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Abstract— This paper introduces a new audio-visual Bipolar 

Disorder (BD) corpus for the affective computing and psychiatric 

communities.  The corpus is annotated for BD state, as well as 

Young Mania Rating Scale (YMRS) by psychiatrists.  The paper 

also presents an audio-visual pipeline for BD state classification. 

The investigated features include functionals of appearance 

descriptors extracted from fine-tuned Deep Convolutional Neural 

Networks (DCNN), geometric features obtained using tracked 

facial landmarks, as well as acoustic features extracted via 

openSMILE tool. Furthermore, acoustics based emotion models 

are trained on a Turkish emotional database and emotion 

predictions are cast on the utterances of the BD corpus. The 

affective scores/predictions are investigated with linear 

regression and correlation analyses against YMRS declines to 

give insights about BD, which is directly linked with emotional 

lability, i.e., quick changes in affect.  

Index Terms—bipolar disorder, audio-visual corpus, affective 

computing, multi-modal analysis 

I. INTRODUCTION 

Bipolar Disorder (BD) lifelong prevalence is 2.1% 

worldwide, subthreshold forms affects 2.4% [1]. According to 

World Health Organization [2], it ranks among the top ten for 

young adults in the diseases of disability-adjusted life year 

(DALY) indicator.  

Treatment resistance is one of the big challenges for bipolar 

disorder [3].  Despite advances in bipolar disorder treatment, 

remission rate and treatment compliance are low. Delay in the 

diagnosis of bipolar disorder, recurrent hospitalizations, low 

response to available treatment, and increase in inflammation 

due to insufficient recognition of depressive episodes cause 

treatment resistance.  

Recently, machine learning studies are effectively applied 

to identify and classify mood disorders (MD) [4,5]. Since MD 

is directly linked to the affective states, affective computing 

and social signal processing methods can bring innovative 

approaches to the MD identification problem. Works on 

affective computing have been centered on audio-visual signal 

processing and machine learning, with support from clinicians 

and psychologists in annotating data and evaluating outcomes. 

A large set of affective issues are tackled, ranging from short-

term states (e.g. laughter, emotion), to mid-term disorders (e.g. 

depression, bipolar disorder) and to long-term traits (e.g. 

personality traits) [6,7]. Social signal processing also pays 

attention to social and non-verbal signals, and investigates 

social interactions, and dialogues [8]. 

In this work, we apply signal processing and machine 

learning methods for recognition of BD from short video clips 

of subjects performing a small battery of affective tasks. A 

corpus is collected from 46 patients and 49 healthy controls. 

We implement several multimodal approaches for BD 

classification, and describe strong baselines. The contributions 

of this work are the new audio-visual BD corpus, as well as the 

comparative experimental results for several approaches to the 

problem. The core aim of the efforts on the corpus is to find 

biological markers/predictors of treatment response via signal 

processing and machine learning techniques to reduce 

treatment resistance. During treatment period, these biological 

markers can also help early detection of relapses. These 

discriminative markers are intended for early recognition of the 

bipolar disorder. Collectively, they are expected to provide an 

insight for personalized treatment of bipolar patients [9].  

The rest of the paper is organized as follows. In the next 

section, we introduce the corpus, which remains unnamed to 

preserve double blind reviewing conditions. In section III, the 

methodology followed in multimodal analyses are explained, 

while Section IV presents the experimental results. Discussion 

and conclusions are given in Sections V and VI, respectively. 

 



II. THE CORPUS 

A. Participants 

We have collected video data from patients with BD and 

healthy controls. 35 male and 16 female patients were recruited 

from the mental health service of a hospital. Inclusion criteria 

were as follows: (I) diagnosis of BD type I, manic episode 

according to DSM-5 [10] given by the following doctor, (II) 

being informed of the purpose of the study and having given 

signed consent before enrollment. Exclusion criteria were as 

follows:  

I. being younger than 18 years or older than 60 years,  
II. showing low mental capacity during interview,  

III. expression of hallucinations and disruptive behaviors 

during interview,  
IV. presence of severe organic disease,  
V. presence of any organic disease that may affect 

cognition, 
VI. having less than five years of public education, 

VII. diagnosis of substance or alcohol abuse in the last 

three months (except nicotine and caffeine),  
VIII. presence of cerebrovascular disorder, head trauma 

with longer duration of loss of consciousness, severe 

hemorrhage and dementia,  
IX. having electroconvulsive therapy in the last one year. 

  
For the healthy control group, the following additional 

criteria were considered for exclusion (I) presence of family 

history of mood or psychotic disorder, and (II) presence of 

psychiatric disorder during interview or in the past. Approval 

of Hospital Clinic Ethics Committee was obtained prior to data 

collection. 

More than a hundred subjects participated the work, but 

recordings for some subjects were excluded due to the 

aforementioned criteria, and four subjects did not give approval 

for sharing the data. Consequently, data from 46 patients and 

49 healthy controls (95 subjects) were retained for future 

experimentation and sharing. In this work, results on a subset 

of the original corpus (collected from 89 subjects) are reported.   

B. Assessment and Data Collection 

In order to gather sociodemographic and clinical 

information, all patients were assessed with semi-structured 

interviews based on the SKIP-TURK [11]. This form includes: 

identity, sociodemographic personal and family information, 

age at disease onset, severity, clinical presentation and used 

treatments. 

During hospitalization, in every follow up day (0th- 3rd- 

7th- 14th- 28th day) and after discharge on the 3rd month, 

presence of depressive and manic features were evaluated 

using Young Mania Rating Scale (YMRS) [12] and 

Montgomery-Asberg Depression Rating Scale (MADRS) [13]. 

In every follow up day, audiovisual recording is done by a 

video camera. Thus, each video session is separately annotated 

for bipolar mania/depression ratings. 

Video recording is done by a presentation guide including 

seven tasks such as explaining the reason to come to 

hospital/participate in the activity, describing happy and sad 

memories, counting up to thirty, explaining two emotion 

eliciting pictures (see Fig.2). To increase the challenge of 

automatic discrimination, the Control Subjects were recorded 

with two additional conditions, where they are asked to portray 

mania and depression conditions. The collected corpus will be 

publicly available. 

 

 

    
 

Figure 2. (left) van Gogh’s Depression (right) Dengel’s 

Home Sweet Home 

 

 
Fig. 1.  Audio-visual processing pipeline for Bipolar Disorder classification from video 



III. METHODOLOGY FOR SYSTEM DEVELOPMENT  

To provide a benchmark system and insight about the data, 

we investigated two different approaches. The first is a direct 

approach to classify video sessions into BD and normal 

classes, using audio-visual features. The second is an indirect 

approach, where we use emotion predictions for Pearson 

correlation analysis and regression of YMRS drop. The 

flowchart of the method proposed for direct classification of 

BP from video is given in Figure 1. The explanation of its 

components, and the details for the indirect approach are both 

given in the following subsections. 

A. Audio Processing: Acoustic Feature Extraction 

Speech utterances are first separated from the video signal 

and then a standard set of acoustic descriptors are extracted 

from the audio signal using the open-source openSMILE tool 

[14]. In order to obtain acoustic low level descriptors (LLDs) 

from audio, we use the 76-dimensional (38 raw, 38 temporal 

derivative) standard feature set used in the INTERSPEECH 

2010 paralinguistic challenge as baseline [15]. These LLDs 

cover important speech signal characteristics, including 

prosody (energy, Fundamental Frequency – F0), voice quality 

features (jitter and shimmer), as well as Mel Frequency 

Cepstral Coefficients, which are commonly used in many 

speech technologies. 

The LLDs are typically extracted from 25-40 seconds-

length windows of the speech signal, and then summarized 

over the utterance. The most popular approach for 

summarization (also referred to as the utterance representation) 

is based on functionals, such as moments, extremes, 

coefficients of polynomials fit on the LLD contours, giving 

state-of-the-art results [15, 16].  

  In our preliminary work, we apply functionals over the 

whole utterance and compare performances of two sets of 

functionals. The first set consists of INTERSPEECH 2010 

baseline features. These give a supra-segmental set of 1.582 

acoustic features. Note that some functionals are not applied to 

all LLDs in this baseline set. The second is our proposed set of 

10 functionals, which we apply on all LLDs to obtain a supra-

segmental feature set of 76 x 10 = 760 dimensions. These 10 

functionals are as follows: Mean, standard deviation, curvature 

coefficient (the leading coefficient of the quadratic polynomial 

[ax2+bx+c] fit on the LLD contour), slope and offset 

(coefficients from the linear polynomial [ax+b] fit on the LLD 

contour), minimum value and its relative position, maximum 

value and its relative position, and the range (max. value – min. 

value).  

We subsequently summarize the LLDs over analysis 

windows of length l = {10, 20, 30, 40, 50, 60} seconds with 

50% overlap. The aim here is to find the optimal analysis 

window and to compare it against clip-level summarization. 

For the second, indirect approach, we train an emotion 

classifier on a different corpus, and use it as a feature extractor. 

Recognition of emotions is related with all affective 

states/traits and the knowledge to recognize emotions from 

audio and video can be transferred to other related problems 

[7,17]. For example, the dynamics of short-term (3-5 sec.) 

emotional state predictions in audio/video recordings can be 

used to better explain and predict unipolar/bipolar disorder and 

to discriminate these from healthy controls. Emotional 

databases are collected in popular languages (e.g. English [18], 

German [19], Russian [20] and recently in Chinese [21]), 

however in languages such as Turkish the language resources 

are scarce. To alleviate this problem, recently there is an 

increasing research interest in cross-corpus/cross-language 

emotion recognition, which enables benefiting from available 

corpora effectively on original problems in a target corpus.   

For training the speech based emotion classifier, we use the 

BUEMODB corpus having 484 utterances: 11 affirmative 

sentences portrayed for four basic emotions (Anger, Happiness, 

Neutral, and Sadness) by 11 amateur theatre actors/actresses 

[22]. The portrayal scenario is based on Stanislavsky Effect, 

where the actor imagines himself in a situation that arouses the 

intended emotion [23].  Three affect classifiers are trained, one 

with the original four classes, one for valence (showing the 

pleasantness of emotion) and one for arousal (reflecting the 

activity/vitality of the speaker), respectively. The arousal and 

valence labels are obtained by clustering the original classes 

into corresponding binary labels (e.g. Happy to positive 

valence and high arousal, Anger to negative valence and high 

arousal). The emotion predictions (scores and labels) from 

these affect classifiers are then used as mid-level features. We 

apply the proposed functionals on 4-second analysis windows 

with 2 second shifts (50% overlap), and cast predictions for 

each short-term clip. 

B. Video Processing and Visual Features 

Approximately 2.2 million images are collected over all 

videos, each of which having a frame rate of 30 Hz. On each 

image, the faces are detected, cropped and registered using the 

method proposed by Xiong and de la Torre [24] with 

additional Procrustes analysis for frontalization, as in [25].  

The registered faces are then saved as 128x128 pixel grayscale 

images. Along with the faces, we record both the original and 

the aligned landmark points for subsequent geometric feature 

extraction.  

From each face, we extract 23 geometric features as 

suggested by [25] for video based emotion recognition in 

uncontrolled conditions. Also, we extract appearance 

descriptors from registered faces, using a pre-trained Deep 

Convolutional Neural Network (DCNN) fine-tuned on a face 

based emotion corpus. This DCNN is recently applied on 

emotion and apparent personality trait recognition in 

uncontrolled conditions, giving state-of-the art results in both 

of these challenging tasks [26]. Using DCNN, we extracted 

4096 dimensional features from the last convolutional layer. 

These image level descriptors are then summarized over fix-

length analysis windows (10, 20, and 40 seconds tested) with 

50% overlap using functional statistics, as described in the 

previous subsection. 

C. Classification methods 

Feature vectors extracted from audio and video are 
modelled using Partial Least Squares (PLS) regression and 
Extreme Learning Machines classifiers. Both of these machine 



learning methods learn projection matrices that map input 
features to the target (dependent) variable via regularized least 
squares, and hence, they are both fast and accurate [25, 26], 
Each method has a parameter that regularizes the model 
complexity against the training set classification error. To 
optimize these parameters, each method is trained with 10 
values and best validation set results are reported. For brevity, 
the technical descriptions of the classifiers are excluded in this 
work, interested readers are referred to [26].  

D. Regression on Predicted Emotion Scores 

To assess the extent that the cross-corpus acoustic emotion 

predictions on the zeroth day recording of the Bipolar patient 

can “predict” the clinical progress (i.e. response to treatment), 

we devised meta-variables from clinician-annotated scores. 

Let {Ti}, i=1..7 denote the ground truth YMRS such that 

T1=0th day, T2=3rd day, T3=7th day, T4=14th day, T5= 28th day, 

T6=90th day score; the meta target variables are set as 

X1=T2/T1, X2=T3/T1, X3=T4/T1, X4=T5/T1 and X5=T6/T1. These 

ratios are stepwise regressed to functionals of valence, arousal 

and basic emotion scores, cast on the first audio recording. 

IV. EXPERIMENTAL RESULTS 

A. Preliminary Analyses: Demographics and Session Lengths 

A total of 50 bipolar manic episode (34 male and 16 

female) patients aged between 18 to 54 years and 39 healthy 

controls (23 male and 16 female) aged between 18 to 57 years 

are included in the analyses reported here. Sociodemographics 

and clinical characteristics of the groups are given in Table I.     

TABLE I.  DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF BIPOLAR 

DISORDER AND HEALTHY CONTROL GROUP. (ED.: EDUCATION IN YEARS,        
TE: TOTAL EPISODE, TDD: TOTAL ILLNESS DURATION.) 

TABLE II.  VIDEO LENGTH STATISTICS FOR HEALTHY CONTROLS AND 

MANIA PATIENTS WITH VARYING LEVELS  

Diagnosis 
Number 

of videos 

Average 

Time (s.) 

Standard 

Deviation 

Healthy 120 138.9 68.4 

Remission 62 151.9 65.4 

Hypomania 82 221.1 171.4 

Mania 88 276.4 246.3 

 

The most remarkable result at a first glance is that the 

average response time for manic patients is longer than healthy 

controls (see Table II). When the data are subdivided into four 

groups as healthy, remission, hypomania, and mania according 

to the YMRS total score, it can be observed that average time 

increases gradually. However, due to increase in the standard 

deviation of hypomania and mania, this feature alone is not 

sufficient for discrimination of the disorder. 

B. Direct Approach: Audio-Visual Mania Classification  

For classification experiments, healthy and bipolar subjects 

are evenly distributed considering gender: a total of 182 videos 

of 44 subjects are set as the training group; the rest, 170 videos 

of remaining 45 subjects are arranged as the test group. Apart 

from the binary (healthy/bipolar) classification task, we also 

grouped the bipolar subjects’s YMRS scores annotated at 

session level into three disjoint groups, thus obtaining a ternary 

classification task. Let Yt denote YMRS score of session t, 

bipolar sub-groups are arranged as follows: 

1. Remission:  Yt <= 7 

2. Hypomania: 7 < Yt < 20 

3. Mania: Yt >= 20. 

 

Both classification tasks are tackled using the pipeline 

shown in Fig. 1. In the following, we provide component-level 

results for this pipeline. Unweighted Average Recall (UAR), 

which is mean of class-wise recall scores, is commonly used as 

performance measure, instead of accuracy, which can be 

misleading in the case of class-imbalance. In the subsequent 

machine learning experiments, we report UAR as performance 

measure. In K-class classification, UAR has a constant chance-

level baseline of 1/K. 

Firstly, the LLDs are summarized over the whole session. 

Comparing the baseline set of functionals from IS2010 

configuration and the proposed set of 10 functionals on the 76 

acoustic LLDs, we observe that using a smaller set of 

functionals yields significantly better performance with ELM, 

whereas PLS gives similar performances (see Table III). All 

results reported in Table III are found significantly higher than 

the chance-level baseline (McNemar’s Test [27], p < 0.01). 

This result means that the proposed system can differentiate 

bipolar mania/ hypomania/ remission from healthy control, 

simulation of mania and depression. Summarizing LLDs over 

analysis windows length of {10, 20, 30, 40, 50, 60} seconds 

with 50% overlap was not found to increase the success rate. 

TABLE III.  VALIDATION SET PERFORMANCES FOR BASELINE AND 

PROPOSED FUNCTIONALS APPLIED ON THE WHOLE UTTERANCE (IS10: 
BASELINE INTERSPEECH 2010 FUNCTIONAL SET, P10: PROPOSED 10 

FUNCTIONALS)  

Functional Set Dimensions PLS ELM 

IS10 1582 65.7 64.8 

P10 760 65.3 69.4 

Next, geometric and appearance descriptors are 

investigated using the same set of functionals over the whole 

session. Table IV reports comparative performances of 

individual audio and video features summarized over the whole 

session (i.e. one supra-segmental feature vector for each 

recording).  In the Table, GEO23 denotes the frame level 23 

geometric features, CNN4096 represents 4096 dimensional 

 People with BP-1 Healthy 

Controls 

t/x2 p 

Female Male All  

AGE 

 
40.2±8.8 35.02±10.6 36.7±10.3 37.3±10.9 0.36 0.72 

ED 12.6±2.9 9.5±3.3 10.5±3.5 11.2±3.7 0.89 0.11 

TE 

 
7.13±7.7 7.67±5.7 6.26±6.4 - 0.71 0.48 

TID 

 
15.9±9.9 12.02±9.7 13.07±9.8 - 1.41 0.16 



features from the last convolutional layer of the FER fine-tuned 

CNN.  We observe that the best audio and visual performances 

are similar for the binary task; however, they differ in the 

ternary mania level classification task. Session level 

summarization of geometric features extracted from each face 

gives an UAR of 67.3%, while 4096 dimensional features from 

convolutional neural network trained with just average 

functionals reach an UAR score of 69.9%. Interestingly, 

acoustic and appearance descriptors perform better than 

geometric features in discriminating between healthy and 

bipolar subjects; however, their best result in the ternary task 

(48.6%) is lower compared to the one obtained with geometric 

features (51.5%). We also observe that removing the “range” 

functional effectively improves performance of the geometric 

features in the binary task. 

TABLE IV.  COMPARISON OF AUDIO-VISUAL FEATURES FOR BINARY 

(MANIA VS. HEALTHY CONTROL) AND TERNARY (REMISSION, HEALTHY AND 

MANIA) CLASSIFICATION. P9: PROPOSED FUNCTIONALS EXCEPT RANGE. 
RESULTS IN BOLD DENOTE SIGNIFICANTLY BETTER SCORES COMPARED TO 

CHANCE-LEVEL BASELINE (P < 0.01, MCNEMAR’S TEST). 

Feature Attributes Mania/Control 
Remission/Hipomania/ 

Mania 

Descriptor Func. Dim. PLS ELM PLS ELM 

IS10 P10 760 65.3 69.4 48.5 48.6 

CNN4096 Average 4096 69.9 65.2 42.3 43.7 

GEO23 P10 230 64.7 58.3 48.6 51.3 

GEO23 P9 207 67.3 60.0 47.1 51.5 

When the DCNN based appearance descriptor is 
summarized via mean and range functionals over sub-clips and 
the decisions are voted at video level, an UAR performance of 
72.2% is obtained (Table V). Finally, the best results from each 
feature-level model (namely geometric, appearance, and 
acoustic models) are fused with equal weight. Fusion improves 
the binary classification UAR slightly to 73%, while the 
performance in the ternary (mania/hypomania/remission) 
classification task is observed to improve markedly to 55.6%. 

TABLE V.  UAR PERFORMANCE COMPARISON FOR SUMMARIZING 4096-
DIMENSIONAL APPEARANCE FEATURES EXTRACTED FROM DCNN OVER VIDEO 

SUB-CLIPS OF VARYING WINDOW LENGTHS AND VIDEO LEVEL DECISION 

FUSION. STATISTICALLY SIGNIFICANT RESULTS (P < 0.01, MCNEMAR’S TEST) 

ARE SHOWN IN BOLD. 

Analysis 

Window (sec.) 
Mania/Control Remission/Hipomania/Mania 

Window 

Length Shifts PLS ELM PLS ELM 

40 20 71.3 61.8 44.4 43.6 

20 10 72.2 61.8 43.1 47.3 

10 5 72.2 60.9 38.3 45.5 

 

C. Indirect Approach: Analysis of Predicted Affect Primitives 

After cross-corpus emotion recognition, clip-level 
functional statistics of predictions of affect classifiers used as 
midlevel features. These scores are regressed against the 
YMRS decline ratios as explained in Section III-D. This 

regression aims to find which mid-level features extracted from 
the first audio recordings can predict the YMRS decline (i.e. 
treatment response) observed in future sessions. When arousal 
and valence scores were regressed, the slope and relative 
position of the minimum value of arousal is observed to predict 
YMRS decline on the third day. When four basic affect scores 
are analyzed, standard deviation of neutral affect and mean 
value of sadness are observed to be predictors of YMRS 
decline on the third day. This shows that these audio 
parameters can be used as treatment predictors. Other potential 
treatment response predictors are shown in the Table VI. 

TABLE VI.  REGRESSING YMRS DECLINES ON PREDICTED AFFECTIVE 

SCORES. ONLY PREDICTORS HAVING STATISTICALLY SIGNIFICANT 

RELATIONSHIP WITH THE TARGET VARIABLE ARE LISTED. 

Target Affective Predictors B t p 

X1 Slope of arousal score 21.653 2.761 0.008 

 Relative position of minimum 

value of arousal score 

0.264 2.103 0.041 

 Standard deviation of neutral 

score 

2.067 3.667 0.001 

 Mean of sadness score 0.553 2.251 0.029 

X2 Standard deviation of valence 1.720 3.209 0.003 

 Standard deviation of neutral 

score 

2.606 3.315 0.002 

X3 Curvature of valence score -19.903 -2.391 0.023 

 Curvature of happiness score 347.699 3.018 0.005 

 Relative position of maximum 

value of neutral score 

0.320 2.549 0.016 

 Mean of happiness score -0.602 -2.745 0.010 

X4 Range of arousal score 0.279 2.160 0.047 

V. DISCUSSION 

On the basis of DSM-5 criteria related with talkativeness 

and pressured speech, we can discriminate healthy and bipolar 

disorder speech. Video length is a candidate predictive feature 

in this sense, as subjects are asked to perform a standard set of 

tasks. Due to the high standard deviation of (especially) 

mania/hypomania video length, other speech predictors are 

needed for discrimination. 

UAR performance for acoustic analysis shows that the 

audio-only system can differentiate bipolar subgroups (mania/ 

hypomania/remission) from healthy controls (including 

depression and mania simulation) with 69.4% success rate, 

which is statistically significantly higher compared to chance 

level UAR score (50% for two classes). Supporting these 

results with other studies have potential for effective 

characterization of bipolar speech from healthy control and 

from their uni/bipolar depression simulations. Proposed 10 

functionals indicate potential for this characterization. 

Subdivision of audio-clips was not found to increase the 

success rate, and this may be related to the fact that lability 

(i.e. quick changes) of speech for bipolar subgroups can be 

better estimated in clips longer than 60 seconds. 

UAR performance for visual systems were lower, or on par 

with acoustic systems. The appearance of the subjects may be 

affected from the high dose of antipsychotics used for 



treatment of bipolar mania, which can result in the slowing of 

facial mimics. The best results are attained using audio-visual 

fusion: in the binary task (healthy/bipolar) a UAR score of 

73% and in ternary classification task (mania/ hypomania/ 

remission) a UAR of 55.6% is reached. We observe that 

multimodal fusion has higher contribution to the latter, more 

difficult task.  

Effective application of machine learning techniques to 

identify and to classify mood disorders has potential in both 

identifying BD and in quantizing treatment response earlier 

[28]. In the proposed approach, short-term affective primitives 

predicted from acoustic features are summarized over each 

utterance using 10 proposed functionals. Subsequently, these 

are regressed against YMRS declines. Results reveal that 

affect primitives estimated from zeroth day recording in this 

way have a potential to predict treatment response in the third 

day of treatment. As treatment resistance is a big challenge for 

BD, using these predictors will make it possible to select the 

best treatment approach for each individual at the beginning of 

treatment.  

When classification performance improves up to 90% 

UAR for bipolar/ healthy discrimination and 80% UAR for 

detection for treatment response, these parameters can serve as 

treatment response predictors; then the whole framework can 

be deployed as a decision support system for psychiatrists and 

neurologists.  

VI. CONCLUSION 

In this work, we presented a new audio-visual BD corpus, 

as well as experiments using both modalities for binary 

(healthy/bipolar) and ternary (mania level) classification.  We 

also analyzed the bipolar corpus using cross-corpus acoustic 

emotion recognition, to reveal statistically significant mid-

level predictors of YMRS declines from the zeroth day 

recording. The promising results obtained in both 

classification (direct approach) and regression (indirect 

approach) motivate future studies for automatic monitoring of 

people with BD. In follow up works, a compact set of 

predictive high level features (as in the case of predicted affect 

primitives), their usage in the linguistic and multimodal 

system development will be investigated. 
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