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ABSTRACT

Context. The solar chromosphere and transition region are highly structured and complex regimes. A recent breakthrough has been
the identification of dynamic fibrils observed in Hα as caused by field-aligned magnetoacoustic shocks.
Aims. We seek to find whether such dynamic fibrils are also observed in Lyα.
Methods. We used a brief sequence of four high-resolution Lyα images of the solar limb taken by the Very high Angular resolution
ULtraviolet Telescope (VAULT), which displays many extending and retracting Lyα jets. We measured their top trajectories and fitted
parabolas to the 30 best-defined ones.
Results. Most jet tops move supersonically. Half of them decelerate, sometimes superballistically, the others accelerate. This bifurca-
tion may arise from incomplete sampling of recurrent jets.
Conclusions. The similarities between dynamic Lyα jets and Hα fibrils suggest that the magnetoacoustic shocks causing dynamic
Hα fibrils also affect dynamic Lyα jets.
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1. Introduction

The solar chromosphere observed in Hα is a bewildering mass
of elongated features, but a breakthrough concerning so-called
dynamic fibrils (henceforth Hα DFs) has been made in the stud-
ies of De Pontieu et al. (2004, 2007a), Hansteen et al. (2006),
Rouppe van der Voort et al. (2007), Heggland et al. (2007), and
Langangen et al. (2008a,c) following earlier work by Suematsu
et al. (1995). These studies have established that Hα DFs, which
are rows of dark fibrilar features jutting out from plage and net-
work with periodic extension and retraction, display repetitive
mass loading by upward propagating magnetoacoustic shock
waves driven by the global solar oscillations. Reduction of the
effective gravity along tilted magnetic channels lowers their cut-
off frequency and lets them propagate into the chromosphere,
steepen into shocks, and repetitively lift the chromospheric-
transition region interface.

These studies are all based on optical observations, but de
Wijn & De Pontieu (2006) have studied transition-region jets in
C iv in ultraviolet TRACE images and found remarkable mor-
phological similarities between Hα DFs and their C iv counter-
parts. The DFs may represent the injection of cool material pos-
tulated by Judge (2008) as the source of hot sheaths making up
the transition region.

In this paper we report the presence of similar features in
solar Lyα images taken with the Very high Angular resolution
ULtraviolet Telescope (VAULT, Korendyke et al. 2001) during
its second rocket flight. VAULT acquired Lyα images with much
higher spatial and temporal resolution than the EUV imagery
from the TRACE, SoHO, and STEREO satellites but only for
a few minutes. The Lyα fine structure in these images is dis-
cussed by Patsourakos et al. (2007) and Judge & Centeno (2008).

Here we locate and study extending or retracting Lyα brightness
structures in images taken near the limb. We call these dynamic
Lyα jets, abbreviated to LyαDJs, and compare them to HαDFs.

2. Observations and measurements

We used Lyα images1 recorded during the second VAULT flight
of 14 June 2002. The cadence was 17 s, the exposure time 1 s,
the image scale 0.124 arcsec px−1, and the angular resolution
1/3 arcsec. The VAULT gratings isolated a 150 Å wide spectral
band around Lyα and a narrow-band filter reduced the passband
to 72 Å FWHM. The resulting signal is about 95% pure Lyα
emission (Teriaca & Schühle, personal communication). More
detail is given in Korendyke et al. (2001) and Patsourakos et al.
(2007).

The VAULT-II flight recorded two Lyα image sequences, a
seventeen-image one stepping over an extended active area on
the disk and a four-image one of quieter areas near the limb. We
use only the four limb images because Lyα jets are best observed
as bright features in projection against the dark internetwork
background. The four images were precisely co-aligned through
cross-correlation using routines of P. Sütterlin. We then applied
appropriate greyscaling to enhance their fine structure and used
extensive visual inspection to identify Lyα jets and to study
their temporal behavior. They are similar to limb spicules in be-
ing bright against dark internetwork and in showing hedgerow-
clustering at network boundaries. Similar Lyα jets are also seen
in the disk sequence, but we decided to limit our measurements

1 The VAULT data archives are available at http://wwwsolar.nrl.
navy.mil/rockets/vault/.
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Fig. 1. Lyα image taken at 18:16:56 UT covering the east limb. We in-
vite the reader to inspect this image at large magnification with a pdf
viewer. Lyα jets are grouped in hedgerows at network boundaries that
are best seen in projection against the dark internetwork. The rectangle
selects the hedgerow enlarged in Fig. 2. The contrast is enhanced by
logarithmic brightness scaling. Tickmark spacing: 10 arcsec.

Fig. 2. Enlargement of the subfield outlined in Fig. 1. The rectangle
outlines the smaller subfield shown in Fig. 4 with Lyα DJs 3 and 11.
Tickmark spacing: 1 arcsec.

Fig. 3. The upper part of Fig. 1 with 55 Lyα DJs marked by plus signs.
The 30 DJs selected for further analysis are labeled with their reference
number. Tickmark spacing: 10 arcsec.

to the limb sequence that shows them best. It clearly shows tem-
poral variation in the spatial extent of many Lyα jets, even dur-
ing the brief one-minute sequence duration.

The four images used here were taken between 18:16:56
and 18:17:47 UT at the east limb. The first is shown in Fig. 1.
Towards the limb it displays thick hedgerows of bright Lyα jets,
jutting out at network boundaries. They are remarkably similar,
at reversed contrast, to the dark hedgerows in filtergrams taken in
the wings of Hα (e.g., Fig. 9.1 of Stix 2004 and Fig. 7 of Rutten
2007), in which Dopplershift of the line core into the wings se-
lects dynamic fibrils over the quiescent network-spanning fibrils
that dominate the scene at Hα line center. Such extended fib-
rils appear dark in the VAULT-II images and provide the back-
ground against which the hedgerows appear bright. Figure 2
shows an enlargement of one such hedgerow. The individual jets
have widths of only one arcsec or less, requiring VAULT’s high
resolution for identification and tracking.

We have manually identified 55 Lyα jets that exhibit mea-
surable extension and/or retraction during the four-frame se-
quence, all located in network clusters with convenient dark
backgrounds. More weeding, described below, resulted in the se-
lection of 30 of these LyαDJs for presentation. They are marked
by their reference number in Fig. 3. Some examples are shown
in Fig. 4 in the form of small cutout sequences from the four
frames. There are many other features with similar morphology
in Fig. 3; undoubtedly, many more might be recognized as Lyα
DJs in longer time sequences. However, there are also many jet-
like features that do not change at all during the brief sequence
duration. For example, the conspicuous jet to the right of retract-
ing Lyα DJ 24 in the bottom panels of Fig. 4 does not show any
change.

The cutouts in Fig. 4 illustrate that these Lyα DJs appear
rather fuzzy, making measurement of their extension or re-
traction somewhat imprecise. At the suggestion of the referee
to an earlier version of this paper, we developed a measuring
method that includes error estimation. We first defined reference
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Fig. 4. Time evolution of extending (Nos. 22, 19, 20, 3) and retracting
(Nos. 11, 10, 9, 24) Lyα DJs. The time increases with 17-s intervals
between the columns. The arrows define the jet axis. The tickmarks
have 1-arcsec spacing.

footpoints and longitudinal axis orientations for each of the 55
Lyα DJs to measure their lengths. Since many jets have no clear
base due to crowding in the network from which they originate,
the footpoint designation is rather arbitrary but this does not af-
fect our length change measurements since we maintained the
same footpoint for the three other frames after selecting it in the
first frame. We similarly maintained the axis direction. No cor-
rection for projection effects was applied. The limbward viewing
suggests that, on average, these LyαDJs are viewed more or less
from aside.

We then plotted the intensities along each jet against a length
coordinate Λ measured in arcsec along the axis from the foot-
point at Λ=0. Figure 5 shows the intensity profiles for the same
LyαDJs as displayed in Fig. 4. Each profile is box-car smoothed
over 6 pixels (0.74 arcsec) to reduce noise. The differences be-
tween the four curves in each panel show the temporal jet evo-
lution. The DJs in the upper four panels extend; i.e., their outer

Fig. 5. Intensity profiles along the longitudinal axes of the Lyα DJs
shown in Fig. 4. The solid, dotted, dashed, and dashed-dotted curves
correspond to the 1st, 2nd, 3rd, and 4th panel in the corresponding row
of Fig. 4, respectively, and show the temporal evolution. The thin-line
markers specify the ranges of intensity thresholds defining each jet top.
The reference footpoints with Λ = 0 are fixed in time.

parts become brighter. Their lower parts sometimes weaken si-
multaneously (as for DJ 22 in the first panel). The DJs in the
lower four panels retract, without much change in their lower
parts. Inspection of all 55 plots made us discard 15 DJs for not
showing such regular progression in their outer parts.

The question then was how to define the jet top locations in
order to measure jet length variations in terms of their top dis-
placements ΔΛtop(t). For each DJ we selected intensity thresh-
olds at the onset of steep intensity decay with Λ and at the outer
limit of visibility, as illustrated by horizontal dashes in Fig. 5.
Picking an intensity value from such a range as the top loca-
tion in one profile yields samples of ΔΛtop(t) for the other three
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Fig. 6. Trajectory measurements ΔΛtop(t) of 30 jet tops along their axes. The heights of the symbols specify the error estimates. The solid curves
are the parabolic fits. Nos. 1–16: decelerating jets showing extension (1–8) and retraction (9–16). Nos. 17–30: accelerating jets showing extension
(17–22) and retraction (23–30).

Table 1. Lyα DJ excursion amplitudes and kinematic quantities.

Feature type A [arcsec] |a| [m s−2] vmax [km s−1] T [min]

Lyα DJs decelerating 0.6 (0.8±0.5) 〈0.2, 2.2〉 165 (235±173) 〈44, 650〉 13 (17±9) 〈6, 35〉 2.8 (3.3±2.2) 〈0.9, 7.5〉
accelerating 246 (257±175) 〈87, 797〉 21 (18±7) 〈9, 32〉 not defined

Hα DFs – 136 (146±56) 〈40, 320〉 18 (18±6) 〈8, 35〉 4.2 (4.8±1.4) 〈2, 10.8〉
The first number of each entry is the median value, followed by the mean with standard deviation (between parentheses) and the range (between
angle brackets). The bottom row shows comparable determinations for Hα DFs from De Pontieu et al. (2007a).

by finding the displacement in Λ for the outermost pixel with
that intensity. We automated this in a procedure using a random
generator to pick threshold values from a normal distribution
centered on and covering the selected range, and so obtained
distributions of ΔΛtop(t) displacements for each jet that yield
rms error estimates. This was repeated using each of the four
frames as initial reference; the four error estimates were aver-
aged. These errors represent the threshold-definition uncertainty
and the amount of gradient divergence between the four profiles
per jet. They are smallest when the curves are parallel, as in the
case of DJ 9 in the bottom-left panel of Fig. 5.

Following the example of Hansteen et al. (2006) and
De Pontieu et al. (2007a) we fitted the measured displacements,
using the error estimates as weights, with parabolas ΔΛtop(t) =
v1 (t − t1) + (a/2) (t− t1)2 where v1 is the onset velocity (positive
when upward) at the time t1 at which the first frame was taken
and a the deceleration (when negative) or acceleration (when
positive). The terminal velocity v4 at the time of the fourth frame
is v4 = v1 + a (t4 − t1) where t4 − t1 = 51 s.

Since the onset and terminal velocities v1 and v4 differ in all
cases and can be negative, we define a maximum velocity vmax
as the higher of |v1| and |v4|. The apex of parabolic decelerated
motion starting with vmax is reached after vmax/|a| seconds. We
estimate the total jet excursion duration T for decelerating jets
by doubling this value: T = 2vmax/|a|. Since the four frames are
likely to sample only part of a jet top trajectory, both vmax and T
represent only lower limits.

Finally, we discarded 10 more DJs from our sample because
the error estimates for their a and/or vmax determinations ex-
ceeded 100%.

3. Results

Figure 6 shows the top trajectory measurements, the correspond-
ing error estimates, and the parabolic fits for the remaining 30

Lyα DJs. Table 1 specifies the average values of the trajectory
amplitudes and the fit parameters together with their variances
and ranges.

Most jet tops do not travel far during the short sequence du-
ration, only over a median distance of 0.6 arcsec, but these travel
measurements are nevertheless significant thanks to VAULT’s
0.3-arcsec resolution. Some of the decelerating jets have sig-
nificantly greater deceleration −a than the solar surface gravity
(274 m s−2); we call these superballistic. The maximum veloc-
ity estimates vmax all but one exceed the chromospheric sound
speed (8 km s−1, e.g., Uitenbroek 2006). The excursion duration
estimates T range from 1 to 7.5 min with a median at 2.8 min.
Again, we emphasize that the last two parameters are likely to
be underestimated when the brief image sequence did not cover
the full jet-top excursion.

Figure 7 plots the maximum velocity amplitude vmax against
the deceleration/acceleration amplitude |a| for the selected 30
Lyα DJs. The scatter and the errors are large and the statistics
low, but the plot suggests positive correlation between vmax and
|a| for both the decelerating and the accelerating Lyα DJs.

4. Discussion

Obviously, longer Lyα image sequences at the VAULT-II resolu-
tion are needed to gain better information than these four images
provide. Nevertheless, they do show the existence of dynamic
jets that fan out from network and extend or retract during the
one-minute image sequence.

How do these Lyα DJs compare to the now well-studied and
fairly well-explained HαDFs? They have similar shapes, occupy
similar locations on the solar surface, show similar hedge-row
morphology, and extend or retract along their length the same
way. The measurements for the 16 decelerating ones in Table 1
show fairly good correspondence with the HαDF measurements
listed at the bottom of the table. Figure 7 suggests a positive

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810710&pdf_id=6
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Fig. 7. Maximum velocity amplitude vmax against decelera-
tion/acceleration amplitude |a| for the selected 30 Lyα DJs. Filled
symbols: decelerating DJs. Empty symbols: accelerating DJs. Dashed
lines: chromospheric sound speed of 8 km s−1 and solar surface gravity.

correlation between vmax and |a| comparable to the linear rela-
tions for Hα DFs. Our estimate of the mean Lyα DJ excursion
duration is about one and half minutes shorter than the average
Hα DF periodicity reported by De Pontieu et al. (2007a), but
represents only a lower limit. Three of the sixteen DJs show sub-
stantially greater superballistic deceleration than the maximum
of 320 m s−2 for DFs reported by De Pontieu et al. (2007a) and
the maximum of 400 m s−2 reported by Rouppe van der Voort
et al. (2007) and De Pontieu et al. (2007b) for quiet-Sun mottles
and for type-1 spicules, respectively, but with large uncertainty
for one of them. We conclude that, overall, our decelerating Lyα
DJs are rather similar to Hα DFs.

However, in contrast to the Hα DF studies, we found a
roughly equal number of Lyα DJs that significantly accelerate
rather than decelerate. These are collected in the lower half of
Fig. 6. The two sets of trajectories together suggest that they
might actually be incomplete samples of sinusoidal motion or, as
the referee has pointed out, sample the end of one shock-driven
feature and the onset of the next one if these Lyα DJs occur in
succession as Hα DFs do. Note that our length estimates do not
differ significantly between the two sets, but these are rather ar-
bitrary.

An obvious difference between Lyα DJs and Hα DFs is that
the former appear bright against dark backgrounds, the latter
dark against bright backgrounds. Lyα emissivity indicates the
presence of gas that is sufficiently hot for collisional excitation
of its upper level at 10.2 eV. Sufficient population of that
level is also required to make fibrils opaque in Hα. The recent
study by Leenaarts et al. (2007) suggests that cool fibrils may
maintain much greater Hα opacity than their temperature would
suggest if they have recently undergone shock heating. Hence,

Hα DFs may remain opaque also when they are cool during part
of their lifetime. They will be much more opaque in Lyα. Can
the same fibril appear bright in Lyα and dark in Hα? Perhaps
through hot-sheath topology of the transition region, with the
latter surrounding cool DFs as hot shells (e.g., Rutten 2007;
De Pontieu et al. 2007a). The neutral-hydrogen diffusion mech-
anism recently proposed by Judge (2008) seems a viable candi-
date. Detailed time-dependent numerical MHD simulation may
demonstrate this. However, realistic evaluation of Hα formation
from such simulations remains a formidable challenge that may
be helped by constraints derived from Lyα.

Finally, the Lyα DJs studied here are likely related
to chromospheric phenomena such as regular spicules (e.g.
Sterling 2000), straws (Rutten 2006, 2007), and type-2 spicules
(De Pontieu et al. 2007b; Langangen et al. 2008b).
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