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Figure 1: Visualization of our course contact segmentation model’s predictions on two test videos (∼13 mins). Top (blue) depicts
an interaction characterized by brief moments of hand touch and a longer period of the child sitting on the parent’s lap. Bottom
(yellow) has segments of parent’s arm touch to the child’s body, suggesting a restrictive dynamic between parent and infant.

ABSTRACT
In parent-child interactions (PCIs), there is frequent physical con-
tact between the two actors. Quantifying this contact provides
valuable input to assess the nature of the interaction or the relation
between parent and child. Here, we explore the application of vision-
based techniques to automatically detect contact signatures at each
frame of video recordings of playful parent-infant interactions. We
employ two separate models: (i) a multimodal convolutional neural
network (CNN) that integrates 2D pose and body part information,
and (ii) a unimodal graph convolutional neural network (GCN) that
utilizes only 2D pose. We showcase the potential and limitations
of automatic contact signature estimation through quantitative
and qualitative assessments using a parent-infant free play inter-
action dataset consisting of 100 parent-child dyadic interactions,
covering 20 hours. Additionally, our experiments provide insights
into various design choices through systematic experimentation.
By releasing our annotations and code, we aim to enable further
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research in the automatic contact signature estimation during free
play interactions between parents and infants1.
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1 INTRODUCTION
Unraveling the dynamics in parent-child interactions (PCI) gives
insight into the processes that affect a child’s development. Interac-
tions with a parent reveal characteristics of early child development
such as language acquisition, cognitive growth, and socio-emotional
development [30, 31]. Videos of PCIs are used to assess and track
development of children [32, 36]. However, manually annotating

1This is the uncorrected Author Proof including the supplementary.
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these videos, as done traditionally, is both labor-intensive and re-
quires trained professionals [13, 29]. Computational advancements
enable automated approaches to extract significant features of in-
teraction from much larger amounts of data and to analyze them
more objectively [18].

Physical contact plays a crucial role in the communication of
emotion as an essential component of nonverbal communication [17].
In PCIs, physical contact facilitates emotional bonding and regula-
tion [1, 2]. Traditional assessments of contact through self-report
questionnaires are good indicators but theymay include bias toward
representing specific activities and particular types of contact [3].
Moreover, these instruments do not provide spatially detailed in-
sights, nor do they allow for temporal analysis as an interaction
unfolds. To overcome these limitations, we propose an automated
system for estimating contact signatures, encoding which body parts
are in contact, during parent-infant free play.

Contact detection, an under-researched topic, is challenging.
Interactions with contact include body parts of the participants
occluding each other. Fieraru et al. [11] introduced two contact
detection sub-tasks to improve 3D reconstruction for humans in
contact: contact segmentation, and contact signature estimation. Con-
tact segmentation provides a set of body part regions that are in
contact, coded at the individual. Contact signature estimation in-
creases the granularity of contact segmentation by specifyingwhich
regions of one person are in contact with which regions of the other.
Different from [11], we focus exclusively on parent-infant playful
interactions in this paper, with a larger variety of body parts in
contact on average compared to adult-adult daily interactions.

During free play, a parent and a child can freely select which
toys to use, and engage in a much broader variety of interactions
compared to a structured setting, where a specific task is being
performed. Subsequently, different behaviors may be elicited that
can provide cues about the quality of interaction, prompting and
directive behaviors of the parents, attention seeking and sharing,
affective displays, and other behaviors that can ultimately provide
information about the child’s psycho-social outcomes [21].

In this paper, we investigate the feasibility of a vision-based
method to automatically provide frame-level contact signatures in
parent-child interactions. We compare and combine two models:
(i) a multimodal convolutional neural network (CNN), adapted
from [9], with two input modalities, namely 2D pose and body parts;
and (ii) a unimodal graph convolutional neural network (GCN), with
only 2D pose as its input. Our main contributions are as follows:

• We analyze physical contact in parent-infant interactions
with contact signatures for the first time.

• We show the potential and limitations of automatic con-
tact signature estimation, using systematic experiments to
understand the contribution of the implementation choices.

• Our quantitative and qualitative results emphasize the im-
portance of analyzing physical contact between parent and
child to provide a good understanding of their interaction.

• We provide contact signature annotations for the publicly
available YOUth PCI dataset [25] to encourage research on
automatic contact assessment in parent-infant interaction

during free play. We release our code base and models23 as
well as the annotation tool4.

The remainder of this paper is structured as follows. We first
discuss related work on parent-child interaction analysis, with a fo-
cus on physical contact. In Section 3, we summarize the YOUth PCI
dataset and detail our contact signature annotations. Our method-
ology, including the implementation details of the computational
models, appears in Section 4. We quantitatively and qualitatively
evaluate our approach and discuss the results in Section 5, and
conclude in Section 6.

2 RELATEDWORK
Our work bridges several research areas. In this section we catego-
rize and discuss the relevant literature in these areas.

Contact in Parent-Child Interactions. The study of parent-
infant interaction is widely explored within the realms of psychol-
ogy, child development, and attachment theory [1, 2]. The promi-
nence of inter-personal touch is widely acknowledged as essential
for a child’s developmental stages [28], providing a foundational
basis for other forms of communication that develop later [17].
Touch not only affects physiological conditions, but also promotes
healthy biological growth and plays a crucial role in social develop-
ment [24].

Social Touch inParent-Infant Interactions.Touch plays a sig-
nificant role in establishing and reinforcing social bonds, especially
in the context of parent-infant interactions. In a notable study, re-
searchers mapped relationship-specific social touch allowance [35].
Participants were asked to mark the body areas where different
individuals could touch them. These maps demonstrated that chil-
dren were mostly allowed to touch the head, upper back, shoulders,
and arms of their parents.

Contact Classification and Signature Estimation. The role
of touch in parent-child interactions is critical, yet research on
physical contact detection using computer vision is limited, with
notable exceptions such as the works of Chen et al. [6, 7]. In both
studies, they utilized computer vision methods to detect interac-
tions involving touch between a parent’s hand and a child’s body.
The data are collected in a controlled environment where both par-
ticipants are seated opposite each other. This means that the hands
are the primary means to contact, whereas in a free play setting,
touch can happen in much greater variety. In [6], the proposed
approach achieved a precision rate of approximately 48%, with a
high recall rate (99%) in such settings. They also classified the touch
locations on the infant’s body. Our research extends this approach
by analyzing touch events in more complex free play scenarios,
without restricting it to hand-to-body contacts and, thus, we do not
rely exclusively on hand segmentation.

Fieraru et al. [11] introduced an innovative method for detecting
and analyzing physical contact from visual data, filling a significant
void in existing literature. Although their main goal was 3D recon-
struction, their auxiliary tasks to estimate physical contact regions
between adults across various scenarios laid the foundations of

2https://github.com/dmetehan/Image2Contact
3https://github.com/dmetehan/Pose2Contact
4https://github.com/dmetehan/HumanContactAnnotator
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contact signature estimation, which concerns the identification of
specific regions of contact on the bodies involved in the interaction.

2D Pose Estimation. In our study, the advancement of pose
detection technologies plays a crucial role in enhancing contact
signature estimation. Various approaches like OpenPose [4], Al-
phaPose [10], PoseNet [19], DarkPose [39], and HRNet [34] have
been used in applications ranging from human activity recognition
to human-object interaction analysis. Since infant bodies have dif-
ferent shapes and proportions, models trained with adult bodies
may not perform well on infants. DarkPose in particular is known
to perform better with infant poses [9]. In this work, we use HR-
Net integrated with DarkPose to extract pose-related features for
contact signature estimation.

Body Part Segmentation. DeepLab [5] and U-Net [27] are
among the leading models for body part segmentation, the task of
extracting the areas of each body part in an image. Lin et al. [23]
introduced a cross-domain adaptation approach, offering potential
improvements in segmentation tasks. More recently, the introduc-
tion of the Segment Anything Model (SAM) [20], trained on an
extensive dataset with 11 million images and a billion segmentation
masks, highlighted the ongoing improvements in visual segmenta-
tion. In our study, segmentation is the key technology for perform-
ing a more detailed analysis by distinguishing various body parts
of the interacting people.

Human-Human Interactions. Several studies have focused on
analyzing and predicting human-human interactions [14, 15, 26, 37].
These works explored different aspects of pose forecasting, pose
refinement, and instance segmentation in physically close human-
human interactions. In addition to strong deep neural network
backbones, they used attention mechanisms, different initialization
procedures, and network architectures to improve the performance
and stability of interaction analysis (see [33] for a review). Research
on contact detection might benefit from human-human interaction
classification, and vice versa.

3 PARENT-INFANT INTERACTION DATASET
The YOUth Cohort [25] is a large-scale, longitudinal cohort fol-
lowing nearly 4,000 Dutch children from pregnancy until early
adulthood. The study focuses on neurocognitive development in-
volved in two core characteristics of behavioural development:
social competence and behavioural control, respectively. In our
experiments, we used parent-child interaction (PCI) videos5 for 10
to 12 month-old children (average 11.4 months old with a standard
deviation of 1.2 months) where they play freely with one of their
parents. We use the terms child and infant interchangeably.

Videos are captured in a room with a play area of roughly five
square meters. In each recording, a parent and child play freely on
the floor. A variety of toys (car, doll, switch box, flower, book, baby
bottle, shape box with four different colored shapes) are available to
play with. These play sessions include a range of (joint) behaviors,
including parent and infant playing together, infant playing and
parent observing, infant crawling away from the play area and
parent restricting or bringing them back to the play area, as well as
parent guiding the infant to play with a specific toy.

5Access to these videos is granted to researchers following an ethics screening process.

Figure 2: Contact segmentation heatmaps for the predictions
of the model (left) vs. the actual annotations (right). For each
visualization the parent is on the left and infant is on the
right, showing both front (top) and back (bottom). Colors in-
dicate the amount of time in which a body part was involved
in contact, aggregated over all predicted and annotated inter-
actions.

Videos are captured with four uncalibrated dynamic cameras,
positioned close to ground level, as both the parent and the child
are predominantly seated on the ground. We used all views to
annotate the data, but limit our automatic analysis to a single view
to address a more practical setting. Since manual contact signature
annotation is time-consuming, we randomly selected 100 parent-
child interaction videos from the available pool of more than 1,500
videos. These videos were trimmed to focus on portions of the
interaction, where only the parent and the child are in the frame.
The trimmed videos have an average duration of 12 : 34 minutes
(standard deviation of 32 seconds). This selection covers around 20
hours of free play between parents and their infants.

Each 5 seconds, frames from the selected videos were extracted
and annotated for contact/no contact using a single view, as in [9].
In specific cases, the distinction could not be made confidently, for
example because the infant was not visible due to occlusion by
the parent or left the recording area. Resulting ambiguous frames
were discarded. Annotating from a single view serves a specific
purpose when training contact detection models. Using multiple
views may provide a more accurate label for the actual contact,
but if the contact is invisible (fully occluded) from a particular
viewpoint, marking it as a contact will confuse the model during
learning. We would be forcing the model to predict something that
has no visible indication in the acquired image.

3.1 Contact Segmentation Annotations
The word segmentation here does not refer to the classical image
segmentation task and instead we follow the definition of Fieraru
et al. [11] where Contact segmentation refers to segmenting the
body into a number of regions, and indicating the contact between
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two people with binary annotations per individual per body region.
Diverging from their work, instead of 75 regions per person, we
combine some neighboring regions, resulting in 21 regions per
person. We argue that a more fine-grained analysis is unlikely to
significantly improve the value of the annotations. We refer to
our contact segmentation annotations with 21 regions as “21 + 21".
We also derive a lower-resolution version of these annotations by
combining neighboring regions into 6 regions per person, referred
to as “6 + 6". We report our findings of 21 + 21 for fine-grained, and
6 + 6 for coarse-grained estimation.

Figure 2 illustrates the 21+21 contact segmentation heatmaps for
parents and infants for both the best model predictions (left) and for
the manual annotations (right). Comparing our manual annotation
heatmaps with those from Fieraru et al. (obtained predominantly
from adult-adult interactions), we observe significant differences.
In their work, the hands, arms, shoulders and upper back are the
regions with the highest contact frequency. In contrast, our data
clearly show that, while parents most often use their hands during
interactions, their shoulders and back rarely come into contact with
the child. Parents’ legs and chest are among the regions with the
highest contact frequency. This aligns with the intuitive observation
that infants’ heatmaps show the highest contact occurrence at the
buttocks, as they often sit on their parents’ laps.

Previous research by Suvilehto et al. [35] highlighted the unre-
stricted nature of parent-child touches, and showed that it allowed
contact in areas that would be considered off-limits in adult-adult
interactions across relationships. Our study corroborates these find-
ings and, additionally, quantifies the frequency of such touch inter-
actions during free play. Contrary to Fieraru et al., who reported
minimal contact in the lower regions between adults, our contact
segmentation heatmaps show the highest contact frequency in
these areas for infants. This increased range of physical contact
highlights the unique nature of parent-infant touch, which is not
restricted by the social constraints typical for adult interactions.

The parent contact segmentation heatmaps in Figure 2 show
asymmetry, with the more contact at the left side. It can be a bias in
the dataset. Parents might have been predominantly right-handed
and might have interacted with toys more with the right hand,
leaving the left hand to provide support for their children. It can
also be the case that the room setup makes it easier to reach the
toys from the right side with respect to the parents and keep the
children on the left side. Further analysis should look into this bias.

3.2 Contact Signature Annotations
Similar to contact segmentation annotations, contact signature
annotations also encode the contact between interacting people.
A contact signature represents the regions in contact with a set
of tuples, where each tuple denotes the contact between a body
part for person 1 and a body part for person 2. Our annotators
solely annotated contact signatures for 21 regions per interactant.
We denote these annotations as “21 × 21", since for each of the 21
regions in person 1 (i.e., the parent), a contact/no contact value is
chosen for each of the 21 regions in person 2 (i.e., the child). A lower
resolution version of these annotations (6 × 6) was derived using
the same procedure as the contact segmentation annotations. It is

important to note that it is trivial to derive contact segmentation
annotations from the contact signature annotations.

Since the contact signature annotations require a higher level
of understanding about the three dimensional nature of the scene,
annotators used all four views for the annotations to get a better
ground truth annotation quality. All the frames were annotated by
a single annotator and a second annotator annotated a subset of
the frames to determine the quality of the annotations.

Let 𝐴 and 𝐵 be annotations of two different annotators for a
single frame. Then, the Jaccard score 𝐽 is calculated as the number
of elements in the intersection of the positive labels from both𝐴 and
𝐵 divided by the number of elements in the union of all the positive
annotations. The Jaccard score is also known as intersection over
union, and is given in Eq. 1:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (1)

A Jaccard score of 42.46% was calculated for the inter-annotator
agreement for the 21 × 21 contact signature annotations. We have
also calculated the Cohen’s Kappa, which was 0.47.

Figure 3: Inter-annotator agreement for contact signature (6×
6, 21×21) and contact segmentation (6+6, 21+21) annotations.

The inter-annotator agreement for the derived contact segmen-
tation annotations, 21 + 21 and 6 + 6, as well as the derived lower
resolution contact signature annotations, 6 × 6, are shown in Fig-
ure 3. Naturally, the easier the task, the higher the inter-annotator
agreement. To give an illustrative example, suppose the first anno-
tator annotates a contact signature as [parent left fore-arm - infant
left upper leg], and the second annotator annotates it as [parent left
upper-arm - infant left upper leg]. For the 21× 21 contact signature
annotations, this counts as a disagreement, even though the differ-
ence between the fore-arm and upper-arm is small. However, if we
consider the (derived) lower resolution 6 × 6 contact signature an-
notations, where the fore-arm and the upper arm are combined into
one region (called ‘arm’), these annotations count as an agreement
(i.e., [parent left arm - infant left leg]).

Additional analysis and visualizations of the contact signature
annotations appear in the supplementary material.

4 METHODOLOGY
To explore the potential of automatic contact signature estimation,
we explore two different architectures: a CNN-based contact signa-
ture estimator called Image2Contact and a GCN-based estimator
with 2D joint locations as input, called Pose2Contact. We introduce
both architectures in this section.
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Figure 4: Pipelines for our two different methods: Pose2Contact (top) and Image2Contact (bottom). They both have four output
heads for different resolutions for the contact segmentation and contact signature annotations. Frame used with permission.

4.1 Image2Contact
We use a convolutional neural network (CNN), with architecture
and inputs largely following the implementation of a binary contact
classifier introduced in [9]. The pipeline of this method appears in
Fig. 4. We consider two modalities extracted from a 960×540 frame:
(1) a set of 2D pose heatmaps, and (2) a set of body part segmentation
maps. We start by detecting the two interacting people using the
human detector YOLOx [12].We select the two bounding boxeswith
the highest confidence and crop the tightest region that includes
both bounding boxes with a margin of 11% in each direction. These
cropped images are resized and padded to 𝑁 × 𝑁 (𝑁 = 112). Other
modalities are mapped onto this cropped image space.

The two bounding boxes, detected by the human detector with
the highest confidence scores, are processed through the DarkPose
model [38] with an HRNet (W48) backbone [34] to obtain 17 body
landmark heatmaps per person (i.e., 34 maps for two people). For the
second input modality, we use a state-of-the-art body part labeling
model [23], which outputs 14 body part heatmaps and a single
background heatmap. Diverging from Doyran et al. [9], we encode
these 15 heatmaps with integer values to preserve the confidence
results, as opposed to taking the most likely body part per pixel.

A modified ResNet-18 [16] is used as the backbone. The first
layer is adjusted to take the 34 body landmark and 15 body part
heatmaps. The last layer is replaced by four parallel fully connected
(FC) layers with four sets of outputs, for different resolutions (6 and
21, respectively) and different annotations (contact segmentation
and contact signature). The input of these FC layers has a dimension
of 512 and the output dimension depends on the prediction (12 for
6 + 6, 42 for 21 + 21, 36 for 6 × 6, and 441 for 21 × 21).

4.2 Pose2Contact
Our second contact signature estimator, the graph convolutional
method, is inspired by the 2P-GCN model [22]. Instead of using 2D
pose heatmaps, we directly use the 2D poses of both people as inputs
together with their confidences (2 × 17 × 3) for the spatial graph
convolutional network. The dimensionality of the input is much
lower compared to the CNN-based contact signature estimator
(see Section 4.1). This is beneficial, because it reduces the risk of
model overfitting during training. The drawback, of course, is that
less information is available. For example, depth ordering is less
apparent from 2D poses. While joints of two people might be close
in an image, the 2D pose representation provides few cues whether
they are in contact, or whether one is well behind the other.

The Pose2Image model is used to explore the benefits of using a
graph convolutional network for representing both the intra- and
inter-person connections with an adjacency matrix. The model
has eight layers of spatial graph convolutions followed by batch
normalization and an activation function (ReLU). After the eighth
layer, a global pooling layer is applied. At the output stage, we use
the same output strategy as the Image2Contact model with four
different fully connected layers for different outputs (see Figure 4).

5 EXPERIMENTS AND RESULTS
In this section, we describe the experimental analysis of our auto-
mated methods. We first introduce the experimental setting, before
outlining the model selection experiments. We present our main
results in Section 5.2 and then explore different interaction types.
We then present a qualitative analysis. We discuss our main findings
and limitations in Section 5.5.
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Table 1: Cross validation results for different modalities using Image2Contact.

2D pose heatmaps Cropped image Body part maps 6 + 6 6 × 6 21 + 21 21 × 21

✓ 45.80 (1.19) 24.79 (2.40) 31.48 (2.60) 11.16 (1.40)
✓ 39.72 (2.35) 18.46 (2.65) 22.05 (2.59) 7.44 (1.43)

✓ 44.96 (1.56) 22.70 (1.84) 29.72 (1.37) 10.10 (1.05)
✓ ✓ 46.31 (2.05) 24.43 (2.22) 31.67 (3.06) 11.77 (1.11)
✓ ✓ ✓ 44.65 (2.03) 23.48 (2.36) 30.53 (1.69) 10.95 (1.13)

Dataset. We use the YOUth Parent-Infant Interaction dataset.
After processing each frame with the human detector and human
pose estimation network, we discarded 5 parent-infant pairs which
had missing detections for at least one subject, usually the infant
being extremely occluded by the parent. The remaining 95 unique
parent-infant pairs in the dataset are divided into five folds for our
experiments. The first fold is only used for testing. The other four
folds are used for model and hyperparamter selection. Each fold
consists of around 400 contact frames and the frames from any
parent-infant video can only be in one of the folds.

Implementation and Training. Our main annotations are
contact signatures for 21×21, hence that is also the main prediction
task and resolution for ourmodels. To utilize the power ofmulti-task
learning, we added three additional auxiliary tasks: 6 × 6 for lower
resolution contact signature prediction, and contact segmentation
with two different resolutions (6 + 6, 21 + 21). All of our results
are reported using the Jaccard score (Eq. 1) in percentages as the
evaluation measure. All of our model selection tables report the
mean performance across four folds of cross validation using the
training folds and the standard deviations are given in parentheses.

5.1 Model Selection Experiments
We perform the first model selection study for the modalities of
the CNN-based contact signature estimator. In Table 1, using the
processed input types (2D pose heatmaps and body part maps) per-
formed better than using the raw input (i.e., the cropped image),
alone or in conjunction with the other modalities. Even when the
backbone was pre-trained on the ImageNet [8] dataset and image
data augmentation techniques were applied, using only the cropped
image as the input performed significantly worse than any combi-
nation of the other input modalities. Adding the cropped image as
the third modality also decreases the performance.

Table 2: Cross validation results with different backbones for
the Image2Contact model.

ResNet-18 ResNet-34 ResNet-50

6+6 46.31 (2.05) 44.59 (1.85) 45.34 (1.79)
6x6 24.43 (2.22) 23.58 (1.62) 23.11 (1.46)
21+21 31.67 (3.06) 30.43 (1.79) 30.15 (1.23)
21x21 11.77 (1.11) 11.42 (0.81) 10.97 (0.94)

Our second model selection experiment is to verify the suitability
of the backbone for our setup. The input modalities are chosen as
the 2D pose heatmaps and the body part maps. We compared two
alternative ResNet models with the layer sizes of 34, and 50, in
addition to the ResNet-18 model we have used. ResNet-18, which

is the smallest of these models, performs the best in Table 2. The
performance drops gradually when more layers are used.

Fixing ResNet-18 as the backbone and the processed input modal-
ities (2D pose heatmaps and body part maps) as our CNN-based
model’s inputs, our third experiment checks whether the additional
annotations (6 + 6, 21 + 21, and 6 × 6) are actually beneficial for the
model if used in a multi-task learning setting (see Table 3).

Comparing the performance of predicting our main annotations
(i.e., 21 × 21), predicting only these annotations without any multi-
task learning performs the worst (Table 3, row 2). Introducing only
the smaller resolution version of these annotations (i.e., 6 × 6) as
the second learning task performs better (row 3), while adding
only the same resolution contact segmentation annotations (i.e.,
21 + 21), has even higher results (row 5). The final row of the table
shows that predicting all annotations together leverages multitask
learning fully and yields the best results for our CNN-based model,
Image2Contact. In Table 3 we have dashed out the annotations that
are not predicted by a particular setting (as indicated by a zero loss
weight in the corresponding column on the left).

We perform the last model selection experiment by testing the
loss weight distribution for predicting the four annotations for
our GCN-based contact signature estimator. Similar to the CNN-
based contact signature estimator, Table 3 shows that Pose2Contact
model also benefits from multi-task learning. The worst performing
version for predicting the main annotations (21× 21) is achieved by
only learning to predict 21×21 (row 2). Introducing lower resolution
6 × 6 annotations or 21 + 21 contact segmentation annotations
perform the best. Diverging from the CNN-based model, predicting
all four annotations does not perform the best, signaling that for this
specific model, focusing on either the contact signature annotations
or the same resolution contact segmentation annotations are better
than diversifying the output types. Side by side comparison of
the contact segmentation heatmaps in Figure 2 reveals that the
model predicts contact regions in a similar fashion to the human
annotators. However, the best performing model predicts fewer
regions for the parents and more for the children compared to the
human annotations.

5.2 Contact Signature Prediction
We now address the task of automated contact signature prediction
on the test set of the YOUth PCI dataset.

Selected Models. For the remaining experiments, we report
only on the contact signature annotations (6 × 6 and 21 × 21) since
the Pose2Contact model with the best settings would not be trained
on the contact segmentation annotations (6 + 6 and 21 + 21 having
loss weights of 0). For the Image2Contact model we use ResNet-18
with 2D pose heatmaps and body part maps as the input modalities.
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Table 3: Cross validation results with different loss weights - Image2Contact and Pose2Contact.

Model 6+6 6x6 21+21 21x21 6+6 6x6 21+21 21x21

0 1 0 0 - 24.54 (2.09) - -
0 0 0 1 - - - 9.90 (0.85)

Image2Contact 0 0.5 0 0.5 - 23.29 (4.00) - 10.43 (1.65)
0.5 0.5 0 0 45.69 (1.87) 23.58 (2.18) - -
0 0 0.5 0.5 - - 31.42 (2.61) 10.86 (0.81)

0.25 0.25 0.25 0.25 46.31 (2.05) 24.43 (2.22) 31.67 (3.06) 11.77 (1.11)

0 1 0 0 - 24.46 (2.31) - -
0 0 0 1 - - - 7.90 (0.83)

Pose2Contact 0 0.5 0 0.5 - 24.68 (2.36) - 10.65 (1.20)
0.5 0.5 0 0 49.06 (2.73) 25.22 (1.65) - -
0 0 0.5 0.5 - - 30.61 (2.45) 10.64 (1.32)

0.25 0.25 0.25 0.25 48.71 (2.46) 24.35 (1.81) 30.49 (2.35) 9.50 (0.84)

Baseline. We considered different baseline methods such as
uniform, majority, stratified, and constant. On the test set, the best
performing baseline is constant, predicting all contact regions.

Fusion. As an ensemble method we considered three different
summarizing functions for decision level fusion. Since both Im-
age2Contact and Pose2Contact models output confidence scores
per contact region, we perform fusion by passing these scores
through minimum, average, and maximum functions.

With the two selected models, we report the results in Table 4,
along with the fusion and baseline results. Image2Contact model
performs better than Pose2Contact model. Both models separately
perform significantly better than the baseline of predicting all con-
tact. As expected, a decision level fusion of the two networks per-
formed better than both individually. Average and minimum fusion
functions performed better than the standalone results of each of
the networks, with the minimum function performing the best. This
might be caused by the selected loss function, evaluation metric and
thresholds for sigmoid scores causing networks to predict contact
regions with overconfidence. Using minimum as our fusion method
corrects these cases. Taking the maximum score as the decision
results in worse performance than both of the models.

Table 4: Test results on the test fold using the two models
separately and with decision level fusion.

Model 6x6 21x21

Image2Contact 25.83 11.21
Pose2Contact 25.68 10.56

Fusion - Maximum 24.70 9.65
Fusion - Average 27.02 11.78
Fusion - Minimum 27.52 13.59

Baseline 9.9 1.1

5.3 Exploration of Interaction Types
To give more meaning to the test results, we annotated the test
set with frequently occurring interaction type labels. The selected
types are "picking up child" (4%), "supporting" (27%), and "on the
lap" (24%). The rest of the frames are annotated as “other” (45%), and

omitted from analysis. "Picking up child" occurs when the parent
picks the infant up from the ground, usually grabbing below the
shoulders and around the chest using both hands. First chart in
Figure 6 shows that the parents’ most common body parts in contact
when picking the infant up are the arms, whereas the infants’ core
and arms are mostly in contact.

"Supporting" is annotated if the parent actively supports the
infant to stand up, not to fall or balance. During this interaction
type, the parents touch minimally to allow the child to move freely.

"On the lap" interaction type happens most frequently, and with
the highest number of contact regions per interaction (Figure 6).
The most common scenario is when they are sitting on the legs of
their parents’ with core-to-core contact and arms-to-arms contact.

We categorize our automated contact signature estimator’s per-
formance into three annotated interaction types. Figure 6 shows
the performance results per interaction type on the test set. As
the graph shows both “on the lap” and “picking up child” inter-
actions are predicted with much better scores compared to the
“supporting” class. We can see the contact distributions of the better
predicted interaction types to be more symmetrical compared to
the “supporting” interaction type (Figure 5).

5.4 Qualitative Analysis
The aim of the qualitative analysis and the visualizations are to
provide some insights in how our work, while being not perfect, can
still be used in a practical scenario. To gain more understanding in
the potential to automatically assess PCIs, we discuss a visualization
of our model’s 6 + 6 contact segmentation predictions for two
videos in Figure 1. For viewing purposes, we have combined right
and left limbs resulting in 4 + 4 contact segmentation. The black
lines indicate contact for that region. On the y axis, shows the
body parts of the parent and child. The x axis represent the time.
If we compare the predictions for the two videos it is clear that
the first video includes much shorter interaction segments with
contact whereas the second video includes multiple longer duration
interaction segments with contact. Observing directly the videos
also reveal that the parent in the first video plays with the child
in a much relaxed way as the child is usually stationary or stays
nearby the parent. Watching the second video it is seen that the
child tries many times to walk outside the play area and the parent
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Figure 5: Contact distribution per interaction type using 6 + 6 contact segmentation annotations.

Figure 6: Jaccard scores per interaction type calculated with
the best performing fusion model.

had to restrict him multiple times which the predictions show as
blocks of contact regions. These blocks are not visible in the first
video because the contact duration of the interactions are rather
short compared to the second video except on region in the middle
where the child sits on the laps of the parent. Here the model fails
to capture the legs in contact for the majority of the frames while
predicting correctly the arms being in contact.

5.5 Discussion
At a first glance, our selected models perform poorly on the fine-
grained (21 × 21) contact signature estimation problem. But con-
sidering that this is a 441-class problem, it is clear that informative
patterns are being learned. From the inter-annotator agreement cal-
culations (Figure 3), we also observed that the problem is challeng-
ing. However, when contact regions are combined into 6 regions
per person (6 × 6), both the inter-annotator agreement and model
performances increase significantly. Our qualitative analysis reveal
informative patterns, both between videos and within an interac-
tion over time. While there is room for improvement, we argue that
our models show potential to be used for real-life applications.

When comparing the two models, the Image2Contact model
has more prediction power since its input is more extensive. Im-
age2Contact utilizes the 2D pose heatmaps instead of pure max-
imum likelihood coordinates which allows it to have flexibility

locally. Additionally, it uses body part maps which encode both the
outer edges of the body parts, and depth ordering. These advan-
tages of Image2Contact also brings more complexity to the model.
We expect that Image2Contact has the potential to perform bet-
ter when given more training data, whereas the performance of
Pose2Contact might hit a ceiling much earlier.

By analyzing our annotations, we observed parent-child contact
patterns that differ significantly from those observed in adult-adult
interactions. The less constrained nature of touches between par-
ents and their children causes a wide variation in contact signa-
tures. Our work has demonstrated the feasibility of automatically
assessing contact in PCIs but we argue that a fine-grained, tempo-
ral analysis can reveal more relations between characteristics of
contact, and developmental outcomes.

Limitations. Our analyses provide a solid basis for automated
analysis of parent-child contact, but our work is not without limita-
tions. First, dataset-specific issues such as data quality (dark frames
and relatively low resolution), uncalibrated dynamic cameras, re-
alistic doll (false negatives with pose/human detectors), and most
importantly the dataset size can be improved. Especially the limited
number of training samples is likely to be insufficient to capture
the wide variety of different touches and to train larger networks.

Second, the inputs of the Image2Contact model could be im-
proved. In our implementation, the 2D body part heatmaps do not
encode the identity of the person, unlike the 2D pose heatmaps. We
expect that this causes the lower performance when the 2D body
part heatmaps are used, because a model is unable to differentiate
between which body part belongs to which person.

Third, our loss function and evaluation metric force models to
learn more general predictions, making it harder to learn specific
single-contact region interactions. Jaccard scores penalize the errors
more if there are fewer positive labels. Future work can explore
ways to categorize contact based on the region count and penalize
the models equally to improve the training.

Finally, we have addressed frame-level contact signature pre-
diction but, as revealed in the qualitative analysis, the analysis of
contact over time provides meaningful indications of the quality
of the interaction. Based on our work, such analyses are relatively
straightforward, and we welcome future research in this direction.
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6 CONCLUSION
In this paper we have, for the first time, addressed automated con-
tact signature estimation in video recordings of free play parent-
child interactions. We have shown that, even with a limited dataset,
the current state-of-the-art allows us to analyze contact in detail.
While there is room for improvement in terms of the accuracy of
our models, our automated analyses can reveal patterns over time.
As such, they provide opportunities to assess interaction quality at
a larger scale and with far more detail than was previously possible.
These estimators can be used to extract explainable contact features
which can be further used to predict parenting styles, interaction
quality, and other higher level annotations. They can also be used
to automatically annotate large datasets for analyzing both session
level and dataset level physical intimacy. Our findings, publicly
available annotations, and models may open a doorway to further
research to the largely unexplored field of parent-infant automatic
contact signature estimation.
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7 SUPPLEMENTARY MATERIAL
7.1 Distribution of Contact Signatures
Here, we analyze how the contact signatures of our annotated
dataset are distributed. To this end, we employ t-SNE (t-distributed
Stochastic Neighbor Embedding to visualize our fine-grained, 21×21
contact signatures in a latent 2D space. The top part of Figure 7
shows this distribution. Dots with a blue color represent the training
samples and the remaining red, yellow, and green colors show the
performance results per test sample using our best performing
model.

We manually inspected what different regions in the 2D space
corresponded to, indicated by the ellipses and textual labels. clearly,
similar signatures correspond to similar interactions. It can be seen
that the dataset has many samples of child sitting on the laps of
their parents whereas hand-to-hand contact occurs significantly
less than the others. There are also some small clusters that shows
very similar frames with parent and child being relatively still and
having almost the same contact signatures between different frames.
Still, there is significant variation within the clusters, which reflects
the challenging nature of the classification problem.

The bottom plot in Figure 7 only shows the test samples with
corresponding performance-related colors. Red color shows sam-
ples predicted with a Jaccard score lower than 0.25, yellow color
represents the samples predicted with a Jaccard score between 0.25
and 0.5, and the green color indicates the best predicted samples
with a Jaccard score of higher than 0.5.

Overall, the distribution of the predictions nicely follows that of
the full dataset. This is important because it means that there are
no obvious systematic biases in the predictions.

Still, some regions stand out. For example, the region between
the “parent legs to child bottom/back” and “child sitting on the lap”
contains several predictions but does not have any corresponding
training data. Interestingly, the Jaccard scores of the predictions
are reasonable.

The visualization also reflects the analysis of interaction type in
Section 5.3 of the main paper. We already observed better perfor-
mance for the “on the lap” type. From the figure, we can appreciate
that the Jaccard scores of the predictions in this area are indeed
often higher.

7.2 Average Contact Pair Counts
To understand the contact signature distribution better in our
dataset, we count the contact pairs for the 21 × 21 contact sig-
nature annotations of each frame. Then we calculate the average
for each video in the dataset, with results sorted and visualized in
Figure 8. As can be seen in the graph, the majority of the videos
have less than 10 contact region pairs per frame on average. This
highlights the sparseness of the contact signature problem (441
contact region pair possibility). Six videos only have frames with
only one contact region pair per frame.

Still, the average number of contact pairs is significant, indicating
that our classification task is much more difficult than a simple
binary decision.

During manual annotations, our annotators also noted that an-
notating the videos with less than two contact region pairs per
frame took much less time compared to annotating the videos with

more than 10 contact region pairs per frame. Aside from annotating
more regions, it was significantly more challenging to differentiate
between some of the contact regions such as upper arm and lower
arm of the infant or chest and stomach of the parent. Even though
using four cameras helped the annotators to make better decisions,
the highly occluded nature of the parent-infant interactions made it
difficult to use more than two cameras at a time since the other two
cameras only showed the back of the parent occluding the infant
extremely or often completely.
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Figure 7: t-SNE visualization of the 21 × 21 contact signature annotations. (blue: training set; red: test set, jaccard score < 0.25;
yellow: test set, 0.25 < jaccard score < 0.5; green: test set, 0.5 < jaccard score)

Figure 8: Average contact pair counts per frame for each of the videos in the dataset using 21× 21 contact signature annotations.
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