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2Department of Computer Engineering, Namık Kemal University, Tekirdağ, Turkey
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Abstract

We propose a two-level system for apparent age estima-

tion from facial images. Our system first classifies samples

into overlapping age groups. Within each group, the appar-

ent age is estimated with local regressors, whose outputs

are then fused for the final estimate. We use a deformable

parts model based face detector, and features from a pre-

trained deep convolutional network. Kernel extreme learn-

ing machines are used for classification. We evaluate our

system on the ChaLearn Looking at People 2016 - Apparent

Age Estimation challenge dataset, and report 0.3740 nor-

mal score on the sequestered test set.

1. Introduction

Automated age estimation from facial images is one of

the most difficult challenges in face analysis. It can be

very favorable in a number of real life applications such as

age-based authorization systems, demographic data mining,

business intelligence and video surveillance systems. The

difficulty of this task originates from many reasons such

as the lack of enough labeled samples to model the aging

patterns of subjects, as well as uncontrolled conditions in

data collection such as illumination, pose, occlusions and

other environmental variables. Aging process is also known

to be very subject-dependent, i.e. subjects might differ in

terms of aging patterns, resulting in high variations within

the samples from the same age. One of the earliest works

involving age estimation from face images is conducted in

early 2000s by Lanitis et al. [19, 18]. After the emergence

of large age databases such as MORPH [32], FRGC [30]

and FG-NET [1], the interest on this subject has signifi-

cantly grown. In the following we provide a brief literature

review on studies.

1.1. Related Work

The first steps of a human age estimation pipeline are

face detection [41, 25] and facial landmark localization

[43]. In this work, we chose to use the Deformable Part

Model (DPM) based face detector proposed by Mathias et

al. [25], because it finds the location of the face bounding

box and gives a good alignment without the need for fa-

cial landmark localization. DPM face detector was used

successfully in face-related applications such as face recog-

nition [29], action recognition [34, 35] and age estimation

[36].

A variety of feature extraction methods were applied for

the task of modeling the aging pattern from facial images.

For example, Active Shape Models and Active Appearance

Models have been employed as features for age estima-

tion [9, 18, 3, 24].

Histogram-based local appearance features have been a

very popular choice for age estimation. These features in-

clude the Local Binary Patterns (LBP) descriptor, which en-

codes a local patch of the image based on the binary rela-

tions of the center pixel with its neighbors, and is widely

used in age estimation [42, 22, 37, 4]. Similarly the His-

togram of Oriented Gradients (HOG) descriptor has shown

to be informative for age modeling [7, 22].

The LBP descriptor is modified by processing the input

image with Gabor filters, resulting in the Local Gabor Bi-

nary Pattern descriptor, which has shown to be informative

in age estimation [37].

Gabor filters are also employed in the calculation of Bio-

Inspired Features (BIF) [33], which is consistently used for

age estimation in recent years [14, 22]. BIF feature pro-

cesses an image using a multi-layer feed-forward model

where the first layer convolves the image with a set of Gabor

filters from multiple orientations and scales, and the result-

ing vector is downsized with a pooling step, usually with

STD or MAX operators. A simplified version of this model
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is used in [13], where the authors choose the number of

bands and orientations manually.

Convolutional Neural Networks (CNN), originally intro-

duced by LeCun et al. [20], has gained great popularity with

the emergence of big datasets and computational resources.

CNNs have been successfully applied to many fields of sig-

nal processing such as speech recognition [45], image re-

trieval [38], image classification [17] and multimodal video

analysis [28].

Almost all the top-ranking participants of ChaLearn

Looking at People 2015 - Apparent Age Estimation chal-

lenge used deep learning and achieved very good results [5].

Rothe et al. [36] won the LAP-2015 challenge by using a

deep network that was trained for image classification, and

fine-tuning it for the task of apparent age estimation by col-

lecting a custom dataset of 524,230 images automatically

from the Internet. Liu et al. [23] and Zhu et al. [46] also

proposed to fine-tune deep networks for age estimation with

augmented data, and achieved very good results.

Another important part of the age estimation pipeline is

model learning, for which many different algorithms have

been employed. For example, Support Vector Machine Re-

gression (SVR) is a commonly used algorithm for this task

[14, 3, 13, 42, 22].

Other learning algorithms that have been utilized in the

task of age estimation include Neural Networks [18, 8],

Random Forests (RF) [27, 46], projection based learners

such as Partial Least Squares regression and Canonical Cor-

relation Analysis, which are often used in combination with

kernel and regularization techniques [11, 10, 12]. Ranking

based methods are also commonly used for age estimation

[42, 3, 44, 21].

Extreme Learning Machine (ELM) [15] is a fast and ro-

bust learning algorithm that has gained popularity over the

last years with many successful applications related to face

analysis such as face recognition [47, 26], smile detection

[2] and emotion recognition [39, 16]. In [37], ELM is used

for classification into four non-overlapping age groups and

shown to yield good classification performance.

2. Methodology

In this section we describe the different parts of our age

estimation pipeline, namely face alignment, feature extrac-

tion and model learning. The workflow of our proposed

method is illustrated in Figure 1.

2.1. Face Alignment

We used the DPM based face detector of Mathias et

al. [25]. The DPM face detector gives the coordinates of

the bounding box (if any face is detected), as well as the

detection score. Inspired by [36], we run the face detector

on rotated version of the original image between -60◦and

60◦in 5◦increments, in order to eliminate in-plane rotation.

Since some of the images are rotated 90◦or upside down,

we also try 180◦, -90◦and 90◦rotations. We then take the

output with the maximum face score. For the cases where

no face is detected, we register the whole image. Table 1

shows the number of detections on the three subsets.

Table 1: Face alignment summary

# Train Val Test

Given 4113 1500 1978

Detected 4016 1462 1920

2.2. Feature Extraction

We used the deep network pretrained by Parkhi et al. [29]

to extract CNN features from aligned images. The VGG-

Face network consists of 37 layers, the final one being a

2622-dimensional softmax layer, trained for the face recog-

nition task. We tried the performance of the final layers

and found that the 33rd layer, which is the first (earliest)

4096-dimensional convolution layer, was the most informa-

tive one. Therefore we used only the features from this layer

in model learning. The baseline regression performances

(without any grouping) of the best layers are shown in Ta-

ble 2.

Table 2: Comparison of different layers of VGG-Face

Layer Num. features ǫval MAEval

32 25088 0.4284 4.68

33 4096 0.4021 4.35

35 4096 0.4150 4.48

37 2622 0.4066 4.38

We then normalize each feature vector by dividing it to

its Euclidean norm. We have tried various normalization

options prior to L2 normalization and saw that none of them

was improving the normal score, therefore we decided to

use only L2 normalization for the final system. Performance

with various normalization options for the best layers are

shown in Table 3.

In our experiments, we tried combinations of alternative

feature normalization methods, including the sigmoid func-

tion, power normalization by 2 (i.e. setting the absolute

value of each feature to its square root), min-max normal-

ization of each feature to [−1, 1] among samples, and z-

normalization. For min-max and z-normalization, we learn

the parameters from training folds and apply them to the

test fold.
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Group 1 -

Group 2 -

Group 3 25.03

Group 4 25.56

… …

Group 8 -

Σ = 25.3 years

1. Input Image 2. Face Detection 3. Feature Extraction 4. Modeling 5. Prediction

DPM face detector VGG-Face network Kernel ELM

Figure 1: Pipeline of the proposed system

Table 3: Validation set performance with different normal-

ization options

Norm. Type Layer 33 Layer 37

ǫ MAE ǫ MAE

No norm. 0.4487 4.91 0.4403 4.79

L2 0.4021 4.35 0.4066 4.38

Pow. + L2 0.4028 4.32 0.4079 4.44

Sig. + L2 0.4152 4.49 0.4137 4.46

MM + L2 0.4355 4.77 0.4301 4.63

Z + L2 0.4102 4.48 0.4036 4.33

MM + Sig. + L2 0.4861 5.46 0.4652 5.12

Z + Sig. + L2 0.4220 4.59 0.4164 4.51

MM + Pow. + L2 0.4565 5.01 0.4438 4.88

Z + Pow. + L2 0.4083 4.43 0.4078 4.37

It should be noted that the final classification layer also

yielded a very informative feature, but it did not improve

the overall accuracy when fused with the 33rd layer out-

put. Considering that this deep network is trained for face

recognition, relatively good performance of the last layer

also indicates the informativeness of age in discriminating

identity from facial image.

2.3. Modeling

In this section we explain the two parts of our age mod-

eling system; classification into overlapping age groups and

regression among each group. We then fuse the decisions

of each relevant group to obtain the final estimation.

2.3.1 Kernel ELM

In both stages of our model learning pipeline, we used ker-

nel Extreme Learning Machines (ELM) [15] due to the

learning speed and accuracy of the algorithm. In the fol-

lowing paragraphs, we briefly explain the learning strategy

of ELMs.

ELM proposes a simple and robust learning algorithm

for single-hidden layer feedforward networks. The input

layer’s bias and weights are initialized randomly to ob-

tain the output of the second (hidden) layer. The bias and

weights of the second layer are calculated by a simple gen-

eralized inverse operation of the hidden layer output matrix.

ELM tries to find the mapping between the hidden node

output matrix H ∈ R
N×h and the label vector T ∈ R

N×1

where N and h denote the number of samples and the

hidden neurons, respectively. The set of output weights

β ∈ R
h×1 is calculated by the least squares solution of the

set of linear equations Hβ = T, as:

β = H
†
T, (1)

where H
† denotes the Moore-Penrose generalized inverse

[31] that minimizes the L2 norms of ||Hβ − T|| and ||β||
simultaneously.

To increase the robustness and the generalization capa-

bility of ELM, a regularization coefficient C is included in

the optimization procedure. Therefore, given a kernel K,

the set of weights is learned as follows:

β =

(

I

C
+K

)−1

T. (2)

We use the radial basis function (RBF) in order to cal-

culate kernel K from the original features because in our
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preliminary experiments we found that its performance is

was superior compared to its alternatives such as linear and

polynomial kernels. In Table 4, we provide the perfor-

mances of different kernel types for global regression with

the 33rd layer output.

Table 4: Validation performance with different kernel types

Linear RBF Poly

ǫ MAE ǫ MAE ǫ MAE

0.49 5.26 0.42 4.35 0.45 4.48

As explained in Section 2.2, we normalize the feature

vectors by their L2 norm before comparing them with RBF,

so we obtain a normalized kernel representation that enables

us to model the aging pattern in a more generalized way.

2.3.2 Classification

For each age group (x | a1 ≤ x ≤ a2), we learn a bi-

nary classification model by labeling the training set based

on membership to the group and optimizing the parame-

ters of kernel ELM classifier by random 3-fold cross vali-

dation within the training set. Therefore, we run G binary

classifiers for each sample in the validation set to determine

which groups it belongs to, in order to get estimations only

from those groups. We tried to optimize the models based

on binary classification accuracy as well as recall, and we

found that optimizing based on accuracy yielded slightly

better results, therefore we chose to optimize based on ac-

curacy. The final performance of our system on individual

groups, as well as the selected classification parameters, are

summarized in Table 5.

2.3.3 Regression

We learn a regression model for each age group simply by

choosing the positive samples from the training set and opti-

mizing the parameters of kernel ELM regressor by random

3-fold cross validation on this subset. For each sample in

the validation set, we first run the binary classifiers for each

group, and for the ones with positive response, we apply

the corresponding local regression models to get their esti-

mations. Therefore, we obtain g estimations per instance,

where 0 ≤ g ≤ G. For the samples which are not assigned

to any group (this was the case for 11% of the validation

and 15% of the test set), we learn a backup model from all

the samples in the training set, that is the global regression

model which is equivalent to using the age group [0,∞] (see

Table 5).

3. Experiments

In this section we describe the challenge corpus, exper-

imental setup and the evaluation protocol, and we present

the performance of our classification and regression meth-

ods with example images from the validation and test sets.

3.1. LAP2016 Dataset

ChaLearn Looking at People 2016 - Apparent Age Esti-

mation challenge dataset [6] consists of 7,591 face images

collectively labeled by multiple human annotators, there-

fore the mean µ and the standard deviation σ is provided for

each sample. The dataset is split into 4113 training, 1500

validation and 1978 testing samples, where the testing set

labels are sequestered. The three subsets have a similar age

distribution. Table 1 presents the number of samples where

the DPM face detector was able to detect a face.

3.2. Evaluation Criteria

Mean Absolute Error (MAE): A standard way of mea-

suring the accuracy of a regressor is to average the absolute

deviation of each sample’s label from its estimated value.

More formally, MAE of a given dataset is calculated as fol-

lows:

MAE =
1

N

N
∑

i=1

|xi − x̂i|, (3)

where xi is the true label i.e. the average of apparent age

annotations for sample i, x̂i is the predicted value, and N is

the number of testing samples.

Normal Score (ǫ): Since the LAP-2016 dataset is labeled

by multiple annotators, the performance of an age estima-

tion system might be more accurately measured by taking

into account the variance of the annotations for each sam-

ple. Therefore the ǫ-score is calculated by fitting a normal

distribution with mean µ and standard deviation σ of the

annotations for each sample:

ǫ = 1− e−
(x−µ)2

2σ2 (4)

Thus, the average ǫ-score for a dataset can change between

1 (worst case) and 0 (best case).

3.3. Implementation details

The system is implemented in MATLAB. Face detection

takes around 2 seconds per image and rotation angle. Fea-

ture extraction from VGG-Face with MatConvNet library

[40] takes around 1 second per image. For classification and

regression, we optimize the kernel parameter γ and the reg-

ularization coefficient C with a grid search where both pa-

rameters are searched in the exponential set 2[−2,−1, ... ,6].

Training the whole system takes 12 minutes and obtaining

the estimation takes around 2 seconds per test image.
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Table 5: Classification accuracy, recall and regression per-

formance on validation set with different age groups. N de-

notes the number of samples

Group Ntr Nval Acc. Rec. ǫ MAE

0-15 860 152 0.96 0.78 0.45 2.46

10-25 2366 436 0.84 0.65 0.31 2.90

15-30 3686 662 0.84 0.83 0.31 3.19

20-35 4072 705 0.81 0.86 0.33 3.52

30-40 1764 311 0.81 0.35 0.34 3.82

35-50 1568 288 0.85 0.45 0.34 4.26

45-60 976 184 0.91 0.48 0.28 3.87

55-∞ 554 106 0.96 0.57 0.28 4.36

0-∞ 8032 1462 - - 0.40 4.35

Overall 8032 1462 - - 0.33 3.85

3.4. Results

In this section we present the results of our classifica-

tion and regression systems. In Table 5, we summarize the

classification accuracy and recall for the 8 overlapping age

groups we used. The 9th row is the performance of the

backup system, and the final row is the performance of the

whole system on the validation set of LAP-2016 dataset.

Table 5 shows that the ensemble of local regressors yield

smaller MAE for younger age groups. As the age pro-

gresses, within-group variance increases with it, making the

apparent age estimation task harder. Finally, since younger

subjects are usually annotated with less variance, the ǫ-score

behaves almost inversely to MAE score, as the ǫ-score is

more tolerant for the errors in the older subjects.

We display the estimation results on samples from the

validation set in Figures 2 and 3. Figure 2 shows the invari-

ance of CNN features to common difficulties such as blur,

pose and occlusions. In Figure 3, we show the examples

where our age estimation system fails due to many possible

reasons such as mis-detection of the face, alignment errors

or simply due to lack of enough samples to model the aging

pattern, especially for older subjects.

Our system achieves 0.33 ǫ-score in the development

phase, and 0.37 ǫ-score in the test phase of the challenge.

The final results of the challenge is displayed in Table 6.

4. Conclusions and Future Work

In this paper, we propose an apparent age estimation sys-

tem with the use of deep learning and a fast and robust age

modeling algorithm. We show that the performance of lo-

cal regressors are better than the global regressor for almost

all groups. However, we give equal weight to each group a

sample is assigned to, whereas weighing the decisions with

a membership score can result in more accurate estimation.

Table 6: ChaLearn Looking At People 2016 Apparent Age

Estimation challenge final results

Position Team Test error

1 OrangeLabs 0.2411

2 palm seu 0.3214

3 cmp+ETH 0.3361

4 WYU CVL 0.3405

5 ITU SiMiT 0.3668

6 Bogazici (Ours) 0.3740

7 MIPAL SNU 0.4569

8 DeepAge 0.4573

CNNs are robust to common difficulties in image pro-

cessing such as pose and illumination differences as well as

occlusions. Therefore our system works with a very coarse

alignment system, however we believe that obtaining a finer

alignment with the help of a landmark detection system will

further improve the estimation accuracy.

We make use of transfer learning by using the features

from a deep network that is trained on a face recognition

task and directly employing them in age estimation. How-

ever, literature has shown that fine-tuning a deep network

for the age estimation task increases the explanatory power

of its features, therefore in the future we aim to train a con-

volutional neural network for real and apparent age estima-

tion tasks.
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