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Abstract—Publicly available digital maps may offer
semantic information regarding objects in street view
images. In this paper, we propose an approach to
exploit such information to automatically create object
detection datasets on which state-of-the-art object
detection methods can be trained. To accomplish
this, we use two detailed maps of the Netherlands
containing the location of a large number of street
objects. We link the object information to street view
images to use them as image-wide labels. Our results
show that even though there are many sources for
noise in the labels, we can create useful data with this
approach.

Index Terms—Learning, Maps, Deep learning,
Class activation maps, CAM loss, semantic segmenta-
tion, Roadside object detection

I. INTRODUCTION

The ability to automatically detect and classify
objects in images has led to increased capabilities
of automatic systems, allowing them to solve in-
creasingly complex real-world tasks. One of these
complex tasks is the ability to detect and clas-
sify objects in a road environment, a critical task
for autonomous driving and surveying applications.
However, the number of possible roadside objects is
high, and the appearance of these objects depends
on the geographical location (e.g. see Fig. 1). A
deep neural network to classify all possible objects
requires a large training set and accompanying
annotations.

In this paper, we investigate the possibility of
using the semantic information from digital maps to
automatically obtain image-wide labeling of road-
side objects, thereby decreasing the cost of creating

Fig. 1: Examples of intra-class variance within the
streetlight class

such training sets with manual object label anno-
tations. Our approach is inspired by the work of
Zadrija et al., where a sequenced image-wide la-
beled training set was constructed using Streetview
footage and maps [1]. In this work, we investigate
whether labeling roadside image with maps can
enable roadside object detection for a large number
of static objects. Furthermore, we investigate a
method of acquiring semantic segmentation results
from such an image-wide labeled dataset, based on
Class Activation Maps (CAMs).

In an image-based classification task, a CAM
is a map that shows which features and locations
in the image will lead to a positive classification
for a given class label. These maps are generated
by looking back through the network’s activations,
which is possible if no fully connected layers are
present in the classifier architecture. Subsequently,
CAMs are useful tools in the analysis of con-
volutional neural network architectures. However,
CAMs focus explicitly on the discriminative parts
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of objects [2]. To incorporate this representation
in the loss function, we propose in this paper a
CAM-loss that evaluates the CAM by comparing
it to an approximate ground truth mask. While not
precise, these approximation guides and enlarges
the CAM, thereby including less discriminative
parts of the objects in the computation of the loss.
The mask itself is generated by using depth and
location information available from digital maps.
As a summary, our contribution in this paper is
a method to generate an annotated roadside object
database from digital maps and street view images,
as well as methodological extensions to perform
learning with such a resource.

II. RELATED WORK

The performance of a state-of-the-art object de-
tector is heavily influenced by the quality and the
size of the training dataset. The cost of creating
large annotated datasets is high, especially when
labels are produced at semantic and/or instance
level. Weakly supervised learning approaches use
image-wide labels (which indicate the presence of
an object, but not its location) to guide object
detection tasks, and since there are large repositories
and image search engines that allow images to be
retrieved with such labels, this is a potentially useful
solution to cut manual labeling costs down [3], [4].
It is also possible to combine image datasets with
other information, such as maps that contain labels.
Zadrija et al. proposed to merge Streetview footage
and map information [1]. We adapt this idea in this
paper and investigate whether a broader approach
is possible for roadside object detection.

There are two weakly supervised learning ap-
proaches in the literature for object localization,
namely, Multiple Instance Learning (MIL) [5], [6],
[7], [8], [1], [9], [10] and localization via convo-
lutional neural networks (CNN) [11], [12], [13],
[14], [2], [15]. In MIL, data are grouped into bags,
and if a bag contains at least one instance of the
object, it receives a positive label for that object.
For weakly supervised object detection with MIL,
each bag consists of multiple regions of a single
image [7], [6]. MIL is typically used for locating

object boundaries with bounding boxes, and will
not easily lead to full instance-level segmentation.

Localization via CNN can provide a more de-
tailed segmentation of objects [11]. After a CNN
is trained, the key idea is to look back through the
CNN layers to see which areas led to a positive
classification, and use this information for segmen-
tation. Since fully connected (FC) layers remove
the ability to localize objects, Zhou et al. proposed
using a Global Average Pooling (GAP) layer to
replace the FC layers [14]. This allowed them
to create class activation maps (CAM) that show
the location of the features that led to a positive
classification. Recent approaches focus on ways to
refine such CAMs for better segmentation [16].

In this paper, we investigate whether CAMs can
be used during training and directly contribute to the
loss function for object detection. More specifically,
our intuition is that if a CAM is fixated on the
wrong object, it should not contribute a small loss
value, even if the label for the whole image is
correct. However, our main assumption is that we
do not possess ground truth labels at this level of
detail.

III. RESOURCES AND MATERIALS

In this section, we describe the resources we
use for automatic dataset generation and for the
creation of approximate ground truth. While our set
of resources comes from the Netherlands, similar
resources exist for other countries, and our approach
can be used for creating similar datasets.

We use the Basic Large-scale Topographical In-
formation (basis grootschalige topografie - BGT)
maps1 and the Digital Topographical File (digitaal
topographish bestand - DTB) maps2 in our research.
These publicly accessible maps show the locations
of millions of objects across the Netherlands. The
BGT map shows all municipality owned objects,
and the DTB map shows all objects owned by Ri-
jkswaterstaat, the department overseeing highways,

1https://www.geobasisregistraties.nl/basisregistraties/
grootschalige-topografie

2https://www.europeandataportal.eu/data/datasets/
f917ffa9-1531-48ea-867e-0d413d85b05a?locale=en

https://www.geobasisregistraties.nl/basisregistraties/grootschalige-topografie
https://www.geobasisregistraties.nl/basisregistraties/grootschalige-topografie
https://www.europeandataportal.eu/data/datasets/f917ffa9-1531-48ea-867e-0d413d85b05a?locale=en
https://www.europeandataportal.eu/data/datasets/f917ffa9-1531-48ea-867e-0d413d85b05a?locale=en


BGT-object Amount DTB-object Amount
Drain 2550088 Map mark. 1124343
Streetlight 1983625 Illum. obj. 255984
Manhole 1266851 Drain 236510
Barrier post 509430 Traffic sign 144624
Traffic sign 229045 Bollard pole 106911
Traffic sign pole 197055 Hectometer sign 82356
Fire hydrant 170810 Manhole-cover 79874
Playground eq. 105821 Bollard rock 55370
Bicycle rack 105265 Utility cabinet 54059
Garbage can 94533 Roadside block 31168
Water well 87745 Paint sign 27876
Bench 83727 Signpost 25469
Waste can 52847 Traffic light 20160

TABLE I: Top 13 most occurring objects from the
BGT and DTB maps.

waterways and roads not controlled by municipali-
ties. By combining these two maps, we gain access
to around 184 different object types with an average
of 62k objects per class. However, the database is
severely unbalanced, and there are overlaps between
the two maps. Table I lists the most frequently
occurring objects in these maps. We select a subset
of the more important objects for our experiments.

To match street view images for the locations
indicated by the BGT and DTB maps, we use the
Cyclomedia repository of images. Cyclomedia is a
street view image company that has cars driving
around the Netherlands (and other countries) with
cameras taking images every 5 meters. Each loca-
tion has six individual images, with 512×512 pixel
resolution. These six images are combined to create
a cyclorama (see Fig. 2 for a 2D representation of
a cyclorama). These cycloramas are produced for
each specific geographical location, and allow us to
compute images for arbitrary view directions.

For some regions, the depth information is also
available. This depth information is created by a
Lidar system, which produces a gray-scale image,
where the brightness of a pixel determines the
distance of that pixel to the camera. These depth
images directly overlap with the street-view images,
as they are taken at the same time and position.
Since many street view image acquisition systems
also acquire such depth images, we explore whether
additional improvements can be obtained by incor-
porating them in our analysis.

Fig. 2: 2d representation of a cyclorama.

IV. METHODOLOGY

In this section, we first describe our method of
automatically generating a dataset from maps and
images (Section IV-A). Then we detail our proposed
method for image-wide object detection and se-
mantic segmentation (Section IV-B). Finally, we go
over our approach of improving the results by using
automatically generated masks (Section IV-C).

A. Automatic Dataset Generation

An overview of the automatic training set gen-
eration method can be seen in Fig. 3. First, we
take the BGT and DTB maps (A) and transform
these into a list of coordinates of objects (B). A
toroidal region (C) is described on the map around
the coordinates of each object with a range of three
to ten meters. For every object, all images in these
zones are downloaded until a certain number is
reached. The selected images are retrieved from
the repository (D), and the object label is applied
(E). To improve the precision of object labeling,
a view cone is positioned with a field of view
(FOV) of 90°(F). To find the other objects present
in the images, we use the view cone with two pre-
selected distances (Xmin and Xmax, shown in F as
x and X). All objects up to Xmax are considered
visible, and all objects between Xmin and Xmax

are additionally considered as hard to detect. These



Fig. 3: Overview of the automatic dataset generation method. See text for details.

(a) CAI cabinet (b) Cabinet house (c) Cabinet house

Fig. 4: Images of two visually similar types of
utility cabinets.

labels are added to the images to produce the
automatically annotated dataset (G).

We focused on objects that can be represented
by points (rather than lines and regions), and on
roadside objects in particular. We fused classes in
BGT and DTB maps when necessary (e.g. the class
’street light in the BGT maps is called ’illumination
object in the DTB map). There are small differences
within related class labels. For instance, ’illumi-
nation object also includes light elements that do
not have a pole associated with them, while the
’street light class only contains lights that are on
top of street poles. Furthermore, some objects are
too similar for a clear visual distinction. Figure 4
shows the difference between two types of ’utility
cabinets, which can hardly be separated visually.

We investigate the performance of the method
by selecting 20 objects of different shape, size, and
rarity. With these objects, a training set of 16,000
images (800 images per class) and a validation
set of 4,000 images (200 images per class) is
created. It should be noted that some of the chosen

object classes actually consist of multiple classes in
the maps. These were combined as they were too
similar to visually distinguish (e.g. in the case of
utility cabinet, they consist of the classes ‘Cabinet
house’, ‘Communication Cabinet’ and ‘Electronic
Cabinet’). We manually annotated a set of 400
images from the dataset to serve as a ground truth.
The distances of the objects within the view cone
were grouped into classes of very small (Xmin =
5,Xmax = 10), small (Xmin = 10,Xmax = 15),
medium (Xmin = 20,Xmax = 30), and large
(Xmin = 35,Xmax = 45), respectively. The object
classes were allocated to one of these groups.

B. Object Detection and Segmentation

We use a ResNet-50 convolutional deep neural
network trained on ImageNet as our baseline object
detection framework [17]. We also experimented
with a VGGnet-16 architecture [18], as this was
originally used for the CAM method. However,
newer methods [11] show increased performance
on the ResNet-50 network and we found similar
results for overall classification in our preliminary
experiments. For object detection, the output layer
of the ResNet-50 architecture is changed from a
softmax layer to a sigmoid dense layer for the multi-
label detection problem, with the size equal to the
number of classes. During fine-tuning, a batch size
of four is used, and different learning rates were
tested. We used the decay and momentum values
suggested by He et al. [17]. We kept training until
our validation loss stagnated for more than four



epochs. The epoch with the lowest validation loss
is selected.

We propose to use a binary cross-entropy loss for
training, as it is often used in multi-label classifica-
tion. For objects in the hard zone, as described in
Fig. 3, the loss is set to zero for that sample. The
mean loss is computed per batch, and class-weights
are added to reduce the effect of class imbalance
by reducing the networks incentive to focus on the
over-represented classes.

1) Localization of Objects with CAMs: To be
able to localize an object precisely, we first detect
it using the network described. We choose the
CAM generation method, as introduced by Zhou
et al. [14], over MIL-based approaches for precise
localization. The latter need very accurate labels and
are sensitive to label noise [5]. Furthermore, sliding
window approaches are used to generate bags, and
these do not work well with objects of very different
sizes and shapes.

Generating a CAM from a network like ResNet-
50 is simple, as the network already maintains
localization information within its layers. We in-
vestigate CAM generation using the last convolu-
tional layer and the last ‘add’ layer of the net-
work. For a given input image, the output of the
last convolutional layer (or the add layer) has a
shape of (16, 16, 2048). For every class, we find
the values that lead to a positive classification. To
accomplish this, the weights from the dense layer
(with dimensionality (n class, 2048)) are used. By
taking the dot product between these weights and
the convolutional layer, the labels are directly con-
nected to the convolutional map, resulting in a CAM
for each class, shaped (n class, 16, 16). Figure 5
illustrates this process and shows why the resolution
of the CAM is directly linked to the size of the
convolutional layer.

2) Semantic Segmentation: We investigate two
methods to go from the CAMs to segmentation
masks: The first is to simply use a high threshold
on the normalized CAM values and use that as our
segmentation mask. The second option is to use
GrabCut [19], where the highest valued parts of the
CAM are used to initiate the foreground area. Both
methods require appropriate threshold values to be

Fig. 5: Image A shows a simplified diagram of the
last layers of a ResNet-50 network, and Image B
shows how to use those layers to generate CAMs.

selected.

C. Automatically Generated Masks

In this section, we discuss whether the method
of using available depth and map information can
help guide the learning process and increase the
quality of CAMs. First we discuss how this form
of information can be used to create approximate
object masks. Then we discuss how these can be
used to train the network. Finally, we investigate
how these masks can increase the resolution of the
CAMs.

1) Approximate Mask Generation: We investi-
gate improving CAM generation by introducing
a CAM loss that penalizes focusing on incorrect
image parts. As no direct object-masks are available
within the dataset, an approximate ground truth
mask is constructed with the help of the depth im-
ages available from the CycloMedia Lidar dataset.
We use the relative direction of the object within the
image (available from the object location and image
location), as well as the distance to the object (see
Fig. 6).

To create these masks, first an approximate depth
range dr is calculated. Using the distance di be-
tween the object and the recorder’s world location
(image location), a range rw is selected. If the
object is further away, the size of the range is
increased. We use the following relation:

rwi = max(dii ∗ o, 0.5), (1)



Fig. 6: Overview of our proposed CAM loss method. To generate an approximate mask, the directions
of all objects of a certain class are calculated first. Then the distance to all instances of this object is
calculated, and a range is defined This is then combined with a range over the direction, resulting in
approximate ground truth masks. The CAM loss is obtained by comparing this approximate ground truth
mask with the CAM result using cross-entropy.

where o is a variable greater than 0. To further
specify the masks, a direction range dr for each
object is also taken into account. First the relative
direction of the object θd is calculated with regards
to the recorder’s world location b:

θd = atan(obx − bx, oby − by)− bd, (2)

where bd is the direction d of the image with
regard to north, and where obx, oby , bx and by
are the coordinates of the object and the image,
respectively. A range ra is then set on this direction,
taking into account the relation between the distance
to the object and the size of the object:

rai = dii ∗ p (3)

where p is a variable greater than 0. This range is
then applied against the direction of the object:

dri = (θdi − rai, θdi + rai) (4)

. These two ranges are then combined to generate a
mask for every labeled instance visible in the image.
We determined o and p empirically.

The masks are generated for every labeled object
within an image, and then combined into a single
mask per class, which is used during training and
compared against a normalised CAM. Since these
masks have a size of (512×512) pixels, CAMs are

up-scaled to match them using bi-linear up-scaling
(see Fig. 7).

2) Including CAM Loss within Training: To see
the impact of the interaction between the two dif-
ferent loss functions (i.e. the normal cross-entropy
loss function and the CAM loss function), multiple
combined loss functions were investigated. Define
l1 to be the normal cross-entropy loss:

l1 = −ylog(ŷ)− (1− y)log(1− ŷ), (5)

where y and ŷ are the ground truth label and the
predicted label, respectively.
l2 is the CAM loss, and consists of a cross-

entropy comparison between the CAM and the
approximate depth mask:

l2 = −clog(ĉ)− (1− c)log(1− ĉ), (6)

where c and ĉ are the approximate depth mask
and the CAM prediction, respectively. Combining
the two losses can be accomplished by a weighted
sum: loss = w1l1 +w2l2. We also investigated the
relative loss function loss = l1 + l1l2 to reduce
the effects of noise in the dataset. This relative loss
function weights the CAM loss with the predicted
label l1.

As our model now has a second form of ground
truth that directly gives us a loss on the CAMs,
some up-scaling techniques can be used to increase



Fig. 7: CAM for a street-gully.

the resolution of the CAM. This is done by adding a
binary up-scaling layer before the last ResNet resid-
ual block. While the label loss cannot discriminate
between these up-scaled values, the depth mask loss
can. The downside is that the size of the model
and the memory cost will increase. We selected a
compromise and investigated up-scaling to 32× 32
and to 64 × 64. Since CAM creation is noisy, up-
scaling decreased the performance.

V. RESULTS AND CONCLUSIONS

To evaluate the quality of the generated set,
we compared it to our manually annotated labels
for the same images. We computed results for a
range of Xmin values, as this parameter influences
the number of objects taken into account during
training. Figure 8 illustrates the results in terms of
F-score for all classes, as well as illustrating how
F-score changes with Xmin for four representative
classes. Since these are image-level results, having
multiple objects from the same class does not have
an effect on the label. At a 10m range, the most
difficult object to label is the information sign (F-
score of 0.26), and the easiest objects are roadside
protection block, bicycle stand, barrier post, and
roadsign direction arrow (F-score over 0.75).

The results show that it is beneficial to select a
range for every object class, and not use a generic
range. Most of the relevant (visible) images are
found within the 3-10 meters range, and this is also
reflected in the results. The automatically generated
labels produced an F-score of 0.66 on the average

for the 20-class dataset, measured on the manually
annotated portion.

The space and time complexity added to the
baseline by the proposed approach is reasonable.
The original CAM model required 2.9GB of space
for parameters, which is increased to 3.1GB for
the depth-enhanced model. The training time per
batch is doubled (16s vs. 30s), but this is an offline
cost. For predictions, one image takes 0.18s with
CAM and 0.20s with the depth-enhanced model.
Times are reported on non-optimized code on a
machine with two Intel Xeon CPUs E5-2630 and
two NVIDIA Tesla P100 12 gb GPUs.

We set out to investigate if digital maps could
be used to construct an image-wide labeled dataset.
With our proposed approach, regardless of the high
amount of noise arising from the automatic gener-
ation process, a ResNet-50 network was capable of
producing an average F-score of 0.69 when fine-
tuned on the automatically generated training set.
We observed that larger objects, such as barriers
and bicycle stands, were better classified, whereas
small objects, such as street gullies, were difficult
to locate automatically.

Generating semantic masks for objects with this
approach seems to be very difficult. The CAM loss
we have introduced was able to slightly improve
the ResNet-50 baseline, but further methodological
progress seems to be required, and overall perfor-
mance is very low for segmentation.

For image-level annotations, the most important
issue is the large amount of label noise, and semi-
supervised approaches may help in dealing with
this problem. In our approach, we did not consider
objects being blocked by other objects that are
also labeled on maps. Known object relations could
be used to improve visibility considerations. For
example, if a street gully is behind a row of houses,
it will most probably not be visible to the camera.
Finally, the contextual information (presence of
objects given other objects) can be incorporated into
the models.
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