades
  giants are also detected in X-rays, two of which are among the X-ray
  brightest Hyads, and two are among the faintest. Many objects that
  are anomalously X-ray bright for their spectral type turn out to be
  close binaries, including some BY Dra systems. A comparison of 56
  Hyades members detected in both the present study and in the Einstein
  Observatory surveys over a decade ago indicates little evidence for
  long term variability beyond counting rate statistics, with the giant
  stars being notable exceptions. The main sequence variation in the
  X-ray luminosity function and its increasing dispersion for later
  spectral types will be discussed in the context of angular momentum
  evolution in open stellar clusters. R.A.S. was supported in part by
  NASA Contract NAS5-32070 and the Lockheed Independent Research Program.

---------------------------------------------------------
Title: ROSAT-detection of a giant X-ray flare on LkH-alpha 92.
Authors: Preibisch, Th.; Zinnecker, H.; Schmitt, J. H. M. M.
1993A&A...279L..33P    Altcode:
  We report the detection of a giant X-ray flare on the classical T Tauri
  star LkH-alpha 92 with the ROSAT Position Sensitive Proportional Counter
  (PSPC). In this flare the PSPC count rate rose by a factor of more
  than 100 in a time interval of about 2000 sec. Our X-ray observations
  cover most of the rise phase as well as part of the decay phase of
  the flare. We model the X-ray spectra obtained at different flare
  phases to determine temperature and emission measure of the flaring
  plasma. Combining the thus derived X-ray luminosity with the observed
  decay time scale of approximately = 7800 sec, we estimate the total
  energy release of the flare in the ROSAT PSPC band (0.1 - 2.4 keV)
  to be approximately = 4 x 10<SUP>36</SUP> erg, which is more than
  a factor of 10<SUP>4</SUP> greater than the energy release in the
  strongest solar flares and still more than a factor of 100 greater
  than that in typical fares on T Tauri stars.

---------------------------------------------------------
Title: A Spatially Resolved X-ray Image of a Star Like the Sun
Authors: Schmitt, J. H. M. M.; Kurster, M.
1993Sci...262..215S    Altcode:
  Observations made with the x-ray satellite ROSAT (Roentgen Satellite)
  have produced the first spatially resolved x-ray image of a corona
  around a star like our sun. The star is the secondary in the eclipsing
  binary system α Coronae Borealis (CrB), which consists of one star of
  spectral type A0V and one of type G5V. The x-ray light curve of α CrB
  shows a total x-ray eclipse during secondary optical minimum, with the
  G star behind the A star. The totality of the eclipse demonstrates that
  the A-type component in α CrB is x-ray dark and that the x-ray flux
  arises exclusively from the later-type companion. The x-ray eclipse
  ingress and egress are highly asymmetric compared with the optical
  eclipse, indicating a highly asymmetric x-ray intensity distribution
  on the surface of the G star. From a detailed modeling of the ingress
  and egress of the x-ray light curve, an eclipse map of the G star was
  constructed by a method based on an optimization by simulated annealing.

---------------------------------------------------------
Title: ROSAT all-sky X-ray survey of the core region of the Pleiades
    cluster.
Authors: Schmitt, J. H. M. M.; Kahabka, P.; Stauffer, J.; Piters,
   A. J. M.
1993A&A...277..114S    Altcode:
  We present the ROSAT all-sky survey observations of the core region
  of the Pleiades cluster. A total of 24 X-ray sources are detected
  and identified with known Pleiades members; 20 X-ray sources had
  already previously been detected as X-ray emitters with the Einstein
  Observatory, 3 objects represent new detections, the status of
  one object is unclear. We show that the Pleiades when viewed as a
  statistical ensemble of X-ray sources look identical in both the
  Einstein and ROSAT observations. However, inspection of the activity
  levels of individual stars shows that changes of more than one order of
  magnitude have occurred in some stars over a time scale of ten years;
  we present a statistical method to properly construct the distribution
  function for the data set consisting of the measured Einstein IPC and
  ROSAT PSPC count rate ratios, which contains detections and upper and
  lower limits simultaneously. We argue that the observed large-scale
  variations in X-ray flux are in general not due to rotational modulation
  or flare events, but may be signatures of cyclic activity. We also
  report the detection of an X-ray super flare on the rapidly rotating
  Pleiades star HII2O34.

---------------------------------------------------------
Title: The 0.1-2.5 keV X-ray spectrum of the O4f star dzeta Puppis.
Authors: Hillier, D. J.; Kudritzki, R. P.; Pauldrach, A. W.; Baade,
   D.; Cassinelli, J. P.; Puls, J.; Schmitt, J. H. M. M.
1993A&A...276..117H    Altcode:
  We have obtained a high quality ROSAT PSPC spectrum of the bright
  O4f star ζ Pup. Allowing for the wind X-ray opacity, as computed
  from detailed non-LTE stellar wind models of ζ Pup, and under the
  assumption that the X-rays arise from shocks distributed throughout
  the wind, we have been able to match the observed X-ray spectrum (0.1
  to 2.5keV). <P />The best model fit is obtained when He<SUP>++</SUP>
  recombines to He<SUP>+</SUP> in the outer regions of the stellar wind,
  as predicted by recent detailed cool wind model calculations. With a
  single temperature plasma, the best model fit indicates a temperature of
  log T<SUB>s</SUB>(K) = 6.5 to 6.6 corresponding to shock velocities
  of around 500 km s<SUP>-1</SUP>. A 2 temperature plasma yields
  a significantly improved fit, and indicates temperatures of log
  T<SUB>s</SUB>(K) = 6.2 and 6.7 for the 2 components. The hotter
  component accounts for 55% of the intrinsic (75% of the observed)
  X-ray flux. Due to absorption by the stellar wind, and to a minor
  extent stellar occultation, less than 5% of the total emitted X-ray
  flux escapes the star. The models require significant X-ray emission
  (particularly at energies less than 0.5 keV) from large radii (r &gt;
  100R<SUB>*</SUB>). <P />In models without recombination, the fits,
  even with a 2 temperature plasma, are unacceptable. A significant K
  shell absorption is predicted by these models, but is definitely not
  present in the observational data. The analysis suggests that the X-ray
  flux provides an invaluable diagnostic of the ionization of helium in
  the stellar wind of stars with low reddening.

---------------------------------------------------------
Title: A Tight Correlation between Radio and X-Ray Luminosities of
    M Dwarfs
Authors: Gudel, Manuel; Schmitt, Juergen H. M. M.; Bookbinder, Jay A.;
   Fleming, Thomas A.
1993ApJ...415..236G    Altcode:
  We present results of a survey of nonflare radio and X-ray properties of
  dM/dMe stars. This survey was obtained during the ROSAT All-Sky Survey
  and is accompanied by mostly simultaneous VLA observations. We find
  that the X-ray and radio luminosities are correlated over three orders
  of magnitude, L(R) is proportional to L(X), irrespective of spectral
  type. This result improves if strictly simultaneous observations are
  considered. This correlation points to a physical relation between
  the particle populations responsible for the two emissions.

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of Active Binary Coronae. II. Coronal
    Temperatures of the RS Canum Venaticorum Systems
Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Schmitt, J. H. M. M.;
   Fleming, T. A.
1993ApJ...413..333D    Altcode:
  We present the results from an analysis of X-ray spectra of 44 RS CVn
  systems obtained during the ROSAT All-Sky Survey with the Position
  Sensitive Proportional Counter (PSPC). Thermal plasma models with
  two temperature components are found to reproduce the observations
  better than single or continuous temperature models. We typically
  find that a bimodal distribution of temperatures centered near 2 x
  10 exp 6 and 1.6 x 10 exp 7 K fit the data best. We show that the
  PSPC temperatures agree well with those from similar low-resolution
  measurements, although differences exist, primarily due to differing
  detector bandpasses. After comparing coronal (either temperature
  or emission measure) characteristics with stellar parameters
  including rotation period and dynamo number, we find no compelling
  relationship. The height-integrated emission measures of the components
  in the two-temperature models, including a gravity term, are found to
  be well correlated with temperature.

---------------------------------------------------------
Title: A Study of the Spatial and Spectral Characteristics of the
    Corona of AR Lacertae
Authors: Ottmann, R.; Schmitt, J. H. M. M.; Kuerster, M.
1993ApJ...413..710O    Altcode:
  X-ray observations of the eclipsing RS CVn binary AR Lac covering both
  primary and secondary minimum, obtained with the position sensitive
  proportional counter (PSPC) on-board ROSAT, are presented. The X-ray
  light curves clearly show a deep primary eclipse in all three PSPC
  spectral bandpasses covering the bands 0.1-0.28 keV, 0.4-1.1 keV, and
  1.1-2.4 keV. A shallow secondary minimum occurring before phase 0.5 is
  seen in the total light curve. Phase-dependent spectral analysis is
  performed both with a two-temperature model as well as a hydrostatic
  loop model. During primary eclipse the emission measures of the low-
  and the high-temperature component drop, while the derived coronal
  temperatures show no orbital variation. The mean temperature values
  are 3 x 10 exp 6 K and 14 x 10 exp 6 K, respectively; in the context
  of the hydrostatic loop model, we find peak loop temperatures of 3.5
  x 10 exp 7 K. In order to localize the X-ray emitting regions on the
  stellar surfaces, a coronal emission region modeling is performed. Two
  best-fit models are obtained; both models require one prominent coronal
  feature on each star, a compact structure on the G star, and a more
  extended structure associated with the K star.

---------------------------------------------------------
Title: Stellar Coronae at the End of the Main Sequence: A ROSAT
    Survey of the Late M Dwarfs
Authors: Fleming, Thomas A.; Giampapa, Mark S.; Schmitt, J. H. M. M.;
   Bookbinder, Jay A.
1993ApJ...410..387F    Altcode:
  We present X-ray data, both detections and upper limits, from the ROSAT
  all-sky survey for most known M dwarfs later than type M5, as well as
  from selected ROSAT pointed observations of some of these stars. We
  compare these data with similar data for early M dwarfs in an attempt
  to probe the nature of the magnetic dynamo and coronal heating mechanism
  for the very late M dwarfs, which are presumably totally convective. Our
  results indicate that late M dwarfs can have coronae which are just
  as active as those for the early M dwarfs and that coronal heating
  efficiency for 'saturated' stars does not drop at spectral type M6.

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of Active Binary Coronae. I. Quiescent
    Fluxes for the RS Canum Venaticorum Systems
Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.;
   Schmitt, J. H. M. M.
1993ApJS...86..599D    Altcode:
  One hundred and thirty-six RS CV(n) active binary systems were observed
  with the ROSAT Position Sensitive Proportional Counter (PSPC) during the
  All-Sky Survey component of the mission. The entire sky was surveyed,
  which represents the largest sample of RS CV(n) systems observed to
  date at any wavelength, including X-rays. X-ray surface fluxes for
  the RS CV(n) systems are found to lie in the range 10 exp 4 to 10 exp
  8 ergs/sq cm seconds. Surface flux as a function of (B - V) color is
  reported. A decrease in surface flux with increasing rotation period
  for the entire sample is observed. The rotation period provides the
  best stellar or orbital parameter to predict the X-ray surface flux
  level. The absence of correlation of F(x) or L(x) with Gamma is noted
  due to the fact that the coronal heating mechanism for these active
  stars must be magnetic in character, and the magnetic field depends on
  the interaction between convection and differential rotation inside
  the star. X-ray properties of the RS CV(n) systems with 6 cm radio
  and C IV UV emission systems is compared.

---------------------------------------------------------
Title: The EUV Coronal Spectrum of chi (1) ORI (HR 2047, G0 V)
Authors: Haisch, B.; Drake, J.; Schmitt, J. H. M. M.
1993AAS...182.4115H    Altcode: 1993BAAS...25..862H
  We have carried out an 80 ks extreme ultraviolet observation of the
  active solar-like star chi (1) Ori using the Extreme Ultraviolet
  Explorer (EUVE) spectrograph. Based on its chromospheric activity
  level, this star appears to be quite young (see Haisch and Basri,
  1985, Ap. J. Suppl., 58, 179). Its X-ray luminosity as measured by
  the Einstein IPC (log L_x = 28.8) and the ROSAT PSPC (log L_x = 29.1)
  makes it a factor of ten more active than the Sun at solar maximum. We
  present the first EUV spectrum of an active solar-like star.

---------------------------------------------------------
Title: Coronal Structure of Late M Dwarf Stars
Authors: Giampapa, M. S.; Fleming, T. A.; Schmitt, J. H. M. M.
1993AAS...182.2205G    Altcode: 1993BAAS...25R.824G
  We present preliminary results of the analysis of x-ray pulse-height
  spectra of very late dwarf M stars as obtained with the ROSAT
  PSPC. The majority of the data are derived from a program of pointed
  observations. The limited sample is comprised of both active dMe
  stars and quiescent dM stars. The basic cornal properties are derived
  and compared among the dMe and dM stars in the sample. We find that
  two-temperature fits are required to account for the x-ray emission of
  dMe stars while single-temperature fits appear to adequately represent
  the x-ray properties of the non-dMe objects. In addition, we estimate
  emission measures and coronal loop parameters. The implications for
  coronal structure will be discussed. In particular, we suggest on the
  basis of these preliminary results that the coronae of low mass dwarfs
  are highly geometrically extended relative to the stellar radius. This
  may account for both the high absolute values of L_x and the high
  relative values, i.e., L_x /L<SUB>bol</SUB> , that characterize the
  x-ray emission levels of the dMe stars as compared to that of more
  nearly solar-type stars.

---------------------------------------------------------
Title: Strong Microwave Radiation from “Solar-Twin” GV Stars
Authors: Gudel, M.; Schmitt, J. H. M. M.; Benz, A. O.
1993AAS...182.4607G    Altcode: 1993BAAS...25..874G
  We report the detection of four solar-type main-sequence G stars
  as strong, steady 8.5 GHz VLA microwave sources. The targets were
  X-ray selected based on a previously reported relation between
  quiescent X-ray and microwave luminosities (L_X and L_R) of active
  stars. L_X was obtained from the ROSAT All-Sky Survey. The fluxes of
  the radio detections (6&lt;= sigma &lt;= 13) match our predictions
  within ~ 0.05 -- 0.2 dex (for age estimates, see references below):
  \begin{tabular}{lllllll} star &amp; spect. &amp; d(pc) &amp; flux (mJy)
  &amp; logL_R &amp; logL_X &amp; age (yrs) &amp; &amp; &amp; &amp; &amp;
  &amp; Gl 97 &amp; G1V &amp; 13 &amp; 0.28+/-0.035 &amp; 13.8 &amp;
  28.9 &amp; ~ 2* 10(9) Gl 755 &amp; G5V &amp; 19 &amp; 0.19+/-0.031
  &amp; 13.9 &amp; 29.4 &amp; ... Gl 559.1 &amp; dG0e &amp; 21 &amp;
  0.34+/-0.025 &amp; 14.3 &amp; 29.6 &amp; ~ 0.07* 10(9) HR 9107 &amp;
  G2V &amp; 29 &amp; 0.19+/-0.030 &amp; 14.3 &amp; 29.5 &amp; ~ 10*
  10(9) Gl 97 (see, e.g., Soderblom ApJS 53,1) and Gl 755 are single
  MS stars. Gl 559.1 is a very rapidly rotating, chromospherically
  extremely active young star probably just settling on the main sequence
  (Soderblom &amp; Clements AJ 93, 920; Elias &amp; Dorren AJ 100,
  818). A widely separated companion has been suspected (Duquennoy &amp;
  Mayor A&amp;A 248, 485), but we reason that the radio emission comes
  from the G star. The surprise detection is HR 9107, a metal-deficient,
  high space velocity, old-disk population star just leaving the MS
  (see Deliyannis et al. ApJS 73, 21). Brightness temperature estimates
  based on an optically thin plasma likely suggest nonthermal emission,
  probably gyrosynchrotron as on other active stars. These detections
  extend the dichotomy between active and inactive stars into the range of
  solar-type stars. We are currently proposing detailed investigations of
  these stars. This research is supported by the Swiss National Science
  Foundation, NASA, CU, and NIST; the NRAO VLA is supported by Associated
  Universities, Inc. and the US NSF.

---------------------------------------------------------
Title: ROSAT detection of stellar X-ray sources in the old open
    cluster M 67.
Authors: Belloni, T.; Verbunt, F.; Schmitt, J. H. M. M.
1993A&A...269..175B    Altcode:
  We have obtained a deep pointing on the old open cluster M 67 with the
  ROSAT PSPC. The detected X-ray sources show a strong concentration
  towards the optical cluster which leads us to believe that most of
  the sources are actually associated with M 67. In particular, our
  observation shows an X-ray counterpart for the cataclysmic variable
  recently discovered in M 67. Further, a larger fraction of the X-ray
  sources identified with M 67 cluster members are binaries as determined
  from optical studies, and we show that the X-ray properties of these
  stars make them good candidates for RS CVn systems in M 67.

---------------------------------------------------------
Title: ROSAT Observations of Late-Type Stars
Authors: Schmitt, J. H. M. M.
1993ASSL..183..327S    Altcode: 1993pssc.symp..327S
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observations in the Lupus star forming region.
Authors: Wichmann, R.; Krautter, J.; Alcalá, J. M.; Schmitt,
   J. H. M. M.; Covino, E.; Terranegra, L.; Mundt, R.; Sterzik, M.;
   Zinnecker, H.
1993AGAb....9..175W    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Stellar coronae at the end of the main sequence: A ROSAT
    survey of the late M dwarfs
Authors: Fleming, T. A.; Giampapa, M. S.; Schmitt, J. H. M. M.;
   Bookbinder, J. A.
1993STIN...9419794F    Altcode:
  X-ray data, both detections and upper limits, from the Rosat
  all sky survey for most known M dwarfs later than type M5 are
  presented. Selected Rosat pointed observations of some of these stars
  are included. These data are compared to similar data for early M dwarfs
  in an attempt to probe the nature of the magnetic dynamo and coronal
  heating mechanism for the very late M dwarfs, which are presumably
  totally convective. The results indicate that late M dwarfs can have
  coronae which are just as active as those for the early M dwarfs and
  that coronal heating efficiency for 'saturated' stars does not drop
  at spectral type M6.

---------------------------------------------------------
Title: ROSAT Detections of X-Ray Emission from Young B-Type Stars
Authors: Schmitt, J. H. M. M.; Zinnecker, H.; Cruddace, R.; Harnden,
   F. R., Jr.
1993ApJ...402L..13S    Altcode:
  We present first results of a series of pointings of the Rosat HRI at
  visual binaries consisting of a B-star with a later-type companion. The
  binaries selected for this study are very likely physical pairs. Dating
  of the B-type stars with respect to the zero-age main sequence, as
  well as spectroscopic observations of the late-type stars, provides
  evidence for the extreme youth of these systems with ages typically
  near or below 10 exp 8 yr. Surprisingly, the late-B component was in
  many cases detected as an X-ray source, in contrast to previous findings
  that X-ray emission among late-B field stars is rather uncommon.

---------------------------------------------------------
Title: Coronal Activity in Relation to Chromospheric Cycles and
    Stellar Rotation
Authors: Hempelmann, A.; Rüdiger, G.; Hildebrandt, G.; Schmitt,
   J. H. M. M.
1993ASSL..183..381H    Altcode: 1993pssc.symp..381H
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT All-Sky Survey of Active Binary Coronae: The RS
    CVn Systems
Authors: Dempsey, R. C.; Linsky, J. L.; Fleming, T. A.; Schmitt,
   J. H. M. M.; Kürster, M.
1993ASSL..183..361D    Altcode: 1993pssc.symp..361D
  No abstract at ADS

---------------------------------------------------------
Title: Correlation between Radio and X-ray Luminosities among
Late-Type Stars: A ROSAT-VLA Survey of M Dwarfs
Authors: Güdel, M.; Bookbinder, J. A.; Schmitt, J. H. M. M.; Fleming,
   T. A.
1993ASSL..183..383G    Altcode: 1993pssc.symp..383G
  No abstract at ADS

---------------------------------------------------------
Title: X-ray/Optical Survey of Late-Type Stars
Authors: Piters, A. J. M.; Schmitt, J. H. M. M.; Schrijver, C. J.;
   Baliunas, S.; Zwaan, C.; van Paradijs, J.
1993ASSL..183..377P    Altcode: 1993pssc.symp..377P
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT Observations of the Hyades
Authors: Pye, J. P.; Hodgkin, S. T.; Stern, R. A.; Schmitt,
   J. H. M. M.; Rosso, C.
1993ASSL..183..345P    Altcode: 1993pssc.symp..345P
  No abstract at ADS

---------------------------------------------------------
Title: X-ray emission of T Tauri Stars in Taurus.
Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen
   H. M. M.; Morfill, Gregor E.
1993AGAb....9..102N    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT observations of the stellar coronal dividing line.
Authors: Haisch, B.; Schmitt, J. H. M. M.
1993uxrs.conf..547H    Altcode: 1993uxsa.conf..547H
  The authors present an update on the results of the ROSAT X-ray All-Sky
  Survey observations of stellar sources presented by Haisch, Schmitt
  and Rosso (1991). In that paper the presence of a coronal dividing
  line in the H-R diagram at approximately spectral type K3 II to K3
  IV was established by the clear difference in distribution of the 65
  ROSAT detections vs. the 868 non-detections of BSC stars in the 70
  percent-complete survey. The remaining 30 percent of the survey has
  now been processed resulting in 31 additional detections of stellar
  coronae, all of which lie to the left of the dividing line.

---------------------------------------------------------
Title: Stellar Coronal EUV Emission Observed with the ROSAT Wide
    Field Camera
Authors: Brown, A.; Bromage, G.; Schmitt, J.; Ambruster, C.; Linsky,
   J. L.
1992AAS...181.8012B    Altcode: 1992BAAS...24.1251B
  The Wide Field Camera (WFC) on the ROSAT satellite conducted the first
  all-sky survey in the extreme ultraviolet (EUV) over the six month
  period beginning on 1990 July 30. Two survey filters were used peaking
  at 95 and 120 Angstroms . Many of the sources detected are coronal
  stars. We present detailed results from WFC survey data for a range of
  coronal stars, including a complete survey of the RS CVn systems in the
  Strassmeier catalog (40% detection rate), the EUV variability of the
  flare star EV Lac (including the largest flare seen by the WFC from a
  coronal source), the EUV rotation-activity relation for a homogeneous
  sample of single early K dwarfs, and WFC results forming part of the
  RIASS (ROSAT-IUE-All-Sky-Survey) campaign. This work is supported by
  NASA grant NAG 5-1792 to the University of Colorado.

---------------------------------------------------------
Title: Disappearance of coronal X-ray emission in stars with cool
    dense winds
Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Fabian, A. C.
1992Natur.360..239H    Altcode:
  THE Einstein Observatory survey of cosmic X-ray sources a decade
  ago showed that coronae were common among diverse types of star,
  and were in many cases more energetic than the Sun's corona. Such
  coronae seemed, however, to disappear abruptly across a 'dividing line'
  in the Hertzsprung-Russell (H-R) diagram describing the evolution of
  intermediate-mass stars towards the red giant phase<SUP>1-5</SUP>. Here
  we use results from the Rosat all-sky survey, which increases by
  an order of magnitude the number of X-ray stars, to show that
  the dividing line is not an artefact of poor sampling. Optical
  and ultraviolet observations show that the dividing line in the H-R
  diagram coincides approximately with the onset of cool, massive stellar
  winds<SUP>6-15</SUP>, but we show that these winds are not sufficiently
  dense for simple X-ray absorption to be the cause of the disappearance
  of coronal emission. We conclude, therefore, that the dividing line
  represents a true evolutionary transition in these stars, at which
  the hot coronae are replaced by cool winds.

---------------------------------------------------------
Title: First Results from ROSAT All-Sky Survey Observations of the
    Hyades Cluster
Authors: Stern, Robert A.; Schmitt, Juergen H. M. M.; Rosso, Cristina;
   Pye, John P.; Hodgkin, Simon T.; Stauffer, John R.
1992ApJ...399L.159S    Altcode:
  We present preliminary ROSAT all-sky survey results for the Hyades
  cluster. We detected 108 Hyades cluster members as X-ray sources
  with L(y) greater than about 3 x 10 exp 28 ergs/s. A number of
  short-period, chromospherically active binary systems and the giants
  Theta1 Tau and Gamma Tau are among the most X-ray-luminous objects in
  the cluster. The second brightest X-ray source, HR 1394 = 71 Tau = VB
  141, is a long-period lunar occultation binary. Seven cluster members
  were also seen in the Wide Field Camera EUV all-sky survey. Among the
  stars detected in both X-rays and EUV is the Hyades white dwarf EG 37
  (= VR 16), confirming an earlier serendipitous EXOSAT detection. We
  also report the first X-ray detection of the Hyades K0 giant Epsilon
  Tau, at roughly the survey limit. This new result establishes all four
  Hyades giants as X-ray emitters, although with an about 50:1 range in
  L(x). A comparison of Einstein and ROSAT data for three of the giants
  suggests that long-term X-ray variability, perhaps due to activity
  cycles, may be partly responsible for the wide dispersion in L(x).

---------------------------------------------------------
Title: The Stellar Coronal Dividing Line
Authors: Haisch, B.; Schmitt, J. H. M. M.
1992AAS...181.2308H    Altcode: 1992BAAS...24.1159H
  No abstract at ADS

---------------------------------------------------------
Title: A Lunar Occultation of the Dust-Scattering Halo Around GX
    5-1 Observed with ROSAT
Authors: Predehl, Peter; Schmitt, Juergen H. M. M.; Snowden, Steven
   L.; Truemper, Joachim
1992Sci...257..935P    Altcode:
  The x-ray source GX 5-1 in the galactic bulge has been observed with the
  position-sensitive proportional counter onboard the Rontgen satellite
  (ROSAT) during and after a lunar occultation. Extended emission around
  the source was unambiguously discovered while the central source was
  behind the lunar rim. This emission is interpreted as a dust-scattering
  halo around GX 5-1 that has a fractional intensity of 28 percent,
  implying a grain column density between GX 5-1 and Earth of ~3 x
  10<SUP>10</SUP> per square centimeter. The halo derived from imaging
  during the ROSAT all-sky survey is identical to that obtained from
  the lunar occultation, thus demonstrating that the ROSAT x-ray mirror
  scattering has not changed as compared with the mirror properties as
  measured in preflight calibrations.

---------------------------------------------------------
Title: ROSAT detection of stellar X ray sources in the old open
    cluster M67
Authors: Belloni, T.; Verbunt, F.; Schmitt, J. H. M. M.
1992STIN...9330578B    Altcode:
  The observations of M67 with the Rosat satellite are discussed. The
  detected x-ray sources show a strong concentration towards the
  optical cluster which leads to the belief that most of the sources are
  actually associated with M67. In particular, the observation shows an
  x-ray counterpart for the cataclysmic variable recently discovered
  in M67. A larger fraction of the x-ray sources identified with M67
  cluster members are binaries. It is shown that the x-ray properties
  of these stars make them good candidates for RS CVn systems in M67.

---------------------------------------------------------
Title: ROSAT observations in star forming regions.
Authors: Krautter, J.; Alcala, J. M.; Schmitt, J. H. M. M.; Wichmann,
   R.; Zinnecker, H.; Predehl, P.; Sterzig, M.; Wagner, R. M.; Mundt, R.
1992eocm.rept..187K    Altcode:
  An investigation to determine the number of WTTS (Weak line T
  Tauri Stars) and their spatial distribution, to study their physical
  properties, and to find possible differences between these parameters
  and the individual star forming regions is presented. An algorithm was
  used to cross correlate positions in the Simbad database with Rosat PSPC
  (Position Sensitive Proportional Counter). To identify the x ray sources
  without known optical counterparts, extensive spectroscopic observations
  were carried out. Results show that the WTTS are distributed over a
  much larger area than classical TTS, which tend to be concentrated near
  the cloud cores. This indicates that the WTTS may be useful in tracing
  the history of star formation in star forming regions, although the
  sample of WTTS is as yet too small to draw any further conclusion.

---------------------------------------------------------
Title: ROSAT X-Ray Observations of Hybrid Stars
Authors: Reimers, D.; Schmitt, J. H. M. M.
1992ApJ...392L..55R    Altcode:
  The paper reports on X-ray observations of four hybrid stars
  with the position-sensitive proportional counter (PSPC) on the
  Roentgensatellit. Three of the stars, Beta Ind, Mu UMa, and Gamma
  Aql were detected as X-ray sources for the first time. For one star,
  Gamma Aql, the detection is of low significance, while for the other two
  stars, Beta Ind and Mu UMa, enough counts were collected to accumulate
  for the first time for a hybrid star, a pulse height spectrum and
  perform a spectral analysis of the pulse height distribution. The
  dominant emission feature component for both stars is located at
  temperatures of log T about 6.4. The data are, however, of insufficient
  signal-to-noise ratio to assess the presence of even hotter temperature
  components or the possible self-absorption by the also present cool
  winds in these stars. For the remaining star in the sample, Iota Aur,
  a sensitive upper limit is reported.

---------------------------------------------------------
Title: ROSAT Images of the Pleiades and Alpha Persei Open Clusters
Authors: Stauffer, J.; Schmitt, J.; Caillault, J. -P.; Gagne, M.;
   Prosser, C.
1992AAS...180.2907S    Altcode: 1992BAAS...24..773S
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT sky survey observations of the eclipsing binary V
    471 Tauri.
Authors: Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye,
   J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S.
1992MNRAS.255..369B    Altcode:
  Rosat observations of the DA white dwarf + K2V binary system V471 Tauri,
  obtained during the sky survey phase of the mission, are presented. A
  lower amplitude shorter time-scale variability is seen in both the
  soft X-ray and EUV bands. This is associated with the white dwarf
  pulsations previously discovered by Exosat and also observed at
  optical wavelengths. The minimum in the EUV light curve is found to
  coincide with the maximum in the optical. This direct comparison of
  the phases of the optical and EUV pulses confirms the prediction made
  by an earlier indirect comparison and shows conclusively that the
  V471 Tau oscillations cannot arise from nonradial g-mode pulsations
  in the white dwarf. They are argued to be caused by rotation of the
  white dwarf with accretion-darkened magnetic poles. On the basis of
  the EUV and optical pulse shapes, the accretion geometry is studied,
  and it is estimated that the rate of accretion onto the white dwarf
  is about (4-11) x 10 exp -13 solar mass/yr.

---------------------------------------------------------
Title: ROSAT X-Ray All-Sky Survey Observations of Hybrid Stars
Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C.
1992ApJ...388L..61H    Altcode:
  Data from the Rosat All-Sky Survey for nine hybrid stars, objects
  showing spectroscopic evidence for cool massive winds and 500,000-K
  material, are presented. Two of the nine stars were detected above
  a limiting flux threshold of 2 x 10 exp -13 ergs/sq cm s. The K3 III
  star Delta And was detected just at this threshold. The K4 III star
  Alpha TrA was measured at 8 x 10 exp -13 ergs/sq cm s. Since these
  detections were made in both low- and high-energy bands of the Rosat
  0.1-2.4-keV passband, it is suggested that the emissions originate in
  coronae of about 10 exp 7 K.

---------------------------------------------------------
Title: The contributions of RS CVn systems to the diffuse X-ray
    background.
Authors: Ottmann, R.; Schmitt, J. H. M. M.
1992A&A...256..421O    Altcode:
  We present comprehensive calculations of the contribution of RSCVn
  binaries to the diffuse X-ray background. We consider luminosity
  distribution functions derived from both optically selected
  volume-limited and X-ray selected flux-limited samples, use the
  Bahcall-Soneira galaxy model to describe the spatial distribution of
  stars in the Galaxy, and take into account anisotropic absorption
  by the interstellar medium. Our principal results are that RSCVn
  binaries provide approximately 16 percent to the observed low-latitude
  background at intermediate X-ray energies, while in the 2-6 keV band
  their contribution to the total background amounts to about 6 percent,
  which however represents about a 27 percent contribution to the
  Galactic ridge excess emission. This additional stellar component thus
  helps to fill up the absorption dip in the extragalactic background
  produced by absorption in the Galaxy and to isotropize the total M
  band background. However, our models of RSCVn systems are unable to
  account for the iron line observed in the Galactic ridge.

---------------------------------------------------------
Title: X-ray detection of Nova Herculis 1991 five days after optical
    outburst
Authors: Lloyd, H. M.; O'Brien, T. J.; Bode, M. F.; Predehl, P.;
   Schmitt, J. H. M. M.; Truemper, J.; Watson, M. G.; Pounds, K. A.
1992Natur.356..222L    Altcode:
  CLASSICAL nova outbursts are thought to occur in binary systems in
  which a white dwarf accretes material from a main-sequence dwarf. The
  outburst is due to thermonuclear runaway in the accreted material, and
  results in the ejection of about 10<SUP>-5</SUP>-10<SUP>-4</SUP> solar
  masses of material at velocities of up to several thousand kilometres
  per second (ref. 1). Previous X-ray observations of classical novae
  in the early stages of outburst have resulted only in upper limits
  to the X-ray flux<SUP>2-4</SUP>. Here we report a positive detection
  by the Rosat satellite of X-ray emission from Nova Herculis 1991 five
  days after its optical discovery. Standard nova models predict X-ray
  emission to arise directly from nuclear burning on the surface of the
  white dwarf, and suggest that X-rays should not be seen until later
  in the outburst<SUP>5</SUP>. We argue that the emission from Nova Her
  1991 comes from hot, shocked circuin-stellar material, which may be
  the ejected material itself or preexisting circumstellar matter. In
  either case, however, the required density of material is higher than
  models of nova binary systems would suggest.

---------------------------------------------------------
Title: First ROSAT All-Sky Survey X-Ray Light Curves of Active Stars
Authors: Kurster, M.; Schmitt, J. H. M. M.; Fleming, T. A.
1992ASPC...26..109K    Altcode: 1992csss....7..109K
  No abstract at ADS

---------------------------------------------------------
Title: Stellar X-Ray Variability as Observed with the ROSAT XRT.
Authors: Schmitt, J. H. M. M.
1992RvMA....5..188S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: First stellar results from the ROSAT XRT.
Authors: Schmitt, J. H. M. M.
1992MmSAI..63..563S    Altcode:
  The paper presents first results of the Rosat XRT observations of
  late-type stars. The main properties of the all-sky survey made with
  the Rosat XRT are examined, and its stellar content is discussed in the
  context of the overall X-ray source population. Particular attention
  is given to the coronal dividing line, the problem of local absorption
  of the X-ray emission in O-type stars, and the Rosat X-ray observations
  of the RS CVn system AR Lac.

---------------------------------------------------------
Title: First Results from a Coordinated ROSAT; lUE; VLA Study of RS
    CVn Systems
Authors: Linsky, J. L.; Fox, D.; Brown, A.; Dempsey, R.; Schmitt,
   C.; Schmitt, J. H. M. M.; Fleming, T.; Rodono, M.; Pagano, I.; Neff,
   J. E.; Bromage, G.
1992ASPC...26..106L    Altcode: 1992csss....7..106L
  No abstract at ADS

---------------------------------------------------------
Title: ROSAT Observations of Late-Type Stars (Invited Review)
Authors: Schmitt, J. H. M. M.
1992ASPC...26...83S    Altcode: 1992csss....7...83S
  No abstract at ADS

---------------------------------------------------------
Title: LUE; ROSAT Survey Observations of Symbiotic Stars
Authors: Stencel, R. E.; Brugel, E. W.; Kenyon, S. J.; Bickert, K. F.;
   Fleming, T. A.; Schmitt, J. H. M. M.
1992ASPC...26...46S    Altcode: 1992csss....7...46S
  No abstract at ADS

---------------------------------------------------------
Title: The Moon in the ROSAT all-sky survey: a monitor of the solar
    X-ray flux.
Authors: Freyberg, M. J.; Schmitt, J. H. M. M.; Snowden, S. L.
1992AGAb....7..154F    Altcode:
  During the ROSAT All-Sky Survey (July 1990 to January 1991) the Moon
  was observed approximately every 14 days with the Position Sensitive
  Proportional Counter PSPC in two or three consecutive orbits,
  alternating as waning and waxing half moons. This is due to the
  observation geometry, with the look direction pointing perpendicular
  to the direction of the Sun. In general, these observations were taken
  under almost night time conditions. The X-ray flux observed from the
  Moon is mainly due to solar X-rays scattered off the lunar surface
  and therefore monitors the solar X-ray flux in the ROSAT energy band
  (0.07 - 2.4 keV). Since the solar X-ray flux is not known a priori,
  a solar monitor is required for calibrating the incident solar X-ray
  flux and to compute the amount of solar X-rays scattered in the Earth's
  atmosphere. <P />We present lunar X-ray lightcurves in three energy
  bands (I: 0.08 - 0.4 keV, II: 0.4 - 0.9 keV, III: 0.9 - 2.0 keV). In
  band I we clearly see the effect of the solar rotation by comparing
  the measured X-ray flux with the solar radio flux at 10.7 cm. The data
  of band II and band III differ in that these are affected by single
  events like solar flares which is indicated the the GOES hard X-ray
  data (1.5 - 25 keV). Besides these events the data is compatible with
  a constant or slowly increasing solar flux. The obtained solar flux
  fits quite well with the calibration done at scan reversals (daytime -
  nightime observations of nearly the same part of the sky).

---------------------------------------------------------
Title: X-ray emission from age-dated post-T Tauri stars.
Authors: Zinnecker, H.; Kunkel, M.; Schmitt, J. H. M. M.
1992AGAb....7..102Z    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT all-sky survey maps of the cosmic X-ray background.
Authors: Freyberg, M. J.; Snowden, S. L.; Plucinsky, P. P.; Schmitt,
   J. H. M. M.
1992AGAb....7...26F    Altcode:
  We present here the maps of the Cosmic X-ray Background (CXRB) as
  observed with the Position Sensitive Proportional Counter (PSPC) aboard
  the Roentgensatellite ROSAT. The ROSAT ALl-Sky Survey was perfomed from
  30 July 1990 to 23 January 1991 and from 3 August 1991 to 12 August 1991
  in great circles across the ecliptic poles. In generak, the exposure is
  higher at higher ecliptic latitudes; it is a strongly varying function
  of the sky coordinates due to detector turn-offs at the radiation belts
  and the South Atlantic Anomaly. For our analysis the energy range of
  the PSPC was divided into three bands (0.12 - 0.5 keV, 0.5 - 0.9 keV,
  0.9 - 2.0 keV, respectively) to study spectral features of the CXRB. The
  spatial resolution element of the final maps was chosen as 1.6' x 1.6',
  the maps presented here have 40' x 40', in order to avoid confusion
  by unresolved point sources. Contaminations were identified mainly to
  originate from solar X-rays scattered off the Earth's atmosphere and
  from charged particles. Additionally, there are enhancements of the
  measured X-ray flux on different timescales, from one minute to one day
  (e.g., auroral enhancements close to the radiation belts, long-term
  enhancements lasting for several full orbits). In the data reduction
  process the contribution of each background component is modeled
  separately to allow a study of these components and to allow an easy
  change in case of improved models or data. With its present spectral
  and spatial resolution the maps of the CXRB are an ideal tool to
  study X-ray shadows by foreground clouds cast onto background emission
  volumes. Another application is to search for interstellar bubbles (~
  10°), made by stellar hot winds and shocks. Examples are presented.

---------------------------------------------------------
Title: Stars in the ROSAT all-sky survey
Authors: Schmitt, J. H. M. M.
1992HiA.....9..235S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Stars in the ROSAT all-sky survey
Authors: Schmitt, J. H. M. M.
1992rrgo.conf...18S    Altcode:
  The stellar content of the ROSAT all sky survey and the analysis of
  the data are addressed. The total number of X-ray sources is expected
  to be around 60,000. Preliminary results are discussed. The X-ray
  emitting late type stars are commonly referred to as 'active' stars,
  and the ROSAT catalog will comprise the most extensive list of such
  objects. The scatter of active and inactive stars, X-ray observations of
  young galactic clusters, PSPC (Position Sensitive Proportional Counter)
  pulse height spectra of active stars, and all sky survey lightcurves
  of stellar coronae, are discussed.

---------------------------------------------------------
Title: ROSAT observations in star forming regions.
Authors: Krautter, J.; Alcalá, J. M.; Schmitt, J. H. M. M.; Wichmann,
   R.; Mundt, R.; Predehl, P.; Sterzig, M.; Wagner, R. M.; Zinnecker, H.
1992AGAb....7..113K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray observations of stars: first results from ROSAT
Authors: Schmitt, J. H. M. M.
1992HiA.....9..655S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A New Approach to Doppler Imaging of Late-type Stars
Authors: Kürster, M.; Schmitt, J. H. M. M.
1992LNP...397...69K    Altcode: 1992sils.conf...69K
  No abstract at ADS

---------------------------------------------------------
Title: The Nature of the Dynamo at the End of the Main Sequence:
    A ROSAT Survey of the Late M Dwarfs
Authors: Fleming, T. A.; Giampapa, M. S.; Schmitt, J. H. M. M.;
   Bookbinder, J. A.
1992ASPC...26...93F    Altcode: 1992csss....7...93F
  No abstract at ADS

---------------------------------------------------------
Title: Mission planning with ROSAT.
Authors: Snowden, S. L.; Schmitt, J. H. M. M.
1992daia.conf..121S    Altcode:
  The mission planning activities for the satellite bourne X-ray
  observatory ROSAT are discussed. Responsibility is shared between
  the Max Planck Institute for Extraterrestrial Physics (MPE), which
  provides the sientific and calibration program input, and the German
  Space Operations Center (GSOC), whose responsibility it is to generate
  a mission timeline satisfying all operational constraints. An optimum
  solution for the mission timeline is achieved using an efficient
  networking procedure.

---------------------------------------------------------
Title: The Coronal Dividing Line in the ROSAT X-Ray All-Sky Survey
Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C.
1991ApJ...383L..15H    Altcode:
  Rosat All-Sky Survey soft X-ray observations of nearly 1000 bright
  single evolved stars of spectral types G, K, and M in the vicinity
  of the dividing line proposed by Linsky and Haisch (1979) are
  reported. Most observations consist of upper limits in the 0.1-2.0-keV
  band distributed between 604 stellar targes of spectral type K3 or
  earlier and 264 stellar targets of spectral type K4 or later. Of
  the 65 Rosat detections, only one involves an apparently single star
  of spectral type later than K3: HR 4289 (K5 III). A clear dichotomy
  exists between coronal and noncoronal stars of luminosity classes II,
  III, and IV at approximately spectral type Ke. The extremely low upper
  limit for the archetypal 'noncoronal' red giant, Arcturus, less than
  3 x 24 exp 25 ergs/s achieved by Rosat during an 18.6-ks targeted
  observations by Ayres et al. (1991) indicates a very steep decline at
  the coronal dividing line.

---------------------------------------------------------
Title: A Preliminary Look at the Soft X-Ray Diffuse Background from
    the ROSAT All-Sky Survey
Authors: Snowden, S. L.; Plucinsky, P. P.; McCammon, D.; Freyberg,
   M. J.; Schmitt, J. H. M. M.; Trüumper, J.
1991BAAS...23.1400S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Digging in the Coronal Graveyard: A ROSAT Observation of the
    Red Giant Arcturus
Authors: Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen
   H. M. M.
1991ApJ...376L..45A    Altcode:
  A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with
  the Roentgensatellit (Rosat) failed to detect soft X-ray emission from
  the archetype 'noncoronal' red giant. The 3-sigma upper limit in the
  energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than
  3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density
  of less than 0.0001 solar. The nondetection safely eliminates coronal
  irradiation as a possible mechanism to produce the highly variable He
  I 10830 feature and emphasizes the sharp decline in solarlike coronal
  activity that accompanies the evolution of low-mass single stars away
  from the main sequence. While the most conspicuous object in the Rosat
  field of view was not visible in X-rays, at least one fainter star is
  among the about 60 sources recorded: the Sigma Sct variable CN Boo,
  an A8 giant in the UMa Stream.

---------------------------------------------------------
Title: ROSAT observations of the X-ray halo around GX 339-4.
Authors: Predehl, P.; Braeuninger, H.; Burkert, W.; Schmitt,
   J. H. M. M.
1991A&A...246L..40P    Altcode:
  A systematic investigation is discussed of X-ray haloes around
  bright galactic sources observed during the Rosat All-Sky Survey. The
  halo around the galactic center source GX339 - 4 is discussed. Both
  the Mathis-Rumpl-Nordsiek (MRN) as well as the Oort-van der Hulst
  (OHV) grain-size distributions allow acceptable fits to the data
  but only under the assumption of an inhomogeneous grain distribution
  along the line of sight. The spatial dust concentration found is in
  excellent agreement with galactic dust-cloud models derived from optical
  extinction measurements. Grains with sizes between 0.04 micron and 0.25
  micron (MRN) or 0.04 micron and 0.6 micron (OHV), respectively, produce
  the correct halo shape. The fractional halo intensity of 9.9 percent
  at 1.1 keV is consistent with that found in previous investigations
  and leads to grain column density of about 4.8 x 10 to the 9th/sq cm.

---------------------------------------------------------
Title: Beta Crateris : another Sirius system in the solar
    neighborhood.
Authors: Fleming, T. A.; Schmitt, J. H. M. M.; Barstow, M. A.; Mittaz,
   J. P. D.
1991A&A...246L..47F    Altcode:
  The star Beta Crt (A2 IV; mv = 4.48) has been detected in the Rosat
  all-sky survey. The Rosat X-ray and EUV data in conjunction with
  already published optical data suggest that the source of the X-ray
  emission is not the A star Beta Crt A, but rather a hitherto unknown
  white dwarf companion Beta Crt B, just like the well-known case of
  Sirius A and B. However, unlike Sirius B, Beta Crt B is too close to
  its primary to be resolved and/or studied optically. The temperature
  and atmospheric composition of the white dwarf companion are estimated
  and the similarities between this system and Sirius is discussed.

---------------------------------------------------------
Title: A ROSAT glance at the galactic plane.
Authors: Motch, C.; Belloni, T.; Buckley, D.; Gottwald, M.; Hasinger,
   G.; Pakull, M. W.; Pietsch, W.; Reinsch, K.; Remillard, R. A.; Schmitt,
   J. H. M. M.; Trumpler, J.; Zimmermann, H. -U.
1991A&A...246L..24M    Altcode:
  As part of the all-sky survey, the Rosat satellite has carried out
  the first complete scan of the galactic plane. Results obtained
  from sample areas located in the direction of the Perseus arm of
  the Galaxy are reported and amount to about 200 sq deg, a surface
  comparable to that of the entire Einstein galactic plane survey. A
  total of 225 X-ray sources are detected. Based on cross-correlations
  with large astronomical catalogs and optical observations of a subset
  of the sources preliminary conclusions are given regarding the X-ray
  content of the Milky Way and illustrate the different kinds of emitters
  contributing to the galactic emission. The discovery of a new Be/X-ray
  system in the open cluster NGC 663 is also reported.

---------------------------------------------------------
Title: The boron filter for the ROSAT X-ray telescope
Authors: Stephan, K. -H.; Schmitt, J. H. M. M.; Snowden, S. L.; Maier,
   H. J.; Frischke, D.
1991NIMPA.303..196S    Altcode:
  We have developed multilayered films composed of boron carbide and
  carbon, which serve as spectral filters in the focal plane of the
  Wolter type I X-ray telescope on board the X-ray astronomy satellite
  ROSAT (Röntgensatellit). We describe the manufacturing process and
  qualification measurements of the filters and present the resulting
  performance data. Finally the pulse height spectrum of the active star
  AR Lac observed by ROSAT with and without boron filter will be shown.

---------------------------------------------------------
Title: Nova Herculis 1991
Authors: Predehl, P.; Schmitt, J. H. M. M.; Trumper, J.; O'Brien,
   T. J.; Lloyd, H. M.; Bode, M. F.; Watson, M. G.; Pounds, K. A.
1991IAUC.5278....1P    Altcode:
  P. Predehl, J. H. M. M. Schmitt and J. Trumper, Max-Planck- Institut fur
  Extraterrestrische Physik; T. J. O'Brien, H. M. Lloyd and M. F. Bode,
  Lancashire Polytechnic; and M. G. Watson and K. A. Pounds, Leicester
  University, communicate: "This nova was observed with the XRT/PSPC of
  ROSAT on Mar. 30.46 UT, five days after discovery (IAUC 5222). A total
  of 194 counts were detected within the observation time of 1235 s,
  yielding a countrate of 0.16 +/- 0.01 cts/s. According to its spectrum,
  the source seems to be highly absorbed with a low-energy cutoff at
  approximately 1 keV. This constitutes the first x-ray detection of a
  classical nova at or near maximum. Previous observations of classical
  novae at this stage with SAS 3, Ariel V and EXOSAT have only resulted in
  upper limits on their x-ray flux. The region of the nova was already
  observed in the ROSAT all-sky survey during 1990 Sept. 25-28. The
  data indicate that there was no source present at this position with
  an upper limit of approximately 0.01 cts/s."

---------------------------------------------------------
Title: A soft X-ray image of the Moon
Authors: Schmitt, J. H. M. M.; Snowden, S. L.; Aschenbach, B.;
   Hasinger, G.; Pfeffermann, E.; Predehl, P.; Trumper, J.
1991Natur.349..583S    Altcode:
  A soft X-ray image of the Moon obtained by the Röntgen Observatory
  Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the
  Moon's X-ray luminosity arises from backscattering of solar X-rays. The
  Moon's optically dark side is also X-ray dark, and casts a distinct
  shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark
  side seems to emit X-rays at a level about one per cent of that of
  the bright side; this emission very probably results from energetic
  solar-wind electrons striking the Moon's surface.

---------------------------------------------------------
Title: X-ray survey of the Large Magellanic Cloud by ROSAT
Authors: Trümper, J.; Hasinger, G.; Aschenbach, B.; Bräuninger,
   H.; Briel, U. G.; Burkert, W.; Fink, H.; Pfeffermann, E.; Pietsch,
   W.; Predehl, P.; Schmitt, J. H. M. M.; Voges, W.; Zimmermann, U.;
   Beuermann, K.
1991Natur.349..579T    Altcode: 1991Nat...349..579T
  The central region of the Large Magellanic Cloud (LMC) contains
  a variety of astrophysical objects including supernova remnants,
  X-ray binary systems, the 30 Doradus complex of hot stars, as well
  as supernova 1987A. A survey in X-rays of this region, taken as the
  'first light' observations with the Röntgen Observatory Satellite
  (ROSAT), reveals 45 individual sources. Fifteen of these are new; the
  brightest is probably a new and strongly variable low-mass X-ray binary.

---------------------------------------------------------
Title: Search for weak-line T Tauri stars with ROSAT.
Authors: Alcalá, J. M.; Krautter, J.; Predehl, P.; Schmitt,
   J. H. M. M.; Wagner, R. M.
1991AGAb....6...45A    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Hot Stars - what can BE Learned from Extreme Ultraviolet
    Spectroscopy
Authors: Kudritzki, R. P.; Puls, J.; Gabler, R.; Schmitt, J. H. M. M.
1991eua..coll..130K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: First spatio-temporal results from the LDEF interplanetary
    dust experiment
Authors: Schmitt, J. H. M. M.
1991AdSpR..11k.115S    Altcode: 1991AdSpR..11..115S
  The LDEF Interplanetary Dust Experiment was unique in providing a time
  history of impacts of micron-sized particles on six orthogonal faces
  of the vehicle over a span of nearly a full year. Over 15000 hits were
  recorded, representing a mix of zodiacal dust, meteor stream grains,
  orbital debris, perhaps beta-meteoroids, and possibly interstellar
  matter. Although the total number was higher than predicted, the
  relative panel activity distribution was near expectations. Detailed
  deconvolution of the impact record with orbital data is underway,
  to examine each of these populations. Very preliminary results of
  the fairly crude “first look” analysis suggest that debris is the
  major particle component at 500 km. The data show clear evidence of
  some known meteor streams as sharp, tightly-focused events, unlike
  their visible counterparts. Some apparent debris events show similar
  signatures. Data from the leading and trailing edges suggest a detection
  of beta-meteoroids, but the analysis is not yet conclusive. Absolute
  fluxes and flux ratios are not yet known, since the detector status
  analysis is yet incomplete.

---------------------------------------------------------
Title: Einstein Observatory Coronal Temperatures of Late-Type Stars
Authors: Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana,
   G. S.; Harnden, F. R., Jr.; Rosner, R.
1990ApJ...365..704S    Altcode:
  The results are presented of a survey of the coronal temperatures
  of late-type stars using the Einstein Observatory IPC. The spectral
  analysis shows that the frequently found one- and two-temperature
  descriptions are mainly influenced by the SNR of the data and that
  models using continuous emission measure distributions can provide
  equally adequate and physically more meaningful and more plausible
  descriptions. Intrinsic differences in differential emission
  measure distributions are found for four groups of stars. M dwarfs
  generally show evidence for high-temperature gas in conjunction with
  lower-temperature material, while main-sequence stars of types F and
  G have the high-temperature component either absent or very weak. Very
  hot coronae without the lower-temperature component appearing in dwarf
  stars are evident in most of the giant stars studied. RS CVn systems
  show evidence for extremely hot coronae, sometimes with no accompanying
  lower-temperature material.

---------------------------------------------------------
Title: An extension of Lynden-Bell's C-method to samples with
    arbitrary flux limits
Authors: Schmitt, J. H. M. M.
1990A&A...240..556S    Altcode:
  Lynden-Bell's (1971) C-method for simultaneously deriving luminosity
  and space density distribution functions is extended to samples with
  arbitrary flux limits. The basic equations are rigorously derived and
  presented in a form easily amenable to numerical computation; these
  equations contain as special cases both Lynden-Bell's C-method for
  single flux-limit samples and Schmidt's V/V(max)-method for samples
  with homogeneous space density. Two examples for the use of the method
  are presented.

---------------------------------------------------------
Title: A Color Gradient in the Soft X-Ray Diffuse Background
Authors: Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.
1990ApJ...364..118S    Altcode:
  It is shown that the deviations of the soft X-ray diffuse background B
  band to C band intensity ratio from a constant value can be described
  as a simple dipole-like variation across the sky. In terms of the
  observed Wisconsin B/C band intensity ratio, the mean value is 0.355,
  the dipole magnitude is 0.106, and the positive dipole axis points
  toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter
  direction. This gradient in the spectral hardness can be due to several
  causes; the simplest is a temperature gradient in the X-ray emitting
  plasma of the local cavity from about 10 exp 6.2 K toward the galactic
  center to about 10 exp 5.9 K in the anticenter direction. While the
  physical origin of such a temperature gradient is uncertain, the
  alignment of the dipole with the higher temperature (and absorbed)
  Loop I region may be significant.

---------------------------------------------------------
Title: Relationship between Optical and X-Ray Properties of O-Type
    Stars Surveyed with the Einstein Observatory
Authors: Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Ramella,
   M.; Morossi, C.; Rosner, R.; Schmitt, J. H. M. M.
1990ApJ...361..621S    Altcode:
  An X-ray luminosity function is derived for a representative
  volume-limited sample of O-type stars selected from the catalog
  of Galactic O stars surveyed with the Einstein Observatory. It was
  found that, for the stars of this sample which is ten times larger
  than any previously analyzed, the level of X-ray emission is strongly
  correlated with bolometric luminosity, confirming previous findings of
  an Lx-L(bol) relationship (e.g., Harnden et al., 1979; Pallavicini et
  al., 1981). Correlations between the Lx and the mass loss rate with the
  wind terminal velocity or with the rotation rate were weak. However,
  there was a strong correlation with wind momentum flux as well as with
  the wind kinetic energy flux.

---------------------------------------------------------
Title: Contributions of Late-Type Dwarf Stars to the Soft X-Ray
    Diffuse Background
Authors: Schmitt, J. H. M. M.; Snowden, S. L.
1990ApJ...361..207S    Altcode:
  Comprehensive calculations of the contribution of late-type dwarf
  stars to the soft X-ray diffuse background are presented. The mean
  X-ray luminosity as derived from optically and X-ray selected samples
  is examined, using the Bahcall-Soneira Galaxy model to describe
  the spatial distribution of stars and recent results on the X-ray
  spectra. The model calculations are compared with the Wisconsin sky
  maps in the C, M1, M2, I and J bands to assess the uncertainties of
  the calculations. Contributions of up to 10 percent to the M2 and I
  band background at high Galactic latitudes are found, while at low
  Galactic latitudes late-type stars contribute up to 40 percent of the
  background. However, a Galactic ridge as well as a relatively isotropic
  component still remains unexplained, even with the added contribution
  of the extrapolated high-energy power law.

---------------------------------------------------------
Title: Is LHS 2924 an X-Ray Source?
Authors: Fleming, T. A.; Schmitt, J. H. M. M.
1990BAAS...22.1273F    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The ROSAT Diffuse X-Ray Background Survey
Authors: Snowden, S. L.; Schmitt, J. H. M. M.
1990Ap&SS.171..207S    Altcode:
  The quality and capabilities of the ROSAT survey (0.1 2.0 keV) for the
  study of the diffuse X-ray background and the interstellar medium are
  discussed. All-sky maps created from data collected during the survey
  phase of ROSAT operations will greatly exceed previous surveys in
  spatial resolution (∼5 arc min pixels) and statistical significance
  (better than 25% for unbinned pixels). The spectral information of
  the survey will, in general, be greater as well. Finally, because of
  the survey geometry, very accurate contamination identification and
  background subtraction will be possible ensuring the reliability of
  the data.

---------------------------------------------------------
Title: ROSAT
Authors: Schmitt, J.; Trumper, J.; Pounds, K.
1990IAUC.5069....2S    Altcode:
  J. Schmitt communicates: "The ROSAT all-sky survey will take
  place during 1990 July 30-1991 Feb. 1, during which the whole sky
  will be simultaneously surveyed with an x-ray telescope (XRT) and
  extreme-ultraviolet telescope (WFC). The ROSAT XRT and WFC have
  2 deg and 5 deg fields-of-view, respectively. The survey will be
  carried out in scans along great circles that always pass through
  the poles of the ecliptic. Therefore, at any given time, two ecliptic
  longitudes (separated by 180 deg) are being scanned. The central scan
  location (ecliptic longitude in degrees) for the all-sky survey can
  be computed from the formula 49.187 + 0.915T + 3.79 x 10E-4 TE2 -
  5.9 x 10E-7 TE3, where T denotes the time in days since 1990 July
  30.0 UT. With this formula the epoch can be computed when any given
  point in the sky is scanned by ROSAT. The ROSAT project would welcome
  observations of sources at other wavelengths contemporaneously with
  ROSAT. Interested parties may contact J. Trumper (Max-Plank-Institute
  fur Extraterrestrische Physik, Giessenbachstr., D-8046 Garching, West
  Germany) with regard to the XRT, and K. Pounds (Department of Physics,
  University of Leicester, Leicester LE1 4RH, England) with regard to
  the WFC. For more information on the ROSAT all-sky survey timeline,
  contact J. Schmitt at the Garching address above."

---------------------------------------------------------
Title: Rotational modulation and flares on RS Canum Venaticorum and
    BY Draconis-type stars. XIV. Phasen eclipse and flare observations
    of YY Geminorum by EXOSAT and IUE.
Authors: Haisch, B. M.; Schmitt, J. H. M. M.; Rodono, M.; Gibson, D. M.
1990A&A...230..419H    Altcode:
  The eclipsing spectroscopic binary YY Geminorum has been observed
  at optical, ultraviolet, and X-ray wavelengths for rotational
  modulation, eclipse variability, and flaring. The epoch T(phi = 0) =
  JD 2425698.3561, and the phase P = 0.81428224 d. The quiescent level
  of Mg II emission is remarkably steady during the three-year observing
  interval, with F(Mg II) roughly 3.6 x 10 to the -12th erg/sq cm/s. Both
  stars appear to have identical Mg II surface fluxes, with F roughly
  1.8 x 10 to the 6th erg/sq cm/s. Both stars appear to be covered
  with evenly distributed Mg II emitting regions consistent with the
  proposition of Doyle (1987) that saturation of the Mg II lines occurs
  for stars having P less than 4 d, implying that such stars are entirely
  covered by plage. The transition region lines show significantly more
  rotational modulation and/or secular variability than Mg II. Both Mg II
  and the transition region lines show preflare and postflare enhancement.

---------------------------------------------------------
Title: Comet Austin (1989c1)
Authors: Altenhoff, W. J.; Kreysa, E.; Schmidt, J.; Schraml, J. B.;
   Thum, C.; Gehrz, R. D.; Ney, E. P.; Kronk, G.; Shanklin, J. D.; Haver,
   R.; Bortle, J. E.; Hahn, H. -M.; Mikuz, H.; Baroni, S.
1990IAUC.4993....2A    Altcode:
  W. J. Altenhoff, E. Kreysa, J. Schmidt, and J. B. Schraml, Max-
  Planck-Institut fur Radioastronomie, Bonn; and C. Thum, Institut de
  Radio Astronomie Millimetrique, Granada, write: "We have observed
  continuum emission of comet Austin at 250 GHz with the IRAM 30-m
  telescope. Preliminary evaluation results in 11.0 +/- 2.7 mJy on Mar. 15
  and 12.8 +/- 3.4 mJy on Mar. 16. The comet was at heliocentric distance
  0.75 AU and geocentric distance 1.47 AU (probably the largest distance
  at which a radio signal of a comet has been detected). The deduced grain
  halo of comet Austin seems to be similar in grain size, photometric
  diameter, mass, etc., to that of P/Halley in 1986 April." R. D. Gehrz
  and E. P. Ney, University of Minnesota, report the following infrared
  magnitudes obtained with the 0.76-m telescope of O'Brien Observatory
  on Apr. 12.78 UT (20" diaphragm, 34" beam throw; cf. IAUC 4988): 2.3
  microns, +5.34; 3.6 microns, +1.52; 4.9 microns, -0.32; 8.6 microns,
  -2.74; 10.7 microns, -3.50; 12.2 microns, -3.72. Further total visual
  magnitude estimates: Apr. 7.06 UT, 4.8 (G. Kronk, Troy, IL, 20x80
  binoculars; 1 deg tail in p.a. about 40 deg); 7.85, 5.7 (J. D. Shanklin,
  Cambridge, England, 20x80 binoculars; 40' tail in p.a. 40 deg); 8.78,
  4.7 (R. Haver, Rome, Italy, 15x80 binoculars; 0.5 deg tail in p.a. 50
  deg); 9.02, 5.3 (J. E. Bortle, Stormville, NY, 15x80 binoculars);
  9.81, 5.1 (H.-M. Hahn, Cologne, W. Germany, 11x80 binoculars); 10.80,
  4.8 (H. Mikuz, Ljubljana, Yugoslavia, 15x80 binoculars; 1 deg tail in
  p.a. 20 deg); 11.79, 3.8 (S. Baroni, Milan, Italy, 40x80 binoculars;
  0.3 deg tail in p.a. 20 deg); 13.02, 5.2 (Bortle).

---------------------------------------------------------
Title: Coronal Temperatures of Late-type Stars
Authors: Harnden, F. R., Jr.; Schmitt, J. H. M. M.; Rosner, R.;
   Collura, A.; Vaiana, G. S.
1990BAAS...22..858H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray studies of coeval star samples. III. X-ray emission in
    the UrsaMajor stream.
Authors: Schmitt, J. H. M. M.; Micela, G.; Sciortino, S.; Vaiana,
   G. S.; Harnden, F. R., Jr.; Rosner, R.
1990ApJ...351..492S    Altcode:
  Results are reported from a comprehensive survey of X-ray emission
  from stars known or suspected to be members of the UMa cluster and/or
  stream. Of the 42 UMa member stars surveyed, 18 were detected as
  X-ray sources, and spectral analysis was performed for 10 stars
  with sufficient X-ray counts. Consideration is given to relations
  between X-ray luminosity, color, and kinematics of the sample
  stars, and the X-ray spectra of the UMa stars are discussed in the
  context of the general problem of stellar X-ray temperatures. Also
  confirmed is the lack of X-ray-emitting A dwarfs among UMa members;
  among stars of later spectra type there is a rather large dispersion
  in X-ray luminosity. This dispersion cannot readily be explained by
  contamination with field star interlopers and appears rather to be a
  property of the UMa X-ray luminosity distribution function.

---------------------------------------------------------
Title: Flaring and quiescent X-rays from Castor.
Authors: Pallavicini, R.; Tagliaferri, G.; Pollock, A. M. T.; Schmitt,
   J. H. M. M.; Rosso, C.
1990A&A...227..483P    Altcode:
  Using data obtained with the Low Energy (LE) and Medium Energy
  instruments aboard Exosat, the first detection of both flaring and
  quiescent X-ray emission from the A-type visual binary Castor (alpha
  Gem) is reported. In the LE, Castor was clearly resolved from the
  nearby star YY Gem, which was also observed to flare some hours after
  Castor. After verifying that the Castor flare was indeed an X-ray as
  opposed to a UV event, physical parameters of the flaring source are
  derived. The detection of the quiescent emission led to reevaluation
  of the previous X-ray observations by the Einstein Observatory showing
  that, contrary to earlier reports, Castor was strongly detected in the
  IPC. Possible interpretations of the results are discussed by devoting
  some attention to the multiplicity of the Castor system, suggesting
  that the X-rays originate from an unseen late-type companion rather
  than from the A-type primaries.

---------------------------------------------------------
Title: The Einstein Survey of O-Stars
Authors: Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Ramella,
   M.; Morossi, C.; Rosner, R.; Schmitt, J. H. M. M.
1990ixra.conf..227S    Altcode: 1990ixra.symp..227S
  The authors give a brief account of some of the main results of a
  detailed analysis of a sample of 288 X-ray surveyed O stars.

---------------------------------------------------------
Title: The Einstein Observatory Stella X-Ray Database
Authors: Harnden, F. R., Jr.; Sciortino, S.; Micela, G.; Maggio, A.;
   Vaiana, G. S.; Schmitt, J. H. M. M.
1990ixra.conf..313H    Altcode: 1990ixra.symp..313H
  The authors present the motivation for and methodology followed in
  constructing the Einstin Observatory Stellar X-ray Database from a
  uniform analysis of nearly 4000 Imaging Proportional Counter fields
  obtained during the life of this mission. This project has been
  implemented using the INGRES<SUP>TM</SUP> database system, so that
  statistical analyses of the properties of detected X-ray sources are
  relatively easy and flexibly accomplished.

---------------------------------------------------------
Title: Spectroscopy of stellar coronal sources with the medium energy
    experiment on EXOSAT
Authors: Pallavicini, R.; Pasquini, L.; Schmitt, J. H. M. M.;
   Tagliaferri, G.
1990hrxr.conf..122P    Altcode: 1990IAUCo.115..122P
  Results obtained on the spectral analysis of the Exosat medium-energy
  observations of stellar coronal sources are summarized. Special
  attention is given to the time-resolved spectroscopy of stellar flares
  and determination of the temperature structure of quiescent RS CVn
  binaries. Substantial differences were found between the coronae of
  RS CVn stars and the coronae of the sun and other single late-type
  stars. The results suggest that either the coronae of most RS CVn
  stars involve more than one family of loops (also indicated by eclipse
  observations of White et al., 1988) or the coronal structures in these
  stars have a more complex emission measure distribution than the simple
  power-law assumed in this study.

---------------------------------------------------------
Title: Stellar X-ray astronomy
Authors: Schmitt, J. H. M. M.
1990AdSpR..10b.115S    Altcode: 1990AdSpR..10Q.115S
  The properties of the X-ray emission from normal stars, i.e.,
  single stars located on the main-sequence or giant branch,
  are reviewed. Theoretical attempts to explain the observed X-ray
  emission both from early as well as late type stars are presented
  and, in particular, coronal length scale determination from spatially
  unresolved data is discussed and applied to the Sun as a star.

---------------------------------------------------------
Title: Time variability of stellar coronal sources observed by EXOSAT
Authors: Pallavicini, R.; Schmitt, J. H. M. M.
1990AdSpR..10b.125P    Altcode: 1990AdSpR..10..125P
  We present an overview of time variability in stellar coronal sources
  as observed with the EXOSAT satellite. We focus on M dwarf flare stars
  and we discuss both quiescent and flaring emission. We also outline
  recent developments in the modelling of stellar flares.

---------------------------------------------------------
Title: X-ray spectroscopy across the HR-diagram
Authors: Schmitt, J. H. M. M.
1990hrxr.conf..110S    Altcode: 1990IAUCo.115..110S
  X-ray spectra of stellar X-ray sources taken with high, moderate,
  and low spectral resolution are discussed. Only low resolution spectra
  are available for a sufficiently large number of late-type stars. It
  is shown that high temperature plasmas (log T greater than 7) produce
  the dominant emission component in the coronae of red dwarfs as well
  as yellow giants, while the coronae of F stars usually have X-ray
  temperatures similar to those found in the quiet sun. The need for
  density diagnostics of stellar coronae is stressed, and it is argued
  that the waveband region between 90 - 140 A is particularly well suited
  for this purpose.

---------------------------------------------------------
Title: X-Ray Studies of Coeval Star Samples. II. The Pleiades Cluster
    as Observed with the Einstein Observatory
Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R.,
   Jr.; Rosner, R.; Schmitt, J. H. M. M.
1990ApJ...348..557M    Altcode:
  Coronal X-ray emission of the Pleiades stars is investigated, and
  maximum likelihood, integral X-ray luminosity functions are computed
  for Pleiades members in selected color-index ranges. A detailed
  search is conducted for long-term variability in the X-ray emission
  of those stars observed more than once. An overall comparison of the
  survey results with those of previous surveys confirms the ubiquity
  of X-ray emission in the Pleiades cluster stars and its higher rate
  of emission with respect to older stars. It is found that the X-ray
  emission from dA and early dF stars cannot be proven to be dissimilar to
  that of Hyades and field stars of the same spectral type. The Pleiades
  cluster members show a real rise of the X-ray luminosity from dA stars
  to early dF stars. X-ray emission for the young, solarlike Pleiades
  stars is about two orders of magnitude more intense than for the nearby
  solarlike stars.

---------------------------------------------------------
Title: X-ray spectroscopy of RS CVn stars with EXOSAT.
Authors: Pasquini, L.; Schmitt, J. H. M. M.; Pallavicini, R.
1989A&A...226..225P    Altcode:
  Results are presented of a spectral analysis of a sample of RS CVn
  stars which comprises all (except two) cataloged RS CVn binaries
  observed by Exosat. Data from both the Medium Energy and Low Energy
  Exosat experiments are analyzed assuming simple spectral models and
  the dependence of the fitted coronal parameters on the signal-to-noise
  ratio. Evidence is found for multitemperature coronal structures in
  RS CVn stars, together with indications of intrinsic differences in
  the temperature stratification of different stars.

---------------------------------------------------------
Title: Physical Models of the Solar System Do Help Students Understand
    the Scale of the Universe
Authors: Shipman, H. L.; Schmidt, J.
1989BAAS...21.1066S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Radio continuum observations of Comet P/Halley at 250 GHz
Authors: Altenhoff, W. J.; Huchtmeier, W. K.; Kreysa, E.; Schmidt,
   J.; Schraml, J. B.; Thum, C.
1989A&A...222..323A    Altcode:
  The detection of continuum radio emission from comet Halley has been
  confirmed using a He-3 cooled bolometer at a frequency of 250 GHz. The
  radiation, normalized to a geocentric and heliocentric distance
  of 0.66 and 1.58 AU, respectively, is probably not correlated with
  the 2.2-day or the 7.4-day nucleus rotation periods. The normalized
  emission is steady, with a mean flux density of 51.6 + or - 5.2 mJy
  over the postperihelion observing period of 8 days (March 1986). This
  is comparable to the value determined several months earlier (November
  1985). The error limits include the uncertainty of the absolute
  calibration. The derived photometric diameter is 35 km. The bulk of the
  emission seems to come from centimeter-sized particles within a sphere
  of diameter 3800 km centered on the nucleus. The steady emission over
  months may indicate that the larger particles remain a long time near
  the nucleus.

---------------------------------------------------------
Title: X-ray and optical observations of LDS 587.
Authors: Pasquini, L.; Schmitt, J. H. M. M.; Harnden, F. R., Jr.;
   Tozzi, G. P.; Krautter, J.
1989A&A...218..187P    Altcode:
  During an Exosat observation of the RS CVn star HD 155555 (LDS 587 A)
  a serendipitous X-ray source (EXO 171224-6653.9) was discovered. This
  paper presents an analysis of the Exosat and Einstein Observatory (HEAO
  2) X-ray observations as well as optical spectra of the serendipitous
  X-ray source; the X-ray properties of HD 155555 are also discussed. In
  particular, it is shown that the source EXO 171224-6653.9 is a dMe
  star, identified as LDS 587 B, rather than a cataclysmic variable as
  previously suggested on the basis of Exosat observations alone.

---------------------------------------------------------
Title: Book Review: Activity in cool star envelopes. / Kluwer
    Academic, 1988
Authors: Pettersen, B. R.; Schmitt, J. H. M. M.; Solheim, J. E.;
   Dyson, J.
1989Ap&SS.154..158H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A Solar Flare Observed with the SMM and Einstein Satellites
Authors: Schmitt, J. H. M. M.; Lemen, J. R.; Zarro, D.
1989SoPh..121..361S    Altcode: 1989IAUCo.104..361S
  We present X-ray observations of the 21 July, 1980 flare which was
  observed both with the Einstein Observatory Imaging Proportional Counter
  (IPC) and the X-Ray Polychromator (XRP) and Gamma-Ray Spectrometer
  onboard the SMM satellite. The Einstein observations were obtained
  in scattered X-ray light, i.e., in X-rays scattered off the Earth's
  atmosphere. In this way it is possible to obtain spatially unresolved
  X-ray data of a solar flare with the same instrument that observed
  many X-ray flares on other stars. This paper juxtaposes the results and
  implications of the `stellar interpretation' to those obtained from the
  far more detailed SMM observations. The result of this `calibration'
  observation is that the basic properties of the flaring plasma can
  be reliably determined from the `stellar' data, however, the basic
  physics issues can only be studied through models.

---------------------------------------------------------
Title: Transmission gratings for AXAF - LETG.
Authors: Predehl, P.; Aschenbach, B.; Bräuninger, H.; Burkert, W.;
   Lochbihler, H.; Schmitt, J.; Trümper, J.
1989AGAb....2...12P    Altcode: 1989amt..conf...12P
  No abstract at ADS

---------------------------------------------------------
Title: An Einstein Observatory View of Large-Scale Soft X-ray
Background Structures: A Status Report
Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R.,
   Jr.; Rosner, R.; Schmitt, J. H. M. M.
1988feta.conf...28M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Coronal Temperatures of late-type stars
Authors: Collura, A.; Schmitt, J. H. M. M.; Sciortino, S.; Vaiana,
   G. S.; Harnden, F. R., Jr.; Rosner, R.
1988feta.conf...14C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Relationship between Optical and X-ray Properties of O-type
    Stars Surveyed by Einstein
Authors: Sciortino, S.; Harnden, F. R., Jr.; Ramella, M.; Morossi,
   C.; Rosner, R.; Schmitt, J. H. M. M.; Vaiana, G. S.
1988feta.conf...13S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The Einstein Observatory Stellar X-ray Database
Authors: Harnden, F. R., Jr.; Sciortino, S.; Micela, G.; Maggio, A.;
   Vaiana, G. S.; Schmitt, J. H. M. M.
1988feta.conf....2H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Time variability in the X-ray emission of dM stars observed
    by EXOSAT.
Authors: Collura, A.; Pasquini, L.; Schmitt, J. H. M. M.
1988A&A...205..197C    Altcode:
  The authors studied the variability in the X-ray emission of 13 dMe
  stars observed with the LE+CMA onboard EXOSAT. The basic aim of this
  paper is to search for frequently occurring impulsive events with
  small energy releases in an effort to find out whether the "quiescent"
  X-ray emission from dM stars is really quiescent. The authors do not
  find, in any case, evidence for variability on short time scales in the
  quiescent emission of the sample stars, i.e., in periods during which no
  obvious large flare occurred. The authors also studied the non-quiescent
  (i.e., flaring) emission from the 13 stars in their sample and derived
  the cumulative distribution of the event frequency N(&gt;E) vs. energy
  (E). The derived distribution implies that the most energetic events
  produce most of the non-quiescent X-ray emission.

---------------------------------------------------------
Title: A Survey of the X-ray Spectra of Stars
Authors: Harnden, F. R., Jr.; Schmitt, J. H. M. M.; Collura, A.;
   Vaiana, G. S.
1988BAAS...20.1101H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Hydrodynamic Modeling of an X-Ray Flare on Proxima Centauri
    Observed by the Einstein Telescope
Authors: Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt,
   J. H. M. M.
1988ApJ...328..256R    Altcode:
  Hydrodynamic numerical calculations of a flare which occurred on Proxima
  Centauri and was observed by the Einstein satellite on August 20, 1980
  at 12:50 UT are presented. The highlights of the hydrodynamic code
  are reviewed, and the physical and geometrical parameters necessary
  for the calculations are derived and compared with observations. The
  results are consistent with the stellar flare being caused by the
  rapid dissipation of 5.9 x 10 to the 31st ergs, within a magnetic loop
  structure whose semilength is 7 x 10 to the 9th cm and cross-sectional
  radius is 7.3 x 10 to the 8th cm. The results provide evidence that
  flares on late-type stars can be described by a hydrodynamic model
  with a relatively simple geometry, similar to solar compact flares.

---------------------------------------------------------
Title: The scattered solar X-ray background in low earth orbit.
Authors: Fink, H. H.; Schmitt, J. H. M. M.; Harnden, F. R., Jr.
1988A&A...193..345F    Altcode:
  In order to interpret X-ray observations of the sun-lit earth obtained
  with the IPC, a detailed model is developed that treats the radiative
  transfer of solar X-rays in single scattering approximation and employs
  the relevant scattering processes (elastic Thomson scattering and
  inelastic fluorescent scattering). The X-ray-bright earth, one of the
  strongest soft X-ray sources seen by the IPC, can then be understood in
  terms of solar X-rays scattered in the upper atmosphere. Using the CIRA
  1972 Reference Atmosphere, it is possible to account for the observed
  'bright earth' X-ray light curves under a variety of different viewing
  geometries. It is argued that the observed changes in hardness ratio
  of the scattered radiation can be interpreted as an indication of a
  change in the ratio of Thomson and fluorescently scattered photons
  as a function of zenith angle. The relevance of bright earth X-ray
  observations is further discussed in the context of operating X-ray
  telescopes in low-earth orbit, as well as in a broader astrophysical
  context.

---------------------------------------------------------
Title: EXOSAT observations of M dwarf stars in the solar neighborhood.
Authors: Schmitt, J. H. M. M.; Rosso, C.
1988A&A...191...99S    Altcode:
  The authors present EXOSAT observations of a sample of nearby (d &lt;
  6 pc) M dwarf stars most of which have not previously been observed in
  X-rays. All the target stars were detected except one (Gl 754, spectral
  type M7). The X-ray luminosities derived are in the typical range of
  M dwarf X-ray luminosities derived from Einstein Observatory data,
  and the authors find further evidence for a drop in X-ray luminosity
  towards late spectral types. The EXOSAT filter ratios indicate the
  presence of gas at temperatures in excess of 10<SUP>7</SUP>K, again
  confirming the Einstein Observatory results. The observations provide
  no evidence for any time variability in the form of flares or trends.

---------------------------------------------------------
Title: The Einstein Observatory Survey of Stars in the Hyades
    Cluster Region
Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Schmitt,
   J. H. M. M.; Stern, R. A.; Harnden, F. R., Jr.; Rosner, R.
1988ApJ...325..798M    Altcode:
  The authors report the results of an extensive X-ray investigation of
  the Hyades region and improve upon previous studies by using refined
  X-ray source detection algorithms and the complete set of Einstein
  Observatory IPC exposures covering the Hyades cluster region (a total
  of 63 1°×1° images). Using a somewhat more extensive and complete
  compilation of optical candidates, the authors have detected 66 out
  of 121 Hyades members falling in the combined fields of view. The
  authors have also computed 3σ upper limits for all the nondetected
  Hyades members and have derived maximum-likelihood X-ray luminosity
  functions for the Hyades stars in selected spectral type ranges,
  using both detections and upper limits.

---------------------------------------------------------
Title: Stellar coronae with EXOSAT : broad band spectroscopy of
    nearby coronal sources.
Authors: Pallavicini, R.; Monsignori-Fossi, B. C.; Landini, M.;
   Schmitt, J. H. M. M.
1988A&A...191..109P    Altcode:
  Broad-band observations of stellar coronae obtained with the Low Energy
  experiment on board the Exosat satellite are presented, together with
  a technique for the analysis of Exosat low-energy data. The limitations
  of filter spectroscopy with Exosat are discussed. Specific relationships
  are provided for extracting physical quantities (temperature, emission
  measure, luminosities) from the observed count rates for the case of
  nearby coronal sources. A continuous temperature distribution exists
  in the coronae of late-type stars; the differential emission measure
  distribution extends to temperatures in excess of 10 million K for flare
  stars and RS CVn binaries, even during quiescent conditions. Coronal
  loop models, similar to those developed for magnetically confined
  structures on the sun, should be used for interpreting spatially
  integrated observations of stellar coronae.

---------------------------------------------------------
Title: The Einstein Observatory Stellar X-ray Database: an overview.
Authors: Sciortino, S.; Harnden, F. R., Jr.; Maggio, A.; Micela, G.;
   Vaiana, G. S.; Schmitt, J.; Rosner, R.
1988ESOC...28..483S    Altcode: 1988alds.proc..483S
  The authors present the motivations for and the methodology followed
  in building the "Einstein Observatory Stellar X-ray Database" based on
  the uniform analysis of all Einstein Observatory Imaging Proportional
  Counter fields obtained during the life of the HEAO-2 mission. The
  database has been implemented using the INGRES<SUP>TM</SUP> database
  system, so that statistical analyses of the properties of the full
  detection catalog are relatively easily and flexibly accomplished. Some
  illustrative examples will furnish a general view both of the kind
  and the amount of the archived information, and of the statistical
  approach used in analyzing the global properties of the data.

---------------------------------------------------------
Title: Image merging software for imaging X-ray detectors on ROSAT :
    a status report based on simultated results.
Authors: Collura, A.; Schmitt, J. H. M. M.
1988MmSAI..59..493C    Altcode:
  One of the algorithms that will be used for the image merging
  of both survey and pointed observations of the Rosat satellite
  is described. The algorithm is designed to deal efficiently with
  a large number of photons and to allow a planar representation of
  a large section of the sky preserving the distance of individual
  photons from the coordinate origin and the spherical angles defined
  by the triangle Photon-Origin-North. This representation, which is
  the spherical analogue of the planar polar coordinate representation,
  makes it possible to project the image without using the photon sky
  coordinates, saving computer time. An application of this technique to
  simulated observations is presented. The simulated images are compared
  with those obtained by the Einstein satellite.

---------------------------------------------------------
Title: Stellar X-ray astronomy with ROSAT
Authors: Schmitt, J. H. M. M.
1988ASSL..143..219S    Altcode: 1988acse.conf..219S
  The author discusses the possibilities of stellar X-ray astronomy
  using the next generation of X-ray telescopes onboard ROSAT. ROSAT will
  perform both an all sky survey at X-ray and XUV wavelengths exceeding
  the sensitivity of previous all sky surveys by orders of magnitude as
  well as pointed observations of specific targets.

---------------------------------------------------------
Title: X-Ray Emission from Normal Stars
Authors: Schmitt, J. H. M. M.
1988ASIC..249..109S    Altcode: 1988htpa.conf..109S
  No abstract at ADS

---------------------------------------------------------
Title: Activity in cool star envelopes. Proceedings of the Midnight
    Sun Conference, held in Tromsø, Norway, 1 - 8 July 1987.
Authors: Havnes, O.; Pettersen, B. R.; Schmitt, J. H. M. M.; Solheim,
   J. E.
1988ASSL..143.....H    Altcode: 1988acse.conf.....H
  Topics discussed include magnetic fields, atmospheric activity,
  stellar and solar flares, and stellar coronae and winds. Particular
  papers are presented on the origin and structure of stellar magnetic
  fields, atmospheric activity in the outer envelopes of cool dwarf
  stars, simultaneous optical and infrared observations of solar flares,
  and densities and heating of coronae of active late-type dwarfs.

---------------------------------------------------------
Title: X-ray variability of dM stars observed by EXOSAT
Authors: Collura, A.; Pasquini, L.; Schmitt, J. H. M. M.
1988ASSL..143..253C    Altcode: 1988acse.conf..253C
  No abstract at ADS

---------------------------------------------------------
Title: EXOSAT observations of RSCVn stars
Authors: Pasquini, L.; Schmitt, J. H. M. M.; Pallavicini, R.
1988ASSL..143..241P    Altcode: 1988acse.conf..241P
  EXOSAT observations of RS CVn stars are analyzed using simple spectral
  models; the authors argue first, that the X-ray emission from these
  stars requires the presence of emitting plasma continuously distributed
  in temperature and second, that there are intrinsic differences in
  the coronal temperature stratification of these stars.

---------------------------------------------------------
Title: X-Ray Observations of Solar Flares with the Einstein
    Observatory
Authors: Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Fink, H.
1987ApJ...322.1023S    Altcode:
  The first Einstein Observatory Imaging Proportional Counter (IPC)
  observations of solar flares are presented. These flares were detected
  in scattered X-ray light when the X-ray telescope was pointed at the
  sunlit earth. The propagation and scattering of solar X-rays in the
  earth's atmosphere are discussed in order to be able to deduce the
  solar X-ray flux incident on top of the atmosphere from scattered X-ray
  intensity measurements. After this correction, the scattered X-ray
  data are interpreted as full-disk observations of the sun obtained
  with the same instrumentation used for observations of flares on other
  stars. Employing the same data analysis and interpretation techniques,
  extremely good agreement is found between the physical flare parameters
  deduced from IPC observations and 'known' properties of compact loop
  flares. This agreement demonstrates that flare observations with the
  IPC can reveal physical parameters such as temperature and density
  quite accurately in the solar case and therefore suggests that the
  interpretations of stellar X-ray flare observations are on a physically
  sound basis.

---------------------------------------------------------
Title: An Einstein Observatory Stellar X-ray Catalog
Authors: Harnden, F. R., Jr.; Rosner, R.; Sciortino, S.; Maggio, A.;
   Micela, G.; Vaiana, G. S.; Schmitt, J.
1987BAAS...19.1040H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: FIR galaxies with compact radio cores.
Authors: Chini, R.; Biermann, P. L.; Kreysa, E.; Kuhr, H.; Mezger,
   P. G.; Schmidt, J.; Witzel, A.; Zensus, J. A.
1987A&A...181..237C    Altcode:
  Comparing the IRAS point-source catalog (1985) with sources detected
  in a VLBI extragalactic radio source survey (Zensus et al., 1984),
  five FIR sources are found which all show compact radio cores. These
  objects have been observed with the 30-m MRT at Pico Veleta (Spain)
  at 1.2-mm wavelength to provide spectral coverage between IRAS and
  radio bands. The two galaxies among the five sources have luminosities
  of order 10 to the 12th solar luminosities in the FIR and thus may be
  super star bursters similar to Arp 220. On the other hand, all five
  objects have active galactic nuclei, and so the FIR luminosities may
  be powered by the nuclear activity. Since flat-spectrum radio sources
  have compact nuclear components, the 1-Jy catalog and its extension to
  lower flux densities (Kuehr et al., 1979 and 1981) are compared with
  the IRAS catalog, and a small number of additional active nuclei with
  strong emission in the FIR are identified. These objects can serve
  to study the competition between starbursts and nuclear activity to
  explain high FIR luminosities.

---------------------------------------------------------
Title: A comparison of coronal X-ray emission observed with the
    Einstein andEXOSAT observatories.
Authors: Schmitt, J. H. M. M.; Pallavicini, R.; Monsignori-Fossi,
   B. C.; Harnden, F. R., Jr.
1987A&A...179..193S    Altcode:
  The present Einstein and Exosat observatories' star coronal X-ray
  emission data are subjected to a spectral analysis which employs the
  Raymond and Smith (1977) and Landini and Fossi (1984) computer codes
  to calculate X-ray emission from optically thin plasmas that are in
  collisional equilibrium. It is found that the derived coronal parameters
  depend only loosely on the details of the calculated theoretical X-ray
  spectrum, although the spectra nevertheless differ in their prediction
  of X-ray fluxes in various lines. It is demonstrated that the Einstein
  spectra and Exosat filter ratios can be naturally and simultaneously
  explained by assuming an underlying, continuous distribution of emission
  measure with temperature, as in the case of the solar corona.

---------------------------------------------------------
Title: The X-ray spectroscopy cornerstone mission.
Authors: Bely-Dubau, F.; Gabriel, A. H.; Predehl, Peter; Schmitt,
   J.; Stewart, Gordon; Truemper, J.; Wells, Alan; White, Nicolas E.
1987ESASP.268..117B    Altcode:
  The high throughput X-ray astronomical spectroscopy observatory,
  called the X-ray Multi-Mirror mission (XMM) is an array of telescopes
  providing the required sensitivity to perform detailed spectral
  diagnostics on many classes of objects, particularly those with low
  surface brightness. Such investigations are important for studying the
  evolution of large and small scale structures of the Universe. The
  XMM also allows simultaneous observations of spatial, spectral,
  and temporal properties of many classes of astronomical targets, and
  unambiguous physical interpretation of the observed phenomena. The
  XMM is Europe's cornerstone mission in X-ray astronomy and complements
  NASA's AXAF mission, which pursues ultimate imaging capability as its
  main objective.

---------------------------------------------------------
Title: What can be learnt from full disk X-ray observations of
    stellar flares?
Authors: Schmitt, J. H. M. M.; Fink, H.; Harnden, F. R., Jr.
1987IAUS..122..373S    Altcode:
  The analysis procedures used to interpret stellar flares are rather
  crude, and further, only full disk observations with rather low spectral
  resolution and low signal to noise ratio (SNR) are available. Solar
  flares on the other hand are typically observed with rather high
  spatial, spectral and temporal resolution with good SNR, and we simply
  do not know what solar flares would look like if observed with the
  same instrumentation used on other stars. The authors have studied in
  detail solar X-ray light scattered in the upper atmosphere.

---------------------------------------------------------
Title: Hydrodynamics of an X-Ray Flare on Proxima Centauri
Authors: Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt,
   J. H. M. M.
1987LNP...291..179R    Altcode: 1987csss....5..179R; 1987LNP87.291..179R
  We apply the Palermo-Harvard hydrodynamic numerical code to compute
  the evolution of temperature, density, pressure and velocity in
  a semicircular symmetric rigid loop to reproduce the Einstein IPC
  observations of the 20 August 1980 flare on Proxima Centauri.

---------------------------------------------------------
Title: Searches for parent molecules at MPIfR.
Authors: Bird, M. K.; Huchtmeier, W. K.; von Kap-Herr, A.; Schmidt,
   J.; Walmsley, C. M.
1987cra..proc...85B    Altcode:
  Searches for radio line emission/absorption from comet Halley and comet
  Giacobini-Zinner were made at the 100-m Effelsberg Telescope in late
  1985/early 1986. No detections were made for the K-band lines of water
  and ammonia, the ground state rotational transition of formaldehyde,
  or the excited lambda-doublet transitions of OH. Strong emission lines
  of the ground state OH molecule were observed in late January 1986.

---------------------------------------------------------
Title: Number-Counts Slope Estimation in the Presence of Poisson Noise
Authors: Schmitt, Juergen H. M. M.; Maccacaro, Tommaso
1986ApJ...310..334S    Altcode:
  The slope determination of a power-law number flux relationship
  in the case of photon-limited sampling. This case is important for
  high-sensitivity X-ray surveys with imaging telescopes, where the error
  in an individual source measurement depends on integrated flux and
  is Poisson, rather than Gaussian, distributed. A bias-free method of
  slope estimation is developed that takes into account the exact error
  distribution, the influence of background noise, and the effects of
  varying limiting sensitivities. It is shown that the resulting bias
  corrections are quite insensitive to the bias correction procedures
  applied, as long as only sources with signal-to-noise ratio five
  or greater are considered. However, if sources with signal-to-noise
  ratio five or less are included, the derived bias corrections depend
  sensitively on the shape of the error distribution.

---------------------------------------------------------
Title: Radio continuum observations of comet Halley
Authors: Altenhoff, W. J.; Huchtmeier, W. K.; Schmidt, J.; Schraml,
   J. B.; Stumpff, P.
1986A&A...164..227A    Altcode:
  Radio continuum observations of comets Hartley-IRAS, Crommelin,
  Giacobini-Zinner, Hartley-Good, and Halley are reported. All
  measurements in the cm-wavelength-range from Effelsberg resulted in
  upper limits. Additionally comet Halley was observed with the 30 m radio
  telescope on Pico Veleta around the perigee in 1985. For each of the
  ten days no significant signal was observed at 86 GHz and at 226 GHz,
  putting a severe limit on any transient emission. combining all data,
  a positive signal of 5.9 + or - 1.4 (mJy) and 52.0 + or - 15.1 (mJy)
  at 86 and 226 GHz is derived, respectively. This is consistent with
  black body radiation. From the analysis of the noise as function of
  integration time and from trial observation of weak radio stars it is
  concluded that the detection of comet Halley is real.

---------------------------------------------------------
Title: Data Analysis for the ROSAT Mission
Authors: Zimmermann, H. U.; Gruber, R.; Hasinger, G.; Paul, J.;
   Schmitt, J.; Voges, W.
1986daa..conf..155Z    Altcode:
  The German astronomical X-ray satellite ROSAT will perform the first
  all-sky survey with an imaging telescope. The large number of expected
  new source detections poses severe requirements on a fast and high
  qualitiy data evaluation. In the context of the general mission goals
  the main data evaluation methods are described. Special emphasis is
  given to the organizational data handling structures applied to the
  standard data processing.

---------------------------------------------------------
Title: Coronal X-ray temperatures from Einstein and EXOSAT
    observations
Authors: Schmitt, J. H. M. M.; Pallavicini, R.; Monsignori-Fossi,
   B. C.; Harnden, F. R., Jr.
1986AdSpR...6h.141S    Altcode: 1986AdSpR...6..141S
  Spectral analysis of coronal X-ray emission from stars observed with
  both the Einstein and EXOSAT Observatories is presented. Using computer
  codes developed by Raymond and Smith /1/ and Landini and Fossi /2/ to
  calculate the X-ray emission from optically thin plasma in collisional
  equilibrium we find that the derived coronal parameters depend only
  rather insensitively on the details of the calculated theoretical X-ray
  spectrum and demonstrate how both the Einstein Observatory IPC spectra
  and the EXOSAT LE filter ratios can be naturally and simultaneously
  explained by assuming an underlying continuous emission measure
  distribution as is the case in the solar corona.

---------------------------------------------------------
Title: X-Ray Spectra and the Rotation-Activity Connection of RS
    Canum Venaticorum Binaries
Authors: Majer, P.; Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R.,
   Jr.; Rosner, R.
1986ApJ...300..360M    Altcode:
  Results are presented from a survey of RS CVn binaries which were
  observed with the imaging proportional counter (IPC) on board the
  Einstein Observatory. Spectral analyses of the IPC pulse height spectra
  show that the coronae of RS CVn binaries always contain hot gas with
  temperatures in excess of 10 to the 7th K, similar to active late-type
  main-sequence stars, and that at least two temperature components
  are necessary to account for the higher quality IPC spectra (when
  absorption is unimportant). It is argued that these bimodal temperature
  distributions found by the IPC are indicative of true distributions
  of emission measure versus temperature that are continuous (just as
  is the case of magnetically confined coronal plasma loops observed
  on the sun). It is further shown that none of the derivable X-ray
  characteristics of RS CVn binaries depend on rotation period, implying
  that previous claims of period-activity relationships in RS CVn binaries
  were unfounded.

---------------------------------------------------------
Title: Zur Genauigkeit visueller Helligkeitsschätzungen anhand
    von Parallelbeobachtungen.
Authors: Schmidt, J.; Thomas, A.
1986BAVSR..35..125S    Altcode: 1986BAVRu..35..125S
  No abstract at ADS

---------------------------------------------------------
Title: X-ray spectra and the rotation-activity connection of RS
    CVn binaries.
Authors: Majer, P.; Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R.;
   Rosner, R.
1985ESASP.239..141M    Altcode: 1985cxrs.work..141M
  Results from a survey of RS CVn binaries which were observed with the
  Imaging Proportional Counter (IPC) on board the Einstein Observatory are
  presented. Spectral analyses of the IPC pulse height spectra show that
  the coronae of RS CVn binaries always contain hot gas with temperatures
  10 million K, similar to active late-type main sequence stars, and
  that at least 2 temperature components are necessary to account for
  the higher quality IPC spectra (when absorption is unimportant). It
  is argued that these bimodal temperature distributions indicate true
  distributions of emission measure vs temperature that are continuous
  (just as is the case for magnetically-confined coronal plasma loops
  observed on the Sun). It is shown that none of the derivable X-ray
  characteristics of RS CVn binaries depend on rotation period, implying
  that claims of period-activity relationships in RS CVn binaries are
  unfounded.

---------------------------------------------------------
Title: Statistical analysis of astronomical data containing upper
bounds: general methods and examples drawn from X-ray astronomy.
Authors: Schmitt, J. H. M. M.
1985ApJ...293..178S    Altcode:
  Statistical techniques suitable for the analysis of censored data, i.e.,
  data containing both flux measurements and upper limits, are adapted to
  astronomical usage from the field of survival analysis, and are used
  in a statistical analysis of X-ray luminosities for single stars and
  binaries. The conditions of applicability of these methods are discussed
  and verified, and it is shown that neglect of the information contained
  in the upper limits can lead to incorrect conclusions. Several methods
  suitable for linear regression in the presence of censored data are
  discussed. A new method, based on maximum likelihood estimation in two
  dimensions, is developed, and is used to determine linear regression
  curves in the presence of arbitrarily censored data.

---------------------------------------------------------
Title: An Einstein Observatory X-ray survey of main-sequence stars
    with shallow convection zones.
Authors: Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Maxson,
   C. W.; Rosner, R.; Vaiana, G. S.
1985ApJ...290..307S    Altcode:
  The results of an X-ray survey of bright late A and early F stars
  on the main B-V sequence between 0.1 and 0.5 are presented. All the
  stars were observed with the Einstein Observatory for a period of at
  least 500 seconds. The survey results show significantly larger X-ray
  luminosities for the sample binaries than for the single stars. It
  is suggested that the difference is due to the presence of multiple
  X-ray sources in binaries. It is shown that the X-ray luminosities
  for single stars increase rapidly with increasing color, and that
  the relation Lx/Lbol is equal to about 10 to the -7th does not hold
  for A stars. No correlation was found between X-ray luminosity and
  projected equatorial rotation velocity. It is argued on the basis of
  the observations that X-ray emission in the sample stars originated
  from coronae. The available observational evidence supporting this
  view is discussed.

---------------------------------------------------------
Title: VLBI observations of the nucleus of M 87 at two epochs.
Authors: Schmitt, J. H. M. M.; Reid, M. J.
1985ApJ...289..120S    Altcode:
  VLBI hybrid maps are presented at 18 cm wavelength of the nucleus of
  M87 at epochs 1980.12 and 1982.27. The differences between these two
  maps are very slight. Internal proper motions at a 2 sigma confidence
  level of 0.3 c could not be detected. For a relativistic beaming model
  in which one sees the same material radiating at both epochs, the
  outflow velocity must exceed about 0.6c and the jet must be aligned
  to better than 12 deg with respect to the line of sight. If outflow
  velocities near the speed of light are assumed, then the alignment
  must be better than 1 deg.

---------------------------------------------------------
Title: EXOSAT Observations of M Dwarfs
Authors: Schmitt, J. H. M. M.; Sztajno, M.
1985SSRv...40...69S    Altcode:
  We give a progress report of our EXOSAT observations of active M
  dwarfs. The possibilities of filter spectroscopy of coronal X-ray
  sources using the available CMA filters are discussed, and we confirm
  that M dwarfs are rather hot coronal sources with X-ray temperatures
  in excess of 10<SUP>7</SUP> K, a result previously obtained with the
  Einstein Observatory.

---------------------------------------------------------
Title: The X-ray corona of Procyon.
Authors: Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Rosner, R.; Peres,
   G.; Serio, S.
1985ApJ...288..751S    Altcode:
  X-ray emission from the nearby system Procyon A/B (F5 IV + DF) was
  detected, using the IPC (Imaging Proportional Counter) on board the
  Einstein Observatory. Analysis of the X-ray pulse height spectrum
  suggests that the observed X-ray emission originates in Procyon A
  rather than in the white dwarf companion Procyon B, since the derived
  X-ray temperature, log T = 6.2, agrees well with temperatures found
  for quiescent solar X-ray emission. Modeling Procyon's corona with
  loops characterized by some apex temperature Tmax and emission
  length scale L, it is found that Tmax is well constrained, but L,
  and consequently the filling factor of the X-ray emitting gas, are
  essentially unconstrained even when EUV emission from the transition
  region is included in the analysis.

---------------------------------------------------------
Title: New discoveries with radio telescopes.
Authors: Schmidt, J.
1985SchTZ..82...11S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: EXOSAT Observations of M Dwarfs
Authors: Schmitt, J. H. M. M.; Sztajno, M.
1985xray.symp....1S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray coronae of late-type stars: theoretical implications.
Authors: Schmitt, J. H. M. M.
1985xra..conf...17S    Altcode: 1984xra..conf...17S
  The Einstein Observatory provided evidence for the ubiquity of coronae
  in late type stars. The hypothesis that loop-like structures, as seen
  in the solar corona, are also present in the coronae of other stars,
  is consistent with the available X-ray spectra.

---------------------------------------------------------
Title: Beobachtungen an δ-Cephei Sternen 1984.
Authors: Schmidt, J.
1985BAVSM..34...75S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: X-ray coronae of late type stars: Theoretical implications
Authors: Schmitt, J. H. M. M.
1984xras.rept....1S    Altcode:
  Einstein Observatory evidence for the ubiquity of coronae in late type
  stars is reviewed. The observed X-ray activity can be interpreted
  and understood in terms of models originally developed in the solar
  context. The existence of a corona seems to be linked to the existence
  of a subphotospheric convection zone; the hypothesis is that loop-like
  structures, as seen in the coronae of other stars is consistent with
  X-ray spectra. However, multicomponent IPC pulse height spectra are
  shown not to necessarily indicate the presence of physically distinct
  X-ray emitting structures, and structures containing emission measured
  at various temperatures such as loops may also account for the observed
  multicomponent X-ray spectra.

---------------------------------------------------------
Title: Radioastronomical observations of comets IRAS-Araki-Alcock
    (1983d) and Sugano-Saigusa-Fujikawa (1983e)
Authors: Irvine, W. M.; Abraham, Z.; A'Hearn, M.; Altenhoff, W.;
   Andersson, Ch.; Bally, J.; Batrla, W.; Baudry, A.; Bockelee-Morvan,
   D.; Chin, G.; Crovisier, J.; de Pater, I.; Despois, D.; Ekelund, L.;
   Gerard, E.; Hasegawa, T.; Heiles, C.; Hollis, J. M.; Huchtmeier,
   W.; Kaifu, N.; Levreault, R.; Masson, C. R.; Palmer, P.; Perault,
   M.; Rickard, L. J.; Sargent, A. I.; Scalise, E.; Schloerb, F. P.;
   Schmidt, J.; Stark, A. A.; Stevens, M.; Stumpff, P.; Sutton, E. C.;
   Swade, D.; Sykes, M.; Turner, B.; Wade, C.; Walmsley, M.; Webber,
   J.; Winnberg, A.; Wootten, A.
1984Icar...60..215I    Altcode:
  Detections and upper limits to the continuum emission (1 ≤ λ ≤6
  cm) and spectral line emission (OH, CO, CS, HCN, HCO <SUP>+</SUP>, CN,
  CH <SUB>3</SUB>CN, CH <SUB>3</SUB>C <SUB>2</SUB>H, NH <SUB>3</SUB>, H
  <SUB>2</SUB>O, HC <SUB>3</SUB>N, CH <SUB>3</SUB>CH <SUB>2</SUB>CN) are
  reported from radio observations of Comets 1983d and 1983e. Comparison
  is made with observations of CN at optical wavelengths. These results
  may be useful in planning future cometary observations.

---------------------------------------------------------
Title: The overshoot region at the bottom of the solar convection
    zone.
Authors: Schmitt, J. H. M. M.; Rosner, R.; Bohn, H. U.
1984ApJ...282..316S    Altcode:
  The extent and thermal stratification of the region of
  convective overshoot underneath the convection zone of the sun are
  investigated. The phenomenon of convective overshoot in general is
  discussed, and some of the modal and model approaches to studying it are
  briefly reviewed. A detailed theoretical description of the motion of
  plumes in a stably stratified medium is given, leading to a 'derivation'
  of the plume equations from the hydrodynamic equations. Entrainment
  is discussed, and it is shown how the plume equations can be used
  to compute convective overshoot in the sun. The limitations of the
  plume model are addressed, arguing that a thin boundary layer must
  exist which separates convective and radiative regions. The results
  of numerical integrations of the plume equations, as applied to the
  region of convective overshoot underneath the solar convective zone,
  are discussed.

---------------------------------------------------------
Title: Theoretical and Observational Studies of Stellar Activity
Authors: Schmitt, J. H. M. M.
1984PhDT.........8S    Altcode:
  In the theoretical part of this thesis, doubly -diffusive MHD
  instabilities are studied as a means of breaking up a diffuse magnetic
  field at the bottom of the solar convection zone. The analysis is
  linear and local, and assumes short meridional wavelengths; the effects
  of rotation and diffusion of vorticity, magnetic fields and heat are
  included. Our results show that the instability depends sensitively on
  the temperature stratification, but rather insensitively on the assumed
  magnetic field configuration; instability time scales considerably
  less than the solar cycle period can be easily obtained. A new model
  for the region of convective overshoot underneath the solar convection
  zone is developed. It assumes highly asymmetric up- and down-flows, and
  utilizes semiempirical models, developed for the description of plume
  motions in the Earth's atmosphere. Using these plume equations together
  with the stellar structure equations, we derive a set of differential
  equations suitable for the study of convective overshoot phenomena in
  astrophysical contexts. Our results indicate the formation of an almost
  adiabatically stratified region underneath the "active" convection
  zone; in addition, we demonstrate the existence of a stabilising
  boundary layer between adiabatically and non-adiabatically stratified
  regions, and compute an upper limit of 500 km to its thickness. In
  the observational part of this thesis, we report the results of a
  survey of the X-ray emission of stars with shallow convection zones
  to study the onset of convection and dynamo activity along the main
  sequence. We extensively discuss the complications arising from stellar
  multiplicity; we demonstrate that binaries have statistically higher
  X-ray luminosities, and show that physical parameters can only be
  deduced from single stars. We further show that the X-ray luminosities
  of stars with spectral type in the color range 0.1 (LESSTHEQ) B-V
  (LESSTHEQ) 0.5 increase rapidly, whereas stars with B-V (TURN) 0.0
  appear to have no intrinsic X-ray emission at presently detectable
  levels. We argue that the observed X-ray emission in our sample stars
  originates from coronae, produced by dynamo processes in the convection
  zones of these stars, and provide evidence supporting this point of
  view. A variety of statistical techniques was used to obtain the above
  results; these include two sample tests with censored data, adapted to
  astronomical usage from the field of survival analysis. A new method,
  based on maximum likelihood estimation in two dimensions, to determine
  correlation and linear regression coefficients in the presence of
  arbitrarily censored data, is developed. Further applications of the
  new method for likelihood ratio tests and principal component analysis
  in the presence of arbitrary censoring are also presented.

---------------------------------------------------------
Title: Subluminal Motions in the Nucleus of M87
Authors: Reid, M. J.; Schmitt, J. H. M. M.; Wilkinson, P. N.; Johnston,
   K. J.
1984IAUS..110..145R    Altcode:
  The authors have observed the nucleus of the elliptical galaxy M87
  with VLBI arrays at 18 cm wavelength at two epochs separated by about
  two years. The nucleus of M87 exhibits a highly asymmetric emission
  pattern with a bright "core" and long, thin "jet" extending for more
  than 0.05 arcsec towards the 20 arcsec jet seen in radio, optical,
  and X-ray radiation. Apparent motions in this structure are discussed.

---------------------------------------------------------
Title: Radio observations of Comet 1983 D
Authors: Altenhoff, W. J.; Batrla, W. K.; Huchtmeier, W. K.; Schmidt,
   J.; Stumpff, P.; Walmsley, M.
1983A&A...125L..19A    Altcode:
  Radio continuum and spectral line observations of Comet 1983d
  (IRAS-Araki-Alcock) have been made using the Effelsberg 100-m
  telescope at a wavelength of 1.3 cm. A continuum point source of
  strength 9 mJy was detected at the time of perigee (May 11), and
  this emission persisted throughout the next day. The authors have
  probably detected both the NH<SUB>3</SUB> (3,3) and H<SUB>2</SUB>O
  (6<SUB>16</SUB>-5<SUB>23</SUB>) lines from the comet. The derived
  ammonia production rate of 6×10<SUP>26</SUP> s<SUP>-1</SUP> suggests
  that NH<SUB>3</SUB> forms roughly six percent of the gases subliming
  from the cometary nucleus.

---------------------------------------------------------
Title: Comet IRAS-Araki-Alcock (1983d)
Authors: Richter, G.; Altenhoff, W.; Batrla, W.; Huchtmeier, W.;
   Schmidt, J.; Stumpff, P.; Walmsley, M.; Nolthenius, R.; Drummond,
   J. D.; de Assis Neto, V. F.
1983IAUC.3817....1R    Altcode:
  G. Richter, Sonneberg Observatory, reports that further prediscovery
  images have been found by Huth, Kroll and himself near the
  plate limit on two simultaneous exposures. The position is: 1983
  UT R.A. (1950.0) Decl. m1 Apr. 17.0535 19 07 47.5 +46 57 14 12
  W. Altenhoff, W. Batrla, W. Huchtmeier, J. Schmidt, P. Stumpff and
  M. Walmsley, Max-Planck-Institut fur Radioastronomie, telex: "Radio
  observations at 13 mm using the Effelsberg 100-m telescope (halfpower
  bandwidth 40") have resulted in the detection of a pointlike radio
  continuum source with a flux of 8 mJy on May 11.5 UT. We have also made
  detections of the NH3 (3,3) and the 22.2-GHz H2O lines, with main-beam
  brightness temperatures of 0.16 and 0.12 K, on May 11.6 and 12.6,
  respectively." R. Nolthenius, University of California at Los Angeles,
  writes that he observed an occultation of SAO 98040 by the nuclear
  region of comet 1983d on May 12.188 +/- 0.003 UT. Visual observations
  (at Lockwood Valley, CA, Long. 119deg01'47" west, lat. 34deg47'51"
  north, altitude 1630 m; 0.20-m Schmidt-Cassegrain, 275 x; seeing
  steady at 1"-1".5) showed the condensation to be not quite resolved,
  distinctly fuzzy, ~ 1.3 mag fainter than the star. The event lasted
  0.8 s (corresponding to 31 km at the comet's distance), during which
  the combined image slowly faded by 0.5 mag, then brightened, with no
  obvious interval of constant light. With further reference to IAUC 3801
  and 3811, J. D. Drummond, Steward Observatory, writes that his visual
  observations indicated a definite minor meteor shower associated with
  the comet. He gives zenithal hourly rates as follows: May 9.47 UT,
  5.1; 10.32, 4.1; 10.40, 3.2; 10.44, 3.1; 11.36, 2.4; 11.41, 3.2;
  11.44, 3.1. Total visual magnitude estimates by V. F. de Assis Neto,
  Sao Francisco de Oliveira, Brazil: May 11.92 UT, 2.6 (naked eye);
  12.94, 3.8; 13.98, 5.2; 15.98, 5.4; 17.02, 5.4 (0.10-m reflector);
  18.94, 7.5 (0.10-m reflector; 7'2 coma with 10 x 70 binoculars).

---------------------------------------------------------
Title: Doubly diffusive magnetic buoyancy instability in the solar
    interior
Authors: Schmitt, J. H. M. M.; Rosner, R.
1983ApJ...265..901S    Altcode:
  An investigation of the buoyancy of diffuse magnetic fields has shown
  that in the presence of rotation, static equilibrium configurations
  of the toroidal magnetic field and ambient plasma can exist. In that
  case, the escape of toroidal magnetic flux from the solar interior may
  be determined by the growth of instabilities which the equilibrium
  configuration may be subject to. In connection with the present
  investigation, it is assumed that in the region of toroidal magnetic
  flux amplification, the magnetic field has not as yet filamented into
  flux ropes, and is therefore 'diffuse'. A study is conducted of the
  MHD stability of an electrically conducting and differentially rotating
  gas in the presence of a toroidal magnetic field, an external constant
  gravitational field, and radiance pressure. The full dispersion relation
  for the magnetic buoyancy problem is developed, and the solutions of
  the dispersion relation are discussed.

---------------------------------------------------------
Title: VLBI observations of the nucleus and jet of M 87.
Authors: Reid, M. J.; Schmitt, J. H. M. M.; Owen, F. N.; Booth, R. S.;
   Wilkinson, P. N.; Shaffer, D. B.; Johnston, K. J.; Hardee, P. E.
1982ApJ...263..615R    Altcode:
  The nucleus and jet of M87 was mapped with an eight-station very long
  baseline interferometric array at 18 cm wavelength with high dynamic
  range. It was found that the nucleus of M87 consists of a core-jet
  structure with a peak brightness temperature greater than 10 to the
  10th K. Emission is shown to extend for more than 50 milli-arcsec with a
  brightness temperature exceeding 10 to the 8th K along a position angle
  of 288 degrees, which precisely matches the position angle of the 20”
  radio/optical/X-ray jet. In addition, the nucleus contains a significant
  structure of lower brightness at approximately the same position angle,
  although no counterjet is observed. By invoking relativistic beaming in
  order to enhance the jet and diminish the counterjet, it is shown that
  the jet must be aligned within about 60 degrees to our line of sight,
  and its flow velocity must exceed about 60% of the speed of light. The
  knots embedded in the 20” jet contain no bright compact structures,
  and the sizes of the innermost knot (knot D) is between 0.1-0.3”.

---------------------------------------------------------
Title: VLBI observations of M87
Authors: Reid, M. J.; Schmitt, J. H. M. M.; Owen, F. N.; Booth, R. S.;
   Wilkinson, P. N.; Shaffer, D. B.; Johnston, K. J.; Hardee, P. E.
1982IAUS...97..293R    Altcode:
  Results of VLBI observations of the nucleus and jet of M87 at 1666.6
  MHz in right circular polarization are presented. A hybrid map of
  the nucleus was made revealing the presence of a one-sided jet, whose
  position angle is 290.5 (+ or - 1) deg. Assuming that no counter-jet
  exists because of the effects of relativistic beaming, limits can be
  placed on the flow velocity of the jet, and the resulting ratio of the
  observed intensities of the jet to the counter-jet explains the absence
  of the counter-jet. Another explanation is that jets are intrinsically
  one-sided, or that counter-jet observed emissions are delayed. Finally,
  the possibility of existing small wiggles is considered, but further
  observations are required to verify their existence in M87.

---------------------------------------------------------
Title: The 5 GHz strong source surveys. V. Survey of the area between
    declination 70 and 90deg.
Authors: Kuehr, H.; Pauliny-Toth, I. I. K.; Witzel, A.; Schmidt, J.
1981AJ.....86..854K    Altcode:
  The north pole region between declinations 70° and 90° has been
  surveyed at 4.9 GHz using the MPI 100-m telescope. A total of 476
  sources with flux densities above 50 mJy were found in this survey,
  which covers 0.401 sr of the sky and is essentially complete above 250
  mJy. It is thus the most sensitive of the S-surveys. Radio positions
  accurate to between 0.2 and 6 arcsec are given in this catalog, as well
  as accurate flux densities at 2.7, 5.0, and 10.7 GHz, and suggested
  optical identifications for the stronger sources.

---------------------------------------------------------
Title: Buoyancy Instabilities at the Base of the Solar Convection Zone
Authors: Schmitt, J. H. M. M.; Rosner, R.
1981BAAS...13..907S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: The anisotropic microwave background in Bianchi V models
Authors: Schmitt, J. H. M. M.
1980A&A....87..236S    Altcode:
  The anisotropy pattern of the microwave background in hypersurface
  orthogonal Bianchi V models is discussed. With a tetrad formalism
  a system of differential equations describing the motion of null
  geodesics in such models is set up and solved analytically as far as
  possible. It is found that the anisotropy in the microwave background
  in these models tends, depending on the acceleration parameter, to
  become concentrated in small parts of the celestial sphere.

---------------------------------------------------------
Title: Radio continuum observations of Markarian Galaxies at 1410,
    2380, and 5000 MHz
Authors: Biermann, P.; Pauliny-Toth, I. I. K.; Witzel, A.; Clarke,
   J. N.; Fricke, K. J.; Schmidt, J.
1980A&A....81..235B    Altcode:
  Markarian Galaxies were observed with the 100 m Effelsberg and the 305
  m Arecibo telescopes. The ratio of radio power and blue light plotted
  against B-V shows that all galaxies which are neither variable nor
  BL Lac objects, lie close to or below the limiting reddening line for
  bursts of star formation with the exception of MRK011 which has a flat
  spectrum and is suspected to be a BL Lac object. The earlier conclusion
  (Biermann and Fricke, 1977; Bieging et al., 1977) that bursts of
  star formation can explain the radio radiation and the colors of many
  Markarian galaxies is confirmed.

---------------------------------------------------------
Title: PDX Divertor Operation
Authors: Owens, D. K.; Arunasalam, W.; Barnes, C.; Bell, M.; Bol, K.;
   Cohen, S.; Cecchi, J.; Daughney, C.; Davis, S.; Dimock, D.; Dylla,
   F.; Efthimion, P.; Fonck, R.; Grek, B.; Hawryluk, R.; Hinnov, E.;
   Hsuan, H.; Irie, M.; Jacobsen, R.; Johnson, D.; Johnson, L.; Maeda,
   H.; Mansfield, D.; Mazzucato, E.; McGuire, K.; Meade, D.; Mueller,
   D.; Okabayashi, M.; Schmidt, G.; Schmidt, J.; Silver, E.; Sinnis,
   J.; Staib, P.; Strachan, J.; Suckewer, S.; Tenney, F.; Ulrickson, M.
1980JNuM...93...94O    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: 21 cm flux density measurements of sources from the NRAO-MPIfR
    6 cm surveys.
Authors: Witzel, A.; Schmidt, J.; Pauliny-Toth, I. I. K.; Nauber, U.
1979AJ.....84..942W    Altcode:
  Results are presented for 21-cm observations of 345 sources from four
  NRAO-MPI 6-cm surveys of extragalactic sources. Twenty-one-centimeter
  flux densities are reported, along with two-point 21-cm/6-cm spectral
  indices. The distribution of the two-point spectral indices is
  determined for a complete sample of NRAO-MPI sources with 6-cm flux
  densities of at least 0.8 Jy. A histogram of this spectral-index
  (alpha) distribution is plotted which exhibits the well-known double
  peak. It is shown that galaxies are mainly responsible for the peak
  around alpha -0.8, while quasars form the peak around alpha 0.

---------------------------------------------------------
Title: The faint object camera (phase a). Volume 4: Mechanical,
    thermal and electrical design
Authors: Borucki, L.; Katzenbeisser, R.; Mauch, A.; Pittermann,
   F.; Polaczek, G.; Raupp, H.; Reffel, H.; Schmidt, J.; Schwarz, J.;
   Schwille, H.
1976dwgf.reptQ....B    Altcode:
  A study of the requirements on structural design, mechanisms, thermal
  control and electronics is presented. The major results are the mass
  budget, mass distribution, and overall power consumption; and they
  indicate that if the mechanical, thermal, and electronic requirements
  are satisfied, the camera can be built and operated in space for
  more than 2.5 years. Critical areas are surveyed, one of them being
  the optical bench. It is recommended that the bench be constructed
  in graphite/epoxy.

---------------------------------------------------------
Title: Lokaler Vergleich von astrogravimetrischen Ergebnissen mit
    anderen geodätischen Daten.
Authors: Brennecke, J.; Groten, E.; Hein, G.; Schaab, H.; Schmitt, J.
1976DGKBB.217...67B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Hydrodynamic model calculations for supermassive
    stars. III. The collapse and explosion of a slowly rotating
    7.5×10<SUP>5</SUP>M sun object.
Authors: Schmidt, J.
1973A&A....27..351S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Kollaps und Explosion eines rotierenden supermassiven Sterns
Authors: Schmidt, J.
1973MitAG..34...75S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Johannes Kepler - Sein Leben in Bildern und eigenen Berichten.
Authors: Schmidt, J.
1971joke.book.....S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Utilisation des rayonnements de fluorescence en
    microradiographie de contact Ses applications en minéralogie et
    pétrographie
Authors: Goldsztaub, S.; Schmitt, J.
1960xmxm.conf..149G    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Minima of Ceraski's new variable in Cepheus
Authors: Schmidt, J.
1880Obs.....3..663S    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Sternschnuppenbeobachtungen in Altona am 9-11ten August
    1843. Von Herrn J. Schmidt
Authors: Schmidt, J.
1843AN.....21..183S    Altcode: 1844AN.....21..183S
  No abstract at ADS