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Abstract— Continuous driver authentication is useful in the
prevention of car thefts, fraudulent switching of designated
drivers, and driving beyond a designated amount of time for a
single driver. In this paper, we propose a deep neural network
based approach for real time and continuous authentication
of vehicle drivers. Features extracted from pre-trained neural
network models are classified with support vector classifiers.
In order to examine realistic conditions, we collect 130 in-car
driving videos from 52 different subjects. We investigate the
conditions under which current face recognition technology will
allow commercialization of continuous driver authentication. 1

I. INTRODUCTION

Real-time biometrics for authenticating car drivers is a po-
tentially important application. According to [1], there were
an estimated 765,484 thefts of motor vehicles nationwide
in the United States, just in 2016. Smarter cars that can
authenticate their drivers could be a solution to mitigate
this. But there are other applications. Car rental companies
authorize designated drivers to driver their cars, and driver
authentication can be used to enforce this. Similar concerns
exist for long-distance drivers and taxi drivers, where the
designated driver should use a vehicle, for specified periods.
Systems that authenticate the driver’s face can also be used
in parallel for other face-based analyses, like drowsiness
detection.

Current driver authentication approaches use several secu-
rity features, including biometric and non-biometric methods.
Biometric methods utilize driver’s biometry, such as finger-
print or voice. For instance, BMW announces that its Z22
concept car would adopt fingerprint recognition to ensure
that the car can only be used by authorized individuals [17].
The engine will only start when the driver places her index
finger on the provided rotary switch. Honda FCX also uses
fingerprint biometry for authentication, which requires the
user to press and hold her thumb against a scanner for about
three seconds to recognize its owner. Volvo SCC requires
the user to hold the door handle for a few seconds to let the
fingerprint recognition unit authorize the driver to use the
car. Other car brands use voice recognition to ease in-vehicle

1This is the uncorrected author proof. Please cite this paper as E. Derman,
A.A. Salah, Continuous Real-Time Vehicle Driver Authentication Using
Convolutional Neural Network Based Face Recognition, Int. Workshop on
Human Behavior Understanding, 2018.

operation, such as navigation or infotainment. Non-biometric
approaches use driver’s secret knowledge such as a password,
or personal possession, like a physical token. Apart from the
standard ignition key, in most cases, an authorized driver has
a personal password to enter, a magnetic card, beacon, or an
RFID tag to let the engine start.

The biometric approaches used by car manufacturers are
typically restricted to their vehicle brands, and not always
open to the more general public. Almost all those biometric
and non-biometric approaches are performed either offline,
or as a driving session starts, and thus are vulnerable to mid-
session driving attacks, such as carjacking. A typical scenario
could be that an authorized driver of a transportation firm can
use some credentials to make the control center believe that
the vehicle is used by a certain driver at the onset of the
driving session, and then let another, unauthorized person to
drive, violating the related regulations. A reliable, low-cost,
and transportable real-time authorization system would help
to improve detection of such frauds.

In this paper, we develop a system for real-time au-
thentication of vehicle drivers. Our approach uses recent
advances in deep neural network based face recognition,
and deals with problems specific to the application scenario.
We introduce an in-car face database collected from public
videos, where we report experimental results in realistic
acquisition conditions.

Facial verification systems can provide reliable, low-cost,
and accurate online approaches for driver authentication
tasks. Such a system usually consists of an image capturing
device and computation unit that performs the verification.
For vehicles, a camera that can capture the driver’s image
could be easily mounted inside, regardless of the car brand.
Face verification based on images acquired from such a
camera can be performed either by some kind of embedded
computation device in car, or on a remote server. Here, we
present a real-time driver facial verification framework that
can be used to detect or avoid en route driving attacks. In our
scenario, we first collect authorized driver’s facial images,
train a classifier based on their features, and perform real-
time verification in some predefined time frequency during
driving. For testing, we collected 130 in-car driving videos
of 52 unique subjects.

For feature extraction, we applied transfer learning and



fine-tuning on a pre-trained deep neural network model [18].
For classification, we examined Support Vector Machine
(SVM) [3] and cosine similarity [6] based approaches. The
advantage of our method is that it provides fast, low-
cost, and reliable driver authentication compared to classical
approaches.

The rest of this paper is organized as follows: In Sec-
tion II, we present a brief overview of recent publications
regrading driver authentication. In Section III, we describe
our methodology. Our experimental results are provided in
Section IV, while Section V concludes this paper.

II. RELATED WORK

While there are many academic and industrial approaches
concentrating on face recognition and verification, only few
focus on scenarios related to driver authentication [25]. For
in-car scenarios, analysis mainly focuses on driver fatigue
monitoring, cognitive load estimation, driver behaviour esti-
mation, and driver emotion recognition [9], [10], [14], [24].

One of the earliest work related to driver face detection
is described in [21], where a technique is proposed to detect
stable face and eye regions both during day and night time.
In their work, the authors used Infrared Rays Light Emitting
Diodes (IR-LED) to illuminate the face of the driver. An
IR-filter is also attached to the camera, which is placed at
the inside of the inner mirror. The approach takes sequential
images by blinking the IR-LED, turning it on and off
alternately. By subtracting the on- and off-IR images, factors
other than the light are eliminated, and a stable image of
the face region is obtained. This system was used for driver
drowsiness detection.

Several driver vigilance detection approaches are proposed
for in-vehicle vision systems that monitor driver facial fea-
tures [20], [23]. In these systems, a video camera is used
without supplementary light. The processing range is some-
times reduced by motion detection on the captured video
sequence. The face region is detected using a Viola-Jones-
like face detector. After that, eye and mouth positions, as
well as the face direction are determined using a predefined
face model.

Illumination is a major problem for in-car face analysis.
In [22], an image compensation method was proposed that
includes illumination and color compensation to improve fa-
cial feature extraction of the driver. In this approach, a region
of interest (ROI) is pre-defined as the region in which driver’s
face most frequently appears. After successfully detecting a
face, the ROI is updated. Each image is compensated using
a histogram equalization approach that matches the desired
histogram specified from a reference image.

Other than using IR illumination and histogram equaliza-
tion, an obvious way of dealing with challenging illumination
conditions is by using 3D face sensors, but there are few
applications that work with 3D [14].

The processing of the driver’s face is often considered
within a larger framework, where computing resources are
not on board. In such scenarios, the acquired images are

Fig. 1. The overall system flowchart of our proposed framework.

sent to a cloud server for processing, reducing the compu-
tation burden for in-car systems [15]. On the other hand,
computational resources in cars are projected to be steadily
developing, as autonomous or semi-autonomous driving (or
parking) becomes available.

In [13], a framework is presented for performing driver’s
facial recognition for enhancing the security of vehicle
parking spaces. In this work, a security camera installed on
the side of the parking entrance is used to spot the vehicle.
Once the vehicle enters the area, the driver has to pull down
the side mirror to display her face. The facial region of
the driver is detected using Haar-like features, followed by
a simple recognition approach based on Eigenfeatures and
Euclidean distance. In such a scenario, convenience is far
more important than security, and a simple algorithm could
be sufficient to serve the purpose. The evaluation pays more
attention to false rejections than false accepts in such cases.

In [8], a novel facial landmark detection algorithm was
proposed for real driving situations, based on an ensemble
of local weighted random forest regressors with random
sampling consensus (RANSAC) and explicit global shape
models. This approach takes into account the irregular and
dynamic characteristics of driving. In order to detect driver’s
facial landmarks, first the face of the driver is captured using
a near-infrared camera and illuminator. The nose is localized
and used as a reference point. The facial landmarks can
serve for evaluation of driver fatigue, and similar states, as
well as for proper geometric normalization of the face for
authentication. Since sunglasses are quite frequently used
during driving, the algorithm should be robust to partial
occlusions such as caused by hair or sunglasses.

III. METHODOLOGY

The main flowchart of our proposed framework is de-
scribed in Figure 1. We first acquire the driver’s image
using an in-vehicle camera, and send it to further processing,
including face detection, feature extraction and classification.
In this section, we describe the main components individu-
ally, starting from the database we have constructed.

A. Dataset Construction

There are no public resources for continuous driver authen-
tication, but there are some related databases collected for
driver face and head pose analysis. The PANDORA dataset
was recently collected from car-driving scenarios, using a



Microsoft Kinect One RBG-D camera, and contains 110
annotated sequences using 10 male and 12 female actors,
each of whom has been recorded five times [2]. However,
while this database contains realistic driver poses, it has a
different purpose and it is not recorded in a car. Subsequently,
it does not possess the realistic and challenging illumination
conditions we require, and the number of subjects is too
small for authentication experiments.

The RS-DMV dataset was collected from outdoor driving
scenarios with a dashboard camera, and contains different
illumination conditions [16]. However, the purpose is to
evaluate secure driving, and only seven outdoor driving
sequences are available. Similarly, the CVC11 Driver Face
dataset contains 606 image sequences from only four drivers,
with gaze direction labels [5]. Obviously, the number of sub-
jects is too small in either case for a realistic authentication
scenario.

To deal with the shortcomings of available datasets, we
have collected 1172 videos of 1042 different drivers from
YouTube searched by using the keyword “CarVLog”, and
use it as our evaluation dataset2. Vlog, i.e. video blog,
is a popular form of multimedia recording, and there are
many users who record videos from dashboard cameras or
mobile phones placed on holders in the dashboard area while
driving. These typically include speech. Continuous driver
authentication should be performed with segments including
speech, as well as segments that do not contain speech. We
acknowledge here that using video blogs biases the database
towards more segments with speech, but since these present
more challenging conditions than still faces, we argue that
this is acceptable.

All the collected videos are taken in real-world driving
scenarios, and thus present challenges such as extreme
lighting conditions, head pose variance, etc. Among these
collected videos, only 52 subjects have more than one video
available, which gives us a total of 130 videos. Among them,
29 are female and 23 are male, and 26 videos contain drivers
wearing sun-glasses on most of the driving session. The
videos were manually checked, and non-driving sequences
were eliminated. Also, vlogs typically start with non-driving
segments, where the vlogger enters the car, or sets up the
system. These frames are eliminated from the analysis.

For each subject, we use images from one video as positive
samples to train our classifier, and the rest of the videos from
the same person are used in the test database. We selected
990 videos from subjects with only one video to serve as
negative samples during the training step. An alternative
usage would be to use them for increasing impostor accesses
in the testing protocol. However, reducing false rejections is
more important than reducing false accepts for the proposed
scenario, and this suggests that additional videos are more
useful for improving training.

2Youtube has typically two licenses for its videos. Creative Commons
license allows the download and use of the video, whereas Standard Youtube
License requires permission from the owner for any re-publication. We do
not make any videos with Standard Youtube License available.

Fig. 2. Face quality assessment flowchart.

B. Face Detection and Extraction

For detecting the face region, we use the Dlib frontal face
detector [12]. This detector uses a Histogram of Oriented
Gradients (HOG) feature, combined with a linear classifier,
an image pyramid, and a sliding window detection scheme.
Comparing to the popular OpenCV face detector, which
uses the Viola-Jones algorithm, Dlib’s face detector gives
more robust detection results, even under some challenging
situations [11]. Once the face is detected, we crop the facial
region from the background, and send it to our feature
extractor. On our test dataset, the typical face region ranges
between 80x80 to 180x180 pixels.

C. Feature Extraction

We use pre-trained convolutional neural networks as fea-
ture extractors. The pre-trained VGG-Face CNN descriptors
described in [18] were used with fine-tuning paradigm. The
original structure of this model is shown in Table I. We
remove the last layer, which specializes in the classification
task of the original training, and kept all the previous layers
(i.e. up to fc7), and used this structure to extract our feature
vector. We updated pre-trained model parameters with our
training dataset. The output of this layer gives us a vector
of size 4096 for each face image, which is used with the
classifier.

D. Face Quality Assessment

Due to the camera view angle and driver’s head pose, not
each and every extracted face image is good enough to be
sent to classification. Besides, even though the Dlib’s frontal
face detector is robust, there are still some false detections in
the initial step. Therefore, we need to first assess the quality
of the face image before further processing. By this step,
we can filter out low-quality images to reduce unnecessary
computation on the classification side. Also, these poor
detections will invariably fail to pass the authentication test,
causing false rejections.

To implement the quality assessment subsystem, we se-
lected one thousand different frontal face images from the
Labeled Face in the Wild (LFW) dataset [7], obtained their



TABLE I
DETAILS OF THE VGG FACE CNN ARCHITECTURE. FULLY CONNECTED (FC) LAYERS ARE LISTED AS “CONVOLUTION” AS THEY ARE CONSIDERED A

SPECIAL CASE OF CONVOLUTION BY AUTHORS OF [18].

layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
type input conv relu conv relu mpool conv relu conv relu mpool conv relu conv relu conv relu mpool conv
name – conv1 1 relu1 1 conv1 2 relu1 2 pool1 conv2 1 relu2 1 conv2 2 relu2 2 pool2 conv3 1 relu3 1 conv3 2 relu3 2 conv3 3 relu3 3 pool3 conv4 1
support – 3 1 3 1 2 3 1 3 1 2 3 1 3 1 3 1 2 3
filt dim – 3 – 64 – – 64 – 128 – – 128 – 256 – 256 – – 256
num filts – 64 – 64 – – 128 – 128 – – 256 – 256 – 256 – – 512
stride – 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1
pad – 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1

layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
type relu conv relu conv relu mpool conv relu conv relu conv relu mpool conv relu conv relu conv softmx
name relu4 1 conv4 2 relu4 2 conv4 3 relu4 3 pool4 conv5 1 relu5 1 conv5 2 relu5 2 conv5 3 relu5 3 pool5 fc6 relu6 fc7 relu7 fc8 prob
support 1 3 1 3 1 2 3 1 3 1 3 1 2 7 1 1 1 1 1
filt dim – 512 – 512 – – 512 – 512 – 512 – – 512 – 4096 – 4096 –
num filts – 512 – 512 – – 512 – 512 – 512 – – 4096 – 4096 – 2622 –
stride 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
pad 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Fig. 3. The calculated average of the one thousand face images from the
LWF dataset. The feature vector of this image is used to compare whether
the input face image is of enough quality in our quality assessment step.

Fig. 4. Some examples of false or unqualified face detection result. We
can filter these out with the proposed face quality assessment process.

average image, and extracted its feature vector according
to method just described. The system calculates the cosine
distance between this feature vector with each detected face
during operation. Once this distance is higher than a pre-
defined threshold value, we consider it as of enough quality
and send it to the next step.

We employ Support Vector Machines for the classification
task [3]. For the training of the classifiers, we first collect 50
face images of the driver. Taking into account the challenging
situation of driver’s head pose and illumination conditions
in the real scenario, we enrich the set of the original facial
images with rotated versions, as well as simulating dark and
bright conditions. The data augmentation on original images
uses the following steps:

1) Rotation: we rotate each image from -15o to 15o, with
5o increments.

2) Brightness change: we obtain one dark and one bright
version of each image after rotation by Equation 1:

Inew = αIoriginal + β (1)

where, Ioriginal refers to the original image intensity and
Inew refers to new intensity after the operation. For obtaining
dark image, we use α = 1.0 and β = −15, while for bright
image, we use α = 1.5 and β = 30.

3) Flip: once the rotation and brightness change steps
are performed, we flip the resulting images and add to the
training set.

In this manner, we get 42 images from one single image,
and a total of 2100 images using our original 50 face images
from a single driver. This ensures that a very short sequence
is usable for establishing the registration of the driver with
the system.

The feature vectors of these 2100 images serve as our
positive examples. We collect 5000 face images of different
subjects, not included in the test dataset, extract their features
and let them be serve as negative examples. We use five-
fold cross validation to estimate the optimal values of SVM
parameters γ and ν during training. For each subject, we train
one classifier, save it locally and use it to predict whether
the test image belongs to the registered driver or not. As our
goal is to perform authentication, after having the test image,
we use the expected driver’s trained classifier to perform the
prediction.

An obvious extension is using multiple genuine drivers in
the training scenario. This is a typical case for taxi drivers,
where the owner of the taxi leases the vehicle to two different
designated drivers to maximize the usage. These drivers use
fixed shifts, and it is not uncommon that for a given city,
the shift times are fixed across all taxi companies to allow
easy substitution of drivers. Our proposed method allows a
straightforward extension in this case, where instead of a
single driver, multiple drivers are used for extracting positive
samples in the training stage, and the negative samples are
left unchanged. Such a system has the advantage of not
requiring the driver to use an additional step for entering
ID to the system, as the classifier is not ID-specific, but
vehicle-specific in this case.



E. Face Tracking

Once we get a positive feature classification result, we
track the face during the upcoming frames so as to reduce
the computation workload. The facial region’s bounding box
serves as input for our correlation tracker [4]. If the tracking
fails, face detection and the consecutive steps are performed
again. The correlation tracker returns the peak to side-lobe
ratio, which is a value that measures the confidence of the
tracker on whether the object is inside the target region or
not. We use this ratio to decide whether our tracking is
successful or not. In our test case, we choose ratio values
of 8.0 and higher to accept tracker success.

F. Cloth Verification

Considering the challenging illumination and head pose
conditions in our scenario, chances are high for falsely
rejecting the correct driver. For that, we also take into account
the cloth region of the driver to be verified and serve as
a supplementary verification step in order to reduce false
alarms. In our cloth verification step, once we successfully
detected and tracked the authorized driver, we choose a
rectangle region of size 50x50 below a certain pixel of the
face, and consider it as our cloth region (see Figure 5). The
system extracts foreground and background pixels of this
selected region and decides whether the current frame’s cloth
region is the same as that of the previous frames or not.
In a real-world scenario, since the possibility of a driver’s
changing their appearance during driving is relatively low,
we use the cloth verification result to discard some false
alarms raised by our face classifier.

To be specific, we use a Gaussian Mixture-Model (GMM)
based foreground/background segmentation algorithm [26],
[27]. This algorithm gives us a binary mask for the driver.
We use five components per mixture in our tests, and obtain
the cloth verification ratio using Equation 2:

R = Nbackground/Ntotal (2)

where, Nbackground and Ntotal refer to total background
pixels, and the overall pixel count of the selected cloth
region, respectively. R indicates the verification ratio. R =
1.0 indicates that all pixels are regarded as background,
that is, the test cloth region is exactly the same as in the
previous cloth region, while R = 0.0 means all the pixels
are considered as foreground and the test cloth region is
totally different from the cloth region of the previous frame.
This ratio can be thresholded to decide whether the target
cloth region belongs to the same user or not. We choose a
threshold value of 0.8 to assume the cloth region is of the
same person.

Occasional rejections by the face or cloth verifiers should
not raise alarms. During our tests, after a positive face
authorization, if there exist two consecutive frames that the
face verifier gives negative results while the cloth verifier
gives a positive, we discard the face verification result to still
consider the person as a positive driver. If the face verifier
gives a negative result in the next upcoming third frame,

Fig. 5. Illustration of cloth region detection. The blue rectangle for the
cloth area is best viewed in color. We intentionally added additional mask
on face regions to avoid YouTube license conflict.

Fig. 6. Examples of false cloth region detection. Top: face (green) and cloth
region (blue) detection results. Bottom: their corresponding cloth region
binary mask extracted by GMM. As we can see, in the left image, the
steer wheel is regarded as background (cloth) and this leads to the incorrect
consideration of the true cloth region as foreground in the right image.
We intentionally added additional mask on face regions to avoid YouTube
license conflict.

then we consider the driver as negative. In this manner, we
are able to reduce some amount of false rejections. We only
consider two consecutive frames for cloth verification, since
in real-world scenarios, the cloth region selected below the
driver’s face sometimes points to regions other than the cloth
area, such as the steering wheel (see Figure 6).

IV. EXPERIMENTAL RESULTS

For continuously verifying the driver, we choose 30 frames
out of each test video, which gives us a total of 52389
genuine scores (with some dropped frames) and 201600
impostor scores. We report the Receiver Operating Charac-
teristic (ROC) curve [28] (see Figure 7), True Positive Rate
(TPR) corresponding to 1% and 0.1% False Positive Rate
(FPR) of our proposed framework on this sample (see Table
II). For comparison purpose, we provided test results based
on same architecture but the CNN-based feature extractor is
the pre-trained VGG model without fine-tuning, as well as
the popular FaceNet Inception based NN4 model [19].

As we can see from these test results, our proposed method
gives us a relatively low FPR. Also, feature extraction based
on VGG model with fine-tuning gives us better results than



Fig. 7. Obtained ROC curve of our proposed framework based on our test
dataset (using threshold values of 0.8 and 0.4 for cloth region verification
and face quality assessment filter, respectively).

Fig. 8. Some examples of challenging videos. The images of the first
column are from the videos used for registration, while the rest are from the
verification step. The first row shows the extreme illumination change, the
second row illustrates different head pose, camera location and multiple face
appearances, and the third row demonstrates a driver wearing sunglasses.
We intentionally added additional mask on face regions to avoid YouTube
license conflict.

Fig. 9. One typical example of the same user’s facial images captured
during different time period, facial expression, and illumination conditions.
The top left facial image is from the video used for the training step, and
the rest are test images. We intentionally added additional mask on face
regions to avoid YouTube license conflict.

TABLE II
TRUE POSITIVE RATE (TPR) CORRESPONDS TO 1% AND 0.1% FALSE

POSITIVE RATE (FPR) OF OUR PROPOSED FRAMEWORK COMPARING

WITH VGG WITHOUT FINETUNING AND FACENET

Methods 1% FPR 0.1% FPR
VGG 85.6% 75.16%

VGG + Finetuning 90.8% 79.4%
FaceNet 72.8% 41.6%

Fig. 10. ROC curve illustrating the impact of our proposed face quality
assessment filter to the overall system performance.

VGG without fine-tuning and FaceNet models. The reason
for our obtained TPR is that the test videos captured from
actual scenarios present extremely challenging conditions,
such as illumination change, head pose variation, sun-glasses,
facial expressions and makeup, other user’s appearance, etc.
Also, the difference of time period for one user’s multiple
videos may vary. For instance, there are users that upload a
new video just several days after their first one, while some
upload videos after several months or even years (see Figure
8 and 9).

This large inter-session time span poses a great challenge,
but corresponds to a possible scenario, where the user does
not drive the car for a long time. Of course, it may be possible
to mitigate some of the effects by setting a maximum amount
of days before the stored template is considered to be old,
and a new one is required by the system.

Meanwhile, we also investigated the impact of our pro-
posed face quality assessment step and cloth region verifi-
cation to our final system performance. The related ROC
curves for these are illustrated in Figure 10 and Figure 11
respectively.

From these ROC curves we can deduce that the face
quality assessment filter can help to reduce the FPR to some
degree, which depends heavily on the false alarm of the face
detector. Meanwhile, the FPR grows as the cloth verifier’s
threshold value increase, and vice versa. Thus, choosing a
good threshold value for cloth verifier can help to reduce
the overall false alarm rate.

We have investigated a scenario in which there are two
authorized users for one vehicle, which is typically true for
a taxi that has a day time and a night time driver, or a
family car shared among a couple. As mentioned earlier, it is



Fig. 11. ROC curve illustrating the impact of our proposed cloth verifier to
the overall system performance. Top: system with pre-trained VGG model.
Bottom: system with pre-trained VGG model plus fine-tuning operation.

TABLE III
TRUE POSITIVE RATE (TPR) CORRESPONDS TO 1% AND 0.1% FALSE

POSITIVE RATE (FPR) OF OUR PROPOSED FRAMEWORK FOR MULTIPLE

DRIVERS TEST

User Group 1% FPR 0.1% FPR
Male + Male 94.4% 89.5%

Male + Female 90.3% 87.2%
Female + Female 92.7% 84.7%

possible to train one classifier that separates two drivers from
the rest. For that, we organized three different test groups,
in which the two drivers could have the same sex or not:
i.e. male-male, male-female and female-female, respectively.
Each group consists of 10 different subjects in total. We have
used the same method for registration. For verification, the
trained classifier of each group are used for prediction, and
both drivers are tested for positives. For testing, we used one
video from each driver and the videos used for registration of
other drivers were treated as impostor accesses. The obtained
ROC curve is shown in Figure 12, and related TPR and
FPR are given in Table III. As expected, the performance
for classifying two drivers as a single class is lower than
classifying for a single driver. As far as we observe, to some
degree, this performance is affected by the limited sample
size and their quality chosen for our testing.

V. CONCLUSIONS

In this paper, we proposed a face and appearance based
real-time driver authentication framework. We combine a

Fig. 12. ROC curve illustrating the system performance for multiple
authorized drivers. Top: system with pre-trained VGG model. Bottom:
system with pre-trained VGG model plus fine-tuning operation.

CNN-based face classifier with a GMM-based appearance
verifier to decide whether the operating driver in the vehicle
is authorized or not. We collected real-world scenario based
videos from the Internet, and constructed our own test
database. Our test results show that we can provide relative
acceptable true acceptance and very low false acceptance rate
for our challenging scenario of real-time driver authentica-
tion. Our proposed method can deliver low-cost, continuous
and real-time driver verification.
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