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Abstract—This project aims at developing a biometric authentication

system exploiting new features extracted by analysing the dynamic nature

of various modalities, including motion analysis during ordinary tasks
performed in front of a computer, analysis of speech, continous face and

facial movement analysis, and even patterns for grasping objects. We test

the potential and contribution of each of these modalities for biometric

authentication in the face of natural, uncontrolled environments, as well
as their fusion.

Index Terms—Biometric authentication, activity recognition, face

recognition, motion analysis, speaker recognition, audio based event
recognition

I. INTRODUCTION

THIS project attempts to address the limitations of unimodal bio-
metrics by deploying activity-related multimodal biometric systems

that integrate the evidence presented by multiple sources of information.

Therefore, the combination of a number of independent modalities is
explored to overcome the possible restrictions set by each modality. With

a simple sensor setup, we aim at more robust biometric identification

through the fusion of physiological, behavioral and soft biometric

modalities, keeping also in mind the unobtrusiveness and comfort of
the subject.

The term behavioral biometrics refers to Person Recognition using

shape based activity signals (gestures, gait, full body and limb motion)
or face dynamics. Activity-specific signals [6], [23] provide the potential

of continuous authentication, but state-of-the-art solutions show inferior

performance compared to static biometrics (fingerprints, iris). This
drawback could hopefully be eliminated by the inferential integration

of different modalities.

Behavioral information from face videos for person recognition may
also be investigated in order to exploit the underlying temporal in-

formation in comparison to image-based recognition [39]. Methods for

person recognition from face dynamics can be classified into holistic

methods (head displacements and pose evolution [30]), feature-based
methods (exploitation of individual facial features [12]) and hybrid

methods [14]. Various probabilistic frameworks have been proposed in

recent works, usually employing a Bayesian Network (Hidden Markov

Models, Coupled and Adaptive HMMs, etc.) as the mathematical model
for recognition [35].

Soft biometrics (gender, height, age, weight etc.) are believed to be

able to significantly improve the performance of a biometric system in
conjunction with conventional static biometrics [22], yet their exploitation

remains an open issue. Microphones for voice recognition, sound based

sensors for monitoring activities or other modalities could also be
considered.
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In this report, we look at some of these modalities in a specific

fixed-seat pilot. Our experimental setup is described in Section II,

including the details of the collected database. The individual modalities
are investigated in separate sections, starting with model-based motion

analysis in Section III, which tracks the user via calibrated cameras

during ordinary activities. The sounds that ensue during these activities

are analysed for robust activity classification. This part is exposed
in Section IV. Once speech is detected among the sound events, it

can be further used for authentication. Section V deals with speaker

authentication. Our model flexibly integrates data coming from seemingly
unrelated modalities. Section VI exemplifies this by making use of an

advanced interface for recognizing activity, namely a Cyberglove, which

is used to collect and analyse grasping patterns. The more common face

modality is used to serve as a benchmark. Continuous authentication
from captured static face images is explained in Section VII, and the

optical-flow based analysis of facial motion for authentication is detailed

in Section VIII. Section IX builds on the motion analysis to recognize

types of activities, and evaluates the authentication potential of each of
these activities.

The mathematical framework we establish here is employed to seam-

lessly integrate an arbitrary number of sources that provide partial
authentication information. Our experimental results are given in Sec-

tion XI. The report concludes with a discussion of these results and on

possible future directions in Section XII.

II. THE EXPERIMENTAL SETUP

The proposed biometric system is evaluated in a fixed - seat office

pilot, where the user is able to move his arms, head and torso and
manipulate objects on a desk while seated. This experimental setup

selection serves multiple aspects of the problem of activity-related

biometric authentication:

• It is portable and easy to setup

• It can be part of a normal authentication system scenario (e.g.

secured indoor premises)

• It can easily incorporate all the equipment for selected modalities
• An office environment is involved in many work - related activities,

which makes the pilot ideal for testing the activity - related

authentication module
• It is fully unobtrusive to the user

The selected pilot consists of a desk upon which a number of objects

is placed, in stable predefined positions. This constraint implies a static

environment, which slightly affects the generality of the setup, but
significantly facilitates the activity recognition task. The objects are: a)

desk phone, b) glass (on a pad), c) keyboard, d) mouse, e) computer

screen, f) pencil (in a pencil case) g) a piece of paper for writing. The
sensorial equipment is as inexpensive and unobtrusive as possible. It

comprises of three Logitech QuickCam webcams (two for body motion

tracking and one for continuous face authentication and facial motion

analysis) and a regular low - budget microphone. Two cameras are
mounted on the desktop screen facing the user (these are the frontal

motion tracking camera and the face camera, which is zoomed on the

user’s head area), while the third camera (lateral motion tracking camera)

is placed on a tripod on the left side of the desk. The microphone is
mounted on the desk, next to the keyboard. Fig. 1 illustrates the actual

pilot setup.

A. Recording Scenario and Data Gathering

Within the project a database of 15 persons performing a number of

actions has been recorded. Each person was asked to execute six actions
in a particular order, responding to the environmental stimuli (phone

ringing, instructions on the screen or on a writing form). A recording

scenario has been prepared so as to enhance the database’s consistency,
to meet the requirements and constraints of every modality and to ensure

the user’s concentration and relaxation, so that he performs the required
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Fig. 1. The pilot setup, shown during one of the recordings. The frontal
cameras are mounted on the display, and the side camera is mounted on a
pod to the left of the subject.

actions in his natural (and therefore consistent) way. The six recorded

actions were:

• Mouse manipulation (playing a computer game)

• Phone Conversation (real dialogue with a team member)

• Typing in the keyboard (filling in a given questionnaire)

• Writing (filling in a questionnaire in a writing form)
• Drinking (taking the cup, and leaving it back to its place)

• Reading (specific texts provided in the screen).

Every session consisted of one repetition of the six actions and 10 sessions
were recorded for each user in order to provide enough training and

testing data for all the modalities. The database size was limited to 15
persons due to limited time available for recordings.

During the data gathering users were asked to act in their natural way,

without any further instructions or constraints. The selected activities are

common work - related activities involving usual office objects, there was

no previous knowledge about their suitability for authentication. The
evaluation of their discriminative power is among the objectives of this

project.

III. MODEL-BASEDMOTION ANALYSIS

Markerless human motion capture is a challenging problem that

involves the estimation of a high-dimensional configuration of a three-
dimensional non-rigid and self-occluding object. Since a wide range of

applications are derived from the unobtrusive characterization of human

activity, this research area has recently undergone several advances due

to the yielded interest.

A common approach is to consider an articulated body model with

several degrees of freedom per joint, depending on the complexity of the

possible poses and the quality of the available data. This representation
implies the use of kinematic constraints on the motion. Additional

assumptions and motion constraints can be adopted at the cost of

TABLE I
ARTICULATED BODY MODEL JOINTS

Angle Joint Rotation Axis Range

θ1 Base of the Neck y
[

−π
4
, π

4

]

θ2 Right Shoulder x
[

−π
4
, π
]

θ3 Left Shoulder x
[

−π
4
, π
]

θ4 Right Shoulder y
[

−π
4
, π
]

θ5 Left Shoulder y
[

−π
4
, π
]

θ6 Right Shoulder z
[

−π
4
, π

2

]

θ7 Left Shoulder z
[

−π
4
, π

2

]

θ8 Right Elbow y [0, π]
θ9 Left Elbow y [0, π]

generality of the solution which we intend to preserve. To this end,
Particle Filters [2] have become a relevant technique due to their ability

to handle multi-modal non-linear and non-Gaussian distributions. Several

approaches such as partitioned sampling [37], hierarchical sampling [41]

and annealing particle filter [15] have been developed to cope with high-
dimensional limitations of the classical Condensation algorithm [21].

We present a particular implementation of the annealing particle filter

for a simplified body model in order to retrieve the human body poses
of a subject performing different actions in a multi-view scenario. We

propose simplifications of the body tracking problem without almost no

loss of generality in the given pilot and with the capability of coping with

realistic scenarios.

A. Body Model

A simplistic articulated body model will fulfill the requirements of the

scenario presented in section II. This model is based on the kinematic

chain framework and comprises a set of joints. In our case, this set of
joints are the base of the neck, shoulders and elbows. Every joint has a

maximum of three degrees of freedom according to the complexity of the

motions that we want to capture. Each degree of freedom is represented
by an axis of rotation defined in a default body configuration, where all

the angles are set to zero (see fig. 2). The range of joint angles is also

defined according to this default body pose. In our model, a total of nine

degrees of freedom are defined (see table I). In order to set the model
in a world position, a three-dimensional coordinate system built with the

base of the neck as origin and a body orientation are defined. Our model

reference point is set to be the base of the neck. Therefore, our body
model defines a thirteen-dimensional state vector:

xt = {x0, y0, z0, θ0, ...., θ9} (1)

Angle θ0 is the orientation of the whole body model while all the

other angles are designed following basic kinematic constraints. The use

of angles ensures a compact representation in front of a state defined

by only 3D coordinates. Knowing the limbs’ dimensions we can go
from a set of angles to Cartesian coordinates by means of exponential

twists formulation [7]; every point of interest can be computed from

its initial location with respect to the reference point in the default
body configuration and the product of the exponential maps affecting

the motion of this point:

p(xt) =
∏

i

Mi(xt)p0 (2)

Mi =

[

Ri(xt) ti(xt)
0 1

]

(3)

where p(xt) represents a point of interest as a function of the

state vector, that encodes model position, model orientation and joint
angles, and Mi(xt) is the exponential map in the chain where p
is found. The exponential map comprises the rotation matrix R and

the translation vector t. The whole notation is being presented in
homogeneous coordinates due to its compactness.

B. Particle Filter

Particle Filters (PF) [2] are recursive Bayesian estimators derived

from Monte Carlo sampling techniques which can handle non-linear
and non-Gaussian processes. Commonly used in tracking problems, they

are used to estimate the posterior density p(xt|zt) by means of a set of
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Fig. 2. Simple articulated model for body tracking

Ns weighted samples or particles. Given a Bayesian recursive estimation
problem:

p(x0:t|z1:t) =
p(z1:t|xt)p(xt|xt−1)

p(zt|z1:t−1)
p(x0:t−1|z1:t−1) (4)

we want to draw samples from the posterior such that:

p(x0:t|z1:t) ≈
Ns
∑

i

wi
tδ(xt − xi

t) (5)

where wi
t is the weight associated to the i-th particle. This discrete

approximation of the posterior requires the weights evaluation. This
is done by means of the importance sampling principle [16], with

a probability density function (pdf) q(x0:t|z1:t) from which we can

generate samples that can be evaluated with the posterior (up to

proportionality). Applying the importance sampling principle in Eq. 4:

wi
t ∝

p(x0:t|z1:t)

q(x0:t|z1:t)
(6)

wi
t ∝

p(z1:t|xt)p(xt|xt−1)

p(zt|z1:t−1)q(x0:t|z1:t)
p(x0:t−1|z1:t−1) (7)

and choosing this importance distribution in a way that factors

appropiately we have:

wi
t ∝

p(z1:t|xt)p(xt|xt−1)p(x0:t−1|z1:t−1)

p(zt|z1:t−1)q(xt|x0:t−1, zt)q(x0:t−1|z1:t−1)
(8)

wi
t ∝ wi

t−1

p(z1:t|xt)p(xt|xt−1)

p(zt|z1:t−1)
(9)

Moreover, if we apply the Markov assumption the expression is

simplified regarding the fact that observations and current state only
depend on the previous time instant. Therefore, the PF is a sequential

propagation of the importance weights.
Two major problems affect the PF design. The first is the choice of

the importance distribution. This is crucial since the samples drawn

from q() must hit the posterior’s typical set in order to produce

a good set of importance weights. It has been shown in [16] that

q(xt|xt−1, zt) = p(xt|xt−1, zt) is optimal in terms of variance of
the weights. The second problem deals with particle degeneracy in

terms of variance of the weights. After several iterations the majority

of the particles have negligible weights and as a consequence of this
the estimation efficiency decays. An effective measure for the particle

degeneracy is the survival rate [34] given by:

α =
1

Ns

Ns
∑

i=1

(wi
t)

2

(10)

In order to avoid the estimator degradation the particle set is
resampled. After likelihood evaluation a new particle set must be drawn

from the posterior estimation, hence particles with higher weights are

reproduced with higher probability. Once the new set has been drawn
all the weights are set to 1

Ns
, leading to a uniformly weighted sample

set concentrated around the higher probability zones of the estimated
posterior.

The Sampling Importance Resampling (SIR) Particle Filter proposed

by Gordon et. al [18] is a method commonly used in computer vision
problems. It’s characterized by applying resampling at every iteration and

by defining the importance distribution as the prior density p(xt|xt−1).
By substituting this importance density in 8, it’s easy to realize that

weight computation only depends on the likelihood. Consequently, the
design of the particle filter is basically a problem of finding an appropiate

likelihood function.

C. Likelihood Evaluation

In computer vision problems probability density functions usually

are not directly accessible, thus an observation model is required to

approximate the likelihood function. It is necessary to determine which
image features are more correlated with the true body configuration.

Therefore, finding the appropiate likelihood approximation involves both

image and body model. Deutscher et al. [15] proposed a matching of the

model projection with foreground segmentation and edges. Their flesh
model consists of conic sections with elliptical cross-sections surronding

virtual skeleton segments. Raskin et al. [50] add the body part histogram

as an additional feature. Other authors use Visual Hull approaches [27]
to work with voxel data. In that case, they can use three-dimensional

flesh models, like ellipsoids [40] or three-dimensional Gaussian mixtures

[9].

Our challenge is to produce a likelihood approximation able to deal
with moving objects, clothing, limited number of views and low frame

rate. In our approach we should not rely on a 3D reconstruction because

only a few views are available, thus a projection of the model onto
the images is required. Our proposal is to avoid the computational cost

of projecting the whole set of sampling points of a 3D flesh model by

projecting a reduced set of points per body part. Our flesh model will be

set of cylinders around all the skeleton segments except the head, which
will be modelled by a sphere (see Fig. 2). Therefore, our reduced set of

projected points will be defined by the vertices of the trapezoidal section

resulting from the intersection of a plane, approximately parallel to the

image plane, with the cylindric shapes modelling the limb (or spherical
shape in the case of the head).

To define an intersecting plane for a given cylinder, we compute the

vectors going from the camera center towards each one of the limit
points of the limb. Then the cross product of these vectors with the one

defined by the limb itself is computed to determine two normal vectors

that lie on the intersecting plane and along which we will find the key

points to project. The head template is handled with a similar procedure
using as limb vector the one going from the body model reference point

to the head center. The norm of the cross product, as well as the area

of the projected trapezoid, can be used as a quality measure in order
to determine whether the limb is properly aligned with the view (this

does not apply for the head). If this quality measure is above a certain

threshold, we can change the trapezoidal projected shape by a circle

or an ellipse. However, in our scenario the views are set so that they
capture good limb alignments in most of the frames, thus we can obviate

the computation of this measure.

Regarding the image features, we have seen that common likelihood
approximations like [15] do not perform well in our scenario with the

described body model. We propose modifications on this approximation

while keeping common features that are easy to extract, like foreground

silhouettes, contours and detected skin. We extract foreground silhouettes
by means of a background learning technique based on Stauffer and

Grimson’s method [56]. A single multivariate Gaussian N (µt, Σt) with
diagonal covariance in the RGB space is used to model every pixel value
It. The algorithm learns the background model for every pixel using a

set of background images and then, for the rest of the sequence, evaluates

the likelihood of a pixel color value to belong to the background. With

every pixel that matches the background the pixel model is updated,
adaptively learning smooth illumination changes:

µt = (1− ρ)µt−1 + ρIt (11)

Σt = (1− ρ)Σt−1 + ρ(It − µt−1)
T (It − µt−1) (12)
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Fig. 3. Projection of the flesh model associated to a given particle

A shadow removal algorithm [65], based on the color and brightness

distortion, is used to enhance the segmentation.

(a) Foreground Mask (b) Contours Mask

Fig. 4. Extracted Image features

Contour detection is performed by means of the Canny edge detector

[10]. The result is dilated with a 8-connectivity and 5x5 structuring

element, and smoothed with a Gaussian mask. In order to avoid spurious
contours, we subtract the background contours. This implies also deleting

some pixels in the edges of interest but the body structure it’s in general

preserved. Finally, a simple skin detection method based on evaluating the
likelihood ratio between skin and non-skin hypothesis is performed. The

likelihood functions are estimated by 8-bins color histograms of several

skin and non-skin samples.

The likelihood evaluation procedure involves the projection of the flesh

model of every particle onto the image coordinate system. The resulting
shape is scanned and matched with the foreground segmentation. The

weight is computed as follows:

ωfl =
1

N

N
∑

n=1

(1 − If
n) (13)

Since pixel intensities in the foreground masks (I
f
t ) have 0 or 1 as

possible values, the weighting function is obtained by a normalized sum
of the background pixels falling inside the projected flesh model. In the

head model case, we add skin detection information:

ωfh =
1

N

N
∑

n=1

(1− If
nIs

n) (14)

Therefore, the final foreground weight ωf is the averaged sum of all the

limbs and head weights. Foreground segmentation provides data that are
generally invariant to clothing and most of the background conditions.

Since many configurations can be explained via this feature, foreground

information is used to penalize false poses rather than to single out the

correct one. Moreover, the proposed measure shows how well the model

fits the observation, but doesn’t evaluate how well the observations are
being explained by the model. Suppose the likelihood p(zt|xt) is available
and that a given pose generates a pdf. A measure that can be used to assess

the similarity of the likelihood and the generated pdf is the Kullback-
Leibler divergence. At this point is important to remark that the KL

divergence will provide different results depending on the factor order

(except if both pdfs are identical). We can establish an analogy with
our likelihood approximation. We are trying to determine the mutual

information of the model and the observations. Therefore, we propose to

include an additional divergence measure between the projection of the
flesh model and the foreground masks to see how well a particle explains

the observations.

ωd =
1

Nf

Nf
∑

n=1

(If
n(1 −Bn)) (15)

This divergence basically aims for projecting a given particle and

computing the overlap between the pixels Bn of this projection and the

Nf foreground pixels of the observation.
Contours found in the body usually provide good information on the

location of the arms and the legs. However, in some cases, clothing and

background can introduce spurious contours that reduce the reliability
of this feature. As mentioned above, we try to minimize the background

impact by subtracting the background contours. The proposed weighting

function for this feature is a sum of squared differences between the
contour pixels and the edges of the flesh model aligned with the axis of

the limb:

ωe =
1

N

N
∑

n=1

(1− Ie
n)

2 (16)

Finally, all these weights are combined for every camera:

ω = exp

(

C
∑

c=1

(λf
c ωf + λe

cωe + λd
cωd)

)

(17)

We use a set of weights for every camera and measure to adjust the

importance of every feature according to its importance and visibility.
Since in our scenario the subject stays in his seat, we assume that the

visibility component can be determined beforehand.

D. Annealing Particle Filter

It has been shown in several works that SIR Particle Filters are a

good approach for tracking in low dimensional spaces, but they become

inefficient in high-dimensional problems. Deutscher et. al [15] proposed a
variation of the SIR framework by introducing the concept of Annealing

PF. In body pose tracking problems, the likelihood approximation often

is a function which has several peaked local maxima. Annealing PF

deals with this problem by evaluating the particles in several smoothed
versions of the likelihood approximation. After the weights are computed

via the modified likelihood, particles are resampled and propagated

with Gaussian noise with zero mean and a covariance that decreases at
every step. Each one of this steps (weighting with a smoothed function,

resampling and propagation) is called an annealing run. In the last

annealing run the estimation is given by means of the Monte-Carlo

approximation of the posterior mean:

x̂t =

Ns
∑

i=1

wi
tx

i
t (18)

The most usual way to smooth the weighting function is by means of

an annealing rate, an exponent β < 1. In the first layer β is minimum

but it progressively increases with each layer, sharpening the likelihood
approximation. In [15] a method for tuning β with the survival rate after

each annealing run is proposed.
The sharpness of the likelihood function is due to the high dimensional

space in which is defined, the use of a hierarchical model [11] is

another possible strategy in order to have annealing layers. Since our

model is quite simple, a hierarchical approach is not justified. We have
implemented an annealing particle filter in which the smoothing is done

by means of an exponent β. In our case, the annealing rate is updated

according to the survival rate of the preceding layer α(βt−1) . Given a

desired survival rate αT :

βt = βt−1 − λ(αT − α(βt−1)) (19)

Due to the image feature characteristics, we also introduce β in (17),

giving higher importance to the foreground-based measures in the first

layers and to the contour-based measures in the last layers.

ω = exp

(

C
∑

c=1

(λf
c (
1

β
)ωf + λe

c(β)ω
e + λd

c (
1

β
)ωd)

)

(20)
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(a) (b)

(c) (d)

Fig. 5. Annealing Layers. The covariance used in the propagation step is
progressively reduced through four annealing layers while the estimator gets
closer to the true pose

Therefore, we propose to work with overall smoothing and feature-

based smoothing. However, more work needs to be done in this area in
order to show that this approach can help to efficiently reach the true

pose.

IV. SOUND-BASED EVENT DETECTION

This section deals with detection of sound activity and classification

of sounds into the typical events that would be encountered. In the first

step, any sort of sound activity is detected and in the second step it is
classified. The details of each step are explained below.

A. Sound Activity Detection

The field of Sound Activity Detection has been researched for several

years. Most of the research has been in the field of Voice activity
detection in noisy conditions. This is essentially different from the current

experiment in which all sound activity needs to be detected. This makes

it a slightly difficult problem in a way, because a threshold on the length
of the activity cannot be provided. The detection has to be made on short

bursts of sounds like clicks of mouse as well as continuous speech. So

a dynamic threshold needs to be provided, based on the current noise

level.
Previous work done in voice activity detection was mainly by Mak et

al. [38] and Nemer et al. [45]. Nemer et al. proposed a method based

on the residual of the signal, and used higher order statistics of the
noise in order to set the threshold to detect sound activities. Renevey

and Drygajlo [52], proposed an Entropy based threshold for activity

detection. The method used in this experiment uses the entropy found

on the residual as a measure to detect activity.
The following steps are taken to detect sound activity

• The signal is windowed with a window size of 40 ms and a shift of

20 ms.
• The signal within one window is approximated by 2 Linear

Prediction Coefficients (LPC). This is done to grossly approximate

the frequency spectrum and calculate the bias.

• The residual of the signal, which is the error between the estimated
LPC and the true signal is calculated. Fig. 6 shows the spectrum

of the signal and Fig. 7 shows the corresponding residual. One can

observe that the bias has been canceled and the spectrum has been
whitened.

• The Entropy is calculated for the residual, assuming a gaussian

distribution, since whitening has been performed. The evidence of

activity is given by the entropy. A higher entropy indicates a higher
level of activity.

• A dynamic threshold is calculated, which decides whether the

entropy is high enough to be classified as noise.

The biggest problem with sound activity detection is the hysteresis

associated with detection. After detecting a certain sound, we cannot hear
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Fig. 6. The log-frequency spectrum of a typical signal
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Fig. 7. The log-frequency spectrum of the residual

other less louder sounds occurring after it. Hence a dynamic threshold has

to be calculated based on the statistics of the past. Since the distribution

of the sound activity entropy is unknown, a histogram is calculated, for

the entropy over a history of around 10 seconds. If the entropy level is
in the highest L% range of the histogram, then it considered as activity.

However, the entropy level has to go below the 50% range of the past

activity to be classified as background noise. Fig. 8 shows the Entropy
variation of a short segment of the signal. The two dynamic thresholds

are also indicated along with the decision.

The value of L decides the region in the Detection Error Trade-off

(DET) curve as shown in Fig. 9. Most of the errors that occur are due to

the fact that length of the detected activity is either shorter or longer than
the annotated activity. Often what is annotated as a contiguous activity

is split into several activities or what is annotated as different activities,

is detected as a single activity. The DET curve for length independent
detection is shown in Fig. 10.

B. Sound Event Classification

Sound event classification has been commonly called auditory scene

analysis in literature. The most seminal work on auditory scene analysis

is discussed by Bregman [8]. Several methods and several features have

been tried for this purpose. Among the most common features used are
Bark-filter coefficients, wavelet coefficients, Linear Prediction Coefficients

etc. Similarly, Support Vector Machines (SVM), Self Organizing Maps

(SOM), Artificial Neural Networks (ANN) and Gaussian Mixture Models

(GMM) and their combinations have been used for this purpose.

In our experiments Bark filter coefficients are used as features for

classification, because the Bark filters mimic the subjective measurements
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TABLE II
SOUND EVENT RECOGNITION RESULTS

Sound Accuracy False Alarm Most confused

Voice 67.3% 12.3% Pencil keep

Telephone ringing 54.3% 0% Voice

Writing sound 5.2% 0% Silence

Keyboard typing 45.0% 15.3% Mouse click

Glass use 89.3% 56.3% -

Mouse click 43.3% 19.5% Typing

Phone receiver 63.3% 32.4% Keyboard Typing

Pencil use 54.3% 12.8% Voice

Overall 53.8% 23.7% -

of loudness of the human ear. Since we have sound events with different

durations, and since we are classifying contiguous blocks of signals,

one-state HMMs are used for event classification where the observation
probability distribution is expressed with a GMM. This helps in coupling

the likelihoods of each of the frames of the signal to give a single likelihood

value.

The most important question in these models is to decide how many

mixture components will be employed. This is a difficult problem,
especially because there are only a few available sounds, with varying

length and duration. The number of Gaussians for each sound class is

decided by maximizing the Bayesian Information Criterion (BIC). The

sound classes that we used are as follows:

1) Voice

2) Telephone Ringing

3) Typing Sound

4) Writing sound (with a pencil)
5) Placing the glass on the table

6) Clicking of the Mouse

7) Picking up the phone receiver or putting it back
8) Picking up or placing the pencil

One can see that, a few of these sounds are quite similar and difficult

to distinguish even for human beings. However, since the experiment is

set-up in a controlled environment, one can expect a decent performance.
Table II denotes the results of the recognition of each of the sounds in

the list.

As we can see, the accuracy is higher for detection of voice and glass

use, but the false alarm is also high for the same two sounds. There is
a very high confusion rate between mouse click and typing for example.

It is expected that we assume higher priors for more probable events

and lower priors for less probable events. However in that case most

of the sounds would be classified as voice, because the voice includes
sounds similar to each of these mentioned sounds. So the classification is

done assuming an equal prior. The overall accuracy may be boosted if

the priors were selected according to their probability of occurrence, but
then the overall accuracy evaluation would be biased. It does not make

sense to use a weighted average for calculation of accuracy, because one

wrongly classified event with low probability would affect the overall

accuracy greatly.

More work can be done in the direction of a better classifier, using
combination of GMM with classifiers like ANNs or SVM. More evaluation

is necessary to deal with different time lengths of each of these sound

events. Different number of models and modeling the dynamics of the

sounds could be other options. A varying length window in order to
calculate the Bark coefficients maybe another direction of research.

V. SPEAKER VERIFICATION

The speaker verification system provides a Boolean authentication

decision based on the analysis of a speech fragment. Speech-based

verification systems can be classified into two main types. In the first
approach, the speaker utters a word or a sentence, which is fixed for all

authentication attempts. This is called the text-dependent approach. In

the more difficult text-independent approach, which is more appropriate

for this scenario, the speaker can utter any sentence, and the textual
content is not known a priori. For a good survey of speaker verification

systems, the reader is referred to [47]. Suffice it to say that all such

systems need a speaker model, and an impostor model to determine the
decision for authentication. Frequently employed methods for modeling

the speaker as well as the impostor include dynamic time warping (DTW),
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vector quantization (VQ), Gaussian mixture models (GMM), and hidden
Markov models (HMM).

The DTW is used for non-linear aligning of two time sequences

and computing the minimum distance between them. Use of DTW in
speaker verification system is based on assumption that every speaker is

uttering the same word or sentence approximately in the same manner

but differently from other speakers. Here the speaker is represented

by a template of one or limited set of words or sentences. As such,
this method is not adequate for text-independent verification. Vector

quantization methods are based on the assumption that the acoustic space

of a speaker’s speech output can be divided into non-overlapping classes,

representing different kinds of sounds, for example phonemes. Each class
is defined by one vector, centroid and so each speaker is represented

by a set of these classes, thus by his own codebook of vectors. In the

GMM approach, the codebook vectors are the means of the Gaussian
distributions. Here, the noise around each mean is assumed to be normally

distributed. Each speaker is represented by a Gaussian mixture density,

which is weighted linear combination of Gaussian distributions of each

speaker’s acoustic class. Thus speaker is represented by a set of weigths,
means and variances. In the HMM approach, the speech dynamic is

modeled by a Markov model, where the states are modeled by codebooks

of the VQ (discrete HMM) or by Gaussian mixture densities (continuous
and semi-continuous HMM). In the particular case of text-independent

verification systems, ergodic models are preferred where all interstate-

transitions have non-zero probabilities.

In this work, we follow the GMM approach based on the results
reported in [4], [51]. First, a number of features are extracted from

the input signal. Following [20], we use Mel-filter cepstral coefficients

(MFCC) by applying the following transformations:

• Preemphasis filter

• Division of signal into frames
• Fast Fourier transformation for obtaining frequency spectrum

• Logarithmic transform

• Application of Mel-filter banks to the spectrum
• Discrete cosine transform

In speech recognition, usually 13 coefficients are selected from the

MFCC. The first and second derivatives (i.e. velocity and acceleration)

are added to these coefficients to indicate the history and evolution of
the signal, resulting in 39-dimensional feature vectors. N-dimensional

feature vector implies using N-dimensional Gaussian distributions, thus

the N-dimensional mean and NxN covariance matrix. Because of sufficient

effectiveness in modeling the components are restricted to have diagonal
covariances.

Once a speaker model is learned, there are two ways of authenticating

a particular speaker [47]. In the first approach, a threshold is selected

for the probability P (λt|O), where λ denotes the model parameters of
the target speaker, and O is the observed signal. In the second approach

is a treshold selected to the ratio of proability of the genuine speaker

and probability of the impostor model, which is trained on all speakers
in the system except the genuine speaker class. This implies that for

every person in the system, two models will be trained. In the case of

sufficiently many subjects, a single and generic impostor model can be

employed. The implementation of the GMM approach is done by using
the Hidden Markov Models Toolkit (HTK) [66]. The GMM was built as

an HMM with just one state, as shown in Fig. 11.

Fig. 11. One-state HMM

VI. CONTACT-BASED BIOMETRICS

The concept of Contact-Based Biometrics derives from the simple
observation that every person handles the objects of the surrounding

environment quite differently. For example, the action of picking up a

glass or holding a knife depends on the physiological characteristics of

each person and the way that this person is used to manipulate objects.
Contact-Based Biometrics can also been thought as a specialized part of

Activity-Related Biometrics for every activity which involves an object.
In the context of this project we intend to investigate the feasibility

of such biometric features in user authentication applications. The

proposed approach exploits methods from different scientific fields, such

as collision detection and pattern classification, to solve the problem of

authentication. The major parts of the final implementation scheme are
the setup of a 3D virtual environment, the registration of the user and the

objects in this environment, the extraction of collision features during an

action between the user and an object and the classification procedure.

A. 3D Environment Setup and Model Registration

Collision detection algorithms can only be used in a 3D environment
with full knowledge of the geometry of each object. The virtual envi-

ronment of the presented pilot requires only the 3D representation of

the user’s hand and each object that is of interest. The user’s hand is

modeled as a set of five fingers connected to the palm, which is modeled
as a simple rectangle (Figure 12(a)). Each finger has four degrees of

freedom (DOF) and consists of three phalanxes which are modeled as

simple capsules.
For the registration of the hand we used the CyberGlove R©

(http://www.immersion.com/3d/). The CyberGlove R© (Figure 12(b)) pro-

vides the angles between the phalanxes of the hand, so it is possible

to reconstruct the 3D representation of the hand. Note, that the virtual
representation of the hand is not perfectly accurate because the size of

the fingers and the phalanxes are not known. In order to satisfy the

requirements of a realistic pilot we cannot make any assumptions or
measures on the user so this inaccuracy is considered as noise.

(a) (b)

Fig. 12. (a) The 3D representation of the hand. (b) The CyberGlove R© .

The objects of the environment can be registered using computer vision
techniques for object tracking. However, it is not absolutely necessary to

have an accurate representation of the object in the virtual environment.

In particular for rigid objects, which are typically encountered in an
office environment, we can simplify the geometry of the object using a

priori information. This simplification is possible as the real shape of

each object is mostly related to the specific action that is used and not

to the way it is handled. For example, a glass can be represented by a
cylinder since the user grabs only the outer surface of the glass.

B. Collision Feature Extraction

The classification features consist of any information that can be

acquired by employing state-of-the-art algorithms for proximity queries.

These include penetration depth [24], closest distance [26], [32], contact

points etc. The literature in the field is vast and there are numerous
algorithms to accurately perform queries in real-time. The interested

reader is directed to [17], [33], [57], [58], [60] for further details. For

our purposes we used the algorithms for rigid convex objects [59], [60]
of the software package SOLID (http://www.dtecta.com/).

Proximity queries are performed between the object and every finger

of the user’s hand. Each query refers to either of two states, collision or no

collision between the two virtual shapes. For example penetration depth
can only be calculated when two objects intersect since it is always zero

otherwise. However, in a user-object interaction scheme it is necessary to

continuously produce discriminant feature samples. Thus, any proximity
query as a single feature would not provide adequate information to a

classifier.
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In the proposed method we employ the combination of the penetration
depth and the closest distance, depending on the collision state, to define

the feature space. The penetration depth and the closest distance are

usually described as 3D vectors in virtual simulations. However, in our
case we prefer to describe them as the pair of points (pfinger , pobject),
one on the finger and the other one on the object, that define the respective

vector v = pfinger − pobject. This way the 3D position of each finger

affects the values of the feature vector, while v would only describe the
relative direction which is most probable to be similar even for different

fingers. Let pdk and cdk denote the points of the penetration depth and

the closest distance respectively for either the finger or the object k. The
feature sample fe(i, O) for the finger e and the object O on the i-th
frame is

fe(i, O) =

{

(pde, pdO), e and O collide

(cde, cdO), e and O do not collide

The final feature vector F =
⋃

e{fe} is formed using the collision

information from all the five fingers and is a 30-dimensional vector.

VII. CONTINUOUS FACE AUTHENTICATION

With the rapid increase of video surveillance equipment and webcam
usage, it became necessary to develop robust recognition algorithms that

are able to recognize people using video sequences, which not only provide

abundant data for pixel-based techniques, but also record the temporal

information. This project inspects two complementary approaches to face
biometrics from continuous video, detailed in this section and the next.

The processing for the face and facial motion analysis modules starts

with detecting the face. We use the OpenCV face detection module that

relies on the adaboosted cascade of Haar features, i.e. the Viola-Jones

algorithm for this purpose [61]. The face camera is positioned so that
the face image roughly covers a 150 × 150 pixel area, which changes

greatly as the subject moves around.
One of the assumptions we have in the face authentication module

is that the statistical models that incorporate general face information

are trained offline, prior to the actual experimental setup. This means
that the bulk of the training database should consist of external data.

For this purpose, we have used the world model of 300 face images

that accompany the BANCA database [3], enriched with one gallery

image per enrolled person. This is a realistic assumption, and since the
gallery is acquired with different illumination conditions as well, the

actual experimental environment presents a formidable challenge, with

completely uncontrolled illumination under ordinary (and poor) office
lighting.

For continuous face authentication, we take a straightforward ap-
proach. The detected faces are cropped, rescaled to a fixed size, projected

to a previously computed subspace, and compared to the templates

residing in the gallery. For controlling the illumination, we apply a image
enhancement procedure proposed by Savvides and Kumar [54]. In this

procedure, the pixel intensities are mapped to a logarithmic range, which

nonlinearly allocates a broader range to dark intensity levels, increasing

the visibility.
The subspace is found by applying the Karhunen-Loeve transform

to the enhanced training set. The matching of a claim with a gallery

image can be achieved by thresholding a Mahalanobis-cosine distance

between projected vectors. If the subspace-projected query is denoted

by u = [u1u2 . . . up]′ and the subspace-projected gallery template is
denoted by v = [v1v2 . . . vp]′, denote their corresponding vectors in the

Mahalanobis space with unit variance along each dimension as:

mi =
ui

σi

(21)

and

ni =
vi

σi

(22)

where σi is the standard deviation for the ith dimension of the p-
dimensional eigenspace. Then the Mahalanobis cosine distance is given

by [49]:

dMC(u, v) = cos(θmn) =
mn

|m||n|
(23)

A. Adaptive Cropping

The preprocessing of the external database is not replicated in our

acquisition conditions. This means that the eigenspace projection that

models the variation in aligned face images is not necessarily the ideal
projection for a given query image. To remedy this situation, we apply

an adaptive cropping algorithm that fine-tunes the face detection result

so as to minimize the reprojection error e. Assume the eigenspace is
denoted with [λ, e], where λ stands for the sorted eigenvalues and e

are the corresponding eigenvectors. The projection of query x to the

eigenspace is:

u(p×1) = e
′

(p×d)(x(d×1) − µ(d×1)), (24)

where µ denotes the data mean, and the subscripts indicate dimension-

ality. The reprojection error is given by:

e = ||x(d×1) − e(d×p)u(p×1) + µ(d×1)||. (25)

The pseudocode of the algorithm is given in Fig. 13. Fig. 14 shows the

cumulative effect of illumination correction and adaptive cropping on a

sample frame.

algorithm Adaptive Cropping(faceImg)

cropping ← [0,0,0,0]

oldError ← Infinity

found = False

cropDir = 1

while NOT found

oldError ← newError

/*Crop the image in one of four directions*/

cropping(cropDir) ← cropping(cropDir) + 1

croppedImg ← crop(faceImg,cropping)

/*Scale to fixed size*/

scaledImg ← scale(croppedImg)

/*Illumination normalization*/

normalizedImg ← logTransform(scaledImg)

/*Projection*/

projImg ← eigenVectors’*(normalizedImg-meanImg)

/*Re-projection into the original space*/

reprojImg ← (eigenVectors*projImg)+meanImg

/*Update the error*/

reprojError = norm(reprojImg - normalizedImg)

if reprojError < oldError

newError ← reprojError

else

/*Reverse the cropping*/

cropping(cropDir) ← cropping(cropDir) - 1

end

/*Update the next cropping direction*/

cropDirection ← mod(cropDirection+1,4)

found ← (updated in the last cycle of four directions)

end

return cropping

end

Fig. 13. Adaptive Cropping Algorithm

Fig. 14. a) The original captured frame. b) The illumination compensated
image. c) The result of the adaptive cropping

B. Probabilistic Matching

The activity model necessitates a short video sequence to be recorded

for training purposes. This allows us to use a larger training set for the
face authentication module as well. For each subject in the gallery, one

sequence of recordings is processed with the face detection and adaptive
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cropping modules. The ensuing cropped images are projected to the
Mahalanobis space, and modeled with a mixture distribution.

The general expression for a mixture model is written as

p(x) =
J
∑

j=1

p(x|Gj)P (Gj) (26)

where Gj stand for the components, P (Gj) is the prior probability, and
p(x|Gj) is the probability that the data point is generated by component
j. In a mixture of Gaussians (MoG), the components in Eq. 26 are

Gaussian distributions:

p(x|Gj) ∼ N (µj , Σj) (27)

Typically, the covariance expression is restricted in MoG models to con-
trol the complexity of the model, as a diagonal covariance scales linearly

with dimensionality, whereas a full covariance scales quadratically. In

this work we use the factor analysis approach to model the covariance,

where the high dimensional data x are assumed to be generated in a
low-dimensional manifold, represented by latent variables z. The factor

space spanned by the latent variables is similar to the principal space

in the PCA method, and the relationship is characterized by a factor

loading matrix Λ, and independent Gaussian noise ǫ:

x−µj = Λjz+ ǫj (28)

The covariance matrix in the d-dimensional space is then represented by

Σj = ΛjΛ
T
j + Ψ, where Ψ is a diagonal matrix and ǫj ∼ N (0,Ψ) is

the Gaussian noise. We obtain a mixture of factor analysers (MoFA) by
replacing the Gaussian distribution in Eq. 26 with its FA formulation.

To learn the distribution of training faces of a single class, we use

the incremental mixtures of factor analysers (IMoFA) algorithm, which
automatically determines the number of components in the mixture, and

tunes the latent variable dimensionality for each mixture component

separately. For more details, the reader is referred to [53]. The ensuing

model for the subject is (Λj , µj , ǫj , πj), with πj being the component
prior, and j is the index for mixture components. The authentication of

a normalized and projected image xt is effected by checking a pre-fixed

threshold:

p(xt|G) ≥ τ (29)

At any point in time, the continuous face authentication module
evaluates the most recent frame, and returns a Boolean decision. The

threshold τ depends on the Mahalanobis space dimensionality, and scales

approximately linearly with it. For a 300-dimensional Mahalanobis space,

we have used a threshold of −400 for the log-likelihood, a higher value
will reject more frames and ensure a more secure system, whereas a

lower value will favour user convenience over security. It is also possible

to base the decision on all the frames up to time t, by using any classifier
combination method.

VIII. BEHAVIORAL FACE BIOMETRICS

The previous section dealt with the static facial appearance, ignoring

the behavioral cues that can be potentially useful for discriminating iden-

tities. Recently there is much attention to biometric systems that exploit

temporal information in videos, and most of the proposed approaches
involve a heterogeneous mixture of techniques. These approaches can

roughly be classified into the following categories:

• Holistic approach: This family of techniques analyze the head as a

whole, by extracting the head displacements or the pose evolution.

In [30] Li et al. propose a model-based approach for dynamic
object verification and identification using videos. In 2002, Li and

Chellappa were the first to develop a generic approach for simulta-

neous object tracking and verification in video data, using posterior

probability density estimation through sequential Monte Carlo
methods [29]. Huang and Trivedi in [19] describe a multi-camera

system for intelligent rooms, combining PCA based subspace feature

analysis with Hidden Markov Models (HMM). Liu and Cheng
proposed a recognition system based on adaptive HMMs [35]. They

first compute low-dimensional feature vectors from the individual

video frames by applying a Principal Component Analysis (PCA);

next they model the statistics of the sequences and the temporal
dynamics using a HMM for each subject. In [1] Aggarwal et al.

have modeled the moving face as a linear dynamical system using an

autoregressive and moving average (ARMA) model. The parameters
of the ARMA model are estimated for the entire database using

the closed form solution. Recently, Lee et al. developed a unified

framework for tracking and recognition, based on the concept
of appearance manifold [28]. In this approach, the tracking and

recognition components are tightly coupled: they share the same

appearance model.
• Feature based approach: The second group of methods exploits the

individual facial features, like the eyes, nose, mouth and eyebrows.

One of the first attempts to exploit facial motion for identifying

people is presented by Chen et al. in [12]. In their work, they
propose to use the optical flow extracted from the motion of the

face for creating a feature vector used for identification.

• Hybrid approach: These techniques use both holistic and local
features. Colmenarez et al. in [14] have proposed a Bayesian

framework which combines face recognition and facial expression

recognition to improve results; it finds the face model and expression

that maximizes the likelihood of the test image.

This section proposes a new person recognition system based on
temporal features from facial video. As in the previous section the face

area is first detected in each frame of the video. The registration, or the

alignment problem, however, has different criteria to satisfy. Since we
will track the features, the alignment is not absolute, but relative to the

previous frame, minimizing a mean square error measure. For aligned

faces, the optical flow is calculated from consecutive frames, and used as

feature vectors for person recognition.
Once the faces are detected with the Viola-Jones method, a represen-

tation called the ”integral image” is created using Haar-like features.
The learning algorithm is based on AdaBoost, which can efficiently

select a small number of critical visual features from a larger set, thus
increasing performance considerably.

Next the resulting image is cropped as shown in Fig. 15 based on

anthropological measures to limit the image to facial features that exhibit
more motion.

Fig. 15. Detected and cropped face images in two frames.

Face alignment was required due to the simple fact that we wanted to
focus our attention on motion of local features from the face such as the

lips and the eyes. If this step is not performed before feature extraction,

global motion of the head significantly affects the results. Alignment of

the faces detected in two different frames was carried out by minimizing
the mean square error of the integral image difference:

argmin
1

M ×N

M
∑

i=1

N
∑

j=1

(I1(i, j)− I2(i, j))
2 (30)

where,. . . Fig. 16 shows two facial images found in consecutive frames
aligned with this method.

Fig. 16. Two facial images aligned and superimposed.

We have decided to use optical flow vectors for person recognition,

calculated by the Lucas-Kanade technique [36], which uses the spatial

intensity gradient of the images to guide the search for matching locations,
thus requiring much less comparisons with respect to algorithms that use

a predefined search pattern or search exhaustively. Then block means are
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taken to reduce the size of the feature vector to standard dimensionality
of 200. Fig. 17 shows the optical flow computed from the images aligned

in Fig. 16.

Fig. 17. Optical flow from consecutive frames.

IX. CONTINUOUS ACTIVITY - RELATED BIOMETRIC

AUTHENTICATION

Among the project’s prominent objectives is to investigate the effec-
tiveness and applicability of activity - related biometric technologies.

Activity - related biometrics is a novel and innovative concept in biometric

user authentication and refers to biometric signatures extracted by
analyzing the response of the user to specific stimuli, while performing

predefined but natural work - related activities. The novelty of the

approach lies in the employment of dynamic features extracted by the

moving human model as biometric signal, as well as in the fact that
the biometric measurements will correspond to the user’s response to

specific events, being, however, fully unobtrusive and fully integrated

in the user’s workspace. The activity - related biometric authentication

module evaluates the fundamental assumption that each user’s dynamic
behavioral profile contains unique intrinsic characteristics that can

be used for authentication. Furthermore, a reliable implementation

of an activity - related biometric authentication system is ideal for
continuous user authentication, thus alleviating the main limitation of

some successful state-of-the-art approaches (fingerprint, iris etc.) which

cannot be recovered once forged.

In the following, the modules and methods that were implemented to

perform activity - related authentication will be described. In addition to

that, the pilot setup and the experimental procedures followed in order
to evaluate activity - related biometrics will be presented.

A. Activity Detection and Recognition Module

As stated above, the user’s dynamic profile extraction is based on the

response to specific environment - generated stimuli. Any human behavior

is associated to some action or activity. The aim of stimuli generation is
to trigger the execution of specific actions by the user, upon which his

behavioral profile can be then calculated. It is therefore clear that the

extraction of the activity - related features must be preceded by an action

detection, segmentation and recognition procedure. This goal is achieved
by means of a multimodal approach that uses the output of the sound

event recognition Module, the Object Occlusion Tracking Module and

the body motion tracking module along with a Coupled Hidden Markov

Model formulation in order to detect the generation of the stimuli and
segment the user’s response (action). The segmentation output of the

Activity Recognition Module can be then fed to the Activity - Related

Biometric Authentication Module. Fig. 18 illustrates the above inter -
module relationships.

Numerous relevant approaches for activity recognition have been
reported in the literature using object manipulation context information

[43], [46], [64] and/or object trajectory information in the given scene [5],

[31]. Sound event detection has also been previously employed to assist

inference of ongoing activities [55], [63].

The proposed method for Activity Recognition is based on the detection

of three different kinds of Scene Events occurring in the scene: Sound
Events (e.g. Phone Ringing), detected by the sound event recognition

Module, Proximity Events (e.g. “Hand close to Glass”), detected by the

Sound Event!
Recognition Module!

Object Occlusion!
Tracking Module!

Body Motion Tracking!
Module!

Activity Recognition!
Module!

Activity - Related!
Biometric!

Authentication Module!

Fig. 18. Module cooperation for Activity Recognition

Human Body Tracking Module along with predefined knowledge of the
object positions on the controlled workspace and Object Occlusion Events

detected by the respective tracker. An Object Occlusion Event is emitted

when some object in the scene is missing from its “normal” position.

In order to achieve action recognition, a two - stream Coupled HMM

is associated to every action class and trained on two sets of discrete

observation symbols (one for each stream) extracted by the primitive
events described above (i.e. second layer events). The first set of second

layer symbols is a subset of the Sound Event set that can be associated

to a particular action. For example, the Phone Conversation Coupled

HMM only handles relative sound events (Ringing, Speech, Silence etc.)
and disregards the rest (e.g. Writing sound). The observation symbols of

the second stream are formed as meaningful (for the particular action

class) combinations of the Object Occlusion and Proximity Events of

the first layer. For instance, the state “Phone receiver missing” AND
“Left Hand close to Head” forms a single second layer event that is used

as observation symbol of the second stream of the Phone Conversation

CHMM to represent the state of “talking on the phone”.

At every timestamp of some activity sequence, first and second layer

events are detected and form N double - stream discrete observation

sequences, where N the number of actions to be recognized and
segmented. Each CHMM uses an overlapping sliding window that goes

through its own observation sequence. The size of the sliding windows

and the size of overlapping are experimentally defined. The CHMM of
each action is trained on manually annotated sequences and a probability

threshold is defined, above which the respective action is recognized and

a portion in the size of the sliding window is segmented and fed to

the Activity Biometrics Module. Fig. 20 graphically depicts the Activity
Recognition Module. The reason for performing the mapping from first

layer events to second layer events is to impose a smaller size on the final

observation sets and process the three initial streams of events into only
two - stream Coupled HMMs, which results in making training more

efficient.

B. Coupled Hidden Markov Models

The need of a Coupled Hidden Markov Model formulation is justified

by the fact that Scene Event detection is often erroneous, producing
many false alarms, wrong inferences and multiple occlusions over

time. Consequently, detected event symbols would better be thought

of as the probabilistic output of some underlying process, rather than

as deterministic events. Furthermore, Coupled HMMs offer a robust
mathematical background for integrating multimodal observations and

fusing different but correlated processes (sound events + human activity

based events).

Our Coupled HMM implementation is based on the formulation

presented by Ara V. Nefian et al. [44], where the hidden nodes of

each stream interact and at the same time have their own observations
(Fig. 21). The elements of the CHMM (Initial, Transition and Observation

probabilities) are described as:

π(i) =
∏

s

πs(is) =
∏

s

P (qs
1 = is) (31)

bt(i) =
∏

s

bs
t (is) =

∏

s

P (Os
t |q

s
t = is) (32)

α(i|j) =
∏

s

αs(is|j) =
∏

s

P (qs
t = is|qt−1 = j) (33)

The CHMMs are trained using an EM algorithm, based on

the calculation of the forward and backward variables, at(i) =
P (O1, ...,Ot, qt = i) and βt(i) = P (Ot+1, ...,OT, qt = i) respec-

tively, where T the length of the observation sequence:
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Fig. 19. Coupled Hidden Markov Model structure. Squares denote the hidden
nodes of each interacting process and circles the associated observable outputs

a1(i) = π(i)b1(i) (34)

at(i) = bt(i)
∑

j

α(i|j)at−1(j) (35)

for t = 2, 3, ..., T

β1(i) = 1 (36)

βt(j) =
∑

i

bt+1(i)α(i|j)βt+1(i) (37)

for t = T, T − 1, ...,2
The probability of the rth observation sequence Or of length Tr is

computed as ar,T (N1, N2, ...NS) = βr,1(1, ...,1)

The scaled version of the forward and backward variables (â,β̂) [48]
obtained in the E step are used to re-estimate the transition and
observation parameters as follows:

α̃s(i|j) =

∑

r

∑

i,s.t.is=i

∑

t âr,t(j)α(i|j)br,t+1(i)β̂r,t+1(i)
∑

r

∑

t âr,t(j)β̂r,t(j)
1
ct

(38)

b̃s
i (k) =

∑

r

∑

i,s.t.is=i

∑

t,s.t.Os
t=k ât(i)β̂t(i)

1
ct

∑

r

∑

t

∑

i,s.t.is=i ât(i)β̂t(i)
1
ct

(39)

where ct the scaling coefficient for time t.

The number of states has been defined taking into consideration the

inherent structure of each action. For instance, the Phone Conversation

action consists of the “natural” states “Ringing” - “Reach Phone”- “Bring
close to Head” - “Speech” - “Hang Up”, upon which various second layer

events can be defined.

C. Activity - Related Biometric Authentication Module

The aim of the activity - related biometric authentication module is
to receive the dynamics of the human posture produced by the body

motion tracking module on some user action segmented by the Activity

Recognition Module and output some authentication results (Fig 18).
Within this project we would like to evaluate the assumption that behavior

can be employed as biometric signal as well as the hypothesis that our

belief measure on the user’s identity increases with time. Furthermore,

various work - related motions should be tested with regard to their
discriminative power.

Related work includes several model - based and feature - based

methods for human gait identification and authentication [62], [13].

Key stroke dynamics have been also employed for activity - related

person authentication [42]. To our knowledge, activity - related person
authentication based on environment generated stimuli and work - related

activities is a completely novel concept and has never been implemented

before.

The output of this module for a particular action could either be a strict

authentication result (Accepted/Rejected) or a belief measure that can
be integrated with future partial inferences of the same modality and/or

inferences of other modalities to converge in a final authentication result

at later time stamps (Continuous Authentication). The latter approach
seems more promising, as the user’s “natural” behavior can be more

reliably confirmed on multiple action instances. In general, a user’s way

Event Extractor!

1st! Layer!

Proximity Events!

Occlusion Events!

Sound Events!

2nd Layer!

CHMM1!

CHMM2!

CHMMn!

Observation Sequence 1!

Sound Event Subset!

Combined Proximity!
& Occlusion Events!

Observation Sequence! n!

Sound Event Subset!

Combined Proximity!
& Occlusion Events!

Observation Sequence 2!

Sound Event Subset!

Combined Proximity!
& Occlusion Events!

(a)

Sound Event Symbols!
for! CHMM! i!

Combined Event Symbols!
for! CHMM! i!

CHMM! i!Sliding Window!

(b)

Fig. 20. a) Event Extraction b) Sliding Window for CHMM

of execution of some motion can diverge from its usual dynamics on single

instances depending on various factors (psychological condition, unusual
environmental conditions etc.). Despite that, it can be assumed that over

longer periods of times where multiple instances of many actions take

place, the user’s identity could be reliably inferred.
The Activity - Related Biometric Authentication Module assumes a

mapping of a user’s behavior to his identity, therefore tools, methods
and features that have been used for action and gesture recognition can

be applied. In this implementation the body joint angles and position of

the central point of the human model (III) and their derivatives are used

as features for modeling the user’s natural way of executing some action,
since those features can powerfully represent the human model posture

and its dynamics. Principal Component Analysis for each action class is

used to reduce the dimensionality of the feature vector.
For biometric authentication Hidden Markov Models with Multivariate

Gaussian outputs are used to capture the spatio - temporal dynamics

of the human behavior. Standard HMM classification is performed by
assigning one model to every individual enrolled in the authentication

system. Given some extracted observation sequence O1:T of length T

associated to a segmented action, and the set of HMMs λi, i = 1, . . . , N
where N the number of enrolled users, the probability P (O|λi) is
calculated for all HMMs. By assigning an authentication threshold to

each user’s HMM, direct authentication results based on single actions

can be obtained. A more promising option is propagating all the above
probabilities to an integration module that emits authentication results

on longer periods of activity. Fig. 21 graphically represents the Activity

- Related Biometric Authentication Module.

X. INTEGRATION OF DECISIONS

A typical authentication system presents a DET (Detection Error

Trade-off) curve which enables a system to select a point on the curve

to trade off between security and ease of use of a system. However,
a continuous authentication system needs to traverse this DET curve

based on the current situation. If the system is confident based on past

inferences, temporary drops in the probability of the target class should

not cause the rejection of the user. However if there is an elongated
period of diffidence about the authenticity of the target person, then the

system should be able to reject the person eventually.
The second problem is the integration of the inferences from the

different modalities. Each mode produces different inferences with a
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Fig. 21. Activity - related biometric feature extraction and authentication

different probability and these inferences are available at different points

in time. There is the additional complication of assessing the reliability

(and consequently the relative weight) of each modality. This problem is

termed in the literature as “Holistic Fusion”.

Among previous work done on holistic fusion, the most significant

are Zhang et al. [67] and Kittler et al. [25]. Zhang et al. suggested a
two state Hidden Markov Model, where the two states are “safe” and

“attacked”. A decay factor was proposed, which exponentially weighted

over the previous observations, as well as weighted sums to integrate

over modalities, where the weights were the assessed reliabilities of the
modalities. The area under the Receiver Operating Characteristics (ROC)

curve for each modality is used to quantify reliability. The approach we

will present now is similar in some respects to this method, but it does
not use HMMs.

Let λΩ be the model of ‘target’ person, the person whom we want to
authenticate. Let λm be one among the M impostor models. Let On

t be

the tth observation in time, among Γ observations from the nth modality
among N modalities. Each module produces the likelihood of λΩ given

On
t , i.e. p(On

t |λΩ). Since the likelihoods from different modalities have

the inherent problem of being in different scales, it becomes difficult to
find suitable weights. So the posterior is calculated as follows

P (λΩ|O
n
t ) =

p(On
t |λΩ) ∗ P (λΩ)

p(On
t )

(40)

The next question is about calculating the prior P (λΩ) and the
observation probability p(On

t ). The observation probability can be given

by

p(On
t ) = p(On

t |λΩ) ∗ P (λΩ) +
M
∑

m=1

p(On
t |λm) ∗ P (λm) (41)

How to estimate P (λΩ) is an interesting problem. This value is tunable
and different points on the DET curve can be achieved by changing this
value. Increasing this value makes the system more confident about the

authenticity of the subject and thereby increases the false acceptance rate

(FAR). Reducing this value increases the false rejection rate (FRR) while
decreasing the FAR.

A continuous authentication system is typically used after the authen-
ticity is verified by an independent system. The initial estimate of the

prior, P0(λΩ), can be received from this entry system or taken to be an

arbitrarily high value. The subsequent values of this prior are calculated

as shown below

Pt(λΩ) =

N
∑

n=1

Pt(λΩ|O
n
t ) ∗ P (On

1:t)

N
∑

n=1

P (On
1:t)

(42)

where

P (On
1:t) =

(

p(On
i |λΩ) +

∑M
m=1 p(On

i |λm)

M + 1

)

1
t

t
∑

i=1

(

p(On
i |λΩ) +

∑M
m=1 p(On

i |λm)

M + 1

) (43)

Now with a time-varying estimate of prior available equation 40 can be
combined with 41 and written as shown below.

Pt(λΩ|O
n
t ) =

p(On
t |λΩ) ∗ Pt−1(λΩ)

p(On
t |λΩ) ∗ Pt−1(λΩ) +

M
∑

m=1

p(On
t |λm) ∗ Pt−1(λm)

(44)
where ∀m

Pt−1(λm) =
1− Pt−1(λΩ)

M
(45)

The prior is updated at every calculation and the confidence of the

system depends on all the different modalities. In a system such as the one

described in the experiment, it may not be possible to get a new inference

from each modality at each instance of time. So the latest inference from
each modality is used for re-computing the estimate of the prior, λΩ.

The strategy proposed builds a confidence value about the identity of a
person. This confidence is in terms of the updated posterior probability.

If the different modalities ascribe low confidence to the authenticity of

the person, then the overall confidence drops down. But if the modalities
provide high confidence to the authenticity, then the overall confidence

in the person builds up. At some point, if one of the modalities ascribes

low confidence to the authenticity of the target, then it is weighed by how

probable the occurrence of such an observation is. So if an observation is
not very probable in the model of the entire system, then a lower weight

is given in the overall confidence calculation.

If at any point, the user is switched with an impostor, it will take

some time for the system to bring down the confidence levels due to

the high confidence levels initially built on the user, and the impostor
is likely to be authenticated for some time. But the overall confidence

will drop eventually, with a speed that depends on the confidence scores

of each modality. Using a window-approach that takes into account the

last k frames in assessing probabilities may be useful in providing a fast
decrease under switched persons.

Further testing needs to be done in the case of impostor switching and
hysteresis of the system under these circumstances.

XI. EXPERIMENTAL RESULTS

A. Continuous Face Authentication

The face authentication module is tested with the recordings of 11

individuals. The first session is used to construct the statistical models

for each person. The remaining nine sessions are used for reporting the
success of the algorithm. For 99 sessions, the face detection module locates

faces 92.3 per cent of the total recording time, with a standard deviation

equal to 7.4 per cent. This means that for a 1000 frame session, about
923 face images are processed for authentication. Some of these faces are

false alarms, caused by the failure of the Viola-Jones face detector.

In general, the face detection module is robust enough to correctly

localize faces during activities like phone conversations. This implies that

for these frames, the cropped face area contains the hand and the phone

itself. We have observed that the face authentication module frequently
stays below authentication threshold for these cases. Fig. 22 shows the

authentication result for a single session. The horizontal axis is the time,

and the vertical axis is the likelihood value obtained by the class models.
Each face is shown as a dot on this plot. We only report the likelihood

from the genuine class and the best impostor claim for that frame. The

threshold is selected as −400, and the shown sequence justifies this choice
nicely. In fact the threshold is optimized on a separate set, but since it
strictly depends on the subspace dimensionality, it produces uniformly

good results across the test sessions, as shown by the low variance of

the results. At the bottom of the figure, a coloured band indicates when

faces are not detected in the video (with red), when they are detected but
the true class authentication does not follow (with yellow) and correct

authentications (with green). The parts with longer bands of yellow are

the activities where the face is not isolated or completely frontal.

The complete testing data consists of 91250 frames, recorded from

nine sessions per subject, and 11 subjects. For each frame, the best
impostor access is selected by evaluating the remaining 10 models. We

demostrate the effect of selecting different thresholds in Fig. 23, where

the false accept rate and the false rejection rate of the system are plotted

for a range of threshold values. For the selected threshold of −400, the
system has 0.3 per cent false acceptance rate and 30.1 false rejection

rate. This means that for a video sequence with 1000 detected faces,

roughly 3 frames would admit impostors, and 700 frames would indicate
the presence of the true user. At this level, there is no interpretation

of these results. In practice, a session of continuous authentication can
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Fig. 22. The output of the continuous face authentication module during one session. (a) The likelihood of the genuine and best impostor claims. The
band shows correct authentications (green), no authentication (yellow), and no detection (red) cases. (b) The likelihood ratio of the genuine class to the best
impostor class for the same session.

operate on a sliding window of frames, where the genuine and impostor

likelihoods are compared, and the system outputs a decision at every

time slot. Under these controlled conditions (i.e. difficult but similar
illumination conditions in training and test sessions), it is obvious that

the face modality provides very robust authentication.
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Fig. 23. The receiver operator characteristic curve for a range of thresholds
of authentication. The genuine class is evaluated against the best impostor
model for each frame. The average values for 99 sessions are reported. The
cross indicates the selected threshold for the operating point of the system.

B. Speaker verification

For purposes of training and testing, approximately 20 seconds of
speech is recorded during each session in form of a telephone conversation

in addition to 40 seconds of speech in form of reading a paragraph
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Fig. 24. DET curve for speaker verification module

of written text. 15 subjects have contributed to the database, with 10

recording sessions per subject. The results reported in this section are
obtained by training with sessions one to five, and testing with the session

six and seven, for 10 subjects. We have evaluated GMMs with different

numbers of components.
Fig. 24 shows that the best results are achieved using 128 components

for Gaussian mixture densities.

C. Contact-based Biometrics

The experimental setup includes one testing action and eight subjects.

In particular, the right hand of each user and the glass of the office were
registered in the virtual environment for the action notated as “grabbing

the glass”. For the classification we implemented standard techniques

of pattern recognition. PCA was used to reduce the dimensionality
of the feature space while neural networks were trained for the final

classification. Each person performed the action 10 times which produced
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1000 sample frames on average for each subject due to the high sampling
frequency of the CyberGlove R© . From these samples 70% were used to

train the network and 30% for testing. Fig. 25 displays the final ROC

curve of the FAR and FRR rates for the testing data of the eight subjects.
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Fig. 25. ROC curve for the action “grabbing the glass” and eight subjects.

The results show that collision features are comparable to other

Activity-Related biometrics and therefore comprise a very interesting

approach for user authentication.

D. Body Motion Tracking

The body tracker was tested in the office pilot. Two webcams, one
frontal and one lateral, recording at 9.5 fps provided the frames onto

which the 3D articulated model was projected. 3D body part locations

(head, shoulders, elbows and wrists) have been manually annotated in
one subject sequence in order to test the tracker performance. The

error is expressed as the mean distance between the annotated and the

estimated joints. Comparative results between the APF with the common

likelihood approach (comprising edges and foreground matching) and our
proposal are shown in Fig. 26. In both cases we used the body model

and the projection procedure explained in section III-C. Final mean

error obtained by our approach for this sequence was 85 mm. Common
likelihood evaluation makes the tracker vulnerable to track loss, leading

to higher mean error. On the other hand, the divergence measure and

the feature-based smoothing of the likelihood approximation make the

tracker more robust under our experimental conditions.
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Fig. 26. Comparative results using 3 layers and 200 particles per layer with
the normal likelihood aproximation and our proposal.

We found out that some spurious contours due to clothing and objects

caused our tracker to fail in its estimation. The aparent motion recorded
in the images was very fast in some of the actions required for activity-

based recognition. These aparent fast motions caused blurs in the image

and abrupt translation of body parts. Since the implemented annealing
PF works with contours as most determinant feature, the algorithm was

not able to track several of these fast motions. However, it was able to

recover some poses after a tracking error. Similarly, we detected that
some poses couldn’t be retrieved due to self-occlusions caused by the

lack of additional views. Therefore, for some of the actions and poses,

the problem becomes ill-posed and, as a consequence, more information

is needed.
After testing several sequences, it was found that for several non-fast

motions good results can be obtained with 3 layers and between 100 and
200 particles per layer. However, a more exhaustive study with ground

truth angles must be done under similar conditions in order to refine the

likelihood approximation, the annealing parameters and the number of
particles.

E. Other Modules

The results of the Sound - based Event Detection module are illustrated

in the respective section IV. Testing of the Activity Recognition module
and the Behavioral Face Biometrics module remain as future work.

Preliminary results for the Activity - related biometric module reveal
a potential of using work - related activities as biometric signals.

Experimenting on 7 manually segmented sequences (5 for training and

2 for testing) of the action classes Writing and Phone Conversation,

we found out that the true person receives good HMM log - likelihood
ranking. Despite that, the need for more accurate and stable 3D Motion

Tracking was obvious, as it is the case for most state of the art model -

based techniques. Future work includes testing on larger sets and more
action classes, with improved motion tracking data. A feature - based

approach (direct feature extraction on segmented human blobs) will also

be implemented.

XII. CONCLUSIONS AND FUTURE DIRECTIONS

In this project we have evaluated several activity related biometric

modalities for their relative success in continuously determining and

verifying the identity of a user in a typical and non-obtrusive work
environment scenario. Apart from more traditional face and speech

based verification, facial actions and movement patterns were assessed for

authentication. A pilot setup with different action scenarios is defined, and
a large database is collected from 15 subjects. Each subject contributed 10

sessions, which are manually annotated by the project group for further

evaluation.
The experimental evaluation of all the modalities is not achieved

exhaustively, and their possible integration remains to be a future

endeavor. The latter is partly due to the success of individual modalities on
the restricted pilot setup, which suggests that under closely resembling

training and testing conditions there will be no marked benefit under

fusion scenarios. However, the results demonstrate that activity-based
biometrics is a promising venue for further study.
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