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Denoising observational data
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Abstract. Reducing noise caused by the instrumentation in observational data
is a crucial step in data post-processing. A method is searched for that conserves
most of the instrumental resolution and introduces as few methodical artefacts
as possible. With such a method integrated in an observation sites software
tool-chain, the resources spent for the generation of observational data will
more likely find their way into resulting scientific publications; otherwise, for
data post-processing often methods are used, which just smear out the noise,
introduce artefacts, or decrease the provided resolution in space or time. A
short review of different techniques is given here, and a non-local averaging
method is applied to Hinode magnetograms and G-band data. The presented
method fits the needs for various kinds of observational data.
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1. Introduction

Any modern telescope or observational instrument is nowadays equipped with
digital sensors, in particular CCDs for imaging. A resolution element of a CCD
basically counts photons and provides 2D pixel data with some kind of noise on
each pixel. The cause for the noise might lie in the CCD or other parts of the
instrument, but usually the noise can be treated as it would have come from
only one source. Good CCD cameras often use 16 bit unsigned integers and
can reach photon counts up to 216

− 1 = 65535. Typical signal-to-noise ratios
combined with reasonable exposure times of such CCDs are usually resulting
in a noise count of 10 or more, where a Gaussian distribution of the photon
noise can be assumed. Therefore denoising methods can be tested, by adding
Gaussian noise to a known image, run the denoising method, and compare the
resulting images with the original ones. Presented here are excerpts from a well
written review article (Buades et al., 2006) as well as an analysis of a non-local
averaging method (Buades et al., 2005) applied to solar observations, such as
Stokes-V images from the Hinode satellite as well as G-band images from the
Dutch Open Telescope (DOT).
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2. Common methods for denoising

As a young scientist or PhD student, who has to post-process observational data
for the first time, the obvious methods to get rid of noise are smoothing the data
in space, time-averaging aligned image data, or simply reducing the resolution
to the maximum possible, so that the noise cannot be seen. All of those methods
basically mean not removing any noise, but smearing it out in space or time.
Another possibility is to try a Gaussian convolution method, which tries to
locally fit the image by Gaussian curves. This method also smooths an image,
lowers the resolution, and cannot maintain sharp contrasts, as it can be seen in
difference plots of a noisy and its denoised image. More advanced methods are
needed to make better use of the provided resolution, cadence or other kinds of
data qualities.

In principle, denoising methods can be divided into local and non-local meth-
ods. Where averaging methods are now available in local and non-local variants,
any fitting method is local and any frequency domain (Fourier transform based)
method is non-local. The advantage of non-local methods is clearly the pos-
sibility to profit from self-similarities of any scale, where local methods have
the dilemma of delivering performance by using larger amounts of pixels versus
maintaining resolution by using less amounts of pixels.

Fitting methods (e.g., wavelets) use subfields of an image to fit a set of base
functions to the shape of the image. Because such sets are discrete and finite,
the fit is usually not representing the true shape of the image and it introduces
artefacts at the borders of the subfields. Total variation (TV) minimization,
iterated TV, anisotropic filtering, and entropy reduction methods are usually
producing an oil-painting effect or deliver low denoising performance.

Frequency domain methods (e.g., Fourier-Wiener and DCT-empirical Wiener
filters) are introducing artefacts, which are then uniformly visible, e.g., as wig-
gles in large parts of the denoised image. Furthermore, no clear distinction can
be made between high frequencies resulting from noise or from true sharp con-
trasts on a low spatial scale. Some smoothing can therefore not be avoided. A
more in-depth discussion of all these methods can be found in the mentioned
review article (Buades et al., 2006).

3. A non-local averaging method

The NL-means algorithm features the advantages of a non-local method, without
introducing artefacts. This is achieved by building, to get one pixel of the de-
noised image, a superposition (or an average) of all pixels in the image, weighted
by the similarity between the surrounding area of the to-be-denoised pixel and
the surrounding area of every other pixel in the whole image. Where there is
a strong similarity, the contribution to the average is strong; where there is no
similarity, the contribution is negligible. Furthermore, a small fixed fraction of
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the original image is added to the result, to maintain the original image in areas,
where there is less similarity to other areas. This conserves unique features in a
noisy image, if they are significantly above the noise level (like, e.g., a G-band
bright feature). A full description of the algorithm can be found in (Buades et
al., 2005).

For better denoising performance, the surrounding areas around pixels (win-
dows) can be varied in size and shape. A smooth window shape can be achieved
by using a quadratic window with a Gaussian kernel multiplied to it. The half-
width of the Gaussian kernel should match at least two optical resolution ele-
ments, which can be more than two pixels, depending on the instrument. For
faster computation the window size should be kept small, since every possible
relation between two pixels of the image needs to be computed. Nonetheless,
using parallel programming techniques, it is possible to denoise a 1 k×1 k pixels
image within a few seconds on an off-the-shelf server hardware with 8 CPU
cores. The computation domain for one CPU core should be sized such that all
necessary image data fits into the L2-cache; for larger images, more CPU cores
are needed. A special feature of the NL-means algorithm is the fact that it can
easily be applied also to time series of images without previous alignment, since
the algorithm is by itself looking for self-similarities and can use windows from
other frames of the time series for averaging. This is described in the movie
denoising article of the same authors (Buades et al., 2008).

4. Application to solar observations

Fig. 1 shows a Hinode/NFI Stokes-V map of a small active region (pixel value
range is -128 to 127), which has been used to test NL-means by adding Gaus-
sian noise with a standard deviation of 10. This corresponds to a high noise
level, compared to the original Hinode data. The denoising result shows most of
the features of the original image, except some small-scale low-signal features,
which are anyway not above the given noise level. The difference plot shows
that very little of the actual structure of the original image has been falsely
recognized as noise. The astounding result is that the algorithm worked that
well because one cannot say that the original image would present much self-
similarity, but nonetheless quiet Sun areas between the strong polarities have
been well denoised. Furthermore, one could say that there is a loss of ”visible
by eye”-features in the quiet Sun area, but one has to notice that these features
might be recognized by our brain as ”visible”, but may not be mathematically
significant, because they are below the noise level. So, one could see this effect as
a benefit instead of a defect, because by applying this denoising method we give
our selective recognition a simple proxy for the significance of certain features.

A remarkable result is shown in the histograms in Fig. 2, where one can
see again the original, noisy, denoised, and difference images in the same order
as in Fig. 1. Even though the algorithm only knows the noisy image with a
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Figure 1. A Hinode/NFI Stokes-V map of a small active region. The peak polarities

have values of around 1200 Gauss, in this image the saturation level is at 300 Gauss and

corresponds to a pixel value of 127. The upper left pane shows the original image, in

the upper right pane a Gaussian noise with a standard deviation of 10 was added. The

lower left pane shows the denoised image as denoised with the NL-means algorithm.

The lower right pane shows the difference of the noisy and the denoised image; in the

right half the contrast has been improved by a factor of 3 for better visibility.

relatively flat histogram, the method is capable of recovering an image that has
a histogram very close to the original one. In the histogram of the removed noise
one can recognize its standard deviation.

Tab. 1 shows the bias of the denoising algorithm for different noise levels.
The mean value of the original image is 2.06 and the standard-deviation is 32.9
as it can be seen in Tab. 2, where the standard deviation and mean value are
given for the noise level 10 images, too. It is found that the bias in that case is
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Figure 2. Histograms of corresponding images shown in Fig. 1 in the same ordering.

Table 1. Bias of the NL-means denoising method for different noise levels.

noise level bias

0 0.008
5 0.009
10 0.016
15 0.032
20 0.029

Table 2. Standard deviation and mean value of the images in Fig. 1.

image standard deviation mean value

original 32.9 2.061
noisy 33.7 2.060

denoised 32.0 2.044
difference 7.2 0.016
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Figure 3. A G-band image of solar granulation and bright features as taken from the

Dutch Open Telescope (DOT) after speckle reconstruction. The panels are in the same

order as in Fig. 1, a Gaussian noise of level 10 has been used to test the NL-means

denoising method.

around 0.8 % of the mean value and below 1.6 % at noise levels of 15 and 20.
Levels above 10 are already much higher than the noise level one would expect
in the provided original image data.

Fig. 3 shows the same method applied to a G-band image with a noise of
level 10 added to it. Basically, the same findings as above are seen. In the inter-
granular lanes we see the biggest differences to the original images, because
some of the original contrast is hidden in the noise level and gets flattened
out. One should also notice the conservation of G-band bright features without
introduction of artefacts and without any loss of spatial resolution. With a more
realistic (lower) noise level and with 16-bit data, better results are achievable.
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5. Conclusion

NL-means should be considered as denoising tool for solar observational data.
Losses of image features during denoising are usually only because the features
are anyway not above the level of significance. Where there is no possibility to
improve image quality, NL-means would also not do much harm. Integration
of such a denoising method in the observation sites software tool-chain could
improve the throughput of valuable image quality from the detector into the
scientific publication.
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