explanation      blue bibcodes open ADS page with paths to full text
Author name code: ueda
ADS astronomy entries on 2022-09-14
author:"Ueda, Kohei" 

---------------------------------------------------------
Title: Short-wavelength free-electron laser sources and science:
    a review
Authors: Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio,
   C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson,
   N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.
2017RPPh...80k5901S    Altcode:
  This review is focused on free-electron lasers (FELs) in the hard
  to soft x-ray regime. The aim is to provide newcomers to the area
  with insights into: the basic physics of FELs, the qualities of the
  radiation they produce, the challenges of transmitting that radiation to
  end users and the diversity of current scientific applications. Initial
  consideration is given to FEL theory in order to provide the foundation
  for discussion of FEL output properties and the technical challenges
  of short-wavelength FELs. This is followed by an overview of existing
  x-ray FEL facilities, future facilities and FEL frontiers. To provide
  a context for information in the above sections, a detailed comparison
  of the photon pulse characteristics of FEL sources with those of other
  sources of high brightness x-rays is made. A brief summary of FEL
  beamline design and photon diagnostics then precedes an overview of
  FEL scientific applications. Recent highlights are covered in sections
  on structural biology, atomic and molecular physics, photochemistry,
  non-linear spectroscopy, shock physics, solid density plasmas. A short
  industrial perspective is also included to emphasise potential in
  this area. <P />Dedicated to John M J Madey (1943-2016) and Rodolfo
  Bonifacio (1940-2016) whose perception, drive and perseverance paved
  the way for the realisation and development of short-wavelength
  free-electron lasers.

---------------------------------------------------------
Title: Photospheric Properties of Warm EUV Loops and Hot X-Ray Loops
Authors: Kano, R.; Ueda, K.; Tsuneta, S.
2014ApJ...782L..32K    Altcode:
  We investigate the photospheric properties (vector magnetic fields and
  horizontal velocity) of a well-developed active region, NOAA AR 10978,
  using the Hinode Solar Optical Telescope specifically to determine
  what gives rise to the temperature difference between "warm loops"
  (1-2 MK), which are coronal loops observed in EUV wavelengths, and
  "hot loops" (&gt;3 MK), coronal loops observed in X-rays. We found
  that outside sunspots, the magnetic filling factor in the solar network
  varies with location and is anti-correlated with the horizontal random
  velocity. If we accept that the observed magnetic features consist of
  unresolved magnetic flux tubes, this anti-correlation can be explained
  by the ensemble average of flux-tube motion driven by small-scale random
  flows. The observed data are consistent with a flux tube width of ~77
  km and horizontal flow at ~2.6 km s<SUP>-1</SUP> with a spatial scale
  of ~120 km. We also found that outside sunspots, there is no significant
  difference between warm and hot loops either in the magnetic properties
  (except for the inclination) or in the horizontal random velocity
  at their footpoints, which are identified with the Hinode X-Ray
  Telescope and the Transition Region and Coronal Explorer. The energy
  flux injected into the coronal loops by the observed photospheric
  motion of the magnetic fields is estimated to be 2 × 10<SUP>6</SUP>
  erg s<SUP>-1</SUP> cm<SUP>-2</SUP>, which is the same for both warm and
  hot loops. This suggests that coronal properties (e.g., loop length)
  play a more important role in giving rise to temperature differences
  of active-region coronal loops than photospheric parameters.

---------------------------------------------------------
Title: A Sounding Rocket Experiment for Spectropolarimetric
    Observations with the Ly<SUB>α</SUB> Line at 121.6 nm (CLASP)
Authors: Ishikawa, R.; Bando, T.; Fujimura, D.; Hara, H.; Kano,
   R.; Kobiki, T.; Narukage, N.; Tsuneta, S.; Ueda, K.; Wantanabe,
   H.; Kobayashi, K.; Trujillo Bueno, J.; Manso Sainz, R.; Stepan, J.;
   de Pontieu, B.; Carlsson, M.; Casini, R.
2011ASPC..437..287I    Altcode:
  A team consisting of Japan, USA, Spain, and Norway is developing a
  high-throughput Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP),
  which is proposed to fly with a NASA sounding rocket in 2014. CLASP will
  explore the magnetism of the upper solar chromosphere and transition
  region via the Hanle effect of the Ly<SUB>α</SUB> line for the first
  time. This experiment requires spectropolarimetric observations with
  high polarimetric sensitivity (∼0.1%) and wavelength resolution
  (0.1 Å). The final spatial resolution (slit width) is being discussed
  taking into account the required high signal-to-noise ratio. We have
  demonstrated the performance of the Ly<SUB>α</SUB> polarimeter by
  extensively using the Ultraviolet Synchrotron ORbital Radiation Facility
  (UVSOR) at the Institute for Molecular Sciences. In this contribution,
  we report these measurements at UVSOR together with the current status
  of the CLASP project.

---------------------------------------------------------
Title: The Chromospheric Lyman Alpha SpectroPolarimeter (CLASP)
Authors: Kobayashi, K.; Tsuneta, S.; Trujillo Bueno, J.; Cirtain,
   J. W.; Bando, T.; Kano, R.; Hara, H.; Fujimura, D.; Ueda, K.; Ishikawa,
   R.; Watanabe, H.; Ichimoto, K.; Sakao, T.; de Pontieu, B.; Carlsson,
   M.; Casini, R.
2010AGUFMSH11B1632K    Altcode:
  Magnetic fields in the solar chromosphere play a key role in the
  energy transfer and dynamics of the solar atmosphere. Yet a direct
  observation of the chromospheric magnetic field remains one of the
  greatest challenges in solar physics. While some advances have been
  made for observing the Zeeman effect in strong chromospheric lines,
  the effect is small and difficult to detect outside sunspots. The
  Hanle effect offers a promising alternative; it is sensitive to weaker
  magnetic fields (e.g., 5-500 G for Ly-Alpha), and while its magnitude
  saturates at stronger magnetic fields, the linear polarization signals
  remain sensitive to the magnetic field orientation. The Hanle effect
  is not only limited to off-limb observations. Because the chromosphere
  is illuminated by an anisotropic radiation field, the Ly-Alpha line is
  predicted to show linear polarization for on-disk, near-limb regions,
  and magnetic field is predicted to cause a measurable depolarization. At
  disk center, the Ly-Alpha radiation is predicted to be negligible
  in the absence of magnetic field, and linearly polarized to an order
  of 0.3% in the presence of an inclined magnetic field. The proposed
  CLASP sounding rocket instrument is designed to detect 0.3% linear
  polarization of the Ly-Alpha line at 1.5 arcsecond spatial resolution
  (0.7’’ pixel size) and 10 pm spectral resolution. The instrument
  consists of a 30 cm aperture Cassegrain telescope and a dual-beam
  spectropolarimeter. The telescope employs a “cold mirror’’ design
  that uses multilayer coatings to reflect only the target wavelength
  range into the spectropolarimeter. The polarization analyzer consists of
  a rotating waveplate and a polarizing beamsplitter that comprises MgF2
  plates placed at Brewster’s Angle. Each output beam of the polarizing
  beamsplitter, representing two orthogonal linear polarizations, is
  dispersed and focused using a separate spherical varied-line-space
  grating, and imaged with a separate 512x512 CCD camera. Prototypes
  of key optical components have been fabricated and tested. Instrument
  design is being finalized, and the experiment will be proposed for a
  2014 flight aboard a NASA sounding rocket.

---------------------------------------------------------
Title: Orientation of X-Ray Bright Points in the Quiet Sun
Authors: Ueda, K.; Kano, R.; Tsuneta, S.; Shibahashi, H.
2010SoPh..261...77U    Altcode:
  Thanks to the high-resolution images from the X-ray telescope (XRT)
  aboard the Hinode satellite, X-ray bright points (XBPs) in the quiet
  region of the Sun are resolved and can be seen to have complex loop-like
  structures. We measure the orientation of such loop structures for 488
  XBPs picked up in 26 snapshot X-ray images near the disk center. The
  distribution of the orientation is slightly but clearly biased to
  the east - west direction: the random distribution is rejected with a
  significance level of 1% by the χ<SUP>2</SUP>-test. The distribution
  is similar to the orientation distribution for the bipolar magnetic
  fields. The XBP orientation is, however, much more random than that
  of the bipolar magnetic fields with similar size. 24% of the XBPs are
  due to emerging bipoles, while the remaining 76% are due to chance
  encounters of opposite polarities.

---------------------------------------------------------
Title: Stellar-Mass Black Holes and Their Progenitors
Authors: Miller, J.; Uttley; Nandra; Barret; Paerels; Mandez;
   Diaz; Cappi; Kitamoto; Nowak; Wilms; Rothschild; Smith; Weisskopf;
   Teraschima; Ueda
2009astro2010S.207M    Altcode: 2009arXiv0902.4677M
  If a black hole has a low spin value, it must double its mass to
  reach a high spin parameter. Although this is easily accomplished
  through mergers or accretion in the case of supermassive black holes
  in galactic centers, it is impossible for stellar-mass black holes
  in X-ray binaries. Thus, the spin distribution of stellar-mass black
  holes is almost pristine, largely reflective of the angular momentum
  imparted at the time of their creation. This fact can help provide
  insights on two fundamental questions: What is the nature of the
  central engine in supernovae and gamma-ray bursts? and What was the
  spin distribution of the first black holes in the universe?

---------------------------------------------------------
Title: DECIGO pathfinder
Authors: Ando, M.; Kawamura, S.; Nakamura, T.; Tsubono, K.; Tanaka,
   T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda,
   N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi,
   K. -s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba,
   T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita,
   R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto,
   T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu,
   T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.;
   Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki,
   H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.;
   Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.;
   Koizumi, H.; Koima, Y.; Kokeyama, K.; W-Kokuyama; Kotake, K.; Kozai,
   Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.;
   Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.;
   Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.;
   Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao,
   K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa,
   A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato,
   K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.;
   Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya,
   K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.;
   Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi,
   R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.;
   Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada,
   Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki,
   T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T.
2008JPhCS.120c2005A    Altcode:
  DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO
  (DECi-hertz Interferometer Gravitational wave Observatory) which is a
  future space gravitational wave antenna. DECIGO is expected to provide
  us fruitful insights into the universe, in particular about dark energy,
  a formation mechanism of supermassive black holes, and the inflation
  of the universe. Since DECIGO will be an extremely large mission which
  will formed by three drag-free spacecraft with 1000m separation, it
  is significant to gain the technical feasibility of DECIGO before its
  planned launch in 2024. Thus, we are planning to launch two milestone
  missions: DPF and pre-DECIGO. The conceptual design and current status
  of the first milestone mission, DPF, are reviewed in this article.

---------------------------------------------------------
Title: The Japanese space gravitational wave antenna; DECIGO
Authors: Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka,
   T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda,
   N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi,
   K. -s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba,
   T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita,
   R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto,
   T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu,
   T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.;
   Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki,
   H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.;
   Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.;
   Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai,
   Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.;
   Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.;
   Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.;
   Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao,
   K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa,
   A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato,
   K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.;
   Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya,
   K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.;
   Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi,
   R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.;
   Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada,
   Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki,
   T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T.
2008JPhCS.120c2004K    Altcode:
  DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the
  future Japanese space gravitational wave antenna. DECIGO is expected
  to open a new window of observation for gravitational wave astronomy
  especially between 0.1 Hz and 10 Hz, revealing various mysteries of
  the universe such as dark energy, formation mechanism of supermassive
  black holes, and inflation of the universe. The pre-conceptual design
  of DECIGO consists of three drag-free spacecraft, whose relative
  displacements are measured by a differential Fabry-Perot Michelson
  interferometer. We plan to launch two missions, DECIGO pathfinder and
  pre-DECIGO first and finally DECIGO in 2024.

---------------------------------------------------------
Title: The Japanese space gravitational wave antenna - DECIGO
Authors: Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Tanaka,
   T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda,
   N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi,
   Koh-Suke; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba,
   T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M. -K.; Fujita,
   R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto,
   T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu,
   T.; Hong, F. -L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.;
   Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki,
   H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.;
   Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.;
   Koizumi, H.; Kojima, Y.; Kokeyama, K.; Kokuyama, W.; Kotake, K.; Kozai,
   Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K. -i.;
   Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.;
   Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.;
   Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao,
   K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa,
   A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato,
   K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S. -i.;
   Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya,
   K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.;
   Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi,
   R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.;
   Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada,
   Y.; Ueda, K. -i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki,
   T.; Yokoyama, J.; Yoo, C. -M.; Yoshida, S.; Yoshino, T.
2008JPhCS.122a2006K    Altcode:
  DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the
  future Japanese space gravitational wave antenna. The goal of DECIGO
  is to detect gravitational waves from various kinds of sources mainly
  between 0.1 Hz and 10 Hz and thus to open a new window of observation
  for gravitational wave astronomy. DECIGO will consist of three drag-free
  spacecraft, 1000 km apart from each other, whose relative displacements
  are measured by a Fabry—Perot Michelson interferometer. We plan to
  launch DECIGO pathfinder first to demonstrate the technologies required
  to realize DECIGO and, if possible, to detect gravitational waves from
  our galaxy or nearby galaxies.

---------------------------------------------------------
Title: Joint LIGO and TAMA300 search for gravitational waves from
    inspiralling neutron star binaries
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.;
   Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson,
   W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish,
   B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.;
   Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff,
   S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.;
   Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.;
   Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau,
   J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.;
   Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.;
   Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski,
   S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches,
   D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.;
   Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks,
   D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.;
   D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker,
   T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico,
   A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund,
   J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.;
   Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime,
   J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.;
   Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett,
   D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson,
   R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham,
   C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.;
   Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.;
   Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.;
   Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.;
   Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.;
   Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe,
   K.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.;
   Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter,
   K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale,
   J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.;
   Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand,
   M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk,
   B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec,
   M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason,
   J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy,
   R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger,
   C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.;
   Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.;
   Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano,
   S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman,
   P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette,
   D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah,
   V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi,
   M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.;
   Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.;
   Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.;
   Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.;
   Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson,
   C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.;
   Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.;
   Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders,
   G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.;
   Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker,
   D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.;
   Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.;
   Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom,
   D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton,
   P. J.; Sylvestre, J.; Tanner, D. B.; Tariq, H.; Tarallo, M.; Taylor,
   I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits,
   M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.;
   Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri,
   M.; van Putten, M.; Vass, S.; Vecchio, A.; Veitch, J.; Vorvick, C.;
   Vyachanin, S. P.; Wallace, L.; Walther, H.; Ward, H.; Ward, R.; Ware,
   B.; Watts, K.; Webber, D.; Weidner, A.; Weiland, U.; Weinstein, A.;
   Weiss, R.; Welling, H.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, P. R.; Williams, R.; Willke, B.; Wilson, A.; Winjum,
   B. J.; Winkler, W.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.;
   Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yoshida,
   S.; Zaleski, K. D.; Zanolin, M.; Zawischa, I.; Zhang, L.; Zhu, R.;
   Zotov, N.; Zucker, M.; Zweizig, J.; Akutsu, T.; Akutsu, T.; Ando, M.;
   Arai, K.; Araya, A.; Asada, H.; Aso, Y.; Beyersdorf, P.; Fujiki, Y.;
   Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Hamuro, Y.;
   Haruyama, T.; Hayama, K.; Iguchi, H.; Iida, Y.; Ioka, K.; Ishitsuka,
   H.; Kamikubota, N.; Kanda, N.; Kaneyama, T.; Karasawa, Y.; Kasahara,
   K.; Kasai, T.; Katsuki, M.; Kawamura, S.; Kawamura, M.; Kawazoe, F.;
   Kojima, Y.; Kokeyama, K.; Kondo, K.; Kozai, Y.; Kudoh, H.; Kuroda,
   K.; Kuwabara, T.; Matsuda, N.; Mio, N.; Miura, K.; Miyama, S.; Miyoki,
   S.; Mizusawa, H.; Moriwaki, S.; Musha, M.; Nagayama, Y.; Nakagawa, K.;
   Nakamura, T.; Nakano, H.; Nakao, K.; Nishi, Y.; Numata, K.; Ogawa, Y.;
   Ohashi, M.; Ohishi, N.; Okutomi, A.; Oohara, K.; Otsuka, S.; Saito,
   Y.; Sakata, S.; Sasaki, M.; Sato, N.; Sato, S.; Sato, Y.; Sato, K.;
   Sekido, A.; Seto, N.; Shibata, M.; Shinkai, H.; Shintomi, T.; Soida,
   K.; Somiya, K.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi,
   R.; Takamori, A.; Takemoto, S.; Takeno, K.; Tanaka, T.; Taniguchi,
   K.; Tanji, T.; Tatsumi, D.; Telada, S.; Tokunari, M.; Tomaru, T.;
   Tsubono, K.; Tsuda, N.; Tsunesada, Y.; Uchiyama, T.; Ueda, K.; Ueda,
   A.; Waseda, K.; Yamamoto, A.; Yamamoto, K.; Yamazaki, T.; Yanagi,
   Y.; Yokoyama, J.; Yoshida, T.; Zhu, Z. -H.
2006PhRvD..73j2002A    Altcode: 2005gr.qc....12078L
  We search for coincident gravitational wave signals from inspiralling
  neutron star binaries using LIGO and TAMA300 data taken during
  early 2003. Using a simple trigger exchange method, we perform an
  intercollaboration coincidence search during times when TAMA300 and
  only one of the LIGO sites were operational. We find no evidence of
  any gravitational wave signals. We place an observational upper limit
  on the rate of binary neutron star coalescence with component masses
  between 1 and 3M<SUB>⊙</SUB> of 49 per year per Milky Way equivalent
  galaxy at a 90% confidence level. The methods developed during this
  search will find application in future network inspiral analyses.

---------------------------------------------------------
Title: Upper limits from the LIGO and TAMA detectors on the rate of
    gravitational-wave bursts
Authors: Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Agresti, J.;
   Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S. B.; Anderson,
   W. G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.;
   Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish,
   B. C.; Barker, C.; Barker, D.; Barnes, M.; Barr, B.; Barton, M. A.;
   Bayer, K.; Beausoleil, R.; Belczynski, K.; Bennett, R.; Berukoff,
   S. J.; Betzwieser, J.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.;
   Black, E.; Blackburn, K.; Blackburn, L.; Bland, B.; Bochner, B.;
   Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau,
   J. E.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.;
   Burgess, R.; Busby, D.; Butler, W. E.; Byer, R. L.; Cadonati, L.;
   Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.;
   Cao, J.; Cardenas, L.; Carter, K.; Casey, M. M.; Castiglione, J.;
   Chandler, A.; Chapsky, J.; Charlton, P.; Chatterji, S.; Chelkowski,
   S.; Chen, Y.; Chickarmane, V.; Chin, D.; Christensen, N.; Churches,
   D.; Cokelaer, T.; Colacino, C.; Coldwell, R.; Coles, M.; Cook, D.;
   Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks,
   D. R. M.; Csatorday, P.; Cusack, B. J.; Cutler, C.; Dalrymple, J.;
   D'Ambrosio, E.; Danzmann, K.; Davies, G.; Daw, E.; Debra, D.; Delker,
   T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; di Credico,
   A.; Díaz, M.; Ding, H.; Drever, R. W. P.; Dupuis, R. J.; Edlund,
   J. A.; Ehrens, P.; Elliffe, E. J.; Etzel, T.; Evans, M.; Evans, T.;
   Fairhurst, S.; Fallnich, C.; Farnham, D.; Fejer, M. M.; Findley, T.;
   Fine, M.; Finn, L. S.; Franzen, K. Y.; Freise, A.; Frey, R.; Fritschel,
   P.; Frolov, V. V.; Fyffe, M.; Ganezer, K. S.; Garofoli, J.; Giaime,
   J. A.; Gillespie, A.; Goda, K.; Goggin, L.; González, G.; Goßler, S.;
   Grandclément, P.; Grant, A.; Gray, C.; Gretarsson, A. M.; Grimmett,
   D.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E.; Gustafson,
   R.; Hamilton, W. O.; Hammond, M.; Hanna, C.; Hanson, J.; Hardham,
   C.; Harms, J.; Harry, G.; Hartunian, A.; Heefner, J.; Hefetz, Y.;
   Heinzel, G.; Heng, I. S.; Hennessy, M.; Hepler, N.; Heptonstall, A.;
   Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hoang, P.; Hough, J.;
   Hrynevych, M.; Hua, W.; Ito, M.; Itoh, Y.; Ivanov, A.; Jennrich, O.;
   Johnson, B.; Johnson, W. W.; Johnston, W. R.; Jones, D. I.; Jones, G.;
   Jones, L.; Jungwirth, D.; Kalogera, V.; Katsavounidis, E.; Kawabe,
   K.; Kells, W.; Kern, J.; Khan, A.; Killbourn, S.; Killow, C. J.;
   Kim, C.; King, C.; King, P.; Klimenko, S.; Koranda, S.; Kötter,
   K.; Kovalik, J.; Kozak, D.; Krishnan, B.; Landry, M.; Langdale,
   J.; Lantz, B.; Lawrence, R.; Lazzarini, A.; Lei, M.; Leonor, I.;
   Libbrecht, K.; Libson, A.; Lindquist, P.; Liu, S.; Logan, J.; Lormand,
   M.; Lubiński, M.; Lück, H.; Luna, M.; Lyons, T. T.; Machenschalk,
   B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majid, W.; Malec,
   M.; Mandic, V.; Mann, F.; Marin, A.; Márka, S.; Maros, E.; Mason,
   J.; Mason, K.; Matherny, O.; Matone, L.; Mavalvala, N.; McCarthy,
   R.; McClelland, D. E.; McHugh, M.; McNabb, J. W. C.; Melissinos, A.;
   Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger,
   C.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.;
   Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.;
   Mueller, G.; Mukherjee, S.; Murray, P.; Myers, E.; Myers, J.; Nagano,
   S.; Nash, T.; Nayak, R.; Newton, G.; Nocera, F.; Noel, J. S.; Nutzman,
   P.; Olson, T.; O'Reilly, B.; Ottaway, D. J.; Ottewill, A.; Ouimette,
   D.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah,
   V.; Parameswariah, C.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi,
   M.; Prix, R.; Quetschke, V.; Raab, F.; Radkins, H.; Rahkola, R.;
   Rakhmanov, M.; Rao, S. R.; Rawlins, K.; Ray-Majumder, S.; Re, V.;
   Redding, D.; Regehr, M. W.; Regimbau, T.; Reid, S.; Reilly, K. T.;
   Reithmaier, K.; Reitze, D. H.; Richman, S.; Riesen, R.; Riles, K.;
   Rivera, B.; Rizzi, A.; Robertson, D. I.; Robertson, N. A.; Robinson,
   C.; Robison, L.; Roddy, S.; Rodriguez, A.; Rollins, J.; Romano, J. D.;
   Romie, J.; Rong, H.; Rose, D.; Rotthoff, E.; Rowan, S.; Rüdiger, A.;
   Ruet, L.; Russell, P.; Ryan, K.; Salzman, I.; Sandberg, V.; Sanders,
   G. H.; Sannibale, V.; Sarin, P.; Sathyaprakash, B.; Saulson, P. R.;
   Savage, R.; Sazonov, A.; Schilling, R.; Schlaufman, K.; Schmidt, V.;
   Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott,
   S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seel, S.; Seifert, F.;
   Sellers, D.; Sengupta, A. S.; Shapiro, C. A.; Shawhan, P.; Shoemaker,
   D. H.; Shu, Q. Z.; Sibley, A.; Siemens, X.; Sievers, L.; Sigg, D.;
   Sintes, A. M.; Smith, J. R.; Smith, M.; Smith, M. R.; Sneddon, P. H.;
   Spero, R.; Spjeld, O.; Stapfer, G.; Steussy, D.; Strain, K. A.; Strom,
   D.; Stuver, A.; Summerscales, T.; Sumner, M. C.; Sung, M.; Sutton,
   P. J.; Sylvestre, J.; Tanner, D. B.; Tariq, H.; Tarallo, M.; Taylor,
   I.; Taylor, R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Tibbits,
   M.; Tilav, S.; Tinto, M.; Tokmakov, K. V.; Torres, C.; Torrie, C.;
   Traylor, G.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vallisneri,
   M.; van Putten, M.; Vass, S.; Vecchio, A.; Veitch, J.; Vorvick, C.;
   Vyachanin, S. P.; Wallace, L.; Walther, H.; Ward, H.; Ward, R.; Ware,
   B.; Watts, K.; Webber, D.; Weidner, A.; Weiland, U.; Weinstein, A.;
   Weiss, R.; Welling, H.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.;
   Whitcomb, S. E.; Whiting, B. F.; Wiley, S.; Wilkinson, C.; Willems,
   P. A.; Williams, P. R.; Williams, R.; Willke, B.; Wilson, A.; Winjum,
   B. J.; Winkler, W.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.;
   Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yoshida,
   S.; Zaleski, K. D.; Zanolin, M.; Zawischa, I.; Zhang, L.; Zhu, R.;
   Zotov, N.; Zucker, M.; Zweizig, J.; Akutsu, T.; Akutsu, T.; Ando, M.;
   Arai, K.; Araya, A.; Asada, H.; Aso, Y.; Beyersdorf, P.; Fujiki, Y.;
   Fujimoto, M. -K.; Fujita, R.; Fukushima, M.; Futamase, T.; Hamuro, Y.;
   Haruyama, T.; Hayama, K.; Iguchi, H.; Iida, Y.; Ioka, K.; Ishizuka,
   H.; Kamikubota, N.; Kanda, N.; Kaneyama, T.; Karasawa, Y.; Kasahara,
   K.; Kasai, T.; Katsuki, M.; Kawamura, S.; Kawamura, M.; Kawazoe, F.;
   Kojima, Y.; Kokeyama, K.; Kondo, K.; Kozai, Y.; Kudoh, H.; Kuroda,
   K.; Kuwabara, T.; Matsuda, N.; Mio, N.; Miura, K.; Miyama, S.; Miyoki,
   S.; Mizusawa, H.; Moriwaki, S.; Musha, M.; Nagayama, Y.; Nakagawa, K.;
   Nakamura, T.; Nakano, H.; Nakao, K.; Nishi, Y.; Numata, K.; Ogawa, Y.;
   Ohashi, M.; Ohishi, N.; Okutomi, A.; Oohara, K.; Otsuka, S.; Saito,
   Y.; Sakata, S.; Sasaki, M.; Sato, N.; Sato, S.; Sato, Y.; Sato, K.;
   Sekido, A.; Seto, N.; Shibata, M.; Shinkai, H.; Shintomi, T.; Soida,
   K.; Somiya, K.; Suzuki, T.; Tagoshi, H.; Takahashi, H.; Takahashi,
   R.; Takamori, A.; Takemoto, S.; Takeno, K.; Tanaka, T.; Taniguchi,
   K.; Tanji, T.; Tatsumi, D.; Telada, S.; Tokunari, M.; Tomaru, T.;
   Tsubono, K.; Tsuda, N.; Tsunesada, Y.; Uchiyama, T.; Ueda, K.; Ueda,
   A.; Waseda, K.; Yamamoto, A.; Yamamoto, K.; Yamazaki, T.; Yanagi,
   Y.; Yokoyama, J.; Yoshida, T.; Zhu, Z. -H.
2005PhRvD..72l2004A    Altcode: 2005gr.qc.....7081L
  We report on the first joint search for gravitational waves by the TAMA
  and LIGO collaborations. We looked for millisecond-duration unmodeled
  gravitational-wave bursts in 473 hr of coincident data collected during
  early 2003. No candidate signals were found. We set an upper limit of
  0.12 events per day on the rate of detectable gravitational-wave bursts,
  at 90% confidence level. From software simulations, we estimate that our
  detector network was sensitive to bursts with root-sum-square strain
  amplitude above approximately 1-3×10<SUP>-19</SUP>Hz<SUP>-1/2</SUP>
  in the frequency band 700-2000 Hz. We describe the details of this
  collaborative search, with particular emphasis on its advantages
  and disadvantages compared to searches by LIGO and TAMA separately
  using the same data. Benefits include a lower background and longer
  observation time, at some cost in sensitivity and bandwidth. We also
  demonstrate techniques for performing coincidence searches with a
  heterogeneous network of detectors with different noise spectra and
  orientations. These techniques include using coordinated software
  signal injections to estimate the network sensitivity, and tuning
  the analysis to maximize the sensitivity and the livetime, subject to
  constraints on the background.

---------------------------------------------------------
Title: Present status of large-scale cryogenic gravitational wave
    telescope
Authors: Uchiyama, T.; Kuroda, K.; Ohashi, M.; Miyoki, S.; Ishitsuka,
   H.; Yamamoto, K.; Hayakawa, H.; Kasahara, K.; Fujimoto, M. -K.;
   Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.;
   Ueda, A.; Fukushima, M.; Sato, S.; Tsunesada, Y.; Zhu, Zong-Hong;
   Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.;
   Sato, N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Numata, K.;
   Aso, Y.; Ueda, K. -I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.;
   Moriwaki, S.; Somiya, K.; Araya, A.; Takamori, A.; Kanda, N.; Telada,
   S.; Tagoshi, H.; Nakamura, T.; Sasaki, M.; Tanaka, T.; Ohara, K. -I.;
   Takahashi, H.; Nagano, S.; Miyakawa, O.; Tobar, M. E.
2004CQGra..21S1161U    Altcode: 2004CQGra..21.1161U
  The large-scale cryogenic gravitational wave telescope (LCGT) is the
  future project of the Japanese gravitational wave group. Two sets of 3
  km arm length laser interferometric gravitational wave detectors will
  be built in a tunnel of Kamioka mine in Japan. LCGT will detect chirp
  waves from binary neutron star coalescence at 240 Mpc away with a S/N
  of 10. The expected number of detectable events in a year is two or
  three. To achieve the required sensitivity, several advanced techniques
  will be employed such as a low-frequency vibration-isolation system,
  a suspension point interferometer, cryogenic mirrors, a resonant side
  band extraction method, a high-power laser system and so on. We hope
  that the beginning of the project will be in 2005 and the observations
  will start in 2009.

---------------------------------------------------------
Title: Determination of iron(III)- complexing ligands originated
    from marine phytoplankton using cathodic stripping voltammetry
Authors: Hiroshi, H.; Maki, T.; Asano, K.; Ueda, K.; Ueda, K.
2003GeCAS..67R.137H    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Current status of large-scale cryogenic gravitational wave
    telescope
Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Uchiyama, T.; Ishitsuka,
   H.; Yamamoto, K.; Kasahara, K.; Fujimoto, M. -K.; Kawamura, S.;
   Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda, A.;
   Fukushima, M.; Sato, S.; Nagano, S.; Tsunesada, Y.; Zhu, Zong-Hong;
   Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama, T.; Sato,
   N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Takamori, A.;
   Numata, K.; Aso, Y.; Ueda, K. -I.; Yoneda, H.; Nakagawa, K.; Musha,
   M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Kanda, N.; Telada,
   S.; Tagoshi, H.; Nakamura, T.; Sasaki, M.; Tanaka, T.; Oohara, K.;
   Takahashi, H.; Miyakawa, O.; Tobar, M. E.
2003CQGra..20S.871K    Altcode:
  The large-scale cryogenic gravitational wave telescope (LCGT) project
  is the proposed advancement of TAMA, which will be able to detect the
  coalescences of binary neutron stars occurring in our galaxy. LCGT
  intends to detect the coalescence events within about 240 Mpc, the rate
  of which is expected to be from 0.1 to several events in a year. LCGT
  has Fabry Perot cavities of 3 km baseline and the mirrors are cooled
  down to a cryogenic temperature of 20 K. It is planned to be built in
  the underground of Kamioka mine. This paper overviews the revision of
  the design and the current status of the R&amp;D.

---------------------------------------------------------
Title: Detection of bacterial population contributing to organoarsenic
    decomposition
Authors: Maki, T.; Hasegawa, H.; Wachi, S.; Ueda, K.
2003GeCAS..67Q.269M    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: LCGT Project Observing Gravitational Wave Events at 240 Mpc
Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Uchiyama, T.; Ishitsuka,
   H.; Yamamoto, K.; Hayakawa, H.; Kasahara, K.; Fujimoto, M. K.;
   Kawamura, S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.;
   Ueda, A.; Fukushima, M.; Sato, S.; Nagano, S.; Tsunesada, Y.; Zhu,
   Z. H.; Shintomi, T.; Yamamoto, A.; Suzuki, T.; Saito, Y.; Haruyama,
   T.; Sato, N.; Higashi, Y.; Tomaru, T.; Tsubono, K.; Ando, M.; Takamori,
   A.; Numata, K.; Aso, Y.; Ueda, K. I.; Yoneda, H.; Nakagawa, K.; Musha,
   M.; Mio, N.; Moriwaki, S.; Somiya, K.; Araya, A.; Kanda, N.; Telada,
   S.; Tagoshi, H.; Nkakmura, T.; Sasaki, M.; Tanaka, T.; Ohara, K.;
   Takahashi, H.; Miyakawa, O.; Tobar, M. E.
2003ICRC....5.3103K    Altcode: 2003ICRC...28.3103K
  The large-scale cryogenic gravitational wave telescope (LCGT) project
  was originally planned in 1998 and was revised in 2002. The design
  concept of the LCGT was to raise the baseline of TAMA by one order and
  to decrease the thermal noise of the mirrors by one order by using
  cryogenics and by locating LCGT at an underground site in Kamioka
  mine. Two sets of interferometers will be constructed in the same
  tunnel in order to reject possible fake events.

---------------------------------------------------------
Title: Japanese large-scale interferometers
Authors: Kuroda, K.; Ohashi, M.; Miyoki, S.; Ishizuka, H.; Taylor,
   C. T.; Yamamoto, K.; Miyakawa, O.; Fujimoto, M. -K.; Kawamura,
   S.; Takahashi, R.; Yamazaki, T.; Arai, K.; Tatsumi, D.; Ueda,
   A.; Fukushima, M.; Sato, S.; Shintomi, T.; Yamamoto, A.; Suzuki,
   T.; Saito, Y.; Haruyama, T.; Sato, N.; Higashi, Y.; Uchiyama, T.;
   Tomaru, T.; Tsubono, K.; Ando, M.; Takamori, A.; Numata, K.; Ueda,
   K. -I.; Yoneda, H.; Nakagawa, K.; Musha, M.; Mio, N.; Moriwaki, S.;
   Somiya, K.; Araya, A.; Kanda, N.; Telada, S.; Sasaki, M.; Tagoshi,
   H.; Nakamura, T.; Tanaka, T.; Ohara, K.
2002CQGra..19.1237K    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Combined half-collision approach to the nonadiabatic
    transitions in the Hg(6s6p<SUP>3</SUP>P<SUB>2</SUB>)-N<SUB>2</SUB>,
    CO cold and thermal quasimolecules
Authors: Ohmori, K.; Kurosawa, T.; Amano, K.; Chiba, H.; Okunishi,
   M.; Ueda, K.; Sato, Y.; Devdariani, A. Z.; Nikitin, E. E.
1999AIPC..467..389O    Altcode: 1999sls..conf..389O
  No abstract at ADS

---------------------------------------------------------
Title: First observation of the bound Hg-rare-gas complex in the
    dark c-state using free-bound-bound 2-step laser excitation
Authors: Amano, K.; Ohmori, K.; Kurosawa, T.; Chiba, H.; Okunishi,
   M.; Ueda, K.; Sato, Y.; Devdariani, A. Z.; Nikitin, E. E.
1999AIPC..467..390A    Altcode: 1999sls..conf..390A
  No abstract at ADS

---------------------------------------------------------
Title: Far-wing line-shape study of the inter-excited-state
    transitions of the Hg-Ar and Hg-Ne collisional quasimolecules
Authors: Amano, K.; Ohmori, K.; Okunishi, M.; Chiba, H.; Ueda, K.;
   Sato, Y.
1999AIPC..467..391A    Altcode: 1999sls..conf..391A
  No abstract at ADS

---------------------------------------------------------
Title: Far-wing line-shape study of the collision-induced c&lt;--X
    transition in Hg-rare-gas quasimolecules
Authors: Sato, Y.; Kurosawa, T.; Ohmori, K.; Chiba, H.; Okunishi,
   M.; Ueda, K.; Devdariani, A. Z.; Nikitin, E. E.
1999AIPC..467..388S    Altcode: 1999sls..conf..388S
  No abstract at ADS

---------------------------------------------------------
Title: Accurate measurement of the radius of curvature of a concave
    mirror and the power dependence in a high-finesse Fabry-Perot
    interferometer
Authors: Uehara, N.; Ueda, K.
1995ApOpt..34.5611U    Altcode:
  We describe the accurate measurement of the radius of curvature of
  a concave mirror in a Fabry-Perot interferometer with a finesse of
  78,100. The radius of curvature of the concave mirror is determined
  by measuring the free spectral range and the transverse-mode range
  with the frequency response functions. The radii of curvature at two
  orthogonal (x and y) axes on the mirror surface resulting from the
  polishing nonisotropy were accurately measured to be r<SUB>x</SUB>
  = 1008.46 mm and r<SUB>y</SUB> = 1006.94 mm, respectively, with an
  accuracy of 8 \times 10 <SUP>-5</SUP>. This accuracy is the best
  to our knowledge. The power dependence of the radii of curvature to
  the cavity internal intensity at a steady state was measured to be
  dr<SUB>x</SUB>/dI <SUB>c = +60 mu m/(MW/cm<SUP>2</SUP>) at the x axis
  and dr&lt;sub&gt;y</SUB>/dI&lt;sub&gt;c = +47 mu m/(MW/cm/<SUP>2</SUP>)
  at the y axis to an intensity of 2.1 MW/cm<SUP>2</SUP>.

---------------------------------------------------------
Title: Behavior of Japanese tree frogs under microgravity on MIR
    and in parabolic flight
Authors: Izumi-Kurotani, A.; Yamashita, M.; Kawasaki, Y.; Kurotani, T.;
   Mogami, Y.; Okuno, M.; Oketa, A.; Shiraishi, A.; Ueda, K.; Wassersug,
   R. J.; Naitoh, T.
1994AdSpR..14h.419I    Altcode: 1994AdSpR..14..419I
  Japanese tree frogs (Hyla japonica) were flown to the space station
  MIR and spent eight days in orbit during December, 1990/1/. Under
  microgravity, their postures and behaviors were observed and
  recorded. On the MIR, floating frogs stretched four legs out,
  bent their bodies backward and expanded their abdomens. Frogs on a
  surface often bent their neck backward and walked backwards. This
  behavior was observed on parabolic flights and resembles the retching
  behavior of sick frogs on land- a possible indicator of motion
  sickness. Observations on MIR were carried out twice to investigate
  the frog's adaptation to space. The frequency of failure in landing
  after a jump decreased in the second observation period. After the
  frogs returned to earth, readaptation processes were observed. The
  frogs behaved normally as early as 2.5 hours after landing.

---------------------------------------------------------
Title: High power LD-pumped solid-state laser.
Authors: Ueda, K.
1991AstHe..84..126U    Altcode:
  No abstract at ADS