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Chapter 1

Image Processing

1.1 Flatfields and Darkfields

CCD cameras used to record images or spectra always have pixel-dependent intensity regis-
tration. There are always dust particles on the detector, some pixels might be more sensitive
than others, etc. Furthermore, there is always some noise and background intensity. Ob-
servers always make flatfields and darkfields to be able to correct for these errors. For now,
we’ll focus on correcting images. Spectra can also be corrected, but it is more difficult.

A flatfield is recorded with the CCD illuminated by a source that does not have an
intensity variation over the image. Typical methods are defocussing the telescope and/or
moving the telescope around quickly while exposing. A darkfield is recorded with the CCD
not illuminated by the source. Some telescopes interrupt the beam well before the CCDs, or
point the telescope away from the source.

If we have raw data R, a flatfield F , and a darkfield D, we can find the corrected data C,

C =
R − D

F − D
. (1.1)

Exercise 1.1. Explain equation 1.1.

Exercise 1.2. Get the raw, flat, and dark images. These data were recorded with the Dutch
Open Telescope (DOT). Display the raw image on your screen with the IDL procedure tvscl.
Now correct the raw image, and display the result. Use the IDL procedures bytscl and flick

to blink between the raw and the corrected image. Make a nice PostScript figure of the image,
with annotated axes (the size of a pixel is 0.071′′ square).

1.2 Histogram Analysis

A histogram is a plot in which the number of data points with some property is plotted against
that property.

Exercise 1.3. Use the IDL procedure histogram to produce a histogram of intensity of a
G-band image. Study the IDL help to understand what parameters of the histogram you can
tune, and choose appropriate values. The plot routine can be used in histogram mode by
setting the psym keyword to the correct value.
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In order to increase the contrast of the image, we perform a histogram equalization.
The procedure attempts to produce a flat histogram, so that all intensities appear in equal
amounts.

Exercise 1.4. IDL has two histogram equalization functions. Use the simple equalization to
display an equalized image. Compare the histogram of the equalized image with the original
histogram. How does the more sophisticated equalization function differ from the simple one?
Compare the results.

1.3 Scatter Plots

A good way to compare images pixel-by-pixel is by making a so-called scatter plot.

Exercise 1.5. Plot the intensity of the first G-band image against the intensity of the Ca ii H
image. Use the psym keyword to plot a dot for each pixel pair. What does this figure tell you
about the images?

1.4 Making Dopplergrams from Line Scans

If we have a narrow filter, we can “scan” through a line to produce a series of images that
sample the profile of the line. From these images we can, e.g., determine Doppler information.
Take two images d1 and d2 from the scan on either side of the line center. If the line is
Dopplershifted, the observed intensity on one side will be higher than on the other. In the
most general case, we have

vDoppler = C
(

d1 − d2

d1 + d2

)

, (1.2)

where C is a calibration function that relates the relative intensity difference to the Doppler
velocity. We analyze two DOT Hα images here. These images were recorded at 350mÅ from
the line center, one in the blue wing, the other in the red. The filter width is 250mÅ.

Exercise 1.6. Restore the Hα line profile from file and make a plot. Determine the center
of the line λcen. Next, make two Gaussian profiles with a FWHM of 250mÅ at λcen +350mÅ
and −350mÅ. The measured intensity is just the integral over the product of the line profile
and the Gaussian. Compute the relative intensity difference. To which Doppler speed does it
correspond?

Exercise 1.7. Determine the calibration function C by repeatedly shifting the Hα atlas line
profile and sampling the result by the Gaussians. You could use the IDL function convol to
do it efficiently. Select only the central region −15 ≤ vDoppler ≤ 20 km/s.

Exercise 1.8. For each pixel in the DOT data, determine the relative intensity difference.
Apply the calibration to determine a map of the Doppler velocities from the two images. You
can do this in one statment with the IDL interpol function! Make a nice figure from the
result with a color bar. Think carefully about how you scale the intensity of the image!
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Chapter 2

Fourier Theory

This chapter is a brief overview of the theory behind Fourier transforms. Some places to find
more background information are Brault and White (Astron. Astrophys. 13, 169–189) and
Mathworld (http://mathworld.wolfram.com/).

We use the mathematical variable x, which is commonly associated with physical lengths.
The theory obviously also applies to other physical variables such as time (commonly t). In
this case, wave number k is often replaced by frequency f .

2.1 Fourier Series and Transforms

The functions einx with n,m ∈ Z form an orthonormal base on [−π, π],

∫ π

−π
einx e−imx dx = 2πδmn .

If f(x) is a complex-valued function periodic on [−π, π], we can write

f(x) =

∞
∑

n=−∞

An einx , (2.1)

with

An =
1

2π

∫ π

−π
f(x) e−inx dx . (2.2)

Equation 2.1 is called the Fourier series expansion of the function f(x).

We can extend equations 2.1 and 2.2 to a complex-valued function periodic on any interval
[−L/2, L/2] by rescaling,

f(x) =

∞
∑

n=−∞

A′
n e2πi nx/L ,

A′
n =

1

L

∫ L/2

−L/2
f(x) e−2πi nx/L dx .
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We now take the limit L → ∞, substitute the discrete A′
n by the continuous F (k) dk while

letting n/L → k, and replace the sum with an integral. We get the forward Fourier transform

F (k) = Fx[f(x)](k) =

∫ ∞

−∞

f(x) e−2πi kx dx , (2.3)

and the backward Fourier transform

f(x) = F−1
k [F (k)](x) =

∫ ∞

−∞

F (k) e2πi kx dk . (2.4)

The variable k has the inverse dimension of L. In the case that L measures distance, k is
often called the wave number.

A complex number c can be written as c = l eiφ, where l = |c| is the absolute value of c,
and φ is the angle the vector c makes with the real axis. If we now look at a single k, the
contribution to the integral in equation 2.4 is

F (k) e2πi kx = |F (k)| ei(2π kx+φ(k)) .

This describes a circle of radius |F (k)| in complex space, where the position on the circle is
determined by the value of x. The value of φ(k) determines the starting angle.

The value |F (k)| is called the Fourier amplitude at k. The square of the amplitude,
|F (k)|2 = F ∗(k)F (k), is called the power at k. Finally, the angle φ(k) is called the phase at
k. If we plot a property as a function of k, we speak of a spectrum.

2.2 Conversion

The Fourier series of f(x) converges to the function f̄(x) = 1
2 (limξ↑x f(ξ) + limξ↓x f(ξ)) (equal

to f(x) if f(x) is continous at x and to the average of the two limit points if not) if the function
satisfies the Dirichlet conditions:

1. it must be piecewise analytic and single-valued;

2. it can only have a finite number of discontinuities;

3. it can only have a finite number of extrema.

The forward and backward Fourier transform of a function f(x) exist if

1.
∫∞

−∞
|f(x)|dx exists;

2. f(x) has a finite number of discontinuities;

3. f(x) has a bounded variation.

2.3 Real-valued vs. Compex-valued Functions

Up to now, we have covered the most general case of a complex-valued f(x). In most physics
problems, we measure real data. If we then compute the forward Fourier transform, we still
get a complex-valued function, that can contain twice as much information. We thus suspect
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that there is some symmetry in the Fourier series and transform when the input data is real.
If f(x) is real, we observe that

An =
1

2π

∫ π

−π
f(x) e−inx dx = A∗

−n .

Similarly for the Fourier transform, we find F (k) = F ∗(−k) if f(x) is real-valued. This, in
turn, also ensures that the backward transform again yields a real-valued function. Note that
these symmetry conditions also demand that A0 and F (0) are both real. These conditions
are indeed satisfied, because we have

A0 =
1

2π

∫ π

−π
f(x) dx = 〈f(x)〉 ,

and similarly

F (0) =

∫ ∞

−∞

f(x) dx .

2.4 Discretization

Experimental data is almost never recorded continuously, but rather at discrete intervals.
We therefore review some theory of the discrete Fourier transform or DFT. Instead of a
continuous function f(x), we now have a discrete function fn ≡ f(xn), where xn = n ∆x and
n = 0, . . . , N − 1. Replacing the integral in equations 2.3 and 2.4 with a sum, we get the
forward discrete Fourier transform

Fn =

N−1
∑

m=0

fm e−2πinm/N , (2.5)

and the backward discrete Fourier transform

fn =
1

N

N−1
∑

m=0

Fm e2πi nm/N . (2.6)

Fn ≡ F (kn) now also samples discrete wave numbers kn = n/(2N ∆x).

2.4.1 The Nyquist frequency and aliasing

The natural consequence of the discrete sampling of the data is that there is a limit on
detectable wavelengths. The lowest frequency (or wave number) associated with the longest
wavelength that cannot be detected is called the critical or Nyquist frequency,

fNyq = 1/(2∆x) . (2.7)

A wave component with a frequency of exactly the Nyquist frequency can, in principle, be
detected, but it is impossible to determine the phase unless the amplitude is assumed and
vice versa. If the frequency f is above the Nyquist frequency, it causes aliasing. Due to the
oscillatory behavior, the sampling produces exactly the same results as in the case of a wave
with a lower frequency f ′ = f + 2lfNyq, where l ∈ Z such that −fNyq ≤ f ≤ fNyq.
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Figure 2.1: Some examples of functions and their Fourier transforms. Left column from
top to bottom: constant 1, sin πx, cos πx, Gaussian e−x2/4, the rectangle Π(x/4), and the
triangle Λ(x/4) = Π(x/4) ⊗ Π(x/4). Their Fourier transforms in the right column are from
top to bottom: δ(k), 1

2 i (δ(k + 0.5) − δ(k − 0.5)), 1
2 (δ(k + 0.5) + δ(k − 0.5)),

√
4π e−4π2 k2

,
4 sinc(4k), and 16 sinc2(4k).
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Figure 2.2: Aliasing of a signal due to undersampling. The signal has a frequency of 1
and is sampled at intervals of 12/7. The resulting aliased signal thus has a frequency of
1 − 14/12 = −1/6.

2.5 The Fast Fourier Transform

Simple evaluation of the sums in equations 2.5 and 2.6 require O(N2) operations. A Fast

Fourier Transform or FFT is an efficient algorithm to compute the same result in O(N log N)
operations. Though there are many FFT algorithms, the most common is the Cooley-Tukey

algorithm. It recursively breaks down a DFT of size N into two smaller DFTs of size N1 and
N2 with N = N1 N2 and O(N) multiplications by complex roots of unity (i.e., solutions to
the equation xN = 1). For the interested reader, we explain the simplest form here. It is the
so-called radix-2 decimation-in-time. Assuming N is divisible by 2 and writing N ′ = N/2,
let the DFT of the even-indexed data points f0 = f1,0, f2 = f1,1, . . . , fN−2 = f1,N ′−1 be
denoted as F1,0, F1,1, . . . , F1,N ′−1, and the DFT of the odd-indexed data points f1 = f2,0, f3 =
f2,1, . . . , fN−1 = f2,N ′−1 as F2,0, F2,1, . . . , F2,N ′−1. It then follows that

Fn =

N−1
∑

m=0

fm e−2πinm/N

=

N/2−1
∑

m=0

f2m e−2πin(2m)/N +

N/2−1
∑

m=0

f2m+1 e−2πi n(2m+1)/N

=

N ′−1
∑

m=0

f1,m e−2πi nm/N ′

+ e−2πin/N
N ′−1
∑

m=0

f2,m e−2πinm/N ′

=

{

F1,n + e−2πin/NF2,n if n < N ′

F1,n−N ′ − e−2πi(n−N ′)/NF2,n−N ′ if n ≥ N ′

More complicated versions of the same principle can be applied to other decimations. In
principle, a dataset of arbitrary length can be decomposed recursively in this manner to give
a computation time of O(N log N). In practice, however, most FFT impementations only
provide fast, optimized routines for factorizations in small primes.
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Chapter 3

Working with 1D Fourier

Transforms

In this chapter we use the 1D Fourier transform to study intensity oscillations in the so-
lar chromosphere. We use observations from the Transition Region And Coronal Explorer

(TRACE) of two UV passbands: 1600 Å and 1700 Å. These two passbands sample the low
chromosphere and the high photosphere, respectively. The data that we use here is a time
seqeunce. The original data consisted of images, but in this case we only use a single pixel.
You can find the data in TRACE_1d.save.

3.1 Power Spectrum

The square of the absolute value of a complex Fourier coefficient is related to the amplitude
of the contribution of the associated oscillation in the data. Remember that this value is
commonly called power.

Exercise 3.1. Compute and plot the power spectrum of the 1600 Å data sequence. Annotate
the x-axis in mHz units. Do you see the 5-minute p-mode oscillations?

3.2 Apodization

Most observational data aren’t perfectly periodic. The discontinuity between the end and
the start of the sequence introduces undesired artifacts in the transform. These artifacts are
often termed edge effects. We can suppress them by apodizing the data sequences. The data is
made partially or fully periodic by multiplying it with an apodization window that decreases
at the edges of the data. There is considerable choice in the exact shape of the window to
use.

Exercise 3.2. Apodize the data with a Hanning window, and compute the power spectrum
of the result. Use the IDL function hanning. Explain the differences with the power spectrum
of the data that wasn’t apodized. Can you explain what went wrong? Hint: plot the original

and apodized data.

Exercise 3.3. To avoid introducing Fourier components with the apodization, we should at
least subtract the mean of the sequence before we apply the window. Subtract the mean value

11



from the data, apply the Hanning window, and compute the power spectrum. Compare the
result to the power spectra computed in the previous exercises and explain the differences.

3.3 Convolutions, Cross-power, Filtering, and Phase Differ-

ence

The convolution of two datasets d1 and d2 of equal length N is defined as

(d1 ⊗ d2)(n) =
N−1
∑

m=0

d1(m) d2(n − m) , (3.1)

where the datasets are treated as being cyclic, i.e., d1(n + lN) = d1(n) with l ∈ Z. A
simple algorithm would require O(N2) operations. As we’ll see, it is possible to perform a
convolution (or deconvolution) with FFTs in only O(N log N) operations.

Starting from equation 3.1, write D1(k) = Fx[d1(x)](k) and D2(k) = Fx[d2(x)](k), and
substitute the backward transform of D2 for d2,

(d1 ⊗ d2)(n) =
N−1
∑

m=0

d1(m)
N−1
∑

l=0

D2(l) e2πi(n−m)l/N

=

N−1
∑

l=0

D2(l)

(

N−1
∑

m=0

d1(m) e−2πi ml/N

)

e2πi nl/N

=

N−1
∑

l=0

D1(l)D2(l) e2πi nl/N = F−1
l [D1(l)D2(l)](n) .

We see now that in order compute a convolution with Fourier transforms, we can compute
the DFT of the two datasets, multiply the result pointwise, and transform back.

In many cases it won’t be practical to use a Fourier transform to compute a convolution.
The kernel is often smaller than the dataset itself, thus requiring much less computations
in the direct approach. A Fourier transform can still be used by padding the kernel with
zeroes, but the computational advantage is lost quickly. We discuss three cases in which a
Fourier-based approach is beneficial.

The cross-power of two sequences is defined as

Pcross(k) = F∗
x [d1(x)](k)Fx[d2(x)](k) . (3.2)

The regular Fourier power is just the special case of the cross-power where d1 = d2. Contrary
to the regular power, the cross-power is complex.

Exercise 3.4. Compute the cross-power spectrum of the 1600 and 1700 Å sequences. Plot
the absolute value of the spectrum. What does the cross-power describe?

3.3.1 Cross-correlation

The cross-correlation of two datasets is defined as

d1(n) ⋆ d2(n) = d∗1(−n) ⊗ d2(n) . (3.3)

Since we work with real data, and Fn[d1(−x)](k) = F∗
n[d1(n)](k), we have Fn[d1(n)⋆d2(n)](k) =

F∗
n[d1(n)](k)Fn[d2(n)](k), which is just the cross-power of d1 and d2.
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Exercise 3.5. d1 ⋆ d2 is obviously real-valued. Show that the inverse Fourier transform of
the cross-power indeed gives a real-valued result.

Exercise 3.6. Compute the cross-correlation of 1600 and the 1700 Å TRACE sequences, and
explain what you see. Can you explain where the name “cross-correlation” comes from?

3.3.2 Autocorrelation

A special case of the cross-correlation is the autocorrelation. As the name already suggests,
it’s the cross-correlation of a function with itself.

Exercise 3.7. Compute the autocorrelations of the 1600 and the 1700 Å sequences.

3.3.3 Convolutions

Exercise 3.8. Compute a convolution with Fourier transforms of the 1600 Å sequence with
a Gaussian with a FWHM of 10 timesteps and make a plot of the result. Verify the re-
sult by comparing with a direct convolution using the IDL convol function. Watch out for
normalization in the Fourier transform.

With a deconvolution we attempt to solve the equation dc = d1 ⊗ d2 for d1 given dc and
d2. In a direct approach, this would require solving a system of N linear equations, but we
can do it much easier with FFTs. Though the deconvolution works in principle, in practice
noise will spoil the results.

Exercise 3.9. Explain how to use Fourier transforms to compute a deconvolution. Convolute
the data with the Gaussian as in exercise 3.8, and then deconvolute. Explain what happened.

3.3.4 Filtering

The Fourier transform can be used to filter certain frequencies out of data. In principle,
filtering in Fourier space is simply adjusting the power spectrum. We can apply very simple
filters, such as selecting only a certain band, but there are many powerful applications of
filtering in Fourier space. Here, we’ll work with an optimum filter to overcome the problems
with noise in a deconvolution.

What we observe is a sum of the smeared data and noise, o(x) = d(x)⊗a(x)+n(x), where
d(x) is the data, a(x) is the smearing function, and n(x) is noise. A simple deconvolution with
a(x) will result in r(x) = F−1

k [Fx[o(x)](k)/Fx[a(x)](k)](x). Because Fx[a(x)](k) tends to be
small for large k, this increase the power of high frequency noise. What we really want, is to
correct for a(x) as best as possible while supressing the noise n(x). The optimum filter is a
filter Φ(k) that gives the closest smooth restored data r(x) to the original data d(x) (typically
in the root-mean-square error sense),

r(x) = F−1
k [Fx[o(x)](k)Φ(k)/Fx[a(x)](k)](x) . (3.4)

We assume the noise is both random and uncorrelated to the signal. These assumptions are
not essential to the derivation, but they reduce the complexity of the problem. If we do the
math, we’ll find that

Φ(k) =
Ps(k)

Ps(k) + Pn(k)
, (3.5)
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where Ps(k) is the power spectrum of the smeared signal, and Pn(k) is the power spectrum
of the noise. Of course, we don’t know Ps(k) or Pn(k). However, because this is the best
possible filter, in most cases we can approximate the actual smeared signal and noise with
simple models that depend only on a few parameters.

Exercise 3.10. We will attempt to reconstruct data that we have degraded with both a
smearing function and with noise. Convolute the data with a smearing function and add
white noise with an amplitude of 0.1 (use the IDL function randomn). Examine the data in
Fourier space and estimate the noise level. Approximate the smeared signal with a power
law. Now compute the optimum filter from the approximated smeared data and the noise
level. Correct the data with the filter and compare the result with the original data.

3.3.5 Phase Difference

Multiplication of two vectors in complex space can be visualized as summing the angles of
the vectors with the real axis and multiplying their lengths. Complex conjugation can be
visualized as reversing the angle of the vector with the real axis. So the angle the cross-power
makes with the real axis is really the angle between the two Fourier coefficients. This angle
is the phase difference between the two datasets. There is, of course, a 2π-ambiguity in the
result.

Exercise 3.11. Compute and plot the phase difference spectrum of the 1600 and 1700 Å
sequences. If you have more than one sequence, how would you compute the average phase
difference spectrum?

There is a noticable drift in the phase difference. This is because the observations weren’t
made simultaneously. A fixed time delay ∆t between the two sequences causes a linear phase
delay in Fourier space of φ(f) = 2π∆t f .

Exercise 3.12. Correct the phase difference spectrum for the time delay between the se-
quences.

3.3.6 Shifting

In essence, by correcting the phase difference for the non-simultaneous exposure, we are
shifting one of the arrays to match the other. In this case, we simply adjust the resulting phase
difference, but we can also adjust the phases of the Fourier components. If we then transform
back, we will get the shifted array. The advantage of this method over an interpolation-based
routine is that in this case, we don’t change the power spectrum of the data.

Exercise 3.13. Shift the 1600 Å data by 0.67 pixel to the right both using the IDL procedure
interpolate with the keyword cubic=-0.5 and using the Fourier transform. Compare the
results.
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Chapter 4

Fourier Transforms in Multiple

Dimensions

Up to now we have only covered Fourier transforms in one dimension. We will now extend this
to multiple dimensions. We’ll only cover the forward transform here, because the backward
transform is extended in much the same way. Let’s start with the analytical forward Fourier
Transform in two dimensions,

F (kx, ky) = Fx,y[f(x, y)](kx, ky) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−2πi(kxx+kyy) dxdy . (4.1)

From this equation, we can see that the multi-dimensional Fourier transform is nothing more
than sequential application of a one-dimensional Fourier transform in all dimensions,

F (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−2πi(kxx+kyy) dxdy

=

∫ ∞

−∞

(
∫ ∞

−∞

f(x, y) e−2πi kxx dx

)

e−2πi kyy dy

= Fy[Fx[f(x, y)](kx, y)](kx, ky) .

The same holds for the discrete Fourier transform of a Nx-by-Ny array d(x, y),

F (kx, ky) =

Nx−1
∑

x=0

Ny−1
∑

y=0

d(x, y) e−2πi(kxx+kyy) . (4.2)

This transform now has two Nyquist frequencies, one in each dimension. Since it is again a
composition of two one-dimensional Fourier transforms, an FFT algorithm can compute the
result in O(N log N) operations, where N = Nx Ny.

It is now simple to extend the Fourier transforms to more than two dimensions. It should
also be noted that in order to compute a multi-dimensional Fourier transform, you don’t have
to compute it at once, but you can sequentially process each dimension seperately.
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Chapter 5

Working with 2D and 3D Fourier

Transforms

In this chapter, we’ll perform some analysis with 2D and 3D Fourier transforms. We’ll use
images from the DOT in the G band and in Ca ii H for 2D transforms, and a sequence of
TRACE images for 3D transforms.

5.1 Power

Exercise 5.1. Compute the 2D spatial power spectrum of a G-band and Ca ii H image.

5.1.1 Annular Integration

In most cases, we can assume that the properties of the image recorded by the camera are
independent of the orientation of the camera. In this case, the horizontal and vertical axes
of the image aren’t even determined by something on the sun. Therefore, it’s nonsense to
have a kx and a ky. We should combine the two into a single spatial wavenumber k, given by
k2 = k2

x + k2
y . The power can be averaged directly over annuli of constant k.

Exercise 5.2. Compute the 1D spatial power spectrum of a DOT image by annular integra-
tion of the 2D power spectrum.

Exercise 5.3. Compute the 2D k-f power spectrum from the 3D Fourier transform of the
TRACE sequence. Of course, the data is real-valued. Can you avoid unnecessary computa-
tions?

5.2 Cross-power

Exercise 5.4. Compute the 2D spatial cross-power spectrum of the DOT images and plot
the absolute value.

5.3 Phase Difference

Exercise 5.5. Compute the phase difference between the first G-band image and the Ca ii H
image. Don’t forget to correct for the delay between the images.
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5.3.1 Computing Displacement

If we have two images that are similar except for an unknown shift, we can use Fourier
transforms to accurately determine the shift. This is a common problem in data reduction.
Atmospheric seeing, solar rotation, telescope jitter, etc., all cause whole-field motions that
must be compensated for in post-processing. In the ideal case, the images have the same
power spectrum, but the phases on the Fourier components are different. We can find the
offset by analyzing the phase difference between the images. It’s usually easier to simply use a
convolution. We then expect to have a peak at the location corresponding to the displacement
that best matches the shift between the images.

Exercise 5.6. Compute the displacement between the two DOT G-band images with a
convolution. Verify that the result is correct by shifting one and blinking it against the other.
What happens if you exchange the images? Which image is the reference? How accurate do
you think you can determine the displacement?
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Appendix A

IDL Quick Reference

A.1 Getting Help

IDL comes with a built-in help system. You can access from the command line:

> ?

You can also request help on a specific subject (e.g., a routine or procedure) directly:

> ? subject

A.2 Graphics Output

IDL can output graphics on a number of different devices. The three most common are win for
Microsoft Windows, x for *nix XWindows, and ps for PostScript. You can use the procedure
set_plot to change the output device.

A.3 Plotting Results

You can use the following code to make a nice plot of your results.

> plot, xaxis, yaxis, xtitle=’xtitle’, ytitle=’ytitle’

To overplot additional curves, use oplot.

> oplot, xaxis, yaxis2

These routines work the same for any display.

A.4 Displaying Images

Making nice plots of 2D data is more difficult than simple plots of curves. On your screen,
pixels have a natural size, so the size of the plot is determined by the size of the image you’re
displaying. On a postscript device (e.g., a printer), there is no natural pixel size, so the image
is scaled to a desired size. Here is some code you can use to produce postscript output.
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> set_plot, ’ps’

> device, filename=’output.eps’, /encapsulated, xsize=10, ysize=6.2

> tv, bytscl(image), 0.15, 0.15, xsize=0.8, ysize=0.8, /normal

> plot, xaxis, yaxis, /nodata, /noerase, /xstyle, /ystyle, $

> position=[0.15,0.15,0.95,0.95], xticklen=-0.05, yticklen=-0.05, $

> xtitle=’xtitle’, ytitle=’ytitle’

> device, /close

The image displayed by tv is scaled to 0.8×10 = 8 by 0.8×6.2 = 4.96 centimeter. Of course,
if your image needs to have square pixels, you must choose the image aspect ratio correctly.
This means that you also have to adjust the size of the postscript output. Furthermore, you
must take care that your axis tickmarks are in the correct location. Always ask yourself where
the tickmarks need to be: between pixels, or at pixel centers?
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Appendix B

Alfred’s Guide to Making Beautiful

and Complicated Figures with IDL

In Appendix A we’ve discussed how to make a simple figure with IDL. While this suffices for
many situations, sometimes you just want to do a little better. Here, we’ll discuss how to
make complicated yet beautiful figures with IDL. The first rule of making nice figures in IDL
is: don’t let IDL do anything by itself. We’ll control all parameters of our figure ourselves. I
should add as a disclaimer that a number of things described here are on the basis of what
I find aesthetical. Your personal preferences might be different. The methods, however, are
universially applicable.

I will refer to the figure as the entire product. The plots are only those areas that contain
the objects that are to be displayed.

B.1 Setting Up

There’s really no point in making nice figures unless you’re going to use them in some sort of
document. Also, the pixel-oriented screen output is different in nature than the resolution-
independent PostScript output that we’ll want eventually. We therefore set the output to
PostScript immediately,

> set_plot, ’ps’

By default, IDL will use an ugly, built-in font. The device fonts look a lot better, but they
may change from one device to another. Even two printers may not have the same PostScript
fonts. Therefore, we choose to use the TrueType fonts:

> !p.font = 1

The lines IDL draws are typically very thin. We make them a bit thicker by setting some
system variables:

> !p.thick = 2

> !x.thick = 2

> !y.thick = 2

> !z.thick = 2
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We should decide on how our figure will be layed out. How many plots will it have, how
large are they, and how will they be arranged? As an example, I’ll cover the case of two plots
of equal size, with an aspect ratio equal to the golden ratio. I’ll assume the plots have the
same x-axis, so we’ll position them one above the other. In many cases where the figure is
complicated, I prefer to make a sketch on paper. At this point, you should decide on the
width of the figure. In this case we’ll take 8.8 centimeter, because it exactly fits a column in
most journals.

> xsize = 8.8

B.2 Computing Figure Measurements

I like to have the same distance from the bottom of my figure to the bottom horizontal axis
as from the left edge to the left vertical axis. Trial and error have shown that 12% of a
8.8-centimeter wide figure is a good value.

> margin = 0.12

I also have a fixed distance between two panels, the top of the figure to the top horizontal
axis, and the right of the figure to the right vertical axis.

> wall = 0.03

We must compute the final size of the figure, and of the plots in the figure. We can now
compute the width of the plots in units normalized to an 8.8-centimeter wide figure,

> a = xsize/8.8 - (margin + wall)

Since we settled on the golden ratio for the aspect ratio of the plots, we can compute the
height of each plot,

> b = a * 2d / (1 + sqrt(5))

Next, we compute the vertical size of the figure,

> ysize = (margin + b + wall + b + wall)*8.8

Now, we must compute the corners of the plots so we can instruct IDL to place them
exactly where we want them. So far we’ve worked with units normalized to an 8.8-centimeter
wide figure, but IDL can’t do that. We will calculate the horizontal and vertical coordinates
in units normalized to the figure width and height, respectively.

> x1 = margin*8.8/xsize

> x2 = x1 + a*8.8/xsize

> xc = x2 + wall*8.8/xsize

> y1 = margin*8.8/ysize

> y2 = y1 + b*8.8/ysize

> y3 = y2 + wall*8.8/ysize

> y4 = y3 + b*8.8/ysize

> yc = y4 + wall*8.8/ysize
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If you’ve done everything right, the values of xc and yc should now be equal to 1 (or, because
of limited accuracy, very close).

We also want the horizontal and vertical tick marks of the plots to have equal length.
The manual is rather cryptic, but it turns out IDL scales the length of a vertical tick mark
to the height of the plot, and the horizontal to the width. I keep my ticks the same length,
irrespective of the size of the figure.

> ticklen = 0.01

> xticklen = ticklen/b

> yticklen = ticklen/a

B.3 Plotting Data

We should start by opening the output file. We want encapsulated PostScript output of a
specific size. We also want to use the TrueType Times font, with a font size of 10 points.

> device, filename=’output.eps’, /encapsulated, xsize=xsize, ysize=ysize, $

> /tt_font, set_font=’Times’, fontsize=10

If we were plotting an image, we would add the keywords bits_per_pixel=8 to make sure
we get a sufficient number of shades of gray.

Next, we’ll create the frame of the first plot, using the position keyword to control where
it will end up in the figure,

> plot, xrange, yrange1, /nodata, /noerase, position=[x1,x2,y1,y2], $

> xtitle=’xtitle’, ytitle=’ytitle’, $

> xminor=0, yminor=0, xticklen=xticklen, yticklen=yticklen, $

> xticks=nxticks, xtickv=xtickvalues, yticks=nyticks, ytickv=ytickvalues

Now, we plot the data,

> oplot, xaxis, yaxis1

Of course, we can add many more oplot or other statements here, as long as they use the
axis drawn by the plot call.

Once we’re done with the first plot, we proceed with the second plot. In this case, we
don’t want annotations on the x-axis.

> plot, xrange, yrange2, /nodata, /noerase, position=[x1,x2,y3,y4], $

> ytitle=’ytitle’, $

> xminor=0, yminor=0, xticklen=xticklen, yticklen=yticklen, $

> xticks=nxticks, xtickv=xtickvalues, yticks=nyticks, ytickv=ytickvalues, $

> xtickname=replicate(’ ’,nxticks+1)

The only way to suppress the tick names is by setting them to spaces with the {x|y|z}tickname
keyword. Now plot the data,

> oplot, xaxis, yaxis2

Finally, we want to close the output file. Optionally, we will set the plot device back to
the screen (XWindows output, in this case).

> device, /close

> set_plot, ’x’

23



B.4 Notes

IDL has a built-in tool !p.multi for making multi-panel plots. I’ve used this in the past, and
though it does what it’s supposed to, it’s far from pleasent to work with. It’s limited in its
possibilities (e.g., it only allows for plots of equal size), and it changes things I don’t want it
to touch, such as the font size. The plot keyword noerase comes in handy. By setting it,
plot does not erase the figure before it starts. You must take care yourself that your plots
don’t overlap, etc., but in return you can make your figure as complicated as you want.

If you’re making a figure of an image, there are a few things you should take care of. First
of all, the aspect ratio of the plot area is set by the image. Secondly, you should probably add
bits_per_pixel=8 to the device call to ensure sufficient color depth. Finally, you should be
careful with the order in which you draw the figure. The figure will be built up in layers, so if
you want to plot something over the image (e.g., contours, etc.) you must tv the image first,
then plot the contours. In most cases, I will even tv the image before I draw the axes with
the plot call. In some extreme cases, I have even drawn the axes last, by first using invisble
axes.

Obviously, you don’t want to type all this every time you make a small adjustment to
this particular figure. I always write the code to produce a figure in an IDL procedure. The
added advantage is that IDL will clean up after the procedure ends, removing all non-global
variables (i.e., not !p.font etc.).
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