THE GENERATION AND
TRANSPORT OF
RADIATION

Fourth edition

R.J. Rutten
Sterrekundig Instituut Utrecht



Copyright © 1988 R.J. Rutten, Sterrekundig Instuut Utrecht, The Netherlands.

Reproduction in any form of any part of this work is not permitted without prior consent
of the author.

First edition: autumn 1988, based on previous lectures of the third year course OTS by
C. Zwaan and R.J. Rutten. Set in LaTeX by M. van der Klomp.

Second edition: autumn 1989, revised (with resoration from disk by H.M.G. Burm) and
expanded (Chapter 8, with LaTeX assistance from F. van der Wolf).

Third edition: autumn 1990, revised (with contributions by A. Schadee) and expanded (Ap-
pendices A-C).

Fourth edition: autumn 1991, revised and expanded (Chapter 8).
English translation of the fourth edition: spring 1992, by Ruth C. Peterson, corrected by
L. Strous, with assistance from C. Zwaan and the author.

Thys Versioa was COM’)ilCCI w Mev | /q7«5 éJ D&n }<,’30/"\-\n,

I+ éeIcJ On (%‘)’A Pc!cr:ov, ‘s {7Ve~»s,e‘l'/'°"1 of the ?Co:.u—{'l')

eé[{‘/aq as /4 i3 “—SGQ{ I Osle. CAJFA:V‘S l oend 3 I”QVC
IDCe"\ Leveps’: cc’i 4 wi?"}'l V‘evaec/ Vers.ong ﬁo-\., IQOA Ku :L/f"l
Cl’lép ~ 1 9 ﬁ‘(,.SL'I Fh/n{‘v“/{ W/’?LA ,"CMed& \pfjukcf. .



Contents

38 ectral IRES . . N v v e e s st NN N N 1
381 Lines\from a\o{m‘?gen us slax\. . \ .............. 3
3.8.% Lines ftom a th slab N\ . . N e NN N 32

4 Radiation and matter in TE 37
4.1 Introduction: thermodynamical equilibrium . . . ... 37
42 TE Radiativelaws . . ...« o oo o v oo mm e T 37

4921 Kirchhofl . . . oo 37
4292 Planck . . o oo 38

1 Introduction 1
1.1 Why take this course? . . .. ... .. 1
1.1.1 EM radiation as a diagnostic . . . . .. ..o e 1
1.1.2 EM radiation as a determinant of structure . . . . . ... 1
1.2 These lecture MOLES . . o o o v o oo v v o e o s 2
1.3 REfEIENCES . . o o v o o o e e e e 2
1.4 Main themes . . o o oo v v oo oo 3
1.4.1 Wavelength, frequency and energy . . . ... ..ot 3
1.4.2 Spectral lines and continua . . . . ..o et 4
1421 Spectrallines . . . . ... .o 5
1422 CONUINUA . . .« v oo v oo e 8
1.4.3 Collisional transitions and radiative transitions . . . . . . ... .. 9
1.4.4 Photon creation, photon destruction, photon scattering and photon
COMVETSION « v o v o v n e m e e a oo e e e 11
1.4.5 Optically thin and optically thick . . . . .« o e 12
146 Thermal and nonthermal . . . .. ... oo 12
1.5 Crucial QUESLIONS . « . o o v o v o s e 12
2 Radiative quantities 15
2.1 Introduction: from luminosity to IDtenSity . . . . oo e e 15
2.2 Intensity and related quantities . . . ... ..o K “1
9091 INLERSILY . o o o v v o e s A8 14
9992 Mean intenmsity . . . . . e v s e P T
093 FIUX « o o v v oo e e 20
2.9.4 Energy density and radiation pressure . . ... ... oot 20 13
3 The transport equation 2313
3.1 Introduction: emission and eXtiNCLiON .+ . . e h e e e e 23 1}
3.9 The emission coefficient . . . . .o .o 231
3.3 The extinction coefficient . . . . . .o 23 W
3.4 The transport equation . . . . -« oo s eseese e s 2430
3.5 Optical path length, thickness and depth. . o v oo 25 30
3.6 The source funCtion . . .« . -« oo 2622
3.7 The integral SOIUtIOn . . .« o v oo os s s 97 3y
3.7.1 Radiation from a homogeneous medium . . .. . oo e 2835
372 Radiation from athickslab . . ... ..o 263k

40
(teshrt)



CONTENTS

4.23 Relatedradiationlaws . . . . . .. ... ... 40
4.2.3.1 Wien approximation . . . . . ... ... 40

4.2.3.2 Rayleigh-Jeans approximation . . .. ... . .. .. .. . . 40

4.2.3.3 Wien displacement law . . . . . ... ... 40

4.2.34 Stefan-Boltzmann . . . . . .. ... ... 41

4.2.4 Radiative temperatures . . . . .. ... .. ... 41
4.2.4.1 Brightness temperature . . . . ... ... ... .. ...... 41

4.2.4.2 Antenna temperature . . ... . ... .. ... .. ... .. 41

4.24.3 Color temperature . . . . . .. . ... ... 42

4.2.44 Effective temperature . . . . . ... ... ... .. ...... 42

4.3 TE LawsforMatter . . ... ... .. ... ... ... . .. .......... 42
4.3.1 Maxwell . . .. ... 42
432 Boltzmann . . .. ... ... 43
433 Saha . .. ..., 44
4.3.4 Saha-Boltzmann . .. ... .......... .. ..., .. ... ... 44
Discrete processes 47
5.1 Introduction: bb transitions . . . . . . .. ... .. ... ... L. 47
5.2 Thefiveprocesses . . .. .. ... . . ... e 47
5.2.1 Spontaneous deexcitation . . . ... .. ... ... .. ... ..... 47
5.2.2 Radiativeexcitation . . .. ... .. ... ... ... ... . ... 48
5.2.3 Induced deexcitation . . . . . ... ... . ... ... .. .. .. ..., 49
5.2.4 Collisional excitation and collisional deexcitation . . . . ... ... .. 49

53 Einsteinrelations . . . . ... ... ... L L 50
5.4 Emission coefficient and extinction coefficient . . . . . . . e 51
5.5 Sourcefunction . . . . .. .. ... ... e 53
Continuous processes 35
6.1 Introduction: types of processes . . . . . . . .. .. ... ... ... ...... 55
6.2 Radiation of an accelerated charge . ... ... ......... ... ..., .. 55
6.3 Electron + E-field . . ... ... .. .. ... ..o 57
6.3.1 Free-free transitions . . . . . . .. ... ... ... ... ... ..., 57
6.3.2 Bound-free transitions . . . . ... ... ... ... ... .. 58
6.3.3 H-extinction . . . . . . . . . ... e 60

6.4 Electron + photon . . . . .. ... o 61
6.4.1 Elasticscattering . . . . . . . ... ... L o L L 61
6.4.1.1 Rayleighscattering . . . ... .. ... ............ 63

6.4.1.2 Resonant scattering . . . ... ............. ... 64

6.4.1.3 Thomson scattering . . . ... .. ............... 65

6.4.2 Inelasticscattering . . . . . . ... ... .. ... .. L. 65
6.4.2.1 Comptonscattering . . . ... .. ... ... .. 65

6.4.2.2 Inverse Compton scattering . . . . ... ............ 66

6.5 Electron + B-field . . . ... ... 67
6.5.1 Cyclotronradiation . ... ................. .. ..... 67
6.5.2 Synchrotron radiation . . .. ... ... .. ... ... ..., 68

6.6 Collective phenomena . . ... ... ...... e e e e 69
6.6.1 -Dust and droplets . . . . . . ... ... ... ... ... 69
6.6.2 Cherenkovradiation . . .. ... ... ... ... ... ... ... 69
6.63 Plasmacutoff . . ... ... .. .. ... ... 70
6.6.4 Faradayrotation . .. ... .. .. .. ... ... ... 70
6.6.5 Razincutoff . . . ... ... .. ... . ... ... 70

6.7 Nuclearreactions . . . . . .. .. . . . .. 70
6.7.1 Fusion and fission reactions . . . . ... .. ... ... oL 70
6.7.2 Pair annihilation and pair creation . . . . ... ... .. .. . 70
Radiative transport 73
73

7.1 Introduction: types of equilibrium . . . . ... ... o oo 0L



CONTENTS v
T TE . .. 73

7.1.2 LTE . . . .. 73

713 SE . . . e 74

7.1.4 NLTE . . .. . . . e 75

7.2 Radiative transport in LTE . . . . . ... ... ... ... ... ... ... 75
7.2.1 Radiationfromathin LTEslab. . . . . . ... ... .. ... ... .. 76

7.2.2 Radiation from a thick LTE slab: the Rosseland approximation . . . . 76

7.2.3 Radiation from a thick LTEslab . . . . ... ... ... ........ 77

7.3 Radiative transport from scattering . . . . . . .. ... ... oL 80
7.3.1 Purescattering . . .. ... ... ... ... ... ... ... 80

7.3.2 Extinction and scattering for a two-level atom . . ... ... ... .. 81

7.3.3 Effective thickness . . . .. .. ... ... ... oL 84

7.3.4 Scattered radiation fromathinslab . . .. .. ... . ... ... ... 84

7.3.5 Scattered radiation from a thick slab: the Eddington approximation . 85

7.3.6 Scattered radiation from a thickslab . . . . . . . ... ... ... 86

7.4 Radiative transport with photon conversion . . . . ... .. ... ... .... 88

8 Applications 91
8.1 Introduction: between thick and thin . . . . . . .. ... .. .. ... ..... 91
8.2 Stellar photospheres . . . . . .. ... ... . L 91
8.2.1 Thesolarcontinuum . . . . .. ... ... ... .. ... .. ... 91

8.2.1.1 Extinction coefficient . . ... ... ... ... ... ... 91

8.2.1.2 Height of formation . . . . ... ... ... .......... 92

8.2.1.3 Variation of intensity and temperature . . ... .. ... .. 94

8.2.1.4 Center-limb variation . . . .. ... ... ... ........ 96

8.2.2 Lines in the solar spectrum . . .. ... ... .. e e 97

8.2.2.1 Extinction coefficient . . . ... ... .00 97

8.2.2.2 Heightsofformation . . . . . . . ... ... ... ..., .. 97

8223 TheNalDlines . .. .. ... ... ... ... ........ 97

8224 TheCallKline . .. ... .. ... ... ... ... ..., 99

8.2.2.5 Intensity and temperature variation . . . . . ... ... ... 100

8.2.2.6 Center-limb variation . . ... ... . ... .. .. ...... 101

8227 Outsidethelimb . . ... ... ... .. ... ... ...... 102

8.2.3 Spectra of stellar photospheres . . . . . . ... ... ... L. 102

8.3 Stellarenvelopes . . . .. .. ... ... ... 103
8.3.1 Stellarcoronas . . .. . . . . . . it e e 103

8.3.1.1 X-ray radiation of the solarcorona . . . . . . ... ... ... 106

8.3.1.2 Visible radiation of the solarcorona . . . . . ... ... ... 108

8.3.1.3 Radio radiation from the solar corona . . . . ... ... ... 109

832 Stellarwinds . .. .. ... ... e e 112

8.3.3 Planetarynebulae . . . ... ... ... .. ... .0 114

8.3.3.1 Photoelectric heating and photon degradation .. ... ... 114

8.3.3.2 Fluorescence . . . . . « o v i ittt e e 116

8.3.3.3 Collisional excitation of forbidden lines . . . ... ... ... 117

8.3.34 Freefreeradiation . ... ... .. .. .. .. ......... 117

A Tables and term diagrams 119
B Formulae 129
C Anjwert b ha @uuhw\; In D(nqlw,! L a3 166

References



i



Chapter 1

Introduction

1.1 Why take this course?

By “radiation” we are referring here exclusively to electromagnetic (EM) radiation. This
radiation is of interest from both a diagnostic and an energetic standpoint.

1.1.1 EM radiation as a diagnostic

Practically all astrophysical data which reach us are encoded in the EM spectrum; it is “the
astronomer’s treasure” (Pannekoek), a rich source of (diagnostic) information in that:

— all objects emit EM waves, i.e. photons, and so are observable provided that they are not
obscured by another object. EM radiation travels with the speed of light, and photons
do not decay;

— differences can be discerned in the direction (the image), time, wavelength and energy
(spectrum), and direction of oscillation (polarization);

— encoded in the spectral lines is a rich probe of local conditions (composition, thermody-
namical quantities of state, motions, magnetic fields).

The interpretation of the astrophysical EM diagnostics demands a a knowledge of the gen-
eration and the transport of radiation. This is true throughout all subjects of astrophysics.
Question 1.1 Compare the wealth of diagnostic information provided by EM radiation with the
output of the following additional carriers of astrophysical information:
~ neutrinos;
- baryons;
- gravitational radiation;
- meteorites and comet impacts;
- radar;
- sounding rockets, orbiters, landers, flybys;
- astronauts and cosmonauts.
Question 1.2 Name some types of observations and domains of astronomical investigation in
which a knowledge of the generation and transport of radiation is not important.

1.1.2 EM radi-ation as a determinant of structure

Frequently radiation and radiation transport within an astrophysical object are energetically
of importance, for example:

— energy transport in stars;

— stellar winds driven by radiation pressure;
— heating of gaseous nebulae by stars;

— Comptonization in accretion disks;

— the radiation-dominated epoch in the theory of the Big Bang.
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1.2 These lecture notes

These lecture notes cover the generation and transport of radiation. Both subjects are
difficult and extensive, and for both, only the basics are set forth here. They will appear
again in more advanced courses.

These lecture notes are divided as follows:

— this chapter is an introduction to the central themes and problems of this subject, and
provides definitions of various concepts;

— Chapters 2 and 3 contain macroscopic definitions of various measures of radiation, and
of the equation of radiative transport;

— Chapter 4 treats radiation and matter in thermodynamic equilibrium;
— Chapter 5 details the discrete microscopic radiative processes;

— Chapter 6 details the continuous microscopic radiative processes;

— Chapter 7 treats radiation transport;

— Lastly, Chapter 8 provides a few astrophysical applications.

The astrophysical applications bring up the rear in these lecture notes in order not to disturb
the more formal presentation of the basic material in Chapters 2-7. It pays, however, to
refer to them during the treatment of the relevant formulae, as an example and a proving
ground. .

These lecture notes include many questions. They are intended to set the reader thinking, -
the reason being that much of the material offered here seems more transparent than it
is. The equations are simple and demand not much more than college physics, except for
Chapter 6. Nevertheless the optical thickness of this matter is considerable. The questions
help to make that clear. Answers in Appendix 7?.

These lecture notes use cgs units. The choice is however not important; most formulae
are the same in the mksA system.

These lecture notes are concerned exclusively with radiation in and by gases, including ionized
ones (“plasmas”). We therefore have only to deal with free atoms, ions, molecules and electrons,
perhaps in a magnetic field. These simple forms of matter provide rather difficult material —
until you can develop a physical intuition for gases that you can’t see through. The Sun is
made of gas but is not transparent!

Question 1.3 For the investigation of which astrophysical objects is a knowledge of solid-matter
physics required?

1.3 References
No book covers exactly the same material, but these lecture notes follow parts of:

— Mihalas: Stellar Atmospheres. A standard graduate text. Chapters 1 - 6 cover the
topics of these lecture notes at a more advanced level and from a more mathematical and
computational standpoint. Additional topics are covered in later chapters.

— Rybicki and Lightman: Radiative Processes in Astrophysics. Very good; more difficult
than these lecture notes and therefore also good for more advanced courses in plasma-
and high-energy astrophysics. Purchase strongly recommended. Chapters 2-5 and 7 of
these lecture notes give an expanded treatment of the material which is summarized in
the first chapter by Rybicki and Lightman, with the same notation; conversely, Chapter 6
of these lecture notes is a simplified summary of Chapters 3-8 by Rybicki and Lightman.
Moreover this book contains additional subjects which are not treated in these notes.

Also useful are the following:



1.4 MAIN THEMES 3
- Q;LM—\/iLQMf& o Mellas M"‘“"fkuu . Mo B dems Jurd,

Harwitt: Astrophysical Concepts. Broad and good.

— Gray: Observaiion and Analysis of Stellar Photlospheres. Simpler than these lecture
notes; interesting on account of the emphasis on instrumentation and observational meth-
ods in optical stellar spectrometry.

Novotny: Introduction to Stellar Atmospheres and Interiors. Somewhat simplistic and
out of date.

Bowers and Deeming: Astrophysics I € II. Here Volume 1. Concise but very broad,
sometimes sloppy.

Occasionally reference is made to the more specialized literature, especially in the applica-
tions in Chapter 8. The references are found in Appendix ??.

1.4 Main themes

We now give a short characterization of the main themes to which attention will be paid in
these lecture notes, along with an introduction of the various terms and an overview of the
most critical points. The intention is to outline the problems and provide a first grasp of
the topics to be discussed in depth in the following chapters.

1.4.1 Wavelength, frequency and energy

EM radiation has a wave character. From the four Maxwell equations there follow the wave
equations for the electric field £' and the magnetic field B which are satisfied by transverse
waves, with £ L B, B L k and E L k, in which the wave vector k specifies the direction of
propagation.

The third statement of perpendicularity holds in a vacuum and in isotropic media, in which
the electric susceptibility x is a scalar. In media such as birefringent crystals, x is a tensor and
the angle between £ and K differs from 90°.

The frequency and wavelength are related according to:
v=cfA : (1.1)

frequency, units s~ = Hz = cy/s (cycles per second) = cps;
speed of light; in vacuum ¢ = 3 x 10!° cm/s;

wave number, defined as & = 1/Ayac OF ¥ = cyaco. Units cm™?;
angular or circular frequency, defined as w = 27v.

EQ >0 v
[T | I T L

Is
In a medium ¢ becomes smaller and A larger with increasing index of refraction n, while »
and o do not change. In these lecture notes the index of refraction is neglected by setting
n = 1. The following convention holds for the wavelengths of spectral lines: for A < 2000 A:
A = Avac; for A > 2000 A: A = Aais (15° C, 760 mm Hg). A conversion table appears in Allen,
Astrophysical Quantities, §32.

EM radiation also has a particle character. The Maxwell equations are not satisfied on the
microscopic scale in which quantization becomes significant. The interaction between EM
radiation and matter proceeds by means of photons with energy:

E = hv (1.2)
with h = the Planck constant = 6.626 x 10~%7 erg sec (1 erg = 1077 J).
The EM spectrum used in astrophysics spans something like fifteen decades (Figure 1.1). Each

wavelength region is characterized by its own radiative processes. The nature of the observed
objects is related to this. Frequently the radiation at the extremes of the spectrum (radio

wavelength, units cm or Angstrom (1 A = 10~% cm) or nm (1 nm = 10 A); e
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and X-ray radiation) is entirely of nonthermal origin, while the radiation in the intermediate
wavelengths is generally of thermal origin.

Each wavelength region also has its own characteristic observational techniques (Table 1.2).

The access to the EM spectrum has widened considerably since the Second World War, thanks

to radio astronomy and space travel. As regards spatial resolution, however, there is still much }
to do (Table 1.1). Much of this requires interferometry from space.

Radio Svb-mm TR Vigval uVv far-0V x-(&aﬂ y -
++

NACcess ~ + tt t+ - 4 .
lma |V\q. " _ ~
+ - —
Rasolvhivn - -
Table 1.1: Status of observational techniques
1 1 14 16 18 20 22
bAvI 6l 1 ? 1 lo L} I2 1 ¥ 1 ] 14 i 1} 1 i 1] ¥
v MHZ 1GHz 10"Hz
[
1 1
X r 1klrn T T 1:‘“ i 1crn 1) i 1] I%m H 1mix i i T 1 i 1
hy 1020 10'® 10’ oM 102 o0 10® 10
r 1 T T H 1 1 1 1 L] ] 1 1 t L] ¥ 1 1
v uev 1mevV eV 1keV 1MeVv 1GevV
S—— ul | B S e T T T T 7T T T (E
< . 4 (] 108
Kelvin '?1 T 1 T 190 T 10: T 19 T Y ]
20 18 16 104 102 ‘1010 108 108
ce;ﬁ;nta 101 T 10: T 01 T T L] T T T T T T T 1
long middle short  micro infrared p ultraviolet A Y
radio waves Vis thie
HO O3
H0 o G
atm.. .
y molecuieS atoms atomiC nuclec
aps 'onosper O .
. : cpticat
ragiowindcu PYRYY, .
- eye geiger). counter
antenna ragdio re(ever AL - scintil. A
 diode . cco -
< .
Planck maximum , 192 : 19[‘ : 1Cl>° Keivin

Figure 1.1: The EM spectrum. Afier Code, Astron. J. 65, 279

1.4.2 Spectral lines and continua

Astronomical spectra exhibit continua on which are superimposed spectral lines, in absorp-
tion or in emission with respect to the local continuum. See Figure 1.2 and Figure 1.3 for
examples.
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Radio IR Visueel uv Rontgen

Jargon v MH;s um, cm™ A, nm A MceV
Jargon E mJansky Ts erg, I/1. erg Uhuru counts
Openlegging radar IRAS Galilei IVE Uhuru
Faciliteiten VLA, WSRT (1s0) UK/NL, ESO, USA IVE (AXAF)
Afbeelding apertuursynthese spiegel lens, spiegel spiegel masker
Dispersic filters fiters tralie tzalie tralie, filters
Detectie amplitude+fase energie fotonen collectief enkele fotonen | individuele fotonen
Continua remstraling vrij-vrij gebonden-vrij Thomson Compton
Lijnen spin-spin moleculen atomen jonen stoomkernen
Karakteristiek melkwegstelsel IM koele ster hete ster sccretieschijf
object

Table 1.2: Various facls concerning spectral regions

Spectral lines are called “lines” because spectrographs usually have linear entrance slits. The
monochromatic image of the spectrum exhibits brighter or darker stripes perpendicular to the

direction of the dispersion.

Question 1.4 What kind of spectral lines would the Sun show if no entrance slit was used? During
eclipses people frequently photograph the spectrum of the outermost solar limb
without a slit. What do these spectra look like? Why is this done?

1.4.2.1 Spectral lines

Spectral lines are the result of transitions between discrete energy levels, such as the jumps
between bound levels of a valence electron in an atom: bound-bound transitions. Ezcitation
to higher levels can occur via absorption of kinetic energy (collisional ezcitation) or by
photon absorption (radiative ezcitation). Likewise, deezcitation to lower levels can occur
via collision (collisional deezcitation) or by photon emission (radiative deezcitation). This
energy exchange proceeds by means of quanta with a frequency given by hv = AE,,.,,, where
AEn, = Ep, — E, is the energy difference between the levels m and n (m > n) of the bb
transition; the photons involved have the corresponding wavelength A = he/AE,,,.
Note the abbreviation: bb = bound-bound. ‘
Notation: Fel is the spectrum of neutral iron, Fell is the spectrum of singly ionized iron
(Fet), etc.

Spectral lines are broadened with a statistical distribution determined by:

— radiative damping, a phenomenon arising from the finite lifetime of levels higher than the
ground state, which are then no longer sharp — they possess a (natural line width — as a
result of the uncertainty principle);

— collisional damping, by disturbances due to neighboring particles;

— Doppler broadening, the average over the range of Doppler shifts for the radiating atoms
(of the appropriate kind).

This statistical distribution of wavelengths is called the line profile.
Spectral lines are split by:

~ (hyper-)fine structure as a result of isotopic splitting and interaction of the atomic nucleus
with the electrons (spin and magnetic moment);
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Figure 1.2: The Na I D lines in the solar spectrum. These are the resonance lines (the
strongest lines arising from the ground level) of NalI; the name “D” is due o Fraunhofer
who named in alphabetical order the most striking of the darker features in the solar spec-
trum. They correspond to the two transitions possible between the ground level and the first
two ezcited levels of the neutral sodium atom (see the Na I term diagram in Appendir A).
They are the same spectral lines which appear in the yellow sodium lamps shining along the
highways. These are the same lines which gave Fraunhofer the idea that darker lines in the
solar spectrum and brighter lines in flame spectra have something to do with one another.
Here they are in absorption: the brightness of the Sun is lower in the wavelengths of the
lines than in the adjacent continuum. This piece of spectrum is taken from the fluz atlas of
Kurucz et al. (1984). On the y azis is plotted the intensity averaged over the visible disk of
the Sun (irradiance), normalized to the continuum between the lines. Wavelength in nm is
plotied along the z azis. The line identifications are taken from the standard tabulation of
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Figure 1.3: The H1 Lya line in the spectrum of the quasar Q0002+051. This resonance line
arises from the transition between the ground level of hydrogen and the adjacent level (see
Figure 1.4): it is the first line (of longest wavelength) of the Lyman series. It is evident here
as a broad emission peak near 3590 A. At shorter wavelengths, the Lya “forest” appears: a
forest of Lya lines at smaller redshifts. They are all seen in absorption. The most obvious
ones are numbered from 1 to 25, but there are probably many more that are buried in the
noise. Observation with the 2.5 m reflector at Las Campanas (Chile), by Young et al.

(1982).
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transitions as Lya, LyQ elc., and the bf Lyman conlinuum as Lycont.
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- magnetic fields (Zeeman splitting);
— large-scale motions in the line of sight direction (Doppler splitting).

When the instrumental resolution is not sufficient, (whether in A, in x, y, z, t, or in the
polarization direction), such splitting results in line broadening.

Spectral lines are always associated with discrete bb processes, but this does not mean
that emission lines in an observed spectrum are always the direct consequence of photon
emission by radiative deexcitation, or that absorption lines are always the direct consequence
of photon absorption by radiative excitation. That depends on the radiation transport
through the medium. In general spectral lines are the result of the ezira bb processes which
can occur at the specific line wavelength in the medium, in addition to the processes which
give rise to the continuous spectrum at that and adjacent wavelengths.

Question 1.5 What is HI? And H II and H III?
Do these spectra have spectral lines? What is the 21 cm line associated with?
Does Fe XII have spectral lines? If so, in which wavelength region?

Question 1.6 Compare the observed wavelengths of the NaID lines in Figure 1.2 and the Ly a

‘ line in Figure 1.3 with those of the associated bb transitions in the relevant term

diagrams (Appendix A). What is your conclusion?

Figure 1.3 shows a large number of spectral lines with A < 3530 A: the Ly a forest.

Do these arise from hyperfine structure, Zeeman splitting, or Doppler splitting?
Question 1.7 In Figure 1.2 the line identifications are given. Near the NaID lines there are solar

lines of FeI and Nil; the H,O lines, however, originate in the Earth’s atmosphere.

How can the origin of the lines be conclusively established?

1.4.2.2 Continua
Continua are the result of nondiscrete processes in which photons are absorbed or emitted:

— bound-free transitions of atoms and molecules.
The liberation of a valence electron from a bound state n, by absorption of a photon
with energy larger or equal to the ionization energy AF, = Eo — E, from that level
(radiative ionization). Alternatively, the capture of a free electron (recombination) into
a bound state, accompanied by the emission of a photon with energy larger or equal
to AEon (radiative recombination). The free states above the ionization limit are not
discrete because the free electron may have an arbitrary kinetic energy (%—m,vzz hy =
AFon + %—m,vz. Ionization and recombination can equally well occur by the absorption
or release of kinetic energy (collisional ionization and collisional recombination), without
a photon.
Note the abbreviation: bf = bound-free.
Notation: Fel bf is the continuous spectrum associated with the ionization of neutral
iron (series limit continuum of Fe). Fell bf is the bound-free spectrum of Fe+, etc.

— dissociation and association of molecules;
— nuclear fission and nuclear fusion;

~ free-free transitions = Bremsstrahlung.
This is the emission or absorption of photons as a result of the acceleration or deceleration
of arr energetic particle in an electric field, for example in the collision of an ion and an
electron.
Note the abbreviation: ff = free-free.
Notation: Fel ff is the spectrum resulting from the interaction between a free electron
and an Fet ion. Fell fI is the free-free spectrum of Fet+, etc.

— cyclotron radiation, synchrotron radiation.
As a result of acceleration of a charge in a magnetic field;

— pair annihilation, pair production;

— Cherenkov radiation.
The bow shock of a particle whose speed exceeds the local speed of light in a medium.



14. MAIN THEMES 9

A special, astrophysically important, case concerns the bf and fl processes of neutral hydrogen
with an extra electron, the H™ ion. H™ bf ionization is the removal of the second bound electron
in H™; H™ bf recombination is capture of a free electron by a neutral hydrogen atom into the
bound H™ state (in this case there is only one such state); H™ ff is emission or absorption
resulting from the acceleration of deceleration of a free electron in the electrical field of a
neutral hydrogen atom.

Question 1.8 What are the HI bf processes? What is the notation for the Bremsstrahlung spec-
trum resulting from collisions between free protons and electrons?

bb-processes bf-processes
A .
radielive excitation [ redulwcionisation ,\‘H‘)’ ¢
— .  usu
chsurel excitation ! w“"?""v,*'omnbn .’y .
rel eXCitatior ® . RN
spontaneoUs o . recombiaation \' :E
deéxatation I[_f AN
induced induced
deexctatien M) ¢ Q —-!L—-— recombination MJJ
| 'N' y777177774
cottiyomay deexcitation @ S‘( (s | 1sionetrecombination ,‘0
—> / —

Figure 1.5: The bb and bf processes.

1.4.3 Collisional transitions and radiative transitions

Bound-bound excitation and deexcitation, bound-free ionization and recombination, molec-
ular dissociation and association efc. may occur, both by absorption or release of radiation
energy in the form of photons and by absorption or release of kinetic energy by means of a
collision with a particle. Figure 1.5 shows all of the five types of transitions possible between
two discrete energy levels (bb) and between a bound and a free state (bf). In the second and
fifth processes in each column, no photons are involved. The fourth process, respectively
induced deezcitation and induced recombination, can be viewed as a resonant process: a
photon of just the right energy triggers radiative deexcitation — that is, the target atom
resonates with the incoming wave. The escaping photon has the same attributes (frequency,
direction, phase) as the incident photon.
With more levels, even more circuitous routes are possible; see Figure 1.7.

Question 1.9 Check that a photon conversion sequence as shown in Figure 1.7 can consist of Ly 8
absorption, followed by Ha and Ly a emission. Can such a triad also consist of bf
transitions, for example the Ly cont?

Question 1.10 Is kinetic energy involved in induced deexcitation? And in induced recombination?

Question 1.11 Check that collisional recombination requires a three-body collision. Under what
circumstances will collisional recombination be a rare process?

Question 1.12 Draw a diagram such as that in Figure 1.5 for ff transitions. Does this also comprise
five processes? How many particles are involved in each process?
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Figure 1.6: Three pairs of bb interactions: creation, destruclion and scatiering of photons.
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Figure 1.7: Photon conversion.
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1.4.4 Photon creation, photon destruction, photon scattering and
photon conversion

In Figure 1.6 the bb processes of Figure 1.5 are grouped into three pairs:

- collisional excitation followed by radiative deexcitation (spontaneous or induced) = pho-
ton creation = conversion of kinetic energy into radiation;

— radiative excitation followed by collisional deexcitation = photon destruction = conversion
of radiation into kinetic energy;

— radiative excitation followed by radiative deexcitation = scattering photon = redistribu-
tion of radiation.

Scattering changes at least the direction between the incident and the scattered photon, pos-
sibly with an anisotropic redistribution (directional redistribution) depending on the process.
The frequency can remain constant in bb processes between the same two levels, for exam-
ple in resonance scattering out of the ground state; in that case the scattering is coherent
or monochromatic if the frequency remains exactly the same. It can also happen that the
frequency is slightly changed by redistribution over the line width: frequency redistribution.

The pairs of processes in Figure 1.6 hold for two levels; with more levels, photon conversion
such as in Figure 1.7 can appear on the scene. In this case an energetic photon is converted
into two other photons of longer wavelength.

In the first two pairs, local kinetic energy and radiation energy are transformed into
one another. These pairs of processes couple the radiation field to conditions in the local
medium. If collisions occur frequently enough, strong coupling is expected bétween the local
radiation field and the local particle velocities: equipartition of energy.

However, if collisional excitations and collisional deexcitations are rare, the radiation
field (at the wavelength of the spectral line corresponding to this bb transition) can be
independent of the local particle energies. This will be the case if the particle density
is so low that there are very few interactions, but also if primarily coherent scattering
takes place at the particular wavelength in question. The radiation we see may not tell us
anything about conditions at the place where we see the radiation coming from, i.e. where
the detected photons were emitted: the photon supplied by a scattering atom came from
somewhere else, and the original creation of that quantum of radiation energy by a collisional
excitation-radiative deexcitation pair happened perhaps many scattering processes earlier
and in another place entirely. Throughout such a sequence of bb scattering processes a
particular quantum keeps its own identity, with information that refers to its creation,
namely the characteristic kinetic energy of the particles at the place where it was generated.
With each scattering the photon briefly serves as potential energy of a target atom and then
is sent out once again in another direction. This nonlocally determined nature of radiation
owing to scattering forms the central issue of radiative transport.

This description concerns bb scattering, i.e. line photons; similarly, in elastic scattering of
continuum photons nonlocal representation of the radiation field can also occur. For example,
consider fog around a lantern. What you actually see is the fog, not the lantern; however the
color temperature of the radiation is that of the lantern and not that of the fog.

Question 1.13 Figure 1.6 does not show all possible combinations of the five bb processes in
Figure 1.5. How do the other pairs go?

Question 1.14 For bf processes, are there similar pairs for creation, destruction and scattering?
What about for ff processes?

Question 1.15 Check that also in photon conversion the problem can crop up that observed
photons are not created where you see them coming from. Are there triple processes
between three levels in which there is coupling with the local kinetic energy of the
particles? ,

Question 1.16 Is the color temperature of the daytime sky that of the Sun? What about the color
temperature of the full moon?
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1.4.5 Optically thin and optically thick

An object is optically thin at a given wavelength if it is transparent to radiation at that
wavelength, and optically thick if such radiation does not shine through. The observer “sees”
all the way through an optically thin object, but not through an optically thick object.

An optically thick object has an (outer) “surface” (photosphere) which your gaze cannot pen-
etrate — where the photons which you detected had their last interaction. For a solid object
this is a sharply defined layer, but also for an optically thick ball of gas we can speak of a
surface to indicate the layer from which the photons escape. In the Sun, for example, the layer
from which the visible light escapes is but a few hundred km thick, while the solar diameter
amounts to 1400 Mm. The escaping radiation contains information about this layer. If the
photons were created in that last process, this is then local information, but in the case of
scattering that is not necessarily the case — such as for optically thick fog around a lantern.

An optically thin object, on the contrary, doesn’t change the majority of the photons passing
through. Only a few will undergo an interaction (destruction, scattering, or conversion) and
only a few new photons will be added (by creation, scattering, or conversion). There is no
surface; only the fraction contributed to the radiation field contains nonlocalized information
about the whole object.

Question 1.17 Is the Sun optically thick to all radiation? Does the “surface” where the sunlight
comes from lie equally deep at all wavelengths? What will that depend upon?

Question 1.18 The Sun is “optically” thin to neutrinos. Does it make sense to try to detect
neutrinos coming from the Sun? How can you distinguish these from neutrinos
from other stars?

1.4.6 Thermal and nonthermal

In the pair of processes that provide photon creation, thermal kinetic energy is transformed
into photons via collisions. The photons created in this way are thermal. If the frequency of
collisions is sufficiently large, coupling is achieved between the radiation field and particle
velocities: so many quanta of radiation are created and destroyed in collisions that there is
equipartition between radiation energy and kinetic energy. Such radiation is then thermal at
the bb wavelength: in accord (in “equilibrium”) with the kinetic temperature at that point.

In bb scattering the new photon is provided by a similar photon that originated elsewhere;
with much scattering or photon conversion the coupling between radiation and local kinetic
temperature can be lost. Depending on the origin of the photons, the entire radiation field
can be nonthermal.

A radiation field that is in equilibrium with the Maxwellian distribution of particle velocities at
the place where it is generated follows the Planck function corresponding to the temperature
at that spot (Chapter 4).

Question 1.19 With a lower collisional frequency, the chances for bb scattering are increased.
Why?

Question 1.20 If cyclotron and synchrotron radiation, pair annihilation, or collisions with non-
thermal particles contribute, then the radiation field is not thermal as a rule. Why?

Question 1.21 Is the atmosphere of the Earth in thermal equilibrium with the solar radiation?
And with the light of the daytime sky?

1.5 Crucial questions

The paragraphs above define the astrophysical questions which should be asked for each
object observed, for the continuum as well as for each spectral line under study:

— is the object seen in emission or absorption?
— is the object optically thick or thin?

— from what layer does the observed radiation arise?
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- what is the excitation, deexcitation, ionization, association, velocities, magnetic fields
etc. at that point?

- which processes supply the observed photons?

- were the observed photons created in their last interaction, or is scattering or photon
conversion important?

— is the radiation thermal or nonthermal?

The answers to these questions determine the diagnostics that the EM spectrum provides
for doing astrophysics. In the following chapters these tools are sharpened.

Question 1.22 In a well-known scientific laboratory experiment a spectroscope is used to look at a
flame into which salt (NaCl) is scattered. The NaID lines appear as emission lines.
Such a flame is optically thin in the NaID lines; make use of this in answering the
above questions.

Question 1.28 Following this, the same experiment is extended by viewing the flame with salt in
projection against a brighter continuum source. The two Nal resonance lines then
appear as absorption lines against the brighter background continuum. What has
changed?

Question 1.24 The solar spectrum in Figure 1.2 also shows the NalD lines in absorption. In
many textbocks this is explained by analogy with the second experiment, but by
the end of these lecture notes we will be able to establish the extent to which this
analogy is correct (only partially so). Why are the sodium lines of the Sun so much
more difficult to understand than those of the flame?

Question 1.25 In the quasar spectrum in Figure 1.3 the Ly o line appears not in absorption but
in emission. Does that mean that the origin of this line is easier to understand?
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Chapter 2

Radiation quantities

2.1 Introduction: from luminosity to intensity

How to describe the radiation from an astrophysical object? The goal is to define a
quantity with maximum information content; a heuristic introduction brings us to
the concept of intensity. The formal definitions follow in Section 2.2.

Let us begin by defining the

total luminosity L [erg s™1],

as the total energy radiated by an object per unit time. This is a number without
much diagnostic value, except for its size (energy budget) and time dependence
(variability, evolution).

A first refinement is to disperse the spectrum:

monochromatic luminosity L, [erg s~! Hz"!]

is the energy emitted by the object per unit time and per unit spectral bandwidth
at the frequency v, with L = f{° L, dv.

However, one cannot measure energy all around a faraway object. At Earth, one
only detects:

irradiance R, [erg cm™2 57! Hz 71,

defined as the total energy of the photons from the object which pass per unit time
and per unit spectral bandwidth at the frequency » through a unit area at Earth,
oriented perpendicular to the line of sight to the object.

Inward extrapolation to the surface of the object or to its interior provides a
generalization:

flux F, [erg cm™2 57! Hz™1],

the total energy of the photons from or in the object that pass per unit time and
per unit spectral bandwidth at the frequency v through a unit area placed at a
specified place and oriented at right angles to a specified direction. The point of
measurement and the direction may be chosen freely. Also, photons may come
from all sides; the energy of the photons coming from behind (against the specified
direction) are counted as negative. The flux F, therefore measures the net flow of
energy through the unit area in the given direction. F, is the monochromatic fluz;
the total fluz F is given by: F = [;° F, dv.

In going from luminosity to flux, we have defined measurement of photons that
arrive at or pass through a given location. It is more informative to specify the
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Figure 2.1: Cones (“pencils”) of radiation. Photons are emitted by a circular surface
with area AA around Py in all directions. The photons that leave a particular point
of AA with directions within solid angle AQ around direction P, P, constitute a cone
of radiation emerging from that point (top). The cones from all such points on AA
merge into a larger, truncated cone with opening angle AQ (middle). Likewise for
beams of parallel rays from elsewhere that pass through AA with the same opening
angle AQ (bottom). The angle is the same in the propagation direction towards the
right and in the line-of-sight direction towards the left. The amount of energy in the
cone is proportional to AA and AQ as well as to the duration At and the frequency
bandwidth Av of the measurement, if AA, AQ, At and Av are all small enough that
the radiation field is homogeneous across these intervals. After Novotny (1973).

propagation direction of the photons also. The best is to specify where photons
come from and where they go to. That is achieved with:

intensity I, [erg cm~2 s~ Hz~! ster~1],

which is the flow of energy at a specific location in a specific direction, per unit time,
per unit bandwidth, per unit solid angle around that direction, and per unit area
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oriented perpendicular to that direction at that locatjon.

The unit “ster” stands for steradian. It is the unit of solid angle, the three-
dimensional equivalent of angular measure in a plane. Just as the angle a = [/r rad
subtends a segment [ of circular arc, a spherical surface segment A is subtended by
the solid angle Q = A/r? ster.

Intensity specifies the flow of energy along a beam of radiation both at departure
and at arrival. It describes the radiation along a “ray”, connecting the departure
and arrival points. A single, infinitely thin ray doesn’t contain energy, so one speaks
of a bundle or beam of rays, a “pencil of radiation”, with angular spreading over a
cone AQ. The rays travel towards us in the direction of propagation; their spreading
is also measured when looking backwards along the line of sight. See Figure 2.1.

A cone of rays spreads, but intensity is measured per steradian, per unit of
spreading. The spreading of a beam therefore does not affect its intensity, at least
in vacuum where there is no matter present to absorb or emit photons. This property
makes intensity the macroscopic quantity of choice to formulate radiative transfer
with, i.e., to describe processes by which matter and photons interact. Using in-
tensity ensures that only such interactions affect the measure of radiation, not the
distance over which it has traveled.

The conservation of intensity along a beam is illustrated in Figure 2.2. There are
two arbitrary surfaces at separation r, with area A4, at point P; and area AA, at
P;. Photons of all frequencies travel through each surface in all directions. We seek
to describe only those that pass through both surfaces, first through AA4; and then
through AAj;. These photons represent on the one hand the flow of «energy which
“escapes” from AA; towards AAj, and on the other hand the flow of energy which
“arrives” at AA; from AA;.

AA,
0

Figure 2.2: Conservation of intensity along a beam. The intensity of a beam that
passes along both Py and P, is the same at both points because inlensity is measured
per steradian. The projected detection area at one point represents the solid angle
for the other, so that there is full symmetry between P, and P;.

How large is this energy flow? Consider it first at the departure point P;, taking
AA; as the measurement surface. Empirical experience and physical insight teach
that the measured amount of energy is proportional to the measurement duration
At and to the measurement bandwidth Av; the larger each, the more photons are
taken into account. The measured energy is also proportional to the cross-section
posed by the measurement surface AA;. Since of all possible directions through
AA; only those count that pass A4y as well, the energy flow is proportional to the
projected surface AA; cos#;, with 6; the angle between the normal to AA4; and the
direction Py P,. The energy flow is also proportional to the solid angle Af); that is
subtended by area AA; as seen from Py, since it defines the cone of directions from
Py that pass through AA,. It is given by AQ; = A4, cos 62 /72 ster. There are no
other proportionalities or dependencies (assuming vacuum). The energy flow AE,
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which departs from AA; towards AA; thus has:
AFE, x At Av AA; cos; ARQ;.

The spreading AQ; must be sufficiently small that proportionality indeed applies,
i.e., that the bundle is homogeneous across the solid angle AQ;. The same holds
for the other proportionalities; AA;, At and Av should be small enough that the
radiation field can be considered homogeneous across each sampling interval. To
ensure such homogeneity, we take the limit A — 0. We now define intensity by:

dA; cos 8,

r2 ’

dE,(P) =1 dt dv dA; cos 6, dQ; = I; dt dv d A cos b,

with the intensity I; the proportionality constant that holds at P.

Now describe the same flow as it arrives at P,. It is again proportional to the
cross-section of the sampling surface, now given by AAj cos#8;, and also to the solid
angle subtended by A, at the distance r from P,. In the limit A — 0 the energy
measured at P, is:

dA1 COs 01

r2 ’

dEu(Pg) = .[2 dt dv dA2 Cos 02 dQ2 = _[2 dt dv dA2 COos 02

with I defined as the proportionality constant that is valid at P,. These two
expressions for locations P, and P, measure the same energy flow dE,, namely
all photons that pass through AA, after passing through AA;. Equating the two
expressions yields the result that J; = I,. Thus, the proportionality constant does
not change from Py to P; intensity is constant along a ray. It therefore suffices to
define intensity at just one location, as

dE,
dtdv dA dQ

at that location, with I, the intensity of the beam which transports a quantity of
energy dE, in a specific direction through a surface dA placed perpendicular to that
direction, with the spreading of the beam confined to a solid angle dQ2 around that
direction, during a time d¢ at a specific moment, and limited to a frequency band dv
at a specific frequency v.

I,

Question 2.1 What are the units of d&,?

Question 2.2 Does the intensity in a divergent beam diminish with the square of the
distance? Or does it depend on the opening angle AQ of the beam?

Question 2.3 Monochromatic quantities such as L,, ¥, and I, are expressed per unit
bandwidth. The energy flow that is measured across a frequency band be-
tween v and v + Av is given by L, Av, F, Av and I, Av, respectively. One
may also use Ly, for example with A as the unit of bandwidth in wave-

- length, or L, and L, for bandwidths expressed in wavenumber and angular
frequency. The following questions address the conversions:
—show that [, dv = I) dX if |dv]| = (¢/A?)|dA;
— show that dv/v = —d\/);
—are I, and I, equal for a given beam?
- does the minus sign in dv/v = —dA/A imply that I, or I, is negative?
— why is it useful to plot Al or v1, in graphs instead of I) or I,?
- show that f0°° I, dv = fooo I dX;
— what is the conversion factor between I, and I,? And between I, and 1,7
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Question 2.4 One might use the following units in place of [erg cm~2 s=! Hz~! ster~!] for

intensity:

- [erg cm™3 571 ster—!];
~ [erg ecm=2 ster—!];

- [erg cm™! 571 ster™!],

by replacing Hz~! with other bandwidth units. What are the latter for these
three cases?

Question 2.5 Show that:
- an isotropic radiator produces at a distance D: R, = L, /(47 D?);
— a spherical radiator has: [, F, dA = L,;
— an isotropic radiation field has: F, = 0.

Question 2.6 Show that:
—dQ =siné df dy in polar coordinates;
— a quarter hemisphere measures 7/2 ster;
— a whole sphere measures 47 ster.

Question 2.7 The exposure meter in a camera is an intensity device which operates better
if it accepts a smaller solid angle, as in a single-lens reflex camera where it
meters through the lens, and optimally as a “spot meter” measuring only a
small part of the image.
Does the exposure time given by such a spot meter vary between wide-angle
close-up pictures and pictures of the same object taken from afar with a
telephoto lens?

2.2 Intensity and related quantities

The heuristic description above demonstrates that intensity is the quantity best
suited to describe radiation. The following are definitions of quantities related to
intensity.

2.2.1 Intensity

The intensity I, is defined as the proportionality coefficient I, in:

dE, = L(7Lt)(i%)dAdt dvdQ (2.1)
= L(z,y,2,0,0,t) cos§ dA dt dv dQ,

where dE, is the amount of energy transported through the surface dA, at the
location 7 and with 7 the normal to dA, between times ¢ and ¢+dt, in the frequency
band between v and v 4 dv, and in the solid angle dQ about the direction /. The
polar coordinate angles 8 and ¢ are defined in Figure 2.3.

Dimension I,: [erg s™' ¢cm™2 Hz™! ster™'] or [W m~2 Hz"1 ster™1].

This is the monochromatic intensity: the total intensity is I = [° I, dv.

The intensity depeads on place, direction, time and frequency, and describes the
radiation field completely unless it is polarized (§2.2.5). This definition holds both
for the intensity emitted by a surface and for the intensity along a bundle of rays.

I, is often called specific intensity to emphasize that it is measured per stera-
dian. Other names are brightness and surface brightness. In everyday language,
“intensity” often implies flux or irradiance—even in astronomy the distinction is
not always clear. With the above definition, intensity does not vary along rays in
vacuum. It changes only if there is extinction (loss of photons out of the beam
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~

AN

Figure 2.3: Solid angle in polar coordinates. The annulus is part of the sphere with
radius unity around the given location. The dark area defines solid angle AQ =
sin @ AG Ay from the given location.

through absorption, scattering, or photon conversion) or emission (addition of pho-
tons to the beam from photon creation, scattering, or photon conversion) along the
way, or when the index of refraction varies. The intensity differs within a sheet of
glass from the incident value, but resumes the latter upon exit. The intensity in the
image plane of an absorption-free telescope is as large as it is near the ob ject.

Question 2.8

Question 2.9

Question 2.10

Question 2.11

Question 2.12

Question 2.13

Question 2.14

Show that the intensity along a beam from an object does not change when
the object is imaged by a lens.

A lamp radiates intensity Iy isotropically. If it is placed in the focus of a
lens, what is the intensity of the resulting collimated (parallel) beam?

Does an absorption-free prism change the intensity of the light which it
disperses?

Use Snell’s law n; sinf; = nysinf, to demonstrate that the quantity I, /n?
1s conserved when a beam with intensity I, passes across the border between
media 1 and 2 with indices of refraction n;, and n,.

Why is it that astrononers tend to set n = 1 for their objects?

The intensity of the solar radiation has the same value near Earth as near
Saturn, although Saturn is ten times further away. Does Saturn receive the
same amount of energy as the Earth?

What exposure time do you need to take a picture of the full moon? How
does it compare to the exposure time which an astronaut requires on the
moon itself? And for a kosmonaut on Mercury?

Design an intensity meter for an amateur astronomer. Which constraints
must be satisfied to measure the intensity of:

— the surface of the moon;

— a sunspot;

- Jupiter’s red spot;

- the Milky Way?
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Describe the appropriate measurement procedures.

Question 2.15 Can the amateur astronomer in Problem 2.14 measure the intensity of Sir-
ius A? Can a radio astronomer measure the intensity of a quasar?

Question 2.16 The spatial resolution of the Hubble Space Telescope was expected to be
much better than that of ground-based telescopes of similar size, because
there is no atmospheric turbulence in space to spoil images (the socalled
seeing). Such an improvement in image sharpness results in considerable
gain in sensitivity for stars, but not for extended objects such as gaseous
nebulae. Why? Is a (good) space telescope a good choice to image galaxies?
And quasars?

2.2.2 Mean intensity
The mean intensity J, is defined by:

- _ 1 1 2w pmw .
J(7,t) = E/I,, 0 = Z;/o [ Lsing a0 dp. (2.2)

Dimension J,: [erg cm™2 57! Hz™! ster~!], just as for I,.
The total mean intensity is given by:

Jsi/IdQ:i//IududQ:/mJudu,
47 47 0

in which the “mean” means averaging I,(, ) over all directions,. with AQ =
sin 6 df dp in polar coordinates (Figure 2.3) and [dQ = 4x. An isotropic radia-
tion field has J, = I, and J = I; otherwise, J, and J indicate how much intensity is
locally available for processes which are not sensitive to direction, such as radiative
excitation and radiative ionization.

I will often discuss radiation from optically thick objects taking the convention
that the z-axis is vertical, perpendicular to a horizontal surface (z,y), on the premise
that thick objects are gravitationally bound. Then, z is equivalent to geometrical
height h; I will often use h to specify the direction away from the object rather than
z. The zero point of the z and h scales is arbitrary; it is usually placed at “the
surface”—which for gaseous objects needs to be defined.

Atial symmetry is often assumed for thick objects by permitting spatial variations
to occur only along vertically, not in horizontal directions. The (z,y) planes are
then homogeneous “slabs” or “plane-parallel layers”; they often represent a local
approximation to the curved shells of spherical objects such as stars. The radiation
field, whatever its origin, is then symmetrical around the z-axis @=0):1 =
I,(z,6). Then

dQ = 27sin 0 df = -2 du,

where
' M = cos b, (2.3)

and so: . | g4
J(2) = — / I(2,0)27sin0df = = / (2, ) dpe. (2.4)
47 0 2 -1

Question 2.17 A “Lambert surface” radiates intensity Iy into all directions on one side of it.
Is this a case of axial symmetry? What is J in a point of this surface? And
what is J at a point a distance D from the surface if the latter is infinitely
extended?
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Question 2.18 How does the mean intensity of the solar radiation near Earth compare to
the intensity? (The radius of the Sun is Rg = 0.00465 AU; approximate its
surface by a Lambert one.)

Question 2.19 How do the intensity Iy and the mean intensity Jo of the sunlight near
Saturn compare with those at Earth?

2.2.3 Flux
The monochromatic fluz F, is defined by:

- 2T pw
]—',,(F,ﬁ,t)z/[,,(l.ﬁ) dQ:/I,,cosGdQ:/ / Icosfsin0ddy.  (2.5)
0 0

Dimension F,: [erg s™! ecm™2 Hz7!] or [W m~2 Hz™1].

The flux 7, is the flow of energy per second through a surface of one cm? located
at ¥ with normal 7. It is the net flow of energy through this surface because the
perspective factor cos § counts the reversed contributions negatively, i.e., those along
directions 7/2 < # < = with components counter to 7. If 7 is upwards, we may
write 7, as the net sum of upward and downward parts:

2r /2 2T o
F, = / / I,,cosOsin0d0d30+/ / I, cosfsin§dé dy
o Jo 0o Jr/2
2r /2 2w /2
= / / L,cos08in9d0dgo~/ / I, cos @sin§ d6 de
0 0 0 T

2r /2 2r /2

= / / I, cos@sinf do dgo—/ / I, cos(m — @) sin(m — 0) d(7 — ) dop
o Jo o Jo

Fr-F, (2.6)

with the upward flux F;} and the downward flux F, both positive. For an isotropic
radiation field 7f = F, = xI, and F, = 0. A Lambert radiator has Fo=F}=nrl,
and F,;° = 0 at its surface. For axial symmetry only the z-component of the flux is
non-zero because the radiation field is then isotropic within (z,y) planes. In that
case:

F(2) = or / I, cosfsin 8 df
0

+1
= 2 ul, du

1 -1
= 27r/ pl, dy — 2« ul, dy,
0 0

thus

1
Fi(z) = on / ul, du
0

-1
F (z) = 2n A wl, du. (2.7)

Flux is a loose term. One should define it as a vector (e.g., Mihalas 1978 p. 9),
but for simple geometries the direction of the vector is usually obvious—for example,
outward in or from a star. Since we define flux per cm?, “flux density” would be a
better term; physicists employ it indeed, and use “flux” for F, = [ F,dA. Flux is
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often used in place of irradiance for the energy that is detected from an ob ject at the
telescope—radio astronomers use “milli-flux units”, atmospheric physicists “actinic
flux”. Flux is also often used instead of luminosity as measure of the energy which
escapes from an object; “surface flux” then specifies what is defined as flux here,
per cm?. Often, the location and the orientation of the unit area are not explicitly
specified. When axial symmetry applies, flux usually implies F.(z) inside the object
or Ft(z = 0) at its surface. Frequently, rF is written in place of F (so that a
Lambert radiator has F' = F* = Iy), with F called “astrophysical flux”. However,
sometimes F is written as F' without 7. (Rybicki and Lightman 1979 do so; this is
the only notation difference between their book and this one.)

Question 2.20 How is the flux of the solar radiation near Earth related to the local intensity,
mean intensity and irradiance?

Question 2.21 How does the solar flux near Earth compare to that near Saturn?

Question 2.22 A Lambert disk with radius R emits intensity I, (8,9) = Iy. Express J, and
Fy in I for a point P at a distance D from the disk on its axis. What are
the results for D < R and D > R?

Question 2.23 Express the surface flux of a spherical star in the mean intensity I, that is
received from the stellar surface by a distant observer.

Question 2.24 The segment of solar spectrum with the NaID lines in Figure /.1 is copied
from the atlas of Kurucz et al. (1984). This is an atlas of the solar irradiance
spectrum. Why is it called a “flux” atlas? How may one measure the
irradiance spectrum from the Sun? Why should one want to?

Question 2.25 There is a tight correlation between the excursions of the apparent solar
limb due to the turbulence in the earth’s atmosphere and the fluctuations
in the solar irradiance. Why?

Question 2.26 Are stellar magnitudes a measure of intensity, mean intensity, flux, or lumi-
nosity? And absolute magnitudes and bolometric corrections?

2.2.4 Radiation density and radiation pressure

The radiative energy density u, is:
1
w == / I, d9. (2.8)

Dimension u,: [erg cm™3 Hz™!] or [J m~2 Hz™1].
Isotropic radiation has u, = (47/c)l,, filling a unit sphere in 1/c seconds.
The radiation pressure p, is:

Py = %/I,, cos? 4 dQ. (2.9)
Dimension p,: [dyne cm™2 Hz~!] or [N m~2 Hz1].
Radiation pressure is analogous to gas pressure, being the pressure of the photon
gas. It is a scalar for isotropic radiation fields; a force is exerted only along a photon
pressure gradient. Note that the term radiation pressure is often also used for the
mechanical force on an object when it absorbs photons from a directional beam.

Question 2.27 Derive equation (2.8) by first considering the energy content of the volume
that is passed through by a single beam with intensity 7, during a time d¢,
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then integrating the result over a small volume AV which is pervaded by
beams in different directions.

Question 2.28 Derive equation (2.9).

Question 2.29 Show that:

4 o0
u, = —WJ,, and wu= 4_7r J, dv.
(4 C 0

Question 2.30 Demonstrate that isotropic radiation has p, = u, /3.

Question 2.31 Consider isotropic radiation within a reflecting enclosure. Show that the
radiation pressure on the walls is given by:

Py = g/I,, cos? 6 dQ.
¢

Why is this result the same as eq. (2.9)?

2.2.5 Stokes parameters

When the radiation in a beam is fully or partially polarized, three more quantities
are required to describe it completely in addition to its intensity. The wave repre-
sentation of electromagnetic radiation provides the appropriate description in this
case. Two parameters are needed to describe the time-dependent orientation of the
electric wave vector E in the vibration plane perpendicular to the direction of prop-
agation; the orientation of the magnetic vector B then follows from these because
|E| = |B] and E L B. The third parameter specifies the degree of polarization.
In practice, this information is split in different fashion between the three Stokes
parameters which furnish a description in observable quantities.

Decompose the harmonic vibration of the electric field vector Erad of a monochro-
matic light wave which propagates along the z-axis into its z and y components
(Figure 2.4):

E. = Azcos(wt— ¢;)
E, = Aycos(wt-¢,), (2.10)

where A, and A, are the amplitude maxima and ¢, and ¢y the phase offsets; w =
27y is the circular frequency. For a fully polarized wave, the four Stokes parameters

are defined by:

I, = A2+ A2
Q = AZ-4]
U, = 24;A,cos(¢; — ¢)
- V, = 24,A,sin(¢, — ¢,), (2.11)

with IZ = Q2 + U2 + V2. “Fully polarized” means that the vector E is well-
behaved, its tip harmonically travelling along a line, ellipse or circle in the (z,y)
plare. In these cases the wave is said to be linearly polarized, elliptically polarized,
or circularly polarized. Depending on whether the vector tip travels clockwise or
counterclockwise, the elliptical and circular polarizations are called left-handed or
right-handed. Usually right-handed implies clockwise as seen by the observer to-
wards whom the beam travels, looking back along the line of sight, but sometimes
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the reverse definition is used. (Polarization theory is fraught with sign convention
problems—see Rees 1987).

Radiation fields that one actually detects and measures tend to consist of many
superimposed polarization states. An unpolarized contribution may also be present,
and the polarization will generally vary with time. If the temporal changes are slow,
the Stokes parameters for actual radiation are:

I, = L4 < A2+ A2>

Q = <AZ-A2>

U, = <24;Aycos(¢; — ¢,) >

Vo = <24, Aysin(¢; — ¢y) >, (2.12)
where Stokes I is the sum of the unpolarized and polarized contributions and with

the time-independent expressions on the right hand sides in egs. (2.11) replaced by
temporal averages.

ealh

Figure 2.4: Elliptical polarization. Top: decomposition of the electric wave vector
E into two simusoidal components E, and E,. The two amplitudes A, and Ay are
unequal; there is a 90° phase lag ¢, — ¢y between them. In that case, the tip of E
describes an ellipse in the (z,y) plane of which the azes are aligned with = and y
(bottom left). For arbitrary amplitudes and phase lag, the tip of E travels clockwise
or counterclockwise along an (z,y) ellipse of which the azes are offset over an angle
X (bottom right).

Figure 2.4 shows E-tip orbits in the (z,y) plane. The angle y measures the
rotation of the ellipse axes from the z and y axes. The ratio of the major semi-
axis @ and the minor semi-axis b defines an angle 8 with tan 3 = a/b. With these
quantities the Stokes parameters for fully polarized radiation become:

I, = A2+Al=47
Q. A? cos 28 cos 2x
U, = A%cos28sin 2x
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V, = A%sin2. (2.13)

These relations help to interprete the Stokes parameters in observational terms. In
fact, they were originally defined as such, namely as:

I, = total intensity
Q — Ilinear linear
v = 0 — {90
— lin line.
U, = I8 - I25%5"
— ircul ircul
Vo = I - gl (214)

Thus, Stokes @ and U describe intensity differences between measurements with
crossed linear polarizers, while Stokes V specifies the difference between the amounts
of right-handed and left-handed circularly polarized radiation in a beam.

These four parameters are often combined into the Stokes vector for use in ma-
trix transformations (“Mueller calculus”) which quantitaively describe the effects of
optical devices such as lenses, beam splitters, polarizers, retarders etc. on a beam of
light. For more on polarization and polarized radiative transfer, see e.g., pp. 24-35
of Chandrasekhar (1950), ??, Robson (1974), § 2.4 of Rybicki and Lightman (1979),
Chapt. 4 of Kraus (1986), Rees (1987). Kliger et al. (1990), Chapt. 12 of Shu
(1992a).

Question 2.82 Derive egs. (2.13) from egs. (2.11).

Question 2.33 How do eqgs. (2.14) relate to egs. (2.11) and*(2.13)7



Chapter 3

Transport equation

3.1 Introduction: emission and extinction

The intensity along a beam is constant unless local emission or extinction processes
add photons to it or remove photons from it. If such processes occur (which requires
the presence of matter), the local intensity increase and the local intensity decrease
are defined with empirical proportionality constants, similarly to the definition of
intensity. In this chapter these coeficients are defined and combined into the trans-
port equation of radiative transfer. This equation is studied without detailing the
actual processes.

3.2 Emission coeflicient

Experience and physical insight teach that the local addition of photons to a beam
of radiation is proportional, in the d = A — 0 limit, to the number of emitting
particles, and to the time interval d¢, the bandwidth interval dv and the solid angle
d(2 over which the beam is measured. The proportionality coefficient can be defined
per particle or for all particles in a gram or cm3. In this book the monochromatic
emission coefficient j, is defined per cm?, as the constant in:

dE, = j, dV dt dv dQ (3.1)

with dE, the energy that is added in the form of photons to a beam with solid angle
dQ2, over the bandwidth dv, during a time d¢, within the volume dV.
Dimension j,: [erg cm™3 s™! Hz™! ster~!].
The coefficient j, depends on location, direction, time and frequency, just as the
intensity I,.

A beam with cross-section dA traverses a volume dV = dA ds while propagating
over a path ds. Combination of definitions (3.1) and (2.1) shows that the amount
of intensity added by-local photon emission to a beam with intensity I, is:

dI,(s) = j.(s) ds. (3.2)
Question 3.1 A thin, homogeneous slab of thickness As is irradiated from one side with
a beam of intensity I,(s). What is the emergent intensity I,(s + As) on

the other side if the emission coefficient in the slab is j, and if there is no
extinction? Is the result also valid for a thick slab, with large As?
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Question 3.2 Why is the emission coefficient defined in terms of intensity and not in terms
of flux?

Question 3.3 How should one split the emission coefficient between two types of particles
that contribute photon emission at the same frequency?

3.3 Extinction coefficient

Experience and physical insight also teach that the number of photons that is re-
moved from a beam by extinction processes is proportional to both the supply of
photons and to the number of extinguishing particles, again in the d = A — 0 limit.
The proportionality constant is called the eztinction coefficient. It may be defined
per particle, per gram, or per cm3; all three are specified here for completeness.

First the definition per particle. The monochromatic extinction coefficient (effec-
tive cross-section) o, per particle, with dimension [cm?], is:

dl, = —o,n 1, ds, (3.3)

with n the density of the absorbing particles ([cm™3]).
The extinction per unit path length is:

dl, = —a,l, ds (3.4)

with @, the monochromatic linear extinction coefficient with dimension [cm™1]. This
measure is identical to measurement per unit volume:

dl, = —a,I, ds

with o, the monochromatic volume extinction coefficient (cross-section per unit
volume) with dimension [cmZcm™3] = [em™1].
Finally, the extinction per unit mass is:

dl, = ~k,p 1, ds (3.5)

with &, the “opacity”, the monochromatic mass extinction coefficient (cross-section
per unit mass) with dimension [cm? g=!] and p the mass density ([g cm~3]). The last
definition is the one used most frequently in astronomy, but in this book I follow the
notation of Rybicki and Lightman (1979) and use extinction per cm (definition 3.4).

The term “extinction” requires comment. Often “absorption” is used for what
is called extinction here. When using “extinction”, no distinction is made between
the removal of photons from a beam through photon destruction and the removal
of photons from a beam through scattering and photon conversion. In the last
processes, photons exist also after the extinction occurred. They are not destroyed,
but they have a different direction and/or a different frequency then before, and
they therefore count no longer for the beam under consideration. Extinction is here
used to imply the sum of all processes by which photons are removed from the
beam, including redirection and wavelength shift; absorption implies destruction of
photons. Other authors use absorption for the total, and then use “true absorption”
for photon destruction.

Question 3.4 Show that o, = o,n = k,p. Why is &, prefered in astronomy and o, in
physics?
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Question 3.5

Question 3.6

Question 3.7

Question 3.8

Question 3.9

Question 3.10

Question 3.11

Question 3.12

Question 3.13

A thin homogeneous slab of thickness As is illuminated on one side by a
beam with intensity I, (s). What is the emergent intensity I, (s+As) on the
other side if the extinction coefficient is a, and if there is no local emission
within the slab? Is the result valid for a thick homogeneous slab, with large
As? Why does one define j, and «, in the limit d = A —0?

Show that a, ds < 1. When is a, ds = 07 Does a, ds < 0 imply local
emission that should be added to j, ds?

Does the index v in «, have the same meaning as in [, and j,? What is the
conversion factor between a, and @x? And between «, and k,7 Is it useful
to introduce a total extinction coefficient o = f a, dv?

In contrast to the emission coefficient j, in (3.1), the extinction coefficient
@y is defined in (3.4) without reference to direction. Why? Is that correct
in all circumstances?

Define coefficients for the emission and extinction by solid surfaces in similar
fashion to the volume coefficients of equations (3.1) and (3.4). Wat are their
dimensions?

If different types of particles or processes contribute to the extinction from a
beam at the same frequency, how should partial extinction coefficients then
be defined for each, and how should these be combined into a total extinction
coefficient—for v, ¢, and k,, respectively?

Kliger et al. (1990) write the following on page 162 of their book:

For absorbance measurements on solutions, the decadic molar extinction
coefficient ¢ is the bulk property that is sought. The decadic molar
extinction coefficient is related to the absorbance A by:

A=¢clc=log(I'/T").

Here I’ is the intensity of the beam at some point within the solution,
and [” is the intensity a distance ! (in centimeters) later. The concen-
tration of solute in moles/liter is given by c. An alternative quantity,
the absorption coefficient «, defined by

ol =In(I'/I"),

is sometimes reported instead and is useful where the concentration of
the absorber is unknown.

How do these definitions correspond to our definitions (3.3)—(3.5)?

Spectral lines are always due to specific bound-bound transitions in com-
pound particles (atoms, ions, molecules, nuclei). These provide extra emis-
sion and extinction processes at the line frequency v = vy, with correspond-
ing bound-bound extinction coefficient ;'™ and extinction coefficient aline,
Can yan have one without the other? Are such bound-bound contributions
always an increase, adding to the background continuum emission and ex-
tinction from other processes at the line frequency?

When the medium contains a magnetic field, the bound-bound extinction
coefficient is split for many transitions into separate components that ex-
tinguish circularly or linearly polarized light, respectively, depending on the
angle between the beam and the magnetic field lines. How should such
selective Stokes extinction coefficients be defined?



30 CHAPTER 3. TRANSPORT EQUATION

0 s s+As D
0 Tv —
<—‘t:, 0

Figure 3.1: Beam passing through a slab. The s coordinate measures geometrical
path length along the propagation direction, from the entry at s = 0 to the ezit at
s = D. The optical path length 1, is also measured along the beam; the optical
thickness of the whole slab is 1,(D). The optical depth 7', is measured along the line
of sight, against the propagation direction.

3.4 Transport equation

Consider a small cylinder with length ds and sides dA, oriented along a beam of
radiation with intensity I,. Since I, is constant along the interval (s, s+ds) except
for local emission and extinction, the total intensity change combining (3.1) and
(3.4)is

dl,(s) = I(s+ds) — I,(s) = j,(s) ds — e, (s)I,(s) ds,

or: dI
T = el (3.6)
This is the transport equation. It applies generally, except when the extinguish-
ing particles are not small with respect to their separation, or when they are not
randomly distributed over the medium.

Question 3.14 The transport equation rests on empirical definitions. What sort of experi-
ment would demonstrate its validity? Is it a conservation law?

Question 3.15 A slab of thickness D is irradiated from one side with intensity I, (0). What
is the emergent intensity I, (D) on the other side:
— in the case of pure emission (a, = 0)?
— in the case of pure extinction (j, = 0)?
What are the results for a homogeneous slab?

3.5 Optical path length, optical thickness, optical depth

A beam passes at right angles through a slab of thickness D from s = 0 to s = D
(Figure 3.1). Per layer of thickness ds the corresponding increment of the monochro-
matic optical path dr, is defined by:

dr,(s) = a,(s) ds. (3.7)
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The total optical path through the slab is called its monochromatic optical thickness
and is given by:

D
TU(D):/O a,(s)ds. (3.8)

It represents an “optical” measure of thickness, in terms of photon penetration rather
than geometrically. For pure extinction (j, = 0), the transport equation reduces to

I,

dr,

_'Iuv

and to the solution
I(D) = L,(0)e~ ™), (3.9)

This result shows that 7,(D) in I,(D)/I,(0) = e ™) is an exponential decay
parameter which measures how much photon energy remains after penetration over
As = D. The boundary between small extinction and large extinction lies at the
1/e decay value, i.e., at optical thickness 7,(D) = 1. A slab is called optically thick
for 7,(D) > 1, optically thin for 7,(D) < 1.

How far do photons penetrate into the slab? At s < D, within the slab, the
remaining energy fraction is

1,(s) = 1,(0) e—ﬁ'(s),

with 7,(s) the optical path from 0 to s, or the optical thickness of the corresponding
part of the slab. The probability that an incident photon penetrates over an optical
path 7,(s) before an extinction process removes it from the beam is given by e~ (s)
so that the mean optical path <1,(s)> of the photons equals:

= Joo (s) e () dr,(s) _ 1

<Tu(3) > fooo =T () dT,,(.S) (310)
The mean geometrical path I, of photons in a homogeneous medium is:
Y 1
l, = iﬁz = —. (3.11)

a, a,

In an inhomogeneous medium this value represents the local photon free path.

In addition to optical thickness 7, (D) and optical path ,(s), I will frequently
use the monochromatic optical depth r)(s). This is the optical path length along the
line of sight, against the beam direction:

dr)(s) = —a,(s)ds (3.12)

where s is measured in the propagation direction, as in the definitions above.

In the case of axial symmetry, the radial optical depth is defined as the optical
depth along the z or-h axis, measured from z = oo well outside the ob ject (or from
the eye of the beholder) down into the object along a line of sight that is normal to
its surface. Thus, at a location z = 2, inside the object:

20

7,(20) E-:/ a, dz. (3.13)
o0

In summary, optical path length and optical depth differ in direction and in zero

point. Optical path length measures the penetration of photons into a medium;

optical depth is used to measure the escape of photons from a medium (or, adhering
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to the ancient Greek belief that one’s eyes illuminate the scene, the penetration
of one’s sight). The first measure is useful to describe radiative transfer within
astrophysical objects; the second measure is useful to describe the radiation which
we observe from them.

Question 3.16 What are the dimensions of dr,, 7,(D), and 7/(20)? May one add optical
thicknesses? And optical depths?

Question 3.17 How should dr, be defined when o, or k, is used instead of a,?

Question 3.18 What is the meaning of the index v in 7,7 How does one convert T, into
727 What is the meaning of the integral f0°° 7, dv?

Question 3.19 Equation (3.10) relates <7, > to the distribution function e~". Show that
the expectation value of a quantity = which is characterized by a statistical
distribution f(z) is given by <z>= [[* zf(z) dz/ [;° f(z) dz.

Question 3.20 Derive (3.11) directly from the probability that a photon penetrates over a
geometrical path length s.

Question 3.21 Are equations (3.10) and (3.11) also valid in the presence of emission? And
in the presence of photon scattering?

Question 3.22 What is the the optical thickness of a homogeneous slab of thickness D with
mean geometrical photon path I,?

Question 3.23 How should one define optical thickness for a slanted beam, with angle of
incidence # below 90°? What is the radial optical depth along a line of
sight with 4 < 1?7 What is the definition of radial optical depth in terms of
geometrical depth?

Question 3.2/ Show that the escape probability of a photon at z = zg in the direction uis
exp(—7,(20)/p. Where does the bulk of the escaping photons come from?
Is the mean photon escape depth given by <1/ >=1/u?

Question 3.25 The earth’s atmosphere and the solar corona are both transparent for visible
radiation. What are the optical thickness and the optical depth of the corona
in the visible?

The earth’s ionosphere and the corona are both opaque for radio waves with
v = 10 Mhz. Where should the optical depth integration begin in that case?

3.6 Source function

The emission coefficient j, and the extinction coefficient a, are quite different quan-
tities. This is clear from their dimensions: j, has the dimension of intensity per cm
path length, whereas «, is per cm only. Nevertheless, the ratio of these coefficients
yields a very important quantity called the source function:

S, =3,/ (3.14)

which has dimension [erg cm~2 57! Hz™! ster1].

Since §, has the same dimension as I, these two quantities may be added and
subtracted. Their difference apppears in the transport equation (3.6) when it is
rewritten with definitions (3.7) and (3.14)into:

dr,
dr,

=8, -1, (3.15)
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This is the transport equation in the standard differential form. It provides an
elegant description of the change in intensity per unit optical path along the beam.
S, represents a source term in this equation, hence its name “source function”: it
specifies the addition of new photons along the beam. When S, = 0, the intensity
simply decreases with the exponential decay of eq. (3.9).

We now have three quantities, 7,, a, and S, to describe the increase and decrease
of I, along a beam. The combination a, and §, is usually employed, rather than
the combination , and j,. One reason to do so is the symmetry of equation (3.15),
with o, contained in d7,. A second reason is that a, and S, tend to be much more
independent of each other than a, and j,. A bound-bound transition, for example,
may produce large increase of both j, and a, at the corresponding line frequency,
whereas these peaks nearly or completely cancel in the ratio §, = j, /o, so that
S, tends to be a much smoother function of frequency than j,. Finally, j, depends
more directly on the local radiation field than @, does. In scattering processes, for
example, j, increases with the number of photons that are scattered into the beam,
and therefore with the quantity of photons that is locally available for scattering
(i-e., the angle-averaged intensity J,). In contrast, o, measures the fraction of the
incident photons that are extinguished, and does not directly depend on the number
of available photons itself. It does so only indirectly, through the influence of the
radiation on the state of the matter. We return to these properties in Chapter 7.

Question 3.26 How should the source function be defined with ¢, or &, as extinction coef-
ficient?

Question 3.27 Rewrite (3.15) for a beam with exit angle x using optical depth 7, instead
of optical path 7,,.

Question 3.28 1If different processes contribute emission and/or extinction at the frequency
v, how should the total source function Si°*®! be defined in terms of separate
source functions per process?

Question 3.29 Spectral lines are always due to bound-bound transitions, with rapid vari-
ation of ji"® and oli"® across the line width. What is the corresponding
source function S1"? What is the total source function Stetal if there is also
continuous emission jS°" and extinction aS°™ present at the line frequency?
When is Si°%3! o Sline and when is Sio%@ & S%°nt? Show that the frequency
variation of S{°**! across the line width is small if Slire s Goont

Question 3.30 Does the value S, = 1 have special meaning? And S, /I, =17 Can S, > I,?
And S, <07

Question 3.31 In §4.2.1 Kirchhoff’s law I, = B, (T) is presented, with B, (T) the Planck
function. It holds when there is sufficient coupling between radiation and
matter, if the latter obeys the Maxwell velocity distribution. Which quantity
is then most likely to follow the Planck function also:

— the emission coefficient,
— the extinction coefficient,
— the source function?

Question 3.82 Demonstrate that S, = J, if no photon creation, photon destruction or
photon conversion occurs, i.e., if both a, and j, are due to monochromatic
scattering alone.

Question 3.33 The extinction of radiation at visible wavelengths in the earth’s atmosphere,
at clear sky, consists primarily of elastic Rayleigh scattering (§ 6.4.1.1).
What is the corresponding source function?

S,

|
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Figure 3.2: Geometry for the passage of a beam through a gaseous object. The s
coordinate measures the geometrical path along the propagation direction, from the
entry at s = 0 to the exit at s = D. The optical thickness of the object along the
beam is 1,(D).

3.7 Formal solution of the transport equation

3.7.1 Integral form of the transport equation

Consider a gaseous medium through which a beam passes as in Figure 3.2. The
beam has intensity I,(0) at the entry point at s = 0. What is the emergent intensity
I,(D) at s = D?

First, the incident intensity I, (0) is attenuated within the medium. The optical
path along the beam from s = 0 to an intermediate location s = s’ is given by

’

8§
7,(s") :/ a,(s) ds;
0
the amount of incident radiation that remains at s’ is:
I(s") = I,(0)e~™(),

Second, there is emission within the medium along the beam. At s = o it is given
by
dI,(s") = j,(s') ds = S, (s') dr, (&)

across the path increase ds. This contribution is attenuated along the remainder of
the path, between s = s’ and s = D:

[dL(D)],_, = S,(s") dr,(s") e~ [ (D)=7 ()],

The net result is obtained by summing the remainder of I,(0) and all attenuated
contributions within the medium from s = 0 to s = D:

(D)
L(D) = I,(0) e~ ™D 4 / $,(s)e PGl ar (). (3.16)
0

This is the integral form of the transport equation. It is often called its formal
solution.

Question 3.34 Derive (3.16) directly from the differential form (3.15) by multiplying the
latter with exp(7,) followed by integration.

Question 3.35 Is (3.16) a general result? Does it hold for both thick and thin media?
For inhomogeneous media? For fluids or solids rather than gases? Which
parameters in (3.16) contain material properties of the medium?
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Figure 3.3: Emergent intensity I,(D) from a homogeneous medium against its optical
thickness 7,(D). Optically thin, non-backlit objects produce I,(D) = S,7,(D) = j,D
(lower curve, at left). If a background intensity I,(0) illuminates the slab in the
beam direction, there is enhancement of the intensity for L,(0) < S, (middle curve),
reduction for 1,(0) > S, (upper curve). For thick slabs with 7,(D) > 1, the emergent
intensity I,(D) = §, independent of I,(0).

Question 3.36 The formal solution (3.16) is rarely a true solution. In the presence of
scattering, j, and S, depend on the local radiation field, le, on I, in all
directions including the one for which I, is sought. Thus, to find I, (D) one
needs to know I, (s, 8, ). What tactic would you try to solve this problem?

3.7.2 Radiation from a homogeneous medium

Let us now consider the unrealistic but instructive case of a homogeneous medium,
in which neither j, nor a, varies through the medium. Then §, does not vary either,
so that (3.16) yields:

L(D)=1,(0)e P 4 5, [1 - e (D] (3.17)

with D the geometrical thickness of the medium measured along the beam (Fig-
ure 3.2). The first term again measures the attenuation of the incident radiation
I,(0) across the medium; the second term gives the total contribution from within

the medium.
If the medium is optically thick, with 7,,(D) > 1 and exp(—7,(D)) & 0, the result

is:
I,(D)= S,.

The incident radiation I(0) does not penetrate to the other side; one receives an
intensity equal to the source function within the medium.

In the optically very thin case, with 7,(D) < 1, the emergent intensity simply
equals the incident one:

1,(D) =~ 1,(0).

For the less extreme optically thin case, with 7,(D) < 1, use of exp(—-m,)x1-1,
yields:

L(D) =~ I,(0)-I,(0)r(D)+ 8,m,(D)
= L,(0)+[S, — 1,(0)] (D). (3.18)
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These results are shown in Figure 3.3. [,(D) equals I,(0) for (D) = 0, and
approaches S, for large 7,(D). The approach is from larger to smaller intensity
when S, < I,(0), and reversedly when S, > I,(0). Thus, I,(D) < I,(0) when
Sy < 1,(0), and I, (D) > I,(0) when S, > I,(0).

Question .37 What is the emergent intensity for a homogeneous infinite half-space? How
does it depend on the viewing angle 67 What is the intensity within a homo-
geneous medium of infinite extent? Why are these intensities independent
of the amount of extinction in the medium, or of its nature? Is that also the
case for solid surfaces?

Question 3.38 Rewrite (3.17) for a slanted beam which crosses a plane-parallel slab with
thickness D at an angle y = cosf. Rewrite (3.17) also, for the same beam,
using radial optical depth 7, instead of optical thickness 7, .

Question 3.39 A radio astronomer states that the observed radio intensity from an interstel-
lar cloud of diameter D is given by I, = «, S, D. What are her assumptions?

Question 3.40 What is the intensity at the surface of a non-backlit, homogeneous, optically
thin, spherical cloud with radius R, extinction coefficient o, and source
function S, 7 Is the cloud a Lambert radiator? What is the surface flux of
the cloud, and what is the irradiance from the cloud at earth?

Question 3.41 A homogeneous medium contains particles that cause continuous emission
J5°™ and extinction oo at the frequency vo, and also particles that cause
bound-bound emission ji"® and extinction oli®® that is centered at vg. The
two corresponding source functions are the same: S = Sline Express
the emergent intensity at the line frequency, for a beam which crosses the
medium as in Figure 3.2, in the above quantities for the following four cases:
-7{D) > 1,

- 1(D) <1 and I,(0) =0,

- 7,(D) <1 and I,(0) < Stotal,

- 7,(D) < 1 and I,(0) > Stotal,

What is in each case the character of the resulting spectral line (emission or
absorption)?

Question 3.42 If extra bound-bound emission occurs at the frequency of a spectral line, does
that produce emission lines in the emergent spectrum? And do bound-bound
extinction processes cause absorption lines? Do bound-free emission and
extinction processes cause emission and absoprtion edges in the spectrum?

Question 3.43 Is a spectral line from a non-backlit optically thin homogeneous medium
always an emission line? What if the slab is optically thick at the line
wavelength but optically thin in the continuum? And vice versa?

Question 3.44 A beam with incident intensity I,(0) crosses an optically thin, homogeneous
slab of thickness D. There is monochromaticscattering within the slab which
increases with time. Do the optical thickness of the slab, the source function

. in the slab, and the emergent intensity I,(D) increase or decrease?

3.7.3 Radiation from a thick medium

The assumption of homogeneity is unrealistic; a better approximation is to adopt
axial symmetry by assuming that the object consists of plane-parallel layers, i.e.,
that variations exist only in the z direction (= height k). In addition, for thick
objects the observable emergent intensity has more interest than the intensity in the
invisible layers at large optical depth; we therefore employ the radial optical depth
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7,(h) defined by (3.13). It integrates extinction vertically into the object, along a
radial line of sight, rather then along the beam from the far side onwards as is the
case for the optical path length 7,.

Combination of (3.13), (3.16) and (2.3) gives for inward-directed radiation I;
with 4 < 0 at an arbitrary height h = hg:

75(ho) _
I o) = = [ (a1 et =rtboln ar

and for the outward-directed radiation I}t with p > 0:
R ’ !
o) =+ [ S ()il gz,
(ko)

where the following boundary conditions have been used:
I7(r,=0,u) =0
for I (no incident radiation from above), and
S.(r))e™™/* -0 for 7, — oo

for I} (the source function should not increase exponentially with optical depth).
The emergent intensity is given by the value of I} at a location far enough out
from the object that it has 7/(h) = 0:

o '
IH(r =0, ) = / S, (r) e~ dr! . (3.19)
0
For p = 1, looking down vertically, we observe:
oo ’
INr=0,p=1)= / S,(r)) e dr!. (3.20)
0

This result shows that the emergent intensity is set by the source function, with its
inward variation weighted with the attenuation factor exp(—7,). This factor rapidy
diminishes with increasing optical depth and limits the integrand to the surface

layers of the object.
At which height does the radiation escape? Substitution of the expansion

o0
! m / 12 n
Su(7) = E anT, =ao+ a7, + a7, + ...+ a,7!
n=0

in (3.19) and use of [;° 2" exp(~z) dz = n! yields
L1, =0,p) = ap + aypt + 2a9p% + ... + n! anu™.

Truncation of both expansions after the first two terms yields the important
Eddington-Barbier approzimation:

If(r,=0,p) = S,(1) = p). (3.21)
In particular, for u = 1:

LHrl=0,u=1) ~ S,( =1). (322) L S,
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h

Figure 3.4: Illustration of the Eddington-Barbier relation. Assumptions: height-
independent extinction, frequency-independent source Junction, linear variation of
the source function with height. The extinction coefficient o, (upper left) sets the
optical depth scaling 7/(h) per frequency v (upper right). The location where the
optical depth reaches unity (h(r], = 1); upper right) sets the height at which the source
function §,(h) (lower right) is representative for the emergent intensity I,(0,u =
1) (lower left). Thus, the o, curve is mapped through the righthand curves into
variation of the emergent intensity I, with v.

This relation is exact when S, varies linearly with ).

The Eddington-Barbier approximation equates the emergent intensity for y = 1
to the source function at optical depth unity (1, = 1). This location lies at one mean
optical photon path from the surface (§ ?7?); the Eddington-Barbier approximation
therefore says that the radiation which escapes from the medium represents the
source function at one mean photon path below the surface.

The Eddington-Barbier approximation does not imply that the observed photons
all escaped from optical depth 7, = 1, although that is often said (“the photons
come from optical depth unity”). The integrand S, exp (—7)) extends over a wide
range in 7, from the surface at 7} = 0 to, say, 7, ~ 10 where the factor exp (—7,)
cuts it off. Photons escape from this entire slab; they are collectively characterized
by the value of the source function at T, =1.

For-oblique viewing, with y < 1, the mean free photon path should be measured
along the propagation direction. For such a slanted beam, the shallow layer with
7, = w is already at optical path length 7, = 1 from the surface. It constitutes the
Eddington-Barbier depth in (3.21).

Figure 3.4 illustrates the Eddington-Barbier approximation for a somewhat un-
realistic medium in which the source function § (h) varies linearly with height (or
depth) but not with frequency, whereas the extinction a, varies with frequency but
not with height. The frequency dependence of the extinction coefficient (upper left
panel) results in frequency dependence of the scaling between geometrical height h




3.7. FORMAL SOLUTION OF THE TRANSPORT EQUATION 39

and optical depth 7, (upper right panel). Since the extinction does not vary with
h, the scaling relations are straight lines with different slopes. The values of h
where they reach 7/ = 1 are marked; these are the characteristic Eddington-Barbier
heights and differ with frequency. Since the S(h) and 7,(h) relations are linear, the
Eddington-Barbier relation applies exactly. The emergent intensity /, in the lower
left panel therefore equals S,(h[r] = 1]) in the lower right panel. The frequency
pattern seen in the emergent intensity is similar to the frequency pattern of the
extinction coefficient, but it is mapped through the curves in the righthand panels.
In this case, the mapping consists of sign reversal and linear amplitude rescaling.

We have now reached an important point. The radiation which we recejve from
a non-iluminated, optically thin object is approximately given by

I,~S71=ab8,D,
whereas the radiation from an optically thick ob ject is approximately given by
I, = S,(1, = ).

In both cases we need to specify both the extinction coefficient o, and the source
function S, to compute the emergent intensity I, (in the optically thick case, a,
is needed to determine the location where 7, = p). We must therefore study these
quantities, both for continua and for spectral lines. This is done in the following
three chapters; we return to the transport equation and its solution in Chapter 7.

Question 3.45 Optically thin objects are often assumed to be homogeneous: while the con-
ditions in optically thick objects are often assumed to vary radially, with
axial symmetry. Why this difference?

Question 3./6 Does the Eddington-Barbier approximation hold for a homogeneous slab?
May it also be written as I} (0, 1) ~ S, (z = —I, ) with I, the mean geomet-
rical photon free path? Use equation (3.19) to derive the mean contribution
depth to the emergent intensity. Does this depth equal the mean photon
escape depth? When is it unity? Do “the photons come from optical depth
unity” in that case?

Question 3.47 Show that the flux from an optically thick object is given by:
Fi(r,=0) = x5,(r,=2/3)
when S, varies linearly with 77.
Question 3.48 At which optical depth should one define the “surface” of the Sun?

Question 3.49 The intensity in the visible part of the solar spectrum decreases from the
center of the apparent solar disk to the limb. What does that imply for the
variation of the source function with height in the solar atmosphere?

Question 3.50 Assume that the continuous extinction coefficient @™ at v = vy exceeds
a,c,‘;"t at ¥ = vy by a factor of 10, but that the corresponding source function
55" is the same at both frequencies. What is the ratio of the emergent
intensities at the two frequencies for:
— an optically thin, homogeneous, non-backlit, spherical cloud,
— a homogeneous infinite half-space,
~ a spherical star with S, (7 ) = Su(r), =0)+ 1,7
And what is the ratio of the emergent fluxes at the two frequencies for these
three cases?
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Question 3.51

Question 3.52

Question 3.53

Question 3.5/

Question 3.55

Question 3.56

Question 3.57

Question 3.58
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Different continuous processes and different bound-bound processes may op-
erate at the same frequency. What is the effect of such overlap on the to-
tal extinction, the total emission, the total optical thickness, and the total
source function? If a line has n = 2, with 7, = a{,i“e/af,""‘, does that imply
doubling of the local emission at the line frequency? And of the emergent
intensity?

Draw a four-panel diagram as in Figure 3.4 for the formation of a spectral
line with 5, = 3 at line center, assuming height-independent extinction atetal
and source function equality Si"® = S When do you get absorption lines
and when do you get emission lines? What changes are needed to describe
the formation of a bound-free ionization edge in the spectrum?

Draw a four-panel diagram as in Figure 3.4 for the formation of a bound-
free ionization edge in the spectrum, again assuming height-independent
extinction and source function equality.

The NaID lines in the solar spectrum are in absorption (Figure 1.2). What
does that imply for their source functions $t°%3!'? Assume that these are
equal. The extinction coefficient o!i"® differs by a factor two between the
two lines. Do their line strengths in the solar spectrum also differ by a factor
two? Discuss which modifications of the four-panel diagram in Question 3.52
are needed to describe their actual formation.

The Call K line of Call is much stronger (i-e., broader and deeper) in the
solar spectrum than the NalID lines, as shown by comparing Figures 9.7
and 3.4. If the line source function Siin® is the same for all three lines, what
makes the difference?

The Call K line in the solar spectrum exhibits two minuscule bumps on each
side of line center (Figure 9.7). What source function behavior is required
to explain these?

Show that emission lines may occur in the irradiance spectrum from a
spherical star with an extended atmosphere, even if the source function
Stotal — Gline Sgo™t = S, does not vary with height.

A spectrometer onboard a spacecraft registers emission lines in the ultra-
violet spectrum from an unknown source. What are the options for inter-
pretation? Should they also be considered for a radio source with emission
lines?



Chapter 4

Radiation and matter in TE

4.1 Introduction: thermodynamical equilibrium

In this chapter we continue for the time being the macroscopic description with a discussion
of ensemble averages. They serve to specify the quantity of particles and photons of a given
type that are present within a medium. Averages over ensembles are most straightforward
in equilibrium situations. These come in various types; in this chapter we confine ourselves
to the assumption of a homogeneous medium in thermodynamical equilibrium (TE).

In TE all processes and states are in equilibrium with each other. Each process is in
microscopic equilibrium with the reverse process: there is detailed balance. All macroscopic
equipartition laws hold, and indeed with the same temperature for each one. For the radia-
tion the equipartition laws are those of Kirchhoff, Planck, Wien and Stefan-Boltzmann; for
the matter they are the laws of Maxwell, Boltzmann and Saha.

TE is the most stringent form of equilibrium, and does not often occur in nature. Further on
the TE laws described here will also be used for situations with less stringent stipulations of
equilibrium (such as for LTE = Local TE, in which the temperature may vary slowly through
the medium), and in order to describe departures from the laws.

Radiation can occur in equilibrium with matter, thanks to the fact that photons have no mass.
In contrast with fermions, no Pauli exclusion principle holds for photons, so that unlimited
creation and destruction of photons is possible, and with it the establishment of an equilibrium.

4.2 TE Radiative laws
4.2.1 Kirchhoff

TE holds in a homogeneous, isothermal, isotropic medium, for example in a medium enclosed
within isothermal walls for a sufficient length of time. Then according to equation (3.6), the
following holds for each bundle, at each frequency and at each point in time:

dr, | .
ds =5 —ald, =0 - v =a,l,

This is Kirchhoff’s law. for TE. Another law found by Kirchhoff is that the intensity in a
medium in TE is isotropic, and at each frequency depends exclusively upon the temperature:

I, = B,(T),

regardless of the nature of the medium. In this equation B, is the Planck function.
Taking these two laws together, we see that in TE we have:

3" = agBB,(T), (4.1)

and thus that the source function S, = j,/a, in TE is equal everywhere to the Planck
function B,.

3F
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A good source of TE radiation is a closed cylinder that is placed in an oven, so that the medium
inside it is isothermal. Once equilibrium is established, we poke a small hole in it. If the hole

4’9 is small enough, the radiation that escapes from it is a representative sample of the radiation

within in the cylinder. From such a hole, then, emerges the same equilibrium radiation, which
is completely specified by the temperature.

The second law is best made plausible by a thought experiment. Suppose that the intensity
does depend upon the nature of the medium, and so that in two isothermal TE cylinders of
the same temperature different intensities are found: I} # I?, with I! the intensity in the one
cylinder and I3 the intensity in the other. Make an opening between the cylinders and slip
in there a monochromatic filter that transmits only the frequency band (v,v + dv). Photons
with frequency v will then migrate out of the cylinder with the greater intensity into the other,
in contradiction with the second law of thermodynamics. Thus the assumption must be false,
and we must have that I} = I2,

A third law of Kirchhoff is that equation (3¢) also holds for the walls of the cylinder, with
kPP the coefficient of true absorption through a surface, not defined per unit path length but
rather as dimensionless:

bs _ incident
dI: s = _nzppl:’nc: en ,

and likewise for a coeflicient for the emission €SPP of the wall (i.e., without the contributions
of reflection or scattering off the wall):

em __ _opp
dIv =€, .

Equilibrium then demands:

incident o
€SP = OPP incident _ opp

Check that we have: 0 < x}P? < 1. The larger the absorption coefficient, the larger the
associated radiation: the absorption determines the emission. A surface with x°P? = 1 that
absorbs all radiation fallin on it is “black”. A “black body” therefore radiates in all directions
an intensity I, = € ?? = B,; it radiates in a “Planckian” fashion.

A hole in a TE-cylinder can thus also be considered as a good approximation to a black surface:
al]l photons that enter the cylinder through the hole do not leave by it if the hole is small enough
— the hole is black because such an absorption coefficient is k?® = 1. The photons that do

come out (by other means) are Planckian. Chondrasekher C( ;q)
An expanded discussion of this topic can be found in ” , Chapter V (page 199 in the Dover
edition).

Question 4.1 Does the radiation that you observe from two TE-cylinders of the same tempera-
ture differ if the one cylinder is made of mirrored material and the other of black
material?

Question 4.2 Is a TE-cylinder with a sufficiently small hole an optically thick or an optically thin
source? Does the Eddington-Barbier relation hold for such a hole?

Question 4.3 Give a description of the radiation of a TE-wall that incorporates an eztinction
coefficient, i.e., including reflection and scattering off the wall.

Question 4.4 How would you define the source function of a surface? How large is it for a TE
surface? Does it make a difference whether that surface is “black”?

4.2.2 Planck

For the intensity and the source function in a medium in TE we have I, = S, = B,, with
B, given by the Planck formula.
In frequency units this is:

2hy3 1
B.(T) = (4.2)
c? hv/kT _ 1
Dimensions of B,: [erg cm™? s~! Hz ™! ster™!],
and in wavelength units:
2hc? 1
B\(T) = (4.3)

X he/MET _

Dimensions of By: [erg cm™2 s™1 em™? ster~1).
Representative Planck curves are illustrated in Figure4.1.
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Figure 4.1: The Planck function for various temperatures.

Sometimes B, is defined a factor 4x larger: integrated over all directions rather than per

steradian.

The Planck curves in Figure 4.1 never intersect one another: B.,(T) rises monotonically with

the temperature at all frequencies.

Question 4.5 Why do the factors v* and A~> respectively appear in the two equations?
Question 4.6 Check that B, | 0for T | 0, and that B, T oo for T' T oo.

4.2.3 Related radiation laws
4.2.3.1 Wien approximation

For sufficiently large v/T, exp(hv/kT) >> 1 and the Planck formula simplifies to the Wien
approzimation:

3
hv/kT>1 — B, =~ Zh—” e~ hv/ET, (4.4)

These are the steep portions on the right-hand side of Figure 4.1.
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4.2.3.2 Rayleigh-Jeans approximation

For sufficiently small v/T, exp(hv/kT) — 1 = hv/kT and the Planck formula simplifies to
the Rayleigh-Jeans approzimation:

2T

5 (4.5)

hv/kTT €1 — B, =~

These are the linear portions on the left-hand side of Figure 1.1.
Question 4.7 Give the Wien and Rayleigh-Jeans approximations for B,.

Question 4.8 In the book “Astrophysics or the Sun” of £ we find on pages 59-60: A Zicia (1988)

...and the Planck function is

2h4? 1
Bodv =" mpr 1 &

in the frequency scale, while in the wavelength scale

2xhe? 1

Brdr = N5 ehe/kAT _ 7 dA.

We must be careful of the differential factor dv = —(c/A?) dA which must be
used as we transfer from the frequency scale Hz ™! to the wavelength scale cm™!.
The Planck function has two important asymptotic forms. At long wavelengths

(hv < kT) the denominator in the equation for By dA becomes hv and we have:

2kT
Br=
which is the Rayleigh-Jeans law. It tells us that when energy is not a factor, the
radiation is proportional to the possible density of photons. For (hv > kT), the

exponential in the denominator dominates, and

2hv° et
Be="7 ¢ ’

which is the Boltzmann law from the fact that the distribution of higher-energy
photons depends on the Boltzmann formula.

Comments?

4.2.3.3 Wien displacement law

The location of the maximum of the Planck curve follows the Wien displacement law, which
is derived by taking dB,/dv =0 and dB,/d)\ = 0 respectively.
The peak of B, falls at:

Rvmax = 2.82 kT  — "";‘ = 5.88 x 1010 Hz K~1. (4.6)

The peak of B, falls at:
Amax? = 0.290 cm K. (4.7)

Question 4.9 Check that the maxima of the curves By and of B, do not fall at the same place
in the spectrum.

4.2.3.4 Stefan-Boltzmann

Integration over the whole spectrum provides the Stefan-Boltzmann low:

o0 o
B = / B,dv=-T1"% (4.8)
0 w
with: 5.4
27k 2 g
o= lt’a_rh@ =567x107° ergcm 2 K™% 571,

The useful expression B = oT* does not hold for intensity but for the outward flux F+ = «J
of an isotropically radiating black surface.



4.2. TE RADIATIVE LAWS

4.2.4 Radiative temperatures

Since the variation of the Planck function with frequency is determined exclusively by the
temperature, the intensity observed from an object can often be best described by means of

a temperature.

4.2.4.1 Brightness temperature

The brightness temperature Ty, is the temperature for which the Planck function reproduces
the observed intensity at a particular frequency:

B,(T) = I°®. (4.9)

This measure is especially useful in the radio region. In that region the Rayleigh-Jeans

approximation holds:
2

¢ obs

2l/2kI" . (4.10)

Question 4.10 How would the definition of brightness temperature appear if the intensity were
observed per unit wavelength?

Question 4.11 Does the brightness temperature of a radio source depend on distance?

Question {.12 Can you measure the brightness temperature of a point (i.e., unresolved) source
such as a star? And of an extended source such as a nebula if it is not in TE?

Question {.13 When is T}, a linear measure of the temperature of an optically thick radio source?
And when for an optically thin radio source?

Question 4.14 Suppose that a homogeneous radio source radiates thermally, i.e., I, = B,. What
is the frequency dependence of the radiation received? And what is the correspond-
ing brightness temperature? Does the optical thickness of the source matter?

T =

4.2.4.2 Antenna temperature

Radio astronomers often characterize the radiation received from a source by the antenna

temperature Ta:
Ta = naTy, (4.11)

with 74 the efficiency factor of the antenna.

Ta is the value of T, as the antenna sees the source, i.e., the temperature of a “surrogate
source of noise”: a source of black radiation that is coupled to the detector in place of the
antenna. A stipulation is that the object fill the whole antenna array, for otherwise it would
not be measuring intensity.

Question 4.15 How large is the antenna temperature of a radio source of size {liource (angular
measure) if this size is smaller than the inherent angular resolution (lantenna of the

telescope?

4.2.4.3 Color temperature

The color temperature T is the temperature for which the Planck function reproduces the
slope of the observed spectrum at the observational frequency:

. dIobs dB, (T¢)
e = ——viic) 4.12
dV v=vg dV v=vg ( )

For example in two-color photometry:

L _ B (T0)

L - B,\,(T:;)

the ratio of two observed intensities determines a temperature. A benefit of this definition is
that it is a relative measurement: the absolute value of I, need not be known.
Notation: (B-V) = 2.5log(Iv/Ip).

41
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Question 4.16 Two-color photometry is frequently applied to stars. How is that related to the
fact that stars arc unresolved sources?

Question 4.17 What conditions must prevail in order for two-color photometry of a star to provide
its temperature? Of what part of the star is that then the temperature?

Question 4.18 Check that T¢, just like Ty, and T4, is a function of frequency. From three-color
photometry, two color temperatures can be found. Give three reasons why the color
temperatures from the three-color photometry of a star can differ from one another.

4.2.4.4 Effective temperature
The effective temperature T.g of a source of radiation is the temperature of a black body
which radiates the same total flux:

O'T:ﬂ':f‘*-

source?

(4.13)

thus it is the temperature for which an isotropically radiating black surface radiates the
same total outward flux per cm? F+ = #B = 7rf0°° B, dv as does one cm? of the object.
Question 4.19 Express Teq in terms of the emergent intensity of a spherically symmetric source.

4.3 TE Laws for Matter
4.3.1 Maxwell

Where there is equipartition of kinetic energy, as is the case in TE, the the Mazwellian
velocity distribution applies. For a type of particle with mass m we have: For each component
of velocity:

1/2 s
n(;\);) dv, = (27:::1‘) " o doz, (4.14)
and for the speed:
n(v) dv = ( n )3/2 4rv? e~ (M/2m AT g, (4.15)
N 27kT '
with N the total number of particles of this type per unit volume and m the mass per

particle.
The first distribution function is a Gaussian distribution. The second exhibits a “tail” as a

result of the v? term, see Figure ¥.2.
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Figure 4.2: The Mezwellian velocity distribution for hydrogen atoms, for a velocity compo-
nent and for the speed.

Question {.20 Derive the second distribution from the first.
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Question 4.21 Demonstrate that both distributions are normalized.
Question 4.22 Check by differentiating equation (4.15) with respect to v that the most probable

velocity is given by:
v = +/2kT/m.

How large is the most probable velocity component? The average particle energy?
The average Doppler velocity along the line of sight?

4.3.2 Boltzmann

In TE, the distribution of the particle populations of a specific type of atom (ot ion or
molecule) over the possible discrete excitation states (bound energy levels) is given by the
Boltzmann law:
Nr,s TE grs -
[___} = 908 o= Ctru=xr ) /KT (4.16)
Nyt gr,t
In which:
n,, = number of atoms per cm?> in level s of ionization state r;
gr,s = statistical weight of level s of ionization state =;
Xr,» = excitation energy of level s of ionization state r, measured from the ground state
(r,0). Thus x,,, = E, , — E, o, and x,,, — Xr,t = hv for a radiative transition between states
(r,s) and (r,t), with the level s “higher” (has more internal energy) than level t.
Another form is:
[_"'_'iJ ” = It —xr kT (4.17)
w =T e .
with N, = 3" n,, the sum of the populations of all levels of ionization state r per cm?, and
the partition function or sum over all levels U, of ionization state r given by:

Up =) grg e X /5T, (4.18)
s

The Maxwell and Boltzmann distributions are both of the form

NTE=_1_C—E/kT

with > the integrated distribution, continuous and discrete respectively.

According to Boltzmann levels become degenerate because magnetic splitting only occurs in
the presence of an external magnetic field; the consequent overlapping of levels is described by
the statistical weights g, ,.

The excitation energy x,, is the “difference in potential energy” between the ground level (r,0)
and the overlying level (, s). It is useful to measure energy differences between levels not in erg
but in eV or in cm™. An energy of 1 eV amounts to 1.6021 x 1012 erg ( % ); wave numbers
are defined as ¢ = cyacvV (equation L1). In both cases a zero point must also be adopted; it
is useful to measure excitation energy upwards from the ground level, within each ionization
state, such as in the above and in Appendix A ; the ionization energy is likewise measured
from the ground level of the ionization state in question. Once in a while, excitation

* Aliew 1914
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energies are given in the reverse sense, increasing downwards from the ionization limit; that is
in accord with the fact that energy is released in deexcitation, not in excitation. ¢
BJ&‘\L‘»‘X\S/H'N

A large collection of term diagrams and Grotrian diagrams can be found in the books of ..
(Strictly speaking, term diagrams show only the energy and the identification of the levels, and
Grotrian diagrams also contain the bb transitions. Figure 77 is a Grotrian diagram.) —

Question {.23 How much energy in eV does the potential difference between two levels amount
to if the associated spectral line has a wavelength of 500 nm?
Question 4.24 Frequently the Boltzmann ratio between two levels is written as: -

log(na/n1)™ = log(g2/91) ~ X126,
with x12 in eV. What is 6?

4.3.3 Saha

In TE, the distribution of particles over the ionization states of an element is given by the
Saha law. There are also two versions of this law. For a ground level:

TE ' 3/2
Nr41,0 29,-.,_1 0 27rmekT —xr/kT
—_— N, = 2 Xr .19
[ Tir,0 ] T g0 ( h? ¢ (4.19)

with N, the electron density and m, the electron mass, nry1,0 and n, ¢ the populations of the
ground states of two adjacent ionization levels, gr+1,0 and g, o their statistical weights, and
Xr the ionization energy of level r, i.e., the minimal energy necessary to remove an electron
from an atom in state (r,0). The factor 2 for the statistical weight g, ¢ is the statistical
weight of the freed electron; each has g. = 2 on account of the two possible orientations of

its spin.
For the entire ionization state:
Ney1 TEN _ 2Ury [ 27mekT 32 e~ X+/KT (4.20)
N, € U, h2 ' '

Or, with the electron pressure P, = N kT:

TE 3/2
[N],\-r.;_lJ Pe _ 23}--’-1 (27;;":@) (kT)S/Z e—x,/kT.

See page 260 of Rybicki and Lightman for a derivation.

The Saha formula is a particular form (with U, = ge =2 and ms = m, < mp = Melement) Of
the general formula for the constant of equilibrium in the equilibrium reaction A+ B <= AB:

_ NANB
KAB = = (

nAB

27kT mamsp )3/2 UnUs _g,p/kr
e
h? ms +mp Ups

which also holds for example for the dissociation equilibrium of molecules.

4.3.4 Saha-Boltzmann i

Together, the Boltzmann and Saha laws provide the ratio of populations within a single
element; these are named in a single breath the Saha-Boltzmann distribution. To find the
particle density in a specific state (number per cm?®) for an arbitrary gas mixture in TE we
need besides these two laws:

— element conservation: 3, N; = Nelement;

— matter conservation: ) ... S Z N, = N,.

These equations can be solved by numerical iteration. More often than not, only two ion-
ization levels of an element are of interest at the same time. The trace elements with small
Xr must also be included, because these can contribute significantly to the electron density
Ne (see the table with ionization energy and abundances in Appendix A ).
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To become familiar with the Saha and Boltzmann laws, we give here a numerical example,
borrowed from lecture notes of A. Schadee.

Take a hypothetical (but iron-like) element E with:

~ ionization energy xo = 7 eV, x1 = 16 eV, X3 = 31 eV, x3 =51 eV;

- excitation energy: always with 1 ¢V increments, Xrs = 3 eV;

- statistical weights: g, = 1 for all levels (r, s);

- three characteristic stellar atmospheres: P. = 10° dyne/cm? (for all three) and T = 5000 K,
T3 =10 000 K and T3 = 20 000 K.

A straightforward calculation then gives the tables below, with N = ZN, the total particle
density of this element and with the notation (i) for the order of magnitude x 10~*.

[ U, ”5000K[10000K|20000K]
Partition functions Us 1.11 1.46 2.25
Uy=U;=U; 1.11 1.46 2.27

The partition functions appear to be scarcely sensitive to temperature. Up is a sum over only
7 levels; the higher levels with » = 1 etc. Jjust barely become noticable above 7' =10 000 K
(1% difference in the last column). The lowest levels are the most important, as a result of the
rapid decline of the Boltzmann factor e X/*T,

[N F/N ] 5000 K | 10 000 K | 20 000 K |

r=20 0.91 &) (-10)

Saha 1 0.09 0.95 (-4)
2 (-11) 0.05 0.63

3 (-36) (-11) 0.37

4 (-81) (-30) (-5)

In each column there are always only two ionization levels of interest. For T = § 000 K this
element is primarily neutral (E I), for T = 10 000 K it is singly ionized (E II), and only at
higher temperatures do the second and third ionization states (E IIT and E IV) also appear.

| [nr,s/N.]"" [ 5000 K | 10 000 K | 20 000 K |

s=0 0.90 0.69 0.44

1 0.09 0.22 0.25

2 0.01 0.07 0.14

Boltzmann 3 (-3) 0.02 0.08
4 (-4) 0.01 0.04

5 (-5) (-3) 0.02

6 (-6) (-3) 0.01

10 (-10) (-5) (-3)

15 (-15) (-8) (-4)

A steep decline is seen with x,,, but it is less steep at higher temperature.

Populations
The populations of the levels are given by the product of the two tables abaove:

nry  n,,]T® NTB
N = [T] N
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t=0,EI r=1EII r=2,ElIl
5 000 [ 10 000 [ 20 000 S 000 ] 10 000 [ 20 000 5 000 [ 10 000 J 20 000
=0 o082 T (4) [ (-10) | 008 | 068 | (4) | (-11) | 003 | 0.27
1 008 [ (-4) | (-10) | 0.00 | 031 | (-6) [ (-13) | 0.01 | 0.6
2 0.01 (-85) (-11) (-3) 0.07 (-8) (-13) (-3) 0.09
3 (-3) | (-0) | (11) || (4) | 002 | (-5) [ (-14) | (-3) | o.08
4 (-4) 1 (6) | (12) || (-6) | 001 | (-6) | (-18) | (-3) | o.03
5 0 )| 0 || ¢ | 0 | 0] 4 | om
s | M@yl | |an| co | on
10 (-10) | (-9) (-13) f (-12) | (-8) (-7) (-321) | (-8) (-3)
15 | (18) | (13) | (19 | (ae) | (o) | (o) [ Cas) | (0) | ()

Level s = 1 contains a higher maximum population for r = 1 (at 10 000 K) then for » = 0 (at
5 000 K) because the Boltzmann factor increases with temperature. In general the population
of an excited (s > 0) level first increases with increasing temperature, until the Saha factor
NTB/N depletes the population again. The excited levels are less populated than the neutral
level. An excited level reaches its maximum population at a higher temperature than the
ground level.

Question 4.25 For T =5 000 K and T = 10 000 K the sum of the populations is 1, but not for
T = 20 000 K. Why?

Question 4.26 Account for the fact that in the spectrum of the Sun the Call K line is much
stronger than the Ha line, while the abundance ratio of calcium and hydrogen in
the Sun is Nco/Nu = 1.7 x 107°,

Question 4.27 A mythical hot star consists of 90% hydrogen and 10% titanium. In the photo-
sphere hydrogen is 50% ionized. Estimate approximately the distribution of tita-
nium over the different ionization states and estimate at the same time the electron
density N, as a fraction of the total particle density N.



Chapter 5

Discrete processes

5.1 Introduction: bb transitions

We turn now from the macroscopic description to the microscopic specification of the emis-
sion and extinction processes by particles. Between two energy levels there are five different
processes possible:

. ! 2 3 Y S
1. spontaneous radiative deexcitation; T y \
2. radiative excitation; : :
3. induced radiative deexcitation; : :
4. collisional deexcitation; ‘:L :

5. collisional excitation.

These occur both in bb transitions as well as in bf and ff transitions, and especially so in a
system in which exchange is possible between internal energy and radiation, and in which
consequently energy levels can be defined, whether discrete or continuous in energy.

In this chapter we examine these five processes for the bb transitions between discrefe
levels. The various types of discrete energy levels are:

— levels in the electron configurations of atoms and ions;

— levels in the electron configurations of molecules;

~ the rotational levels of atoms in molecules about each other;

— the vibrational levels of atoms in molecules with respect to each other;
— the vibrational levels of atoms in a crystal;

- levels in the hadron configurations of atomic nuclei.

The nature of the configurations and the selection rules (which follow from the Pauli ex-
clusion principle for fermions) are not treated here. See for example chapters 9 and 11 of
Rybicki and Lightman. :

5.2 The five processes

5.2.1 Spontaneous deexcitation

A particle in an upper level u can decay spontaneously to a lower energy level I, with
spontaneous emission of a photon. The probability that this will occur is defined as the
Einstein coefficient Ayr:

A, = transition probability for spontaneous deexcitation per second per (5.1)
particle in state u.

AT
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This transition probability is an atomic (or molecular etc.) parameter which does not depend
on external conditions such as pressure, temperature, or the radiation field. It differs from
transition to transition. Its size differs between permitted transitions, with typical values
Ay = 10* — 108 57!, and forbidden transitions with Ay =1 — 10% s7*. The differences are
connected with the selection rules that determine the particle configuration. The values can
in principle be calculated from quantum mechanics, but in in practice must be experimentally
determined for non-hydrogen-like transitions.
The number of deexcitations per second per cm? is given by:

Rul = nuAulu

with n, the density of the particles in state u (the population). Ry, is the rate of spontaneous

deexcitation.
The depletion of the population as a result of spontaneous deexcitation is:

dn,, = —nuA.,, dt
and so the population is diminished according to:
ny(t) = n,(0) e™ 4"

If deexcitations to additional lower levels are possible, then the transition probabilities are
summed:
= Z Aul;
[

the average lifetime of a particle in state u is then I'y ! geconds. The Heisenberg uncertainty

principle provides that:
AE = h/At = kT,

so that the spread in the energy of a level that is associated with the finite lifetime is given
by Aw =~ T,. This is the natural line width or radiative damping, with 'y, the damping
constani. The associated distribution function ¥(v—ug) about the line frequency vy is given

by the Lorentz profile:
I, /4n?

Yy -vo) = (v—vp)? + (Tu/4m)?
This is the profile function for spontaneous emission. It is normalized according to fom Y(v—

1) dv = 1. Compared to the exponential decline of a Gaussian profile, the wings of the
Lorentzian fall off much more slowly, only quadratically according to ¥ ~ 1/(v-w0)?.

(52)

This Lorentz profile describes the constraint on the lifetime of the upper state imposed by spon-
taneous deexcitation. In practice there is also collisional damping as a result of disturbances
by neighboring particles which also contribute to the damping constant I'y. And there is also
macroscopic broadening of the emission profile because the particles are perturbed by each
other and therefore emit photons with observable Doppler shifts. A Maxwell distribution leads
to a Gaussian function; the resulting profile function is then the convolution of a Gaussian and
a Lorentzian and is called a Voigt function.

Question 5.1 Demonstrate that the average lifetime in level u is given by I'? seconds.
Question 5.2 Demonstrate that ¥(v—wo) is normalized. What are the dimensions of ¥(v—w0)?
Question 5.3 How large is the full width at half maximum of ¥(v=v0)? And of ¥(A—2Xd)?

5.2.2 Radiative excitation

A photon hv of the radiation field can be used for the excitation | — u. The probability of
such a process is determined by the product of a transition probability, which depends solely
on the nature of the transition, and the probability of the existence of a suitable photon.
Because such a photon may come from any direction, we describe the second probability with
the angle-averaged intensity J,. As a result of the fuzziness of the levels, there is also some
spread in the energy required. For this purpose we employ an extinction profile function
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¢(v —vo), normalized according to [;° ¢(v—vo) dv = 1 and with dimension [Hz™!). The
angle-averaged radiation field that can cause the excitation is weighted by that as follows:
_ S Juplv—wo) dv

o fow SP(V-VO) dv

= /m Jop(v=vg) dv, (5.3)
0

and thus 7:’0 is the frequency-averaged, angle-averaged intensity. The dimensions of 7f° are
[erg s=! em=2 Hz™! ster~!], just as for J, and J,. (The index v, implies that the calculation
refers to the profile function of the bb extinction coefficient with central frequency vy; this
index thus specifies the spectral line involved.)

The first probability we define by means of the Einstein coefficient for extinction B, so
that:

B,,,T:o = pumber of radiative excitations per second per particle in state /. (5.4)

The ezcitation rate is given by Ry, = mB,ujfo excitations per second per cm?.

This definition shows that, if radiation falls on a particle from all directions with average
intensity 7:’0, the probability of radiative excitation is given by the product Bu.jro. Just like
Aut, By, is thus defined for the full 4x steradians. The definitions can also be given for a given
bundle with vertex angle d{? and frequency-averaged intensity T.,; then By T, (d2/4x) is the
number of excitations per particle with photons in this bundle. In that case B;. has the same
numerical value.

Sometimes A and B are defined to be smaller by a factor 4x, with the number of excitations per
second per particle given by B, f T.,dQ, for example in Chandrasekhar (1939), page 191. Also
the Einstein coefficients are often defined on the basis of energy density rather than intensity.
These then differ by a factor of ¢/4x.

Question 5.4 Why do we have 7:0 per Hz when this quantity is integrated over the frequency?
Question 5.5 What are the dimensions of B;,?

5.2.3 Induced deexcitation

In order to derive the Planck formula, Einstein introduced a third radiative process and a
third coefficient:

Buljfo = number of induced deexcitations per second per particle in state u (5.5)

This definition is analogous to the one for Bj,, but with
1=~
T, = /0 Jyx(v—vp) dv

in which x(v—1p) is the normalized profile function for induced = stimulated emission.

Stimulated emission produces radiation moving in the same direction as the radiation which
triggered the process. A definition per incident bundle is thus also possible here: then
B,1,,(d2/4x) is the number of deexcitations induced by a bundle with vertex angle d2 that
are contributed to the same bundle.

5.2.4 Collisional excitation and collisional deexcitation

For bb collisional processes transition probabilities are similarly defined as:

Cui = number of collisional deexcitations per second per particle in (5.6)
state u
and
Ciu = number of collisional excitations per second per particle in state /. (5.7

The collision rates are: n,C,,; and n,C;, per second per cm3.
These coefficients depend on the density and the particle velocities, and on the nature of

the interaction.
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For example, for transitions of state i to state j via collisions with electrons we have:
a0
nC,, = n.N./ a,(v) f(v)vdy
vo

with vo the threshold energy, the minimum kinetic energy required (1/2)mvd = huy, N, the
clectron density per cm?®, ¢ the collisional cross section and f(v) the velocity distribution
(generally the Maxwellian distribution).

We are usually talking about Coulomb interactions here. For an ionized gas in which the
Maxwellian distribution holds, the fraction of particles above the thresholdenergy is the same
for each type of particle, but the particle velocities and therefore the collisional frequencies are
not the same. From fm <v?>= 4T it follows that:

number of electron collisions Ne<ve> N, (ﬂmA)”2
number of ion collisions Nicn <Vion> MNion \ me

with A the atomic weight on the C=12 scale and N.n the ion density per cm®. For hydrogen
this ratio is already \/Imp/vm = 43; with the more complete ionization of heavier atoms, the
electrons win out even more convincingly because then Ne > Nion.

In a partially neutral gas it can happen that hydrogen is mostly neutral and that free electrons
are supplied only by elements with lower jonization energies, including Fe, Mg and the alkali
elements (see Appendix A). Then collisions with neutral hydrogen atoms often dominate, on
account of the large abundance of hydrogen and the large polarizability of the hydrogen atom
(a consequence of its asymmetrical mass distribution).

The collisional cross sections o are usually not well known for electron collisions, and for
collisions with neutral atoms they are almost entirely unknown.

5.3 Einstein relations

Next we express the Einstein coefficients Ay;, By, and By defined above in terms of each
other, under the assumption of thermodynamical equilibrium. In TE detailed balance bolds
for each process, thus there are as many transitions downwards as upwards. This holds for
each individual process as well: (as many radiating downwards as radiating upwards), and
it holds also at each frequency, it being implicit that the profile functions ¥, ¢, and x are
equal. Therefore in TE we have:

nlBlujfo = n,Au+ nuBuljfo
7"0 = 7:0 = Tfo
nyAul
n By — ny Bui
Aul/Bul
n; Dy
— -1
n, Bu
Aul/Bul
9 B apr _
—_—— -1
Ju Bul

in which we make use of the Boltzmann law, which holds in TE.

Furthermore, it is true in TE that J, = B,. Because B, changes only slowly with
frequency over the small width of the extinction profile p(v—wo) it is usually also true that
7,, = B,, and so:

Aut/Bur
9B apr _
Ju Bul ¢ !

This formula holds for arbitrary temperature, just as the Planck formula does. Equating

these, we find:

B, =

B Gu
= - _— i —— 5.8
Bu /] and By c? ( )
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These are the Einstein relations. There are two equations with three unknowns, and so you
only have to know but a single one to determine the others.

Next we have a typically Einsteinian piece of reasoning. These relationships connect
Aui, By and By, without regard to the temperature. Just above we noted that these coef-
ficients are defined as atomic parameters that do not depend on external conditions. So if
these relationships hold anywhere, they must hold everywhere. Thus the Einstein relations
hold generally, even in media where the assumption of TE does not hold, or where Juw # B,
or where ¢ # x. These are “detailed balance” relationships which ensure that in the proper
circumstances equilibrium certainly can occur. This forms a generalization of Kirchhofl's
law (j, = a, B, in TE).

For the collisional rates there follows similarly for TE:

nCy, =n, Cul

thus
Cui _ Ei kT )
Cu - 9u ¢ ' (5.9)

with the application of the Boltzmann law. This relationship also holds generally, even
outside TE. The knowledge of a single collisional transition probability is thus enough.
Question 5.6 Do the dimensions tally on the left- and right-hand sides of equation (5.8)7

5.4 Emission coefficient and extinction coefficient

Spontaneous deexcitation provides photons headed in all directions. We define the output
of radiated energy per Hz and per steradian: .

Aui = number of spontaneous deexcitations per second per particle in state u,

nyAul = Ry1 = number of deexcitations per second per cm?,

hvgny, Ay = energy radiated per second per cm?,

hvon, Ay (v —vg) = energy radiated per second per em® per Hz,

hvon, Aui¥(v~1p)/4n = energy radiated per second per em3 per Hz per steradian.

Thus we have for the associated emission coefficient:

j:pont = hVOnuAul¢(V-VO)/47r- (510)

Now the radiative excitation. The total energy in a volume dV that is extinguished by
radiative excitation during dt is:

dE}* = —hwn B, 7T, dV dt
= ~—hyyn By, dV dt/J,go(u-—uo) dv

-%mB;u av dt / / Lo(v—vo) dQ dv,

thus the energy dE®und!® that is extinguished during a time dt in a given bundle with
intensity I,, opening angle dQ and bandwidth dv in dV is:

dEbundie = _%n, BiLp(v—vo) dV dt dQ dv,

and from dV = dA ds and the definitions of intensity and extinction coeficient it follows
that:

N h
a:xctnuon = 4_:0_'"3’“ P(V‘VO)-

Now the stimulated emission. It seems obvious that we should introduce an extra emis-
sion coefficient and then sum this up with the coefficient for spontaneous emission. However,
stimulated emission is much more similar to radiative excitation than to spontaneous deex-
citation; just as before this is proportional to 7,0. In practice, these processes always occur
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together. Consequently the stimulated emission is not usually included with the emission
coefficient but is treated as “negative extinction”, i.¢. as a correction to the extinction.
Thus we have the line eztinction coefficient al:

h
T?["lBluSO(V—Vo) = nyBux(v-wo)] (5.11)

-
v =

Q

and the line emission coefficient j| remains:

. hl/o
=

The excitation coefficient a®*9**'°" j5 a more fundamental quantity than the deexcitation
coefficient jiP°"* because the latter depends more strongly on the local radiation field. This
occurs because j, contains the recent history of the excited particle in the term nu. An
atom or molecule can for example be excited to level u prior to the spontaneous deexcitation
by radiative excitation in the same spectral line (photon scattering), by radiative excitation in
another spectral line or by radiative deexcitation from a higher level (photon conversion), or by
a collisional excitation or collisional deexcitation (photon creation). Each of these mechanisms
counts, and thus the emission coefficient depends directly on the medium and on the radiation
field. The excitation is a form of internal energy which, in the presence of substantial scattering
and conversion of photons, can be determined primarily by nonlocal conditions; via photons
transported from afar by the radiation field.

The situation is different for the excitation coefficient af****° since the exciting radiation
field itself does not enter into the determination of the coefficient, nor is it sensitive to recently
deposited internal energy. This coefficient is thus governed by the medium. While it is true
that the state of the medium, and thus the population of the lower level, can be strongly
dependent on whatever radiation field may be present, nevertheless the coupling is much less
direct than for a recently excited level.

The introduction of a correction term for the stimulated emission in the line extinction coeffi-
cient blurs this distinction. The line extinction coefficient al is then:

"uBulx(V-VO)
n Bi.p(v—wo)

Ny ulw(u VD)

A
al, = -ﬁn;Bmv(v-w) [l -

thus the correction factor is:

_nuBux(v- Vo) _ nugix(v—wo)
T niBuyp(v-w) ngup(v—20)

The correction is large (a large reduction) if the excited level has a relatively large population.
In that case the extinction coefficient is also directly governed by the radiation field.

Einstein introduced the stimulated emission process only because without it he could only derive
the Wien approximation and not the Planck function. The Wien approximation can readily
be deduced because in this case hv > kT, so that according to the Boltzmann distribution
the population n, of the excxted level is small and the contribution of stimulated emission is

negligible.

With af, Bi., Bu and Ay, we have now four parameters that describe how readily a bb transi-
tion will occur: the bb transition probability. You have only to know but one (from calculation
or measurement). For the most part however we employ none of these four but rather a fifth
parameter: the oscillator urcngth f. The term stems from the classical description of a spectral
line as a harmonic oscillator, in which the extinction coefficient per particle o(v) is given by
(Chapter 6):

I/4x?

o(v) = mec (v -1m)? + ([/4x)? = e Plv—w)

with - .
xe 2
o= / o(v)dv = = = 0.02654 cm” Haz.
o Mmec

The oscillator strength fi. is introduced as a correction factor to this classical value, neglecting
the correction for stimulated emission:

we?
o= / 2 dv = —B:.. = m—'cflu-
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For resonance lines such as Ly o the classical oscillator is a good approximation so that f;, = 1,
and 50 the oscillator strength has a reasonable numerical size. Other permitted transitions have
107* < fi. < 107?; forbidden transitions have fiw <1078,

We derive the correction for stimulated emission in TE with the use of the Einstein relations,
Boltzmann’s law, and the equality ¢ = x which is valid for TE, as:

ny Bux(v—w) =1

—hyvo/kT
n By (v—w)

1~ —-e
This factor is often given as “the” correction for stimulated emission, but strictly speaking it
holds only in TE. With this the line extinction coefficient is ultimately represented as:

¢ _ xe? s [ _m,,/rr]
ay = oy wp(v—w) [1— e .
And finally we have yet a sixth quantity: the product g fi, that is usually referred to as the
“gl-value™. This is the quantity that you will encounter most frequently in the literature as
the “transition probability”.

Question 5.7 What are the dimensions of o, 5!, Jiu and g f1..?

Question 5.8 Express the photoexcitation rate Ry, in terms of atreiation ang 1,

Question 5.9 Express the line extinction coefficient o in terms of fiu and the profile function
A(vr=2Ao).

Question 5.10 The HI 21-cm line has Ay = 2.9 x 1072® s}, What is the oscillator strength of
this line? How many hydrogen atoms are needed to provide an optical thickness of
unity in this line?

5.5 Source function

Lastly, the line source function S! is given by:

nuAu”p(V"VO)

Sl =5/l = .
v Jy/ay ﬂ131u99(l’-”o) - nuBMIX(V_VO)

Because the Einstein relations also hold outside of TE, we have a very general result for the
line source function, and in fact for the source function of an arbitrary radiative transition:

Aulg’-
S = B ['4
7 mBu_x

ny By 14

] YRy V)
2 i X (5.12)

giny P

The assumption of complete redistribution is frequently made. This states that in the case of
elastic bb scattering, atoms have no “memory”: that the photon resulting from deexcitation
is not correlated with the photon that was responsible for the excitation. In this case the
three frequency distributions are equal because for each process the statistical distribution
18 represented anew: ¢{(v—vg) = Y(v—1p) = x(v-1p). In that case the general line source
function simplifies to:

! nuAul - 2’111a 1 5 13
S = nBiy —=nuBy ~ ¢ QU 649
giny

Question 5.11 Using equation (5.13), demonstrate that S, = B, for TE.

Question 5.12 What is the relationship between spontaneous deexcitation and stimulated emis-
sion in TE? Which deexcitation process dominates in the Wien limit, and which in
the Rayleigh-Jeans limit?






Chapter 6

Continuous processes

6.1 Introduction: types of processes

In this chapter we treat the processes which give rise to confinuous extinction and emission.
For highly-energetic conditions the relativistic forms are of interest; because a complete
treatment of these requires a knowledge of Maxwell’s equations and relativity theory, what
follows here is only a simplified summary of Chapters 3 through 8 of Rybicki and Lightman.

See also Chapter 6 of 77.
There are four global types of continuous radiative processes of interest:

~ extinction and emission as a result of the acceleration of a charged particle in an electric
field (the electric field of an EM-wave itself);

— extinction and emission as a result of the acceleration of a charged particle in a magnetic

field;
~ effects resulting from collective electric fields;

— extinction and emission as a result of nuclear reactions.

6.2 Radiation of an accelerated charge

From Maxwell’s equations it follows that a particle with an electric charge that experiences
an acceleration emits EM radiation. If the acceleration is generated by incident electro-
magnetic radiation, a charged particle can also absorb or scatter. Consider nonrelativistic
velocities v < ¢ in vacuum. It follows from Maxwell’s equations that the EM field generated
at a distance r from a charge g that experiences an acceleration v = di/dt is given by

Eng(rt) = [’_c2 7 x (7 x 3)| (6.1)
Bna(r,t) = [n X End] , (6.2)

with ¢ the speed of llgﬁt and 7 a unit vector in the direction of propagatlon of the light Erag
lies in the plane of ¢ and #; Brg is perpendicular to this.

The square brackets on the right-hand sides point up the fact that at distance r the acceleration
of the charge g is felt only after r/c seconds. This delay is called retardation; the brackets
indicate that the values on the right-hand sides of Eraa and Brog apply to the “retarded times™:

the time lag t amounts to r/c seconds from the moment at which v, r and # are determined.

See §§ 2.5 and 3.1-3.2 of Rybicki and Lightman.
r

For the amplitudes we have:
= 5 1. v .
|[Ead| = |Brad] = ?smﬂ
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2 .~-1

with 8 the angle between ¢ and 7. The flow of energy in the direction i in erg cm~2 s

(possibly measured monochromatically per Hz) is given by the Poynting vector
- [ - -
S= Z""Erad X Brad
n

with amplitude:
2,2

S Cpr o SOV
S= 4”End = 7 A sin 6. (6.3)
Through a surface dA during dt there is this flow of energy:
242
S _ q°v .2 di dA
dE = |{S|dtdA = ype L0 ) ——

With dQ = dA/r?, we have the angle-dependent power that the particle radiates in the
direction 7 (r/c seconds earlier):

2,2
4P _dE 9T oy (6.4)

dQ ~ dtdQ  4ncd

The factor sin? @ provides a dipole pattern: there is no radiation emitted parallel to v, and
a maximum perpendicular to v.

-

.

\Y

Figure 6.1: Dipole radiation from an accelerated charge.

Integration of dP/dQ over all directions provides the Larmor formula for the total
amount of radiative power:

2,2 2,2
= [on2edn= 200 6
P—4”3/sm 6dQ = 33 (6.5)

with the use of [sin?6dQ = 2 [ sin®6d6 = 2 fjll(l — pu?)dy = 87/3 with u = cosb.
These equations often hold (in the dipole approrimation) for systems of primarily non-
relativistic particles:

P _ &

aa = 41rc38in20
24?
P=3=

with the dipokmoment d = ¥, ;i and 8 the angle between d and the direction of propaga-
tion of the radiation .

These equations give a classical description in which an EM-field is present all around
an accelerated charge; in reality, however, the radiation field is quantized. In the quantum
mechanical formulation, not presented here, the Larmor equation is a statistical distribution
for the emission of quanta of radiation, i.e. photons. There follow below additional classical
descriptions which also always translate into photon processes. For the most part we are
concerned with the emission or absorption of one single photon; the quantum mechanical
probability of a second simultaneous photon is then negligibly small.



6.3. ELECTRON + E-FIELD 57

6.3 Electron + E-field

6.3.1 Free-free transitions

We first discuss the radiative processes that take place during the Coulomb acceleration of
a free charged particle that moves in the electric field of another particle: Bremsstrahlung
= braking radiation in German. Only those collisions between dissimilar particles are inter-
esting here, because in collisions of similar particles (proton-proton, electron—electron etc.)
d= 2 qifi ~ Y_m7. The center of mass of this system is a conserved quantity, and so
P = 0 according to the last equation in the previous paragraph on dipole radiation. (Higher-
order radiation such as quadrupole radiation we leave to outside sources - it is beyond the
scope of this treatment.) Thus we are usually dealing with electron—ion collisions, i.e. with
ff procss&s

e take a classical (non-quantum-mechanical) approach. Place the ion at the origin so
that d = —e7 with —e the electron charge and consider it stationary on account of its much
larger mass. The Larmor law then gives

2¢?
P="¢?
3c3
where v is the Coulomb acceleration between electron and ion. This is the instantaneously
radiated power; the total fl emission per electron-ion collision we approximate by

E(b.v) /sz Av)’ x —(Av_L)

assuming that the deflection of the electron is negligibly small so that only the compo-
nent of the Coulomb acceleration perpendicular to the direction of incidence matters: this
amounts to v = vcos(7/2—6) = vb/r with 6 the angle between direction of incidence and
the Coulomb acceleration, and with the distance of closest approach given by the impact
parameter b. With the Coulomb force mé = Ze?/r? for an ion charge of size Ze if follows
from the Pythagorean theorem that:

Zel [® b Ze b _2Ze?
= v, dt = — —_
Avs /vl Mme J o 13 dt = ‘me —oo (b% + v212)3/2 dt m,bv ! 9

so that

822 6
2b2v2

U
Q.L A4 % -

per electron-ion collision with parameters Z, b and v. e

Conservation of energy requires that this radiated energy be provided at the expense
of the kinetic energy. Assummg the ion to be immobile, we find m,v?/2 = m,v3/2 + hv
in ff emission and mv}/2 + hv = m.v3/2 in fl absorption, with v, the velocity of the
electron before the collision and v, the velocity afterwards. The acceleration perpendicular
to the path therefore produces a deceleration along the direction of travel, from whence the
name “braking radiation”. This last deceleration is neglected in the above derivation. In ff
absorption this goes the other way round: the energy of an incoming photon is augmented
by the Coulomb acceleration and results in an increase of kinetic energy.

To arrive at the total macroscopic energy transfer, E(b, v) must be integrated over 2xbdb
about the ion and multiplied by the ion density Nion, the flux N.v of electrons with velocity
v and the velocity distribution f(v) dv. The integration boundaries bmin and bmax require
closer analysis, which we skip here. The final result for the emission coefficient is:

E(b,v) ~

I =54%107% 22NNy T~ V2 /45,

with N the electron density, Nion = 3 ojement 2, Nir.s the ion density (of all ions with charge
Z, for example H* and He* togeher) and §j the velocity-averaged Gaunt factor. This gives
the quantum mechanical correction to the classically deduced remainder of the formula; it
is dimensionless, of order unity, and is determined by the values of bpmin and bmax. (The
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wave and quantum mechanical corrections arise because the fact must be accounted for
that the electrons describe stable Bohr orbits in an atom, rather than spiralling inward as
they radiate in the manner predicted by this classical description. Consequently the above
approach fails for small impact parameter b because quantum effects are neglected; the
Gaunt factor measures the size of this error.)

The factor T~1/? appears in jf because the generated emission is inversely proportional
to the velocity v (v=2 per collision times v from the electron flux) and for the average velocity
we have < v >~ T2 The factor exp(~hv/kT) is a result of the lower boundary in the
integration over the Maxwell distribution: there must be sufficient kinetic energy on hand
to generate a photon of this frequency.

In the case of TE the ff source function is given by the Planck function B,(T). That
is also true outside of TE provided that the particle motions are Maxwellian, because ff
processes always exchange kinetic energy and radiative energy. In each fl emission process
a photon is released from the “thermal pool”; there is no intrinsic record such as occurs for
the bb processes by which the escaping photon can be equal (except in direction) to the
photon just arrived. In such elastic scattering there is no exchange of radiation energy and
kinetic energy; in inelastic scattering, which is the case for the ff processes, the memory of
the collision is erased, with a new sample drawn from the Maxwell distribution. Thus the
extinction coefficient, even outside of TE, is given by

aff = j/B,(T) = 3.7 x 108 Z2N Nien T™H273(1 — e~ ™/ T) g

In this expression T is the kinetic temperature, i.e. the temperature of the Maxwellian distri-
bution; this is usually called the electron temperature T,. “Outside of TE” means here that
the Saha and Boltzmann equations do not hold for all states a priori, and that I, = B, does
not hold a priori for all directions and frequencies. The conclusion that ST = BT implies that .
under conditions where at least the Maxwellian distribution holds, the partial source function
for the free-free processes is always equal to the Planck function at that spot, even if that is
not the case for other processes. If such other processes contribute to the particle populations
these can deviate from the Saha and Boltzmann distributions.

The factor 1 — exp(—hv/kT) follows from the —1 in the Planck law and describes the
contribution of induced emission. This was not included in the emission coefficient above
and therefore results in a reduction of the extinction coefficient. If the Wien approximation
holds (hv > kT) this correction is negligible:

ol % 3.7 x 108 Z2N Nign T~V 20737,
with frequency dependence aff ~ v=3. From a physical standpoint, the correction for large
hv/kT is negligible because the difference between the lower and the higher energy states is
then much larger than can be bridged by thermal energy, thus the population of the higher
state is negligible and the free-free analog of induced deexcitation hardly matters.
In the Rayleigh-Jeans region (hv € kT) it follows that:

o = 0.018 Z2NNipnv =3T3 25,

thus there is a frequency dependence off ~ »~2.

FNVANINN

6.3.2. Bound-free transitions

There are once again five possible bf processes:

1. photoionization.

4
n €=

A photon of the right frequency is required; ) n 3

2. spontaneous pholorecombination.
A passing capturable electron is required,

3. induced photorecombination.
Both an available electron and a photon of the right frequency are required;
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4. collisional ionization.
A passing colliding particle with sufficient energy is required;

5. collisional recombination.
A passing colliding particle and a capturable electron are required.

The last process is a 3-particle collision and is therefore usually rare. The processes 1
and 4 require an energy (from the photon or the collision) E > E., — E,. The extinction
coefficient for each lower level i thus has a limiting value in v; the extinction and emission
set in suddenly at the series limit v = vy of the line series with that lower level (Fig. 6.2).

Lyman (Ly) - [03\’
% 'ar |..3 |='1
vy
pd /
Balmer (H) 7/
¥ -

1 2'52..4 2,‘1‘ /

§
/

/ < Paschan(Pa)
3

/A0 was ey
yp, =
¥
\ 1 P e L ~ £1 v P a'l
3o S0 60 )\ (nm) 100 Yoo looo 2000

Figure 6.2: The eztinction coefficient of neutral hydrogen (shaded). The HI bf extinction
coeffictent is indicated for the Lyman, Balmer and Paschen series limit continua. The dashed
line gives the HI ff extinction coefficient. Several lines in the bb line series are indicated,
with their name and the principal quantum numbers n of their lower and upper levels. Each
line series becomes compressed towards the series limil. The tonization continsum near this
limit goes as ~ v=3, just like the HI ff coefficient. Skeich by C. Zwaan, for T =~ 25000 K.

For hydrogen-like spectra (H I, He II, Li III, etc.) the extinction coefficient per particle
for radiative ionization (without correction for induced recombination) from a level with
principal quantum number n for ¥ > vg is given approximately as:

64 x'me'® 24 - -5, -
dt!;'f = an—sgbﬂ/ 3= 2.815 x 1029 gb¢Z‘n 5p-3

in cm?; this formula is due to Kramers, except for the additional quantum mechanical
correction factor gnr which was added by Gaunt. The extinction falls off according to
o0 ~v=3 for v > vy. For more elaborate spectra with more valence electrons (for example
Fe I in which a half-filled shell provides a number of valence electrons and valence holes) the
falloff is disturbed by a variety of peaks in op¢(v) and must be determined experimentally.

These five processes are completely analogous to the discrete bb processes. Detailed
balance relationships due to Milne hold, which agree with the Einstein relations for bb
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transitions (see Rybicki and Lightman page 284). In place of the profile functions y' efc. we
now need to integrate over the sertes himif confinuum (ionization edge): the bf continuum
above the series limit v = vy. The photoionization rate per second per em® from a bound
level i to the continuum k is for example given by:

Ry = 47rni/ gi‘t—(-QJ,, dv
v hv

o

with v the frequency of the series limit (compare with question 5.8).

Just like the bb processes and in contrast to the fT processes the bf processes have an
intrinsic “memory”: namely the internal part of the energy difference, given by Et —E;. The
kinetic portion of the above is continually thermalized, just as for the fl processes; however,
the fixed internal part provides a possibility for elastic scattering analogous to the elastic
scattering in bb pairs of processes. Ionization from low-lying levels, with a large fraction of
internal energy, more closely resembles bb transitions while ionization from levels close to
the continuum more closely resembles f transitions. The source function of bf transitions
therefore is not simply given by S = B,; it can depend upon the radiation field J, at the
ionization edge.

Question 6.1 The caption to Figure 6.2 implies that ol depends on the temperature. How? Do
the relative values of ab' at the different series wavelengths also depend upon the
temperature? The density?

Question 6.2 Does the general expression for S, in equation (5.12) also hold for bf transitions?
How then does the possible dependence of J, appear? What is the bf analog for
the profile functions ¥, x and ¢?

6.3.3 H~ extinction

A special source of bf and ff extinction is provided by the H™~ ion. A neutral H atom, by virtue
of its large polarizability, can capture a second electron. Only one bound state is known,
with binding energy Eo — E} = 0.75 eV and Ajjmic = 1650 nm. There are consequently no
lines, and there is but one bf continuum which does not exhibit a sharp ionization edge but
rather a broad peak at much higher frequency, with Ap., = 850 nm (Figure 6.3).

H™ exmivcTioN

1 1

12 b 10 1

o

oy 08 YL@ am

Figure 6.3: Ertinction coefficient of the H™ ion. The bf eztinction displays ¢ mazimum at
800 nm. The ff ectinction varies as A2. The sum goes through a mintmum at 1.6 um.

Note carefully the following terminology:

Hq = proton + free electron;

Hy = neutral H atom + free electron;

H,( = ionization of an H atom to a proton, or recombination of a proton with an electron to
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form an H atom;
Hy, = ionization of H™ ion to an H-atom, or the recombination of an H-atom with electron to
form an H~ ion.

These H™ bf and f processes form the dominant source of visual and infrared extinction in the
photospheres of cool stars. Hydrogen is neutral in these stars; the extra electrons come from
elements such as Na, Mg, Si and Fe which have a relatively large abundance (N/Nu = 107¢;
scc Appendix A) and an ionization energy lower than that of hydrogen. The identification of
this extinction source by Pannekoek and Wildt was an important breakthrough; prior to this
the nature of the continuous extinction in cool stars was a large problem. (In Eddington’s book
“The Internal Constitution of the Stars” in 1926 the unknown continuous extinction, together
with the similarly unknown source of internal energy of stars, consituted the sole remaining
problems of the physics of stars; these two have since been solved but nevertheless there is still
work to be done.)

Question 6.3 The ff extinction coefficient in Figure 6.3 has aff ~ A? while in Figure 6.2 off ~ »~3.
Where does this difference come from?

Question 6.4 For these H™ extinction processes S, = B, is a good assumption not only for the
ff but also for the bf transitions. Why? '

Question 6.5 The bf peak in Figure 6.3 looks anything but hydrogen-like although it relates
directly to hydrogen. Why is that?

6.4 Electron 4+ photon

6.4.1 Elastic scattering

A charge can also be accelerated by a passing electromagnetic wave: then scatfering occurs
because the emitted radiation resulting from this acceleration can have a different direction
from the incident radiation. We treat this scattering first for nonrelativistic conditions
where the dipole approximation holds and for which the scattering is elastic, with constant
frequency and energy and change only in direction.

A particle with charge ¢ resonates with the incident EM-wave. The outward force that
the charged particle experiences is:

F=g(E+ =7 xB),

0§

but the Lorentz force (g/c) ¥ x B is negligible because v €« ¢ and £ = B, thus:

F = gqFE¢é'sinwt (6.6)

with Eg the amplitude of the wave with which the particle resonates, ¢ a unit vector with
direction E perpendicular to the incident beam and w the circular frequency, defined as
w = 2xv with v the frequency of the incident radiation. -

We describe the resulting deflection z in the direction of E as that of a damped, driven
harmonic oscillator:

m# + ml'z 4+ mwlz = qE, e*"
with m the mass of the particle and wy the resonant frequency of the oscillator. The damping
term mI'z describes fhe energy loss that occurs through the emission of the radiation. We
use complex notation here because this simplifies the solution; below we retain only the real
part R. Subsititution of z = zq exp(iwt) provides
T=R [ g(Eo/m) e ]

wi-w?+ilw
and with |#|? = .2* and # = —zow? e* it follows that:

¢’ E} w
m? (w? —wi)?+TWw?’

I#° =
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Subsitution in the Larmor formula (equation 6.5) gives the power radiated:

20 _ o'E3 !

P= = .
33 3m2c3 (w2 ~ wi)? + M2

What is the extinction coefficient? In equation (3.3) the extinction coefficient per particle

is defined with dI, = —I,0,n ds; for a single particle nds = 1 em~2. The decrease ~dP of
the incident energy Py is equal to the total energy P radiated (scattered) in all directions,
th
o —dI -dP P
0= e == e =%

where the incident energy P, (in erg cm~? 5~!) is given by the time average of the Poynting

flux:
Php=<S5>= —-Eo <sinfwt>= 8—Eo

with the use of <sinwt > = 1/2 (= <cos?wt > = < [Rexp(iwt)]?>). Thus the extinction

coefficient is:
4 4

q w
3m2c4 (w? — wi)? + 22’

o(w) = 8n

We simplify this by introducing the classical electron radius rq, defined as
ro= "—- (6.7)

this is the size of the charged particle if 1ts rest energy mc? is equal to the Coulomb en-
ergy g%/rp, i.e. if the magnetic field B and relativistic and quantum effects are negligible.

Therefore:
8x , wt

3 ’°( B L
This extinction coefficient is (a factor of) (mp/m,)z 10° times smaller for protons than

for electrons and is smaller still for heavier ions; thus electron scattering will usually be the
most important. With the classical electron radius

(6.8)

o(w) =

e? -13
Te= — =2.82x10 cm
mec

e

and the Thomson cross section defined as

or = %Irf =6.65 x 10”?* cm? (6.9)

we obtain the extinction coefficient for elastic scattering by harmonically bound electrons:
oe(w)=¢o w?
W)= .
€ T <o)+ T%?

(6.10)

The scattering is not isotropic; the scattered radiation follows the dipole pattern of equa-

tion (6.4). The differential cross section for scattering into d2 is then :
) '
do(f,w) S & sin? @ w? :.
aQ  J.q T m2ct (w? - wd)? + T2 )
4
— 202 w
= rpsin‘d Oy R -

The angle 6 is the angle between the electric field direction E and the direction of radiation
ii. The scattering is the largest in the forward and reverse directions, measured along the
incident radiation, because the acceleration is directed perpendicular to the original direction
of propagation and the dipole pattern of equation (6.4) and Figure 6.1 runs perpendicular to
the acceleration. The index pol indicates that we are dealing here with a linearly polarized
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wave, in agreement with the fixed direction of £ that was assumed in equation (6.6). An
unpolarized wave may be described as the superposition of two polarized waves perpendicular
to one another:

do _ 1 [do(8) = do(r/2)
[EJU,,,,O, N 5[ i T Tan (6.11)
»r
2 4
— To,. 2 w
= O VT
U‘

2
- T 2
= 5 (14 cos 0)((..;2 Ty
Here E, is chosen in the (F, i) surface with E the direction of propagation of the inci-
dent radiation and 7 the direction of propagation of the scattered radiation, E is chosen
perpendicular to the (k, i) surface, and ¥ is the angle (k, ) with J = x/2 - 4.

Figure 6.4: The dipole phase function for elastic scatlering of nonpolarized radration.

The distribution of the scattered radiation over the angle ¥ between incident and scattered
radiation in equation (6.12) is thus [da/dQ]unpol ~ 1+4cos? ¥; this is the dipole phase function,
see Figure 6.4. This does not differ markedly from isotropy: half as much as is scattered
forward or backward is scattered in a perpendicular direction. Finally, the total extinction
coefficient for the scattering of nonpolarized radiation through electrons amounts to:

[Fe(@inpar = _/ [j?;]unpd &

- w? /2' '(1+c05219)sint9d19dé
T2 (W2-wd)?+TW? Jy Jy

wt

w2 ~ wg)2 + I'2,2 '

= UT(

equal to the cross section for polarized radiation given in equation (6.10). They are the
same because an electron at rest has no preferred direction.

6.4.1.1 Rayleigh scattering

The extinction coefficient o, in equation (6.10) depends on the difference between the radi-
ation frequency w and the resonant frequency wp. The last is given by the eigenfrequency of
the harmonically bound electron, i.e. a bound electron in an atom or molecule which may
resonate harmonically. The chance of such an oscillation is given for actual transitions by
the oscillator strength f;, which can be viewed as a quantum mechanical correction factor to
the classical harmonic oscillator. This is of order unity for resonance lines, i.e. for permitted
bb transitions of the valence electron from the ground level of an atom or ion; for hydrogen
for example, this is the Lyman series. For other transitions f), is much smaller. Then the
extinction coefficient for elastic scattering by atoms or molecules per particle in the ground
state [ and per resonance transition lu is given by:

4

w
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with wg = 27y, the circular frequency of the bb transition.

T
T
y

W /We

0 I

Figure 6.5: Ertinction as a result of electron scattering, in units of the Thomson cross
section o1 = (87/3)r2. 1 = Rayleigh scattering, 2 = resonance scattering, $ = Thomson
scattering, {4 = Complon scatlering.

Figure 6.5 shows the variation of o¢/or with w/wo. There are four different domains.
The first domain is that of the Rayleigh scattering with w &« wq. For this we have:

R w\*
0o (W) = fruoT (w_o.) : (6.13)

The incident wave vibrates so slowly with respect to the resonant frequency wo that the
valence electron resonates without inertia: for w <« wp the fluctuations of the external
electric field are experienced as quasistatic. Damping is negligible and higher frequencies
are scattered much more strongly than lower ones.

6.4.1.2 Resonant scattering

The second domain in Figure 6.5 has w & wp so that:

wb

Oe(w) = fiu T G+ 17

A more precise specification of the radiative damping term T' yields (Rybicki and Light-
man §§ 3.5-3.6):

2¢203
= 3m.3
so that )
orwi = dre T,
mee
and
2n%e? I'/2x

o) = I T+ T2

This is the extinction coefficient per particle for a spectral line with frequency w = wo, as
mentioned in § 5.4.

Without the correction factor fi. this is the resonant oscillation of an undriven, bound os-
cillator, because such a free vibration can be excited by a pulse of incident radiation of the
right frequency. It can also be derived directly from £ + I'z + w2z = 0. This is the classical
description of a spectral line as a resonant oscillation and is therefore the reason that the most
probable bb transitions are called “resonance transitions”, and the associated spectral lines
“resonance lines”. The function

/2«

Yw—wo) = Ty r (772

is that given in equation (5.2) as the Lorentz profile that describes the broadening of the
spontaneous emission profile through radiative damping.
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6.4.1.3 Thomson scattering

The third domain in Figure 6.5 has w » wg so that ¢ (w) & f,, o1. For bound electrons
this approximation holds if the energy of the incident radiation is so large that the binding
energy is negligible, 1.¢. if the electron behaves as a free particle. Then the classical harmonic
oscillator is an exact description, thus fj, = 1.

This does make one suppose that the Thomson cross section ot is the extinction coef-
ficient for elastic scattering by free electrons, called Thomson scattering. That is correct;
this can be derived directly from the equation of motion m.z = eEgsinwt of a free electron
that oscillates with the incident wave without damping and consequently follows here from
equation (6.10) by setting to zero the resonant frequency wo and the damping parameter T.
Thus we have for Thomson scattering by free electrons:

8
cl(w)=or = T”rz = 6.65 x 10~ em?, (6.14)
independent of the frequency of the incident radiation. The differential extinction coefficient
for Thomson scattering of nonpolarized radiation is (equation 6.12):

dcr;r] r? 9
—_— = <=(1 +cos*d 6.15
[ dQ unpol 2 ) ( )

with ¥ the angle between incident and scattered radiation.

Question 6.6 Explain the blue color of the sky. Does the light of the daytime sky contain spectral
lines?

Question 6.7 Check that the extinction coefficient for Thomson scattering by free electrons is
much larger than for Rayleigh scattering by bound electrons throughout the entire
frequency regime where Rayleigh scattering occurs. In what circumstances will
Rayleigh scattering nevertheless be important?

Question 6.8 What is the extinction coefficient at for Thomson scattering and what is its fre-
quency dependence?

Question 6.9 What is the source function for Thomson scattering?

6.4.2 Inelastic scattering
6.4.2.1 Compton scattering

Just as with Thomson scattering, we are also concerned here with collisions between photons
and free charges (electrons), but now, in the fourth domain of Figure 6.5, with photons of
high energy for which the approximation no longer holds that the Coulomb energy is the
total energy of the particle, because now the energy hv of the photon must also be included.
The scattering is then inelastic: the EM-wave loses energy to the electron. The size of the
energy loss follows by combining, for an initially stationary electron, energy conservation

hvy + mee? = huy + mc?

and momentum conservation

b%: é—:-’zc V4 mvecosy and 0=h%sint9—mvsinp,
] hy
with m.c? the rest mass energy and the mass m given by: ¢

m, —m
V1-v?/e? = e
with ¥ = 1/\/1 — v2/c2. The elimination of ¢ and mv provides:

’lll]
1+ (hvy/mee?)(1 = cos V)

hv,

hl/; =

and consequently
Az = Ay = A(1 = cos ¥) (6.16)
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with A2 > A; and A. the Compfon wavelength, defined as

h -3
— =24x10"" om, (6.17)

mec

Ac

The loss of energy of the photon is negligible for hv &« mec? = 0.5 MeV or A 3> Ac; this
is the Thomson condition for elastic scattering. The relative decrease Av/v = —AM/) =
~(A¢/A)(1 — cos V) is large for y-radiation and negligible in the optical spectral region.

The collisional cross section is given by the Klein-Nishina formula, which is not derived here.
It varies with the photon energy. In the extremely relativistic domain where

hv

mec? >1

=

we have that
3 In2z+1/2
~ 0= =g —————.

X AR

6.4.2.2 Inverse Compton scattering

Instead of an energy transfer from energetic photons to charges “at rest” we now have
the opposite: an energy transfer from energetic particles (usually relativistic electrons) to
photons. We now need to make the relativistic distinction between the LRS = laboratory
reference system = “observers reference frame” on the one hand and the PRS = particle
reference system = “comoving system” = “rest frame” on the other hand.

First the Doppler effect. During one radiation cycle a source moves a distance vAt from
point 1 to point 2 at an angle § with respect to the line of sight. The path length difference
projected onto the line of sight is d = vAtcosf. Then the difference between the arrival |
times of the radiation emitted at point 1 and at point 2 at the position of the observer is:

Atops = At - g— = At[l — (v/c)cosf].

This time difference corresponds to one cycle of the radiation, thus the observed frequency

Vobs = 1/Atgps is given by
v

Vobs = T2 (v/c)cosb

This is the classical Doppler effect. The same formula holds for the relativistic Doppler
effect, but then with an extra factor v = 1//1 — v2/c? as a result of time dilation:

V= vy(l - %cos ) and v=vy(1+ %cos 6'),

in which quantities that are measured in the PRS are designated with primes.
The angle § measured in the LRS between the wave vector and the source velocity ¢ is

transformed into 8 in the PRS according to:
sin 6’ sin 8

(1 + (v/c) cos 0") and  sind' = S esd)

Consider a radiating object that is moving towards us with relativistic velocity (y > 1)
Radiation that is emitted perpendicular to the line of sight in the rest frame of the object
(PRS) (¢’ = 90°) bas sinf ~ § ~ 1/y < 1, and thus radiation that is emitted isotropically
in the PRS is strongly peaked in the forward direction when observed in the LRS. This is
the relativistic beaming effect (Figure 6.6).

Consider now a relativistic electron that scatters radiation. In an isotropic radiation field
(isotropic in the LRS, thus in 6) that electron “sees” a radiation field coming towards it that
is strongly peaked in its direction, with a correspondingly higher frequency:

sinf =

v =ny(l - %cos@)
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Figure 6.6: The relativistic beaming effect. Isotropically emitted radiation is observed to be
strongly peaked in the forward direction. Above: emission pattern in the PRS; at left, an
isotropic distribution, in the middle, a dipole distribution with the dipole pointing towards the
right, at right, a dipole distribution with the dipole pointing upwards. Below: the associated
emission patiern in the LRS, for relativistic motion to the right. The beam width is only

2/v. e sherver iy b Ha r;,kf—_

where the index 1 indicates the situation before the scattering. For § = 90° the frequency
increase is v{ /vy = v. The Thomson condition for elastic scattering in the PRS is hv] =
hviy € m.c? = 0.5 MeV; if this condition is satisfied then the scattering in the PRS is
elastic and we have vj = v]. In the LRS we then have for the scattered radiation:

v =vyy(l + gcosﬂ') =y (1+ %cosﬂ')(l - %cosﬂ).

The scattering angle will follow the dipole phase function, and thus be roughly isotropically
distributed: therefore we have:

¥2u,. (6.18)

O b

Vy =

For large v there is thus a considerable energy increase (“hardening”) of the photons, which goes =
roughly as 4. Thus X-ray photons can be created from a more moderate radiation field. The B
Thomson limit needs to be observed in the PRS. We must certainly have that Av,y € 0.5 MeV
we must have that Av; < 0.5 MeV, for example hv; = 100 keV. With ¥ = 10 you then can
obtain 1 MeV LRS photons from 10 keV LRS photons. However the Thomson limit is easily
violated; for v = 100 (probably the case in AGN’s) this requires that hAy; < 5 keV.

Relativistic electrons in an intense radiation field will undergo inverse Compton scattering
many times over. The radiation is hardened and the particles are slowed down; there is thus
exchange of energy between the particles and the radiation field.

6.5 Electron + B-field
6.5.1 Cyclotron radiation

We now treat the acceleration of a charged particle (electron) in a magnetic field by the
Lorentz force. First of all consider nonrelativistic velocities, ¥ = 1. An electron spirals
around the magnetic field lines; we divide this motion into a single motion along the field
and a circular motion perpendicular to it. Resolving the electron velocity ¢’ into components
vy I B and v, L B and setting the Lorentz force equal to the centripetal force yields:

m._.v"'I _evy B
Rg = ¢ '
thus
_m,v_._c _m,vJ,
Rp = 5 (cgs) = ) (mksA). (6.19)

Rp is the Larmor radius or gyro radius. The acceleration is directed along Rp. The frequency
of the associated radiation is given by the number of cycles per second:

_ vy _ eB _ ¢eB
vp = SxRa = Trmec (cgs) = e (mksA). (6.20)
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This is the Larmor frequency or cyclotron frequency.
The radiated power follows from the Larmor formula (equation 6.5):

2e?,

334

The magnitude of the acceleration along Rp is given by the magnitude of the Lorentz force:
vy = (eB/m.c)v,, and thus

2¢2 [ eB\? 2/ ¢ \?’B? 2r2
P=co| — 2 s = Y Z.,2 - £lep2,2
33 (mec) vi 3 (m,c"') c Vi 3¢ B'vi

with ro = €2/(mec?) the classical electron radius. For an isotropic velocity distribution of
the electrons we have:

2
<vi>= :—w/sin2ad9= %vz

with a the pitch angle (B, 7) using [sin? @ dQ = 87/3. Thus:

<P>= §'ro?B = 5617-87

with the Thomson cross section ot = (87/3) r2.

In a homogeneous magnetic field there is monochromatic emission at the frequency vp: a single
spectral line. Such cyclotron lines are observed in the X-ray spectra of pulsars.

6.5.2 Synchrotron radiation

Without proof we state that for relativistic velocities similar formulae hold as for cyclotron
radiation, with an extra correction factor ¥ = (1 —v?/c?)=1/2. The gyro frequency associated
with the circular motion of an electron is then in cgs units:

vp eB
=B _ == 6.21
e 7 2rym.c ( )
and the radiated power becomes:
_ 40 v ,B?
=377 &

for a homogeneous field and an isotropic velocity distribution. With respect to cyclotron
radiation the frequency decreases upwards and the power increases. Furthermore relativistic
beaming also occurs here: the emission is strongly peaked in the forward direction along v,
with a half angle 1/v. As it sweeps around, this cone of radiation rapidly passes across the
observer’s view, and thus is visible for only a fleeting moment. The duration is only 43
times the period of revolution: one y~! from the vertex angle of the cone, and then 42
from the time dilation to and from the PRS via the LRS. These recurring bursts have a
characteristic frequency:
Ve = 572113 sina = g'ysus sin @ (6.22)
in which a is again the pitch angle (B,¥). This is the synchroton frequency. For v > 1 we
have v. >» vn.

In Fourier terms: cyclotron radiation is a decent, continuous pure sine wave of EM radiation
in which the spectrum, i.e. the Fourier transform, is a sharp spectral line. On the other hand,
synchrotron radiation consists of sharp pulses. They follow one another with the cyclotron
frequency but their pulse width is 4° times smaller. The spectrum, i.e. its Fourier transform,
is a broad system of higher harmonics of the cyclotron frequency that extends up to the
Nyquist-frequency 2v.. In other words: because of the short duration of the flash, the higher
harmonics of the Larmor motion up to 2v are present. Because the radiation is so strongly
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peaked forwards, there are many of these higher harmonics of vp: the observed amplitude is no
longer a sinusoid. Synchrotron radiation therefore has a broad spectrum consisting of higher
harmonics of vp that extends to approximately v.. In the presence of smearing, for example
by the distribution of particle velocities at a given spot (thus in v, thus in the duration of the
flash), or in spread in direction and strength of the magnetic field within a source, this gives
rise to a continuum.

If the relativistic particles have an energy distribution that follows a power law:

N(EYdE~E™"dE of N(y)dy~<v"Pdy

then for the total emitted power we have:
Pioi(v) ~ /p(,,).,ﬂ dy ~ y-(p-x)/z‘

thus the spectral index sin P~ v~ is s = (p — 1)/2 for synchrotron radiation.

There is a direct analogy with the ff processes for charged particles accelerated in a Coulomb
field. Thus synchrotron absorption can also take place: excitation of an electron into a “higher”
Larmor orbit. There is likewise induced synchrotron emission: synchrotron deexcitation with
the ambient radiation field. Finally: synchrotron radiation is polarized because the magnetic
field defines a preferred direction.

6.6 Collective phenomena

In these lecture notes it is everywhere assumed that the index of refraction n = 1. Here we
give a short summary of phenomena for which the index of refraction is of interest; a more
extensive treatment is given in courses on plasma astrophysics.

6.6.1 Dust and droplets

Valence electrons in atoms and molecules, resonating with the incident radiation, give rise
to Rayleigh scattering. For larger particles there is a transition, from Rayleigh scattering
off dielectric globules to diffraction phenomena by particles locked into a medium with
effective cross section o = nr?. Thus the phase function changes with respect to the dipole
phase function for Rayleigh scattering towards increasingly stronger beaming in the forward
direction. See Table 6.1. In all these processes we encounter partial polarization.

name diameter | A-dependence phase function
Rayleigh d< A ~ At
Mie d= A ﬂ

diffraction d> )\ ~ A0

~

Table 6.1: Elastic scatlering by larger particles.

-

6.6.2 Cherenkov radiation

This is the radiation of a charged particle that moves with a velocity v > ¢/n in a medium
with index of refraction n > 1. Then ¢/n is the phase velocity of EM radiation in the
medium, and the particle goes faster. Just as with the “sonic boom™ of a supersonic jet, a
shock wave occurs, with associated loss of energy. This is an efficient mechanism for slowing
down the cosmic particle flux in the Earth’s atmosphere.
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6.6.3 Plasma cutoff

The ions and the electrons in a plasma can be separated from one another by the Coulomb
force of a passing EM wave because the electrons are much more mobile then the ions. For
sufficiently low frequencies this separation provides a counterforce which works against the
further propagation of the wave. This certainly happens for frequencies smaller than:

v, =9 x10%/N, Hz (6.23)

with v, the plasma frequency below which EM waves cannot propagate. For v > v, the

index of refraction is:
- — 2/2
n, = /1 -v3/vi

6.6.4 Faraday rotation

The propagation of an EM wave in a plasma can be disturbed by a magnetic field. Speaking
heuristically: a linearly polarized wave (E in some preferred direction) can be thought of as
a superposition of a left- and a right-circularly polarized wave. When propagation occurs
parallel to the magnetic field, one circular polarization direction fits but the other does not.

The result: the polarization is altered.

6.6.5 Razin cutoff

In a plasma with n, < 1 no Cherenkov radiation can occur. The vertex angle of the cone of
the relativistic beaming effect changes according to:

Obeam = -},- =1=-v2/c? — Bpeam=4/1— n;",vz/cz.

For n, < 1 the beaming effect is thus suppressed. Since it is this beaming which provides
synchrotron radiation provides via pulsation, there is a cutoff frequency determined by np,
thus v, below which no synchrotron radiation can occur:

VRazin = T¥p

6.7 Nuclear reactions

Finally for the sake of completeness we present radiative processes resulting from nuclear
reactions.

6.7.1 Fusion and fission reactions

For example 4p — a + 2v + 27 occurs as a result of the various proton-proton cycles in
hydrogen-burning stars. The whole star is optically thin to the two neutrinos. The two ¥
photons are the source of starlight.

6.7.2_ Pair annihilation and pair creation

et+e” —v+7

A highly energetic positron collides for example with a stationary electron and produces
one y-photon with large hv and one v-photon with kv = mec?. This 0.511 MeV line is
observed in solar flare spectra. Another example is the annihilation contribution to the
3 K background radiation.

Furthermore:
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et +em — & only for bound electrons, otherwise momentum cannot be conserved:
T+ — et +e~  with the condition that hvy x hvy > (mc?)?;

T — et e in a collision with an atom;

T — pt4u- in a collision with an atom:

T — 4y etc.
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Chapter 7

Radiative transport

7.1 Introduction: types of equilibrium

Chapter 3 discussed radiative transport in homogeneous slabs and the emergent intensity
for slabs with a given source function S,. In this chapter we treat the radiation from inho-
mogeneous slabs and the source function itself. We do this for various types of equilibrium
situations.

7.1.1 TE

In thermodynamical equilibrium (TE) S, = B, holds for each subprocess and also for the
total source function; specification of the subprocesses is therefore not necessary. In TE it
also is true that the profile functions are equal (x = ¢ = ¢) and for all radiative quantities
the identity holds: I, = J, = S, = B,(T). The populations are given by the Saha-
Boltzmann distribution and the kinetic energy distribution follows the Maxwell law, with
the same temperature in all distribution laws. There is “detailed balancing” between each
process and its opposite, at each frequency and for each bundle. There is no net transport
of energy: F, = 0, and there are no spectral lines. This is easy to calculate but not very
helpful as regards evaluation of energy fluxes or diagnostic interpretation of spectral lines.

7.1.2 LTE

In local thermodynamical equilibrium (LTE) it is assumed that the matler is in equilib-
rium with the ambient kinetic temperature. The radiation may, however, deviate from the
temperature and the temperature may vary (slowly) through the medium. The Maxwell,
Boltzmann and Saha laws hold, with T the ambient temperature that is determined by
the thermal particle motions (electron temperature). It is also assumed that complete re-
distribution holds so that x = ¢ = ¢. With this assumption the populations follow the
Saha-Boltzmann TE-distribution and the extinction coefficients are determined. For the
source function it follows from the general expression (equation 5.12) that:

S, = 2h3 Y/
- 14 - cz g.u_n—’— /
qiny
o 1
= C2 (gun‘)TE—l
gin.
2h)3 1

o2 M IFT 1 B.(T).

The essence of LTE is that the energy distribution of matter is more locally determined and
maintained by collisions than that of radiation, so that the radiation but not the matter can
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depart somewhat from the local conditions:
S, (A=B,(T(M LA#BITM LA#BT(A]  FAH£0  (11)

According to the assumption of LTE the matter resides in a sufficiently small TE-cylinder
that the different thermal conditions elsewhere are not reflected in the populations. However,
the ambient local radiation has indeed some knowledge of more distant regimes. The free
path length for particles is thus assumed to be somewhat smaller than for photons, but
the photons don’t carry enough information about circumstances elsewhere to drive the
populations from their local equilibrium values.

LTE is thus a very pleasant assumption that reconciles the convenience of\ TE with the need
for at least some variation through the medium. It is a common assumption that sometimes is
valid, notably for stellar photospheres. Both the extinction coefficient and the source function
are determined in a simple way in LTE. Evaluation of the extinction coefficient a, demands
only a knowledge of the extinction coefficient per particle o, (or the equivalent transition
probability Au, oscillator strength fur, gf-value), the chemical composition of the gas mixture
and the critical quantities of pressure and temperature. From the Saha and Boltzmann laws
n,'n;: is derived for all populations-and a, = n,,0. is determined for all transitions of interest;
their source function follows directly from the temperature by means of the Planck function.
Thus you can analyze a single spectral line without being concerned with other transitions and
wavelength regions. This applies to some extent to continuous processes as well as to spectral
lines; a continuous transition can always be thought of also as a jump between two levels.

Question 7.1 Which role does the relationship between collisional excitation, collisional deexci-
tation, collisional ionization, collisional recombination etc. on the one hand and
radiative excitation, radiative deexcitation, radiative ionization, radiative recombi-
nation etc. on the other hand play in the applicability of LTE?

Question 7.2 Give examples of situations in which LTE truly holds and of situations in which
LTE certainly does not hold.

7.1.3 SE

The assumption of statistical equilibrium (SE) implies a static situation: a time independence
of the radiative fields and level populations. For the latter then the statistical equilibrium

equations hold:

dni() _ < 3
—— = 2 (PR = nilA) Y Py() =0 (7:2)
Jj#s i#s
with n; the population of the level i in which we are interested, N the total number of levels
that have influenced this population by means of one or another process, and P;; the total
transition probability per second for a transition from level i to level j:

P.'J' = Ai; + B.'jyyo + C.',',

with A;j, B;; and C;; the Einstein coefficients for bb transitions from Chapter 5 or the
analogous transition probabilities for other processes such as bf and ff transitions; J,, is
the frequency-averaged, angle-averaged radiative field, for example, that for bf processes
averaged over the series limit continuum. The first sum in equation (7.2) gives the increase
of the population of level i from transitions from all other levels j to i; the second sum
gives the decrease of the population of i from transitions from i to all other levels j. These
equations boil down to: per unit time there are as many transitions into a level as out of it,
but no microscopic equilibrium per subprocess. The deficit in one process is made up by a
surfeit of another.

These population equations for statistical equilibrium are copled to the equations for

radiative transport
d1, (9

m = S5, (F) = I.(7)

at all frequencies v and along all bundles of interest for some population. The transition
probabilities P;; in the statistical equilibrium equations always depend on 7, and thus on I,
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op alle frequenties v en langs alle bundels die van belang zijn voor enigerlei populatie. De
overgangswaarschijnlijkheden P;; in de statistisch evenwichtsvergelijkingen hangen immers
van J, af en dus van I, in alle richtingen, terwijl de optische dikte r, en de bronfunctie S,
in de transportvergelijkingen beide weer via a, van de populaties athangen. Het verband
tussen I, en S, is bovendien doorgaans niet lineair. Er resulteert een stelsel niet-lineaire
gekoppelde vergelijkingen, vaak heel groot, dat simultaan (i.e. onderling consistent) moet
worden opgelost voor elke plaats in het medium, voor alle frequenties en langs alle bundels
die in de populatieprocessen meedoen.

Als je LTE mag sannemen kan san dese gedetailleerde specificatie van P;; en aan dese in-
gewikkelde oplossing van een groot stelsel niet-lineaire vergelijkingen worden voorbijgegsan.
Vandsar dat de aanname van LTE secer vaak wordt gemaakt sonder bewijsvoering. Vaak is dat
incorrect; dan sit er niets anders op slechts SE te veronderstellen. Als ook SE niet geldt moet
het oplossen tijdsathankelijk worden gedaaxn. Als dan - nog de Maxwellverdeling niet geldt
en er geen axiale symmetrie kan worden aangenomen is een supercomputer al vlug noodsakelijk.

7.1.4 NLTE

Het acronym NLTE of non-LTE betekent dat de veronderstelling van LTE niet opgaat. Het
segt niets over wat er dan wel opgaat. Meestal bedoelt men er echter mee dat SE wordt
sangenomen, dat de Maxwellverdeling geldt en dat complete redistributie (CRD) optreedt.
De populaties kunnen dan verschillen van de plaatselijke Saha-Boltsmann waarden. Dat
impliceert dat de extinctiecoéfficient kan verschillen van xijn lokale LTE waarde en dat de
bronfunctie kan verschillen van de lokale Planckfunctie.

Een stap algemener is het om naast Saha-Boltzmann ook de gelijkheid van de profielfuncties
te laten varen: ¥ # . Geen complete maar “particle” redistributie (NLTE-PRD). De
lijnbronfunctie is dan frequentie-athankelijk: binnen een spectraallijn varieert de bronfunctie
met de frequentie, afhankelijk van verschillen in de vormfuncties. Zulke verschillen kunnen
optreden in sterke lijnen met veel verstrooiingsprocessen als de stralingsvelden door de lijn
heen varieren. Dat is goed mogelijk omdat de vrije weglengte van een foton in de verre vieugel
van een sterke lijn veel groter is dan in de lijnkern sodat de Lijnvieugels meer weet hebben
van verder weggelegen stralingsbronnen en stralingsverliesen dan de kern. In dat geval
moeten de statistisch evenwichtsvergelijkingen monochromatisch worden opgelost, met een
redistributiefunciie die aangeeft hoeveel “crosstalk” er is met andere delen van het lijnprofiel.

Vraag 7.3 Vaak worden NLTE-afwijkingscoéfficienten b; gedefinieerd met:

& =m/n:'“: « =n,/nLTE
die de afwijking specificeren van de werkelijke populatie ten opsichte van de uit
Saha en Boltsmann volgende TE populatie voor de lokale temperatuur T. Hoe
verschijnen se in de lijnbronfunctie 5!, en in de lijnextinctiecoéficiént a'?
Laat sien dat in de Wien benadering de lijnbronfunctie lineair schaalt met b, /b; en
de lijnextinctiecoéfficiént met b;.

Vraag 7.4 Vaak wordt gedacht dat NLTE voor de vorming van een spectraallijn altijd S! # B,
betekent, maar het is ook mogelijk dat S, = B, sonder dat de lijn aan LTE voldoet.

Hoe?

7.2 Stralingstransport bij LTE

Als LTE geldt is de bronfunctie eenvoudig vastgelegd door de plaatselijke temperatuur, en de
extinctiecoefficient middels Saha-Boltzmann ook. Stralingstransport voor een gegeven bron-
functie is reeds behandeld in Hoofdstuk 3. Alle resultaten daar zijn dus hier van toepassing
met de eenvoudige substitutie:

5.(7) = B, [T(7)] .
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in all directions, while the optical thickness r, and the source function S, in the transport
equations both again depend on the populations via a,. The connection between /, and S,
is moreover usually not linear. The result is a system of nonlinear coupled equations, often
quite large, that must be simultaneously (i.e. mutually consistently) solved for each place
in the medium, for all frequencies and along all bundles that participate in the population
processes.

If you may assume LTE you can bypass this detailed specification of P,, and this involved
solution of a large system of nonlinear equations. That's why the assumption of LTE is very
often made without substantiation. Frequently that is incorrect; then there’s nothing else to
do but to assume SE only. If SE also does not hold then the time-dependent equations must be
solved. If the Maxwellian distribution does not hold and axial symmetry cannot be assumed,
then a supercomputer is soon required.

7.1.4 NLTE

The acronym NLTE or non-LTE means that the assumption of LTE is not valid. This
does not indicate what is valid instead. Usually, however, it means that SE is assumed,
that the Maxwell distribution holds and that complete redistribution (CRD) occurs. Then
the populations can differ from the local Saha-Boltzmann values. That implies that the
extinction coefficient can differ from its local LTE value and that the source function can
differ from the local Planck function.

A more general step is to forego not only the Saha-Boltzmann population distribution
but also the equality of the profile functions: ¥ # . This is not complete but rather “par-
tial” redistribution (NLTE-PRD). The line source function is then frequency-dependent:
within a spectral line the source function varies with the frequency, depending on differ-
ences between the profile functions. Such differences may occur in strong lines with many
scattering processes if the radiation fields vary across the line. That is quite possible be-
cause the free path length of a photon in the far wing of a strong line is much larger than
in the core of the line so that the line wings have more knowledge of more distant radiative
sources and radiative losses than the core. In that case the statistical equilibrium equations
must be solved monochromatically, with a redistribution function that represents how much
“crosstalk” there is with other parts of the line profile.

Question 7.8 Frequently NLTE-departure coefficients b, are defined by:

LTE

LTE
! bu = nu/nu

b =ni/n
that specify the departure of the true population with respect to the TE population
following from the Saha and Boltzmann laws for the local temperature T. How do
they appear in the line source function S! and in the line extinction coefficient al?
Demonstrate that in the Wien approximation the line source function scales linearly
with b, /b:, and the line extinction coefficient with ¥;.

Question 7.4 It is frequently thought that NLTE always means S! s B, for the formation of a
spectral line, but it is also possible that S = B, for a line that does not satisfy
LTE. How is this?

7.2 Radiative transport in LTE

If LTE holds the source function is simply determined by the ambient temperature, and the
extinction coefficient by means of the Saha-Boltzmann laws. Radiative transport for a given
source function has already been discussed in Chapter 3. All of the results there apply here
with the simple substitution:

Sy(7) = B, [T(M)].
The transport equation (equation 3.13) therefore becomes

dl,
= B,(T)-1
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for optical thickness,
dl,

dr!
for radial optical depth and axial symmetry; in the Rayleigh-Jeans approximation we have
for the brightness temperature

u =1, -B,(T)

=T—Tb.

dr,
The integral form (equation 3.14) becomes

1,(r) = 1,(0) e"~+/ ~19,,[T(t,)]e“’“"v’dt,;
0
for a homogeneous slab this results in (equation 3.15)
L(D) = 1,(0)e=® 4 B,(T) (1 - ()

and the Eddington-Barbier approximation for the intensity from an optically thick slab
(equation 3.18) becomes
IF(r,=0,4) = B, [T(r,=p)].

7.2.1 Radiation from a thin LTE slab

For an optically thin homogeneous slab in LTE of thickness s the emergent intensity is
1,(s) = L,(0) + [B.(T) ~ L(0)] 7. (s)

with the incident intensity in the direction of radiation equal to 1,(0). In the Rayleigh-Jeans

approximation this is:
Ty = T(0) + [T - To(0)]  (s); (7.3)

this expression is often employed in radio astronomy. For an optically thick homogeneous
LTE slab then we have just T, =T, or Ty = naT with T, the antenna temperature.

7.2.2 Radiation from a thick LTE slab: the Rosseland approxima-
tion

In TE S, = B, and I, = B, holds. This is a zero-order approximation, for the interior
of optically very thick objects such as stars, in which the free path length of the photons
is small with respect to the scales on which the temperature and density change: a cubic
centimeter of a stellar interior is a TE box to a good approximation. Yet this zero-order
approximation is ussatisfactory because then there is no energy transport at all by radiation:
the net flux ¥, = 0if I, = B, in all directions. In stellar interiors the net flux is indeed very
small with respect to the angle-averaged intensity, but it is the net flux that interests us:
I it is what flows out that is important, both for us as observers in the form of a diagnostic
as well as for the star itself in the form of a loss of energy, which determines its structure
and lifetime. Thus the anisotropy of the radiative field, however small, must be explicitly
included.
For axial symmetry and with the use of radial optical depth the transport equation is:

dl,

Substitution of the zero-order approximation I, (z) = S.(z) = B,(z) provides

dB,(z)

B-AB/IC' Liaw) = Bu(2) 4 n=geE,

in which the intensity differs from the Planck function only to first order. This approximation
is valid provided that LTE holds and the correction dB, /dr! is small with respect to the
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isotropic part B,. The flux is then determined through the small anisotropic component
udB, /dr:

wd +1
f,(z)=27r/ ul,dp = 3248.0)
-1 3 dn

This monochromatic flux is however uninteresting in the unobservable stellar interior; for

the total energy flow:
/ F.(z) dv
0

_ _4:/“’ 1dB, .
- 3 0 ap dz

47 [® 1dB, dT
3 Jo a, dT dz

> dB, d st dB 40
B2 [T a=98_%
/o v an‘/0 B, dv

F(z2)

dv.

With the use of

daT daT =
and the Rosseland-averaged eztinction coefficient ar, defined as
_ * 1 dB, * dB,
there then follows: 16672 dT
o

This is the Rosseland approzimation for the radiative flux. Its form is that of a diffusion
equation with an effective conduction coefficient 166T3/3ag; this approximation is then also

commonly called the diffusion approzimation. It shows that in LTE a net outward radiative

flux is associated with an inwardly increasing temperature. —m——-
The Rosseland-averaged ar of the extinction coefficient a, behaves analogously to an equiva- | _
lent parallel resistance: the frequency bands with the smallest extinction contribute the most - R,

— the radiative flux “chooses” i.e. selectively leaks through the most transparent spectral
windows. The weighting function

_dB.JAT _ = dB, o
CUT)= JBjaT = T5 aT J"’a 4

in - - 4
1/ar E/ (G,/a.,)dv

weights this choice of transparent windows by the temperature sensitivity of the Planck func-
tion. G, resembles the Planck function but peaks at hv/kT == 3.8 in place of 2.8, and thus at
a somewhat shorter wavelength. Examples in Novotny, Fig. 3-12.

7.2.3 Radiation from a thick LTE slab
For an optically thick slab in LTE, we have in Eddington-Barbier approximation:
I (r,=0,p) = B,[T(r,=p)].
Figure 7.1 shows an adaptation of the diagram in Figure 3.3 for LTE line formation in
such a slab. The observed line profile (below left) is determined by:

— the variation of the extinction coefficient a, = a! + of with the frequency (above left,
illustrated for a specific location z). A bb transition can enhance by many orders of
magnitude the size of the continuous extinction;
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— the variation of the extinction coefficient with position (not illustrated). Here axial
symmetry (plane parallel slabs) is assumed, so we are dealing here with the variation of
a,(z) with the height z. Because the density in an optically thick cloud of gas (which is
probably gravitationally bound by its own mass) falls off roughly exponentially outward,
a, usually falls off steeply with z;

— the variation of the monochromatic optical depth 7,(z) with the geometrical depth —z
(above right, sketched for two frequencies along the y-axis). This variation follows from
the two given above and is strongly frequency-dependent. With an exponential falloff
of the density we have approximately that logr, ~ ~2z, with departures dependent on
a,(z); the optical depth scales for different frequencies differ and are shifted with respect
to one another;

— the variation of the temperature with z (above right);

— the variation of the Planck function with the temperature. The temperature sensitivity
of the Planck function varies across the spectrum (Figure 7.2); and so this curve is also
frequency-dependent. The slope dB/dT is always positive.

The line is in absorption if the temperature falls outward and is in emission if the temperature
rises outward.

(dB/dT)/B (cgs)

1 1 L 1

[
o2 0.7 12 8.7 0.2 0.7 1.2 11.1 22
A () (jum] A (o] [pn)
Figure 7.2: The temperature sensitivity of the Planck function B., absolute (left) and relative
(right), for T = 4000 K and T = 5000 K.

Question 7.5 How can you tell in Figure 7.1 that the Eddington-Barbier approximation is as-
sumed? Is the assumption correct?

Question 7.6 Does the diagram in Figure 7.1 apply also for the formation of the continuum at
radically different wavelengths?

Question 7.7 What kind of spectral lines do you have in LTE from an optically thin homogeneous
slab? And from an optically thick homogeneous slab? And from a homogeneous
slab which -is optically thin in the continuum and optically thick in the spectral
line?

Question 7.8 Explain with the assumption of LTE why the Na D lines in the solar spectrum are
absorption lines.

Question 7.9 How does the intensity in the line center of the Na D lines change from the center
to the limb of the Sun?

Question 7.10 Just outside the limb of the Sun during a total solar eclipse the chromosphere
appears. This is a thin layer of tenuous gas. During a solar eclipse you look trans-
versely through it; even then the whole chromosphere is optically thin along the line
of sight in the visible region of the spectrum. Explain why the chromosphere shows
the yellow Na D lines in emission. Does that say something about the temperature
of the chromosphere, if LTE is a good assumption?
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Figure 7.1: Diagram for LTE line formation in optically thick media. The depth-dependent
extinction coefficient (above left) determines the optical depth scale (above right). When
convolved with the temperature dependence of the Planck function (below right), the variation
of the temperature with the monochromatic optical depth determines the emergent intensity
at each frequency (below left). The larger the eztinction a,, the farther out the Eddington-
Barbier representative height of formation 7,(z) = 1. Where the temperature is falling
towards the surface, absorption lines are the result.

-
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Question 7.11 In the spectrum of the center of the solar disk the Ha line is an absorption line but
the Ly o line is in emission. How is that explained with the assumption of LTE?

7.3 Radiative transport from scattering

The essence of LTE is that the source function is determined locally, thanks to sufficient
local coupling of particle energy and radiative energy. If however it is not the collisional
processes but the scattering processes which dominate, this local determination is lost —the
photons to be scattered come from somewhere else. Scattering contributes both to j, and
to a,, thus both together to S,.

The free path length of a photon between two successive extinction processes, according
to equation (3.10), is:

l, =1/a,

but if most extinction processes are elastic scattering processes, the identity of the quantum
of radiative energy remains constant between successive scatterings: the photon changes in
direction but not in energy in each scattering. The distance between creation and destruction
or between creation and escape of a photon can thus be effectively much larger then I,.

For example in a stellar atmosphere. The outgoing photons emerge from the slab at an optical

[\\\ \\\\\ thickness roughly 7, = 1, measured along the line of sight, that is from a radial optical depth

. = u. But this depth of escape is merely the place where the photons experienced their last
interaction, i.e. where they were scattered. Their creation depth can be much larger. From
that point they diffused by a “random walk” in scattering steps towards the surface.

It doesn’t matter here what type of photon scattering is involved. Below we will always .
be discussing bb scattering because the creation and destruction probabilities can then be

conveniently expressed via the Einstein transition probabilities, but the treatment holds for

each type of elastic scattering: Thomson, Rayleigh, etc. In bb resonant scattering the line

photon is also scattered elastically, with conservation of energy. That can be the case precisely

(coherentscattering) or there can be a redistribution over the width of the line profile (frequency

redistribution). In spontaneous deexcitation the new direction then is arbitrary (complete

angular redistribution) while in self-induced deexcitation the direction of the induced photon

is fixed.

Question 7.12 Why do the scattering steps become larger towards the surface?
Question 7.18 According to the Eddington-Barbier approximation the escaped photons exhibit
the source function of the depth 7, = u. Does that also hold for scattering?

7.3.1 Pure scattering

Consider a homogeneous slab of gas in which in a bb transition there is only scattering.
There is no photon conversion, no photon absorption and no thermal emission, thus there
is no photon creation or photon destruction. Assume that the scattering is isotropic and
elastic (= “coherent” = monochromatic: v’ = v). In each extinction process the photons
then change only in direction. Instead of the line extinction coefficient a! we use a scattering
coefficient o’ that gives the scattering cross section in cm? per cm3, defined as

dl, = -all, ds.

What is the emission coefficient j;? Each “new” photon is a scattered “old” photon from the
extant radiative field. Thus we must have that the total emission per cm3 in all directions
is equal to the total extinction per cm3 from all bundles:

/j; dQ = /:.;1, dQ.

The angle-averaged radiative field is J, = (1/4x) [ I, dQ, and so the emission coefficient is

given by
=yl
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and the line source function by
Sl =jilal=J,.

The radiative transport equation then becomes:

ar,
s =a, {JV - IV]

The average intensity J, must thus be known in order to determine J,, and so we must
know I, in all directions in order to calculate I, for a specific bundle. Here the analytical
treatment ends; for a precise evaluation an iterative numerical calculation is necessary.

In these paragraphs about scattering we must therefore limit ourselves to approximations.
We begin with an estimate of the radiative transport under pure scattering, with “random
walk” arguments applied to individual photons. The free path length of a photon between
two successive scatterings is given by (equation 3.10):

<7 > 1
Iy =4 = -—.—
a, al

What is the total path length [* traveled by a quantum after N scatterings? A description
as a 1-dimensional diffusion process provides (Rybicki and Lightman §1.7):

Ir~VNI,. (7.6)

After how many scattering steps does a photon migrate through a slab with thickness D?
There are roughly as many steps required so that the ultimate path length [ is equal to D,
thus N = (I2)%/I2 = D?/12. With I, = 1/a} and 7, = a} D follows N = 2 provided that
the slab is sufficiently thick (7, > 1) that the diffusion description applies.

For a thin slab with r, < 1 the photon usually escapes immediately — with a small
chance of being retained, roughly equal to 7, = a} D < 1.

7.3.2 Extinction and scattering for a two-level atom

Consider now a medium that for convenience consists only of two-level atoms: particles with
only one lower level [ and one upper level u. In such a situation only discrete transitions are
possible, namely the five processes of Figure 1.5 that were discussed in Chapter 5. We assume
as well that the upper level u is sharp, Heisenberg’s uncertainty principle notwithstanding,
so that the transition is strictly monochromatic with frequency v = vo. In all equations of
Chapter 5 in which the frequency-averaged angle-averaged intensity 7., appears, we have
the monochromatic angle-averaged intensity J,, instead.

The five processes can be combined according to Figure 1.6 into the pairs of processes
photon creation, photon destruction and photon scatlering.

The fourth pair, collisional excitation followed by collisional deexcitation, involves no interac-
tion with photons and is not of interest here, aside from the fact that it helps to maintain the
Maxwellian distribution (also assumed here).

These assumptions provide a medium with strictly elastic scattering, without any photon con-
version. There is no radiative excitation followed by excitation or deexcitation to another
level or continuum, neither per photon nor per collision. Each line photon that is created by
means of a creation pair of processes (collisional excitation followed by radiative deexcitation)
keeps undergoing a random walk, continuously being monochromatically scattered, until such
time as it is destroyed by a destruction pair of processes (radiative excitation followed through
collisional deexcitation) — or leaves the medium altogether.

This is a convenient approximation for the illustration of radiative transport with scattering
without having to be troubled by coupling to other spectral regions and to other parts of
the medium via various other tramsitions into and out of the two levels. We arrive upon a
good description of the nonlocal nature of radiative transport as a result of photon scattering,
while passing over for the time being the nonmonochromatic nature that results from photon

conversion.
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Each radiative excitation of a two-level atom is followed either by radiative deexcitation
(scattering), or by collisional deexcitation (destruction). The total extinction (all radiative
excitations) is the sum of these pairs of processes; therefore we divide the bb extinction
coefficient a{,o in two parts: an absorption part a}, that describes photon extermination
and a scattering part a}_that describes elastic scattering. The total transition probability
for deexcitation per excited particle per second is (equations 5.1-5.6):

R\tlol!m = Aul + BulJuo + Cul'
(+eakion gnd f
The first two terms on the right-hand side together comprise the &cattering fraction) the

third term the fraction undergoing destruction = absorption. These are the fractions per
excited particle, thus also per radiative excitation. The two partial extinction coefficients

are thus: \wlkT
Cult-2 3 ¢ ]
[ 1 ul X
- 7.7
%o = % T Budv ¥ Cu (77)
Aut 5B, ¢
o= o ul g 7.8
an aVo Aul + Bul-]vo + Cul J ( )
with

ey +a, = af,o.
This division of the extinction coefficient thus distinguishes between what happens to the
absorbed quantum after the extinction of a photon.
What are the associated emission coefficients? With thermal destruction there is similarly
thermal creation; the source function associated with the collisional processes is the Planck
function. Thus it follows for the first part, i.e. the destruction process: ‘

4 __ A
Jyo - ayoBu0~

The scattering is monochromatic and isotropic, and so the emission coefficient for the second
part, i.e. as a result of scattering per cm3 per second per Hz and per steradial radiated energy,
is again equal to the average energy extinguished by scattering per cm3 per second per Hz
and per steradian:

j:° = C':koo-

The corresponding bb source function S, is

: a s
- Z]Vo - ovoBUo + auo‘]l’o
o = =
Za"ﬂ a:Q + a:o

Sl

and the transport equation becomes :
dl,, = —ay I,,ds —a} 1, ds + a} B,, ds + a}_J,, ds,

where the first two terms on the right-hand side are the absorption part and the scattering
part of the extinction, the third and fourth terms are the creation and the scattering parts
of the emission, along the bundle. With

dr, =a,,ds=(a}, +a},)ds

and the corresponding source function we recover the standard form:

dl,, _ dl,, _
dr,, - (a3, + aj ) ds -

A

We now introduce the probability €, that a photon is extinguished following an extinction

process:
1 3

a . . . .
€,, = ——=—— = destruction probability per extinction. (7.9)
al + al
Ve Vo

(*) Iy et ’}.J’ were wraw} o Braaaks inditdd pmitsiom ) counhtd ay
ragbiort dhiorphm in o e induter per 4 a fw“-ui.\} por

vamir ket (i) Roppbos a5 offtn fov emission mlwa/(kwcliov\), Onlsy Ung,
Ipmbewaru) fulftw:Ag lomnan ) .
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The probability that it is scattered in the next extinction process is then:

]
ay,

1-¢,, = ——2— = scattering probability per extinction.
°oal,+al,

Expressed in terms of Einstein coefficients €, is:

Cul
Evo = . 7.10
¥ T Aui + Budyg + Cu BQ (7.10)
This important parameter measures the fractim per extinction, thus the
amount of coupling to the local temperature. The two-level line source function then be-

comes.

St = (1 =€y,)up + €4y Buo- (7.11)

This is a important result. The source function is equal to the Planck function if €,, = 1;
on the contrary the source function is dominated by the angle-averaged radiative field J,,
if £,, < 1. In intermediate cases the source function is an average of J,, and B,, weighted
by £,,. When does S, = B,, hold? lf ¢,, = 1 orif J,, = B,,, or if both conditions are
satisfied at the same time.

The term J,, is the reservoir term: the quantity of available photons. The term Evoduo
is the loss term (“photon sink”); this specifies the energy of the photons that disappear
from the reservoir per extinction. The term €,,B,, is the source term (“photon source” );
this is the energy of the photons newly created per extinction. This source term can not
be neglected because otherwise no photons would be created for scattering, unless a large
radiative field were imposed. That means that also whenever ¢,, is very small, the photon
source €,,B,, usually must be evaluated precisely: it builds up the radiative field J,, by
which the source function then is largely determined. This inhomogeneous term makes the
numerical solution of the transport equation difficult for the case £,, < 1.

For simplicity the above is presented for a two—level atom with monochromatic scatter-
ing. but the resulting source functions are illustrative for every extinction process. The
source function is always a weighted average over the different subprocesses. The line source
function of a bb transition in a multi-level atom can for example be written as:

SLo = (1 — &y — ’7"0)71‘0 + EvoBvo(Te) + nvoBvu(T.)»

where 7,,° is the angle-averaged intensity averaged over the extinction profile, T, is the kinetic 1.

temperature (electron temperature), and T° a typical or mean temperature for which the
Planck function provides the source function of all processes by which an atom can eventually
go from the upper level to the lower level other than by direct deexcitation. B, (T") is then
the aggregate source function for all pathways from u to I; the parameter 7,, measures the
probability of such a pathway per [ — u extinction.
Question 7.14 Derive from the statistical equilibrium equations that in the case of complete re-
distribution over the line profile and pure scattering (no collisions), the line source
function in a two-level atom is given by S.‘,o = 7.,,. Demonstrate also that S{,o = B,,
if the populations of the two levels are completely determined by collisions.
Question 7.15 Here e, is defined as the destruction probability per estinction process. Other us-
age is that e}, = al,/al,, i.c. is the destruction probability per scattering. Express
el, in €., and in Einstein coefficients. What does equation (7.11) become with the

1
use of £, 7 . . ‘
Quertion-+6—Yder whal comtttioms TaN ¥, be-simptified-to
ide for ¢/ ? This imation is
- 1y walid. Why?

Question 7.17 Derive equation (7.11) ab initio from the equations of Chapter 5.

Question 7.18 Demonstrate that for a two-level atom with the profile functions ¥, v and x of
Chapter 5 (and so with a broadened upper level) we have in the case of complete
redistribution:

Sf,n = (1 = o) v + €1oBuo-

- - -

v
e
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This assumption of homogeneity is not internally consistent: if the source function varies as
a result of scattering, the relative populations do also, and therefore also the populations and
the extinction coefficients. For a two-level atom, for example, overexcitation of the excited
level goes hand in band with an underpopulation of the ground level, thus an increase in the
source function is accompanied by a decrease in the extinction coefficient. On account of the
Boltzmann factor, however, the decrease for the lower level is usually a smaller fraction of the
population than for the upper level; to first order the source function does change considerably
but the extinction coeficient does not.

L RAAR
Question 7.19 What is the luminosity o’),u homogeneous, effectively thin sphere with absorption
coefficient a} and scattering coefficient al?
Question 7.20 Can an object be eflectively thin and optically thick at the same time? Does
equation (7.16) hold in consequence?
;h‘\-”“ FY XIS ]

7.3.5 Scattered radiation from a thick slab: the Eddington approx-
imation

We now look at a thick object in which the conditions do indeed vary. The Rosseland ap-
proximation of §7.2.2 demands that the intensity differ only to first order from the Planck
function. A more broadly applicable approximation is to assume that I, once again departs
only to first order from isotropy, but that it may be nonthermal as well. The addition of
photons to a bundle takes place isotropically both for the thermal creation of new photons as
well as for the scattering of already extant photons (provided that spontaneous deexcitation
dominates over induced deexcitation); therefore this approximation can also hold if scatter-
Ing is important (¢, < 1) and has a broader domain of applicability than the Rosseland
approximation. We assume axial symmetry once again and set:

L{z,p) =au(2) + bu(2) s,

then the first three “moments” of the intensity J, with respect to y are:

1 1 +1
Jo(z) = 4—7/1,,(2,;1) dQ = 5 Idu=a (7.17)
-1
1 1 +1
H,(z) = 4—7r/c050 I(z,u)dQ = -2-/ puly, du=5/3 (7.18)
_ 1 . 1+, -
K, (:) = E/cos 01,(z,u)dQ) = 5 1 ul, dp =a/3. (7.19)

The dimensions of the Eddington flur H, and the X inlegral K, are [erg cm=2 s~1 Hz-!
ster™!], just as for I, and Jy. J, and K, are always positive; H, can also be negative.
From this there follows the important Eddington approzimation

J,=3K,. (7.20)

From the transport equation (for radial optical depth 7, and axial symmetry, cf. ques-
tion 3.24) it follows by integrating over '8

dl,
. ”H = I,-S,
1 +1 d]y 1 +1 1 +1
I T AT
dH,
dry  ~ Jv =5

with S, assumed isotropic, this being usually the case. Multiplication by u and a second

integration over u provides Barcapk . N
dK, _ o _‘rl—d—JT Mo GPProxi mehion,
dry, A7 7 3dr

+1

= -i/,«.f,,'\,u:
-l
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How must ¢,, be defined for this?

Show that in this case the line source function does not vary with frequency across
the line profile, while the “coberent” line source function in equation (7.11) does.
Is there a difference in the emergent intensity between these two cases?

7.3.3 Effective thickness

Consider once again a homogeneous medium with photons wandering at random. The free
path length of a photon between two successive extinction processes is (equation 3.10):

<TW> 1
l, = = .
v o, artol (7.12)

but it is more interesting to know over what distance a photon’s identity is preserved, i.e.
what the path length is between its creation and destruction. The extinction probability per
step is €,, thus the average number of steps that a photon can make while being scattered

is:
N=1/e,

and from equation (7.6) it follows that:
I =~l,/VE (7.13)

with I3 the characteristic distance between creation and destruction, i.e. the identity con-
servalion path length, or the diffusion length, or the thermalization length, or the effectave
free path length of a photon.

For £, = 1 (a* = 0, no scattering) we have: =1

For e, < 1, (a* > a?, much scattering) we have: >l

For g, = 0 (a® = 0, scattering only) we have: I; = oo.

With equations (7.12) and (7.9) it follows that:

[ ~1/\a%(ad +a}) (7.14)

and we define, as a sequel to equations (3.7) and (3.10), the:
/”-‘E;Tﬁamemss r, as dr, = (a® +a%) ds;
Q&MW @M 2 as drp) = o} ds;
— scattering thickmess 75 as d7) = a} ds;

— and lastly the effective optical path length d7; as d7) = ad(a® +at)ds.

For a homogeneous slab of thickness D the effective optical thickness 7, is:

. = D/l = /e + 1)), (7.15)
o/t = V(P + 7).

The slab is effectively thin if 7) < 1 and effectively thick if 7 > 1.

with 7 < 7, because

7 3.4 Scattered radiation from a thin slab

We look now at radiation from homogeneous layers in which scattering occurs. First for a
thin §lab. Assume homogenity in the sense that the temperature, density and extinction
coefficient do not depend on position, but that the source function can vary because of
scattering. The total monochromatic luminosity from an effectively thin object is then:

L, =4xa}B,V (7.16)

with V the volume of the object. The term a3 B, describes all the photons created from
thermal energy which contribute to a given bundle; multiplication by 4x}’ gives the total
pumber of photons escaping from the object under the assumption that all photons ever
created at some point leave the object, however often they may be scattered. The direction
is thereby lost, which is why an expression is given here for the luminosity.



LY

Y7177
’e*

86 CHAPTER 7. RADIATIVE TRANSPORT

and consequently:
1d%J,
5—'—er2 — Jy - Sy- (721)
For elastic scattering we have S, = (1 —¢,)J, + ¢, B, and therefore
1427,
as 3 =& Jy— Bv . 1.
3 dr,’,z e, (J ) (7.22)

This is the radiative transport equation in the Eddington approximation with elastic scat-
tering. Provided that the boundary conditions are known, this provides from T(z) and
€y (z) first J,(z), then S,(z), and finally I,(z) from the transport equation. This much-used
approximation holds thus if the radiative field is not too anisotropic, i.e. within slabs that
are at least effectively thick.

7.3.6 Scattered radiation from a thick slab A=t l‘”‘”\?““"’ I T;[’

Now consider an effectively thick slab with rJ 3 1., also with homogeneous conditions.
Photons which originate more deeply than I’ from the surface do not escape, but are extin-
guished after N = 1/, random-walk steps. Photons that are created less than I from the
surface can escape. Assuming that they always do, they then provide an upper limit for the
emergent luminosity. The volume from which they escape is given by:

V= Al
with A a piece of the upper surface. Thus it follows with equation (7.16)
L, = 4xalAl}B,
and with equations (7.14) and (7.9)
L, ~4x/c,B A,

and finally
Frf=L,/A=4r/EB,.

This is somewhat too large. Consider ¢, = 1, for which S, = B,; the surface flux of
a black body is F} = =B, instead of 47B,. A better approximation follows from the
Eddington approximation (see exercise 1.10 of Rybicki and Lightman) with the effective
optical thickness defined by 7 = V3er, = \/373(72 + 73) and the effective optical depth
by 7', = V3¢, 7,, thus a factor of v/3 larger than in equation (7.15). For the outgoing flux
this approximation yields

+ \/ET B,

r 4r
y = \/51 - \/E_,-
and for the source function
S,(r') = B, [1 -(1-VE e"'i] .
The source function at the surface is only
- S.(rl =0)= &, B, (7.23)
and with much scattering (¢, € 1) the emergent intensity is only barely larger:
L(r,=0)=S,(r.=1)~(1+ V3)/5 B..

With very much scattering (¢, <€ 1) thus much less radiation than B, emerges from the
slab — in spite of the fact that the emergent photons actually originate from a deeper level
than that from which you see them emerging. With scattering you receive photons from
deeper layers than the depth 7, = 1, but you receive fewer of them than you would from
a black body. That happens because with much additional scattering the visible radiating
volume becomes smaller and the representative depth r) = 1 lies much closer to the surface.
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Figure 7.3: Schematic ezplanation of the small intensity from an effectively thick slab in
the presence of much elastic scattering. The radial optical depth ) = 1 at which the source
function is representative of the emergent intensity lies only one average step length from the
surface; that is much closer to the surface than the path length that a photon would traverse
if there were no scattering (1,* = 1). The effective path length that a photon can randomly
traverse afler ils creation falls between these values; this determines the effective depth of
escape 1,° = 1 at which the local Planck function is representative of the intensity of the
emergent radiation.

Consider Figure 7.3. The crosses are photon-creating atoms. Throw in quite a few scattering
atoms (dots): ¢ 3> 1 times as many, thus o* = ga* and e, =1/(1 4+ q) = 1/g. Then the size of
the volume in which emergent photons are produced in the case of no scattering (no dots) is BV
proportional to the free absorption path length I}, i.c. the creation of emergent photons takes

place within the absorption thickness 7y = 1 from the surface. With scattering (extra dots) the
production of emergent photons is proportional to I} = I/ /eu = 1./g = (I/¢)\ /7 = L/J/T e
the production of emergent photons now takes place only within the effective optical thickness
7, = 1 from the surface. The place with extinction depth r, = 1 lies even closer to the surface.

There are then only 1/,/7 = /£, photon creations involved. The rest of the manufactured
photons are trapped. That occurs because the effective lifetime of the photons is larger when
there is a great deal of scattering, so that the probability of photon destruction increases. The
probability of photon creation does not increase proportionally because photon loss occurs.
Any escaping quantum, not just scattered ones, leaves behind a non-excited atom that is not
directly compensated statistically. There are fewer excited and more non-excited atoms than
is the case in equilibrium, thus the emission coefficient j, is smaller, the extinction coefficient
a, is larger, and the source function S, = j./a, is smaller than in equilibrium.

The average radiative field J, increases outwards from approximately the depth IJ = 1/ N
where this radiative loss begins; from there on photons can reach the outer edge by random
walks and be lost! before they happen to be extinguished. The source function is given by
S, = (1 —e.)Jy + e, B, and thus always falls between J, and B.. At the surface we have
S, = /£.B. and J, is even less than this. In sufficiently deep slabs J, — B, because no
photons escape from there. The existence of an outer edge, which marks the sudden cessation
of the homogenity of the medium, is not yet felt by the radiative field and the source function.
Thus we have there S, = (1 —¢,)J, + ¢, B, &~ B,, whatever the value of £,. The latter
determines however where this “thermalization” appears.

The decrease of S, /B, near the surface of an optically thick medium as a result of radiative
losses is actually a decrease in the potential energy of the radiative field that is available to
excite or ionize etc. If there is some coupling between the radiative field and the kinetic energy
distribution (e, # 0), then the radiative losses also lead to a decrease in temperature near the
surface. An entirely homogeneous thick slab of gas can thus actually not exist. The existence
of an surface as a transition to empty space into which photons disappear irrevocably results
in a loss of the local energy density available for the excitation of atoms and the motions of
atoms.

1from the medium, but available for observation.
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Question 7.21 What do you expect for the behavior of the photon destruction probability e, with
increasing depth, starting at the surface of a star?

Question 7.22 What is the region of applicability of respectively the Rosseland approximation
and the Eddington approximation in terms of optical depth?

7.4 Radiative transport with photon conversion

In the preceding paragraphs, the nonlocality of the source function in the presence of much
elastic scattering was stressed: in that case the source function is determined at a different

\3'1 place from that from which the emergent radiation is observed. With inelastic scattering
emmtmme D it can also happen that the source function is influenced by another frequency than the

observed frequency. In the extreme case of photon conversion the observed radiation may
have scarcely anything to do with the observed object.

We look at this again from a schematic standpoint. Postulate once again a slab which is
homogeneous in its thermodynamical state variables and extinction coefficients but in which
the source function can vary locally as a result of scattering and conversion. Suppose also
that the medium consists of three-level atoms, with strong permitted bb transitions between
the levels, all three with the same transition probability A.;. Photon conversion is then
possible via conversion of 3-1 photons into 3-2 plus 2-1 photons, and vice versa. Assume

32 that the populations are distributed in a Boltzmann-like fashion. Then the population of
level 1 is much larger than the populations of levels 2 and 3; thus it is entirely possible
that the slab is optically thick in the lines 2-1 and 3-1 (equally thick in both - why?) but
optically thin in the line 3-2. Let us assume that that is indeed the case.

Suppose then that the slab has a low temperature and a low density, and is irradiated
from the left by a hot source with much stronger radiation at A3; than at longer wavelengths.
What happens in the slab to the incoming photons at the wavelengths Az;, A3y and A3,?
For the latter, the slab is optically thin: a 3-2 photon will pass through unhindered for the
most part; a few might give rise to 2-3 photon excitation. The 2-1 and 3-1 photons however
will be confined. The 2-1 photons will provide for photon excitation into level 2. In view of
the low density, 2-1 collisional deexcitation is less probable than radiative deexcitation, thus
resonant scattering is especially prevalent: 2-1 photons will either random-walk through the
medium until they leave the slab entirely, will be extinguished by a rare 2-1 collision, or
will lose their identity via a rare 2-3 excitation (by a 3-2 photon or collision). Finally, the
numerous incident 3-1 photons undergo photon excitation to level 3. Collisional deexcita-
tion from level 3 to level 1 or 2 is relatively infrequent, and so spontaneous deexcitation
dominates, with an equal probability (“branching ratio”) for 3-1 and 3-2. The first case is
again resonant scattering and the new 3-1 photon will not go much farther than an original
one. In the second case, the 3-2 photon on the contrary will usually escape the scene —
because at that wavelength the slab is optically thin. There then remains an atom in level
2. That will usually add a 2-1 photon to the 2-1 radiative field already present.

The result: each incident 3-1 photon provides, possibly after a few 3-1 resonant scatter-
ings, an escaping 3-2 photon; their number is much larger than the number of 3-2 photons
from the source itself. The number of 3-2 photons escaping from the slab is thus a good
measure of the number of 3-1 photons falling on the slab. That is a situation which indeed
lies very far from LTE: the observed 3-2 intensity is determined by the intensity of a totally
different object at an entirely different wavelength. Assume for example that you are looking
at Aa; through the slab towards the hot source. The slab is optically thin and cold and, in
the absence of conversion, would cause an absorption line to be observed in the continuum
of the hot source, analogous to the telluric lines in the solar spectrum; but now the slab
provides a very strong emission line that has nothing whatsoever to do with the temperature
of the slab but is very dependent on the temperature of the source.

It is improbable that the populations will follow Boltzmann distribution if collisions are hardly
involved. The statistical-equilibrium equations for the three levels are then:

n1(Bi2 T + BisTy) n2(A21 + B21J21) + na(Asy + B Ta1)
n2(Az1 + BuTn) = mBula +n3As
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na(Aa + BuTu + A2) = mBuTy.

These must be solved together with the radiative transport equations for the three lines (at a
number of frequencies in each line) in order to find the populations and radiative fields.

In more realistic term diagrams photon conversion can take place in various ways, for example
by means of bf transitions or making use of a coincidence in wavelength with a strong spectral
line of another element such -as Ly o (“optical pumping”). It is also possible that the 2-1
transition is not permitted or has a very small transition probability. Then level 2 accumulates
a large overpopulation whose growth is ultimately capped, whether by collisional deexcitation
to level 1 which then results in heating of the local medium, or by radiative deexcitation in
such a “forbidden” line that then will be notably strong.

Question 7.28 Within the slab 7T21 can be larger than in the incident radiative field - why?

Question 7.24 Show what happens in the example above if the alab is not optically thin but is
effectively thin in line 3-2.

Question 7.25 Suppose that the slab consists of two-level-plus-continuum atoms, with bf transi-
tions for 3-1 and 3-2. Does this differ from the example?

Ll 3
2
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Chapter 8

Applications

8.1 Introduction: between thick and thin

This extra chapter gives a few applications of radiative processes and radiative transport to
various astrophysical circumstances. These examples illustrate where this course material
can be applied and at the same time provide insightful practical material.

There are many more applications in astronomy; this chapter contains only a first selec-
tion. In the future more will certainly be included; suggestions are welcome.

All the applications treated here have in common that they pertain to the domain between
optically thick and optically thin. That is not surprising because r, = 1 properly typifies the
circumstances in which radiative transport is on the one hand important and on the other
hand complex. For optically very thick conditions radiative transport is simple because
the free path length of the photons in the medium is usually small with respect to typical
scale lengths of changes in temperature and pressure; in these circumstances the Rosseland
approximation usually holds. Optically very thin circumstances usually only involve the
evaluation of the local extinction coefficient and source function, without complications

brought on by radiative transport.

8.2 Stellar photospheres

8.2.1 The solar continuum
8.2.1.1 Extinction coefficient

The photosphere of a star is the layer from which the visible light emerges. In the photosphere
of the Sun (Teg = 5770 K, Ne ~ 10" cm™3) H is neutral but Na, Fe, Mg, Si are singly ionized
(Saha). These “metals” are abundant and supply many electrons; therefore H~ provides
the largest contribution to the continuous extinction in the visual (Hl')f) and infrared (Hﬁ.).
At radio frequencies Hg contributes the most. In the ultraviolet the extinction coefficient
is determined by an assortment of mutually overlapping series limit continua (Al I, Mg I,
Si1, C1, FeI); in the far UV by the H and He I Lyman continua, and in the X-ray region
by series limit continua of species with a high degree of ionization, e.g. Fe XXIV bf. See

Figure 8.1.

Figure 8.1 holds for one specific electron pressure P, (why?) but has about the same shape for
values which do not deviate too much from P, (see Novotny for examples). How does the size

of the extinction vary with P,? .
The Sun is smallest in the visual region: you look most deeply into the Sun at A= 1.6 um in
the near infrared.

The Rosseland weighting function G, (T) is also included. The major portion of the solar flux
runs between log A = 3.5 and log A = 4.5, why? (Note: the maximum of B, (T=5770 K) falls
at log A = 3.9 or A = 800 nm but B,(T=5770 K) reaches its maximum at 600 nm.)

91
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Figure 8.1: The confinuous eztinction coefficient in the photosphere of the Sun.

8.2.1.2 Height of formation

The continuous extinction coefficient changes by orders of magnitude across the spectrum.
see Figure 8.1. Thus the location of 7, = 1 varies strongly with wavelength. According to
the Eddington-Barbier approximation, this location is the one that is representative of the
emergent intensity. Moreover, the extinction of the line wavelengths of very highly probable
bb transitions such as the Balmer and Lyman lines of HI, the H & K resonance lines of Call
and the h & k resonance lines of MgII is even larger by many order of magnitude than the
continuous extinction.

Figure 8.2 shows the resulting heights of formation. The temperature and the height in
the solar atmosphere are plotted against each other, with the height increasing to the left.
The temperature is a type of horizontal average over the inhomogeneities the Sun shows in
actuality. The zero point of the height scale is defined by taking h = 0 where 7, = 1 for
the continuum at A = 500 nm, thus approximately the location where the visual continuum
the Sun arises. The second abscissa shows the density, in the conventional form of the mass
column density m = the mass of an infinitely long column of 1 cm? cross section above the

given height.

The density drops roughly exponentially outward (why?) so that the geometrical height scale
(h = z) is reasonably linear in log m. The log r, scale varies roughly linearly with log m as
well. Why? What is the frequency dependence of 1.7

The temperature declines in the photosphere up to the location where the principal con-
tinua (with log A = 3.5 — 4.5 for A in A) become optically thin: 7; < 1. The fallofl of the
temperature is in accord with energy transport by solar radiation where this still dominates
the medium (radiative equilibrium). The more superficial layers, however, are not coupled
to F because the visual solar radiation passes through them without being disturbed; they
therefore may deviate from Teg just as they do in the earth’s atmosphere. In these higher
layers the temperature once again rises, first moderately in the chromosphere and then very
rapidly in the transition region to the very hot (2 x 10° K) corona.

The heights of formation of the various continua are determined by the extinction co-
efficient in Figure 8.1: the larger the extinction, the higher the formation; the same holds
for spectral lines. For large extinction the photosphere is optically thick: the representative
Eddington-Barbier location 7, = 1 then lies higher up. That is the case both in the far in-
frared and in the far ultraviolet; and for radio and X-ray radiation, the continuum arises in
the chromosphere and the corona. The core of the Ly a line also has a very large extinction
(why?) and becomes optically thin only just in the transition region to the corona.

Each piece T(log m) is a rough indicator,of the behavior of S, (log ) for the correspond-
ing piece of spectrum with logr, = 0. It'3 good indicator where LTE is valid. That is
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Figure 8.2: The height of formation of continua and strong spectral lines in the solar atmo-
sphere. From Verna:zza, Avret! and Loeser (1981).
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certainly the case for the infrared continuum because Hz is the principal extinction source
there and the density in the photosphere is sufficiently large that the Maxwellian distribution
applies there (Figure 8.3).
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Figure 8.3: B,,J, and S, in the photosphere of the Sun for A = 1.6 um. From Verna::a,
Avrett and Loeser (1981).

Figure 8.3 shows the formation of the solar radiation at A = 1.6 pm. Compare the height scale
and the log r/-scale with Figure 8.1 and Figure 8.2. Is the continuum at A = 500 nm formed
higher or lower than the 1.6 pm radiation? What determines the sides of the contribution
function dJ/dh with
d e ' da [~= , '
dl/dh = — Ty = —— -7 — e
I/d ak J, Se™ " dr ar /.., je T dh=je

Why isn’t the top of this integrand at r, = 1? Do the emergent intensities [, (u = 1.0) and
I.(1=0.3) tally with the Eddington-Barbier relation? Above an isotropically radiating surface
we have J, = %I.,, Does that work here? 1f LTE holds somewhere it must do so at this
wavelength, why? How does this figure indicate that LTE holds” And that £, = 17 Is it true
that S,(r.=0) = /&v B.7 And that J, = B, for r, =17 Where does r.)* =1 occur?

8.2.1.3 Variation of intensity and temperature
The observed continuous spectrum I,(0, u) is a convolution of:
— the temperature behavior T(h);

— the behavior of the source function, given by S,(h) = B,[T.(h)] where the assumption
of LTE holds, and by S,(h) = (1 =€, (h))J. (k) + £,(h) B, [Te(h)] where elastic scattering
(such as Thomson scattering) is important;

— the behavior of the extinction a,(m);
— the density stratification m(h).

Yot look through to a depth 7, =~ 1 and see the source function at that spot. Bet-
ter expressed: the value of the source function at the Eddington-Barbier depth 7, =~ 1 is
representative of the emergent intensity; this formulation is better because the integrand

d] d oo ' ' —o° . TI . ot
— T em— -T = — s h: r
i dh,/o Se 7 dr /. jeeT dh=je

is reasonably broad, see Figure 8.3.
Figure 8.4 shows the intensity of the Sun compared to Planck functions, as energy and
as brightness temperature Ty with B, (T3) = 1,(0,1). Why doesn’t 1,(0,1) follow a single
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Figure 8.4: Left: the emergent intensity Ii(r, =0,u=1) for the middle of the solar disk
compared to the three Planck functions B\(T = 5500, 6000, 6500 K). Right: the same, in

the form of brighiness temperatures.
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Figure 8.5: Brightness temperature of the Sun (above) and the relative contribution of the

principal sources of continuous ertinction, always at the height where 7, = 1, as a function

of frequency. Avrett (preprint IAU Symposmm 188).
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Planck relation if LTE holds well for A > 400 nm? Which quantities determine the run of
the brightness temperature TO at the right? Where did you previously see this shape?

Figure 8.5 shows the brightness temperature variation of the Sun for the whole spectrum,
with the principal contributors to the continuous extinction indicated below. With a know-
ledge of this a,(h), a model atmosphere T(h) can be deduced from the observed intensities
1,(0,1). Vernazza et al. did that for all the spectral regions in Figure 8.2 to determine the
temperature behavior shown there: this is an “empirical” model atmosphere determined
from various continua and individual strong spectral lines, observed at the center of the
Sun.

To this end Vernazza et al. had to carry out detailed NLTE radiative transport calcula-
tions for the ultraviolet bf transitions of H1, Mg 1, Sil, Fe I and C I in the high photosphere
because the ionization equilibria for these producers of extinction and contributors of elec-
trons do not behave according to LTE. Their ultraviolet bf energy jumps are larger (3-5eV)
than the typical kinetic energy (1-2 eV) available in collisions in the cool layer between
photosphere and chromosphere, so the radiative processes dominate in determining the ion-
ization equilibrium: radiative ionization and spontaneous radiative recombination. (Why
no induced recombination and collisional recombination?) In the ultraviolet the energy dif-
ference from a bound level to the ionization limit is so much larger than the kinetic part of
the energy above, which falls off as v=3, that these ionization edges behave essentially as
resonance lines, including resonant scattering.

8.2.1.4 Center-limb variation

Obliquely emergent radiation comes from more superficial layers according to equation
(3.17): '

13'(0,ﬂ)=/ S, (i) e~"v/¥ dr) fu.
0

The visual radiation comes from the photosphere; there LTE holds for the continuum (be-
cause H7, provides the extinction, see Figure 8.1). The temperature decreases toward the
outer layers of the photosphere (Figure 8.2, right side), thus S, (h) = B, [T(h)] also decreases
outward, and so the Sun shows limb darkening: the observed intensity diminishes from the
center towards the limb of the solar disk. If LTE and the Eddington-Barbier relation (equa-
tion 3.18) apply, we have:

IL(0,pu) a+by _ ,
LoD - ags - TAH

with 8 = b/(a + b) the limb-darkenening coefficient.
The limb darkening of the Sun was historically very important in:

L
— the conclusion that the photosphere is in radiative equilibrium, thus that the energy
transport is provided primarily by radiation. Convection dominates up to just below the
photosphere, due to the escape of radiation;
'
o — the conclusion that H- is the principal source of continuous extinction and emission;

— the empirical determination of the run of T'(h) before the infrared and ultraviolet inten-
sities became available.

Radiation at A = 400 nm and A = 1450 nm emerge from approximately the same layer (Fig-

ure 8.2, Figure 8.4 right). Yet the limb darkening at A = 400 nm is larger, why? In the far
infrared the Eddington-Barbier relation is satisfied if the temperature increases linearly with
r.. Why? Is that also true if the temperature declines inward linearly with r,? For A > 1 mm,
limb brightening is observed instead of limb darkening. Why? Do you expect limb darkening
or limb brightening in the Lyman continuum (A < 90.6 nm)?
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8.2.2 Lines in the solar spectrum
8.2.2.1 Extinction coefficient

A spectral line is always the result of a positive peak in the extinction coefficient. The size
of the peak is given by

YNv=vp) = '_"21, TE 0 o(Ar=0) |1 = % o-proriT
o, (v=vp) = mocom Sup(Br=0) [1 - e

with fi, the bb oscillator strength and ¢(Av = 0) the maximum of the extinction profile
function. The amount of extinction varjes to first order in proportion to the population of
the lower level n;. This is determined by the local density and temperature according to
the Saha and Boltzmann LTE equations (nE), with a correction factor (b)) for departures
from LTE if nonlocal radiative fields play a role in the population equations. To the next
level of approximation, the line extinction is also dependent on the population of the upper
level, because of sensitivity to departures from LTE in the source function via the negative
correction for induced emission (1 — by /b, e=hv/ET) if S! #8B,.

The shape of the peak, given by é(v—u;), is the convolution of a Gaussian profile and
a Lorentzian profile, is determined by the local Doppler broadening, the radiative damping
and the local collisional damping. These line-broadening mechanisms are treated extensively
elsewhere: see Gray (1976) or Mihalas (1978).

8.2.2.2 Heights of formation

Once again the extinction coefficient determines from which layer the radiation escapes. In
this case it does not vary across a wide spectral domain such as for the continua above, but
. rather across a very small spectral domain, that of the line profile. Once again the source
. function at the monochromatic depth of escape is representative of the emergent intensity
according to the Eddington-Barbier approximation -

IFX0,p) = ,/0 Su(r) e~ drl fu & S, (hr) = ),

now with the total source function S, which is composed of the line source function S! and
the continuum source function S, according to

e Qe Il
— QUSII + QUSV
= —_—

al + a,

S,

Where LTE holds, T'(h) also determines directly S, = B,[T.] and therefore the emergent
intensity. Where LTE does not hold, the line source function is given by

S,', = (1 - 50)7u + Eva[Te]
in the two-level approximation, or by
S, ==&, ~n)7, +€,B,[T] + 1, B,[T"]

if, besides resonant scattering, photon conversion also contributes, with 5, the chance per
extinction of multilevel processes and T™ a representative process temperature for such
circuitous routes.

8.2.2.3 The NalD lines

Figure 1.2 shows the two yellow NaID lines in the solar spectrum. In question 1.24 it was
stated that by the end of these lecture notes an answer could be given to the question of
how far the textbooks’ analogy goes between a radiating flame sprinkled with salt and the
solar spectrum. The mistake of the textbooks is that cows and horses are compared: the
flame is optically thin so that the interpretation demands no radiative transport, but the
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Figure 8.6: Formation of the NalD lines in the solar spectrum. The probability of destruc-
tion ¢ declines as ¢ = 1 in the deep photosphere to £ =~ 10~* above the temperature minimum.
The source function follows the Planck function alone in the deep layers; in higher layers
the source function follows the angle-averaged intensity T.., with J,, < B, on account of
photon losses. For the wings of the lines LTE holds, but the line cores are deeper than they
would be in LTE; the NaID lines are “scatiering lines” in the core.

Sun is optically thick. Whether the NaID lines in the solar spectrum are in emission or in
absorption does not follow simply from equation (3.16), as it does for the flame, but from
the Eddington-Barbier relation and the behavior of the source function.

Detailed numerical solution of the statistical-equilibrium equations for the excitation and
jonization of sodium atoms in the solar atmosphere shows that the two-level approximation is
a good one for these resonance lines. Therefore the result in Figure 8.6 is readily understood.
As the density drops, the collisional probability Cy falls sharply with the height A; since Ay
is large for these resonance lines and does not depend on the height, the photon destruction
probability € & Cy1/Aur also falls sharply with h; in deep layers ¢ = 1 holds. The line source
function follows T, in the higher layers and approaches the Planck function only in the
deep photosphere where € = 1.

The line wings are formed in deep layers; thus LTE holds for them. The line extinction
a' in the wings decreases monotonically with the distance in wavelength from the line center
AX = XA — Ap; the larger A), the deeper the emergent intensity is determined. Moreover,
for sufficiently large A), ' € af; then the continuum source function dominates the total
source function and LTE formation is ensured.

The line cores have a' 3 a®. The cores are formed much higher; for them, the emergent
intensity is determined in the regime where S, = J..- This is much lower than the Planck
function at that height. In consequence the source function (= line source function) is not
influenced by the ambient temperature there. The existence of the temperature minimum
does not affect the line source function or the emergent line profile; the line cores formed
there are entirely determined by the strong resonant scattering of photons formed deeper,
and so their intensities drop much lower than they would under LTE. The physical cause of
this is the occurrence of large photon losses whose effect on the source function is noticeable
until well below the 7 & 1 height of formation.

So there is after all an analogy with the flame experiment: in both cases resonant scat-
tering plays an important role in the line extinction. The manner in which they affect the
observed intensity is however completely different in the two cases — even if both cases
result in dark NalD lines.
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8.2.2.4 The Call K line

Figure 8.8 sketches an extension of Figure 7.1 for the formation of the strong Ca Il K line
in the solar spectrum (Figure 8.7).
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Figure 8.7: The Call K line in the solar spectrum. The broad deep absorption in this part
of the solar spectrum was christened by Fraunhofer the “K” resonance hne of the Ca* 1on.
This is the strongest line in the visually observable part of the solar spectrum. Superimposed
on the broad line wings are many weaker spectral lines (“blends™); most arise from neutral
“metals” such as Fel. In its core the K line shouws {wo minuscule peaks which are ertensively

studied in the Sun and stars.

b,

Figure 8.8: Diagram for the formation of the Ca Il K resonance line (393.8 nm) in the solar
specirum.
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The extinction coefficient (above left) varies strongly with the wavelength because the bb
processes offer an extra possibility for absorption and scattering. The size of the bb peak
varies strongly with height, being dependent on the level populations which are sensitive to
the density, the temperature and (in NLTE) the radiative field. The shape of the bb peak
varies with height, being dependent on the density (collisional damping) and the temperature
(collisional damping and Doppler broadening).

The extinction coefficient determines where the representative height of formation h, with
log r.(h) = 0, lies (above center). Each frequency has its own optical depth scale 7,(h),
roughly exponential in A near log 7, (h) = 0. The intensity 7, (0, 1) of the emergent radiation
in the Eddington-Barbier approximation is given by the value of the monochromatic source
function S, at the representative log v, = 0 depth.

The monochromatic (total) source function S, (below center) is the convolution of the
continuum source function S° and the line source function S' (below right). (Because of
this convolution the total source function is always frequency-dependent, even if the line
source function S' does not vary across the line profile, as a result of complete redistribution
over the line profile, as is assumed here.) Both source functions are determined by the
temperature variation T(h) and the amount of coupling to it, given by the destruction
probabilities £° and €' which are small if scattering is dominant in the extinction. The line
source function dominates in the Ca II K core because of the large line extinction in the
layers where the radiation escapes; scattering is important there. In the deep photosphere
where it participates in the formation of the far line wings, the continuum source function
is to a good approximation equal to the Planck function, with € =~ 1.

The Ca II K line is just strong enough that the line source function is sensitive to the
temperature rise at the base of the chromosphere before photon scattering losses win out
and induce decoupling from the Planck function. The result is a small increase in S’ that is
evident as two small emission peaks in the observed line profile (below left).

Once again the Eddington-Barbier approximation is assumed. How do you know that? What
would be different if the Eddington-Barbier approximation did not hold? Scattering plays an
TR important role in the shape of the observed line core (Ks3). How do you know that? How is
the strong scattering expressed in the behavior of the line source function? In the far wings.
on the contrary, LTE is a good approximation. How can you tell that?
Only the lower part of the term diagram of Ca Il is included in the sketch. The uppermost part
is not important, why? Also the bf processes from Ca Il to Ca Ill and Ca I are not important,
why?

Photon conversion is possible from the Ca II H & K lines to the three “infrared” Ca Il
lines and vice versa because they share common upper levels. The two lower levels of the
infrared lines are metastable because there are no permitted radiative transitions from them
to the ground level. Such photon conversion is not really important for the H & K lines
because they have larger transition probabilities: the branching ratio from the common
upper levels favors the resonance lines. Conversion is quite important for the three infrared
lines because their extinction is smaller (Boltzmann): where they become optically thin,
their line source function faithfully follows the Planck function because coupling occurs via
conversion to the still optically thick H & K lines.

The diagram illustrates the formation of the Ca II K line according to Jefferies and
Thomas (1960). With this analysis these authors set forth the basics of the NLTE inter-
pretation of spectral lines of the Sun and stars. This description was however by no means
final. For one thing, there is also some partial frequency redistribution so that the line source
function itself is frequency dependent: different parts of the line have their own source func-
tion, which each in their own fashion differs from the Planck function (Uitenbroek 1989).
For another, the small emission peaks at the K; wavelengths actually originate exclusively
in regions on the Sun with an enhanced concentration of magnetic field. The actual line
formation is thus more complicated than is sketched here.

8.2.2.5 Intensity and temperature variation

How is the photospheric temperature variation expressed in the spectral lines? In LTE'that
is clear: S, = S! = S¢ = B,[T(h)), and the line profile “illustrates the T(r,) variation”,
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convolved with the (strongly depth dependent) profile of the extinction coefficient and the
temperature sensitivity of the Planck function. The temperature declines outward, thus the
lines are absorption lines.

But if scattering or photon conversion is important, it is possible that the observed line
profile does not say much about the temperature variation. That is for example the case in
the core of the Ca II K line: the fact that the K3 line core is darker than the K, emission
peak does not imply that the temperature drops again after an initial rise, but is the result
of the NLTE photon losses in a scattering line.

For the Ca II K line LTE holds in the line wings (how can you tell that in Figure 8.8?). The
observed intensity variation 1,(0,1) for AA = X — Ao = 0.1-1 nm can serve to determine the
temperature variation in the photosphere. Which quantities must be known for this and how
would you attack the problem?

Violet spectral lines have a much lower central intensity than the corresponding spectral lines
in the red for equal al(h) and 7.°(h) scales. Explain that on the basis of the temperature
sensitivity of the Planck function.

Spectral lines with A < 180 nm and with 2 150 uym are not absorption lines but emission
lines. Explain that, bearing in mind that the continua at 180 nm and 150 um are formed just in
the region of the temperature minimum between photosphere and chromosphere (Figure 8.2),
and that spectral lines are always formed higher that the adjacent background continuum.

8.2.2.6 Center-limb variation

Assume for convenience that the source functions fall off linearly outward: S! = a' + b'r!
and 57 = a°+5°r,, so that the Eddington-Barbier approximation holds exactly (Figure 8.9).

LTE

NLTE

Lind = "/Re

Figure 8.9: The center-limb variation of photospheric spectral fines.

In going from the center to the limb of the observed solar disk, the contrast of absorption
lines diminishes because the total source function falls outwards.' For LTE we have S, =8¢
and the contrast of the strongest lines weakens up to I, = a; near the solar limb the lines
disappear completely. If £ < 1, however, then S! falls much more steeply than SS. The
central intensities of the strongest lines are then much deeper than in LTE, and they do not
disappear at the solar limb (a' < a°).

In the rez] Sun the temperature rises again into the chromosphere. Nearer the limb the
radiation arises from higher layers; for many lines the height of formation near the solar
limb lies completely above the temperature minimum. The fact that these lines exhibit no
emission cores near the solar limb proves that they have ¢ € 1, thus a NLTE source function.
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8.2.2.7 Outside the limb

Beyond the solar limb all lines become emission lines, whatever their mechanism of forma-
tion. (Why? Recall that the “solar limb” is seen where the total continuous optical thickness
of the Sun along the line of sight is approximately unity.) For lines of sight sufficiently far
outside the solar limb the Sun also becomes optically thin in the strongest lines. Then the
intensity of such a line is directly proportional to the population of the upper level (why?).

The strongest visual line in the eclipse spectrum is Ha: it appears as a reddish-purple
arc at the limb of the Sun at the beginning and end of a total solar eclipse. Hence the name
chromosphere.

8.2.3 Spectra of stellar photospheres

With the above insights, we can readily understand most photospheric lines in the solar
spectrum (that is, the lines in the visual spectral region, why?). Therefore the spectrometry
of stellar photospheres has become a “classical” discipline. For the most part, LTE is
assumed and abundance determination is the goal.
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Figure 8.10: Spectral classification. The upper graph gives estimates (by eye, from photo-
graphic plates) of the strengths of representative spectral lines as a function of the empirically
assigned spectral type. Below are given the population ratios as a function of lemperaiure,
calculated from Saha and Boltzmann for Pe = 131 dyne em™2. Afier Payne.

The differences in stellar spectra across the HR-diagram, however, are hardly due to
abundance differences, but rather to the effects of T, and P. on the populations via Boltz-
mann and Saha. That was not understood for a long time; the spectral classification arose
long before the role of the temperature became clear and the Hertzsprung-Russell diagram
could be translated from pure empiricism into astrophysics. That happened in the most fa-
mous doctoral thesis in astronomy, by Cecilia Payne (1925, Harvard): spectral classification
was shown to be temperature classification (Figure 8.10).

The continuous extinction mechanisms vary across the HR-diagram. In cool stars such as
the Sun hydrogen is predominantly a neutral atom, and Hsf dominates in the visual spectral

domain and Hf-f in the infrared. The free electrons involved in this come from the ionization
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of those metals that have both a reasonable abundance and a low ionization potential: Na,
Mg, Al, Si, Ca and Fe. In the solar photosphere these elements are predominantly singly
ionized. LTE is a good approximation for these processes because they are coupled with
collisions. Furthermore, in G and K stars Rayleigh scattering off hydrogen also occurs. That
is especially important in the visual because the resonance lines of hydrogen, 1.e. the Lyman
lines, lie in the far ultraviolet (how do you know that?) and especially for Population I1
stars with a low abundance of metals (why?). The spectral lines come primarily from neutral
metals (visual) and singly ionized metals (near ultraviolet), with a few molecular bands.

In hotter stars hydrogen is however mostly ionized and thus H- is not a factor any more;
most of the free electrons then come from hydrogen. Thomson scattering provides a large
contribution to the continuous extinction in O stars, with the consequence that LTE cannot
be assumed for the corresponding continua. The scattered photons are then created as a
rule in Hg processes. Moreover, in O stars He II comes into play (the n = 2 jonization edge
coincides with the Lyman continuum, why?) as does He I in B stars. The metals are long
since singly ionized and therefore show few lines in the visible spectral region (the neutral
levels of metals such as Fe | have many lines in the visible; for higher ionization levels the
electron energy differences are larger so that their lines fall in the ultraviolet).

Many important resonance lines lie beyond the Lyman limit (91.2 nm) and have not yet
been observed.

Situated between the hot and the cool stars are the A stars. In them H? ions provide
extra extinction: a singly-ionized molecule with two protons and one electron.

In the coolest stars there is much Rayleigh scattering off molecules, especially off H,.
H; also contributes at long wavelengths via ff processes. The line spectrum of M stars
is dominated by strong molecular bands, especially in the infrared where the majority of
vibration and rotation transitions lie. If there is more carbon than oxygen in the star then all
the oxygen is taken up into CO and there appear as well the lines of many carbon compounds
(e.9. C2, CN, BCN, C;N3,, SiCy); conversely, if oxygen dominates all carbon is locked up in
CO and there appear the lines of many oxygen compounds (e.g. OH, H,0, TiO, ZrO, VO).

8.3 Stellar envelopes

- 8.3.1 Stellar coronas

Coronas are very hot (T, > 10° K), tenuous (N. < 107 em=%), more or less spherical
envelopes of stars. The majority of late-type stars have a corona. Here we discuss radiative
processes in the solar corona.

At T, = 10% K the solar corona for A < 10 em is optically thin. That means that
there are no complications due to radiative transport; specification of the rate equations
provides the emergent intensities directly. The situation is however far from LTE, so that
for this specification all possible population mechanisms must be evaluated to see if they
are influential, and those that are must be evaluated explicitly. Table 8.1 provides an
overview of the atomic processes; ions are especially involved in coronal processes because the
combination of very high temperature and low density results in a high degree of ionization.

In coronal circumstances, both radiative excitation and ionization and the induced radia-
tive processes are negligible with respect to the corresponding collisional processes because
the electron temperature T, =~ 10° K is much higher than the typical radiative temperature
Teqr = 6000 K of the local radiative field, generated in the underlying photosphere. Therefore
radiative excitation is negligible, and excitation is collisional:

P = Cuy;
radiative ionization is negligible, and ionization is collisional:
Pi = C;

collisional and radiatively-induced deexcitation are negligible, and deexcitation is sponta-

neous radiative:
Pul & Auli

,l

e
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Process Incoming QOutgoing Rate
Absorption photon + atom excited atom Uy BanNm
Stimulated emission phot. + excited atom 2 phots. + atom U, BamNn
Spontaneous emission excited atom photon + atom NamAnm
Photo-ionization photon + atom jon + electron ty Nen Bma
2-Body recombination electron + ion phboton + atom NeN A
Dielectronic Recomb. electron + ion phot. + excited atom N N;ad.el
Dielectronic Absorption phot. + excited atom ion + electron NpuyRgsel
(Auto-ionization)
Thomson scattering photon + electron phot. + electron orN,
Free-free emission electron + ion elec. + ion + phot. N N;xx'
(Bremsstrahlung)
Free-free absorption phot.+electron+ion phot. + elec. + ion NNBeixty
Collisional excitation electron + atom elec. + excited atoms Ny N.Cmn
Collisional de-excitation elec.+ excited atom electron + atom NpNeCam
Collisional Ionization electron + atom 2 electrons + atom N NeComx
3-Body Recombination 2 elecs. + atom electron + atom N2N;Cem

Table 8.1: Atomic processes. AfterZirin.

collisional and radiatively-induced recombination are negligible, and recombination is spon-

taneous radiative:
P =~ AE{ (8.1)

with A% the transition probability analogous to the Einstein coefficient Ay for spontaneous
radiative recombination. Thus the population equations become:

dni

T (n,; Ci; —n.‘Aij)"‘Z(njAji -n,Cyj),

i< i<y

(with A} also written as A;;). The excitation of a two-level atom is given by statistical
equilibrium:

o0
nCpy = "1Ne/ 012 f(v) vdv = nyAy,
vo

in which the population ratio nz/n; = C12/A2 depends not only on the temperature (which
enters into the velocity distribution f(v)), but also on the electron density, and remains far
below the Boltzmann ratio ny/n; = Cy3/Cy (itself barely temperature-dependent) which is
achieved at much larger density. The two-level photon destruction probability £, = Cu [Au
is very small; the two-level line source function becomes

‘ S, = J, = (1/2)B,(Ten) < B,(T.)

in accord with b
ﬁzﬁmmy

To be sure, the excitation is achieved through collisions, i.e. with a knowledge of the local
temperature, but the collisional frequency is too low to bring the population of the excited
level up to Boltzmann value. Each ion that is excited then promptly decays spontaneously,
and the escape of the bb photon represents a large NLTE loss of energy; local detailed
balance, which demands as many collisions upwards as collisions downwards, is not achieved
by a long shot.
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For the bf ionization-equilibrium, on the contrary, the electron density just drops out
because an ion waits a long time for a passing electron for photorecombination. The prob-
ability for that is proportional to the electron density, just as for collisional ionization; the
rate equations then result in Boltzmann-like ionization ratios which are independent of the
temperature, which strongly simplifies their calculation and makes diagnostic applications
easier. On the contrary, the Saha formula for the TE ionization ratio depends on N,; that
arises because collisional recombination is proportional to N2. The second colliding electron
in this three-particle process provides the Saha Ne but only counts if collisions are suffi-
ciently dominant. In coronal circumstances the dependence of excitation and ionization on
N, is thus just reversed with respect to TE circumstances.

This description of the bb and bf processes is incomplete. In coronal circumstances ac-
count must also be made of dielectronic processes, in which two electrons undergo energetic
transitions at the same time. Configurations in which two electrons are excited at the same
time can have autoionization-energy levels, lying above the ionization limit of the configu-
ration for a single valence electron. The excitation of such a level can lead to ionization by
a radiation-free transition in which one electron is released (autoionization). That would
occur if an already excited atorn encountered a photon or electron suitable for a second
excitation; however, the probability for this is small in coronal circumstances because for
the rate for both encounters is small with respect to the rate of spontaneous deexcitation.

V74574
y Vg
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Figure 8.11: Dielectronic recombination. An energetic free electron ezcites a bound electron
in an ion as 1t siself is captured into another ezcited level. Spontaneous deezcitation of both
“electrons, possibly in a cascade or series of transitions to progressively lower levels, provides
line photons and leaves the ion in the ground stale, one tonization level lower.

U

The reverse process, dielectronic recombination, is important, however. In this process a
passing energetic electron excites a bound electron and at the same time is itself captured
into an autoionization state. From here the atom can undergo a nonradiative ionization
which leaves it in its original state of ionization; but the atom can also undergo doubly
spontaneous radiative deexcitation of both electrons - there is plenty of time - leaving it
in the next lower ijonization stage. At high temperature this recombination process is more
efficient than radiative recombination, ten times more so in the solar corona, because the
collisional excitation of the bound electron helps to reduce the kinetic energy of the captured
electron ~ much more energetic electrons can participate than those rather scarce ones near
the ionization edges. (Slower electrons are captured more easily: the capture cross section
oy for photon recombination for hydrogen-like ions decreases quadratically with the electron
energy: o7y ~ 1/v2. Energy loss from extra bb excitation compensates this decrease.)

The ratio between the probability of photon recombination and the probability of dielec-
tronic recombination depends solely on T, and not on N,, why? The conclusion above that
the ionization equilibria depend only on the temperature thus doesn’t hold. At high tem-
perature dielectronic recombination wins because the peak of the Maxwellian distribution
and the 1/v2-dependence of the photon recombination are shifted further apart from one
another with increasing temperature.

Figure 8.12 by Carole Jordan shows coronal ionization ratios in a Cecilia Payne-like
diagram for successive ionization stages of iron. At any given temperature there are several
stages ol ionization preseni at the same time. The levels with filled shells are difficult to
ionize and exhibit broad maxmima (7+, 16+). The ions one stage below (6+, 15+) have
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Figure 8.12: Jonization stages of iron in the solar corona. Afier Jordan.

many dielectronic recombination levels which provide a long high-energy tail.

Because of the low density the ionization equilibria are established slowly: after a tem-
perature disturbance this takes several minutes. The attainment of statistical equilibrium
between the populations takes even longer.

The many dielectronic recombinations are evidenced by spectral lines: each recombination
is always followed by two bb emissions, or even more if the deexcitation of the excited
level to the ground state goes via intermediate levels. That provides a cascade spectrum,
characteristic of circumstances in which recombination from excited levels is important. The
spectral lines can thus be much stronger than predicted from the two-level approximation.

The spatial dependence of electron temperature T, is smoothed by the large free path
lengths of the particles over large distances. If a magnetic field is present, this smoothing
only occurs parallel to the magnetic field, not perpendicular to it, because the electrons
then spiral around the field lines (coronal loops). Then large temperature and density
gradients are possible across the field lines. These indeed occur, because the dissipation
of “mechanical” energy appears to take place via such magnetic structures. These lead to
sharply defined structures with different temperature and density parameters and therefore
with different emission coefficients; because the immediate surroundings are optically thin
these structures are also readily observable. The best X-ray photos of the Sun (the NIXT-
camera, on a rocket launched in September 1989) show coronal fine structure all the way to
the instrumental resolution of 1 arc second.

8.3.1.1 X-.ray radiation of the solar corona

The coronal X-ray spectrum consists of overlapping series limit continua with superimposed
emission lines (why in emission?), see Figure 8.13. There are several ionization stages
evident at the same time (seven due to iron are seen here) which provide good temperature
diagnostics. Coronal X-ray spectra are very rich in spectral lines.

Each photon represents the destruction of thermal energy and its disappearance from the
local medium: i.e. each photon provides radiative loss. The line strengths are proportional
to n, Ay (why?), the loss per spectral line is proportional to Ne Ny (why?), and because
we have approximately that N. = Nu(1 + 2B), with B! the fraction Ny./Ny, it follows
that the loss per transition is proportional to N3. The sum over all lines and continua then
provides the total radiative loss; Figure 8.14 gives an example as a function of temperature.
The indicated curve is unreliable for T. < 5 x 10* K because the corona is then no longer
optically thin in the strongest lines such as Ly a. There the corona is still effectively thin
so that all photons created still count, but the term B,;J, then is involved in the excitation
processes so that the populations also depend on the radiation field.

INB: This B is the fifth B in these lecture notes.
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Figure 8.13: An X-ray spectrum of the Sun, taken from a rocket. Plasmas found in coronal
circumstances (optically thin, hot, and tenuous) produce spectra
lines from high ionization slages.
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8.3.1.2 Visible radiation of the solar corona

There are various “coronas” = circles of light visible around the Sun, see Figure 8.15.
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Figure 8.15: The visual corona of the Sun. The radiation from the solar corona itselffalls off
with distance from the solar limb according to the curve K. This changes with the activity
of the Sun. The F corona describes the contribution to the intensity observed about the Sun

resulting from scattering by interplanetary dust. The “earthshine” is light scatiered from the

moon back to Earth during a total solar eclipse. After Van de Hulst.

The F-corona arises from scattering of photospheric sunlight by interplanetary dust with
cross section d &= 1 pm = J; this scattering is therefore “white” (~ A%) and strongly peaked
in the forward direction. The scattering is elastic, thus its spectrum is the photospheric
line spectrum (Fraunhofer spectrum, from which the F is taken). Because these photons
are strongly scattered forwards, viewed from Earth they principally appear near the Sun:
the intensity increases towards the Sun. That holds also for the sky background at sunset,
resulting from the scattering off dust and water droplets in the Earth’s atmosphere. For
the brighter sky, however, Rayleigh scattering off molecules dominates, with the associated
dipole phase function, and is scarcely increasing with proximity to the solar disk. (A good
criterion for sky brightness is then to hold your thumb in front of the Sun and then to see
how close to the Sun the sky remains blue.)

The K corona refers to the radiation of the corona itself, i.e. the emission from the tenuous
shell of hot gas around the Sun. The largest contribution to the continuous extinction (and
emission) is given by Thomson scattering. The electrons move with an average velocity

T= \/2kT ~10° em s~}
Me

thus-the associated typical Doppler shift is

Alp =A== 10 nm.

ol

These shifts are quite large; although the scattering is elastic (monochromatic in the PRS,
in the “frame of the particle”), the Fraunhofer line spectrum appears smeared out to an
observed on Earth. Only the broadest lines are seen, notably in the case of the Call H
and K lines where two broad, shallow absorption troughs remain; on this basis Grotrian
first proposed that the corona contains fast-moving scattering electrons, and thus it must
be very hot.
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[ wavelength [identification [ Adp | ¥ [ Au
530.3 nm Fe XIV] 0.051 nm | 29 km/s | 60s~*
569.4 [Ca XV] 0.087 46 95
637.4 [Fe X}] 0.049 23 69

Table 8.2: Coronal emission lines in the visible spectrum during a solar eclipse.

The visible spectrum also exhibits individual well-known emission lines, see Table 8.2.
Together these form the E corona. These forbidden transitions with 4, = 102 s~! (the
notation [Fe XIV] means a forbidden transition in the spectrum of Fe!3*. All permitted
transitions (with A, = 104-10% s7!) fall in the far ultraviolet and the X-ray region for
such high stages of ionization). From the assumption that the observed line width is due to
thermal Doppler shifts 7, we have for the temperature: T =~ 2 -5 x 10° K. The [Ca XV] line
is the only one observable in highly active regions; there the corona is apparently hotter.

Why are these lines visible although they are forbidden? Once again it is thanks to the
combination of very high temperature and low density: radiative deexcitation dominates
over collisional deexcitation even for these long lifetimes in the upper level.

These coronal lines long remained a puzzle. They are very strong in coronal spectra taken
during total solar eclipses; in a “coronal sky” (blue all the way up to your thumb) they can
also by measured with a coronograph: a telescope with an internal disk which eclipses the
Sun. They were ascribed to a new element Coronium although no place for this element
was available in the periodic table. Finally Grotrian and Edlen- provided the explanation
based on the above identifications.

8.3.1.3 Radio radiation from the solar corona

Figure 8.16 shows the variation from the photosphere to the Earth’s orbit for three charac-
teristic frequencies:

1. vg = gyro frequency = 2.8 x 10° B, with B in Gauss.
Cyclotron radiation occurs for v = (1 — 5) x vp; synchrotron radiation for v = (10 —
. 1000) x vg. Of interest for 9 < logv < 12, and only in active regions (why?).

2. v, = plasma frequency = 9 x 103V/Ne.
There is no wave propagation for ¥ < v,. Strong plasma radiation can be generated
by exciting disturbances with frequency v = v, and at the higher harmonics v = 2u,
etc. Such plasma radiation dominates in the solar wind near the Earth for frequencies
v < 1 GHz. Its measurement is carried out with space vehicles because the ionosphere is
not transparent to such long waves (v, &~ 107 Hz).

3. v(rg =1) = frequency at which the continuous Bremsstrahlung extinction reaches an
optical thickness T = 1 over one scale height. Thus the corona is optically thin for the
ff processes to the right of the dashed curve and is optically thick to the left; the curve
shows where thermal Bremsstrahlung photons of this frequency typically originate.

The thermal Bremsstrahlung provides the temperature. The observed antenna tempera-
ture is:

Ta = 9aTe =T(0) e " 4+ Teor (1 - e")

so that the coronal temperature Teo, is measured provided that rg > 1. That however isn’t
the case for regions where v(rg = 1) < v, because waves of the frequencies which reach
that depth are bent or deflected. (Figure 8.17). This doesn’t happen for 108 < v < 10° Hz
because at those frequencies v, is reached deeper than at rg = 1. At v =~ 150 MHz for
example the turnaround point is at rg = 5.

Even though the place where v = v, for 108 < v < 10° Hz lies much deeper than rg =1,
plasma radiation is observable at those frequencies because:

— the brightness temperature in the most active regions can readily reach Ty =~ 10 K .
With 7 = 10 and e~7 = 2 x 10~* there still remains T, = 10'° K;



110 CHAPTER 8. APPLICATIONS

r/Rq
.ot 1.1 2 i 101
T ! T T 7 T
\
N ‘\‘6“ j‘yNCHRoTﬂaV
N
R\ 9’ y
ﬂqv N '\ CycLoTRd
(H3) Y:‘\;\ REM[TRALING
N\ \‘\ PLASMA
\ ch:TRALwcr

|/ g
o
. 2
bF

% =
e . o
52} E
S <

'3 ¥ )

5 6
ll? “ (‘un)

Figure 8.16: Three characteristic radio frequencies between Sun and Earth: the gyro fre-
quency vg, the plasma frequency v, and the formation frequency V,ﬁ Aftier a preprint by

Gary and Hurford.
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Figure 8.17: Curvature and reflection of radio waves in the corona. Here spherical symmetry
is assumed; in actuality the corona is strongly inkomogeneous.



83. STELLAR ENVELOPES 111

— the corona is strongly inhomogeneous, thus 7sr=1 fluctuates strongly. Radiation from an
optically thick coronal loop can escape in between the loops.

In the low-frequency domain (30 kHz — 1 GHz) we observe flares with a negative fre-
quency drift, caused by a shock front (Type II) or a fast-moving packet of electrons ( Type
11) that are rapidly moving towards the outer part of the corona. The plasma radiation
then follows v, thus the local frequency shift ~ /N.

The high frequency domain (1 Ghz — 30 GHz) is dominated by gyro radiation. Fig-
ure 8.18 shows characteristic spectra for homogeneous sources. The slopes are given and the
arrows show how the curves shift as the various parameters increase,
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Figure 8.18: Characteristic radio spectra for Bremsstrahlung, thermal synchrotron radiation
and nonthermal synchrotron radiation, given as irradiance (below) and as brightness tem-
perature (above). The numbers indicate the slope; in these log-log plots the slope is the power
of the frequency dependence. The arrows indicate in which direction the curves shift (their
shapes are roughly conserved) with & variation of a factor two in the parameters n (electron
density), T (temperature), B (magnetic field strength), L (layer depth), N (number of fast-
moving particles above the threshold energy), 0 (pitch angle of the spiral movement) and 6
(spectral indez for the energy distribution of the particles n(E) = kE~%). After a preprint
by Gary and Hurford.

Consider for example Bremsstrahlung spectrum (ff processes). For the Rayleigh-Jeans
portion we have S, = B, = 2kvT/c? (why does LTE hold?), thus

T, = 621 =T. forr, »1

T = Ter, =(c?/2k?) j,L forr, €1
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with L the source diameter. The emission coefficient j, ~ N2, why? The flux density
(irradiance) is:

= AQ B, forr, > 1

R, =40l { =AN;,L=A0Bk,L forr, €1
Note the frequency dependence: for T} thisis ~ v° for r > 1 and ~ v~ 2 for r € 1; for R,
on the contrary ~v? forr, > 1 and ~ [u2 v31 - e =0 forr, « 1.

For synchrotron spectra the pitch angle 8, the magnetic field B, the number of particles
N above the threshold energy and the spectral index § of the particles energy distribution
n(E) = kE-* join in. The peak of the curve always falls at the frequency with 7, =~ 1
(why?).

These curves can be compared against observations to decide among mechanisms and
to determine parameters of the source. The upper figures then can be applied to resolved
sources, while the lower ones can also be used if the true source diameter is unknown (why?).

8.3.2 Stellar winds

Many stars release not only photons and neutrinos into space as a sign of their existence, but
also shed matter. The hydrodynamical solar wind (the evaporation of the hot corona) does
not interest us here, but the radiatively driven winds of hot stars do. They are discussed
at some length in radiative transport theory (see Chapters 14 and 15 of Mihalas 1978). At
the heart of this lies the fact that the line extinction coefficient is systematically shifted in
wavelength in the presence of systematic velocity structure within an object.

C
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Figure 8.19: P Cygni profiles. An ezpanding eztended atmosphere around a hot star provides
speciral lines with an emission peak at the rest wavelength and an absorption trough towards
shorter wavelengths.

The formation of P Cygni profiles is geometrically determined. The unshifted emission
line emerges from the parts of the extended atmosphere on each side of the star (A in
Figure 8.19) that expand at right angles to the line of sight and give no Doppler shift. (Why
is this contribution in the form of emission?) In the direction of the star, the layers with
the largest expansion velocity give the largest blue shift in their absorption contribution
(why absorption?). Such P Cygni profiles are a good indication of the occurrence of a
stellar wind and mass loss. The P Cygni profiles are observed in the visible spectrum but
are the most evident in the ultraviolet spectra of hot stars because the resonance lines
of the most important ionization levels fall in the ultraviolet. With the first ultraviolet
spectrometer {Morton in 1967, with a rocket for which the retrieval misfired and so it had to
be dredged up from the sea floor) it was unexpectedly discovered that O and B supergiants
have Si IV lines (140.28 nm and 154.95 nm) which show outwardly streaming velocities up
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to 2000 km s~!. That is much larger then the escape velocity:

M\t R\TE
UMZGQO(M—O> (E) kms l.

The visual lines arise in the photosphere or in layers above the surface and only reach a
terminal velocity vp =~ 300 km s~!, but the ultraviolet resopance lines have much more
extinction so that the outermost layer involved (shell D in Figure 8.19) lies much farther
out: they show vp = 1500 — 3000 km s—!.

How does this fast-moving stellar wind originate? The idea of Lucy and Solomon (1970)
was that the momentum transfer from these ultraviolet lines powers the wind. Consider a
thin shell at radius C. Photon excitation by means of outwardly directed stellar radiation
followed by isotropic reemission provides an acceleration outwards with a sum in which the
momentum transfer of the photon excitation contributes but that of the photon deexcitation
does not, on account of its isotropy:

flow of energy [sec~! cm=?] F.

with momentum Fo/e

momentum transfer [cm]~2 a,F, /e

contribution to the acceleration a,F,/pc

total acceleration 9r =(1/pe) [° @, F, dv

We evaluate this acceleration first for the continuum. The continuous extinction in O stars
is dominated by Thomson scattering. This is frequency independent, thus

8
gf':—l-Nea‘"}-zNed L,
pc pc 4nr?

and the relationship to the inwardly directed gravitational acceleration ¢ = GM/r? is

_ N.o®L
T 4rpcGM '

This ratio is the Eddington limit. if ['** > 1, the photosphere is blown off by the continuous

radiation. Stable stars thus have ['** < 1.
.Now for the radiation pressure of spectral lines. In deep layers the Rosseland approxi-

mation holds:

pos O
9

m

47 [* | dBdT
fv-?/o o a7 &z
dus
1 [ 4 [® _dBdT
gr—p—c-‘/o a,}',du—ﬁ A f,ﬁi;du

is independent of a,: the spectral lines are not effective in deep layers. They do increase the
extinction but the radiative flux leaks out through just those spectral windows with small]
extinction.

But above the surface that is no longer so. There radiative flux doesn’t know what lies above
it and larger line extinction in an overlying shell counts as long as the shell is optically thin.
The contribution per spectral line:

. 1 1
g,'_ = p—cal AvpF, = p—c ot AUDB,(T,ﬂ')

with Avp = v€/c the Doppler width of the line, determined by the average thermal velocity
€ of the scattering particles in the shell. The peak of B, falls in the ultraviolet; for strong
ultraviolet resonance lines such as C IV 154.8 nm with Fv = B,(T.q) we have g! /g ~ 300.
This is then a large effect; moreover, there are hundreds of such strong lines available in the
ultraviolet.

But now add radiative transport. An optically very thin layer captures few photons; in
an optically thick layer the lines saturate and there is no more B, (T.q) radiation. Thus we
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introduce the optical thickness of the shell ' for the line frequency v = +!. With radiation
from below by the undisturbed continuum of the star there follows from

f'
r<gi>= g;(O)/ e~7 dr
0

that

! -7t
a Av 1-e
< g >= 27, —

pe T
How large is 7!? For a static atmosphere we have 7! = f: a' dr, but for an expanding
atmosphere the extinction profile shifts in wavelength with the expansion velocity as it
increases outwards. Then we have the important Sobolev approzimation:

1.0 €
i PYZ TS

a type of effective optical thickness per line in an expanding shell. For sufficiently large
dv/dr each shell absorbs a new piece of the continuum because the line extinction profile
for this shell is shifted with respect to that of any other shell; this shell is not shielded
by the inner shells. Each photon that traverses a path length of about 7' (for,example by
scattering) escapes, in whatever direction; yet above and below the shell there are atoms
which can absorb the line photons at this Doppler shift. For sufficiently large dv/dr this
shell of interaction is also so thin that it can be assumed to be homogeneous. Thus:

for strong lines (r' » 1) <g;> = ':;: A:D %

for weak lines (r' € 1) <g1> = %AUD al

For strong lines the line extinction coefficient a' drops out: only their number matters. Their
contribution is proportional to dv/dr because for larger dv/dr there is less self-screening.

8.3.3 Planetary nebulae

Planetary nebulae are the result of the loss of stellar material: shells of previously ejected
material are heated and made to reradiate by the central star. They have nothing whatsoever
to do with planets. The so-called H II regions are similar objects: emission nebulae of H*
about hot stars. References: Bowers & Deeming Volume II, chapters 20, 24. There follows
here a description of relevant radiative processes taken from the lecture notes of C. Zwaan.

8.3.3.1 Photoelectric heating and photon degradation

Stellar radiation in the Lyman continuum (A < 91.2 nm) ionizes the nebula - the nebula
is thus heated. A recombining electron contributes to the recombination spectrum — not
only Lyman photons but also Balmer, Paschen, etc. photons are released (thus: photon
conversion, or photon degradation).

Zanstra assumed that a (planetary) nebula is optically thick to all Lyman photons, but
optically thin to Balmer, Paschen, and other photons. Zanstra established that the LyS,
Ly7, ... and Lyman continuum photons originating in the star, after many extinctions and
reemissions in the nebula, were eventually degraded into Ly a photons and Balmer, Paschen,
etc. photons (Figure 8.20). He noted that each Lyman photon (from 3 up to the continuum)
produced one Ly a and one Balmer photon. By means of many scattering processes, the Ly a
photons leak out of the nebula path, the Balmer photons leave the nebula as soon as they are
created. So by counting all Balmer photons from the nebula, one counts all Lyman photons
(from Lyg on, for which the Lyman continuum is the most important) which originate from
the star. Equating this with the photons in the optical stellarspectrum provides a color indez
which is a very sensitive measure of the stellar temperature. In this way one determines for
the central stars of planetary nebulae the Zanstra temperature: 3 x 104K < Ty < 3 x 10 K.
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Figure 8.20: The Zanstra mechanism for planetary nebulae. The nebula converts photons
in the Lyman continuum from the hot central star o Balmer lines and Balmer continuum
to which the nebula is optically thin, A tally of the emergent Balmer photons provides the
original number of Lyman continuum photons. The diagram (due to A. Schadee) shows a
recombination pathway to level n = 4.

"One can naturally draw up a detailed description, without making extreme assumptions
about the optical thickness of the nebula, and in which more is recovered from the Balmer
spectrum of the nebula. The populations of the energy levels of hydrogen are completely
determined by the radiative field of the star: as a result of the low electron densities,
collisional processes are negligible compared to all non-forbidden line transitions.

The radiative field of the star has a very extreme character: the average intensity in the
nebula as a result of the radiation is:
2hv3/c?

Jo=W, AT, [

with T, the (very high) radiative temperature of the star in the relevant line or series limit
continuum and W, is the very small radiative dilution factor:

R* _
W, = 4—’3e r,(r).
The first factor is the geometric dilution factor, with R the radius of the star, and r the
distance to the star. Assuming r 3 R, R2/4xr2 s very small: & 10-!5. The second factor is
the extinction factor, in which 7, stands for the optical distance of the star to the particular
element in the nebula - this contains the density of the (hydrogen) atoms along this distance.
The radiative field is thus very “hot” though extremely thin.
Because the nebula is optically thin in all transitions except the Lyman spectrum, the
radiative field of the nebula “itself” is negligible (except perhaps in Ly a). From this scenario
it follows that the statistical equilibrium is completely determined by:

1. photon-ionization and photon excitation, exclusively from the ground level, as a result of
Lyman radiation of the star;

2. photon-recombination and photon deexcitation (levels are thus populated only via pro-
cesses from the ground level and from higher levels or the continuum).

The system of equations for statistical equilibrium is thus relatively simple - one can solve the
problem using models for the stellar radiation and the density in the nebula, and calculate

-y
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from these e.g. the relative strengths of the Balmer lines and the Balmer continuum (the
Balmer decrement), and compare these with the observed Balmer decrement - from this
there then follow unique model parameters.

A result of the strongly diluted radiative field is that the local H atoms are practically
exclusively in the ground level n = 1. If the nebula is optically very thick in Lya, then
the Ly a photons are efficiently trapped. Then the radiative field in Ly a builds up to an
average intensity that exceeds the diluted radiation field of the star; however, the net flux
remains small. An enhanced radiation field in Ly o then leads to an enhanced population
of the level n = 2.

Since the hydrogen in the nebula is almost completely (singly) ionized, practically all
‘emission in the Balmer, Paschen, etc. spectrum is produced by recombination. So the emis-
sion per volume element is thus proportional to ny x N.. The surface brightness I, of the
nebula is thus determined by the so-called emission measure EM:

EM:/onN,ds
5

in which S is the segment along the line of sight inside the nebula.

The nebula has a sharp edge, especially as a result of the extinction factor in the dilution
factor W,. At a certain distance from the star the intensity of the stellar radiation in the
Lyman continuum decreases, consequently the fraction of neutral hydrogen in the nebula
becomes larger, the extinction coefficient for Lyman radiation rises rapidly, and so on. The
emission nebula extends to the so-called Stromgen radius r,:

—-(2/3
r,=r, NH( / ),

In this ny is the density of hydrogen particles. The Stromgen radius naturally depends |
strongly on the effective temperature of the central star ~ see the table.

| Spectral type: | O5 | O8 [ Bo | B3 | B9 | A2 |
[ Tenr — | 55000 | 49000 | 42000 | 28000 | 15500 | 12300 K
roa{nn=1cm™3) | 130 80 50 15 2 0.6 pc

Table 8.3: Effective temperatures and Stromgren radii for hot stars

Since the particle density is somewhat nonuniform, the edge of the nebula will have an
irregular shape - certainly for diffuse nebulae and B+ regions.

The above scenario for the hydrogen spectrum in nebulae can also be applied to the He II
spectrum of singly-ionized helium — the wavelengths are shifted: the resonance line corre-
sponding to Ly a falls at 30.3 nm and the series limit corresponding to the Lyman continuum
at 22.8 nm. Owing to the lower helium abundance, the nebula is somewhat less less thick in
He II lines and continua than in H. With a few modifications the preceding arguments also
apply to He I: here there is also photoelectric heating and photon degradation.

8.3.3.2 Fluorescence

In planetary nebulae individual strong UV lines are encountered, especially in O III, which
are noteworthy because other closely related lines from the same spectrum are completely
absent.

Bowen (1935) demonstrated that these lines arise from fluorescence resulting from pump-
ing in a strong line of the nebula (see Figure 8.21). The resonance line of He 11 A 30.3780 nm
is very strong: just as for Ly a a rather strong radiative field can build up in the line. This
helium line overlaps the O III 30.3799 nm line, with the result that O** is excited from the
ground level to the very specific fine-structure level 3dP,. From there the O** ion decays
back to the ground state by spontaneous emissions, via a whole cascade of lines, most of
which lie in the optical UV. The last transition O III A 37.4436 nm overlaps two lines in
the N III spectrum, which cause an excitation to the 3d?D term of N*++, which once again
results in a number of spontaneous emissions, also in the visible spectral region.
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Figure 8.21: The Bowen mechanism for fluorescence. Due to fortuitous wavelength coin-
cidences, high levels can be ezcited by photons from the specira of other elements. The
wavelengths are given in Angstrom. :

8.3.3.3 Collisional excitation of forbidden lines

In the spectrum of emission nebulae spectral lines are seen which do not occur in the labo-
ratory - among which are the two blue-green “nebulium” lines N, and N, that are brighter
than all the remaining lines combined in the visible spectrum of practically all nebulae.
These lines were explained (by Bowen and others) as forbidden lines (i.e. not electronic
dipole radiation) of O**: [O III]. The metastable levels (D and !S in that case) are ex-
cited by collisions with electrons - that can happen at the typical electron temperatures in
nebulae, T, &~ 1 — 2 x 10* K, because the energy jumps are only a few eV. Because of the
low N, the probability for a collisional deexcitation is still considerably smaller then the
probability for photodeexcitation, by which forbidden lines appear. Note (carefully) that
the presence of forbidden lines occurs optimally in a fairly hot gas of electrons, just dense
enough to provide collisional excitation, but indeed not so dense that collisions dominate
the deexcitation of the metastable levels.

8.3.3.4 Free-free radiation

Given that an emission nebula is practically completely (singly) ionized, free-free radiation
is emitted - this is especially natural in the radio region (why?). This is an important
diagnostic which provides the electron temperature of the nebula; in the radio region there
is no continuous extinction. Do check if in the radio region a nebula is optically thick - (or
an intermediate case) - or optically thin, but that can be discerned from the I(v) spectrum
itself. If it is optically thick we have I(v) ~ v?; if it is optically thin we have I(v) ~ u°.
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Appendix A

Tables and term diagrams

Elemental abundances
(from Allen, Astrophysical Quantities)

Element Symbol  Atomic 1%]og(abundance)
number by number by mass
Hydrogen H 1 12.00 12.00
Helium He 2 10.93 11.53
Lithium Li 3 0.7 1.6
Beryllium Be 4 1.1 2.0
Boron B 5 <3 <4
Carbon 6 8.52 9.60
Nitrogen N 7 7.96 9.11
Oxygen O 8 8.82 10.02
Fluorine F 9 4.6 5.9
Neon Ne 10 7.92 9.22
Sodium Na 11 6.25 7.61
Magnesium Mg 12 7.42 8.81
Aluminum Al 13 6.39 7.78
Silicon Si 14 7.52 8.97
Phosphorus P 15 5.52 7.01
Sulfur S 16 7.20 8.71
Chlorine C1 17 5.6 7.2
Argon Ar 18 6.8 . 8.4
Potassium K 19 4.95 6.54
Calcium Ca 20 6.30 7.90
Scandium Sc 21 3.22 4.87
Titanium Ti 22 5.13 6.81
Vanadium v 23 4.40 6.11
Chromium  Cr 24 5.85 7.57
Manganese Mn 25 5.40 7.14
) Iron Fe 26 7.60 9.35
Cobalt Co 27 5.1 6.9
Nickel Ni 28 6.30 8.07
Copper Cu 29 4.5 6.3
Zinc Zn 30 4.2 6.0

Example: Nno/Ny = 10%7°-12:90 = § 78 % 10~°.
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Ionization energies in eV
(from Allen, Astrophysical Quantsties)

Atomic No. Element I 11 11

1 H 13.598

2 He 24.587 54.416

3 Li 5.392 75.638 122.451

4 Be 9.322 18.211 153.893

5 B 8.298 25.154 37.930

6 C 11.260 24.383 47.887

7 N 14.534 29.601 47.448

8 O 13.618 35.116 54.934

9 F 17.422 34.970 62.707
10 Ne 21.564 40.962 63.45
11 Na 5.139 47.286 71.64
12 Mg 7.646 15.035 80.143
13 Al 5.986 18.828 28.447
14 Si 8.151 16.345 33.492
15 P 10.486 19.725 30.18
16 S 10.360 23.33 34.83
17 Cl 12.967 23.81 39.61
18 Ar 15.759  27.629 40.74
19 K 4.341 31.625 45.72
20 Ca 6.113 11.871 50.908
21 Sc 6.54 12.80 24.76
22 Ti 6.82 13.58 27.491
23 \Y 6.74 14.65 29.310
24 Cr 6.766 16.50 30.96
25 Mn 7.435 15.640 33.667

26 Fe 7.870 16.18 30.651
27 Co 7.86  17.06 33.50
28 Ni 7.635 18.168  35.17
29 Cu 7.726 20.292  36.83
30 Zn 9.394 17.964  39.722
31 Ga 5.999  20.51 30.71
32 Ge 7.899 15934  34.22
33 As 9.81 18.633  28.351
34 Se 9.752 21.19 30.820
35 Br 11.814 21.8 36
36 Kr 13.999 24.359  36.95
37 Rb 4.177 27.28 40
38 Sr 5.695 11.030  43.6
39 Y 6.38  12.24 20.52
40 Zr 6.84 13.13 22.99
41 Nb 6.88  14.32 25.04
42 Mo 7.099 16.15 27.16
43 Tec 7.28  15.26 29.54
i 44 Ru 7.37  16.76 28.47
45 Rh 7.46  18.08 31.06
46 Pd 8.34 1943 ' 32.93
47 Ag 7.576 21.49 34.83
48 Cd 8.993 16.908  37.48
49 In 5.786 18.869  28.03

Sn 7.344 14.632 30.502

o
o




Hydrogen ionization
(for P. = 10 dyne em ™2, from Novotny)

. vy Ny LT
T(K) N, N+ Ny N+ Ny
6000 3.50 x10~*' 1.000 0.350 x10~°
8000 5.15 x10™! 0.660 0.340
10000 4.66 x10*' 0.0210 0.979
12000 1.02 x10**  0.000978 0.999
14000 9.82 x10**  0.000102 1.000
16000 5.61 x10** 0.178 x10™* 1.000

Helium ionization
(for P. =10 dyne cm™~2, from Novotny)

Ny N1
T(X) Ny N+ N
10000 5.45 x10~% 1.27 x10~1?
12000 9.97 x10~? 7.45 x10~!°
14000 4.37 2.01 x10~"
16000 7.80 x10° 7.88 x10~°
18000 7.59 x10°  8.48 x10~7
20000 4.82 x10°  3.68 x10~°
22000 2.24 x10'  8.24 x10~*
24000 8.19 x10* 1.12 x1072
26000 2.50 x10° 1.03 x10~!
28000 6.58 x10° 7.05 x107!
30000 1.54 x10° 3.77
32000 3.28 x10°  1.65 x10’
34000 6.45 x10°  6.13 x10'
36000 1.19 x107  1.98 x10°
38000 2.06 x107  5.71 x10?
40000 3.41 x107 1.49 x10°
T (K) _ N Ny N
M+Nu+Nuw N+ Nu+Nu N+ Ng+ N
6000 1.000 0.7770 x10™'¢  0.144 x10~%°
8000 1.000 0.249 x10~¢ 0.253 x10~32
10000 0.999 0.544 x10~? 0.692 x10~22
12000 0.909 0.0907 0.735 x107?¢
14000 0.186 0.814 0.164 x10'°
16000 0.127 x10™! 0.987 0.777 x10~°
18000 0.132 x10~2 0.999 0.847 x10~°
20000 0.207 x10™2 1.000 0.368 x10~*
22000 0.447 x10~* 0.999 0.823 x10~3
24000 0.121 x10~* 0.989 0.0111
26000 0.363 x10™° 0.906 0.0937
28000 0.891 x10™° 0.586 0.414
30000 0.136 x10~° 0.210 0.790
32000 0.174 x10~7 0.0571 0.943
34000 0.249 x10~* 0.0161 0.984
36000 0.423 x10~° 0.502 x10~? 0.995
38000 0.847 x10~1'° 0.175 x10~? 0.998
40000 0.197 x10°%° 0.671 %1073 0.999
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Grotrian diagrams

The most important transitions for several important spectra. Wavelengths in A.
(from Moore and Merrill, Partial Grotrian Diagrams of Astrophysical Interest)
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Formulae
label : eq : 1.1 v=c/A
label : eq: 1.2 E=hv
label : eq : 2.1 dE, = I,(F,1,1) (i) dA dt dv dQ = I,(z,y, 2,6, v, 1) cos 8 dA dt dv d
label : eq: 2.2 J(Ft)=L/I dQ~l-/2’ 1'I sin§dé d
- eq 2. Wt =13 Av =i s Jo v P
1 T 1 +1
label : eq: 2.3 Ju(2) = —/ I,(2.0)2xsin6 df = - I(z,pu)du
4 0 2 -1
2r * .
label : eq: 24 FAF AL = /Iy cos 8 dQ =/ / I, cos@sinfdd dy
o Jo
2% pw /2 2 px/2
label 1 eq:25 F, = / / I, cosfsin 6d6d¢-—/ / I, cos@sin6dfdy = FF -7
s} 0 0 .
1 -1
label : eq: 2.6 Fobz) = 21r—/ pl, dy - 21r/ pl, dp = F}F(z) - F (2)
0 0
1
label : eq: 2.7 u, = ;/1, dQ
1 2
label : eq: 22 Po=< I, cos* 8 dQ
label : eq : 3.1 dE, = j, dV dtdv dQ
label : eq :3.2 dl,(s) = j.(s) ds.
label : eq : 3.3_ dl, = ~I,o,nds
label : eg : 3.4 dl, = -1,a, ds
label : e¢:2.6 dl, = -1,k pds
d]
: 136 ~ = v viy
label : eq : 3 o -he I
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label :

label :

label :

label :

label :

label :

label :

janel:

label :

label :

label :

label :

label :

lowel: 2. 3»~uh’w 337

label :

label :

label :

label

label :

eqg:3.7

Q

eq: 3.

eq:39

eq:3.8

eq:3.1n

eq:3.12

eq:3./3

¢4 ﬁues‘nbn 32¢

eq:3.1¢

eq:3.19

eq: 3.6

eq:3.i7

eq: 348

eq:3.19

eq:3.20

eq .4/

req:4.2

eq:4.3
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dr.(s) = a,(s)ds

D
(D) =/o au(s) ds

<7, (s8)>= foco 7, (s) e~ ") dr, (s) ~

Joo e dn(s)

1

K, p

= SmE)> 1
v a, —0,,_

7,(20) =-/ a, dz

[o <]

S" = jv/ou

dl,
—I=Sy—1y

dr,

dl,
K dr!

=1,-5,
I(r,)=1(0)e""™ +/on S,(t,)ye =t gy,
1,(D) = 1,(0) e 4.5, (1 &=(2))
L(D) = L(0) +[S, - 1,(0)] 7,(D)
1r=04)= [ TS, ek dt

I (r)=0,p) = S.(7) = p)

Fl(r,=0) ~ x5,(r, = 2/3)

T =/a,, ds:/af,“"‘ ds+/a',i"'ds

o Tdv _ 5ot o stne
v e, - agont 4 gline
i7F =aJEB,(T)
2k 1

B, =
(7) c? ehu/kT -1
2hc? 1

BT = =
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3
label :eq: 4.4 hv/kT>»1 — B, = %_:_e—hv/kT
c
2
label : eq: 4.5 hv/kT 1l — B,z2u :T
c
1.6 Zoer = 5.88x 1010 Hz K™
label : eq : 4.7 AmaxT = 0.290 ¢m K
label :eq: 4.8 BE/ B.,du:-Z-T4
0
label : eq: 4.9 B,(T:) = I:b.
label : eg : 4 T. = S pobs
abel:eqg: 4./D b= gl
label : eq : 4. |l Ta =naTh
. drgt dB,(T:)
fabel e 4 1z dv v=veo - T v=vg
label : eg: 4 .{3 oTh = Fl e
1/2 )
label : eq: 4.1 4 n(;’) dv, = (Q;ZT) e~ (V/Dmel/kT g,
3/2
label : eq: 4.1 "1(:) dv = (27::T) 4rv? =DM /AT g,
n TE
label 1 eq: 4, [ [n"'] = -‘;_".’_e-(h..-xr,')/kr
r.t rt
n TE g
label :eq:4.17 [1\’}:] - _l_j'%e-xr,./kr
label : eq : 4.16 U, = ng e=Xro/ET
s

Nr41,0 TEN — 29r410 (27mekT 82 e=X-/ET
N0 ¢ gro0 h?

label : eq : 4{?

TE 3/2
label : eq: 4,2_0 [M] Ne = 2Ur+l (27|'mekT) e‘X'/kT

N, U, h?
label : eq: 5.1 A, = transition probability for spontaneous deexcitation per second per
particle in state u

r,/4nx?
(v=vo)? + (Tu/47)?

label : g : 5.2 Y(r=-u) =
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label :

label :

label :

label :

label :

label :

label :

label :

label :

label :

label :

label :

label :

label :

label

label :

label

label :
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v—-vy)dv
eq 6.3 J fo Ju el o) / Jop(v—1g)
fo pv—15)dv
eq: 5.4
B, J,, = number of radiative excitations per second per particle in state !
€g:9.5
BuiJ,, = number of induced deexcitations per second per particle in state u

eq: 56 Cu = number of collisional deexcitations per second per particle in
state u

eg:5.7 Ciu = number of collisional excitations per second per particle in state /

. Blu - gu Aul _ 2hU3
€q S 8 Bu’ = g—l en Eu_l = c_2
. Cu = 9 BT
er: 57 Cu - Ju ©
eq:5.10 7P = hygn, Ayy(v—1p)/dr
. ! hyy ;
eg:5.il a, = E‘[nIBluSo(V—VO) = nyBux(v~vg)]
202 Yfy
€q ZS-IL Sy = c_29u—nlj_-
giny ¥
X ! _ nuAuI — 2hV3 1
€503 S0 = By —nyBy ¢ S _
giny
. al _l? < - T
eq : 6.1 Era(rt) = [r'c'f 7 x (7 x v)]
eqg:6.2 Brag(r,t) = [ﬁ x Eud]
) dP _ dF q v? sin?
e 6.4 W= Fan a3l
242 2,2
eq: 0.9 gy 2q70°
teq: 6.9 P= P §in?8dQ = 33
2
. =9
eq : 67 o = el
op - _ 8r r2 w!
ieq: 6.5 o(w) = 3 0( T

8
eq:6.9 aTzT" = 6.65 x 10725 ¢m?
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s 1 Aul"‘%‘

=Qa
vo ¥ Aui+ Bud,, + Cui

]
Yo

a ]
av° + avo

a . . L
= destruction probability per extinctieir

B.
¢ _ Cul ! -
T Au+ Bul'ﬂb‘*’ Cui

Evo =

SLo = (l - el‘o)‘]vo + el’oBl’o

L=l /e,

I =1/\/a2(a? +at)

T, =D/ = (2 + 1))

L, = 4nalB,V

+1

1
H/(:)= Zl;/cosﬂl,,(z,p) dQ = 5/ ul, du

-1

1 +1
K, (z)= Zl;/coszel,,(z,p) dQ = 5/ pl, du

-1

J, =3K,
1d4%J,
§dr;2 =J =5
1d42J,
Tagr = 6+ U= B)

Su(r, =0) = V&B,
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C.1 Questions Chapter 2

l Question 2.1 |

The energy flow dF, is measured in erg (cgs) or Joule
(mksA).

l Question 2.2 ]

Neither. The energy flow dE, through AA; and AA,
in Figure 2.2 (copied below) is given by

AAy cos by

AE, =11 At AvAA; cosb, 2 ,

with the projected arrival area AAjcos#; represent-
ing the fraction of the sphere with radius r around P;
that is intersected by rays which contribute to dE,,
and AQ; = (AA; cosf2)/r?. The energy flux AE, di-
minishes as 1/r? if point P, is moved away. However,
since this dependence is explicitly accounted for in the
expression above, it does not affect the proportionality
constant I;. Thus, I, does not depend on A2 because
it is defined per steradian.

AA AA

1

<D

Question 2.3 ]

The definition of intensity

- d&,
T dtdrdA dQ

describes the proportionality of an energy flow dE, to
the bandwidth dv across which it is measured. For dif-
ferent measurement units the proportionality constant
I changes:

I,

dE, dF,
v d = = = R
Ldv=qgddaq ~ waiaq - P4
where dE, = dF,.
wavelength A MAA, ——
- wAv v frequency

A given spectral band lies in frequency between v
and v+ Av, in wavelength between A and A+ AX. Due
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to the direction reversal, the band edge at frequency
v corresponds to wavelength A + A) and vice versa.
Therefore v = ¢/(A + A)) and A = ¢/(v + Av), thus
Av = c AN/ (A +AAX) and for A — 0: dv = e dA/A2.
This is obtained more simply by differentiating: dv =
d(c/A) = —(c/A?) dA, or by using logarithms: log A +
log v = log e, therefore dlog A +dlogy =0, so dA/A =
—dv/vor dv = —(v/A) dA = —(c/A?) d).

The sign of the conversion depends on the sign def- .
initions of dv and dA. If each is taken to be a positive
increment, then I, and I are both positive and related
by:

c
I, = XQ—L'
¢
I, = ;—2—1,\
VI,, = /\I,\.
Similarly,
1, cl,
I, = L/2x
ol, = wl,=vl,.

The two intensities I, and I, are not the same for a
given spectral band; it is useful to avoid conversion
problems by plotting vI, or Al instead.

l Question 2.4

[erg cm™3 571 ster™1]: A is measured in cm, and that

cm™~! has been added to the cm™2;
[erg cm™2 ster™1]: Av = Hz™! = (1/s)~! has been
canceled against the s™!;

[erg cm™! 57! ster™!]: Ao in cm~! has been canceled
2

against one cm of the cm~2,
None of these ways of writing intensity units is recom-
mendable.

Question 2.5

The answers to these questions are less obvious than
they seem because the questions are incomplete. The
precise location of the radiation measurement wasn’t
specified properly in any of the three questions. Where
exactly is the sampling area of 1 cm?? What is the
beam direction? Where “outside the terrestrial atmo-
sphere” is the irradiance R, being measured? Is the in-
tegral f 4Ty dA taken over the surface of the spherical
radiator, within it, or around it? Where is the isotropic
radiation field being measured? The questions assume
implicitly that:

~ the isotropic radiator is at large distance from Earth;
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— the spherical radiator is not irradiated by another
object;

— the isotropic radiation field is measured locally.

Such sloppiness is often part of the astrophysical
literature. However, the location and orientation of the
sampling surface and the beam direction are usually
obvious. In or from spherical objects such as stars, the
unspecified direction is usually outwards.

Question 2.6 —l

The segment of the annulus at “latitude” § and “lon-
gitude” ¢ of the sphere with radius r around the sam-
pling location has width 7 A# and length r sing Ay,
therefore area:

AA =r?sinf A6 Ap.
Thus, in the limit A — 0:
d2=dA/r? =sinfdf dyp ster.

A sphere has, measured from its center,

27w
/ / sinf df dp = 47 ster
o Jo

and a quarter hemisphere (a room corner) contains

T2 pmw/2 T
/ / sin@ df dp = — ster.
0o Jo 2

y

Solid angle in polar coordinates. The area of the
sphere with radius v limited by (6,0 + Af) and
(yp+ Ap) is r2sinf AO Ap. Therefore AQ =
sin@ A8 Aep.

L Question 2.7 l

A spot meter measures intensity because its detector
is in the image plane. It registers photons only from

APPENDIX C. ANSWERS

a limited field of view which is confined by the detec-
tor size and the focal length of the imaging lens. The
detector measures photons only along those rays that
diverge over solid angle A2 in the propagation direc-
tion, or, viewed backwards, diverge over AQ along the
line of sight. Thus, the spot meter measures energy per
solid angle AQ.

The distance to the object does not affect the
amount of energy within the metering field AQ as long
as it is filled homogeneously with radiation: the de-
tector should be smaller than the detail in the image.
Professional photographers hold exposure meters close
to the face of their model and then step back to adjust
the camera aperture to that reading. A spot meter
gives the same reading without getting close.

detector film

objective

Spot meter in a single-lens reflex camera. Prior
to exposure of the film at right, a flip-in mirror
projects the image on a small detector. It receives
rays only from a small solid angle AQ.

l Question 2.8 — yet to be done

Show that the intensity along a beam from an object
does not change when the object is imaged by a lens.
werkcollege som

L Question 2.9 — yet to be done 1

A lamp radiates intensity Iy isotropically. If it is placed
in the focus of a lens, what is the intensity of the re-
sulting collimated beam (consisting of parallel rays)?
Just the same as Sirius but reversed. Point source, if
the rays are parallel. But lamp is never point source
anyhow. note: Sirius comes later

L Question 2.10 j

The monochromatic intensity I, is conserved at disper-
sion in a prism because it is measured along a refracted
ray. The total intensity I is fanned out into different
directions according to wavelength. The definition of
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intensity measurement per steradian in a given direc-
tion does not apply to this fan of directions.

l Question 2.11 — yet to be done

Use Snell’s law n; sin§; = nssin @, to demonstrate that
the quantity I, /n? is conserved when a beam with in-
tensity I, passes across the border between media 1
and 2 with indices of refraction n; and n,.

Why is it that astrononers tend to set n = 1 for their
objects? See Zwaan and werkcollege

| Question 2.12 I

The intensity of the solar radiation measured at the
Earth and at Saturn is the same. The Earth receives
a hundred times more solar energy per ¢cm? (irradi-
ance) than Saturn, because the solar diameter subtends
an angle on the sky that is ten times larger for the
Earth than for Saturn; the apparent solar disk, mea-
sured in steradians AQ, is a hundred times larger from
the Earth. The total amount of solar energy received
by the two planets is about the same since Saturn is
nearly ten times larger than the Earth.

Earth

Saturn

0
0 (0.4

Solar intensity observed from Farth and from Sat-
urn. The Sun is assumed to radiate isotropically.
The relative diameters and distances in this sketch
are wrong; in reality, Saturn is nearly ten times
larger than the Earth and nearly ten times further
away from the Sun.

[ Question 2.13

The illumination of the sun-lit moon is equal to that
on earth at clear sky. Picture taking on the moon re-
quires the same exposure as for a similarly dark land-
scape on earth, for example on a volcano. Taking pho-
tographs of the lunar surface with a terrestrial telescope

169

requires the same exposure, because the intensity does
not change along the moon-earth separation or within
the telescope.

The solar illumination of Mercury is ?? larger be-
cause the apparent solar disk fills a 77 larger segment
of Mercury’s sky. The kosmonaut requires ?? shorter
exposure.

L Question 2.14 j

An intensity meter registers incident energy AE (in
the form of photochemical reactions in a photographic
emulsion, photoelectric release of electrons in a cath-
ode, charge accumulation in a CCD pixel, etc.). The
detection must satisfy the condition that this energy
is measured across a sufficiently small solid angle AQ
along the incident beam that the radiation fills it uni-
formly. Thus, the angular extent of the object or of the
detail in the object to be measured has to exceed the
angular resolution of the observation set by turbulence
in the terrestrial atmosphere (seeing), the telescope res-
olution, and the detector size.

The amateur astronomer might mount a photomuli-
plier behind a.diaphragm in the image plane. (A pho-
tomultiplier is an accurate photometric device and still
represents a good choice if single-element detection suf-
fices. Otherwise, a CCD camera is preferable. In both
cases, absolute photometry requires careful measure-
ment per pixel of the dark current (signal for no inci-
dent light) and of the response to a calibrated source
(for example a black-body source at known tempera-
ture). The diaphragm serves to limit the solid angle to
a homogeneous part of the object.

An improvement is to add a field lens (Fabry lens)
which images the aperture or pupil (the objective lens
or main mirror of the telescope) on the cathode, to
avoid effects from cathode inhomogeneity and from the
seeing excursions of the stellar image. Adding a filter
makes the measurement monochromatic.

The amateur astronomer has to adjust the di-
aphragm so that only a homogeneous piece of the lu-
nar surface, of the sunspot, of Jupiter’s red spot or of
the Milky Way is projected on the detector. That is
hard for the sunspot, nearly impossible for Jupiter’s red
spot, impossible for the Milky Way unless one wants
to measure its diffuse intensity. Careful calibration of
the size of the diaphragm is required for the conversion
from AE, to I, through division by the solid angle AQ.

Finally, the sky transparency must be taken into ac-
count. It depends sentively on the “airmass” along the
line of sight, with appreciable wavelength dependence,
and it fluctuates with time. The trick is to measure
the incident energy as a function of airmass while the
object climbs in elevation, and then to extrapolate the
measured trend to zero airmass. This can be done only
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objective

~ Classical photometer. The objective at left projects
an image of the sky on a diaphragm which limits
the acceptance angle. The Fabry lens images the
objective on the detector to avoid geometrical vari-
ations in detector illumination. The filter selects
the wavelength passband. The two flip-in mirrors
permit visual inspection of the field of view and of
the centering of the object within the diaphragm,
and also calibration with a standard lamp. (after
Kitchin 1991, p. 293).

for non-variable objects; in variable-star photometry,
one chops between the star and a standard star. Such
chopping is also used to correct for transparency vari-
ations. Complete designs for amateur-astronomy pho-
tometers are given by Hopkins (1990).

20

meridian passage

magnitude
N
(9,
1

30

-

s€cz

Photometric correction for airmass. If the at-
mospheric conditions do not change, the airmass
along the line of sight is proportional to the se-
cant of the zenith distance z plotted along the ab-
scissa. Stellar magnitude measurements that are
) successively made at different z define a linear fit
of which the crossing with the ordinate defines the
- extinction-free magnitude. The abscissa is dashed
where it plots airmass rather than sec z, eztrapolat-
ing the measurements with atmospheric eztinction
to no extinction at all (after Kitchin 1991, p. 305).

APPENDIX C. ANSWERS

Question 2.15 —I

The amateur astronomer might in principle measure
the intensity of Sirius A too, but not in practice. A
telescope would be required that is large enough to re-
solve Sirius so that a homogeneous surface area can be
selected by the focal plane diaphragm, for example the
center part of the apparent stellar disk.

The resolving power of a telescope is (Rayleigh crite-
rion): A = 1.22 X/D rad with D the aperture diameter,
or, expressed in arcsec: A” = 0.13/D,, at A = 510 nm
where the retinal rods in the eye are most sensitive,
with Dy, in m (e.g., Kitchin 1991, p. 49). The distance
to Sirius is 2.7 pc and the diameter of Sirius is 1.8 times
the solar one (Allen 1976, § 114), so the angular extent
of Sirius is 3 x 1078 rad or d = 0.006”. Resolving
the apparent stellar disk into two resolution elements
therefore requires a telescope with D = 21 m diameter
in the visible; sufficient resolution elements to measure
the limb darkening takes a telescope of 200 m or more.
Such telescopes are out of reach of amateur and profes-
sional astronomy alike; that sort of resolution requires
optical interferometry best done from the moon.

Resolving stars should be easier for the largest stars
on our sky, championed by Betelgeuse (o Ori, spectral
class M2 I, distance 200 pc, d = 0.047” in the visible).
However, even these are not resolved by even the largest
telescopes because the seeing due to the terrestrial at-
mosphere causes image smearing over 0.2-1.0” at the
best locations on earth (the mountaintop observatories
in Chile and on the Canary and Hawaiian islands), and
more elsewhere. The seeing makes intensity measure-
ment impossible for sources of small angular extent.
The intensity measuring device in Question 2.14 im-
plicitly assumed that light rays deliver faithful one-to-
one correspondence between the object and the tele-
scope image, but atmospheric seeing reshuffles the rays
randomly across the seeing disk. It causes humps and
bumps in the instantaneous wavefront which change
very fast, at frequencies up to 100 Hz.

Therefore, although the seeing-broadened stellar im-
age in the focal plane of a large telescopes exceeds
the telescope resolution considerably, it does not con-
tain angularly resolved intensity information. Its en-
ergy content just represents irradiance. The diffraction
limit of the telescope can only be reached by correct-
ing the atmospheric wavefront aberrations (“adaptive
optics”), or by registering them at high speed (expo-
sures within the “speckle freezing time” of about 10 ms)
and computer correction, for example with a statisti-
cal approach as in speckle interferometry. (Speckles are
the image-plane result of interference between rays that
pass through different seeing cells in the atmosphere.
Some cell pairs cause coherent interference and repre-
sent interferometers; some of these operate at separa-
tions equal to the telescope diameter. Measuring many
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The effects of atmospheric seeing. Ideally, a tele-
scope images point sources as the diffraction pat-
tern set by the size and shape of its aperture (left).
Radio telescopes and optical telescopes in space do
so when they are “diffraction-limited”, which re-
quires that all imperfections are smaller than about
A/10. For optical ground-based observing, the at-
mospheric seeing spoils the image quality (middle
and right). Blobs of air that vary in refractive
index are swept through the beam. In long ezpo-
sures (middle), they blur the image over consider-
able extent (0.5"—1.5" at the best sites, consid-
erably more elsewhere). Short exposures, of order
10 ms, show speckles (right). The latter are the
instantaneous result of interference between rays
through different seeing cells. For a point source
the speckles are roundish; the smallest have about
the width of the central peak of the diffraction pat-
tern at left.

such speckles enables restoration of the image informa-
tion up to the telescope diffraction limit—if the tele-
scope itself is diffraction-limited, which usually is not
the case. See e.g., Léna 1988 p.252-262, Kitchin 1991
p.239-242.)

The situation is different in radio astronomy be-
cause radio waves are not much affected by atmospheric
turbulence (slight “twinkling” of radio point sources
is caused by electron density fluctuations in the iono-
sphere, and for wavelengths A > 1m by irregularities
in the solar wind). Therefore, a radio astronomer may
measure the intensity of any object that is sufficiently
resolved by his telescope. The closer quasars have ap-
parent diameters up to 0.01-0.1” and can be resolved
with long-baseline interferometry. Their intensity can
be measured if the antenna pattern (the angular sen-
sitivity pattern of the interferometer across the sky)
is sufficiently well known (e.g., Cohen 1969, Carleton
1976, Perley et al. 1986).
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L Question 2.16

There is no atmospheric seeing in space, so that the
photons from a point source such as a star are concen-
trated into a much smaller telescope image than on the
ground. The energy received per telescope resolution
element is therefore much larger for a space telescope
than for a ground-based telescope with the same re-
solving power.

The sensitivity gain reached by going to space is
much smaller for extended objects such as gaseous neb-
ulae. The elimination of atmospheric turbulence does
not improve the per-pixel illumination of objects that
are already resolved from the ground.

(Note that the absence of atmospheric extinction
gives only slight improvement in the visible, the major
effect being the elimination of solar, lunar and artici-
fial light that is scattered by the atmosphere into the
telescope. The sky background in space is due to the
zodaical light, made up by sunlight that is scattered to-
wards earth by interplanetary dust. It also constitutes
the background on the darkest nights at the darkest
ground-based observatories.)

A (good) space telescope is a good choice to im-
age nebulae and galaxies that contain small-scale de-
tail of interest. To study stars and clusters in galax-
ies, clumpiness of interstellar clouds, active galactic nu-
clei etc., one again obtains the sensitivity increase that
goes with the resolution increase. The same holds for
quasars. They are either point sources, or they display
interesting fine structure.

The HST should have put 70% of the incident en-
ergy from a non-resolved object within a circle of 0.1”
diameter, a much better performance than obtainable
from seeing-limited gound-based telescopes (though be-
low the diffraction limit of a 2.4 m telescope, which
wasn’t required in the HST specification). The tragic
error made in the positioning of auxiliary optics dur-
ing HST polishing resulted in a 70% enclosing circle of
1.5”, comparable to what ESO’s New Technology Tele-
scope on La Silla (Chile) delivers when the seeing is
good. Thus, the error made the HST about a hundred
times less sensitive to small detail than it should have
been.

Subsequent image restoration with software tech-
niques similar to those developed in radio astronomy
is feasible, but requires hundred times longer exposure
than anticipated to obtain the required signal-to-noise
(at optical wavelengths, photon noise exceeds detector
noise). The tragedy is that a simple and cheap opti-
cal test, which consists of moving a pentraprism on a
rail across the mirror, would easily have detected the
“spherical aberration” that results from such position-
ing errors (see Wilson 1990).
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A Lambert surface is an isotropic radiator to the ex-
tent that the intensity is the same for any outgoing
direction, while there are no incoming rays (often, the
* term isotropic is meant to imply that rays depart from
a surface equally in all outward directions only). Thus,
a Lambert radiator has axial symmetry in the extreme
limit of no #-dependence. For every surface location:

1 1 27 7|'/2 I()
J 41r/lon 47r/0 /0 Iosing df dp = 2,

which is half the value of J for truly isotropic radiation.

Lambert radiator. The surface radiates the same
intensity Iy in all upward directions. The mean
intensity J, is the average over a half space filled
with outgoing rays (from below) and a half space
without incoming rays (from above). The same
holds for any measurement point above the surface
if the latter is infinitely extended.

The same value J = Iy/2 holds at a distance D from
the surface because the radiation also fills 27 steradian
with intensity o around that location if the radiating
surface is infinite.

L Question 2.18 I

Even the assumption of axial symmetry for the solar
radiation (i.e., ignoring lateral inhomogeneities such as
-sunspots) does not suffice to answer this question. The
f-dependence of the emergent radiation is required, or,
equivalently, the center-to-limb distribution of the in-
“tensity measured across the apparent solar disk from
the earth.

Assume that the solar surface radiates as a Lambert
one, emitting the same intensity I in all outward di-
rections. Near Earth, the intensity along any line of
sight towards the Sun (along a ray coming from the
Sun) is then I = Iy, while I = 0 for any line of sight or
ray with a@ > ag, where ag = Ry /D = 0.00465 rad is
the limiting angle describing rays from the solar limb.

APPENDIX C. ANSWERS

0 <, lod

If the solar surface radiates isotropically as a Lam-
bert surface, the intensity is the same in all direc-
tions away from the Sun and along all lines of sight
towards the Sun. From the Earth, one sees a uni-
form disk without limb darkening or limb bright-
ening.

The mean intensity follows from averaging I over
solid angle, with the sampling location at Earth and
the angle averaging over all line-of-sight directions from

there:
1
y= /‘I d§2
1 Vi Qo
= — / Iysina da dy
47|' 0 0

I
= 30(1 — cosag)

_ L, VPR
-2 D
Iy
= 1 10-5 =2,
1x10 5

For D = Rg one again finds J(Rg) = Ip/2 (cf. Ques-
tion 2.17).

[ Question 2.19 I

Assuming the Sun to radiate as a Lambert surface, at
both planets I = Iy for all lines of sight towards the
Sun and I = 0 in all other directions. For small a
we may set sina & o or cosa & 1 — o?/2, so that
(Question 2.18):

At Saturn the mean solar intensity is about one percent
of the value near Earth.
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I Question 2.20 —l

Assume again that the solar surface is a Lambert radi-
ator emitting I = I in all outward directions.

Then, at distance D from the Sun:

F(D) = /Iocos0dQ

Qo
27r/ Iy cos asin o da
0

= 7lp(1 — cos? ap)

- Ro\’
= 1rIo (—D—-) .

At the solar surface F(D = Rg) = nly; away from the
Sun, the flux decays with the square of the distance.

The solar irradiance at Earth equals the local flux
by definition (§2.1):

Ro F(D = 1AE)

_ Ro \’
= WIO(IAE)

6.79 x 10751;.

The mean intensity at Earth is, using g < 1:

I { Ry \?
16
Ro

?7

J(D=1AE)

or simply the average of the incoming radiation over the
full sky. (Note the difference between Ry and Rg.)

l Question 2.21 J

Since Saturn is ten times further away than the Earth,
the flux ratio is

F(D=1AE) _
F(D=10Ax) ~ 00

l Question 2.22 — yet to be done

A Lambert disk with radius R emits intensity
I,(8,9) = Iy. Express J, and F, in I for a point
P at a distance D from the disk on its axis. What are
the results for D <« R and D >> R?

173

| Question 2.23 — yet to be done j

Express the surface flux of a spherical star in the mean
intensity I, that is received from the stellar surface by
a distant observer.

[ Question 2.24 — yet to be done j

The segment of solar spectrum with the NaID lines
in Figure 1.2 is copied from the atlas of Kurucz et al.
(1984). This is an atlas of the solar irradiance spec-
trum. Why is it called a “flux” atlas? How may one
measure the irradiance spectrum from the Sun? Why
should one want to?

Discuss flux spectrometry — Beckers, Oranje etc.
See Sun as a Star. Intensity! Microscope, moon, sky,
FTS, Oranje reductor

Usage: sun as a star. Terrestrial climatology.

[ Question 2.25 — yet to be done

There is a high correlation between the excursions of
the apparent solar limb due to to the turbulence in the
earth’s atmosphere and the fluctuations in the solar ir-
radiance. Why? See Beckers comment on Seykora irra-
diance seeing monitor. Seykora (1993) Beckers (1993)

[ Question 2.26 |

Stellar magnitudes measure irrradiance R, i.e., the flux
received at Earth along the line of sight (§2.1), not
intensity because stars remain unresolved for any tele-
scope. Stars are point sources at infinity; the rays from
a star are parallel except for atmospheric seeing. Stel-
lar photometry with photometers as in Question 2.14
measures stellar irradiance, not intensity.

Magnitudes m were assigned long ago to stars to
describe their apparent brightness. Their scale is loga-
ritmic because the human eye is a logaritmic detector.
The modern definition has Am = 5 equal to a factor
0.01; an increase of Am = 1 corresponds to an irradi-
ance decrease by 100(1/5) = 2.512. Thus, the scaling
between magnitudes and irradiance is given by:

Ri —0.4(m1—m2)
— = 107 hTma)
R2
R
my —my = —2.blog R—_;

Absolute magnitude M is defined as the apparent
magnitude observed if the object were located only
10 pc from earth, which corresponds to measuring its
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flux at 10 pc away from it. The difference with the
apparent magnitude m is a correction for distance if
the object radiates isotropically and if is there is no
absorption along the way:

D2
M = m—2.5logD—§
= m+4+5-—>5logD,

- where D is distance in pc and Dy = 10 pc. The “dis-
tance modulus” is:

m— M =5logD—5+ A,

where A is the interstellar (or intergalactic or inter-
planetary) absorption in magnitude units.

The distance modulus corresponds to the difference
between irradiance R and luminosity L; M is therefore
related to L. Solar luminosity Lg is used to set the
scale:

Lo

Mbol =4.75-25 log Li,
(O]

L 10-—0.4(Mb°1—Mb®°l)’

with M2, = 4.75 (Allen 1976, §94). Bolometric mag-
nitudes are used here because L is the total luminosity,
measured across the whole spectrum. Normally, one
uses my where V denotes the “visual” passband of the
U, B, V system. It is about 200 nm wide, centered
on A = 520 nm, and corresponds to human night-time
vision. The bolometric correction BC in

mpol = my + BC

describes the ratio of the energies measured over the
passband V and over the whole spectrum:

R
BC = -25log—
C 5log Ry
L
= —-25log—
5log Iy’
and is always negative.
L Question 2.27 1

The energy flow per area dA4, solid angle d2, duration
dt and bandwidth dv that is ‘constituted by a beam
-with intensity I, is given by:

dE, = I,(Ii:7)dA dQ dt dv.

The flow has velocity ¢ and travels in direction [ over a
distance ds during dt = ds/c, through a volume dV =
(1.@) dA ds with (I.i@) = cos#. Thus

dE, = %Iy dQdV dv

APPENDIX C. ANSWERS

AV

A beam which propagates at the speed of light ¢ fills
a volume dV = cos§dAds = cosfdAcdt (top). If
maultiple beams travel through a small volume AV
(bottom), the radiative energy content of AV is
the sum over all such beams.

per beam I,.

If multiple beams pass through a small volume AV,
integration of this result over AV and over all beam
directions gives the radiative energy F, dv that is con-
tained within AV across the bandwidth dv:

E',,du:l/ /I,,dede/.
cJavJa

The energy density per unit volume is then given by:

u, = E,/JAV

1
= cAV/AV/I"deV
> [1ae
c

because for sufficiently small volume AV, the intensity
I, is homogeneous within AV so that the two integra-
tions are independent.

L Question 2.28 j

Again, the energy flow per area dA, solid angle dQ,
duration d¢ and bandwidth dv given by a beam with
intensity I, is:

dE, = L(I.7) dAdQ dt dv.

Pressure measures momentum transport per second
through a square centimeter, so to find the pressure
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of radiation we need to evaluate its momentum. Each
photon carries momentum mphe = hv/c. A beam with
intensity I, therefore carries momentum I, /c in the di-
rection l-: per second, per cm? perpendicular to f, per
Hz, and per steradian.

What is the corresponding momentum transport
across a cm? of dA? The cross-section of d4 in direc-
tion [ is given by (I.77) dA = cos# dA; the component
of the momentum transfer in direction 7 is cos 61, /c.
Thus, the momentum transfer per cm? of dA by a sin-
gle beam with intensity I, is cos?6I,/c. Adding all
beams gives:

Py = (l/c)/Iy cos? 6 dQ.

| Question 2.29 | |

These relations follow directly from equations (2.2),
(2.8) and (2.9). The factor 4 /c arises because isotropic
radiation fills a sphere of 47 steradians within 1/c sec-
onds.

Question 2.30 j

Isotropic radiation has:

u, = I—”/dQ
c

by =

4

% vy

so py = uy/3. This result illustrates that pressure is

measured for only one of three orthogonal directions.
More directly: per second all photons hv within a

spherical volume V' = (4/3)rc® pass through its sur-

face A = 4wc?. Each photon carries momentum hv/e
through A. Therefore:

u 4 3 hv/c
v = W3 e
= u,/3.

L Question 2.31 j
The factor 2 in

Dy = g/[ucos20d9
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for photon reflection follows from the double momen-
tum transfer, respectively from photon absorption and
photon re-emission at the wall. This result is the same
as (2.9) because the integration over dQ extends only
over 2w steradians, i.e., the directions of the incoming
photons.

l Question 2.32 — yet to be done ]'

Derive egs. (3.2) from egs. (2.11).

l Question 2.33 — yet to be done ]

How do egs. (?77) relate to egs. (2.11) and (3.2)?
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C.2 Questions Chapter 3

L Question 3.1 j

The emission coefficient specifies the local addition of
radiative energy to a beam with intensity I, as

L(s+As) = I(s) + j, As,

for thin layers in the limit A — 0. This summation
1s only valid for thick layers if they are homogeneous
and if there is no extinction. The latter assumption is
unrealistic; if a layer of gas is thick, it will also extin-
guish radiation of the type it emits because radiation
processes are reversible.

0 $ s+As D

L Question 3.2 —l

The intensity of a beam does not vary along the way ex-
cept when photons are added to or are taken away from
the beam by local interactions with matter. I, (s+As)
therefore differs from I, (s) only through local emission
of photons into the beam and local extinction of pho-
tons out of the beam, irrespective of the beam spread-
ing. The use of intensity makes the description inde-
pendent of the traversed distance As.

In contrast, flux is the net energy flow through a
given area and varies along a beam. Even when j, (s) =
0, the incident flux F(s) differs from the emergent flux
F(s+As) if the slab (s,s+ As is irradiated with a

" divergent beam.
For isotropic emission of new photons one may use
_the volume emissivity:

()= [ s a0 = 47 (s),

but specification per beam has the advantage that the
addition of photon energy is specified per direction of
interest. Anisotropic emission of photons may occur
in scattering, dramatically so for relativistic beaming
(§6.4.2.2).

APPENDIX C. ANSWERS

L Question 3.3 j

Emission as defined by (3.1) and (3.2) is an additive
process. In the d = A — 0 limit, emission from dif-
ferent processes simply adds up. Thus, if two types of
particles A and B contribute emission at the same time
and at the same location to the same beam, the total
emission coefficient is:

S R S

There is no restriction on the number density of pho-
tons because they are massless bosons. They can be
added unlimitedly to a beam.

L Question 3.4
Definitions (3.3)—(3.5) have

1dl, o=, =

I, ds T T =R

for given I,,, dI, and ds.

The mass extinction coefficient x, is used most fre-
quently in astronomy because a gram of matter is a
better specifier of the extinction in an object than a
cm path length. To first approximation, the amount of
extinction suffered by a beam is set by the amount of
matter along the beam, not by the volume it occupies.
The extinction of the earth’s atmosphere is measured
in airmass, not airlength (Question 2.14).

In physics, one is interested in microscopic material
properties rather than their macroscopic effects. Physi-
cists therefore prefer the geometrical cross-section oy
per particle of the species under consideration.

L Question 3.5 T

The emergent intensity is:

L (s+As) = L(s) — e, (s)I, (s)As.

This result does not apply to thick layers even when
they are homogeneous. The linearity AI —I, As
holds only when |AL| <« I,. Doubling As must re-
sult in doubling the number of photons that are taken
out of the beam; if a layer of thickness As takes out a
large fraction, the next layer takes out the same frac-
tion again but not the same number. The required
linearity is obtained by taking the d = A — 0 limit for
both j, and a,.
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0 s s+As D

Linearity in the d = A — 0 limit. No par-
ticle should shield another one within the layer
As, in order to have linear relations between As
and the number of new photons that are added to
the beam by emission processes and between As
and the number of photons that are taken out of
the beam by eztinction processes. Such linear-
ity is reached for sufficiently small As (assuming
that the particles are small compared to their sep-
arations, and that they are randomly distributed
through the medium).

L Question 3.6 T

The product @, ds measures the energy fraction dI, /I,
that is extinguished over ds. This fraction must have
dl, /I, < 1 to make definition (3.3) valid. In the ab-
sence of any extinction, «, = 0.

Negative extinction may actually occur when in-
duced emission processes are accounted for with a neg-
ative correction to the extinction coefficient, as is usu-
ally done (§5.5). In interstellar masers, the extinction
is indeed negative (§9.4.5.2). Such negative extinction
implies that the intensity increases along the beam, but
not that —a, ds = j, ds. The coeflicient —c,, is then an
amplification factor per cm, not an addition of energy
measured in [erg cm™3 s=! Hz~! ster™!].

Question 3.7 7

For I, and j, the index v specifies that these quanti-
ties are expressed per unit of bandwidth (per Hz, per
cm, per cm™?, etc.). “The extinction coefficient @, has
dimension cm~! and is independent of bandwidth, as-
suming dv to be sufficiently narrow that a, is constant
across it. Thus, the index v in a, simply serves as a
reminder that « varies with frequency. Thus, o, = a;
similarly, k, = &,.

There is no point in introducing a total extinction
coefficient o = f o, dv because it does not describe
something worthwhile. What may be of interest is the
spatial decrease of the total intensity due to extinction

along the beam:

df *©
— =— oI, do.
- /O a1, dv

Question 3.8

-

Definitions (3.3)—(3.5) assume extinction by randomly
positioned particles with isotropic cross-sections. In -
that case the extinction is not sensitive to direction;
such particles take photons in equal measure out of
any passing beam. That is often correct.

However, extinction may also be due to particles
with different cross-sections for different directions. An
example is the refraction in ice needles in the earth’s
atmosphere that causes halo phenomena such as rings
around the Sun and Moon, mock suns (“sundogs”),
etc. (see the delightful book on these and many other
outdoor phenomena by ??). Such particles require
an angle-dependent extinction coefficient , (7,1, ) or
o,(z,y,2,0,¢,t) per particle. The volume extinction
coefficient «,, is yet angle-independent if the particles
are oriented randomly, but not if most are aligned in
the same direction.

L Question 3.9

For solid surfaces we drop the concept of path length ds
along the beam, and take reversal of the beam direction
at the surface into account. Much radiation ends up in
the reflected beam if the surface is a good reflector;
less if the surface scatters light into other directions.
In addition, the surface may absorb (destroy) photons,
and also emit photons by itself.

The volume emission and extinction coefficients
(3.2) and (3.4) specify the local addition and removal
of photons to and from a given beam. For solid sur-
faces, similar coefficients should describe the addition
and removal of photons at the surface but not include
the beam itself, i.e., the incident beam and the reflected
one. A perfect reflector then has zero emission and ex-
tinction, just as a volume in vacuo.

The surface emission and extinction coefficients so
become:

dI — jsurface
v - v
dI,, __a's/urfacely .



.~

-

178

The emission coefficient j3%72°¢ has the dimension of
intensity. The local emission dI, consists of the in-
trinsic emission by the surface into the reflected beam,
plus all photons that are scattered from other beams
into the reflected beam at the given location.

The extinction coefficient a%*72<¢ is dimensionless.
It specifies the fraction of the photons in the incident
beam which do not make it to the reflected beam. The
local extinction rdmlI, consists of the photons that are
absorbed from the incident beam by the surface, or that
are scattered into other directions than the reflected
beam.

[ Question 3.10

Cross-sections in cm? add geometrically. Therefore, for
two extinction processes A and B:

a,‘;‘nA + 0',1,37113

O',t,oml —-
na + np
a::’otal — a;x + af,
A B
glotal  _ Fupat K)ps
v PA + pB

I Question 3.11

The absorption coefficient « defined by Kliger et al.
(1990) as
al=In(I'/1")

is the same as the extinction coefficient «,, defined by:

dl, = —ea,I, ds,
since dl
/% =~ fevas
or I
In—— = —a,l
1,(0)
with { = fds.

The extinction coefficient ¢ of Kliger et al. (1990) is
similar to the astronomical opacity &, defined by (3.5),
but it is measured in [10% cm?mole~!] rather than in
[cm?g~1], with an additional scale factor due to the
use of base~10 rather than base—e logarithms.

Kliger et al. (1990) do not discriminate between “ab-
sorption” and “extinction” in their definitions. The
discussion on the previous pages in their book shows
that the goal of laboratory absorbance measurements
is to obtain the extinction due from photon destruction
and photon conversion (“fluorescence and phosphores-
cence”), but not from elastic scattering (including re-
flection) or Raman scattering (quasi-elastic scattering
with a change in molecular vibration state).

APPENDINX C. ANSWERS

L Question 3.12 1

Bound-bound transitions offer an eztra possibility to
add photons to a given beam or to take photons out of
a given beam at a particular frequency.

H 5
H >
destruction scattering conversion

Let us take the bound-bound extinction first. Ra-
diative excitation of the particle (for example, by
putting the valence electron of an atom into a higher
level at the appropriate energy separation) takes a pho-
ton out of the beam and stores its energy as internal
excitation energy of the particle. The original photon
remains lost from the beam when that excitation en-
ergy is converted into kinetic energy per collisional de-
excitation (photon destruction), into a similar photon
with another direction by radiative deexcitation (pho-
ton scattering), or into photons at other frequencies
by roundabout deexcitation (photon conversion). This
bound-bound extinction adds to whatever continuum
extinction processes operate at the line frequency vg:

total __ _ cont line
«, =a, + a, .

The bound-bound extinction coefficient may be neg-
ative when induced emission processes are formally
added to the extinction in the form of a negative cor-
rection to ¢, in a common practice which is adopted
here also (in Chapter 5). Such photon amplification
occurs in interstellar masers (see § 77).

\ W
1 Id

creation amplification

Now the bound-bound emission. It has (cf. Ques-
tion 3.3):

jﬁotal - j‘c’:ont +jll,ine.

Photon creation occurs when an atom is excited col-
lisionally and then deexcites radiatively. This process
pair is bound to occur often when the photon destruc-
tion pair is important in the local extinction, since
it similarly depends on the collision frequency. Pho-
ton scattering and photon conversion produce emission
for those beams to which the re-directed and down-
converted photons belong. Thus, a bound-bound in-
crease of o, is always accompanied by a bound-bound
increase of j,.
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Note that a “line” is not an infinitely sharp 8-
function at v = vy, but that it has a narrow, bell-
shaped probability distribution around v = vy. The
line extinction coefficient ali"® usually consists of a
gaussian core with broad “damping” wings. The fre-
quency distribution of jlire is often (but not always)
equal in shape but not in magnitude (they couldn’t be-
cause the dimensions of a, and j, are not the same).
More detail is given in Chapter 5, in particular in §5.3.

line

@,

0 :

Vo v

Line extinction profile. This is the probability dis-
tribution for bound-bound eztinction as a function
of the frequency separation Av = v — vy from
the line center at v = vy. It has a bell shape,
set by Doppler shifts in the Gaussian core and by
collisional damping in the Lorentzian wings. See
§5.3.

| Question 3.13 |

In the presence of a magnetic field, the extinction coef-
ficient differs for radiation with different Stokes vec-
tor orientations. For example, the normal Zeeman
effect (the magnetic splitting of the energy levels of
a hydrogen-like atom with a single valence electron)
splits the extinction profile into multiple peaks depend-
ing on the circumstances (e.g., § I1.3 of Herzberg 1944,
§ V.10 of Condon and Shortley 1964).

When the line of sight is along the field lines (“longi-
tudinal” Zeeman effect), the extinction profile consists
of two symmetrically displaced ¢ components, apply-
ing to lefthand and righthand circularly polarized light,
respectively. When the line of sight crosses the field at
right angles, the “transverse” Zeeman effect produces
three extinction peaks, one at line center which applies
to linearly polarized radiation with the Stokes vector
parallel to the field vector (the m component), and two
displaced ¢ components that extinguish linearly polar-
ized radiation with the Stokes vector perpendicular to
the field direction. The corresponding coefficient defi-
nitions are:

circular  _ c1rcular c1rcular
d‘[rlght = Qright rlght ds

circular _ circular ycircular
dJjgs = gy gy ds

dI(l)mear = lmearllmear ds

linear _— linear rlinear
dIQO = ago I 0 ds-
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See §9.3.2.8 for applications of Zeeman splitting.

aV
no
magnetic
field
0 1 1 |
A v
a, O g O ——C >
A A=
0 1 1 : longitudinal field
v, v
]
a

’ H‘H"'!‘H’f’ >

oL
0 A A transverse field
Normal Zeeman triplet. Top: eztinction profile
for a medium without magnetic field. The other
two graphs are for a medium that is pervaded by
a strong, homogeneous magnetic field, respectively
showing the longitudinal Zeeman pattern (middle)
and the transverse Zeeman pattern (bottom). The
separation of the o peaks scales with the magnetic
field strength. Astrophysical fields are often too
weak to separate the o components fully from the
central # component (bottom), or from the normal
peak (top) that is present when there is also non-
magnetic plasma within the field of view.

l Question 3.14

The equation of radiative transfer (3.6) is based on the
assumption of linearity in (3.2) and (3.4). Experimen-
tal proof that such linearity holds always and every-
where is not easy to obtain. It requires measuring the
change of the emergent intensity while the thickness of
a thin absorbing, scattering or emitting layer is changed
for a wide range of conditions. The best one may do is
to set an upper limit to the actual linearity.

Equation (3.6) says that photons do not arise or
disappear unless there is interaction with matter in the
form of emission and extinction processes. It is based
on the invariance of the intensity along an undisturbed
beam (§2.1, and it represents a macroscopic formula-
tion of photon conservation. Photons do not decay.
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l Question 3.15

For pure emission (a,(s) = 0) the transport equation
(3.6) gives for a slab of thickness D:

D
I,(D) = 1,(0) +/0 Jv(s) ds;

for pure extinction (j,(s) = 0) it yields:

D
I,(D) = 1,(0) exp [—/0 ay(s) dsJ .

For a homogeneous slab, these results simplify to
1,(D) = L(0) + j,D

for pure emission, and to
L(D) = I,(0)e~*P

for pure absorption. Both cases are unrealistic because
extinction and emission processes go together.

L Question 3.16 l

The optical path quantities dr,, 7,(D), and 7/ (2) are
dimensionless and additive.

L Question 3.17 I

For the extinction coefficient per particle o, defined
by (3.3), the corresponding optical path is:

dr, = o,nds.

For the extinction coefficient per gram «,, defined by
(3.5), the optical path definition is:

dr, = k,pds.

L Question 3.18 j

The optical path dr, and the optical thickness 7, are
dimensionless; the index v shows that these quantities
- depend on frequency, with 7, = 7. Taking the integral
J 7 dv makes no sense.
Actually, the notation 7, is incomplete. Full specifi-
-cation requires addition of the time dependence, loca-
tion dependence, and the direction of the beam:

dr, = d‘r(F,l‘:t, v)=dr(z,y,z,0,p,t,v).
For optical thickness, one should specify the layer:
Ty = T(FI; F2;1-;l)r2)tyu))

or better yet, specify the precise path followed by the
beam between 7; and 75.

APPENDIX C. ANSWERS

1L

Question 3.19 7

Let the length ! of your N classmates be the quantity
of interest. Make a histogram n(l) of their numbers n
that fit different bins in I. Their average length is then
given by:

Tl Ta@)!
S T ST

For a continuous distribution this becomes

_ Jin@)dl
BNEOXR

<

<l>

L Question 3.20 1

The probability p(s) that a photon penetrates over a
geometrical path s, i.e., that it is taken out of the beam
between s and s+ds, is given by:

p(s) = e”**q, ds,
with exp(~a,s) the left-over fraction of the photons
in the incident beam that is available for extinction at

location s. Partial integration yields:

L= I3 sp(s)ds :/°°a se“""’days 1
T 7 p(s)ds o ay oy

L Question 3.21 1

Equations (3.10) and (3.11) describe the depletion of
photons from a given beam due to extinction as a
fraction of the incident intensity. It does not mat-
ter whether local emission within the medium adds
other photons along the beam. It also does not matter
whether the extinction is caused by absorption, scat-
tering, or photon conversion.

In the case of monochromatic scattering, one usually
denotes the re-directed photon as being the same pho-
ton as before the scattering (quantummechanically, the
incoming photon which excites the particle and the out-
going photon which results from deexcitation are highly
correlated). The mean free path in (3.10) and (3.11)
then measures the distance between successive scatter-
ings, but the total distance * which such a “photon”
or quantum traverses in a sequence of monochromatic
scatterings, from the location where it was originally
created to the location where it is finally destroyed or
where it leaves the medium, may be appreciably longer
than a single scattering step. In that case the radiation
may have non-local characteristics even in the presence
of much local extinction. This issue is treated in Chap-
ter 7.
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‘__L——-

-———_—_L_*——/
Random walk of a quantum that is repeatedly scat-
tered monochromatically. The path [* between pho-

ton creation and photon destruction exceeds a sin-
gle step [.

[ Question 3.22 |

The optical thickness of a homogeneous slab of thick-
ness D is given by 7,(D) = D/l,.

Question 3.23

Optical path dr, and optical thickness 7, are defined
along the beam, whether slanted or at normal inci-
dence. Radial optical depth is defined for axial sym-
metry along a radial line of sight, with u = 1.

htz g/ilv
iz

--)( """""""" dy, z,

d T,
v v

Geometry for optically thick medium with azial
symmetry. Variables z and h measure geometrical
distance outward along a radial azis; d measures
geometrical depth inwards. Optical thickness 1, is
measured along a ray in the propagation direction;
optical depth 1), is measured radially inwards.

For geometrical depth d, measured along but against
the radial z direction, the radial optical depth 7 of a
layer with depth d = dj is:

. do
T,ﬁ(dg):/o a,(d) dd.

Along a slanted line of sight with 4 < 1 the radial
optical depth increases as defined:

7i(z0) = /oo "o (2)dz

The optical thickness of the layers along the slanted
beam, from d = dp to d = 0, or z = 2z to z = 00, is
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larger:

s(z=00)
|7u(20)] = / a,(s) ds

(2=20)

it

/z °° () de/

|72 (20)1/ 1

Il

where absolute values are taken because 7, and 7/, have
opposite sign. The points d = 0 and z = co must lie
outside the object.

[ Question 3.24 T

The mean photon optical path is given by (3.10) as
<7, >= 1. It was derived by asking how far photons
travel in a medium before they are extinguished. Pho-
ton escape means that a photon travels from z = zg out
to the surface, and then proceeds freely to z = co. The
probability that an outgoing photon penetrates from
z = zg to the surface is the same as the probability
that an incident photon penetrates from the surface to
z = zp, which is exp(—7,) with 7, = f;" o, ds along an
inward ray. The fraction of the photons with direction
p at z = zp that make it to the surface is therefore
exp(—T,(z0)/1)-

The actual number of photons that escape from z =
2o equals this penetration fraction times the number
of photons at z = 2y with direction p. If there are
no such photons available then there is no contribution
from z = z; to the escape total; one cannot evaluate
the mean photon escape depth without specifying the
photon sources.

Similarly, one cannot specify where the bulk of the
emergent photons originates if the photon supply is not
known. For example, the fraction of photons which
escape from layers with 7, >> 1 is very small, but these
photons may constitute most of the emergent intensity
when the photon sources are concentrated in these deep
layers.

However, the origin of the emergent photons should
be distributed according to the escape probability when
the photon sources are evenly spread along 2. Most
photons then escape from a volume with optical thick-
ness 7, € 5 along the beam (since exp(—5) = 0.01).
They escape most easily from the shallowest layers,
but these constitute a small contributing volume; some
photons escape from layers with thickness 7, > 1 to
the surface, but at small escape probability. The mean
escape depth should therefore approximately equal the
mean optical path along the beam: <7, >= 1/p. This
estimate is refined in §3.7.3 and Question 3.46 by in-
cluding the photon source term; it is exact for a homo-
geneous medium.
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41, I,
0
//11/)
1k
' 0
tv
¢ /] T,=1

Photon escape from a homogeneous medium. The
mean photon escape depth is at 7, = 1 from the
surface along the beamn, at radial optical depth T, =

7y

l Question 3.25 ]

A fully transparent layer has optical thickness (D) =
0. Optical depth measures the total extinction along
the line of sight to a given location, i.e., from the ob-
server to that location, and equals the optical path from
that location to s = oo along the beam. Radial opti-
cal depth equals that path length for a beam along the
radial z or h axis. Thus, the corona has optical thick-
ness 7, = 0 in the visible; the radial optical depth is
7, = 0 at its base. (Actually, the optical thickness
of the corona is about 7, = 10~° in the visible, see
§9.4.1.2. The corona is optically thick only for long
radio waves, see §9.4.1.3.)

The optical depth integration starts in principle at
the observer. In spectral regions for which the earth’s
atmosphere is not transparent one should of course
not include it when describing an astrophysical object.
Thus, the integration should start at a height Ao, well
above the object, i.e., with 7/ & 0 for all matter above
h = hs. Note that the term “optical depth” is used
also for non-optical wavelength domains.

Question 3.26 j

The source function is defined by:
g =t dv _ v
- oy, Oun Kyp

| Question 3.27 j

In terms of radial optical depth 7, the transport equa-
tion is, assuming axial symmetry:

dr,

dr

One often sees this form in the literature (usually with
7 rather than 7 denoting radial optical depth). Al-

m =I,-3S,.

APPENDIX C. ANSWERS

though S, represents the photon source term, it has a
negative sign in this expression because df, and dr]
have reversed directions.

L Question 3.28 7

When two processes A and B produce emission and
extinction at the frequency v along a given beam, the
combined effects are:

stotal _ -A B
]y - Ju + ]y ’
total _ A B
a, " =a, + o,
stotal ACA B¢B
Stotal — Jy _ o Su ta, Su
4 — qtotal T A B ’
al/o al/ + al/
where A B
SA = .Z"_ SB = ]_”
' T af >

L Question 3.29 j

Bound-bound transitions offer an extra process adding
emission and extinction at the line frequency. There-
fore: )

‘line

Sline — Jv
v T gline?
v
scont
geont — Jv_
v T ycont’
@y

and
‘line ;cont
vty
line cont
a, "€ 4 ofon
line ¢Qline cont Qcont
@, Su + @y Su
a}/ine + alc,ont
cont line
Su + 17"51/
1+ v

total __
S, =

with 7, = o} /ao™. The total source function Stota!
has S,t,°ta‘l ~ S}Ime when oy > 1 and S‘t/otal P Sﬁont when
L 1.

total S,

S(:)ﬂt
av
line total
at st \ /
sime

0 1 &, 0 A

v, v v, v

Left: total extinction coefficient from continuous
and bound-bound processes. Right: corresponding
source functions. The total source function is fre-
quency dependent when Sline £ geont
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When Slin® x~ SO the total source function has
Stotal x4 Sont with small variation across the line pro-
file. When S!in® differs from S°™, the total source
function is frequency-dependent across the line profile
even if 51" does not vary with frequency, because the
weighting factor 5, follows the frequency distribution
of a, across the line.

Question 3.30

The source function is not a dimensionless quantity;
the value S, = 1 therefore has no special meaning.

The equality S, = I, implies that I, does not vary
with the optical path. Either S, = I, (source = extinc-
tion loss, j, = ayl,) or j, = @, = 0. When S, > I,
photons are added to the beam.

Negative values S, < 0 imply negative extinction,
i.e., amplification of the radiation along the beam. The
optical path and the optical thickness are then nega-
tive as well. This is the case in interstellar masers, see
§9.4.5.2.

l Question 3.31 I

The Planck function (equation 4.3 in §4.2.2) specifies
the intensity B, from a “black body”. It depends only
on frequency and temperature and it has the dimension
of intensity: [erg cm~2 s=! Hz™! ster~!]. The source
function has the same dimension, whereas the emission
and extinction coefficients do not. Thus, S, is the only
one of these quantities that may equal B, .

Indeed, for sufficiently frequent photon creation, the
source of new photons is coupled so closely to the local
kinetic energy distribution (because photon creation
makes photons out of collisions) that S, = B,. The
source function is then directly related to the local tem-
perature; the Planck function represents the photon
equivalent of the Maxwell distribution. The equality
S, = B, holds strictly in thermodynamical equilib-
rium (Chapter 5). More realistic types of equilibria are
discussed in Chapter 7.

| Question 3.32 |

Assume that the scattering is isotropic and elastic
(“monochromatic”, “coherent”; no energy change). At
each scattering the photons then simply change direc-
tion. There are no other radiation-matter interaction
processes.

The loss dI, = a, I, ds along any beam then simply
specifies the energy of the photons that are scattered
out of the beam along ds; likewise, the gain df, = j, ds
consists purely of photons that are scattered from other

183

directions into the beam along ds. Each new photon
in the beam is therefore an old photon from the local -
radiation field. Assuming temporal invariance, at every
location the total emission in all directions must equal
the total extinction in all directions:

/j,, dQ = /a,,[,, d€.

Rewriting with definition (2.2

)
1
J,,_E/L,dQ

and assuming isotropy for j, results in
Jv=a,dy,

tteri —
Slslca ering =]u/au =J,.

Of course, the photons must originate somewhere.
A more realistic situation is one where a small amount
of photon creation and photon destruction occurs as
well. The result S, = J, then remains valid for the
partial source function which describes the scattering.
Such situations are treated extensively in Chapter 7.

Another realistic scattering situation is to have the
medium being irradiated with photons from elsewhere.
If the medium is optically thick, the scattering inside
it will make them step around for a long time before
they leave it again. This happens with Ly o photons in
planetary nebulae, see §9.4.3.1.

Question 3.33

The Rayleigh scattering in the earth’s atmosphere rep-
resents a situation as in Question 3.32. The scattering
makes up most of the emission and extinction coeffi-
cients, and it is elastic. The integration on the right

hand side in
/j,, dQ = /a,,],, dQ

again yields 4rj,, because Rayleigh scattering obeys
the dipole phase function {(Figure 6.4 in § 6.4.1.1) which
is nearly isotropic. The integration on the right hand
side is primarily over the solid angle subtended by the
sun, with a much smaller contribution for other di-
rections by solar photons that have been scattered al-
ready. The result of Question 3.32 is therefore valid:
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SRayleigh — 7, If multiple scattering is neglected, the
photon supply is given by:

5= (Bo )

*7 4 \1AE
* with I, the mean intensity of the apparent solar disk
. (cf. Questions 2.20 and 2.23).

| Question 3.34 j

Equation (3.16) follows formally from the differential
form of the transport equation in (3.15) by multiplying
the left and righthand sides of the latter with e’

dI” Tv — Tv
(d-r,,+1")e =S5,e™,

collecting terms

dI, e™
dr,

”
=5,e",

integrating the left and righthand sides
(D)
L(D)e™® —1,(0) = / S, (s) &) dr, (s),
0

and dividing by e™(D):
L(D) = L(0)e ™®

(D)
+/ Sy (s) e~ (m(P)=m(2)) 47, (s).
0

Question 3.35 I

The formal solution (3.16) is as general as the trans-
port equation (3.15) from which it follows. It holds
for optically and optically thin media, for inhomoge-
neous media, for fluids and for solids. The material
properties of the medium are contained in the extinc-
tion coeflicient «,, which enters into the optical path
7, and in the source function S,, and in the emission
coefficient j, which enters only in the source function
Sy.

] Question 3.36 |

The following is required to obtain the emergent inten-
sity I,(D) from the formal solution (3.16):

— knowledge of the incident intensity ,(0);
— knowledge of the photon sources en route: S,(s);

— knowledge of the optical path scaling: 7,(s).

APPENDIX C. ANSWERS

The source function presents a problem when scattering
contributes noticeably to it, since for elastic scattering
processes it is given by (Question 3.32):

Sscattering =J, = i/[ dQ
v v 47r 14 )

requiring knowledge of I, in all directions. Similar cou-
pling of S, to I, occurs between different frequencies
when inelastic scattering or photon conversion are im-
portant.

Obviously, numerical iteration is the tactic to em-
ploy when one needs to know I, in order to find I,.
Various recipes are discussed in Chapter 8.

I Question 3.37 ]

The intensity which emerges from a homogeneous semi-
infinite half-space s I, = S,, in all outward direc-
tions (0 < p < 1). Similarly, the intensity within the
medium is I, = S, in all directions.

Since the photon source term S, is constant
throughout the medium, the mean photon escape depth
is at 7, ~ p, with Ar, ~ 1 from there to the sur-
face along the beam (of. Question 3.24). For differ-
ent extinction, this depth is at another geometrical
distance from the surface, but it does not sample a
different source function when the medium is homo-
geneous. The extinction determines whether photons
escape from shallow layers or from deep layers; if there
is no source function difference between these layers,
the emergent radiation is the same.

Indirectly, the nature of the extinction influences
the emergent intensity by setting the source function
Sy, = ju/a,. When the extinction is dominated by
photon destruction, S, = B,; when it is dominated by
monochromatic scattering, S, & J, (see Questions 3.31
and 3.32, or Chapter 7).

For a solid surface, the dimensionless surface emis-
sion and extinction coefficients defined in Question 3.9

dIu = j‘slurface dI,, = _aiurfacelu

define the surface source function:

$udace = jiurface Cy‘s;urfav:e_
Only for af¥fa® = | does the reflected beam not
contain photons from the incident beam. Thus, for
asirface < 1 a solid surface is equivalent to an optically
thin gaseous medium, with some of the incident energy
penetrating to the emergent beam.
The equivalent of (3.18) for a solid surface is:

Il-li- - (1 _ aiurface) I‘;- + ax‘i/urfacesls;urface
- Iy_ + [Sls,urface _ Iy—] azurface
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with I} the intensity of the reflected beam and I the
intensity of the incident beam. A solid surface behaves
as an optically thick medium, with [} = S&urface oply
when no photons bounce from it (no reflection or scat-
tering, a, = 1) just as no photons penetrate through
an optically thick gaseous medium. The dimensionless
coefficient a$%rf2°¢ replaces the dimensionless e-folding
parameter 7, (D).

[ Question 3.38 —|

Equation (3.17) holds for a medium with thickness D
along the beam. For beams that pass a homogeneous
slab of thickness D, measured along z at right angles to
the slab, the optical thickness of the slab along a beam
with slant angle p is:

D
T,,(zzD,u):/ a, dz/p=a,D/p.
0

hiz

For rewriting (3.17) into radial optical depth, take
the zero point of the 7, scale at the exit location (there
1s no extinction between the observer and the slab) so
that 7)(z = D) = 0. A radially emergent beam (u = 1)
has 7)(z = 0) = 7,(D) and

L(D)=L(0) e ™® 1., (1 - e-Ti(")) :

Along a slanted line of sight, the optical path exceeds
the radial path by a factor 1/u so that:

L(D,p) = L(0,p) e~ O/s 1 g, (1 — e-r;(o)/u) '

[ Question 3.39 1

She assumes:

— that her telescope resolves the cloud, so that she
measures the intensity from its center rather than
irradiance;

~ that the cloud is optically thin;
— that the cloud is homogeneous;

— that the geometrical thickness of the cloud along the
line of sight equals the observed transverse diameter;

— that the cloud is not irradiated appreciably from
behind along the line of sight, at the frequency of
observation.
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Question 3.40 —l

The length of a chord through the spherical cloud is
2R cos 8, where 6 is the angle with the normal to the
surface. The emergent intensity along a line of sight
through a point P on the surface with exit angle 6 is: *

I} (r=R,0) = @,S,2Rcos 0.

The cloud is not a Lambert radiator; the intensity is
largest for lines of sight along diameters since these
provide the maximum optical path through the cloud.

The emergent flux at P is:

1
Fr(r=R)= 27r/ pl, dp = %WRO(.,SV,
0

and has F} = 71, where T, is the mean intensity aver-
aged over the apparent disk which the cloud represents
on the sky of a distant observer (cf. Question 2.23).

The irradiance of the cloud received at earth, at
distance d from the cloud, is given by:

R, = F.(r=d)
R2
- T+
= ,7-'” 7{2—
4 R3
= gﬂ'&,,Sy Eg'
l Question 3.41 1

Since Slin® = Scont | the total source function Stotal =
Sgont varies slowly across the spectral line (see Ques-
tion 3.29). Therefore, the frequency variation across
the line is set by a, alone. It has the usual bell shape
around v = vy (Question 3.12; §5.3). The results from -
(3.17) for the four cases are the following: -

1. 7,(D) > 1: .
L(D)=S8,;

2. 7,(D) <1 and I,(0) = 0:
(D) = (a5 +™) 5, D;
3. (D) < 1 and ,(0) < Stetal:

L(D) = 1,(0) + [Sy = L (0)] (™™ + ;™) D;
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4. 7,(D) < 1 and I,(0) > Stotal:

L(D) = 1,(0) = [1,(0) — S,] (a°™ + aline) D.

These cases are illustrated on page 186. From the opti-
cally thick medium (case 1) no spectral line arises. This
« counterintuitive result stems from the homogeneity of
. the medium (see Question 3.37).
In the optically thin cases 2-4, emission lines arise
" when there is no incident radiation I,(0), or when the
incident intensity is smaller than the source function in
the medium. An absorption line is present only when
the incident intensity exceeds the source function (case
4).

These results illustrate the behavior shown in Fig-
ure 3.3: with increasing optical thickness, i.e., increas-
ing extinction, the emergent intensity approaches the
source function from the side set by I, (0).

| Question 3.42 ]

When bound-bound emission processes occur there are
also corresponding bound-bound extinction processes,
and vice-versa. The imbalance between reversed pro-
cesses sets the local gain or loss of photons for a given
beam. It is measured by the source function, i.e., the
ratio of the emission and extinction efficiency per pro-
cess. Whether the emergent spectrum portrays source
function effects from a given location depends on the
radiative transfer along the beam.

In the four cases of the previous question, spec-
tral lines arise only when the medium is optically thin
(cases 2-4). Their magnitude in the spectrum is set
by [1,(0) — S,|eli"*D and scales with ¢!i™ as long as
Tyo(D) < 1. Thus, in the optically thin case the emer-
gent line profile maps the line extinction profile aline dj-
rectly. It also maps the frequency variation of the emis-
sion profile jli"® since, in this case with Sline — geont
Sline — jline /pline is frequency independent.

Thus, the magnitude of the emergent spectral line
maps ali"® and jline alike. However, the character of
the emergent spectral line is set by the sign of the factor
1,(0) — S,. This sign discrimates between absorption
and emission lines.

These results apply also to bound-free processes.
- There is no basic difference between spectral line forma-
, tion and ionization edge formation in the spectrum. In

each case, the pertinent process supplies additional ex-
tinction and is characterized by a corresponding source
function. The bound-free extinction adds linearly to
the total extinction; the contribution of the bound-free
source function to the total source fucntion is weighted
with the extinction.

+
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[fomi] ™

T,(D)<1
I,0)<sS, v

T, D)< 1
T,,D)> 1
I0<S,

T,D)<1
T, (D) >1
1,0)>8,

Spectral lines from a homogeneous medium (Ques-
tion 3.41). No lines emerge when the medium is
optically thick (top). When it is optically thin,
emission lines emerge when the medium is not
backlit (1,(0) = 0), or when it is illuminated
with 1,(0) < S,. Absorption lines emerge only
when the medium is optically thin and I,(0) > S,,.
The emergent lines saturate to I, = S, when the
medium s optically thick at line center.
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l Question 3.43 ~|

Following Question 3.41, a spectral line from a non-
backlit, optically thin homogeneous medium has:

L(D) = (5™ +al™)$, D
— (j‘clont +j‘l’ine) D

and is always in emission because the line extinction
and emission add positive increments to the continuous
coefficients. (Except in masers with oi®® < 0, but these
do not operate in optically thin conditions since they
require multiple interactions along a ray.)

If the medium is optically thin in the continuum
but optically thick at line center, the emission is flat-
topped because it saturates to the value 1,(D) = S,.
The reverse does not occur because (apart from masers)
a’tlotal > a‘(iont.

Question 3.44 j

The extinction in the slab increases, due to the increase
of scatterings in which photons are taken out of the
beam. The optical thickness 7, also increases, and with
1t the attenuation of the incident energy I,(0) across
the slab (o exp(—7,(D)).

However, the emission j, in the slab may increase
too. Whether many or just a few more photons are
scattered into the beam depends on the amount of ra-
diation with other directions. If the given beam is the
only one, there is no increase of j,; if the irradiation
from other directions is large, there may be an increase
of j, which exceeds the increase of «,. One cannot
say what happens to the source function S, = Jv/ay
in the slab without knowing the irradiation from other
directions.

1t is also unclear what happens to the emergent in-
tensity, given by

1,(D) = L(0) + [Sy — Iv(0)] (D)

since even the sign of S, — I,(0) is not known. To
estimate source functions or intensities when scattering
is important, the radiation field must be known in all
directions (cf. Question 3.36).

-

| Question 3.45

Optically thin objects are often assumed homogeneous
when there is no easy way to specify the location where
the observed photons originate. In an inhomogeneous
object, specific photons (for example, in an emission
line) may originate from a specific shell or location—
but when the object is transparent, that may be ev-
erywhere along the line of sight as far as the observer

. even completely false.
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can tell. The location can only be estimated from ad-
ditional information, for example from spectral line
Dopplershifts if the object expands with outward in-
creasing velocity, or from spectral line excitation and
lonization characteristics if there are sufficiently steep
gradients in the state parameters along the line of sight.

In contrast, for an optically thick object the ’
Eddington-Barbier approximation provides an easy es-.
timate for the representative photon escape depth. Dif- .
ferences between I, at different frequencies, including
spectral lines, are easily interpreted as differences in
Eddington-Barbier 7, = p sampling depth. Large vari-
ations in I} (0, ) may then be accounted for with ra-
dial source function gradients assuming axial symme-
try.

Both assumptions are, of course, simplifications for
the sake of tractability. They may be misleading, or
If an astronomical object is
very inhomogeneous, detailed three-dimensional mod-
eling including radiative transfer is required. The lat-
ter may be done by computing rays in many directions
throughout the volume from which photons escape. If
scattering is important, iteration is required to evalu-
ate the effect of radiation from elsewhere on the local
source function along each ray. We return to such mod-
eling in Chapter 7.

l Question 3.46

The intensity which emerges from an optically thick,
homogeneous slab is:

=0 =5, [ e iu=s,,
0

in agreement with the Eddington-Barbier approxima-
tion and is exactness when S, varies linearly with 77.
The emergent intensity is the same for all directions
with z > 0; the slab constitutes a Lambert surface.

The Eddington-Barbier approximation can only be
written as I;H (0, p) &~ S, (z=~1, p) for a homogeneous
medium. The geometrical mean free path I, defined in
(3.11) is only a local mean free path when the medium
1s inhomogeneous since it varies with 1/a,. When a,
drops outward, as one may expect for optically thick
objects, photons travel further in shallower layers. The
Eddington-Barbier approximation relates the emergent -
intensity to the source function at the characteristic
optical depth 7, = p without asking how this optical
depth is made up along the line of sight.

The integrand S, e~ Tu/B specifies the distribution
of the emergent energy with the optcal depth 7/ /p.
The mean intensity contribution depth is therefore (cf.
Question 3.19):

J(ro /1) Sy =7/ ¥ dry /p
TERSZE

<t fu> =
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The Eddington-Barbier approzimation. Left: the
integrand S, exp(—T,) in equation (3.22) measures
the contribution to the radially emergent intensity
I(7,=0,u=1) from layers with different optical
depth 1,. The value of S, at 7/ = 1 is a good
estimator of the area under the integrand curve,
i.e., the total contribution. Right: for a slanted
beam the characteristic Eddington-Barbier depth
is shallower than for a radial beam; it has T, = .

Qo +2a1p+ 3lagu? + 4lazu® + . ..
ao + a1y + 2azu2 + 3lazud + . ..

ao + 2a p

ao+ayp’

using the same expansion and cutoff as in the deriva-
tion of (3.22). This mean formation depth equals the
mean photon escape depth because the same result is
obtained when the energy source S, per beam is re-
placed by photon numbers S, /Av. It has < /u>=1
only for a homogeneous medium with constant S, (7))
(cf. Questions 3.24 and 3.37). When S, increases in-
wards, the layers with 7/ > 1 contribute a larger frac-
tion of the emergent intensity then when S, decreases
with 7.

.The Eddington-Barbier approzimation for a ho-
mogeneous medium. The integrand S, exp(—1,)
“varies as exp(~7,). The mean intensity contribu-
tion depth, which equals the mean photon escape
depth, is 7, = 1. The shaded areas contribute 90%
and 50% of the emergent intensity, respectively.

Where does the bulk of the photons escape? The
outer 5% limits for the contribution to the emergent
intensity, between which 90% of the photons escape,
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are located (for u = 1) at 7§ o and To.9s defined by:

To.05 , ,
/ Sye"vdr, =
0

To.9s , ,
Sye”vdr, =
0

For a homogeneous medium with constant S, and Ir =
S, these depths are:

0.051,

0.951,.

exp(—To05) = 0.95 — 7).~ 0.05

exp(—T595) =0.05 — 7.~ 3.0.
Similarly, 50% of the photons escape between T o5 =
0.3 and 75 75 = 1.4, with 74 5o = 0.7. Thus, the spread
in photon origin is wide. One can only say that “the
photons come from optical depth unity” if the source
function is sharply peaked at'r) = 1, which is unlikely
(how should it know where to peak?).

L Question 3.47 7

In axial symmetry the outward flux is given by (2.7)

. 1
Fr(z) = 27r/ wl, du.
0
If
S,(1y) =ag +ay7),

then (3.21) gives
L(0,p)=ao+ajp

and therefore:

&

3

= mw(ag+ gal)

= 7S,(r, =2/3).

FHO) = (P +

This is the Eddington-Barbier relation for surface flux.
It is again exact when S, varies linearly with 77; it
represents an approximation otherwise.

L Question 3.48 j

The sun is a gaseous body. It has no phase transitions
between gaseous, liquid or solid states comparable to
the ones which sharply define surfaces of planets. The
concept “solar surface” therefore requires explicit defi-
nition.

For the surface of the sea the optical depth inte-
gration starts naturally at the visible surface, i.e., the
location where the beam leaves the water. Application
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of that usage to the sun puts the surface at the loca-
tion where the solar medium is so tenuous that it con-
tributes no emission or extinction to the beam: outside
the sun, at h = ho, with 7/ (ko) = 0.

However, the solar photons which one observes es-
cape from deeper layers. If we define the solar surface
as the height where the sun ends, we won’t see pho-
tons that originate from that height. The “surface” we
see on a photograph consists of photons that charac-
terize the layer with radial optical depth 7/ ~ 1 for
the center of the apparent solar disk. Therefore, the
Eddington-Barbier layer with 7/ = p is a better can-
didate to describe the apparent surface seen on pho-
tographs. However, its location then depends on the
viewing angle and varies through the spectrum, espe-
cially within spectral lines. Thus, it isn’t clear a priori
where one should put the solar surface; this is a matter
of definition and taste. See §9.3.1.5 for more discus-
sion.

Question 3.49 ]

From the center of the apparent solar disk towards
the limb, one observes along lines of sight that are
increasingly slanted with respect to the solar surface,
from g =1 to pu = 0. The representative Eddington-
Barbier depth is at 7}, = 1/u, and shallower the closer
one observes to the limb. The emergent intensity ap-
proximately equals the source function at that depth.
Therefore, the observed limb darkening implies that the
source function in the solar photosphere decreases with
height.

At and above the limb (r > Ry), the Eddington-
Barbier relation does not hold because the sun has op-
tical thickness 7, < 1 for such lines of sight. The steep
drop of the intensity at the limb is governed by the
outward decline of the extinction, not by the source
function.

L Question 3.50 l

For the thin spherical cloud, larger extinction produces
larger emergent intensity with

Lo _onm 4y
L, «a,

along any beam that traverses the cloud (cf. Ques-
tion 3.40). For the homogeneous infinite half-space,
the emergent intensity is the same at both frequencies:

_ — qcont
I, = I,, = 8§,

For the star with S(r,,) = Sy + 7;, the Eddington-
Barbier relation applies exactly at both frequencies, so
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0 sin © 1

Solar limb darkening. The viewing angle 6 in-
creases with the fractional radius v/Rg = sin@
of the apparent solar disk. The emergent inten-
sity samples shallower layers towards the limb,
with smaller source function. The final drop at
r/Rg = 1 marks the viewing angle at which the
sun becomes optically thin. Note that substantial
decrease of p = cos 8 is reached only close to the

limb, for r/Rq = \/1 — p? close to unity.

that .
I} (0, 1) = S(ry, =p) = So + s,
L0, p) = S(7), =p) = S(r), =10) = Sy + 10p,
Ly,  So+p
qu B So + 10.“ .
The emergent intensity is larger at the frequency with
smaller o, because it originates from deeper layers,
where the source function is larger.

Sv
@ Iv2 /
L,
0 2 2 L ) -
0 0.5 10 7,
0 5 10 ¢

For the thin cloud, the ratio of the emergent surface
fluxes is also given by (cf. Question 3.40)
ﬂa — ji2Y = 10,
Fu, oy,
whereas for the infinite half-space
For = Fuy = 752,

without sensitivity to «,. The star has, after Ques-
tion 3.47,

1
Foz [l du= (53 +2/3)
0
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1
F, = / ply, dp = (S + 20/3),
0

Fu, _ So +2/3

Fo,  So+20/3
The flux is also larger at the frequency with the smaller
extinction.

L Question 3.51 j

At any frequency, multiple processes may produce ex-
tinction and emission. For example, continuum ex-
tinction is often produced by overlapping free-free
and bound-free contina from various atoms, lons or
molecules, plus Thomson scattering, Rayleigh scatter-
ing, etc. The extinction from spectral lines is superim-
posed on the total background extinction.

i bb
Gl ot
bf
™ bb soattchill
ff
0
v

The total extinction of°? is the sum of the extinc-
tions o, provided by each radiation-matter inter-
action process that operates at frequency v in the
medium.

Lines may also overlap. The weaker ones are then
called “blends” on the stronger ones. For example, the
solar Call K line in Figure 9.7 has many blends su-
perimposed on its extended wings. (Most are due to
Fel, which spectrum supplies by far the richest array
of bound-bound transitions in the visible part of the so-
lar spectrum. Fell takes over as major line provider in
the near ultraviolet, the CO molecule in the infrared.)

For a stationary medium, the emission and extinc-
tion coefficients of overlapping continua and lines sim-
ply add up:

jltlotal — Zjllline + Zj:ont

" lines cont

total __ line cont
. «, = E «a, +E ap .
N lines ®  cont

“The optical thickness is:

/o total - cont line
T,,_/a,, ds_./Ea,, ds+/§ o, ds.
cont lines
Each bound-bound transition and each continuum pro-
cess has its own source function:
-line scont

line __ Jv cont _ Jv_ |
S, = oline and S0 = ot
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the total source function is given by:

Stotal _ Z]u
v Zal/

S + 3, gl
E‘ agont.' + Zi aLine,
Zi a::/ont.Slc,ont. + Zi aLine,S‘lline.
Zi a‘c;ont. + Zi a!jine,
S 4 T ni st
1+3% 0 ’

cont __ -cont; cont;
Syt =N e ) Y avgonts
1 i

where

and

¢+ __ _line; cont,
m=o, '/E :au '
i

If a line has 7, = 2 and Sline = geont  then jtotal —
375°™.  For an optically thin, homogeneous object
the emergent intensity is then tripled at the line fre-
quency. For an optically thick object the increased ex-
tinction makes the Eddington-Barbier sampling depth
shallower; the corresponding change in emergent inten-
sity depends on the behavior of Stotal with height.

For non-stationary media or when there is spec-
tral overlap from multiple sources along the line of
sight or within the resolution element, simple addi-
tion of extinction coefficients does not suffice. The
spectrum of an unresolved binary must be modeled by
computing the spectrum from each star separately. If
the Ly a forest in Figure 1.3 originates from discrete
shells with outward-increasing expansion velocities, one
should compute one line per shell and add that to the
incident spectrum for the next shell. A similar situa-
tion, but continuous, occurs in stellar winds (§9.4.2).

L Question 3.52 j

When source function equality Sline — geont }5)ds
(which is often the case), the total source function
Stotal = Geont = G, does not vary across the line profile.
The frequency variation is then governed solely by the
extinction profile a,. It is the sum of the continuous
extinction, which is approximately constant (or at least
linear) over the narrow width of a spectral line, and of
the bell-shaped line extinction profile. The extinction
coeflicient variation is mapped into the emergent in-
tensity profile by folding it through the 7, — h and the
Sy — h relations. Examples are shown in the four-panel
diagrams on page 191.

The 7, — h relations are linear here because the ex-
tinction is assumed height-independent. The S, — A
relation is arbitrary, but it is taken linear in the left-
hand four-panel diagrams on page 191 to make the
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Eddington-Barbier approximation apply exactly. Ab-
sorption lines result when S, (h) increases inward (top
diagram); emission lines arise when S,(h) increases
outward (bottom).

L Question 3.53 — yet to be done l

For bound-free transitions the same diagrams apply as
in Question 3.52 (making the same assumptions), ex-
cept that the bell-shaped line extinction profile is re-
placed by the asymmetrical bound-free extinction edge
abf

Bound-free extinction has a®f = 0 for v < v where
vr is the treshold frequency which corresponds to the
lonization energy E{rmion = hur from the given level.
Usually, the extinction coefficient is largest at v = vy
and drops steeply with increasing frequency. For hy-
drogen and for hydrogen-like transitions, the drop has
oy, « (v —vr)™3 (§6.3.2). Other species often have
additional humps for v > vp. These are called reso-
nances and are due to two-electron “auto-ionization”
transitions (§9.4.1).

The assumption of source function equality means
here that SPf = " where St holds for the other
continuum processes at frequency v.

The edge appears in emission if the source function
Increases outwards, as is the case in the four-panel di-
agram below, and in absorption if the source function
decreases with height.

Question 3.54 ]

The fact that all spectral lines in the visible part of the
solar spectrum are absorption lines implies that the
total source function in the solar atmosphere decreases
outward for every line, including the NaID lines. The
line extinction ratio

a(NaID1l) 5
a(NalD 2)
affects the 7, (h) scaling directly, but the emergent in-
tensities only indirectly by changing the representative
Eddington-Barbier depth. The difference in emergent
line strength depends on the source function and this
sampling. ’

The following modifications to the upper-left four-
panel diagram on page 191 are required for realistic
description of the solar NaID lines:

— upper-left panel. First, the extinction ratio 5 =
alin®/aComt at line center tends to have very large
values, or order 10° for lines as strong as the NaID
lines. This panel should be plotted logarithmically.
Second, the size of the line extinction coefficient and
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Two four-panel diagrams, respectively for the for-
mation of an absorption line (top) and for the for-
mation of an emission line (bottom) from an op-
tically thick object (Question 3.52). In both cases,
the emergent intensity profile maps the eztinc-
tion profile after folding it through the frequency-
dependent 1, — h relation and the S, — h rela-
tion. The only difference between the two dia-
grams s the sign of the gradient dS,/dh. The
emergent spectral line maps the source function
according to the Eddington-barbier approzimation
I, ~ S,(r, = 1). It is eract here because
8,(r,) is linear across the line formation region.
Assumptions: height-independent extinction oo™
and oli"®; equality of SUne and Seont e = 3.
There is no basic difference with the four-panel
continuum diagram in Figure 3.4; in each case,
the upper left panel specifies the variation of a,
with v. In the case of a spectral line, the ampli-
tude of this variation can be very large across a
narrow band Av.

v

1

-
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Bound-free eztinction o>f. For hydogenic transi-

tions, the profile has a smooth v=2 decay above the
threshold frequency vr. The profile at right shows

Nal, after 7?. Its threshold value is rather small
and it has additional peaks at larger frequency.
These are called resonances.
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The formation of a bound-free photoionization
edge, with the same assumptions as for Figure 3.4
and the two preceding four-panel diagrams. The
edge has hydrogenic shape and appears in emission
because the source function increases outwards.

of the continuum extinction coefficient vary strongly
with height, because the particle densities in stel-
lar atmospheres drop roughly exponentially with
height, just as the density of the earth’s atmosphere
does. Third, the shape of the bound-bound extinc-
tion profile alin® also changes with height. It is in-
fluenced by the local amount of collisions and by the
local size of the Dopplershifts in the medium, both
of which vary with height (see §5.3). Thus, specifi-
cation of aS°™(h) and ali"®(h) is necessary both as
a function of frequency and as a function of height;

— upper-right panel. Since the extinction is expected
to vary about exponentially with height, it is better
to plot log 7, along the vertical axis. The 7/ — h
relations are also affected by the shape variations of
the extinction profile with height;

— lower-left pa_,nel. Obviously, the source functions
S5om and SP°° require specification. When Sline
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Scont the total source function is frequency depen-
dent, with St ~ Sline at the center of a strong
line (where 7, > 1) and St°*®! &~ S°" in the outer
wings of strong lines or in weak lines (with 7, < 1).

Actual formation diagrams for the solar NaI D lines are
shown in § 77.

Similar considerations apply to the formation of
bound-free edges. Their frequency span tends to be
wider than for lines (that is why they are added to the
“continuum” processes); but just as for bound-bound
transitons, the bound-free extinction drops steeply
with height and changes its shape, and the bound-free
source function may differ from the remaining contin-
uum source function(s).

L Question 3.55 W

In the case of source function equality, differences in
line strength between solar lines can only be due to
differences in extinction. The larger the extinction, the
higher lies the representative Eddington-Barbier loca-
tion 7, = 1. All lines in the visible part of the solar
spectrum are in absorption; apparently, higher height
of line formation samples a lower source function for all
lines. The Call K line in Figure 9.7 is then presum-
ably deeper than the NaID lines in Figure 3.4 because
1t samples the outward decline of the source function
to larger height.

log ai

v

=JAS

Vo v

Note that the Call K line is not only deeper but
also wider in the spectrum, because the Call K extinc-
tion exceeds the Nal D extinction for every value of
the frequency separation from line center Av = v — V.
The extinction profile is mapped into the emergent line
profile out to larger frequency separation when the ex-
tinction is larger. The frequency at which the contin-
uum is reached (where 7, < 1) then lies further from
line center in each wing.

The shape of the extinction profile is similar for dif-
ferent lines, but the amplitude may differ by a large
factor. This is indeed the case for the Call K versus
the NalID lines. The reason for this difference becomes
clear in Chapter 4 (Question 4.28 in particular).
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]

The two little bumps (“self-reversals”) near the center
of the solar Call K Ine require a corresponding bump in
the total source function. The line is so strong near line
center (7, > 1) that Stta! x Slire. Thus, a bump in
Sline as sketched in the lower-right four-panel diagram
on page 193 is required to explain the bumps of the
Call K line. See §9.3.2.4.

| Question 3.56

Question 3.57 —|

The intensity from a spherical star with radius R in
which the source function S, does not vary radially is
given by

IFr=Rp =35,

for all directions p; it is a Lambert radiator. The sur-
face flux is given by

y = 7S,
and the irradiance is given by

2
R, = WSV%)
with d the distance to the star.

Can we observe spectral lines from this star? Since
source function equality is assumed (S, = Stotal =
Sline — Geont) there can be no spectral lines in the
intensity or surface flux spectra. However, for the irra-
diance spectrum there may be a difference between the
factor R?/d? at a line frequency and in the adjacent
continuum. The location where r = R is a matter of
definition (cf. Question 3.48); let us adopt the shell with
7, = 1 as representing r = R. If its location differs ap-
preciably between the frequency of a very strong line
and the adjacent continuum, the star may be larger,
and therefore brighter in irradiance, at the line fre-
quency. Stars with “extended’ atmosphere, in which
the density drops less steeply with height than normal,
indeed show such geometry-caused emission lines (see

§9.4.2).

Question 3.58 |

L

If an astronomical source shows emission lines in any
spectral region, the following possibilities should be
considered:

— optically thin object;

— optically thick object with outwards increasing
source function;

— optically thick object with an extended atmosphere.
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Realistic four-panel diagram for the formation of
absorption lines from a star (Question 3.54). Up-
per left: the line extinction exceeds the continuous
eztinction by orders of magnitude for strong lines;
both diminish rapidly with height. Upper right: the
optical depth scales decrease roughly exponentially
with height. Lower right: the line and continuum
source functions diverge. The emergent line-center
intensity (lower left) samples the line source func-
tion in shallow layers because the line-center ex-
tinction is large. In the far wings, the continu-
uum source function dominates; it is sampled by
the emergent intensity in deep layers because the
extinction is small. The divergence of S5 and
Sgont 4s due to outward decrease of the collision
frequency (see Chapter 7).
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Y
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Four-panel diagram to ezplain the two emission
reversals at the center of the solar Call K line
(Question 3.56). Each I, peak portrays the hump
in the outward decline of the total source function
Stotal  The formation of this hump is discussed in
§9.3.2.4.
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7
Tline =1 v

 An unresolved star with an eztended atmosphere

' may have emission lines in its irradiance spectrum
because it subtends a larger solid angle at the line
frequencies.

In the first case, one should always expect emission
lines. The spectrum has I, = a,S5,D and F, =
(2/3)7a, S, D if the object is spherical and homoge-
neous (Question 3.40). Its lines primarily map the
additional extinction of bound-bound transitions, plus
source function differences between continuum and
bound-bound processes when these are present.

In the second case, the spectrum maps the out-
ward increase of the total source function in Eddington-
Barbier fashion: I, ~ S,() = 1) for intensity, F, ~
7Sy (7, = 2/3) for surface flux (Question 3.47). The
extinction sets the optical depth scaling which controls
the mapping.

In the third case, the object appears sufficiently
larger at the line frequency than in the continuum
that an emission line results for the irradiance spec-
trum, even if the source function drops outward (Ques-
tion 3.57).
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