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Abstract

This study introduces the novel Activity Space Approach (ASA) for measuring
disaster-induced displacement patterns using mobile call detail records (CDR),
where we explore shifting the focus in displacement detection from home
locations to habitual living spaces. We apply our method to analyze the February
2023 Türkiye-Syria earthquakes, which affected over 14 million Turkish citizens
and 1.7 million Syrian refugees within Türkiye. Using anonymized and hourly
aggregated CDR data from 127,700 individuals, complemented with insights from
qualitative fieldwork conducted in the regions affected by the earthquakes, we
show that the proposed approach overcomes the main limitations of traditional
home location methods and provides more granular spatial insights into
displacement patterns. By incorporating measurements of urbanization and
infrastructure damage, we illustrate how post-disaster mobility shows variation
among locals and refugees, given their pre-existing socioeconomic vulnerabilities
and unequal capacities to respond. Our findings demonstrate that, while Turkish
citizens were able to evacuate more swiftly, Syrian refugees experienced slower
and more spatially constrained displacements, often toward institutional settings
such as camps, reflecting legal precarity and constrained mobility options. This
comparative perspective underscores the importance of recognizing and mapping
variations in displacement experiences across different population segments.
Consequently, ASA can inform more targeted short-term policies and support
more inclusive long-term recovery planning.

Keywords: Mobile phone data; Call Detail Records; Earthquake; Displacement;
Türkiye; Syria

1 Introduction
Natural disasters like earthquakes often cause various forms of mobility, such as

evacuation, displacement, and resettlement, which unfold differently across time and

space. In its essence, the ability to react to a natural disaster by moving elsewhere

to seek refuge and safety can be framed as an immediate coping strategy or a

form of adaptation [1]. However, how individuals experience this form of mobility

depends on contextual factors as well as their diverse capacities and resources (or

the lack thereof) – social, cultural, material, or political. In fact, when a crisis hits

an area, pre-existing vulnerabilities, due to unequal distribution of resources and

access to rights and services, may come to the fore among different segments of

the population. These vulnerabilities may significantly influence how individuals
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and communities respond to disaster and how resilient they are in the post-crisis

period. Consequently, it is to be expected that individuals and communities will

experience different types of displacement, often leading to divergent outcomes for

affected groups in the short to long term.

February 2023 earthquakes, with magnitudes of 7.8 and 7.5, caused extensive de-

struction in the southeastern Türkiye and northern Syria, profoundly altering the

lives of millions. Within Türkiye, the earthquakes impacted both the local resident

population and the Syrian refugee community. Official data from the Ministry of

Environment, Urbanization and Climate Change (MoEUCC) revealed that in the

11 most affected provinces, around 676,000 residential buildings and 115,000 work-

places sustained moderate to severe damage, with more than half of these located

in the epicentral provinces of Hatay and Kahramanmaraş [2]. According to 2022

population data, these provinces were home to more than 14 million individuals

registered in the Address-Based Population Registration System (ABPRS), while

an additional 1.7 million Syrians under temporary protection were also residing in

the region, as Presidency of Migration Management (PMM) reported shortly before

the disaster (February 2, 2023) [3]. This means that 16.43 % of Türkiye’s population

and nearly half (49.64 %) of the country’s temporary protection population were

concentrated in the affected area.

The unprecedented scale of destruction, combined with the diverse demographic

structure of the region, shaped by its sociocultural and ethnic plurality, and socioe-

conomic disparities, has created tremendously complex conditions for displacement

in the aftermath of the disaster. These conditions were especially challenging for

Syrian refugees whose experiences were likely to be aggravated due to pre-existing

intersectional vulnerabilities, including their more precarious legal, social and eco-

nomic status. In this context, a systematic analysis of post-disaster displacement

and a comparison between the local population and the Syrian refugee population

become warranted.

Mobile phone data (MPD) can be used for real-time assessment and monitoring

of disaster-induced displacements [4, 5, 6]. However, its potential for understanding

displacement nuances in relation to pre-disaster vulnerabilities remains understud-

ied. This study employs a novel approach to measure disaster-induced displacements

using mobile call detail records (CDR) data. Mainstream approaches for measuring

displacement using mobile data in the literature assign home locations to individ-

uals, and detect shifts in those locations [7, 8, 9, 10]. Our proposed Activity Space

Approach (ASA) uses shifts in activity spaces before and after the disaster. It calcu-

lates the origins and destinations not as single locations, but as spatial distributions,

which enables detection of origin and destination hotspots that are not possible to

identify with the standard home location-based methods. We make the code for

ASA publicly available.

We use the 2023 Türkiye-Syria Earthquake as a case study to show how the pro-

posed method can identify granular spatial and temporal displacement patterns

that reveal distinct mobility outcomes in Türkiye among local and refugee pop-

ulations following the earthquake. Namely, our findings indicate that internally

displaced Syrian refugees exhibited more constrained displacement patterns con-

centrated around pre-existing Temporary Accommodation Centers (TACs), which
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are often referred to as refugee camps. Moreover, compared to the local population,

Syrian refugees were able to evacuate the region more slowly. Finally, our results

also suggest that Syrian refugees, who were displaced to other cities, were drawn

into neighborhoods with high Syrian populations, exhibiting reliance on their social

networks. On the other hand, Turkish people were displaced faster, and largely to

rural areas.

2 Measuring displacements with mobile phone data
Displacements refer to involuntary movements of individuals from their habit-

ual living spaces to safer areas due to disruptions caused by disasters or conflicts

[11]. These movements are characterized by spatial attributes (origin, destination,

distance), temporal attributes (start date, end date, duration), and demographic

attributes (age, gender, ethnicity) of the displaced people (DPs). The definition

of displacement varies based on context. Cross-border displacements follow legal

frameworks for refugees and asylum seekers, while internal displacements often in-

volve needs-based frameworks. Internal displacements are typically measured across

administrative boundaries. Internal Displacement Monitoring Centre (IDMC) has

one of the most comprehensive databases on disaster induced-displacements [1].

IDMC follows event-based tracking to calculate the number of displaced people for

each disaster event [12]. Their calculations rely on data triangulation through mul-

tiple sources, including government agencies, United Nations (UN) agencies, as well

as other international and non-governmental organizations. Despite great efforts in

event-based data collection, data gaps remain a big issue. It is difficult to estimate

the number of voluntarily evacuated people, and the duration of tracking remains

limited with little known regarding returns, local integration, and relocations[12].

Mobile phone data (MPD) offers a unique opportunity to enhance the measure-

ments and provide more comprehensive displacement data potentially closing some

of the data gaps in disaster-induced migration and mobility.

Despite a growing body of work using MPD as a tool for monitoring and man-

aging the disaster-induced mobility [13], how to measure displacements remains an

open question. The statistics collected on migrants tend to focus on two aspects of

mobility; flows and stocks, respectively [14]. Flow indicators show movements be-

tween certain points within a time frame, whereas stocks are snapshot metrics that

capture the number or density of the population in an area. MDP can be used to

compute indicators of stocks and flows, as well as provide features of individual-level

mobility.

There are two approaches for measuring the flows via MPD; the first is to show

all types of movements between regions within a time period, and the second is to

detect DPs first and then show their movements in an aggregated fashion. In the

context of sudden-onset disasters, the individuals in affected areas tend to evacuate

in large numbers. In such a context, it is possible to measure the exodus of people

without detecting displacements at the individual level but by contrasting aggre-

gated measures [4, 5, 8, 15]. The aggregated flow indicators during disasters are often

compared to a baseline level to understand the displacements [4, 5, 6]. Despite their

[1]The database on internal displacements can be accessed at: https://www.

internal-displacement.org/database/displacement-data/

https://www.internal-displacement.org/database/displacement-data/
https://www.internal-displacement.org/database/displacement-data/
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simplicity, such comparisons can provide important insights on the crisis-induced

population movements, such as the magnitude of effects of the disaster on depar-

tures and/or mobility disruption across time and space, and predictability of the

movements.

While these approaches can be useful to describe the crisis, questions on the im-

pact of economic inequalities, other socioeconomic disadvantages, and pre-existing

vulnerabilities on people’s post-disaster mobility require more nuanced approaches

to measure displacements at individual level. This is especially crucial when analyz-

ing distinct mobility profiles between different population groups, such as refugees

and local populations, where pre-existing social vulnerabilities may lead to divergent

displacement experiences.

The measurement of displacements at individual level using mobile data often re-

lies on changes in residential areas, which we call as home location-based approaches

(HLA) [7, 8, 9, 10]. HLA have different ways of calculating the shifts in home lo-

cations, which we explain later in model comparisons. While HLA can reasonably

estimate the number of displaced persons between administrative boundaries using

CDR data, they fail to fully capture the complexity of displacement patterns.

HLA have two significant limitations. First, they overlook the broader spatial

context of people’s lives. Home locations alone provide no information about other

places of high importance, such as residences of friends and family, which become

crucial during disasters [16]. Furthermore, people’s routines typically span areas be-

yond their homes—a phenomenon conceptualized as “activity space” in sociology

and geography [17, 18]. Disasters displace people not only from their residential

areas but also from these activity spaces, a dimension that HLA neglect. Second,

data sparsity presents a considerable challenge to existing home location detection

methods, whether they rely on the most frequent signals throughout the entire

day/week, areas with concentrated signals during specific time frames (e.g., night-

time), or signals concentrated during particular days (e.g., weekends) [19]. Home

location algorithms filter the limited data further and reduce the available infor-

mation. One solution is to replace the home location with the modal location, i.e.

the location where the individual is most frequently observed [7, 10]. However, this

approach still reduces the complex spatial behavior to a single location, ignores

routine and/or socially important mobility behavior. When the cell level informa-

tion is used, the noise around home locations causes problems with respect to un-

derstanding the spatial extent of the displacements. HLA typically mitigate these

challenges by measuring and aggregating displacements at administrative boundary

levels rather than cell tower levels, which serves two purposes; (1) it distributes the

spatial uncertainty around residences to larger spatial areas, (2) it facilitates the

comparison with official sources.

The decision to migrate involves a complex set of considerations, this process can

be even more complicated when one has to leave their place of residence due to

a natural disaster and its aftershocks [20]. Moving elsewhere as a response to a

natural disaster and seeking safety abstains individuals from time to prepare and

to mobilize resources. In most cases, individuals will be less likely to ‘choose’ a

destination, but seek asylum in their vicinity. However, depending on conditions

related to the disaster (e.g. physical characteristics of the disaster, response capac-

ity and exposure), the level of urgency to leave may show variation. In the context
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of earthquake this may for example include the level of destruction caused by the

disaster, which is not the same for everyone; some lose their entire homes and liveli-

hoods, while others can continue their lives despite some damage. If preparation is

at all possible, the decision for a destination can be shaped by the availability of

social networks elsewhere and by perceived economic opportunities. Traditionally,

migration models like the gravity and radiation models incorporate push and pull

factors after spatial aggregation to explain migration patterns between regions [21].

However, individual level vulnerabilities before the disaster interact with these push

and pull factors; some population segments have less capacity to leave the disaster

areas due to their lower socioeconomic background [22, 23]. Spatially and demo-

graphically aggregated analyses of displacements cannot fully capture these subtle

differences in push and pull factors that show how different populations cope with

disasters in different ways.

3 Methodology

Figure 1 The summary of the Activity Space Approach (ASA) to measure displacements.
Operations are shown with boxes, and calculated indicators with circles.

3.1 Activity Space Approach

Our activity space approach (ASA) measures displacements by relying on the

United Nations (UN) definition of the internal displacements in the guiding princi-

ples on displacements [24], as significant ruptures from the habitual living spaces in

the aftermath of a disaster or to avoid effects of an armed conflict. In this sense, the

displacements are not necessarily defined solely by the shift in home locations, but

more by the post-disaster shifts in areas where the individuals spent time consis-

tently prior to the disaster. To be able to measure the displacements on individual

CDR records, we have developed ASA, which is based on the estimation of the shifts

in habitual living spaces, works better when the data sparsity is a problem (which

is becoming more concerning with CDR), is able to detect displacements at shorter

distances, and enables more granular analyses of the displacements. Illustrated as

a flowchart in Figure 1, it has four main components:

1. Measurement of stay locations

2. Determination of activity spaces

3. Computing the relevance of stay locations

4. Displacement detection
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In the first component, we process CDR data into stay locations—geographical

regions where individuals spend significant time. ASA distinguishes between people

in transit and those lingering in specific locations. It helps to differentiate signals

that are coming from people who are on the move, from people who are spending

their time in a certain area. In the second step, the activity spaces of the individuals

before and after the disaster are computed. This step ensures that the commonly

visited areas within certain distance to one another are clustered together to rep-

resent the individuals’ use of space.

The third component measures how familiar the post-disaster activity spaces are

based on their relevance scores. We measure the nighttime presence in each pre-

disaster activity space, and by computing each activity space’s relative nighttime

weight before the disaster. Post-disaster activity spaces are then assigned a relevance

based on their spatial overlap with pre-disaster activity spaces, weighted by the

relevance score of those overlapped areas.

Lastly, in the fourth component, we detect shifts in people’s stay locations based

on their relevance scores falling under certain threshold and we classify everyone ei-

ther as displaced or non-displaced using the migrant detection algorithm developed

by Chi et al. [25]. In Section 4, we compare the measurements of ASA to that of

the TMB method [10] and show how using stay locations and activity spaces can

improve the measurement at close distances, enabling granular analysis of displace-

ment patterns.

3.2 Data sources

3.2.1 CDR data

The CDR data were collected in collaboration with Turkcell Technology (TTECH)

between January 1 and March 15, 2023, across Türkiye [2]. The dataset includes in-

formation on users’ outgoing call records, specifically the antenna used and the call

timestamps. The CDR data sets are carefully anonymized and spatio-temporally

aggregated in line with CDR processing norms established in data challenges like

Data for Development (D4D) [26] and Data for Refugees (D4R) [27]. The dataset

is specifically collected to enable analysis of fine-grained mobility patterns in the

aftermath of the earthquake. Additionally, we incorporated demographic flags to

differentiate between Syrian and Turkish users [28], following a methodology simi-

lar to the previous D4R Challenge These nationality flags are based on registration

information collected by the company; individuals who subscribed using a tempo-

rary protection card issued to Syrian refugees or a Syrian passport are flagged as

Syrian in the CDR data. The precise cell tower locations are deemed sensitive in-

formation by the mobile network operator (MNO), so a small amount of noise was

added to the locations within the service area of each tower.

3.2.2 Population sampling and biases

The CDR data comprise a small sample of the total Syrian and Turkish population

living in Türkiye; we have 74,902 Turkish and 60,000 Syrian individuals in our

sample, as opposed to 14,013,196 Turkish and 1,738,035 Syrian individuals in the

region according to the official figures. We followed a stratified sampling technique

[2]See Supplementary Material for more detail about the CDR data.
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while sampling users in Türkiye. For each city, we sampled considering the share of

Syrian population living in the city [3] in proportion to the total Syrian population

in the country. Then, we added an equal number of randomly selected Turkish

users in each city for enabling a comparative study [28]. In other words, we sampled

more users, Syrian or Turkish, in cities with larger Syrian populations. The different

representativeness of the sample for the two populations will be important in the

analysis.

At any given time, the population in a given area consists of residents, as well

as a mixture of temporary residents, workers, tourists, and transit visitors [29].

During disasters, these groups will also be impacted. However, from a displacement

perspective, we are mainly interested in the residents of the earthquake region, i.e.,

the population that was consistently present in the region before the earthquake

occurred. During processing, we add a filter to exclude the people who spent less

than 90% of their time in the earthquake region before the earthquake happened.

After the filtering, we end up with 70,123 Turkish and 57,586 Syrians. This way, we

ensure that the detected displacement patterns are not from temporary residents,

tourists, or transit visitors going back to their homes after the disaster.

3.2.3 Other data sources

In our analysis of the displacement patterns, we further use two indices, one to in-

dicate the amount of urbanization, and another for indicating the amount of damage
[4]. The MNO internally categorizes urbanization in different categories as “densely

urban”, “urban”, “suburban”, and “rural”. We base our index on this classification.

The damage indicator data were collected and processed by various volunteer or-

ganizations within a month after the earthquake [30] using the official data shared

by the ministry of environment and urban planning[5]. The data show damage lev-

els for around 210,000 buildings in the earthquake area, but not all buildings are

included. The buildings are classified into four damage categories: “collapsed build-

ings,” “buildings that need to be demolished,” “heavily damaged buildings,” and

“slightly damaged buildings.” These categories represent distinct conditions rather

than a strictly linear progression of damage severity. To quantify these categories,

we assigned values to distinct damage categories reflecting their severity per build-

ing, and summed number of buildings per cell tower weighted by their damage

level. We make both indices available to the reader online, at a 10km× 10km grid

resolution. Further information including a detailed visual reconnaissance report is

published by Dilsiz et al. [31]. We show the spatial distribution of both indices in

Figure 2 (bottom), where darker colors indicate more intense infrastructure damage

or higher level of urbanization. We also highlighted the major city centers in the

earthquake region with circles.

To provide additional context to the indices and the patterns observed in the

CDR-based analysis, we also incorporated on-the-ground qualitative insights. Two

[3]Data on the distribution of Syrian population across Türkiye is published, and

regularly updated by the Presidency of Migration Management. See: https://en.goc.

gov.tr/

[4]See Supplementary Material for more detail about how the damage and urban-

ization indices are calculated.
[5]The damage level of buildings were queried at: hasar.cbs.gov.tr.

https://en.goc.gov.tr/
https://en.goc.gov.tr/
hasar.cbs.gov.tr
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Figure 2 The spatial distribution of urbanization (top) and building damage index (bottom)
across Türkiye, where lower values indicate less urbanization and less damage, respectively. We
added circles to show the centers of the ten cities in the affected region.

of the authors, a sociologist and a political scientist, conducted fieldwork across

earthquake-affected provinces on three separate occasions: February 23–27, 2023

(two weeks after the disaster); June 10–15, 2023; and April 29–May 4, 2024. These

field visits included semi-structured interviews with displaced individuals in cities

such as Maraş, Gaziantep, and Hatay; in informal resettlement zones on the ur-

ban peripheries of Hatay; and participant observation in formal refugee camps such

as Altınözü (Boynuyoğun) and Hilalkent. These qualitative observations were in-

strumental in contextualizing the spatial and temporal patterns identified in the

ASA analysis—such as the clustering of Syrian displaced persons (DPs) around

refugee camps and the differing displacement trajectories and return rhythms be-

tween Turkish citizens and Syrian refugees. Importantly, field-based insights un-

derscored the relevance of distinguishing between citizens and refugees when an-

alyzing post-disaster mobility, as their legal status, access to aid, and integration

into national recovery systems varied considerably. This distinction also illuminated

the specific vulnerabilities faced by refugee communities, including legal precarity,

limited access to transport and housing, and heightened exposure to anti-refugee

sentiment [32, 33, 34]. Such factors not only constrained their mobility but also

deepened existing social inequalities in the aftermath of the disaster.
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3.3 Measurement of stay locations

We use a parametric approach based on CDR data for describing the stay locations

of individuals. Two thresholds, one spatial and one temporal, are used to control

and adapt the algorithm to the particular context. This is similar to the algorithm

proposed by [35], which however uses GPS coordinates for determining stay points.

We define a “stay location” as the area covered by cell towers within the specified

spatial threshold to which a person’s device connects for longer than a specified

temporal threshold. We share the pseudocode for the stay detection algorithm, and

describe its use, in the Supplementary Material.

In the literature, the location of a person is often associated with the Voronoi

cell of the connected cell tower when processing CDR. This refers to the polygon

that contains all points for which the corresponding cell tower is the closest one.

However, the service area of a cell tower can be small (e.g., in city centers) or

large (e.g., rural areas) depending on the population density. In dense areas, a

person can receive signals from different towers despite being in the same location.

Furthermore, infrequent calls by a person will result in a data sparsity problem in

the CDR. Using stay locations instead of the cell tower footprints helps us deal with

both data sparsity and noise in cell tower assignments.

We determine the area of a stay location by the convex hull of the Voronoi cells

used, which is the smallest convex shape that fully encloses all the polygons. (See

Figures S1 and S2 in the Supplementary Material for the stay location area calcula-

tions in rural and urban areas, respectively). Lastly, we assume that the individual

stays in the last calculated stay location, unless a new one is calculated. Individuals

with a low signal frequency from a single location are not considered as displaced

by the algorithm.

3.4 Activity spaces

Assessing displacement is frequently achieved by determining home locations of

people and detecting changes in these. Home location-based approaches (HLA)

focus on the shifts in the district of the residence, yet the areas where people spend

their time tend to be larger than their residences. “Activity space” is a widely

accepted concept in sociology and geography and stipulates that the space in which

people spend their time tends to be larger than their residential areas due to their

work, routines, and social connections [17, 18]. The way people interact with their

environment shows not only their personal values and preferences, but also their

socioeconomic position and ethnic background [36, 37]. Incorporating activity spaces

is an important component for our displacement measurement approach, as we

expect loss of livelihood in the aftermath of an earthquake to result in substantial

shifts in activity spaces.

There are different established approaches to measure activity spaces of individ-

uals using MPD [38, 39], and new approaches are still emerging [40, 41]. Many

studies first identify the so-called “anchor points,” such as home, work, and other

significant locations, where the individuals tend to spend most of their time [38, 39].

The second step is to measure the spatial extent of anchor points by fitting ellipse-

shaped regions, or by using minimum convex hulls (MCH) [40]. MCHs are easier to

compute and fully enclose all the stay location polygons, but tend to overestimate

the activity spaces compared to ellipse-based approaches.



Aydoğdu et al. Page 10 of 30

In our method, we do not define work and home locations as anchor points, but

partially account for them, as our stay locations identify stationary areas, which

are expected to include residential and work places. Due to the way they are cal-

culated, stay locations tend to overlap with each other (see Figures S1 and S2 in

the Supplementary Material for examples). If an individual leaves and returns to

the same location, it is recorded as two different stay locations. To discover activity

spaces from stay locations, we use the DBSCAN clustering algorithm [42], using

the coordinates of the centroids of each stay location. DBSCAN performs density

estimation and clustering using two hyperparameters; the maximum distance be-

tween clusters and the minimum number of points per cluster, respectively. For the

purposes of our method, we fixed the minimum cluster size to a single point so that

no stay location is treated as noise. As a result of DBSCAN clustering, each stay

location is assigned to an activity space.

As stay location areas are calculated using a Voronoi tessellation, we prefer the

MCH approach to calculate the areas of the activity spaces as well. Ellipse-based

approaches create the ellipses based on the exact cell tower locations, and do not

incorporate their actual service areas. We discuss how to set the spatial parameters

of ASA in the Supplementary Material, as the spatial threshold and maximum

distance are important to ensure that the habitual areas are not artificially enlarged.

Figures S3 and S4 there illustrate how activity spaces are calculated given a set

of stay locations and maximum distance parameters and show that our approach

focuses on geographic areas, where the service coverage of the cell towers plays a

significant role in defining the boundaries of those areas.

Our proposed approach differs from the standard method of calculating activity

spaces with mobile data by anchoring them to work and home locations [38, 39].

The distance parameter may determine that home and work locations belong to

two different activity spaces, potentially classifying work locations as “unfamiliar”

places due to low relevance scores. Even if this occurs, the fact that people begin

spending nights in areas previously designated as work areas could signal a form of

displacement.

3.5 Relevance of the stay locations

The destinations people relocate to after disasters can often be predicted based

on their social connections or previously visited locations [16]. Nighttime visits are

used to determine the residential areas of individuals, but they can also reveal

close social connections. We define nighttime as the time between 10 PM and 7

AM. These hours are chosen as limited as possible to ensure that the observed

patterns are either residential or related to close social connections. Specifically, for

the 2023 earthquake that we study, nighttime leisure activities are very limited in

the areas hit by the earthquake, compared to metropolitan areas in Türkiye, such

as Istanbul or Ankara. If an individual relocates to an area where they maintain

close social connections or where they have second residences, we do not want ASA

to classify the movements as displacement. Therefore, we introduce the concept of

a relevance score for each activity space that quantifies familiarity with the visited

area according to pre-earthquake nighttime visit frequency.
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Rpost,k =
∑
j

(
Rpre,j ×

Apre,j ∩Apost,k

Apre,j

)
(1)

In Eq. 1, j represents a pre-disaster activity space, Rpre,j is the relevance score

for pre-disaster activity space j, Apre,j is the area of pre-disaster activity space j,

and Apost,k is the area of post-disaster activity space k. The calculated Rpost,k is

also assigned to all clustered stay locations in the post-disaster activity space k.

For clarity of explanations, we determine whether an activity space k is relevant

or not as a Boolean variable, calculated as:

Rk =

1, if Rpost,k ≥ Rthreshold

0, if Rpost,k < Rthreshold

(2)

The relevance score threshold Rthreshold is the final hyperparameter of the ASA.

This parameter controls the overlap between the pre- and post-disaster activity

spaces Apre,j and Apost,k.

Our proposed approach relies on detecting maintained drops in the binary rele-

vance scores of stay locations after the disaster. This means that the individual has

been displaced to a new set of stay locations. For this reason, each stay location of

the individual will inherit the binary relevance value of its activity space cluster, as

determined by DBSCAN.

3.6 Displacement detection

Figure 3 Detecting migration via stay locations for a single user. Stays and trips are detected from
the fine-grained mobility data, and trajectories are computed. We obtain a set of daily locations,
and process these into familiar and unfamiliar places by relying on the binary relevance score.

We detect displacements with a migration detection algorithm that works on a

daily time series of location identifiers, which can represent various geographic units
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ranging from administrative boundaries to individual cell towers [25], but adapt it to

detect disaster-induced displacements. This algorithm detects continuous segments

of locations for each individual, allowing for gaps and deviations, to distinguish

genuine residential movements from temporary travels, while accommodating data

sparsity. In Figure 3, we give an overview of the data processing for calculating the

trajectories, which are the input for our displacement detection algorithm (see the

Supplementary Material for more detail).

The key difference in detecting displacements and voluntary migration on MPD

is related to the definitions. While there is no universally agreed definition of mi-

gration [43], the voluntary migration is often more clearly defined temporally and

spatially than involuntary migration. For instance, according to the United Na-

tions (UN) [44] a movement between two countries is considered as migration if

the person spends at least 12 months at the destination, and as short-term migra-

tion if the time spent is between 3 and 12 months. Similar temporal thresholds

are employed for collecting statistics on internal migration by National Statistical

Offices (NSOs), although specific thresholds vary by country [45]. Clear spatial and

temporal thresholds for defining what migration constitutes align well with the al-

gorithm’s segment-based approach. Involuntary movements as a result of disasters

can be more sudden, irregular, include multiple moves, and may not follow the clear

change between two stable locations that the algorithm expects to see. In addition,

due to the crisis context definitions of displacements do not necessarily employ tem-

poral or spatial thresholds except the distinction between cross-border and internal

movements. We relied on the definition of displacements as loss of habitual spaces,

and loss of familiarity, instead of spatial or temporal thresholds. Thus in ASA, we

detect displacements on two types of segments; familiar and unfamiliar locations.

Given a time series of stay locations, the migration detection algorithm will de-

tect the migration events, origins, and destinations, as well as an estimate of the

date of migration. Its most important hyperparameters are the minimum number

of days stayed at a location to retain a segment, which is denoted by k, and the

maximum gap allowed between consecutive observations to consider them within

the same location segment, denoted by ε. We focus only on the migration events

that start after the disaster, within the disaster affected region. When administra-

tive boundaries are used as the location identifier, the algorithm detects the origin

and destination as single locations. Since we use the binary relevance score as the

location identifier, the origins refer to all stay locations with relevance scores above

the relevance threshold, and the destinations are those below it. The idea behind

this is that the displacements, unlike regular migration events, may be associated

with loss of livelihood, which reflects on the decrease in relevance scores of stay

locations, thereby indicating substantial shifts in activity spaces.

3.7 Model comparison

Home location-based approaches (HLA) are the most popular methods for de-

tecting displacements on individual mobile records. HLA measure displacements

through shifts in residential areas. There are different methods used for identify-

ing shifts in home locations, including frequency-based approaches [7, 8, 9], and

more recently, segment-based approaches [10]. Frequency-based approaches assign
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users to home locations (cell towers or administrative areas) in varying time frames

(weekly, monthly, yearly), and then compare consecutive periods to see if the indi-

vidual has shifted their home location. If there is a shift, the origin and destination

often refer to administrative areas (neighborhood, district, city) where individuals

are most frequently found to reside before and after the disaster, respectively. On

the other hand, segment-based approaches are designed explicitly to accommodate

noisy mobility data, and use segments to detect the shifts. They define the origins

and destinations by contiguous segments before and after the migration event, re-

spectively. There are different ways to represent the main residential area; it can be

the daily modal location (i.e. the area where the individual receives most of their

signals) [10, 7], or the location where most signals are received during nighttime or

weekends.

In ASA, we adopt the segment-based approach to measure displacements, but we

focus on shifts from familiar activity spaces to unfamiliar ones, rather shifts between

residential areas. HLA filters for home locations to trace residential movements,

whereas ASA analyzes mobility patterns as a whole, through stay locations. This

enables ASA to have a more individualized spatial representation of origin and

destination areas, capturing not only residential areas, but also how individuals use

the space more broadly, including work, leisure, and other important places. In other

words, for ASA, all familiar locations before the disaster constitute the origin, and

all unfamiliar locations after the disaster are the destinations. Consequently, ASA

uses a segment-based approach to measure displacements, and proposes a novel way

of spatially representing origins and destinations.

To evaluate ASA, we compare it to HLA proposed by Chi and others [25], which

was applied in TMB [10]. TMB is successful in measuring displacements, and it

can help establishing causal links between push factors such as armed violence and

migration. However, it is difficult to understand what types of shifts are occurring

for DP’s beyond their residences. As we demonstrate with examples in Section 4,

seeing such shifts at high spatial resolution can give additional insights on different

experiences of displacements. We present additional comparisons with a simpler

frequency-based HLA in the Supplementary Material.

4 Experimental results
4.1 Origins and destinations

Using the ASA, we detected displacements and obtained the origins, the destina-

tions, and the timings of the displacements. We chose the spatiotemporal thresholds

as 2km and 2h, DBSCAN distance threshold at 5km and relevance score at 5%. We

selected stay location thresholds to balance spatial granularity while reducing noise.

In our data set, the median distance between the cell towers within the earthquake

area is around 3km. By choosing a spatial threshold at 2km, we effectively cluster

the towers at city centers together. We chose a 2h temporal threshold, because the

CDR data is aggregated into hourly bins, following earlier mobile dataset prepa-

ration efforts [26, 27]. In the migration detection algorithm, we fix the parameter

controlling the number of days needed to be spent at a location to consider it a loca-

tion segment to 14 days. A sensitivity analysis of selected parameters is conducted

and reported in Section 4.2.
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Figure 4 Kernel density maps for the origin (top) and destination (bottom) locations of Syrian
(left) and Turkish (right) DPs, weighted by the nighttime spent in each stay location. Red points
denote the city centers, and yellow stars the active refugee camps (zoom in for details).

In ASA, the origins and the destinations are calculated as distributions over space

representing overall mobility of individuals. In Figure 4, we show the spatial density

of the origin and destination stay locations for Syrians and Turkish people separately

in the earthquake affected regions of Türkiye, using kernel density estimation [46,

47]. These are weighted by the nighttime spent in each stay location to emphasize

the nighttime durations. Weighing by the night time slightly increases the density

around refugee camps, but the patterns remain similar without the weights. The

overall density of the stays gets reduced in the aftermath of the disaster due to the

fact that many DPs left their home areas. Depending on spatiotemporal thresholds,

increasing the size of stay locations lowers the density of these patterns, but the

main visual insights remain very similar.

In TMB, origin and destination each refer to a single cell tower, but they can

be analyzed at district level as well (see Figure S9 in Supplementary Material). In

Figure 5, we show the distribution of the origins and the destinations as calculated

by TMB at the cell tower level. Both ASA and TMB detect similar distributions

of origin and destination areas in the earthquake region. Notably, ASA detected

around 10,500 DPs, whereas TMB detected 3,700 DPs at cell tower level. TMB

identifies less displaced people at cell tower level, as the segment-based algorithm

struggles more to identify contiguous segments in granular space representations

(see the Supplementary Material for details). Both Figure 4 and 5 show that the

origin locations of both displaced Syrian and Turkish populations were largely con-

centrated in city centers, which are marked by the red points on the maps. Figure 4
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Figure 5 The distribution of origin (top) and destination (bottom) districts of Syrian (left) and
Turkish (right) DPs calculated by TMB (home locations were used at cell tower level). Higher
population density is marked by purple.

uses the density of stay locations instead of the density of residences, so it is able

to show the origins in great detail, highlighting areas with frequent visits that get

lost in simple residency-based measurements.

In Hatay, which was particularly impacted by the earthquake, the distribution

of origin stay locations is spatially more extensive compared to other regions (see

Figure 4). Both Figure 4 and 5 show that some people were displaced to unaffected

cities close to the earthquake area, such as Mersin. The destination distributions of

Syrians calculated using ASA shows that there was an increased population density

around active Temporary Accommodation Centers (TACs), which are marked by

yellow stars on the maps.[6]. TACs are commonly referred to as “camps” by locals

and they were previously housing Syrian refugees under Temporary Protection. We

could not find the origins and destinations at this level of detail, neither with TMB,

nor with the frequency-based approaches[7].

4.2 Sensitivity analysis

We investigated the effect of different hyperparameter settings on the proposed

method and the TMB baseline. We firmly believe that in complex settings, such

[6]For the locations of TACs, we used the data found at: https://data.humdata.org/dataset/

turkey-refugee-camps, Accessed June 10, 2025. We validated the locations of the TACs,

but had to manually correct the location of the Türkoğlu camp, which was incorrect.
[7]See the Supplementary Material for origin and destination maps based on

frequency-based approach and TMB.

https://data.humdata.org/dataset/turkey-refugee-camps
https://data.humdata.org/dataset/turkey-refugee-camps
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as post-disaster mobility, there is no single parameter set that will work uniformly

well. Instead, setting different parameters will function like changing the zoom rate

of a microscope, and one should investigate broadly in collaboration with domain

experts, informed by further qualitative approaches.

We start by assessing the number of displaced people detected in ASA and

TMB approaches. We test three spatiotemporal threshold settings for the ASA:

2km/2h; 5km/2h; and 10km/4h, respectively. Then for each of the stay location

measurements, we investigate the relevance score levels of {0%, 5%, 10%, 15%}.
The DBSCAN distances are chosen separately for each spatiotemporal threshold;

{3km, 5km, 10km} for 2km/2h, {5km, 10km, 20km} for 5km/2h and {10km, 20km,

40km} for 10km/4h. The minimum sample parameter of DBSCAN is fixed to one

sample, as explained previously.

The TMB method can work with different levels of geographical boundaries. We

contrast here three alternatives; the city, the district, and cell boundaries (defined

as Voronoi cells), respectively. We set the hyperparameters of migration detection

algorithm k and minDays (ε) to {3, 5, 7, 10, 14} days for both TMB and ASA.

With this range of hyperparameters, ASA detects between 10,000 and 20,900 DPs,

whereas TMB detects between 3,700 and 17,500 DPs at cell tower level, between

5,700 and 12,500 DPs at district level, and between 6,100 and 10,000 DPs at city

level. We calculate an overlap coefficient, which measures the overlap between two

sets divided by the size of the smaller set. We establish that ASA detects between

80% and 94% of DPs detected by TMB, in addition to finding other displacement

groups.

Figure 6 The number of displaced people for three different hyperparameter settings for ASA.

Figure 6 illustrates how the three hyperparameters affect the displacement de-

tection in ASA. The left panel shows that increasing the spatiotemporal thresholds

(from 2km/2h to 10km/4h) do not substantially impact the number of detected dis-

placements. The middle panel demonstrates that the DBSCAN distance parameter,

which determines activity space size, has an inverse relationship with displacement

detection - larger distances (20km) generally result in fewer detected displacements

compared to medium distances (3-5km). The impact of DBSCAN distances is depen-

dent on the spatial threshold to determine stay locations. Increasing the DBSCAN

distance parameter decreases the number of detected DPs, as this way, more move-

ments remain within the activity spaces and hence not classified as displacements.
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Lastly, the right panel confirms that increasing the nighttime relevance threshold

(from 0% to 15%) directly increases displacement detection. Higher thresholds mean

areas must have a greater pre-disaster familiarity to be considered ‘familiar’, mak-

ing it more likely for post-disaster locations to be classified as unfamiliar, and thus

indicating displacement.

Figure 7 The comparison between ASA and TMB in terms of the number of displaced people
detected for two main hyperparameters of migration detection algorithm; k and ε.

We also test the parameters of the migration detection algorithm, used both

in ASA and TMB. We sampled the number of displaced people by running the

migration detection algorithm for different values of k, the minimum days stayed

to consider the area as residence area, and ε, the maximum gap allowed without

breaking the segments. In Figure 7, we show the impact of these parameters on

the number of detected displaced people. k is the most influential parameter in

determining the number of DPs both for TMB and ASA. As expected, increasing

k yields less displaced people, as we are more stringent on how much time needs to

be spent at the destination to consider the person as displaced. Decreasing k from

14 to 3 days almost doubles the number of detected DPs. Chi et al. [25] previously

showed that decreasing k has the same impact on longer periods of migration. For

ε, we do not see a large impact for TMB or for ASA.

5 Displacement patterns
After ASA is executed, we obtain origins, destinations, and dates of displace-

ments[8]. In this section, we analyze our findings.

[8]We included further information on how dates of displacements are calculated in

the Supplementary Material.
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5.1 Stay locations

To characterize the origin and destination stay locations, we used multiple data

sources. We applied the previously explained urbanization index to measure the

level of urban development at both origins and destinations, and the damage index

to quantify destruction levels. To account for the broader context, we considered

the total population of the cities where these stay locations are situated. We also

introduced a dummy Boolean variable called “Border Index” that equals 1 if a

stay location falls within a 20 km radius of Türkiye’s border with Syria and 0 if it

falls outside this range. As the earthquake was highly destructive in Syria too, we

suspect this could create a strong pull effect for Syrian refugees living in Türkiye,

especially in the immediate aftermath of the disaster. This variable helps to identify

movements towards Syria.

There are multiple stay locations categorized as the origin and the destination

for each individual. The urbanization, damage, border and population indices are

calculated separately for each stay location of each individual, i.e. we know how

urbanized the area is, how much damage is recorded within the area, the population

count of the city where the stay location is situated, and whether or not the area is

within 20 km of Syrian borders. The indices are first calculated at cell level, then

the stay location polygons are intersected with the cells to calculate their specific

values. To summarize the indices for the origin and destination stay locations, we

weigh them with the nighttime duration spent in each. For a displaced person c, let

Sc,o be the set of stay locations that are identified to be in the origin areas by our

algorithm, and Sc,d to be the stay locations related to the destination. Then:

Scaled indexc,l =

∑
s∈Sc,l

indexs · durationc,s∑
s∈Sc,l

durationc,s
, where l ∈ {origin,destination} (3)

The indices calculated via Eq. 3 are showing the levels at the individual level, giv-

ing a summary of all locations that the person stayed in the origin and destination.

We calculated the difference of these indices between the destination and the origin

to quantify the changes in people’s stay locations after the disaster.

First, we look at the distribution of the distances and displacement dates. Since we

have multiple origin and destination stay locations per DP, we look at the distance

between the weighted centroids of origin and destination locations. In Figure 8,

the upper plots show the distribution of distance for Syrians and Turkish DPs. We

stratified the distributions by the damage categories, which are calculated using the

damage index explained previously.

We see that for the Turkish group, DPs whose origin areas received lower levels

of damage shifted their stay locations at shorter distances compared to DPs who

were more impacted by the earthquake. The distribution of distances are similar

across all damage categories, where DPs generally traveled shorter distances. On the

other hand, for Syrians, we see a bimodal distribution, where DPs who experienced

lower damage traveled shorter distances, and DPs who experienced medium or high

damage traveled greater distances. When we look at the origin areas of the Syrians

who were in the second peak emerging around 800–900 km, we saw that the origins
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notably include the cities of Gaziantep and Şanlıurfa. One plausible explanation

for this is that these cities traditionally send large numbers of seasonal agricultural

workers to western Türkiye, and long-standing migration pathways may have been

reactivated after the disaster. This indicates that once displacement occurs, Syrian

DPs are more likely to engage in long-distance relocations, shaped by long-standing

migratory practices and collective familiarity with specific routes or destinations.

Figure 8 The distribution of the distance between the origin and destination stay locations across
different damage categories (top) for Syrian (left) and Turkish (right) DPs, and the cumulative
ratio of displacements among detected Syrian and Turkish DPs for each date after the
displacements (bottom).

5.2 Temporal patterns and mobility factors

A critical consideration in disaster response is the temporal pattern of popula-

tion displacement. Research consistently demonstrates socioeconomic disparities in

evacuation behavior; individuals from lower socioeconomic backgrounds typically

evacuate later and in fewer numbers compared to those from higher socioeconomic

strata [23, 22]. In addition, race and ethnicity was shown to impact the evacua-

tion rates where the privileged demographic groups are overrepresented in early

evacuations [48]. To understand the speed of displacements, we looked at the date

of displacements after the earthquake occurred. In Figure 8, the lower plots show

the displacement date for Turkish and Syrian communities for different levels of

damage they experienced during the earthquake. On the first day 56% of Turk-

ish detected DPs were already displaced, whereas only 36% of Syrians DPs were

displaced on that day. Temporal patterns in Figure 8 highlight a stark contrast

in mobility capacity. Turkish DPs, particularly from heavily damaged areas, tend

to evacuate rapidly—peaking on the first or second day. In contrast, Syrian DPs
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Figure 9 The plot shows the distributions of the difference of scaled indices, which are calculated
personally for each individual given their origin and destination stay locations. The density
probabilities are estimated using kernel density estimation.

exhibit delayed displacement even from high-damage zones, with a noticeably long-

tailed distribution. This temporal lag signals that exposure alone does not deter-

mine displacement timing; rather, the capacity to act on that exposure—influenced

by access to transportation, legal protection, and social ties—plays a pivotal role.

Vulnerable populations—such as the elderly, persons with disabilities, minorities,

and undocumented migrants—face significant barriers in accessing timely informa-

tion, transportation, and support services during disasters [49]. Their evacuation

processes tend to be slower due to structural inequalities, limited social networks,

and a lack of resources or legal protections [50]. As a result, disaster impacts are

disproportionately severe for these groups, reinforcing existing vulnerabilities and

reducing their chances of survival and recovery.

In Figure 9 top left, we see that most people shifted their stay locations to less

damaged areas. The distributions center at a slightly negative value for both Turkish

and Syrian populations, with a pronounced long tail extending toward the negative

values, clearly indicating movement away from more severely damaged areas. In-

terestingly, Turkish DPs were more likely to relocate to less urbanized, often rural

areas in the aftermath of the disaster (top right plot in Figure 9). This pattern re-

flects more than a retreat from risk; it reveals an adaptive capacity rooted in rural

social embeddedness, including kinship ties, familiarity with land, and –in many

cases– access to secondary housing or property. These resources enabled relatively

autonomous and rapid evacuation, drawing on longstanding socio-spatial ties and

informal support structures. Notably, official statements at the time confirm this

trend: on 1 March 2023, the Turkish President announced that while 3.3 million peo-

ple had left the disaster zone, approximately 800,000 had returned to their villages,
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Figure 10 The figure shows the kernel density map around the border for Syrian DPs whose
border index shifted from 0 to 1 (i.e. who were not living around the border but they were
displaced to the area after the earthquake). We also show the border gates, major city centers and
TACs around the border.

highlighting the scale of rural-directed displacement during the early post-disaster

period.

For population differences between the origins and destinations (see lower left

plot in Figure 9), we see that the DPs were attracted to larger population areas,

as there is more density in the right hand side. This aligns well with the predic-

tions of traditional migration models, which expect more migration towards higher

population areas. The smaller peak (around 14 million) reflects DPs who traveled

to Istanbul, which has an official populace of 16.5 million. Most DPs who migrated

to Istanbul were Syrians. Turkish DPs show a more dispersed pattern of displace-

ment across various metropolitan cities in the western regions of Türkiye. When

we look at the destination hotspots in Istanbul, we see a similar pattern that the

Syrians DPs are concentrated in a couple of districts in the European side of the

city, whereas Turkish DPs are spatially more dispersed. Notably, Syrian DPs are

concentrated in Esenyurt, Bağcılar, Esenler and Fatih, which are all districts with

high concentration of Syrian refugees [51]. This suggests that Syrians relied on their

social networks in Istanbul when they choose their destinations. It is possible that

Turkish DPs have done the same, yet due to the larger spatial variation in their

social networks in Istanbul such concentrations are not possible to observe.

There are around 302 Syrians, and 250 Turkish DPs whose destination stay loca-

tions got shifted towards the Syrian border compared to their origin stay locations

measured by the border index difference in Figure 9. These people were generally

residing in the central areas of Hatay, Gaziantep and Şanlıurfa. We gave a visual

summary of the destinations of this group around the Syrian border in Figure 10.

We see that the concentration of people were around various hotspots, most no-

tably border gates, TACs, and city center of Kilis. We cannot definitively know if

the Syrian DPs were attracted to this region to cross the border and possibly help
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their social networks in Syria[9], or they were coming near the TACs or their social

networks near the border residing in Türkiye. The destinations for Turkish people

who get closer to the border region were not clustered as close to the border gates,

rather were around the rural areas of Gaziantep, Hatay and Şanlıurfa.

5.3 TACs

The finding in Section 4.1 that Syrian refugees were displaced to TACs align with

the qualitative observations from our field visits. Notably, none of the methods we

tried (except ASA) could identify that the Syrian refugees chose TACs as one of

their main destination areas in the earthquake zone. Following our initial visit to the

earthquake-affected region, we observed that some TACs had become post-disaster

shelters not only for Syrians, but also for Turkish citizens. For instance, in the

Kahramanmaraş Türkoğlu (Sivricehüyük) TAC, which previously hosted approxi-

mately 10,000 Syrians, the population reportedly rose to 16,500 after the earthquake

[52]. This increase reflects the arrival of displaced Turkish citizens seeking shelter

in spaces with already functioning infrastructure, including heating, sanitation, and

medical services. While ASA-based measures can capture a rise in Syrian presence

in Türkoğlu TAC, the mobility of Turkish citizens does not appear with the same

clarity, which is likely due to limitations in sampling and the absence of concentrated

movement patterns among them.

Our findings suggest that refugee camps have functioned not only as pre-disaster

residences, but also as post-disaster spatial anchors – limiting the range of dispersal

and reinforcing institutional dependency. These patterns may be interpreted as both

protective and limiting, shaping uneven geographies of recovery. This spatial gath-

ering observed among Syrians, especially the concentration in post-disaster camp

zones, may reflect multiple overlapping dynamics. First, information asymmetries

and legal precarity may have restricted alternative destination options. Second,

existing infrastructure in and around the camps (despite being established before

the earthquake for different reasons) offered familiar settings and perceived safety.

Third, in the immediate aftermath of the disaster, the intensification of anti-refugee

sentiment and public discrimination may have led some Syrians to seek invisibility

or social shielding by retreating into more enclosed and institutionally managed

spaces such as camps—places where their presence, while often marginalized, was

at least formally recognized [32, 53].

Despite the co-settlement in TACs such as Türkoğlu, the spatial convergence did

not necessarily translate into social integration in these areas. Instead, forms of

micro-level segregation emerged, highlighting the enduring nature of group bound-

aries even in contexts of shared vulnerability and displacement. One of the ad-

ditional sites we visited during the qualitative fieldwork was the Hilalkent camp,

established nearly a year after the earthquake. Unlike Türkoğlu TAC, Hilalkent was

not a spontaneous shelter, but a state-initiated response to escalating tensions in the

area. Its establishment highlights that the post-disaster period did not necessarily

reduce social divisions; in some cases, it reinforced them—supporting our argument

[9]There are news sources documenting the increased queues at the border gates

in Syrian border after the earthquake: https://www.bbc.com/turkce/articles/crgz584x9gro,

Accessed April 8, 2025

https://www.bbc.com/turkce/articles/crgz584x9gro
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that co-settlement did not foster cohesion and, at times, even deepened spatial and

social segregation.

6 Validation
The validation of MPD-based indicators of displacement in the context of disasters

remains a challenge, as usually ground truth data do not exist and existing data

sources focus on different aspects of the displacements. Nevertheless, we used the

Turkish Statistical Institute (TURKSTAT) annual migration inflows and flows per

city to validate our results further. These are based on the changes in address

registrations recorded at the end of each year compared to the previous year’s

end [10], and are disaggregated by the reason of migration. Earthquake-induced

migration is included in a category labeled “other”, and migration outflows with

this label highly correlate with earthquake-induced migration outflows from the

cities affected by earthquake (approximately 70 % of the people migrated out from

the earthquake affected cities are in the “other” category).

TURKSTAT data are challenging to compare to our own measurements for three

reasons. Firstly, the data show the migration figures as of December 2023 whereas

our measurements are limited to the 26 days after the earthquake. Secondly, TURK-

STAT data show only outflows and inflows and it is not disaggregated by origins and

destinations, lastly there is no information on the flows of Syrian DPs. In addition,

the total number of people migrated with the “other” reason in 2023 is somewhere

around 500,000 and 600,000 (the statistics changes for inflows and outflows). IDMC,

on the other hand, claims that there were 4 million internally displaced people in

Türkiye as a result of 2023 Syria-Türkiye earthquake[11]. We keep these limitations

in mind while comparing our results to TURKSTAT figures.

In Eq. 4, we debias the DP outflows from each affected city f ∈ F for each

nationality group n ∈ {Turkish, Syrian} by correcting for sampling biases in the

CDR data relative to census population figures. This balances factors like the market

share of the MNO, and provides interpolation at city level, but assumes similar

customer behaviors across the three Turkish MNOs.

outdf,n =
pCDR
f,n

pcensusf,n (1− δn)
× outrf,n (4)

In Eq. 4, outdf,n represents the debiased DP outflows from affected cities, whereas

outrf,n represents the raw calculations. For debiasing, we multiply CDR estimated

DP outflow numbers with the CDR population residing in each city and divide it

by the census population. Secondly, as children and elderly (represented by delta

for each group) are not well represented in CDR data set, we remove them from

the census population. According to TURKSTAT, population under 15 constitute

[10]https://data.tuik.gov.tr/Bulten/Index?p=Uluslararasi-Goc-Istatistikleri-2023-53544, Ac-

cessed April 7, 2025.
[11]The numbers on the internally displaced people per country and disaster can be

queried at: https://www.internal-displacement.org/database/displacement-data/

https://data.tuik.gov.tr/Bulten/Index?p=Uluslararasi-Goc-Istatistikleri-2023-53544
https://www.internal-displacement.org/database/displacement-data/
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21 %, whereas population over 85 constitute 1 % of the population [12]. For Syrians,

in January 2023 approximately 40 % of population was under 15, and a negligible

portion was over 85 according to Presidency of Migration Management (PMM)[13].

As a result, Eq. 4 calculates the ratio only for the eligible census population.

To calculate the DP inflows, first we calculate the share of each flow from affected

cities f ∈ F to unaffected cities u ∈ U as a ratio to all flows from the affected city

f as in Eq. 5:

shareCDR
f→u =

flowCDR
f→u∑

u∈U flowCDR
f→u

(5)

Equation 5 gives us the ratio of expected flows from each affected city to unaffected

city. Then, in Eq. 6, we calculate the total DP inflows to unaffected city u, by

multiplying the flow share from each affected city f with debiased DP outflows and

summing over all affected cities F .

indu,n =
∑
f∈F

outdf,n × shareCDR
f→u (6)

Figure 11 This figure shows the comparison between TURKSTAT numbers on migrant inflow and
outflows from the affected region to unaffected regions. We compare the CDR estimates measured
by TMB and ASA and debiased using the approach described above.

In Figure 11, we compare the estimated number of Turkish DP inflows and Turkish

DP outflows for TMB and ASA. To be able to compare the measurements of ASA

to TURKSTAT figures and TMB estimates, we needed to assign each person to

[12]There are significant differences in age distribution among cities as well, however

for simplicity we will assume a constant number for our calculations. More statistics

on the demographics of Turkish citizens is available at: https://data.tuik.gov.tr/

[13]Age and gender distribution of Syrians are sporadically shared by PMM. We

used the infographics shared on 19th of January, 2023 on official PMM website:

https://en.goc.gov.tr/

https://data.tuik.gov.tr/
https://en.goc.gov.tr/
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a single city before and after the disaster. For each DP, we identified their origin

city by determining which city contained the origin stay locations where they spent

the most cumulative nighttime hours. Similarly, we designated their destination

city as the one containing the destination stay locations where they spent the most

cumulative nighttime hours.

The left plot shows the correlation between the CDR estimated DP outflows and

the figures reported by TURKSTAT. Importantly, 45 degree line represents the per-

fect CDR-estimation of DP outflows. The Pearson correlation coefficient between

TURKSTAT and CDR estimates for DP outflows is calculated between 0.94 both

for TMB and ASA (0.01 significance level). The difference between TMB and ASA

measurements are due to the fact that ASA detects more DPs than TMB, hence

the debiased CDR estimates are higher for ASA. In Şanlıurfa, Osmaniye and Kilis,

the CDR-based estimates are very close to the TURKSTAT figures, whereas in

Hatay and Adıyaman, there is an underestimation, and in Kahramanmaraş and

Gaziantep, there is an overestimation both compared to the TURKSTAT figures.

TURKSTAT figures are calculated throughout the whole year, and potentially cap-

ture the displacements that were more persistent. For instance, the difference be-

tween TURKSTAT and MPD-based estimates in Hatay might be pointing to the

persistence of the displacements from this region due to larger infrastructure dam-

age experienced. Possibly, the underestimation might be stemming from the larger

infrastructure damage experienced in Hatay.

Table 1 Syrian Displaced Persons Inflows and Outflows by City

Destination City DP Inflows Origin City DP Outflows

İSTANBUL 13,379 HATAY 18,598

MERSİN 5,492 GAZİANTEP 13,790
BURSA 5,004 KAHRAMANMARAŞ 8,043
ADANA 3,026 ŞANLIURFA 5,514
ANKARA 2,917 MALATYA 4,322
KONYA 2,784 ADANA 2,345

İZMİR 2,502 ADIYAMAN 2,052

GAZİANTEP 2,416 OSMANİYE 923

ŞANLIURFA 2,052 KİLİS 488

ANTALYA 1,873 DİYARBAKIR 434

Note: The numbers are calculated from CDR as de-biased migrant inflow and outflow
estimates using ASA.

In the right plot of Figure 11, we see the DP inflow calculations from affected

cities to unaffected cities. TMB, ASA, and TURKSTAT all rank the number of DP

inflows and outflows per unaffected and affected city in the same order. However,

in some cases, CDR estimates are significantly above the DP inflows measured by

TURKSTAT.This pattern is especially noticeable in Ankara, Istanbul, Antalya, and

Mersin, which might be a signal that the DPs from these regions returned at a higher

rate than other places.

In total, with ASA we estimate around 560,000 Turkish DPs migrated to other

cities. We estimate around 300,000 Turkish were displaced within the city bound-

aries of their origins within the time period we have investigated. We recognize

that these numbers are well below the 4 million declared by IDMC, but align more

closely with TURKSTAT statistics. For Syrians, there is no official statistics to com-

pare the estimated number of earthquake-induced displacements. We estimate that

around 55,000 Syrians were displaced to other cities, and around 15,000 Syrians
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were displaced within the city boundaries. In Table 1, we share the statistics on the

main origin and destination cities of Syrian DPs as estimated.

There are a couple of limitations that might be affecting our results. Firstly, the

earthquake caused high levels of damage to the cell tower infrastructure, especially

in the most impacted regions. At any given moment, a proportion of cell towers

registered to the MNO will not receive signals, and this proportion is somewhat

higher in the earthquake region after the earthquake, particularly in Hatay. Since

nearby towers often compensate this, we relied on towers that continued to provide

service throughout the whole period. We recognize this will cause a bias in how well

we are able to assess the damage per area, and there may be groups of DPs in very

highly damaged areas missing from our CDR analysis.

7 Conclusion
In this paper, we introduced the novel ASA to predict and monitor forced dis-

placements caused by natural disasters via CDR. We tested ASA using the Türkiye

and Syria earthquakes as a case study, where the disaster induced widespread dis-

placements occurring within a region characterized by coexisting local and refugee

populations. ASA is built on the concept of activity spaces, and overcomes some lim-

itations of HLA in terms of accurately describing the living spaces of individuals at

spatially granular level. ASA detects multiple origins and destinations per person as

stay areas, which also enable the detection of origin and destination hotspots. This

flexible approach allows us to see more detailed mobility patterns at different levels.

For example, our experiments illustrated that the alternative home location based

TMB approach could not identify the main destination hotspots for Syrian refugees,

such as the Temporary Accommodation Centers (TACs). In addition, ASA enables

building more specific spatial indices, which can show the impact of the disaster on

DPs across important factors. Our findings underscore the value of spatially disag-

gregated analyses in understanding displacement and allow for comparisons among

different segments of the population.

Our analyses have shown that local and Syrian DPs exhibit divergent displace-

ment patterns across spatial and temporal dimensions. Syrian refugees were able to

leave the disaster areas considerably later than locals and were primarily displaced

to TACs within the region, whereas Turkish population showed more diverse spatial

displacement patterns both within the earthquake-affected areas and across other

cities, with a notable pattern of urban-to-rural displacement. Syrian displacement

appears to be shaped by constrained agency due to various conditions. For example,

Syrian refugees are subject to travel permit obligations, have more limited social

networks, and are delimited by institutionally defined geographies as they are more

visibly concentrated around TACs. Their limited mobility patterns demonstrated

spatial clustering around pre-existing TACs, which acted as stabilizing infrastruc-

tures in the immediate aftermath. Conversely, local DPs exhibit broader dispersal

patterns, more rural transitions, and earlier displacements and higher mobility ca-

pacity.

All in all, our research shows systematically how coping strategies as a response to

a natural disaster are conditional upon various economic, social and legal circum-

stances of individuals and show considerable variation across different segments
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of the population. In line with Doreen Massey’s concept of “power geometries”,

we sees how socio-spatial mobilities are unevenly produced, regulated, and con-

strained [54]. ASA allowed us to bring attention to the ways in which specific forms

of movement are shaped by structural inequalities, institutional regulations, and

disciplinary forces that restrict or enable mobility, though the specific mechanisms

behind these patterns remain open questions for future research.

Field observations suggest that concentrated camp-based populations may be

channeled into precarious labor roles, constraining their bargaining power and

prospects for sustainable recovery. Similarly, local populations which have moved

towards rural areas may not be able to have a sustainable livelihood considering the

rather limited absorptive capacity of rural systems. In the face of such differences, a

one-size-fits-all solution is not possible, and flexible computational tools are needed.

In conclusion, these findings highlight the importance of examining varying mo-

bility patterns among different population segments, calling for more targeted ap-

proaches that address the distinct needs of each group. Our parametric approach

enables detailed MPD analyses at different resolutions, and highlights interactions

between the vulnerabilities of certain communities and their displacements in the

face of a natural disaster. We emphasize that MPD analysis must be further sup-

ported by local knowledge and long term reflections with regards to the needs of

the communities for building resilience in face of future disasters.
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Introduction

In this document, we provide a range of supplementary materials, starting with methodological
details on call detail records, discussion of noise in cell tower data, urbanization and damage indices,
measurement of stay locations, activity spaces, parameter selection, and displacement detection. We
provide additional model comparisons and experimental results, particularly, figures that provide
more detailed insights on alternative models.

Additional Details for Methodology

CDR preparation details

The data collaborative with Turkcell Technology started in 2020 within the framework of the
HumMingBird EU project1. Initially, the subscriber base of Turkcell was subsampled for around
2 million foreigners, essentially using the information collected on users’ nationality at the time of
registration, and for another 2 million Turkish users. We used stratified sampling for the Turkish
users considering the number of foreigners we sampled in each of the 81 cities of Türkiye. Therefore,
the sampling of Turkish users follows the distribution of foreigners across different parts of the
country; more foreigners meant more Turkish users. We created five broad nationality-based flags

1https://hummingbird-h2020.eu/, Accessed June 13, 2025.

1

https://hummingbird-h2020.eu/


for each user based on this information for comparative analysis: Turkish, Syrian, Middle Eastern
or Northern African (except Syria and Türkiye), Central Asian or Afghan.

We collected the Call Detail Records (CDR) from this user base between November, 2022 and
September, 2023. No personal information was stored in CDR, and we ensured one-way anonymiza-
tion. For the earthquake study, we have processed this CDR into a fine-grained mobility data set
format, where we had a timestamp, anonymised ID for caller, nationality segment of the caller
and the callee, cell tower ID used by the caller and the callee, respectively. For this study, we
only used outgoing call records, and not incoming call records. We sampled around 500,000 users
across Türkiye (around 25% of the user base), which resulted in approximately 125,000 people in
the earthquake region. This region is overrepresented in the data we have prepared, as a high
proportion of Syrians lived in this region, and we subsampled more Turkish users there.

Our sampling strategy was explicitly designed for understanding migrant mobility. Therefore,
in our study we were better able to identify the displacement patterns of Syrians, compared to
Turkish users. Among migrant groups, we only focused on Syrians in this study, because the other
groups were too small to enable a meaningful analysis.

Noise in cell tower data

The precise locations of cell towers is considered as sensitive information. Consequently, an
initial Voronoi tessellation was computed using the actual cell tower locations inside TTECH. A
small portion of the towers were unused throughout the whole data collection period (i.e. no data
acquired from the Voronoi cell), and these were excluded from the analyses. Then, we clustered
the active cell towers using agglomerative hierarchical clustering with Ward’s method and a 1 km
distance threshold, which helped us group towers into spatially cohesive clusters, merging small
cells into larger areas. A new Voronoi tessellation was created using the centers of the clustered
towers, and the centroids of cells were used in our analysis. This adds some minor noise to our
location estimation, but prevents potential privacy risks due to too-small Voronoi cells.

Urbanization index

The inactive cells required additional processing for the computation of the urbanization in-
dex. We redistributed the urbanization categories of these cells to the adjusted service areas of
functioning cells probabilistically. For example, a single cell tower might cover an area that is 60%
urban, 30% suburban, and 10% rural. To quantify the overall urbanization level for each cell tower’s
service area, we assigned progressively higher weights to more urbanized categories (with “densely
urban” receiving the highest weight and “rural” the lowest). We then calculated a weighted sum of
these percentages to create a normalized urbanization index between 0 and 1, where higher values
indicate more urbanized areas.

The spatial distribution of urbanization is visually very similar to nighttime satellite images of
Türkiye2, with the notable difference that the northeastern parts of the country show a larger spread
of high levels of urbanization index compared to what the nighttime satellite images suggest. This is
related to high levels of seasonal mobility in and out of this area. The MNO categorizes urbanization
levels of areas that receive high signals seasonally in the western, southern and northern coastal
areas as “seasonal densely urban”, “seasonal urban”, and “seasonal suburban”. While creating the

2See https://www.sciencephoto.com/media/662978/view/turkey-at-night-satellite-image, Accessed June
16, 2025.

2
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urbanization index we ignored the seasonality aspect, and only used the urbanization descriptors. In
the earthquake region (see the red circles in the upper plot of Figure 2 in the main paper) the index
aligns well with the expected urbanization levels. However, for the Northeastern regions of Türkiye,
this resulted in an index that overestimates the urbanization levels due to high seasonal mobility to
rural areas, which were classified as “seasonal suburban” by the MNO. Since the mobility related
to this region is very limited in our dataset, this mismatch does not constitute an issue for our
analysis.

Damage index

To compute the damage index, we assigned a value of 1 to collapsed buildings and discounted
values to the other categories (buildings that need to be demolished, heavily damaged buildings, and
slightly damaged buildings), with each value weighted to reflect its relative severity compared to
collapsed buildings. Then we calculated the weighted sum of all damaged buildings, and divided it
by the area spanned by each cell to have a density-based measure of the damaged buildings. Lastly,
we applied a min-max normalization, which produced a normalized measure between 0 and 1, where
higher values indicate areas with more severe infrastructure damage. This approach allowed us to
create a single comparable measure that accounts for the varying degrees of damage across the
affected regions, while acknowledging the qualitative differences between damage categories. We
recognize that choosing the weights for these categories requires simplifying assumptions, but we
show empirically that they are still useful to understand the patterns of displacement. The resulting
index varies between 0 and 1, but most of the distribution is between low values of 0 and 0.2. Figure
2 in the main paper clearly shows that there were higher levels of damage in the city centers.

Measurement of stay locations

In Algorithm 1, we share the pseudo-code of the stay location detection approach, inspired
by [1], which is a differential based strategy that tries to identify stationary areas by focusing on
the temporal and spatial differences between consecutive GPS traces in individual movements [2].
Our measurement of stay locations differs from [1] in one aspect; they use a single distance check
between consecutive points until a threshold is exceeded, whereas we use a double distance check
both between consecutive points and between the initial point and the current point. The original
algorithm was written for processing GPS data, where the data frequency is higher than CDR.
In addition, GPS works on smaller distance thresholds compared to CDR, as the former relies on
satellites for data collection, whereas the latter on cell towers. Because of the lower resolution in
CDR, there is a chance that consecutive data points will be below the distance threshold even if
the individual is actually moving. This issue can potentially exist for GPS data as well, but it
has not emerged as an issue in the literature of stay location detections, possibly because the data
frequency and accuracy of GPS compensate for this concern. In CDR, without adding a second
distance check, some stay locations might capture movements across neighboring cells instead of
actual stationary areas. Instead, we required each point to remain within the distance threshold of
both the previous point and the stay’s starting location.

The algorithm groups cell towers together as stay locations, but it does not define their shape.
For this, we have calculated the convex hull of the Voronoi cells, using the minimal convex polygon
that fully encloses all the exterior boundaries. In Figures S1 and S2, we demonstrate how the convex
hulls are fit to the same individual CDR trace for different temporal and spatial thresholds. While
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Algorithm 1 Stay Detection(D, distThresh, durThresh)

Input: An MPD dataset D, distance threshold distThresh, duration threshold durThresh
Output: A set of stays for each user AllStays
1: AllStays← ∅;
2: for each unique user u in D do
3: G← {p ∈ D : p.userId = u}
4: Sort G by timestamp;
5: pointNum← |G|, i← 0;
6: stays← ∅;
7: currentStay ← null, cumulativeDist← 0;
8: stayStartPoint← null;
9: while i < pointNum do

10: pi ← G[i];
11: if i = 0 then
12: Initialize currentStay with pi properties;
13: stayStartPoint← pi.geometry;
14: else
15: distFromPrev ← Distance(pi.geometry, pi−1.geometry)
16: distFromStart← Distance(pi.geometry, stayStartPoint)
17: ∆T ← pi.time− currentStay.startT ime
18: if max(distFromPrev, distFromStart) ≤ distThresh and ∆T ≥ durThresh then
19: Update currentStay with pi;
20: cumulativeDist← cumulativeDist+ distFromPrev;
21: else
22: Finalize currentStay and add to stays;
23: Initialize new currentStay with pi;
24: stayStartPoint← pi.geometry; cumulativeDist← 0;
25: end if
26: end if
27: i← i+ 1;
28: end while
29: if currentStay ̸= null then
30: Finalize currentStay and add to stays;
31: end if
32: AllStays← AllStays ∪ stays;
33: end for
34: return AllStays;
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Figure S1: This is an example of fitting stay locations on the individual call records in rural areas
depending on different spatiotemporal thresholds. The calls are represented with red dots; dots size
indicates number of calls.

choosing the spatial thresholds, considering distances between towers is important when CDR traces
are used. For instance, in both examples presented in these figures, increasing spatial thresholds
progressively from 2 km to 10 km substantially changes the shape of detected stay locations. In
Figure S1, when the temporal threshold increases from 2 hours to 4 hours, one of the stay location
disappears, as the individual spent there more than 2 hours, but less than 4 hours.

Activity spaces

Figures S1 and S2 illustrate how stay locations can overlap in our algorithm. It is also possible
that they do not overlap but remain in close proximity to one another. Since our analysis focuses
on calculating shifts in people’s locations over time, we define activity spaces as larger areas that
group together related stay locations. The spatial distribution of cell towers tends to be non-
uniform, which could be a concern for clustering using DBSCAN. We have considered HDBSCAN
as an alternative, which builds a hierarchical tree of potential clusters at all density levels and
then selects the most stable clusters from this hierarchy by identifying cluster formations that
persist across the widest range of density threshold [3]. However, in ASA, we focus on clustering
the centroids’ stay locations (not raw tower locations) for individual users. Since stay locations
represent areas where users spent significant time, they tend to be more spatially coherent than
raw tower locations, making the uniform density assumption of DBSCAN more reasonable at this
individual level.

Figures S3 and S4 demonstrate how different combinations of spatial and temporal thresholds
in the stay detection algorithm, along with DBSCAN’s maximum distance parameter, result in
different activity space representations. In Figure S3, the first and second rows, we observe two
distinct activity spaces. If the maximum distance parameter is increased further, these two activity
spaces would merge into a single representation. The bottom row illustrates this effect more clearly:
in the leftmost plot, setting the distance threshold to 6 km yields two distinct activity spaces despite
substantial overlap between them. These two activity spaces merge when larger distance values are
applied, as shown in the remaining plots of the bottom row.
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Figure S2: This is an example of how stay locations are fitted on the individual call records in
highly urbanized areas. The calls are represented with red dots; larger the dots more calls were
made from the associated cell.

Figure S4 demonstrates how parameters of DBSCAN and stay location algorithm interact within
a dense urban area. The metropolitan area covered by the city has approximately 10 to 12 km
diameter, so using 10 km as spatial threshold creates a single stay location, and a single activity
space that covers all urban mobility, whereas using 2 km as the spatial threshold yields a compact
activity space with several stay locations. These examples (and many other examples we have
inspected) show that generally, the spatial threshold of stay locations is the determining factor
for the size and division of activity spaces, whereas maximum distance can play a role in merging
activity spaces together when applied at the right level.

Setting the spatial parameters

The spatial threshold for stay locations should be chosen based on the inherent spatial resolution
and characteristics of the mobile data type at hand. For telco data (CDR, xDR, etc.), the threshold
must consider the typical distances between cell towers, as setting it too small (e.g., less than 500
meters) may result in overly fragmented single-cell stay locations, while setting it too large loses
spatial granularity. GPS data, with its higher precision and frequency, allows for much smaller
spatial thresholds, since measurements are more accurate and frequent. The key is to balance
capturing meaningful stationary behavior while avoiding both over-fragmentation and loss of spatial
detail, with the optimal threshold varying significantly between urban areas (where towers are
closer) and rural regions (where towers are more dispersed).

The DBSCAN maximum distance parameter should be set by considering two key factors:
the size of stay locations and the urban context of the studied area. First, the parameter must
be large enough to effectively cluster related stay locations together, especially when they are in
close proximity or have some overlap. Second, it should reflect the urban structure and mobility
patterns of the region; in cities where residential areas are in the suburbs and commercial centers are
downtown, the maximum distance should be sufficient to capture these cross-city movements. For
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most metropolitan areas, setting the parameter to match the city’s diameter (typically 10-12 km for
medium-sized cities) ensures that activity spaces capture meaningful intra-city mobility patterns.
However, if the parameter is set too large, distinct activity spaces may merge inappropriately, losing
important spatial granularity for the analysis. Checking a range of thresholds will provide a more
comprehensive view.

In disasters covering very large areas, as was the case with the 2023 Türkiye–Syria earthquakes,
setting appropriate spatial thresholds for stay locations and maximum distances for DBSCAN was
a challenge. The area affected by the earthquake covered both rural and urban places where cell
towers can be as far as 10 km from their neighbors, or as close as 20 meters. Choosing 2 km as
spatial threshold creates single cell stay locations in rural areas (see Figure S1 as an example), but
merges multiple cells in highly urbanized areas (see Figure S2).

Activity spaces are expected to account for movements that are beyond residential areas, ideally
capturing the urban mobility including the regular movements between work and home, but also
other frequented trips to urban centers for leisure activities. The MPD sources are noisy, and they
might include signals that are not essential to the measurement of activity spaces. An individual
might be receiving signals here and there, from places that are not essential to their lives, or they
might be passing through these areas without meaningful stays. Therefore, researchers working
with MPD try to mitigate these issues while estimating the activity spaces with techniques such
as anchoring the meaningful locations [4, 5, 6]. ASA differs from this literature, as it does not
employ spatial anchoring to predetermined home and work locations. Instead, our approach uses a
data-driven method where stay locations are identified based on spatial and temporal thresholds,
then clustered using DBSCAN to form activity spaces. In this way, we hope to account for regions
that are of high importance to individuals.

Depending on the spatiotemporal thresholds of stay locations and DBSCAN maximum distance,
the activity spaces might be over or underestimated for some individuals. For instance, in Figure
S4, the top plots showcase a minimalist approach to the measurement of activity spaces, whereas
bottom plots demonstrate a rather maximalist approach. Here, what is more important for us is
not the most correct representation of the activity spaces, but to correctly account for their shifts
after the disaster. The approach we follow is adequate for measuring the activity space shifts, which
remains as the key function of activity spaces in our methodology.

Relevance of the stay locations

In Figure S5, we show how activity spaces before and after the disaster are intersected to
calculate the relevance scores of the post-disaster stay locations for different combinations of spatial
and temporal thresholds of stay detection algorithm, and the maximum distance of DBSCAN. In
the example presented in Figure S5, the person was not displaced, but the stay locations, hence
the activity spaces, have shifted after the earthquake. These subtle changes are not found when
the stay locations are calculated at a 10 km level (rightmost plot in Figure S5). After we calculate
the relevance score at the activity space level, the stay locations that made up the post-disaster
activity spaces inherit this relevance score. For the leftmost and rightmost plots in Figure S5, the
whole area of pre-disaster activity space overlaps with the post-disaster activity space, so at these
configurations, the person will be marked as staying in familiar places after the disaster, whereas
in the middle plot, the intersection is less than a hundred percent, so there will be some loss of
familiarity. However, as relevance scores are calculated in a binary fashion, this level of loss of
familiarity is tolerated by our measurements.
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Displacement detection

For detecting displacements, we adapted the migration detection algorithm of Chi et al. [7]3.
The algorithm uses a segment-based clustering approach similar to DBSCAN, where contiguous pe-
riods in which individuals remain in the same location are grouped together, allowing for some gaps
to occur in between. The migration event is defined as the movement between two stable location
segments. The algorithm also infers the date of migration, and calculates an associated uncertainty
value for it. The segment-based approach was shown to outperform frequency-based methods [7]
in accurately detecting migration events, and was used to detect conflict-induced displacements in
Afghanistan by TMB [9]. In Figures S6 and S7, we explain how ε controls the segment formation,
both in the context of ASA and TMB, respectively. The migration detection algorithm also in-
fers the migration date, alongside with the migration event. In Figure S6, we show the inferred
migration date, the date of departure from the origin, and the date of arrival to destination.

The original algorithm is meant to detect regular migration between administrative areas (dis-
tricts, cities, etc.). TMB uses the daily modal location for these calculations. This way, individuals
are assigned to their modal locations for each day. At district level, using a single daily modal loca-
tion to represent individual’s location is a similar idea to using their home locations. We measured
displacements with TMB at cell-tower for discovering origins and the destinations hotspots, but as
we showed also in sensitivity analysis the algorithm struggles to find stable segments (demonstrated
in Figure S7) especially for higher values of k.

In ASA, individuals can have multiple stay locations within the same night. Each of these stay
locations can have different levels of relevance scores too. Therefore we took the average relevance
score of detected stay locations for each night to have something similar to daily modal locations.
However, this score is a summary of familiarity of multiple locations. In Figure S8, we demonstrate
the impact of using relevance scores instead of the stay locations in the segment-based algorithm.
It serves a very similar function to using the administrative boundaries (instead of cell towers) in
the segment-based algorithm.

Model comparison

TMB at district level

In the main article, we compared ASA to TMB calculated at cell tower level. We chose this
model because of its similarity in terms of segment-based calculations, and its ability to visualize
origin and destination at cell tower level. However, as we previously noted, TMB is meant to
measure displacements between administrative boundaries. Therefore, here we present how origins
and destinations look like when they are calculated with TMB at district level. When we run the
migration detection algorithm at district level by setting ε and k at 14 days, we detect 5,700 DPs.
In Figure S9, we show the number of DPs per district by their origins and destinations. We see the
general pattern of exodus from the earthquake region, and nearby cities (like Mersin) appearing as
a prominent destination, but the origin and destination hotspots are not observable.

3The algorithm was built using the data structure of Turi Create, which was specifically used for speeding up
calculations with parallel computing. The library can be downloaded here: https://github.com/apple/turicreate/.
Turi Create is not maintained since 2023, so it was not possible to use it within our programming framework. We
replaced it with a pandas dataframe [8].
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Frequency-based approach

One of the reasons why the subtle displacement patterns do not emerge on origin destination
density plots with TMB at cell tower level is due to the low density of residential areas compared to
the stay locations. We suspected that the segment-based approach might be too demanding on the
definition of displacements on location data, so in addition to TMB, we also measured displacements
with a simple frequency-based approach.

For frequency-based measures, we calculated the home locations before and after the disaster for
all users. The home locations are defined as the most frequent cell towers used at night (between 10
PM and 7 AM). We filtered the people who were residing in the disaster area before the earthquake,
and have changed their most frequent tower after the earthquake.

We tried three ways of defining displacements:

1. If the most frequent cell tower has changed after the earthquake

2. If the district of the most frequent cell tower has changed

3. If the city of the most frequent tower has changed

According to the first definition, we have 54,000 displaced people (DPs), which is five times
more than ASA and TMB. This is likely because such a simple definition (change in the most
common night tower) captures movements that are not related to displacements. According to
the second definition, there are 27,000 DPs and according to the last one there are 15,000 DPs.
In Figure S10, we show the detected origin and destination hotspots following the first definition,
in Figure S11 following the second definition and in Figure S12 following the last definition. The
first definition emphasizes people who have changed their locations within the same city. Therefore
the density of destinations are emphasized in and around the city centers. The origins hotspots
in Figure S10 are remarkably similar to the origins calculated by ASA as we shared in Figure 4.
The destinations have similar patterns, but any type of agglomeration of Syrian refugees around
Temporary Accommodation Centers (TACs), are not as clearly visible as ASA could demonstrate.

To deal with issues of sparse and noisy data, we also defined displacement as the shift of district
and city of the most frequently used tower at night. In Figure S11, we show the distribution of
origins and destinations for people who changed districts. This definition reduces the emphasis of
the destinations around the city centers. Notably for the destinations of the Syrian DPs, there
is still some emphasis around the border area, which includes a handful of TACs. But again the
displacement patterns of Syrians do not as clearly indicate that the Syrians chose TACs as one of
the primary destinations. Lastly, when we focus on cross-city movements in Figure S11, we see that
only Mersin, Adana, and Kilis appear as main destination areas for Syrian DPs, and only Mersin
for Turkish DPs. In short, we could not replicate the findings of ASA as clearly using any of the
frequency-based approaches.

Additional Experimental results

Displacement dates and returnee rates

The migration detection algorithm detects the start and end dates at the origins and destina-
tions, as well as estimated migration dates for each migration event. Due to noise and data sparsity,
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finding the exact date of migration events remains a challenging task. The migration detection algo-
rithm decides on the migration date as the day between the end of the origin segment and the start
of the destination segment “that minimizes the number of ‘misclassified’ days, i.e., the number of
days when the migrant appears at destination before the migration date and days when the migrant
appears at home after the migration date” [7, p. 6]. The origin end date and destination start date
are the last day of continuous presence at the origin, and the first day of continuous presence at
the destination, respectively.

In Figure S13, we compare TMB to ASA with respect to the number of displacements detected
each day after the earthquake. The figure shows the differences between the number of DPs when
using the migration date, origin end date or destination start date as the displacement date. As
before, we use three alternatives for the TMB method; the city, the district and cell boundaries.
Both TMB and ASA are calculated with the same parameters as we calculated the origins and
destinations. ASA is able to detect displacements at an earlier date than TMB at district and city
level. This is expected as we define displacements as loss of habitual areas, which happen faster
than changing cities or districts. Such ruptures from habitual living areas are the first signals of
displacements, and missed in district or city level calculations.

It is important to pay attention to how the displacement date is defined. Once an origin and a
destination are determined for an individual, it is possible for that individual to occasionally receive
signals from the origin after the displacement. The detection algorithm infers “migration date” as
the date that minimizes such receptions, but this can be noisy [7]. We use the “origin end date”
as the preferred approximation for the displacement date, as using the “destination start date”
can understate the date of displacement for DPs who lost signals along the way. With this choice,
ASA suggests that an overwhelming ratio of displacements happened immediately in the first day.
Although, changing districts or cities may have taken a couple of more days (as suggested by TMB)
people lost their habitual living spaces very rapidly in the beginning of the disaster.

Within the given period, TMB detected 5 % returnees at city, and 4 % at district level. ASA
detected 4 % returnees in the same period. Similar to displacements, the selection of k is very
influential on how many returnees are detected. If k is set to 3 days, ASA detects around 16 %
returnees whereas this drops to 4 % at 14 days. For ASA, relevance threshold has also small but
meaningful impact where the larger relevance thresholds decrease the returnee rates. We have not
seen a large impact of spatiotemporal thresholds for the calculation of the returnee rates.
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Figure S3: This is an example of how activity spaces are fitted using the stay locations in rural
areas. The calls are represented with red dots. Activity spaces are represented by dashed red lines.
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Figure S4: This is an example of how activity spaces are fitted using the stay locations in highly
urbanized areas. The calls are represented with red dots. Activity spaces are represented by dashed
red lines.
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Figure S5: This is an example of how pre-disaster and post-disaster activity spaces are intersected
for a non-displaced person. Red dashed polygons represent the pre-disaster activity spaces and
the blue dashed polygons represent post-disaster activity spaces. When they fully intersect, we
represent it with a purple color.

Figure S6: The red dashed boxes demonstrate the continuous segments. The upper figure shows
how the parameter ϵ controls what constitutes a continuous segment. If there are neighboring
segments in the same location, they are merged by the algorithm. The green line is the date of
departure from the origin, whereas the orange line is the date of arrival to destination, as well as
the inferred migration date by the algorithm.
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Figure S7: In this figure, we show the difference between using districts and sites in the detection
of displacement in TMB approach.
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Figure S8: In this figure, we show how using binary relevance score helps detection of displacements
with the segment-based algorithm.
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Figure S9: The distribution of origin (top) and destination (bottom) districts of Syrian (left) and
Turkish (right) DPs calculated by TMB. Any value less than 37 is not colored. Any value above
37 and less than 74 DPs are colored to light blue for Syrians, and light green for Turkish. Higher
than 74 DPs are marked by shades of purple

.
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Figure S10: The distribution of origin (top) and destination (bottom) districts of Syrian (left) and
Turkish (right) DPs calculated by the first definition of the frequency-based approach (anyone who
has changed cell towers are displaced.). Higher values are shaded with purple.
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Figure S11: The distribution of origin (top) and destination (bottom) districts of Syrian (left) and
Turkish (right) DPs calculated by the second definition of the frequency-based approach (anyone
who has changed districts are displaced.). Higher values are shaded with purple.
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Figure S12: The distribution of origin (top) and destination (bottom) districts of Syrian (left) and
Turkish (right) DPs calculated by the third definition of the frequency-based approach (i.e. anyone
who has changed cities is displaced.) Higher values are shaded with purple.
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Figure S13: The number of DPs for each day after the earthquake calculated via TMB and ASA for
three different candidates for displacement date calculated by the migration detection algorithm;
migration date, origin end date, and destination start date, respectively.
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