
Facial expression recognition in the wild using improved dense trajectories and
Fisher vector encoding

Sadaf Afshar1 Albert Ali Salah2

1Department of Computational Science and Engineering Boğaziçi University, Istanbul, Turkey
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Abstract

Improved dense trajectory features have been success-
fully used in video-based action recognition problems, but
their application to face processing is more challenging. In
this paper, we propose a novel system that deals with the
problem of emotion recognition in real-world videos, using
improved dense trajectory, LGBP-TOP, and geometric fea-
tures. In the proposed system, we detect the face and facial
landmarks from each frame of a video using a combina-
tion of two recent approaches, and register faces by means
of Procrustes analysis. The improved dense trajectory and
geometric features are encoded using Fisher vectors and
classification is achieved by extreme learning machines. We
evaluate our method on the extended Cohn-Kanade (CK+)
and EmotiW 2015 Challenge databases. We obtain state-of-
the-art results in both databases.

1. Introduction

Automatic video data analysis has been a growing inter-
est in multimedia retrieval and human computer interaction.
One of the most challenging parts in video analysis is the
ability of evaluating human affective displays robustly. De-
spite intensive work on facial expression recognition, most
of the previous research is done on videos collected un-
der controlled conditions. In 2010, Lucey et al. [24] in-
troduced an extended version of the Cohn-Kanade dataset
(CK+). Around the same time, Valstar and Pantic [32] in-
troduced the MMI facial expression dataset, which contains
a large collection of facial videos encoded with the facial
action coding system (FACS). These and similar databases
have been crucial for evaluation of facial expression sys-
tems, but most of such resources contain posed expressions,
collected under laboratory conditions. On the other hand,
the EmotiW 2015 Challenge Dataset1 contains short labeled

1https://cs.anu.edu.au/few/EmotiW2015.html

audio-video clips depicting six universal emotions (Anger,
Disgust, Fear, Happiness, Sad, and Surprise), as well as
neutral faces, selected from movies with challenging illu-
mination and pose conditions.

Evaluating human emotion in real-world videos (called
“in the wild”) is still an open challenge and less addressed
by researchers. Complexity of emotion recognition in real-
world videos is due to many factors such as different illu-
mination conditions, various head poses, unspecified apex
of emotional expressions, scaling, occluding of faces, and
complicated background. For the problem of video-based
action recognition, which shares some of these challenges,
improved dense trajectory features have been successfully
used [36]. In this paper we propose a novel methodology,
which achieves state-of-the-art results for facial expression
recognition in the wild, and explores the use of improved
dense trajectory features. This is our first contribution.

For designing a robust emotion recognition system in the
wild, one of the most important pre-processing steps is the
facial alignment, or registration. Our second contribution is
an alignment system that is a combination of recent face de-
tection, landmark localization and registration approaches.
Our third contribution is the fusion of multiple feature rep-
resentations that complement each other. We use feature-
level fusion in our approach. In the literature, support vec-
tor machines (SVM) have been frequently used for classi-
fication of facial expressions. Instead of SVM, we use an
extreme learning machine (ELM) classifier, which is faster
to train, and achieves better results compared to the SVM.

The rest of this paper is organized as follows. We review
the recent literature on facial expression recognition in Sec-
tion 2. Our proposed approach to facial registration will be
discussed in Section 3. Feature extraction will be discussed
in detail in Section 4. We describe video modeling briefly
in Section 5, followed by model learning in Section 6. Re-
sults and conclusions will be reported in Sections 7 and 8,
respectively.
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2. Related work
The facial expression recognition pipeline consists of

face detection, landmark localization, alignment, feature
extraction and classification steps. Alignment (or registra-
tion) is an important step, since removing rotation, scale
and translation can improve the recognition system consid-
erably.

If landmark points on faces can be located efficiently and
accurately, these will guide the registration. Zhu & Ra-
manan [40] presented a unified tree-structured model for
face detection and landmark localization in the wild, which
is shown to be efficient for capturing deformations. Dibekli-
oglu et al. [7] offered a method for 2-D facial landmarking,
which is based on the combination of a mixture model of
Gabor wavelet features and a shape prior, estimated with
a multivariate Gaussian mixture model. Xiong and de la
Torre [37] proposed a supervised descent method for min-
imizing a Non-linear Least Squares (NLS) function, which
achieves state-of-the-art performance in facial features de-
tection. Asthana et al. [2] introduced the Discriminative
Response Map Fitting method for landmark localization,
which produces very good results.

Different alignment methods have been proposed for
aligning faces, and other shapes. In the field of morphomet-
rics, Gower [10] proposed the Generalized Procrustes Anal-
ysis (GPA), which can be used for aligning any number of
shapes represented by point sets, to a reference model. This
approach requires accurate landmarks to produce good re-
sults. If this condition is met, GPA will provide a very good
registration for 2D or 3D faces.

Feature extraction plays a crucial role in designing a ro-
bust recognition system. For face processing resistant to lo-
cal illumination effects, Local Binary Pattern features were
proposed. This descriptor was later extended for modeling
spatio-temporal features, as LBP-TOP [39]. Another impor-
tant feature for modeling faces have been Gabor wavelets,
which capture oriented edges over the facial image at differ-
ent scales. The LBP-TOP features are extracted from Ga-
bor images to get LGBP-TOP descriptors [1], which have
shown promising results in the literature. Other typical de-
scriptors are SIFT [22], HOG [4], LPQ [15].

Recently, Wang and Schmid [36] proposed the im-
proved dense trajectories method for action recognition,
which is based on extracting motion boundary histograms
(MBH) [5], Oriented Histograms of Flow (HOF) [18],
Histogram of Oriented Gradients (HOG) [4] and optical
flow [23] trajectories. The descriptor provides a summary
of changing features over the video, and it is robust to id-
iosyncratic variations. We postulate that this method can be
useful for facial expression recognition, as we need to track
changes in facial dynamics.

The last step in the recognition pipeline is classification.
SVM is a very popular approach [20, 6]. Recently, extreme

learning machines (ELM) introduced by [12] is shown as a
viable alternative to the SVM, which is slow to train. In our
study, we use ELM and show that it has good generalization
performance for multi-class classification and needs shorter
time for the learning phase, compared to SVM.

The pipeline of our method is illustrated in Figure 1. In
the following sections, we describe its main components.

3. Facial registration

Our facial registration approach consists of two major
steps of landmark detection and alignment, respectively.

3.1. Face and landmark detection

For landmark localization, we propose to combine two
different methods in order to make a robust system. We
use the supervised descent method (SDM) [37] in conjunc-
tion with the Discriminative Response Map Fitting (DRMF)
method [2]. The Intraface (SDM) method is fast (about 0.51
second per frame) and can detect facial features precisely,
but since its face detector is based on the Viola & Jones
face detector [33], sometimes it fails to find faces. This is
a problem in many cases of realistic videos, where different
illumination, pose and complicated background conditions
are present. The DRMF method, on the other hand, bene-
fits from a tree-based face detector, which is proposed by
Zhu & Ramanan [40]. Although the DRMF method works
well in the wild conditions, its current implementation is
very slow. It takes about 23 seconds to find the face and its
corresponding landmarks in a frame. In order to preserve
both accuracy and speed, we combine these two methods.
The video is first processed by Intraface, using the Viola &
Jones face detector and for each frame, faces and their land-
marks with high confidence scores are selected. If a given
video has less than three frames with detected faces, we use
the combination of Zhu & Ramanan and DRMF for face
and landmark localization. If this approach also fails to find
faces, the video is tagged as not having any faces.

3.2. Generalized Procrustes alignment

In our proposed system, we use a single reference model
and align all faces to it in order to remove translation, ro-
tation, and scale effects. For this purpose, we use the gen-
eralized Procrustes analysis (GPA) proposed by [10]. A set
of faces are represented by their landmarks and an iterative
approach is employed to obtain the reference model. This
procedure automatically produces the registered set of faces
from the training set at the same time. Given a new facial
image, GPA will find the affine transformation that aligns
the face to the reference face, minimizing a distance func-
tions that equally weights each landmark. For details, we
refer the reader to [29].



Figure 1. Pipeline of the proposed system.

4. Feature extraction

After aligning faces to the reference model, we perform a
histogram equalization to cope with illumination problems.
A number of features and descriptors are extracted from the
aligned and preprocessed faces. From each training (or test)
video, we extract features including improved dense tra-
jectories (using software provided by [36]), geometric fea-
tures [16] and LGBP-TOP features. To reduce dimensional-
ity of the descriptors, principal components analysis (PCA)
is used. We then apply Fisher vector encoding on improved
trajectory and geometric features for global representation.
Finally, we concatenate all the features and pass this fea-
ture vector to an ELM classifier in order to predict a single
emotional expression label for the entire video clip.

4.1. Improved Dense Trajectories

Improved dense trajectory features reach state-of-the-
art in the action recognition problem [36]. These features
are based on image descriptors (HOG, HOF and MBH
descriptors) computed along tracked trajectories. We use
these features to capture the changes in facial dynamics.
Wang et al. illustrated that tracking densely sampled fea-
ture points from a multi-scale pyramid (built from each
frame of the video) can outperform sparse sampling. Track-
ing is based on dense optical flow [9] and is done for
a certain time window. In realistic videos, camera mo-
tion should be filtered out to prevent generating trajectories
which correspond to the background. For solving this prob-
lem, Wang et al. proposed using the homography matrix
of the points from continuous frames, which is extracted

by the RANSAC approach. After filtering out the camera
motion, 96-dimensional HOG, 108-dimensional HOF, 192-
dimensional MBH and 30 dimensional trajectory features
are computed to describe the appearance, shape and motion
information. Figure 2 visualizes the trajectories on some
videos from the EmotiW Challenge Dataset. The tracked
points in the current frame are given as red dots, and the
motion of each such point is indicated with a green line.

Using improved dense trajectory features has some im-
portant advantages over simple tracking of interest points.
First, removing camera motion from optical flow improves
HOF descriptors as discussed in [35]. Second, canceling out
camera motion also removes trajectories that are produced
by camera motion. Therefore, only trajectories related to
face movements are kept. This specification is very impor-
tant in real-world videos, where there are lots of pan and tilt
camera motions.

4.2. Geometric Features

The shape of the face can be captured by its landmarks.
Therefore, interpreting the movement of the landmarks dur-
ing a facial expression can improve the performance of a
facial expression recognition system. In this paper, we used
a set of landmarks on the face detected by both Intraface and
DRMF methods. The geometric features we use are mostly
the same features introduced in Kaya et al. [16]. We have
included three more features to enhance this set. Indices of
extracted landmarks can be seen in Figure 3 and the details
of the employed geometric features are tabulated in Table 1.



Figure 2. Original video frames (first row) and their visualized im-
proved dense trajectories (second row). Images are selected from
the CK+ and EmotiW 2015 Challenge datasets. Best viewed in
color.

Figure 3. Landmarks extracted from the face.

4.3. Local Gabor binary patterns (LGBP)

In LGBP [1] images are convolved with a set of 2D com-
plex Gabor filters to obtain Gabor-pictures, and then LBP-
TOP is applied to each Gabor-picture. A 2D complex Ga-
bor filter is defined as the convolution of a complex sinusoid
s (x, y) (carrier) with a 2-D Gaussian kernel ωτ (x, y) (en-
velope):

g (x, y) = s (x, y)ωτ (x, y) (1)

s (x, y) = exp (j (2π (u0x+ v0y) + p)) , (2)

where (u0, v0) stands for spatial frequency and p defines the
phase of the sinusoid.

ωτ (x, y) = K exp
(
−π
(
a2 (x− x0)2r + b2 (y − y0)2r

))
,

(3)
where a, b are scaling parameters of the Gaussian, K is
amplitude and r subscript stands for a clockwise rotation
around point (x0, y0). It should be stated that, we only use
the magnitude response of the filter.

Table 1. Explanation of geometric features.
# Features Type and Explanation of feature

1 Eye aspect ratio
Distance, averaged over

left and right parts of the face

2 Mouth aspect ratio Distance

3 Upper lip angles
Angle, averaged over

left and right parts of the face

4 Nose tip - mouth corner angles
Angle, averaged over

left and right parts of the face

5 Lower lip angles
Angle, averaged over

left and right parts of the face

6 Eyebrow slope
Angle, averaged over

left and right parts of the face

7,8 Lower eye angles
Angle, averaged over

left and right parts of the face

9 Mouth corner - mouth bottom angles Angle

10 Upper mouth angles
Angle, averaged over

left and right parts of the face

11 Curvature of lower-outer lips
Curvature, averaged over

left and right parts of the face

12 Curvature of lower-inner lips
Curvature, averaged over

left and right parts of the face

13 Bottom lip curvature Curvature

14 Mouth opening Distance

15 Mouth up/low Distance

16 Eye - middle eyebrow distance
Distance, averaged over

left and right parts of the face

17 Eye - inner eyebrow distance
Distance, averaged over

left and right parts of the face

18 Inner eye - eyebrow center
Distance, averaged over

left and right parts of the face

19 Inner eye - mouth top distance Distance

20 Mouth width Distance

21 Mouth height Distance

22 Upper mouth height Distance

23 Lower mouth height Distance

24 Inner eye - mouth corner distance Distance

25 Mouth center-left mouth corner Distance

26 Mouth center-right mouth corner Distance

5. Video modeling

5.1. Fisher vector encoding

The Fisher vector (FV) representation can be seen as
an extension of Bag of Words (BOW). Perronnin and
Dance [26] proposed the usage of GMM and Fisher ker-
nels for producing visual vocabularies. Since then, FV has
attracted a lot of attention. The Fisher vector representa-
tion benefits from characteristics of both generative statis-
tical models (like HMM) and discriminative methods (like
SVM). Unlike BOW, the Fisher vector uses both 0-order
statistics (counting) and second order statistics. This spec-



ification enables the Fisher vector to find the best direction
in which parameters of the GMM model are modified in or-
der to fit to the data efficiently. In this paper, we used PCA
in order to reduce the dimensionality of descriptors and for
decorrelating them. Empirically, we got the best results on
the training set by reducing the dimension of each trajectory
to 25 and that of the other three descriptors (HOG, HOF,
and MBH, respectively) to 64. The geometric features are
projected to a decorrelated space by PCA, while their full
dimensionality is kept.

We used GMMs with diagonal covariance matrix to pro-
duce the FV. The GMM clustering produces a visual vo-
cabulary, where the number of clusters is a parameter of
the method optimized on the training set. 20 to 60 clus-
ters work well for each of the feature categories. In our ex-
periments, the Fisher vectors are normalized firstly by the
signed square root function, and secondly by L2 normaliza-
tion. The final dimensionality of FV is 2×D×K, whereD
is the dimensionality of the descriptor, and Kis the number
of GMM components.

Given a set of descriptors X = {x1, x2, ..., xN} and pa-
rameters like λ = {ωi, µi, σi}|k

i=1

learned from a random

subset of training features, we calculate the FV as follows:

gxµ,i=
1

N
√
ωi

N∑
j=1

γij

(
xj − µi
σi

)
, (4)

gxσ,i=
1

N
√
2ωi

N∑
j=1

γij

[(
xj − µi
σi

)2

− 1

]
, (5)

where γi,j denotes the posterior probability connecting each
vector xj with a component i in the GMM.

5.2. LGBP-TOP

The final feature we incorporate is LGBP-TOP. For this
feature, LGBP histograms from three orthogonal planes
(XY, XT, and YT, respectively, with X and Y represent-
ing the image plane, and T representing time) are extracted
from two equal length volumes of the video, which are ob-
tained by dividing the video over the time axis. The re-
sulting features are concatenated in order to form the fi-
nal feature vector. We take the idea of dividing the video
for improving temporal modeling from Kaya et al. [16],
and the Gabor pictures were obtained using an open source
script [11]. Three scales and six orientations are used to
prepare the Gabor filter bank, and each Gabor picture is di-
vided into blocks. We have used 4 blocks for experiments
on CK+, and 16 blocks for the EmotiW 2015 Challenge
Dataset, respectively. Our approach is robust to operational
parameters, and since CK+ has a smaller number of samples
to train, reducing the number of blocks slightly improves
generalization.

6. Classification
We have use kernel extreme learning machines (ELM)

for classification [12]. ELM is actually a feedforward neu-
ral network with a single layer of hidden nodes, in which
weights from the input layer to the hidden nodes are initial-
ized randomly, and unlike neural networks, they will not be
updated with backpropagation. This specification of ELM
is the reason of its short training time.

If we assume that the output of the first layer of the net-
work is represented as H ∈ RN×h (where N and h show
the number of observations and the hidden neurons, respec-
tively), we should find the weights β ∈ Rh×L between H
and T ∈ RN×L to learn the classifier. Here, T is the output,
and L is the number of classes. The least square solution of
this linear equation starts from Hβ = T .

β = H†T, (6)

where H† is the Moore-Penrose generalized inverse [27].
For a multi class classification problem, T is defined as one
vs. all by below notation:

Tt,L =

{
+1 if yt = 1

−1 if yt 6= 1
(7)

To optimize ELM, a regularization coefficient on the resid-
ual error ‖ Hβ − T ‖ can be used. The idea of this opti-
mized version of ELM is inspired by Least Square SVMs
(LSSVM) via below equation:

β = HT (
I

C
+HHT )−1T, (8)

where I is a N ×N identity matrix and C is related to com-
plexity parameter of LSSVM, which is used to regularize
the linear kernel HHT [31]. This formulation can be sim-
plified as in Equation 9 given a kernel K [12, 28].

β = (
I

C
+K)−1T (9)

7. Experiments
7.1. Datasets

We have evaluated our proposed pipeline on the Ex-
tended Cohn-Kanade (CK+) [24] and Emotiw 2015 Chal-
lenge [6] datasets. The Extended Cohn-Kanade (CK+)
dataset contains 593 sequences from 123 subjects for seven
facial expressions: happy, sad, surprise, anger, disgust, fear
and contempt. The sequences are recorded in laboratory
conditions and coded at the peak frame with the facial ac-
tion coding system (FACS). All the videos start from the
neutral face and end with the apex expression. Among
these, only 327 samples have emotion labels, which are
used in our experiments. In order to be able to compare



our results with the state-of-the-art, Leave-One-Subject-Out
protocol (LOSO) is used.

The EmotiW 2015 Challenge Dataset2 consists of 723
training, 383 validation and 539 test videos. The labels of
the test videos are sequestered, and the number of evalua-
tions are limited. In the provided alignment by the organiz-
ers of the challenge, faces are detected only in 711 training
and 371 validation videos. There are false positives due to
challenging conditions of sequences. Our proposed align-
ment pipeline was able to detect 713 faces in the training
set and 378 faces in the validation set, with a small amount
of false positives, in a completely automatic manner.

The given alignment by the challenge organizers is good
for frontal faces, but the alignment was not very efficient in
the case of rotations. With our proposed method, we were
able to improve the alignment. Since emotion labels of the
test set are sequestered, we use cross validation on the train-
ing set to find the best parameters and then test the proposed
method on the validation set. This approach is also used in
previous works [20] and [34].

During our experiments, we analyze different combi-
nations of features and also compare each block of our
pipeline with other methods. We test each step of our pro-
posed methodology to see how much each block contributes
to the final result.

7.2. Descriptor types

Several experiments have been done in order to find the
best combination of descriptors. We investigate the contri-
bution of each descriptor both individually and in combina-
tion with others. We learned PCA and GMM models from
each descriptor (HOG, HOF, MBH, improved trajectories,
and geometric features), separately.

Results on the CK+ dataset are shown in Table 3. Con-
catenation of LGBP-TOP (after dimensionality reduction
and power-L2 normalization) and Fisher-encoded HOG,
HOF and GEO yields 94.80% accuracy on the CK+ dataset,
which is among the best results obtained for this dataset so
far. As expected, the combination of an appearance based
feature (HOG) and a motion based feature (HOF) produces
higher accuracy than combining two motion based (HOF
and MBH) features. Joining only two descriptors (HOG and
HOF) already gives a very promising result (93.58%) com-
pared to baseline method [24]. Among the seven classes,
“sad” is the most challenging emotion to recognize and
“happy” is the easiest one. Table 2 compares several state-
of-the-art approaches on the CK+ dataset, which are ob-
tained with the same standard protocol. The confusion ma-
trix of the final system is shown in Figure 4.

We use the same procedure on the EmotiW 2015 dataset;
results are shown in Table 5. Again, the combination of

2The Third Emotion Recognition in the Wild Challenge was held at the
ACM International Conference on Multimodal Interaction, 2015, Seattle.

Table 2. State of the art results on the CK+
Algorithm Protocol Mean Rec. R

STPS+CAPP (baseline, Lucey et al., 2010 [24]) LOSO 88.38%

STLMBP (Huang et al., 2012 [14]) LOSO 92.62%

Cov3D (Sanin et al., 2013 [30]) LOSO 92.30%

RCC (Huang et al., 2014 [13]) LOSO 95.38%

LCRF (Walecki et al., 2015 [34]) 10-fold 93.90%

Table 3. Contribution of different descriptors (CK+).
Descriptor Dimension Mean Rec. R

Trajectory 1250 71.56%

HOG 8192 90.52%

HOF 8192 87.77%

MBH 8192 89.91%

HOG+HOF 8192+8192 93.58%

HOG+MBH 8192+8192 92.05%

HOF+MBH 8192+8192 90.52%

HOG+HOF+MBH 8192+8192+8192 93.27%

Traj+HOG+HOF+MBH 1250+8192+8192+8192 91.13%

GEO 1352 69.42%

LGBP-TOP 75168 86.24%

GEO+HOG+HOF+

LGBP-TOP(RN)
1352+8192+8192+326 94.80%

GEO+HOG+HOF+

LGBP-TOP(RN)

(without contempt)

1352+8192+8192+326 95.79%

Figure 4. Confusion matrix of the final system (CK+).

HOG and HOF yields the best performance among im-
proved trajectory features and produces higher recognition
rate compared to the baseline on the validation set. Our
final approach achieves 42.86% accuracy on the Emotiw
2015 validation set, which is 6.78% higher than the base-
line (36.08%). The best result is obtained by a combination
of Fisher encoded geometric, HOG, HOF, MBH and LGBP-
TOP (after dimensionality reduction and power-L2 normal-



Table 4. State of the art results on the validation partition of the
EmotiW 2015 Challenge Dataset.

Algorithm Accuracy

LBP-TOP (Baseline) (Dhall et al., 2015 [6]) 36.08%

LPQ+LBP-TOP+OpenSmile (Kayaoglu et al., 2015 [17]) 40.70%*

AU-AFF (winner of the challenge) (Yao et al., 2015 [38]) 49.09%*

RNN (Ebrahimi et al., 2015 [8]) 39.60%

Table 5. Contribution of different descriptors (EmotiW 2015).
Descriptor Dimension Accuracy

Trajectory 1250 26.72%

HOG 8192 34.13%

HOF 8192 32.28%

MBH 8192 31.22%

HOG+HOF 8192+8192 36.77%

HOG+MBH 8192+8192 34.92%

HOF+MBH 8192+8192 29.63%

HOG+HOF+MBH 8192+8192+8192 34.92%

Traj+HOG+HOF+MBH 1250+8192+8192+8192 33.86%

GEO 1300 38.10%

LGBP-TOP(RN) 712 32.28%

GEO+HOG+HOF+

LGBP-TOP(RN)
1300+8192+8192+712 41.80%

GEO+HOG+HOF+

MBH+LGBP-TOP(RN)
1300+8192+8192+8192+712 42.86%

ization) features. Table 4 compares several approaches on
the validation set of EmotiW 2015 dataset. The results that
are marked with an asterisk are not completely comparable
with the results reported here, since they do not follow the
same protocol. The confusion matrix of our final system is
shown in Figure 5.

Figure 5. Confusion matrix of the final system (Emotiw 2015).

Table 6. ELM and SVM comparison in terms of time and perfor-
mance.

Classifier Training time Testing time (one subject) Accuracy(%)

ELM 0.45 s 0.0627 s 93.58

SVM 27.79 s 0.24 s 80.73

7.3. Facial alignment

In order to investigate how our registration pipeline im-
proves the recognition performance, we apply the same pro-
cedure on the registered images that are provided by the
organizers of EmotiW 2015 challenge. We were not able
to extract geometric features from the provided alignment,
since for a considerable number of frames, there are no
landmarks, and for the rest, the number of detected land-
marks is not consistent. Therefore, Fisher vector encod-
ing of HOG, HOF, MBH concatenated with LGBP-TOP are
used as feature vector. We obtain 38.54% accuracy on the
validation set with the default alignment. Using the im-
proved landmark detector and the generalized Procrustes
alignment improves this result by 4.32%.

7.4. Fisher vectors vs. bag of words (BoW)

In order to compare Fisher vector and BoW on the CK+
dataset, we used 4000 cluster centers. We prepared vo-
cabularies for each modality (i.e. HOG, HOF, MBH and
improved trajectory) separately. Each BoW vector is sep-
arately normalized with L1 normalization. The concatena-
tion of the BoW vectors is used in ELM with a linear kernel.

With BoW representation, the best result obtained on the
CK+ using improved dense trajectory features (with a com-
bination of HOG, HOF and MBH) is 88.99%, by leave one
subject out protocol. FV encoding with considerable fewer
number of visual words (64 words) outperforms BoW en-
coding (4000 words) by 4.59%.

7.5. Comparison of ELM with SVM

We contrast ELM and SVM in terms of training time and
accuracy on the CK+ dataset. We have found that ELM is
faster and more accurate than SVM. For this test, concate-
nation of Fisher vector encoding of HOF and HOG features
are used. Experiments are done on a machine with an Intel
(R) core i5 CPU 2.50 GHz and 6 GB of RAM. ELM reaches
93.58% accuracy, while SVM (the libsvm implementation
was used [3]) achieves 80.73% accuracy. Table 6 shows the
results on the CK+ dataset. We note here that it is possible
to get faster computation times with more optimized SVM
implementations like liblinear, but the difference remains
significant.

7.6. Deep learning

Deep learning is becoming popular in the context of
facial expression recognition. One of the widely used



deep learning structures is the convolutional neural network
(CNN). Training deep learning approaches requires very
large datasets and longer training times. Here we briefly
discuss the results of some deep learning methods applied
on the CK+ dataset. In a recent study by Li et al. [19],
10,595 external images were used for training CNN models
and 83% mean recognition rate was reported on CK+. Lv et
al. [25] proposed a method based on face parsing detectors
trained via deep belief networks and obtained 91.11% mean
recognition rate. Liu et al. [21] proposed a new Boosted
Deep Belief Network (BDBN), which yields 96.70% mean
recognition rate, but it should be stated that in that work,
the contempt emotion was not considered. By excluding
the contempt expression, we were able to obtain 95.79%
mean recognition rate. By comparing these results with the
ones reported here, it can be seen that our approach is ad-
vantageous in terms of high accuracy and low complexity,
as well as low training time.

8. Conclusions
In this work, we presented an approach for facial expres-

sion recognition that uses a combination of different static
and dynamic features. We tested the proposed approach on
the CK+ and EmotiW 2015 Challenge datasets. The results
show that our method yields state-of-the-art results in both
databases. The main contribution of this paper is that this
is the first time that improved dense trajectory features are
used for facial expression recognition in the wild. In origi-
nal improved dense trajectory features human bounding box
is used to remove camera motion, in case of facial expres-
sion recognition an accurate face detection can be used in-
stead of human detection as what we have done in this pa-
per.

In the case of the Emotiw dataset, the recall of surprise,
disgust and fear classes are low, which can be due to the
low number of training samples in these classes. Also, a
lot of training samples can be considered to contain a mix-
ture of two or more facial expressions (such as surprise, fear
and happy), which makes the recognition more challeng-
ing. The class distribution is not balanced for the EmotiW
dataset. For example, we have many more videos in happy
and anger classes compared to fear, surprise and disgust.
The proposed method is sensitive to small facial changes
and works successfully in some of the difficult cases, which
contain very small facial changes and are hard to distinguish
even for a human annotator. An example is shown in Fig-
ure 6. On the other hand, the sensitivity of method to small
changes and the aforementioned problem of mixing expres-
sions in the training set, sometimes cause the failure of the
method in simple cases. For instance Figure 7 illustrates
such an example.

Collecting more samples for under-sampled classes and
fusion with audio features, which contain significant emo-

tional information, with visual features, may improve the
performance of the system.

Figure 6. A correct classified sample from disgust class.

Figure 7. A misclassified sample from happy class.
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[35] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. International journal of computer vision, 103(1):60–
79, 2013. 3

[36] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, December 2013. 1, 2, 3

[37] X. Xiong and F. De la Torre. Supervised descent method and
its applications to face alignment. In CVPR, June 2013. 2

[38] A. Yao, J. Shao, N. Ma, and Y. Chen. Capturing au-aware
facial features and their latent relations for emotion recogni-
tion in the wild. In Proceedings of the 2015 ACM on Inter-
national Conference on Multimodal Interaction, ICMI ’15,
pages 451–458, New York, NY, USA, 2015. ACM. 7

[39] G. Zhao and M. Pietikainen. Dynamic texture recognition
using local binary patterns with an application to facial ex-
pressions. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 29(6):915–928, June 2007. 2

[40] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In CVPR, pages 2879–
2886, June 2012. 2


