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ABSTRACT
Cross-language, cross-cultural emotion recognition and accurate
prediction of affective disorders are two of the major challenges
in affective computing today. In this work, we compare several
systems for Detecting Depression with AI Sub-challenge (DDS) and
Cross-cultural Emotion Sub-challenge (CES) that are published as
part of the Audio-Visual Emotion Challenge (AVEC) 2019. For both
sub-challenges, we benefit from the baselines, while introducing
our own features and regression models. For the DDS challenge,
where ASR transcripts are provided by the organizers, we propose
simple linguistic and word-duration features. These ASR transcript-
based features are shown to outperform the state of the art audio
visual features for this task, reaching a test set Concordance Corre-
lation Coefficient (CCC) performance of 0.344 in comparison to a
challenge baseline of 0.120. Our results show that non-verbal parts
of the signal are important for detection of depression, and combin-
ing this with linguistic information produces the best results. For
CES, the proposed systems using unsupervised feature adaptation
outperform the challenge baselines on emotional primitives, reach-
ing test set CCC performances of 0.466 and 0.499 for arousal and
valence, respectively.
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1 INTRODUCTION
Multimodal affective computing is gaining momentum in both
science and technological domains, while a large set of unsolved
problems remain, including, but not limited to cross-corpus and
cross-cultural emotion recognition and real life robustness. Predict-
ing the severity level of affective disorders such as unipolar and
bipolar depression also remains a challenge to cope with [41, 55, 57].

Thanks to the challenges organized in the field that introduce
new data and tasks with a common protocol to the community, the
sharing of resources and comparability/transparency of the works
have been boosted. Challenge competitions help bridge the com-
parability and state-of-the-art (SoA) in the field, bringing together
teams from multi-disciplinary backgrounds, such as the AVEC chal-
lenge series that were initiated in 2011 [46]. Enjoying the ninth
competition in the series, AVEC 2019 presents three sub-challenges,
namely, predicting i) State of Mind (SoMS), ii) Depression with AI
(DDS) and iii) Cross-cultural Emotion (CES) [17]. In this paper, we
tackle the latter two, namely DDS and CES, presenting our proposed
methods and results.
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The contribution of this paper is threefold. First, we introduce
a simple but very effective set of Automatic Speech Recognizer
(ASR) transcription based features, which are shown to generalize
better than state of the art audio and video modality features for
depression severity level prediction. Second, we annotate a small
portion of the training data for DDS and experiment automatic
segmentation, in scope of an effort to extract useful information
from silences and non-linguistic vocalizations. Finally, we present
our own systems for DDS and CES challenges.

The remainder of the paper is organized as follows. In the next
section we provide a brief review of literature on depression de-
tection/severity estimation and cross-corpus emotion recognition.
In Section 3, we cover the corpora and baseline features used in
our experiments, including the additional corpora used for cross-
cultural emotion recognition. Sections 4 and 5 present our proposed
methods for DDS and CES sub-challenges, respectively. The exper-
imental results are given in Section 6. Finally, we conclude with
Section 7.

2 RELATEDWORK
We summarize below the state-of-the-art in the automatic analysis
of affect with a focus on: (i) depression detection, and (ii) cross-
cultural emotion recognition.

2.1 Predicting Depression Severity Level
Depression, affecting more than 300 million people as the World
Health Organisation (WHO) declared in 2015 [36], is a common
mental health disorder which alters one’s actions, thoughts, and
feelings negatively [4] and affects the social life of the patients
as well as the society as whole. Often, depression patients suffer
from multiple comorbidities, and the medical costs of the disease is
estimated to be very high, economically [21].

Automatic depression detection has received some interest in
the literature in the last ten years. Language usage [3], facial ac-
tions [10], vocal prosody [10], and speech [11] have been known
to be associated with mental health, and were used as indicators
for automatic analysis. These indicators can be applied not only to
identify people with depression, but also for quantifying the sever-
ity of depression. Public challenges and datasets focus on different
modalities and help researchers to extend the collective knowledge
on automatic depression detection. Morales et al. [35] recently com-
pared different public depression detection datasets, as well as per-
formances of some approaches for automatic depression detection.
While the ReachOut Triage Shared Task [34], and SemEval-2014
Task 7 [37] datasets focused only on conversation transcriptions
(i.e. text data) of people with depression, AVEC 2013 [58], and
AVEC 2014 [57] datasets had audiovisual modalities. The Demen-
tiaBank [6] and DAIC-WOZ [20] datasets had all three modalities
(audio, visual, and text).

In this problem, multimodal approaches are gaining popular-
ity, since they seem to be outperforming unimodal methods in
depression detection. Various levels of fusion methods are tried
to combine bag of audio features with bag of video features for
diagnosing depression [27]. Semantic features are combined with
audiovisual features to create context-aware methods [19].

Transfer learning is being used by many researchers to extract
visual features using deep neural networks [26, 45]. These networks
are pre-trained on different datasets, depending on the task. The
main idea is to use very large, annotated datasets to learn good low-
level and mid-level representations, and fine-tune these networks
with smaller amounts of task-specific datasets.

Deep learning training is also applied to automatic depression
detection in an end-to-end fashion [62]. Zhu et al. [63] used a two-
stream deep convolutional neural network architecture [53], where
one network is used for appearance (takes regular images), and
the other for dynamics (takes optical flow images), respectively.
Furthermore, researchers use recurrent neural networks and more
specifically, long short-term memory modules [7] to capture longi-
tudinal features.

2.2 Cross-cultural Emotion Recognition
Cross-cultural emotion recognition was first introduced as a sub-
challenge in AVEC 2018, Cross-cultural Emotion Sub-challenge
(CES) [41]. AVEC 2019 CES includes an additional Chinese corpus
on top of Hungarian and German corpora introduced previously in
AVEC 2018 CES [17].

There were few researchers focusing on the universality of emo-
tional expressions across cultures before AVEC 2018 CES [14, 54].
The results of AVEC 2018 CES support the idea that facial expres-
sions are much more universal than speech-based emotion ex-
pression, as vision-only approaches outperform speech-only meth-
ods [8, 17, 25, 40, 60]. Linguistic variation can be a major issue when
learning from one corpus and testing it on another.

Researchers employ hidden Markov models (HMMs) [33], long
short-term memory recurrent neural networks (LSTM-RNNs) [28,
59], Bidirectional LSTMs (BLSTMs) [33] to extract longitudinal fea-
tures. In cross-cultural settings, domain adaptation techniques are
shown to be vital [1]. Normalization-based and machine learning-
based adaptation techniques are often used. Corpus-level and
speaker-level normalization are two straightforward domain adapta-
tion techniques that are used widely [18, 47–49]. Cascaded speaker-
level normalization combines feature-, value- and instance-level
normalization [29]. Transfer learning methods [22, 65], denois-
ing auto-encoders (DAEs) [12, 13], Principal Component Analysis
(PCA), and Canonical Correlation Analysis (CCA) [43] are proposed
to solve the domain adaptation problem.

3 CORPORA AND BASELINE FEATURES
The AVEC 2019 Detecting Depression with AI Sub-Challenge (DDS)
Task [17] extends the previously conducted AVEC 2016 Depression
Severity Challenge [56], where US Army veterans were (clinically)
interviewed with a virtual agent in a Wizard-of-Oz (WoZ) setup.
The veterans’ depression severity levels were assessedwith a PHQ-8
questionnaire. The DAIC-WOZ corpus [20] used in the 2016 chal-
lenge is extended with new recordings in the test partition, where
theWoZ setup is replaced by a fully autonomous conversational sys-
tem. Performance is evaluated with the Concordance Correlation
Coefficient (CCC) [31].

For cross-cultural emotion recognition, a number of corpora
are used. The SEWA database consists of audiovisual recordings
of spontaneous emotional behaviour in-the-wild [30]. Participants
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watch a set of commercials and discuss the last one with an in-
terlocutor. This year, subjects represent German, Hungarian and
Chinese cultures. The dataset is divided into three partitions: train-
ing (169 minutes), development (67 minutes) and test (281 minutes).
Chinese data are neither presented in the training, nor in the de-
velopment partitions, and make approximately 70% of all the test
data.

In addition to the SEWA corpus provided for CES, we use two
external corpora with similar annotations and experimental proce-
dure, namely, RECOLA [42] and SEMAINE [32]. They both have
audio-visual data annotated time-continuously for arousal and va-
lence. SEMAINE (Sustained Emotionally colored Machine-human
Interaction using Nonverbal Expression) database was designed
to develop systems for machine-human interactions. It consists of
three parts, representing interaction between a user and a sensitive
artificial listener (SAL) on three levels. In our work, we use the
solid SAL part, in which a human-operator simulates an agent. It
consists of 95 audio-visual recordings with the total duration of 394
minutes. The language of interaction is English. RECOLA (Remote
COLlaborative and Affective interactions) database was collected
during spontaneous dyadic interactions between people while solv-
ing a cooperative problem. Recordings in French from 23 users are
presented in the current version of the database, shared with the
research community. Each recording has duration of five minutes,
yielding 115 minutes of data in total.

Although additionally introduced corpora present European cul-
tural background of participants, they expand original language
span of the challenge corpus.

The baseline paper of AVEC 2019 [17] presents a rich set of audio
and video feature sets. The baseline sets are categorized into three
groups, namely, i) expert-knowledge based (such as Mel-frequency
cepstral coefficients (MFCCs), extended GenevaMinimalistic Acous-
tic Parameter Set (eGeMAPS) [15] acoustic set extracted using
openSMILE tool [16], and Facial Action Units (FAU) extracted via
OpenFace [5]), ii) Bag-of-Words (BoW) representations of MFCC,
eGeMAPS and FAUs, and iii) Deep representations of face and
MFCC spectrograms. For further details on the baseline sets, the
reader is referred to the paper on the challenge [17].

4 PROPOSED METHOD FOR DDS
The DDS sub-challenge is annotated both for depression sever-
ity (PHQ) level and Post Traumatic Stress Disorder (PTSD) level
for each clip/participant. Only the audio modality signal is given,
along with audio and video modality features. We use the baseline
feature sets, which reflect the state-of-the-art in audio and video
feature representation, and our own features to augment these. The
suprasegmental feature vectors extracted from the audio, video and
text modalities ultimately represent the whole clip and are used to
predict the PHQ and PTSD levels.

4.1 Feature Extraction
In addition to the rich set of audio-visual challenge baseline features,
we extracted two sets of features. The first makes use of the ASR
transcripts provided by the organizers and the second is based on
automatic segmentation of the speech signal to catch non-verbal

aspects of depressed speech, such as silences and breathing. The
proposed features are described in the subsequent sub-sections.

4.1.1 ASR Transcriptions based Features for DDS. Apart from
the baseline feature sets, the organizers of AVEC 2019 provided
Automatic Speech Recognizer (ASR) transcripts that include start
time and end time of the subject, as well as the confidence of the au-
tomatically recognized words in the corresponding interval. While
the ASR transcriptions are not perfect and do not provide sen-
tence level information for high-level Natural Language Processing
(NLP), they allow extraction of speech duration and analysis on
the word level. Note that the baseline systems do not employ any
ASR based features despite the provided transcripts. For the DDS
challenge, we decided to investigate this modality with a hypothe-
sis that depressed people’s timing during conversations (duration
of silences, word speaking rate, etc.) and their choice of words, or
word repetition will show telling patterns.

For this purpose, we extracted four ASR-based low level descrip-
tors (LLD) from each transcript record t ; namely, word count (f t1 ),
speech duration(f t2 ), words per second (f t1 = f t1 /f

t
2 ), and inter

turn duration (f t4 = startTimet+1 − endTimet ). These four ASR
LLDs are then passed through ten functionals to obtain a high-level,
fixed length representation over the whole transcript. The func-
tionals employed are listed in Table 1. These 4 × 10 = 40 functional
features are augmented with overall words per second and number
of repetitions (total number of words subtracted from the number
of unique words), which make up 42 ASR statistics based features
for each transcript.

Functional Description
Mean Arithmetic mean
Std Standard deviation
Curvature Leading coefficient of the second order

polynomial fit to the LLD contour
Slope and offset Coefficients of the first order polyno-

mial fit to the LLD contour
Min Minimum value
Relative Min Location Location index of min value divided by

the length of LLD contour
Max Maximum value
Relative Max Location Location index of max value divided by

the length of LLD contour
ZCR Zero crossing rate of the LLD contour

normalized into [-1,1] range
Table 1: List of statistical functionals applied to LLDs.

The words from ASR are also used for a simple bag-of-words
representation, where stemming is not employed, only apostrophes
(’) and full stops (.) are removed from each word and the numeric
words are removed from the word bag. Once the word bag is formed,
the words from each ASR transcript document are represented with
their corresponding term frequencies. Because there are only 163
clips/participants in the training set and over 8K words in the bag,
Principal Component Analysis (PCA) is applied prior to regressor
modeling, where the number of PCA eigenvectors are optimized
on the development set.
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4.1.2 Automatic Segmentation for Silences and Non-Linguistic
Vocalizations. We decided to use the inter turn duration from the
ASR transcripts in order to estimate the total duration of silences
and breathing for each participant. However, these episodes (where
the participant’s speech is not recognized) not only contain silences
and breathing, but also the speech of the virtual agent. We aimed to
discriminate between the segments corresponding to the subject’s
speech, subject’s non-linguistic vocalizations (such as breathing, lip
noise, laughter and fillers), silences, and the virtual agent’s speech.
To learn an automatic segmentation, a subset of the training set (17
audio files with varying PHQ levels, amounting to 138 minutes) are
partially or fully annotated for 7 segment classes: AI (virtual agent’s
speech), B (breathing), F (fillers), LN (lip noise), LA (laughter), SI
(silence) and S (subject’s speech).We also annotated the host-patient
dialogue segment and removed this part from the training of the
classifier.

For automatic segmentation modeling, we experimented with
eGeMAPS [15] and Deep Spectrum (VGG-16 [50]) features.
eGeMAPS LLDs were summarized over non-overlapping windows
of {100, 200, 400, 500, 1000} milliseconds (ms) with mean and std
functionals, while the window size is optimized using a portion of
the annotated data as development set. The suprasegmental features
are mapped to the majority class in the corresponding window. The
organizer provided Deep Spectrum VGG-16 (DS-VGG) features are
extracted from 4 second windows with 1 second shifts. We use each
DS-VGG feature to represent a one second slice of the signal and
map it to the majority segment class during training.

The preliminary experiments for seven-class classification for
speech segmentation using the eGeMAPS LLDs showed that the
classes of interest (especially breathing, laughter and fillers) are
recognized either poorly or not at all. The reason of this is due
to: i) relatively low number of samples ii) high acoustic similarity
between the non-linguistic vocalizations and linguistic speech (see
Figure 1). We therefore combined B, F, LA and LN classes into a new
class, dubbed NLV (non-linguistic vocalizations) and proceeded the
experiments with a four-class segmentation problem.

Figure 1: Confusion matrix using seven classes for speech
segmentation.

Once the models using eGeMAPS and VGG-16 features are op-
timized, we applied the best models to the training, development
and test set audio signals and extracted i) duration features for SI,
NLV and S classes, ii) computed mean of the acoustic functional
features corresponding to detected segments of SI, NLV and S, sep-
arately. The duration features extracted for each segment class (e.g.
SI) consist of the number of turns, total duration, average, mini-
mum, maximum and range of duration, as well as the ratio of the
total duration for the class of interest to the signal length. The
segment level duration and acoustic features are used to predict
depression level (measured with PHQ) and post traumatic stress
disorder (PTSD) level.

4.2 Model Learning
The clip level suprasegmental features are modelled using Kernel
Extreme Learning Machines (KELM). ELM family is introduced as
a non-backpropagation based, fast and robust learning strategy, ini-
tially for single hidden layer feedforward neural networks [24], and
later extended to deep neural networks and kernel machines [23].
The main theme of the approach is to randomly generate the first
layer weights and learn the second layer weights analytically, using
least squares regression. A special pseudo-inverse, namely Moore-
Penrose Pseudo-inverse [39] that minimizes both the norm of the
projection weights and the error simultaneously, is used in the
original basic ELM version [24]. Subsequently, a regularization
hyper-parameter C is introduced for relaxing optimization and in-
creasing generalization [23], relating it to ridge regression. This
was further extended to include the kernel trick for the first later.
Let K denote the RN×N training kernel and T denote RN×L target
matrix (encoded using one-hot encoding for classification tasks),
where N and L are the number of training set instances and the
number of classes, respectively; the second layer projection matrix
β is computed via H [23]:

β = (
I
C
+ K)−1T, (1)

where I is the N × N identity matrix. We employ popularly used
linear and Gaussian (radial basis function (RBF) kernels in our exper-
iments, optimizing the RBF kernel scale and complexity parameter
C on the challenge development set.

5 PROPOSED METHOD FOR CES
5.1 Feature extraction and pre-processing
According to baseline results for CES, presented in [17], more
complex deep-learning based feature sets (Deep Spectrum, ResNet,
VGG) do not provide better results compared to expert-knowledge
ones, such as eGeMAPS and FAUs. Therefore, we have chosen the
latter for our further experiments. BoAW-e have often provided
better results compared to eGeMAPS based functionals, but they
strongly rely on the data and require re-evaluation once something
is changed. Moreover, they are harder to transfer for cross-corpus
training.
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In order to isolate speaker’s speech from noise and speech of
the interlocutor, we cleaned the audio data, according to turn meta-
data provided by organizers. After that, we re-extracted supra-
segmental features, trying different window lengths (2, 4, 6, 8 sec-
onds). However, we have not noticed any significant performance
gains, hence we decided to proceed with the original 4 seconds
window. Further pre-processing includes feature transformation
with PCA and Canonical Correlation Analysis (CCA) for unsuper-
vised cross-corpus feature adaptation, as suggested by Sagha et
al. [44]. For PCA, we tried reducing the feature set, keeping 95%,
98%, 99%, 99.99% of the total variance. Transformation usually led
to improvements in terms of development set performance with
99.99% variance being best for audio features (eGeMAPS) and 98%
for video (FAUs). The number of CCA components were analysed
and selected for each experiment independently via grid search,
further reducing the PCA features. The general trends for CCA
showed better performance on the development set with a higher
number of components (close to the number of components in PCA),
which may be a result of high level of data representation provided
by expert-knowledge sets and the small amount of redundancy.

Feature sets are normalized with the Z-transform. For cross-
corpus experiments, each corpus is normalized separately, in order
to level the corpora differences, especially for audio, in terms of
recording devices, environmental noises, etc.

5.2 Model Learning
We use a methodology similar to the one provided in the baseline
paper, with changes in network architecture. Our network consists
of three gated recurrent unit (GRU) [9] layers with 200, 100 and
200 nodes (linear activation function), respectively. The network
has less nodes in the middle layer in order to create a bottleneck
effect [61]. The model is optimized with Adam using CCC-based
loss function for 20 epochs with a learning rate of 0.001.

In addition to direct modeling used in the baseline, we use two
additional approaches: cross-corpus training and interlocutor de-
pendent modeling, respectively.

For cross-corpus modelling, we train the model in two stages: (i)
after separate pre-processing of each corpus, we combine data from
additional corpora (i.e. RECOLA and SEMAINE) and train the model
on them; (ii) then we fine-tune the model with train partition of
SEWA corpus, keeping track of the development performance. For
fine-tuning, we fix the weights of the first two layers and adjust only
the parameters of the last GRU layer and fully connected regression
output layer. Assuming that our model will extract representational
maps relevant to emotional dimensions from additional corpora
before the bottleneck layer (second GRU layer), we then allow it to
adapt its time-continuous behaviour to the target corpus.

For interlocutor-dependent modeling, we assume that the emo-
tional flow of the conversation is comprised of mutually created
emotions of both interlocutors. Therefore, the analysis of both
sources of data jointly may allow us to describe the flow more
precisely. In this paper, we use feature-level fusion of audio-visual
data from both interlocutors prior to training the model. Each au-
dio recording in the SEWA database corresponds to visual data
from two speakers, recorded with two different cameras. We au-
tomatically detect the interacting pairs from audio content/length

similarity and use both video streams for each audio file. We first
combine features within each modality, and then use PCA for di-
mensionality reduction. The test set is used to learn the PCA space,
which corresponds to target domain adaptation. This can only be
done when the testing is done wholesale, and in the offline mode.
Both the training and test sets are processed with PCA, and the
model described above is applied.

6 EXPERIMENTAL RESULTS
6.1 DDS Experiments
From the baseline feature sets, we select the best performing audio
modality feature (DS-VGG) and best performing video modality
feature (ResNet), based on their CCC performance on the devel-
opment set. These features are summarized over the whole clip
using mean, std and curvature functionals, which are described in
Table 1. Different subsets of functionals with each feature, feature-
and decision-level fusion strategies are experimented with. For all
experiments, regression on depression severity level is first probed,
and the best systems (with same or very similar hyper-parameters)
are used for PTSD level prediction.

DS-VGG features that are reported to have the highest CCC per-
formance (0.305) on the development set, performed very poorly
with KELM (0.07 CCC). On the other hand, the ResNet Features
summarized using the aforementioned three functionals (abbrv.
ResNetX3) reach a development set CCC performance of 0.468. Note
that when only mean and std functionals are used with ResNet, the
KELM performance is 0.364, which is higher than the correspond-
ing performance reported in the challenge paper (0.269) but lower
compared to the use of mean, std and curvature.

We next experiment with our proposed ASR transcription-
based features. 42 duration and word-count-based features (abbrv.
ASR_WordDur) reach a development set CCC score of 0.382, which
outperforms all development set scores reported in the challenge
paper [17]. The ASR transcription-based simple BoW features are
transformed with PCA, and the number of eigenvectors are opti-
mized in the [10, 160] range with steps of 10. BoW features with
the top 30 PCA dimensions (abbrv. ASR_BoWPCA30) provided
the highest CCC performance on the development set (0.444). A
summary of PHQ and PTSD prediction performances for the best
performing features are shown in Table 2. Although the features
and classifier hyper-parameter ranges are optimized for the PHQ
task, PTSD prediction performances are always higher than those
of PHQ.

Table 2: Top performing feature types and their develop-
ment set CCC performances on depression severity (PHQ)
and PTSD prediction tasks.

Model Feature PHQ PTSD
M1 ResNetX3 0.468 0.526
M2 ASR_BoWPCA30 0.444 0.508
M3 ASR_WordDur 0.382 0.431

Our first two test set submissions for the DDS are simple and
weighted fusions of single-feature type systems reported in Ta-
ble 2. Our first submission takes the average of the predictions
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from ASR_BoWPCA30 and ASR_WordDur based KELM models.
Our second submission uses a weighted fusion of the three models’
predictions, where a pool of randomly generated fusion weights
are applied and the one yielding the highest CCC score is selected.
The development and test set CCC performances of these fusion
systems are reported in Table 3. Here, we observe that despite
the outstanding development set performance of the ResNet based
model in single and combined settings, the fusion system that em-
ploys ResNet performs slightly poorer than the challenge baseline
(0.120) on the test set. The best test set performance (0.344 CCC) is
obtained using simple ASR transcription-based features (i.e. word
count, duration and BoW).

Table 3: Development and Test Set CCC Scores for ASR- and
ResNet-features based Fusion Systems. EF: Equal weighted
fusion, WF: Weighted Fusion.

PHQ PTSD
System Devel. Test Devel. Test
Baseline [17] 0.269 0.120 NA NA
WF(M1, M2, M3) 0.606 0.118 0.625 0.141
EF(M2, M3) 0.481 0.344 0.554 0.376

Motivated by the results of the ASR feature-based system, we
next experimented with automatic segmentation based features. To
obtain an automatic speech segmentationwe trained classifiers with
varying window lengths, two acoustic feature types as explained in
Section 4.1.2. In addition to KELM, we use a special variant of KELM
dubbed Weighted Kernel ELM [64] that gives higher importance
weights to minority class instances and hence inherently tries to
maximize unweighted average recall (UAR). The best segmentation
UAR performance (65.75%) on the validation set, which is composed
of 4 out of 17 annotated audio files, is obtained with 500 ms non-
overlapping windows using functionals of eGeMAPS LLDs and
Weighted KELM as classifier. The corresponding confusion matrix
is shown in Figure 2. We should note that the recall for NLV and SI
are higher compared to the use of KELM, but still low for subsequent
feature extraction from predicted segments.

Figure 2: Confusionmatrix of the best model for speech seg-
mentation.

We have extracted the segment-dependent duration and acous-
tic features and carried out experiments for predicting depression
severity level. The best performance of these features on the devel-
opment set was 0.193 CCC; a score below what is reached with sim-
ple ASR transcript-based word duration features (ASR_WordDur).
When these features were combined with the ASR_WordDur fea-
tures, the performance of ASR_WordDur features dropped severely.
The performance of ASR_WordDur features increased only when
duration features corresponding to the predicted silence episodes
were combined. When combined with only six silence segment
duration-based features, CCC performance of ASR_WordDur fea-
tures (0.382) increased to 0.420 and 0.431, using Linear (Model M4)
and RBF kernels (Model M5), respectively.

The third and fourth submissions are dedicated to these systems.
In the third submission, a weighted fusion of M2 (ASR BoW based
model), M4 and M5 is employed, whereas submission four uses an
unweighted average of M4 and M5. The development and test set
CCC scores of these systems are summarized in Table 4, where we
observe reduced performance with respect to the first submission
using only ASR transcription-based features. Furthermore, without
ASR BoW features, ASR duration features combined with silence
duration features completely fail to generalize (test set CCC score:
0.028). This performance reduction is largely attributed to the auto-
matic segmentation problems, which will be a focus in our future
work.

Table 4: CCC Performance of Systems Using ASR and Auto-
matic Segmentation based Features

PHQ PTSD
System Devel. Test Devel. Test
WF(M2, M4, M5) 0.515 0.252 0.561 0.365
EF(M4, M5) 0.450 0.028 0.458 0.169

The test set results indicating the importance and robustness
of linguistic features in the depression severity level prediction
are in line with recent works reporting results on DAIC-WOZ
corpus [38, 51, 52]. In particular, Stepanov et al. [51] used BoW
representation of the transcripts without feature reduction and
modeled the high dimensional features with Support Vector Re-
gressor (SVR). They also extracted behavioural features (such as
response duration, count of non-verbal signals and laughter events)
from transcripts. The BoW representation and transcript-based be-
havioural characteristics features were the top performing on the
test set, where the authors did not combine the modalities. We
should note that our BoW representation gave a low (around 0.17
CCC) development set performance without PCA transformation,
which was not experimented in [51]. Moreover, the provided tran-
scripts in AVEC 2019 DDS do not contain non-verbal signals such
as laughter and the virtual agent’s speech segments were not anno-
tated. Our manual annotation of a portion of the training set for
extracting behavioral patterns such as response time after virtual
agent’s questions, silences and non-linguistic vocalizations was not
sufficient for segmentation. We will work in this direction using
the DAIZ-WOZ and other corpora for extracting a compact set of
higher-level, explainable and predictive features.
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6.2 CES Experiments
We follow a different approach in cross-cultural emotion sub chal-
lenge, where silences and breathing are not supposed to play such
a prominent role. According to pre-processing and modeling pro-
cedures, mentioned in Section 5, we first apply PCA to eGeMAPS
based functionals with 4 seconds window length, extracted from
turn-cleared audio data and fused at feature level with FAUs (S1).
This approach provides an improvement in both arousal and valence
for German and Chinese datasets (see Table 5). On the Hungarian
dataset, such a system performs worse, as well as on liking dimen-
sion for Chinese.

As an extension of the approach described above, we implement
a cross-corpus system by integrating two additional languages, Eng-
lish and French. PCA transformation parameters were trained on
target corpus and then applied to these additional corpora after nor-
malization (S2). As no "liking" dimension is provided for RECOLA
or SEMAINE, we make predictions only for arousal and valence.
This approach leads to further improvements for German language
and a slight improvement for Hungarian, over the S1 model. How-
ever, the performance for Hungarian language is still lower than
baseline and significant performance loss is noticeable for Chinese
data.

We further extend the second approach and add CCA into the
pre-processing pipeline on the same conditions (S3). This results
in performance losses for both German and Hungarian languages,
but the Chinese part performance remains at the same level (even
slightly higher).

Our fourth approach is PCA applied to feature-level fusion of
speaker’s and the interlocutor’s data (S4). Here, we have only the
target corpus for training, therefore predictions are available for
each dimension. In general, this approach performs worse than the
baseline with one exception for German language on the arousal
dimension.

For the last system, we use weighted fusion of predictions ob-
tained with our best system on the Chinese data for each dimension
and baseline predictions, provided by organizers (S5). For arousal,
we fuse S1 with eGeMAPS-BoAW and VGGwith weights optimized
on development set: 0.66, 0.17, and 0.17, respectively. For valence
we fuse S1 with FAUs and VGG, using the following weights: 0.54,
0.22, and 0.24, respectively. For liking we use S4 and only eGeMAPS-
functionals with weights 0.64 and 0.36, respectively. Late fusion
provided constant performance gain for each language on valence,
having two best results out of three (highlighted in bold in Table 5).
However, it did not provide better results for arousal and liking. We
provide performance on the development set as well (German and
Hungarian combined) for the reference.

In the case of this sub-challenge, the best performance across
languages was achieved using the simpler models (S1 and S2) alone
or in combination with the baseline prediction on different feature
sets. Although liking values moderately correlate with valence
values, we did not manage to get an improvement on this dimension,
using audio and video modality only. It is obvious, that for better
results, one should consider using textual modality as a primary
one for liking. However, in the case of the lacking transcription or
in the real-life scenario, it is crucial to have a multi-language ASR
with high level of confidence.

Table 5: CCC Performance of Systems used for CES

Baseline S1 S2 S3 S4 S5
Arousal

Devel - 0.620 0.600 0.575 0.579 -
Test-DE 0.562 0.583 0.641 0.538 0.632 0.621
Test-HU 0.527 0.484 0.507 0.451 0.441 0.501
Test-CN 0.355 0.466 0.406 0.407 0.349 0.391

Valence
Devel - 0.598 0.556 0.551 0.524 -
Test-DE 0.646 0.715 0.734 0.688 0.635 0.750
Test-HU 0.548 0.346 0.359 0.270 0.277 0.462
Test-CN 0.468 0.483 0.376 0.384 0.389 0.499

Liking
Devel - 0.218 - - 0.226 -
Test-DE 0.074 0.176 - - 0.132 0.106
Test-HU 0.089 0.038 - - -0.008 0.016
Test-CN 0.041 -0.073 - - -0.051 -0.032

7 CONCLUSIONS
In this paper, we presented our proposed methods and results for
the AVEC 2019 sub-challenges on Depression with AI (DDS) and
Cross-cultural Emotion (CES) [17].

Our results on depression detection show that while the patterns
in non-verbal parts of the signal are important, combining this
with linguistic information produces the best results, without using
state of the art acoustic or visual features. While it is possible to
hear distinct patterns of breathing in the speech of subjects with
depression and high PTSD levels [2], automatic approaches did
not suffice to recognize these breathing episodes accurately. For
future work, we plan to increase the amount of annotated data, and
introduce other methods to deal with the class-imbalance problem
to exploit the non-linguistics vocalizations and silence episodes.

In the challenging cross-cultural emotion recognition task, we
cannot emphasize one particular approach that leads to the highest
results across modalities and languages. Instead we proposed to uti-
lize several methods of data pre-processing and modeling, through
which we have achieved 31.3% of relative improvement for arousal
and 6.6% for valence on Chinese data with cross-cultural setting.
Better results were also obtained within the original culture for
German language: 14.1% on arousal and 16.1% on valence. More-
over, the cross-cultural liking dimension did not benefit from audio
and video features. Including interlocutor’s data into modelling and
treating interactions as mutually effecting did not show the best
results in this challenge, although, provided minor improvements
over baseline models in some cases for German language. It may
be useful for future work to not consider this data simultaneously,
but track the general emotional flow of interaction independently.
PCA-CCA based analysis in cross-corpus scenario brought minor
improvements over only PCA based approach, but did not exceed
other methods in any separate case.
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