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Abstract

The intermittent nature of solar irradiance, primarily due to cloud movements,
leads to rapid short-term fluctuations in the power output of photovoltaic (PV) sys-
tems1. These fluctuations pose a significant challenge for integrating this renewable
energy source into the power grid. Accurate solar irradiance forecasting is key to
improving grid stability and energy efficiency by enabling more accurate predictions
of solar power fluctuations, thereby contributing to a more sustainable and reliable
energy supply.

Addressing this need, our study focuses on the development of a forecasting model
through innovative feature engineering, systematic design of specific attributes, and
optimization of sequence length. The model is tailored to perform efficiently across
various weather conditions and offers predictions for a time horizon of 0 to 20 minutes
ahead. Utilizing a Long Short-Term Memory (LSTM) model, we achieve a remarkable
ramp Forecast Skill Score of 39% in sunny and 25% in partially cloudy conditions.
This work not only contributes to the existing literature but also presents a pioneering
methodology for solar energy integration, highlighting the importance and application
of accurate short-term solar irradiance forecasting.

Keywords: Time-series, solar forecasting, machine learning, global horizontal
irradiance, all sky imaging, deep neural networks, LSTM

1. Introduction

The integration of increasing amounts of photovoltaic (PV) systems presents
technical challenges to grid operation. The variable nature of solar irradiance
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means that PV power output can experience significant fluctuations within a
short time. These rapid changes, commonly referred to as “ramp events,” ne-
cessitate that grid operators maintain sufficient regulating and reserve capacity
to uphold grid stability. Operating extensive balancing reserves is not only
costly but also carbon-intensive. Additionally, rapid fluctuations in PV power
can provoke local voltage swings, adversely affecting power quality and service
reliability.

Accurate solar forecasting is crucial in addressing these challenges. By pre-
dicting solar irradiance, and, consequently, PV power output, grid operators
can more effectively prepare for and respond to energy production fluctuations.
Such foresight diminishes the reliance on expensive and carbon-intensive bal-
ancing reserves, thereby enhancing grid stability and improving power quality
[1].

A promising tool in solar forecasting is the employment of sky cameras, also
known as All-Sky Imagers (ASI). These devices, which capture images of the sky,
provide valuable data on cloud movements and formations. Clouds significantly
influence the variability of sunlight reaching the earth’s surface, making this
information essential for predicting short-term changes in solar irradiance. The
integration of ASI data into forecasting models has demonstrated improved
accuracy in short-term solar forecasts [2, 3].

In this context, our study aligns with the growing interest in leveraging deep
learning techniques for solar forecasting. Specifically, we draw upon the in-
novative approaches of studies such as in [4], which utilizes Long Short-Term
Memory (LSTM) networks for photovoltaic power prediction using sky images
and historical power values. Our study extends this by integrating a novel com-
bination of all-sky imaging and advanced LSTM convolutional neural networks,
showcasing their efficacy in various weather conditions.

This study proposes using an LSTM model for forecasting Global Horizontal
Irradiance (GHI) up to 20 minutes in advance, utilizing data derived from ASI
input. LSTM models have garnered attention in various fields for their forecast-
ing capabilities and are now being explored in the context of solar irradiance
prediction. Our approach, which pioneers the application of LSTM models in
solar forecasting, builds on findings from two prior studies.

We compare the proposed LSTM model against persistence and smart per-
sistence models and other neural network and Random Forest (RF) models.
The study also investigates the impact of incorporating additional variables
and selecting optimal lagged values on forecast accuracy.

Our comparative analysis includes the model-based SKIPP’D dataset, a
deep-learning method for solar forecasting, by applying it to our test data and
fine-tuning it on our dataset for comparative evaluation. This approach is vi-
tal for establishing the model’s effectiveness and its place in the deep learning
landscape for solar forecasting [4].

Our findings suggest that the LSTM model outperforms other classifier mod-
els and persistence methods in providing superior short-term solar irradiance
forecasts under various weather conditions. The remainder of this paper is orga-
nized as follows: Section 2 presents related work on solar forecasting. Section 3
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describes our methodology, benchmarks, and the experimental data. Section 4
discusses the experimental results, while Section 5 delves into our analysis of
these findings. The paper concludes with Section 6.

2. Background and Related work

As the integration of photovoltaic (PV) capacity into the power grid con-
tinues to grow, the challenges and costs associated with grid management are
escalating. For instance, this trend prompted the Puerto Rico Electric Power
Authority to enact legislation, allowing for a maximum ramp event of 10%
for grid-connected utility-scale PV power plants [5]. Accurate PV power fore-
casts have become essential tools for grid operators, aiding in the integration of
substantial PV capacity and enabling timely measures to address power fluctua-
tions. This, in turn, leads to more dependable and cost-effective grid operations.
Given that balancing reserves typically require up to 15 minutes to adjust [6, 7],
the prediction of ramp events at this timescale is crucial.

A promising approach in solar forecasting revolves around All-Sky Imager
(ASI)-based models [8, 9, 10]. These models have proven effective in generating
accurate short-term forecasts with high spatial and temporal resolutions, often
predicting the Global Horizontal Irradiance (GHI) locally up to 20 or 30 minutes
in advance. Beyond this 30-minute horizon, the accuracy of ASI-based forecasts
rapidly declines due to cloud dynamics [11]. Moreover, the precision achieved by
ASI-based forecast models at the proposed resolution surpasses that of alterna-
tive solar forecasting methods, including Numerical Weather Prediction (NWP)
and satellite-based models [8, 12].

A novel all-sky imager (ASI) nowcasting system, benchmarked against estab-
lished ASI methods, satellite nowcasting systems, and persistence, demonstrated
improved accuracy through a hybrid model that directly utilizes pixel values and
image features for irradiance nowcasts [13]. This approach underscores the value
of ASI systems in analyzing sky conditions and predicting cloud movements to
derive more accurate irradiance forecasts, especially in higher variability sit-
uations where persistence methods fall short. Moreover, the use of Thermal
Infrared All Sky Imagers, as developed by Reuniwatt, highlights the potential
of infrared imaging in capturing atmospheric properties sensitive to water vapor,
which facilitates cloud identification and enhances overall cloud feature analysis
compared to visible images, despite challenges under overcast conditions [14].
These advancements in ASI-based forecasting methods, using machine learning
and infrared imaging, contribute significantly to the accuracy and reliability of
short-term solar irradiance predictions, essential for managing the integration
of PV into the electricity grid amidst rapid weather changes [15].

An ASI captures images of the sky at regular intervals, creating sequences
that illustrate cloud movement and dynamics. Various methods are employed to
extract information from these images or sequences, enabling the prediction of
GHI at specific time horizons. Subsequently, PV power production can be esti-
mated from these GHI predictions using a GHI-to-PV power conversion model.
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Several approaches with varying degrees of success have been developed thus
far [8].

In this context, a study by [16], has demonstrated the capability of convo-
lutional neural networks (CNN) to predict PV output from sky images directly.
This study underscores the potential of using contemporaneous sky images for
”now-cast” predictions, achieving significant accuracy. The success of this ap-
proach in correlating PV output with sky images suggests the feasibility of
direct PV power predictions, expanding the scope of data-driven methods in
solar forecasting.

A common first step in these models involves the use of algorithms to extract
features from ASI images, i.e., the process of transforming raw image pixel values
to other meaningful information. Examples of features are the amount of cloud
pixels obtained by means of a cloud pixel detection method or their brightness
level. Once extracted, the features may be used as an input for statistical models
like regression or support vector machines (SVM), which are trained to predict
the future GHI on the extracted features [17, 18].

Recent studies in solar forecasting show significant variation in prediction
horizons. For example, [17] used a four-week dataset, achieving the best results
with a 5-minute prediction horizon using images taken 5 minutes prior. How-
ever, their study presents data duration and image resolution limitations with-
out comparing them to persistence-based forecasts. Similarly, [18] employed
SVM with a 4-hour feature timespan aiming for a 1-hour prediction horizon,
categorizing data into day types. Additionally, [19] investigated optimal time
frames for feature extraction with the CNN model ”SUNSET,” focusing on 15-
minute predictions, offering valuable insights for improved forecast accuracy.
These studies highlight the importance of identifying the right timeframe for
effective feature extraction in solar forecasting.

ASI-based GHI forecasting models often use Cloud Motion Vectors (CMVs),
derived from cloud movement in images, for predicting cloud positions and esti-
mating GHI. Techniques like cross-correlation and optical flow, especially varia-
tional optical flow at the pixel level, aid in CMV estimation [7, 20, 21, 22, 23, 24].
However, CMVs can be less effective under unstable cloud conditions, leading
to lower accuracy with increased lead time [25]. Integrating local GHI and
temperature data, alongside cloud movement tracking, enhances prediction ac-
curacy [26].

[27] developed a method for predicting solar irradiance one hour in advance
using data from sensors across five locations, measuring variables like GHI,
DNI, and atmospheric conditions over a two-year period. The study tested
three models: ARIMA [28], a well-known time series forecasting method; MLP,
an Artificial Neural Network with a single hidden layer; and XGBoost [29], a
gradient-boosted decision tree model. While XGBoost was the most effective,
integrating multiple-site data was challenging. The researchers proposed investi-
gating Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) for future work, given their potential in sequential data analysis [27].

Another data-driven forecast has been reported by [30], employing a 30-
minute forecast horizon and a network of 65 GHI measurement sites, along with
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a comprehensive suite of ANN models. One of their notable findings was the
degradation of forecasting performance with increasing forecasting horizons.

In a noteworthy contribution to solar forecasting using LSTM [31], this re-
search explores various deep learning architectures, including MLP, CNN, and
LSTM networks, for short-term photovoltaic power output prediction using sky
images and historical power data. The study, conducted in Kyoto, Japan, high-
lights that LSTM models, known for their proficiency in processing temporal
sequences, outperform MLP and CNN models in forecasting accuracy. Specifi-
cally, the LSTM model achieves an impressive Root Mean Square Error (RMSE)
skill score of 21%. This underscores the potential of LSTM networks in accu-
rately capturing temporal dependencies essential for precise solar power fore-
casting, aligning with the approaches emphasized in our research. In the same
context a recent contribution in this domain is a model developed by [4], which
has significantly advanced the field by providing a comprehensive dataset for
short-term solar forecasting using deep learning models and sky images. This
benchmark dataset offers a unique opportunity to rigorously test and compare
the performance of different deep learning models, including our own. In our
research, we aim to leverage this dataset to validate the effectiveness and ac-
curacy of our proposed method, ensuring a thorough comparison with current
state-of-the-art models.

Recent studies use large models like Pangu-Weather for enhanced weather
forecasting. Pangu-Weather, with its 3D deep neural networks and Earth-
specific priors, excels in analyzing complex weather patterns and minimizing
errors, outperforming systems like ECMWF [32]. This trend towards combining
diverse data with sophisticated models for accuracy mirrors our use of advanced
LSTM convolutional neural networks in solar irradiance forecasting. LSTM’s
proficiency in processing sequential solar data highlights the uniqueness of our
methodology.

In our research, we advance the field of solar irradiance forecasting by lever-
aging cutting-edge deep learning methods specifically tailored to address the
challenges posed by the intermittent nature of solar energy due to cloud cover.
Recognizing the pivotal role of Convolutional Neural Networks (CNNs) in im-
age processing, our study harnesses their potential for accurate cloud detection
and movement prediction, critical for short-term GHI forecasting [33]. We also
explore the possibilities offered by Generative Adversarial Networks (GANs) in
image synthesis and enhancement, which is particularly beneficial for simulat-
ing diverse sky conditions and thus enriching the dataset for our models [34].
A core aspect of our study is the innovative use of Long Short-Term Memory
(LSTM) networks, a subset of Recurrent Neural Networks (RNNs), known for
their exceptional ability to model temporal sequences. By integrating LSTM
with all-sky imager images and local meteorological data, our research formu-
lates a novel approach that method enables us to create future representations of
the sky’s evolution, which, when processed through our LSTM neural network,
results in highly accurate short-term solar irradiance predictions. The LSTM
model, enhanced through feature engineering and sequence length optimization,
demonstrates remarkable proficiency in forecasting GHI across various weather
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conditions and a prediction horizon of 0 to 20 minutes ahead, achieving a ramp
Forecast Skill Score of 39% in sunny and 25% in partially cloudy scenarios.

3. Proposed forecasting approach

This section describes the method we propose for solar forecasting and the
data used to validate it. A flowchart summarizing our approach is shown in
Fig. 1, and the methods are explained in the following.

Fig. 1: Flowchart of the proposed approach for solar irradiance prediction. The ‘Machine
learning model’ in this chart refers to the proposed LSTM method but also represents other
approaches tested for comparison.

The flowchart 1 illustrates our proposed methodology for forecasting Global
Horizontal Irradiance (GHI) through the use of machine learning techniques.
While the Long Short-Term Memory (LSTM) model is our primary focus, given
its proficiency in handling sequential data, we have also employed Random
Forest (RF) and Artificial Neural Network (ANN) models for benchmarking
purposes. The raw data comprising ASI images, sensor data, and external data
sources undergo preprocessing, which includes feature extraction, interpolation
to address missing values, and normalization of variables to ensure uniformity in
scale. The preprocessed data is then split into training, validation, and test sets
for day t, referred to as Dataframe 2, with subsequent iterations incrementing
the day by 1 to facilitate continuous evaluation. The machine learning mod-
els are trained to discern patterns within historical data, and upon achieving
the optimal performance on the validation set, they are employed to generate
GHI forecasts, which are crucial for optimizing the performance of solar power
generation systems.
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3.1. Data collection

Two CMS-Schreder ASI-16/50 cameras from [9] are installed at Plataforma
Solar de Almeŕıa (PSA) in southern Spain, at coordinates 37.091549 ◦N, -
2.363556 ◦E and 37.095253 ◦N, -2.354785 ◦E, as shown in Fig. 2. The opti-
mal siting of these cameras, approximately 880.2 meters apart, was determined
based on achieving comprehensive sky coverage while minimizing the overlap
between their fields of view, which is crucial for the stereoscopic cloud analysis
when used.

Fig. 2: Location of the CMS-Schreder ASI-16/50 cameras near Almeŕıa, Spain.

These sites were carefully selected to provide a clear, unobstructed field of
view for each camera, ensuring the highest quality of data for solar irradiance
and cloud movement analysis. The robust construction of the camera hardware,
including features such as ventilation to prevent condensation and a double-
cover design, provides resilience in harsh environmental conditions, as stated in
the ASI manual [9].

3.1.1. Data input

The data used in this study can be divided into three categories: 1) image
data from the cameras, 2) measurements by installed sensors, and 3) external
data collected from open sources (see Table 1). The cameras have been op-
erational since July 23, 2019. We studied three months of data from August
to November 2019 under different weather conditions. The images cover a 180°
field of view, with a sampling rate of 15 seconds. Additional sensor data, in-
cluding ambient temperature (◦C), GHI (W/m2), and relative humidity (%),
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Table 1: Sets of features used in the study.

Features/Subsets all data image onsite meteo
Time and date ✓ ✓ ✓ ✓
GHI ✓ ✓
Temperature ✓ ✓
Humidity ✓ ✓
Clear sky GHI ✓ ✓
Clear sky index (CSI) ✓ ✓
Azimuth ✓ ✓
Zenith ✓ ✓
Sun-earth distance ✓ ✓
Number of cloud pixel ✓ ✓
Brightness ✓ ✓
Number of edges ✓ ✓
Number of corners ✓ ✓

are acquired at the same time and location. Details for the various parameters
implemented in this study are further indicated with a checkmark in Table 1.

As a data set, We consider data from the 1st of August 2019 to 31 December
2019. These comprise 121 sunny days, 29 partially cloudy days, and three cloudy
days (a total of 153 days). We take a random sample of five sunny days, three
partially cloudy days, and two cloudy days to construct an independent test set;
these are not seen during model selection and training.

The classes sunny, partially cloudy, and cloudy are distinguished based on a
daily averaged clear sky index (CSI):

• Sunny: CSI > 0.75

• Partially cloudy: 0.75 > CSI > 0.25

• Cloudy: CSI < 0.25

where CSI is defined as the ratio of measured irradiance and estimated irradiance
in clear sky conditions [22].

The predictions are made for days between 25 September 2019 and 21
November 2019. This includes 4 partially cloudy days and 24 sunny days. Due
to weather circumstances in the south of Spain, fully cloudy days are not present
in this period. Figure 3 shows monthly averages of GHI and its variance over
the months of August until December 2019. We observe that all GHI graphs
closely follow a bell-like curve. Higher variance is seen for GHI in September
and October (Fig. 3), as a result of some moving clouds. Consequently, GHI for
these months might be harder to predict. Temperature and humidity are less
affected by moving clouds, as can be seen in Figs. A.1 and A.2 in Appendix 7.

The selected timeframe for prediction, specifically the months of September
to November, typically experiences a high frequency of cloud cover, particularly
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moving clouds. This introduces significant variability in solar irradiance, posing
a substantial challenge for the forecasting models. The increased cloud move-
ment during these months is evidenced by the higher variance in the GHI values,
as depicted in Figure 3, making it a pertinent period for evaluating the robust-
ness and accuracy of our forecasting models under less-than-optimal conditions
for solar generation.

Fig. 3: Monthly average (left) and variance (right) GHI (in kWh/m2) at camera site 1.

To assess the effectiveness of various parameters, we conducted an extensive
comparison over a nine-day period. We used the preliminary dataset as a ’val-
idation set’ to identify the models with the best performance. The validation
set comprises specific days in 2019 with different weather conditions, includ-
ing sunny days (September 15th, October 15th, November 15th, and Decem-
ber 15th), partially cloudy days (October 21st, November 17th, and December
16th), and cloudy days (October 22nd and December 3rd).

3.1.2. All sky images

From the camera images (see Fig. 4, several features are extracted. The
intensity I is defined as the mean grayscale of an image (with 0 < pr, pg, pb <
255):

I =

∑
p∈image (pr + pg + pb)

N
(1)

where:

N = the amount of pixels
pr = intensity of red pixel (R)
pg = intensity of green pixel (G)
pb = intensity of blue pixel (B)

Clouds are extremely important when predicting GHI [10, 11]. Image-based
forecasting requires the extraction of information from relevant images, partic-
ularly in determining whether a pixel is part of a cloud. There are multiple
ways to ascertain if a pixel belongs to a cloud. While Chauvin et al. [12] iden-
tified three categories for existing cloud detection algorithms—threshold meth-
ods, neural networks, and dedicated algorithms—a more recent and extensive
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Fig. 4: Initial ASI image capturing cloud coverage at a specific time point.

benchmarking by Hasenbalg et al. [17] evaluated six cloud segmentation algo-
rithms, including a neural network-based approach and several threshold and
hybrid methods. In this study, we focus on threshold methods, as they offer a
balance between computational efficiency and accuracy for our specific applica-
tion, where an artificial neural network-based approach is not feasible since the
dataset lacks ground truth on clouded and non-clouded pixels necessary to train
a neural network. Additionally, dedicated algorithms would be too computa-
tionally expensive and require dedicated hardware to detect haze, thin clouds,
and opaque clouds, which is not justified given the marginal improvement in seg-
mentation accuracy for our use case as indicated by the findings of Hasenbalg
et al. [17].

Threshold algorithms are employed to classify pixels as cloud or clear-sky
based on pre-defined thresholds. Among various methods for pixel classification
using RGB pixel values [17, 18], the following algorithms stand out: 1) red-blue
ratio (RBR), 2) blue-red-blue-green ratio (BRBG), and 3) normalized red-blue
ratio (NRBR). The RBR (= R/B) method uses a fixed threshold Tf , typically
ranging from 0.6 to 0.8 to differentiate cloud and non-cloud pixels (R/B > Tf ).
Studies have indicated that BRBG (= B/R + B/G) performs well for pixel
classification [17]. In the case of NRBR (= (R − B)/(R + B)), an adaptive
thresholding approach has been proposed using minimum cross-entropy (MCE)
[20]. The MCE method determines the threshold by minimizing cross-entropy
between the original and segmented images. The segmentation is achieved by
calculating the mean and standard deviation of the normalized B/R ratio values.

In our paper, the RBR algorithm is used to identify cloud pixels, employing a
threshold value of Tf = 0.8. To detect edges, we apply the Canny edge detection
algorithm [21], and for corner detection, we utilize the Harris algorithm [35].
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3.1.3. Optical flow

The integration of optical flow techniques is instrumental in the estima-
tion of cloud velocity, a critical factor in solar forecasting. We first tested the
Lukas-Kanade method, as delineated in [10], to analyze cloud dynamics using
high-resolution All-Sky Imager (ASI) images. These images, with a resolution
of 3456x3456 pixels, were captured at 30-second intervals for a comprehensive
period of a month. By subdividing the images into 400x400 pixel blocks, we
were able to track cloud movements in proximity to the sun.

Using optical flow, specifically the Gunnar Farneback method [36], we pre-
dicted cloud block locations based on the sun’s position. The Farneback method
calculates the flow per pixel by employing a two-frame flow estimation algo-
rithm, which uses quadratic polynomials to approximate the motion between
two frames, as depicted in Fig. 5. This approach, utilizing the polynomial
expansion transform, allowed us to quantify cloud coverage as variable C. Sub-
sequently, we improved Global Horizontal Irradiance (GHI) predictions by sub-
tracting the cloud coverage fraction, weighted by a constant, from the clear sky
GHI baseline forecast.

Fig. 5: Visualization of cloud movements with Farneback dense optical flow.

Our methodology augmented the data on time intervals utilized for calcu-
lating cloud velocity, addressing the gaps in previous studies [10]. Additionally,
the robustness of our approach was validated across an extensive spectrum of
weather conditions and scenarios.

Moreover, Forecast Skill Scores, which are discussed in Section 4, provide a
benchmark for our model’s performance. When comparing these scores to other
weather prediction methods, it is imperative to account for the variability of
meteorological conditions, which can significantly influence forecast accuracy.
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3.1.4. Data: Availability, train, validation and test data

To predict for the day tp we can only use data observed before tp to train
our models. We consider all data before predicting time tp − 3 as training data.
See Fig. 6 (note, we have taken n = 3 as the number of validation days, as test
data). Furthermore, the validation set will exist out of tp − 3, . . . , tp − 1, thus
not including tp itself. Data for the day tp will be used to test the predictions.
Therefore, when time passes, the training set will contain a large amount of
data assuming a certain starting date tstart. Let 11 September 2019 be a day
to predict. All data prior to 11 September is taken as training data, excluding
3 days before 11 September (8, 9, and 10 September). These three days are
included as a validation set.

Fig. 6: Example training and test set. Here p is the day to predict (test) and n is the number
of validation days. t0 is the first data in the data set.

3.1.5. Single (S) and Multi models (M)

The current use of ANN and LSTM for single (S) models results in unpre-
dictable performance. Single models, denoted by ‘S’, are designed to forecast a
specific prediction horizon, leading to a total of 20 unique models for 20 different
prediction horizons. The models often predict 0 and require 20 times more com-
putation time than multi-models (M), which are capable of forecasting across all
prediction horizons simultaneously, significantly enhancing computational effi-
ciency. Only multi-models are capable of making accurate predictions on the
test-set. One specific example of unstable predictions is shown in Figure 10
(Section 4) for the ‘LSTM M 5 all data’ model, and other single models were
even less reliable. While the RF ‘single’ models do not appear to have this issue,
the computational problem persists. As a result, due to their inefficiency and
less reliable performance, all ‘single’ models will be excluded from predictions
on the test-set.

3.2. Overview of methods

In this study, we use several machine learning (ML) approaches, including
a Random Forest, which is a collection of decision trees [23], Artificial Neural
Networks (ANN) [37], and Long Short-Term Memory (LSTM) [27]. We trained
these models with stochastic gradient descent (SGD) and Adam optimizer [28].
SGD uses back-propagation until some defined minimum error is found. Adam is
an extension of SGD, where it makes use of past values to change the momentum
adaptively [28].

Each of the used ML approaches have a number of hyperparameters to op-
timize. These were selected based on the training set, and the test set is not
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seen during hyperparameter selection. We report the full range of parameters
tested during learning here for transparency.

For RF, we tested different numbers of decision trees (50, 100, 150, 200, 250),
minimum samples per leaf (1, 2, 4, 12, 24, 64), and the maximum depth of a
tree (25, 50, 75, 100, 200). For ANN, we have chosen a three-layer architecture,
testing different numbers of nodes per layer ((32, 64, 32), (64, 128, 64), (128,
256, 128)), different learning rates (0.001, 0.01, 0.1), dropout (0, 0.1, 0.5), and
sigmoid vs. rectified linear unit activation functions.

We use a naming convention with the machine learning models presented in
this paper as M-T-I-D, where M (model) can be LSTM, ANN, or RF; T (model
type) is S or M, as discussed in Section 3.1.5; I (input length) can be selected
from {5, 10, 20, 40, 60}, and D (data) can either be ‘all data’ or ‘on site’ or ‘On
site + all data’ (Table 1).

3.3. Benchmarking

A common baseline model in solar irradiance forecasting is the persistence
model [38]. ‘Regular’ persistence predicts a valuet for time t + h, where t is
time and h is the prediction horizon. An improvement on this is called smart
persistence [30], and assumes a stable Clear Sky Index (CSI). The current CSI
is calculated by the ratio of the current direct normal irradiance (DNI) and
GHI. Subsequently, considering the solar zenith angle and time, the future DNI
is calculated. The prediction, then, is the multiplication of the future DNI with
the current CSI.

In addition to these baseline models, our study also incorporates a com-
parison with the model-based SKIPP’D dataset developed by [4]. This model
represents a significant advancement in solar irradiance forecasting, utilizing a
sophisticated approach based on sky images and PV power generation data.
To comprehensively evaluate the effectiveness of our proposed methodology, we
perform a two-fold comparison with the model-based SKIPP’D dataset:

1. Direct Application: In this setting, we apply the trained model-based
SKIPP’D dataset directly to our test data. This allows us to assess the
model’s out-of-the-box performance and its generalizability to different
datasets.

2. Fine-Tuning: Here, we fine-tune the model-based SKIPP’D dataset us-
ing our training data before applying it to the test data. This approach
helps us understand the adaptability of the model-based SKIPP’D dataset
to new datasets and conditions, as well as the improvements in accuracy
that can be achieved through fine-tuning.

We observed (see Fig. 7) that a long time frame as input made performance
worse, while selecting the observed variables from a short period before the
prediction moment performed better. The optimal number of minutes depends
on the model, but we note that, in general, five to ten minutes of observations
is most informative.
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Since we had access to two other identical setups, we examined the contri-
bution of adding training data from other sites during the training stage, but
this did not improve our models.

We predicted CSI and calculated the GHI accordingly. Eventually, this did
not improve our models. Thus, we suggest that predicting GHI directly is a
better approach.

3.4. Error metrics

We employ common metrics for the evaluation of forecasting methods and
compare these with a baseline. Most often, the following evaluation techniques
are used in similar studies: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), and Forecast Skill
Score (FS) [10, 29, 38], of which the latter is increasingly being used. However,
as typically forecasting models are built to optimize on RMSE, we consider this
the most important performance metric. The metrics are defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(
e2i

)
(2)

MAE =
1

n

n∑
i=1

∣∣∣ei∣∣∣ (3)

MAPE =
1

n

n∑
i=1

|oi − p̄i|
oi

× 100% (4)

FS = 1− Errorforecast
Errorbaseline

(5)

where:

ei = The absolute difference oi − pi,
oi = observed output,
pi = predicted output,
N = the amount of samples considered,
Error = One of the error metrics (RMSE, MAE, MAPE) was used.

As an additional error metric, the ramp score (RS) is utilized to measure
the forecasting ability for significant Global Horizontal Irradiance (GHI) fluc-
tuations, known as ramp events [39]. Traditional error metrics focus on instan-
taneous accuracy, whereas RS captures fluctuations over a specific time period,
better addressing short-term fluctuation challenges as described in the intro-
duction. The unit of RS is consistent with GHI measurements, represented in
kWh/m².

To compute RS, the prediction and observation time-series are compressed
using the Swinging Door (SD) algorithm [40]. The sensitivity parameter ϵ de-
termines the significance of detected ramps. A ramp is flagged when the GHI
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Fig. 7: Swinging door compression for the ’LSTMM 5 all data’ model (for model definition, see
section 3.1) under sunny weather conditions. Markers indicate ramp events where significant
GHI fluctuations were observed. SD output is averaged by the hour in this figure for clarity.
This is based on a more granular 5-minute averaging interval. On this continuous timeline,
four non-consecutive days are displayed, with the third day showing considerable variability.

deviation from a linear approximation exceeds ϵ, which is scaled by the daily
maximum clear-sky GHI value. In this study, ϵ is set to 0.05.

Adapting the RS to our 20-minute prediction horizon, we average over 5-
minute intervals instead of the hourly basis used in [39], scaling down by a
factor of 12. The RS is calculated using the equation:

RS =
1

tmax − tmin

∫ tmin

tmax

|SD(T (t))− SD(R(t))|dt (6)

where:

SD = Output swinging door compression,
tmax = maximum bound of the period with GHI > 0,
tmin = minimum bound of the period with GHI > 0,
T (t) = test time series (the forecast),
R(t) = reference time series (measurements).

Figure 7 has been updated to clearly depict actual ramp events, with visual
markers added to highlight significant deviations between the observed and fore-
casted GHI values, as determined by the SD algorithm’s sensitivity threshold.
The SD output in this figure is averaged by the hour to provide a clear example,
whereas our experimental analyses utilize a 5-minute averaging interval.
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3.5. Statistical significance

To compare if some model a is significantly better than another model b,
the Diabold-Mariano test [41, 42] is proposed. In this significance test, the
prediction errors of both models are studied over a particular prediction horizon.
We want to test if the null hypothesis:

H0 : E(dt) = 0, ∀t (7)

in comparison with the alternative hypothesis:

H1 : E(dt) ̸= 0,∀t (8)

Where E represents equal predictive accuracy.
We define the loss differential between two forecasts as dt = e1,t − e2,t,

representing the error at time t for model 1 and model 2. In our analysis, the
error for some models is quantified using the Root Mean Square Error (RMSE).
A common significance level of α = 0.05 is adopted in forecasting, as supported
by literature [42, 41]. Given that prediction uncertainty increases with the
horizon length, model errors are evaluated against a specific forecast horizon,
denoted as H. For this study, we examine forecast horizons ranging from 1 to
20 minutes, covering a comprehensive spectrum of short-term predictions.

This approach allows for a nuanced assessment of model performance across
different temporal scales, ensuring a robust analysis of forecast accuracy.

3.6. Hardware

All experiments (unless stated otherwise) are run on a node that contains an
AMD EPYC 7451 24-Core Processor and 256 GB (RAM) memory. Additionally,
the node is equipped with a GTX 1080 Ti GPU.

3.7. Model selection

3.7.1. Hyper-parameters Model (RF, ANN, LSTM)

For Random Forest, we chose the mean square error (see Section 3.4) as
a loss function for the random forest, because we are dealing with a regression
problem and we want to penalize extreme values. Our model always considers
all features. For the grid, a search is chosen for a 10-fold cross-validation on
the training set (all days until 15 September). The grid search is done for the
number of estimators, the minimum samples per leaf, and the maximum depth
of a tree. The search comprised parameters as presented in Table 2. The best
results came with Estimators of 200, a minimum samples leaf of 1, and a max
depth of 25.

In the context of ANN, a 3-layer architecture outperformed others. Hy-
perparameter optimization involved a grid search for node count, activation
functions, optimizers, learning rate, and dropout rate. The optimal number of
epochs minimized validation loss, yielding nodes (50, 25, 10), ReLU activation,
learning rate = 0.001, and dropout = 0.
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Model Hyperparameters Value Best Results

RF
Number of estimators [50, 100, 150, 200, 300] 200
Minimum samples leaf [1, 2, 4, 12, 24, 64] 1
Max depth [25, 50, 75, 100, 200] 25

ANN

Nodes [(32, 64, 32), (64, 128, 64), (128, 265, 128)] (64, 128, 64)
Activation functions [‘Relu’, ‘sigmoid’] Relu
Learning rates [0.001, 0.01, 0.1] 0.001
Dropout [0, 0.1, 0.5] 0

LSTM
Nodes [(50, 25, 10), (60, 30, 15), (80, 40, 20)] (50, 25, 10)
Activation functions [‘Relu’, ‘Sigmoid’] Relu
Learning rates [0.001, 0.01, 0.1] 0.001
Dropout [0, 0.1, 0.5] 0

Table 2: The Best Performing Hyperparameters for Different Applied Models (RF, ANN,
LSTM).

In the case of Long Short-Term Memory (LSTM), a 3-layer architecture is
utilized, comprising two LSTM layers followed by a dense layer. Hyperparam-
eter optimization involves searching for the ideal node counts, activation func-
tions, optimizers, and learning rate. The optimal configuration, as displayed in
Table 2, includes nodes (64, 128, 64), ReLU activation, a learning rate of 0.001,
and a dropout rate of 0. Extending the range of learning rates further did not
enhance model performance, indicating a plateau within this parameter space,
thus affirming the initial tuning’s precision.

The dataset includes October 5th-8th and October 20th. Four models (RF,
ANN, LSTM, and Optical Flow) were applied, with RMSE displayed in the
plots; a detailed summary is in Appendix 7. Satisfactory models will predict
the test set, detailed in the following subsections, where the selected model is
presented.

3.7.2. Model Selection-Random Forest

Figure 8 and Table A.1 demonstrate that when the input is the same, ‘multi’
outperforms ‘single’. The most accurate predictions are made with a sequence
length of 5, but the difference in accuracy between different sequence lengths is
not significant enough to draw any firm conclusions.

The feature subsets that perform the best are ‘all data’ and ‘onsite’, while
external data (‘meteor’) does not perform as well as the baseline. Therefore, we
will select the feature subsets ’all data’ and ’onsite’ as they perform the best.
In addition, we will consider sequence lengths of 5, 10, 20, 30, and 60.

3.7.3. Model Selection-Artificial Neural Network

Single models can be unstable, occasionally predicting 0’s, leading to high
error levels, which is not an issue in multi-models.

According to Table A.2, and Figure 9 models with shorter sequence lengths
typically perform better on RMSE, while longer sequences perform better on
MAE. We have chosen feature lengths of 10, 20, 40, and 60, along with the
feature subsets ”all data” and ”onsite,” as our selection criteria.
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Fig. 8: RMSE per prediction horizon for preliminary data-set-RF. Left graph: single model,
right graph: multi-model.

Fig. 9: RMSE per prediction horizon for preliminary data-set-ANN.
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Fig. 10: RMSE per prediction horizon for preliminary data-set-LSTM.

3.7.4. Model Selection-Long Short Term Memory

LSTM shares the issue of ANN in predicting 0’s at times using a single
model, but it is more reliable than ANN. However, LSTM appears to be more
affected by sequence length, and experiments indicate that anything over 10
does not work well.

Using a sequence length of 3 is too brief and leads to slightly worse prediction
results compared to lengths 5 and 10 (as illustrated in Figure 10 and Table A.1).
As a result, we choose sequence lengths 5 and 10, as well as the feature subsets
“all data” and “onsite,” for our selection.

3.7.5. Perez-Model

In this article, the performance of the Perez (‘prz’) model in predicting Clear
Sky Index (CSI) was examined. GHI values were derived from the ratio (CSI
= DNI / GHI) and then compared to Global Horizontal Irradiance (GHI) mea-
surements. The Perez model, known for its sophisticated approach in estimating
solar radiation under clear sky conditions, incorporates factors such as the sun’s
position and atmospheric conditions into its calculations. Despite its compre-
hensive nature, the results showed that the ‘prz’ model performed much worse
than other baseline models at all prediction horizons, with an RMSE of 255.28
at prediction horizon 20. However, it is worth noting that this poor performance
is not apparent in Figure 10, as the error for ‘prz’ is above 120.

This lower performance of the Perez model in our study could be attributed
to its specialized focus on clear sky conditions, posing challenges when adapting
to varying CSI conditions. These results suggest that predicting CSI might be
more challenging than predicting GHI, potentially due to errors in the CSI-to-
GHI conversion model. These findings raise questions about the suitability of
the ‘prz’ model for predicting CSI, and whether a different approach may be
necessary.

Model selection reveals a common difficulty in predicting cloudy weather,
primarily due to limited data: only three cloudy days in the training set and
two in the test set. This data scarcity hinders the models’ ability to predict
such conditions, as evident from their initial attempts where cloudy weather
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was barely or not encountered. The persistence model, in particular, struggles
in these scenarios. A thorough analysis of each model’s performance on the test
set is detailed in Section 4.

4. Results

This section assesses the test set results using the selected model. We be-
gin with an overview of each model’s performance, including their strengths,
weaknesses, and comparisons to the baseline. Subsequently, a detailed perfor-
mance analysis is presented for all models, covering: model selection, valuable
features, different weather circumstances, times of the day, computational time,
additional training data, and statistical significance. We also tested models on
the limited cloudy days in the data set.

4.1. Random Forests

RF ANN LSTM
Training (s) 69.20 72.59 722.65
Prediction(ms) 0.014 0.0038 15.6
Parameters n/a 71452 19280

Table 3: Training execution times (in seconds) per model on day 27 September 2019. Training-
set contains all available data before 27 September 2019 (excluding 3 days of validation set).
The prediction times are 1 prediction for the next 1 .. 20 minutes in milliseconds. For the
neural network the number of parameters per model.

Results from our study presented in Table 3 demonstrate that RF is the
fastest training model among all the proposed models. However, one detail that
should be noted is that the model is trained to minimize Mean Squared Error
(MSE) instead of Mean Absolute Error (MAE). In the study, RF was found to
perform well on sunny days, with ‘RF M 5 onsite’ beating the baseline on av-
erage. However, on average, RF predicts slightly worse than smart-persistence.
Despite this, when predicting weather conditions for a longer horizon of 20 min-
utes, RF’s prediction performance was found to be slightly better than smart-
persistence, as shown in Table A.1. For partially cloudy weather, ‘RF M 60
all data’ was found to perform best on average, outperforming persistence and
smart-persistence, as indicated in Table 4. However, on cloudy days, RF per-
formed poorly compared to persistence. Figure 11 shows that the RMSE was
plotted per prediction horizon, providing a detailed analysis of the performance
of different models.

The study noted that RF performance varies with prediction sequence length.
Short sequences excel on sunny days, while longer ones perform better on par-
tially cloudy days. However, shorter sequences outperform longer ones beyond
a 13-minute prediction horizon for partially cloudy weather.
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Fig. 11: Average RMSE on test-set for models RF and ANN.

4.2. ANN

The results presented in Table 5 and in Figure 12 indicate that ANN models
that take a sequence with length 10 perform the best in predicting weather con-
ditions. This suggests that the optimal sequence length for weather prediction
using ANN models may vary based on specific circumstances and conditions.
As the sequence length increases, the accuracy of the ANN models drops, in-
dicating that longer sequences may not necessarily lead to better predictions.
In sunny weather circumstances, the ‘ANN M 10 all-data’ model is able to pre-
dict well with a small difference compared to ‘ANN M 10 onsite,’ but it has a
bad ramp-score with respect to the baselines. On the other hand, for partially
cloudy weather, ‘ANN M 10 onsite’ outperforms persistence on all prediction
horizons, but the ‘all data’ subset performs worse in this weather circumstance.

Choosing the appropriate error metric is crucial for accurate ANN model
evaluation. For example, ramp-score evaluation may yield different results than
MSE evaluation, impacting model performance. Additionally, the study reveals
that shorter prediction horizons pose more challenges for ANN models, with the
performance gap widening as the prediction horizon increases.

4.3. LSTM

The experiments conducted demonstrate that the performance of LSTM
models is better with shorter sequences. In fact, any sequence length
greater than 10 was unreliable and resulted in some very off results.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA
Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA
RF M 10 all data 59.31 29.53 19.2 26.73 0.01 0.12 0.33 -0.0
RF M 20 all data 57.88 26.85 20.8 25.24 0.03 0.2 0.27 0.05
RF M 30 all data 57.5 26.78 20.14 25.56 0.04 0.2 0.3 0.04
RF M 5 all data 60.12 30.77 19.85 28.16 -0.0 0.09 0.31 -0.06
RF M 5 onsite 56.73 27.95 18.36 26.17 0.05 0.17 0.36 0.02
RF M 60 all data 58.41 26.75 19.58 26.2 0.02 0.21 0.31 0.02
RF M 5 all data 2CAM 62.25 32.37 22.38 28.9 -0.04 0.04 0.22 -0.08

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 84.59 48.08 37.12 29.31 NA NA NA NA
Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA
RF M 10 all data 79.98 47.87 44.82 31.17 0.05 0.0 -0.21 -0.06
RF M 20 all data 80.41 47.95 50.05 31.21 0.05 0.0 -0.35 -0.06
RF M 30 all data 78.3 47.26 45.05 30.58 0.07 0.02 -0.21 -0.04
RF M 5 all data 81.11 48.66 46.5 31.59 0.04 -0.01 -0.25 -0.08
RF M 5 onsite 80.26 49.58 45.45 31.36 0.05 -0.03 -0.22 -0.07
RF M 60 all data 77.4 46.43 48.11 29.61 0.08 0.03 -0.3 -0.01
RF M 5 all data 2CAM 81.05 48.16 63.14 31.36 0.04 -0.0 -0.7 -0.07

Table 4: Average RF Performance on Test-Set with Weather Circumstance: Sunny (Top) and
Partially Cloudy (Bottom).

Fig. 12: Average RMSE on test-set for model ANN.

The best performance was achieved with a sequence length of 5. On sunny
weather, the ‘LSTM M 5 all data’ model had the best performance on
average, as shown in Fig. 13. However, none of the LSTM models were able
to beat the baselines on very short prediction horizons, with the break-even
point being after 4 minutes for the ‘LSTM M 5 all data’ model. The ‘LSTM
M 5 all data’ model’s ability to predict GHI under sunny conditions is depicted
in Fig. 14, where it captures the general pattern of the observed data, yet
exhibits discrepancies during periods of rapid irradiance change, highlighting
the room for further refinement of the model. For partially cloudy weather, the
‘LSTM M 5 onsite’ model performed slightly better with an average RMSE
of 67.43, as demonstrated in Table 6. LSTM outperformed the baselines
across all prediction horizons. For short prediction horizons, ‘LSTM M 5
onsite’ also performed better in sunny weather, as shown in Fig. 13. Addition-
ally, LSTM was the only tested model in this study that had a better
ramp-score than (smart-)persistence for both sunny and partially cloudy
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA
Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA
ANN M 40 all data 66.52 41.71 41.63 33.16 -0.11 -0.24 -0.46 -0.24
ANN M 60 all data 71.21 42.79 34.63 34.77 -0.19 -0.27 -0.21 -0.3
ANN M 10 all data 57.2 35.53 38.79 28.4 0.04 -0.06 -0.36 -0.06
ANN M 10 all data 2CAM 59.13 37.26 36.97 30.83 0.01 -0.11 -0.29 -0.16
ANN M 10 onsite 55.51 31.17 59.92 26.93 0.07 0.07 -1.1 -0.01
ANN M 10 onsite 2CAM 55.37 33.53 103.71 27.84 0.07 0.0 -2.63 -0.04
ANN M 20 all data 64.63 40.28 52.96 32.29 -0.08 -0.2 -0.85 -0.21

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 84.59 48.08 37.12 29.31 NA NA NA NA
Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA
ANN M 40 all data 81.75 51.35 79.3 36.1 0.03 -0.07 -1.14 -0.23
ANN M 60 all data 85.61 55.55 126.4 39.72 -0.01 -0.16 -2.4 -0.36
ANN M 10 all data 79.29 46.38 73.98 32.21 0.06 0.04 -0.99 -0.1
ANN M 10 all data 2CAM 77.08 47.3 70.14 32.88 0.09 0.02 -0.89 -0.12
ANN M 10 onsite 66.13 39.46 63.26 26.29 0.22 0.18 -0.7 0.1
ANN M 10 onsite 2CAM 66.83 39.56 45.4 26.07 0.21 0.18 -0.22 0.11
ANN M 20 all data 78.08 48.72 72.56 33.93 0.08 -0.01 -0.95 -0.16

Table 5: Average ANN Performance on Test-Set with Weather Circumstance: Sunny (Top)
and Partially Cloudy (Bottom).

weather.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 59.83 33.65 28.58 26.68 NA NA NA NA
Smart-persistence 55.37 19.77 84.26 21.3 NA NA NA NA
LSTM M5 PXL 54.07 30.23 88.99 24.52 0.1 0.1 -2.11 0.08
LSTM M10 all data 52.25 28.23 38.6 24.3 0.13 0.16 -0.35 0.09
LSTM M5 all data 48.87 24.51 69.58 21.33 0.18 0.27 -1.43 0.2
LSTM M5 all data 2CAM 49.29 23.47 48.97 20.91 0.18 0.3 -0.71 0.22
LSTM M5 onsite 51.84 24.87 38.84 21.21 0.13 0.26 -0.36 0.21
Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑

Persistence 84.59 48.08 37.12 29.31 NA NA NA NA
Smart-persistence 87.85 47.82 74.22 28.66 NA NA NA NA
LSTM M5 PXL 68.69 38.76 45.62 24.01 0.19 0.19 -0.23 0.18
LSTM M10 all data 76.13 49.54 622.03 32.88 0.1 -0.03 -15.76 -0.12
LSTM M5 all data 71.35 41.04 53.63 26.34 0.16 0.15 -0.44 0.1
LSTM M5 all data 2CAM 76.28 43.58 146.07 28.44 0.1 0.09 -2.93 0.03
LSTM M5 onsite 67.43 37.34 55.45 23.43 0.2 0.22 -0.49 0.2

Table 6: Average LSTM Performance on Test-Set with Weather Circumstance: Sunny (Top)
and Partially Cloudy (Bottom).

Table 7 summarizes model performance across weather conditions and pre-
diction horizons. This summary highlights the models that perform well for
specific weather conditions and prediction horizons and suggests the most ap-
propriate error metric for evaluating the accuracy of the model. Most likely,
this is due to the fact that the variable to predict GHI is a feature onsite (and
all features), making it much easier to predict.

Onsite data outperforms other sources in the implemented models. Model
selection favored the subsets “all-data” and “onsite.” In the test set, “onsite”
performs better for RF and ANN models. LSTM ”all data” excels in sunny
weather, while “onsite” is better for partially cloudy conditions (averaging over
all prediction horizons).

4.4. Valuable features

In our analysis, models with complete data access performed best in partially
cloudy weather (Fig. 15). Conversely, for sunny conditions, on-site sensor data-
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Fig. 13: Average RMSE on test-set for model LSTM.

Fig. 14: Result LSTM M 5 all data, prediction horizon 20, sunny days test set.
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based models excelled in shorter predictions (up to 7 minutes, Fig. 15 for
analysis-based MAE).

4.5. Different weather circumstances

As discussed, the dataset is unbalanced due to the location in the south of
Spain. Therefore, we only discuss sunny and partially cloudy weather.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 72.52 39.16 27.84 27.69 NA NA NA NA
Smart-persistence 70.27 29.38 150.44 25.57 NA NA NA NA
ANN M 5 all data 60.34 32.63 48.53 26.48 0.17 0.17 -0.74 0.04
LSTM M 5 all data 58.43 28.77 61.81 23.98 0.19 0.27 -1.22 0.13
LSTM M 5 onsite 59.36 28.76 54.77 23.85 0.18 0.27 -0.97 0.14
LSTM M 5 onsite+img 62.43 31.13 56.5 25.09 0.14 0.21 -1.03 0.09
RF M 5 onsite 63.65 30.5 16.54 26.31 0.12 0.22 0.41 0.05
RF M 60 onsite 63.72 30.71 13.18 27.63 0.12 0.22 0.53 0.0

Table 8: Average performance on test-set, with weather circumstance sunny.

A - Sunny Weather Conditions

Table 8 displays the average performance on the test-set under “sunny”
weather conditions. The ‘LSTM M 5 all data’ model stands out with the
lowest RMSE of 58.43, indicative of its accurate predictions. Notably, it also
achieves high fairness metrics, with FS-RMSE of 0.19 and FS-MAE of 0.27,
underscoring its equitable performance across diverse groups. Furthermore, the
model demonstrates a low MAPE of 61.81%, indicating its capability for pre-
cise percentage predictions. These findings establish ‘LSTM M 5 all data’ as
a strong candidate for forecasting in “sunny” weather circumstances. Remark-
ably, it outperforms the baseline substantially, with FS − RMSE = 18% and
FS − MAE/FS − Ramp = 22%, while comparative analysis against ANN
(FS − RMSE = 8%) and RF (FS − RMSE = 5%, FS −MAE = 21%, and
FS − Ramp = 5%) further reinforces LSTM’s superiority in predicting accu-
rately under “sunny” weather conditions.

B - Partially Cloudy Weather Conditions
In Table 9 is shown that ‘LSTM M 5 all data’ outperforms all other models.

On average (overall prediction horizons) this model has RMSE 76.83, MAE
43.12, MAPE 62.85, and a Ramp-score of 29.04. Relative to other models and
baseline ‘LSTM M 5 all data’ performs better with relatively greater prediction
horizons. Additionally, for a prediction horizon of 20 minutes ‘LSTM M 5 all
data’ has FSrmse = 22% and FSmae = 24%.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 96.3 53.0 41.81 36.19 NA NA NA NA
Smart-persistence 97.26 53.06 63.93 36.14 NA NA NA NA
ANN M 5 all data 85.58 52.27 71.81 38.15 0.11 0.01 -0.72 -0.05
LSTM M 5 all data 76.83 43.12 62.85 29.04 0.2 0.19 -0.5 0.2
LSTM M 5 onsite 81.33 44.42 56.19 30.98 0.16 0.16 -0.34 0.14
LSTM M 5 onsite+img 85.42 45.53 69.27 32.04 0.11 0.14 -0.66 0.11
RF M 5 onsite 99.09 61.1 41.09 43.14 -0.03 -0.15 0.02 -0.19
RF M 60 onsite 89.39 57.26 36.49 39.58 0.07 -0.08 0.13 -0.09

Table 9: Average performance on test-set, with weather circumstance partially cloudy.
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Fig. 15: The top two graphs display the test-set results for RMSE in both sunny (left) and
partially cloudy (right) weather conditions. The middle graphs show the test-set results for
MAE in sunny (left) and partially cloudy (right) weather conditions. The bottom graphs
present the test-set results for ramp rate in both sunny (left) and partially cloudy (right)
weather conditions.
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4.6. Predicting fluctuations

The ramp-score represents the ability to predict fluctuations. For sunny
weather circumstances, we observe that until 11 minutes, the baselines perform
better. Afterward, model ‘LSTM M 5 all data’ performs best (visible at the
bottom of Fig. 15, an analysis-based Ramp-score).

We observe at the top of Fig. 15 and Table 9 that ‘LSTM M 5 all data’
performs best in partially cloudy weather on average. However, on a prediction
horizon before 5 minutes, the baselines perform better.

Additionally, for a prediction horizon of 20 minutes ‘LSTM M 5 all data’
has FSramp = 39% for sunny weather and FSramp = 25% for partially cloudy
weather.

4.7. Computation time

An application of this study would be to predict GHI for an actual solar
farm to optimize energy generation. When a model is more computationally
intensive it will use more energy. In this section, we highlight the resources
needed to perform predictions on a single day. Usually, neural networks train
on a GPU, but this would not be a fair comparison to RF. To straighten it out
training and prediction will be done on only the CPU (see Section 3.6). ‘Single’
models would use 20 times more time, as shown in Table 3.

4.8. Statistical significance

To determine if a model performs significantly better (see Section 3.5) than
the baseline, the ‘Diebold-Mariano’ test is applied. The null hypothesis ’compet-
ing model performs equal to the baseline persistence’ is rejected when p < 0.05.
In the given models below we define ’n/a’ if that particular model does not
predict better than the baseline for a certain prediction horizon.

In sunny weather circumstances, the only model that is significantly better
on short horizons is RF. On greater prediction horizons LSTM models perform
(much) better (see Table 10).

In partially cloudy weather, we observe (see Table 11) that LSTM M 5 all
data shows the most statistical significance over other models, particularly for
prediction horizons ranging from 7 to 20 minutes. It’s important to note that
for the LSTM 5 onsite model, prediction horizons from 1 to 7 minutes were not
included in this comparison due to their lack of statistical significance.

4.9. Model Comparison

The RF model is a good choice due to its simplicity, low training time, and
relatively low need for hyperparameter tuning and normalization. Additionally,
it performs reasonably well across most sequence lengths. When averaging the
results’ overall prediction horizons, the best RF model achieves an RMSE of
56.73 for sunny weather conditions and 77.4 for partially cloudy conditions (see
Table 4). However, its performance is worse than other implemented models
across all weather circumstances and prediction horizons (see Figs. 16 and 17).
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Fig. 16: Average performance on prediction horizon of 20min with cloudy, partially cloudy
and sunny weather circumstances. Note: smaller error in GHI equals better performing.

Fig. 17: Average performance overall prediction horizon of 20min with cloudy, partially
cloudy, and sunny weather circumstances. Note: smaller error in GHI equals better perfor-
mance.
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Prediction horizon ANN M 5 all data LSTM M 5 all data LSTM M 5 onsite LSTM M 5 onsite+img RF M 5 onsite RF M 60 onsite
1 n/a n/a n/a n/a 0.044 0.014
2 n/a n/a 8.816e-02 n/a 3.164e-03 5.318e-05
3 6.521e-01 n/a 8.132e-05 n/a 1.553e-03 3.597e-06
4 3.226e-02 2.121e-01 3.549e-06 4.786e-01 2.593e-03 6.255e-07
5 2.289e-04 4.911e-03 1.341e-08 1.138e-02 1.238e-04 2.650e-07
6 3.499e-05 4.326e-04 3.491e-08 3.289e-03 1.170e-04 4.033e-07
7 2.056e-06 8.493e-05 2.164e-09 7.422e-04 4.717e-05 5.121e-07
8 7.769e-07 3.335e-06 6.609e-09 4.542e-04 4.961e-05 1.534e-06
9 4.226e-08 8.979e-08 6.113e-10 9.425e-06 1.166e-05 7.440e-07
10 3.163e-09 9.578e-09 7.175e-11 4.188e-07 9.431e-06 4.243e-07
11 4.255e-09 2.945e-09 1.233e-10 4.286e-08 1.366e-05 8.134e-07
12 3.277e-10 7.508e-10 2.247e-10 5.840e-09 8.901e-06 5.246e-07
13 7.870e-11 1.266e-10 4.877e-10 4.270e-09 5.095e-06 8.214e-07
14 4.237e-12 1.018e-11 5.353e-11 4.417e-11 6.378e-07 3.136e-07
15 4.888e-14 7.009e-13 2.940e-12 1.916e-12 4.500e-07 1.877e-07
16 5.713e-15 8.494e-14 1.177e-13 1.655e-13 8.886e-08 8.725e-08
17 9.590e-15 8.275e-14 1.694e-13 6.031e-13 3.420e-08 2.921e-08
18 5.488e-15 2.494e-14 7.025e-13 8.552e-13 2.268e-08 5.279e-09
19 1.018e-16 1.526e-15 1.251e-14 2.065e-13 2.628e-09 1.821e-10
20 1.185e-18 9.127e-18 4.575e-16 2.118e-15 5.153e-10 1.956e-12

Table 10: Diabold-Mariono p value per horizon, compared with baseline model Persistence
on Sunny Weather circumstance. (n/a implies the competing model is not performing better
than the baseline).

Prediction horizon ANN M 5 all data LSTM M 5 all data LSTM M 5 onsite LSTM M 5 onsite+img RF M 5 onsite RF M 60 onsite

1 n/a n/a 0.359 n/a n/a 0.454
2 n/a 0.339 0.146 n/a n/a 0.121
3 n/a 0.121 0.104 0.987 n/a 0.123
4 n/a 0.089 0.127 n/a n/a 0.204
5 n/a 0.012 0.063 0.950 n/a 0.179
6 n/a 5.655e-03 2.653e-02 n/a n/a 7.502e-02
7 7.782e-01 5.809e-03 3.301e-02 n/a n/a 3.916e-02
8 6.696e-01 6.436e-03 6.454e-02 9.466e-01 n/a 4.891e-02
9 2.034e-01 6.415e-03 1.482e-02 5.030e-01 n/a 2.954e-02
10 1.273e-01 1.216e-02 1.979e-02 1.285e-01 n/a 3.809e-02
11 9.787e-02 1.332e-02 1.884e-02 8.979e-02 n/a 4.896e-02
12 1.853e-01 1.872e-02 4.282e-02 1.218e-01 n/a 6.229e-02
13 1.388e-01 1.560e-02 2.170e-02 1.053e-01 n/a 6.579e-02
14 1.601e-01 1.654e-02 2.443e-02 5.642e-02 n/a 8.510e-02
15 1.491e-01 1.370e-02 4.154e-02 2.197e-02 n/a 9.319e-02
16 1.158e-01 8.457e-03 2.248e-02 8.387e-03 n/a 1.029e-01
17 1.213e-01 8.335e-03 1.757e-02 5.048e-03 n/a 1.436e-01
18 1.252e-01 6.013e-03 1.539e-02 3.294e-03 n/a 2.145e-01
19 1.718e-01 6.316e-03 2.091e-02 2.241e-03 n/a 3.536e-01
20 0.183 0.006 0.015 0.001 n/a 0.403

Table 11: Diabold-Mariono p value per horizon, compared with baseline model Persistence.
Weather circumstance partially cloudy. (n/a implies competing model is not performing better
than the baseline).

The ANN model improves on average in sunny weather, achieving an RMSE
of 55.51, but performs worse on short horizons compared to RF. On the other
hand, it performs better on average for larger horizons and partially cloudy
weather with an RMSE of 66.13. The LSTM model outperforms other models
on sunny weather with an RMSE of 48.87 and performs significantly better than
persistence starting from a prediction horizon of 11 minutes compared to ANN’s
15 minutes. For partially cloudy weather, LSTM performs slightly worse than
ANN with an RMSE of 67.43. LSTM also has the best ramp-score among all
tested models and baselines, with 21.91 for sunny weather and 23.43 for partially
cloudy weather (see Fig. 16 and .17).

In cloudy conditions, as shown in Figure 11, the persistence and smart per-
sistence models exhibit similar performances. This phenomenon is attributed
to the unique characteristics of cloud dynamics over Almeŕıa, where rapid fluc-
tuations in solar irradiance present challenges that adjustments by the smart
persistence model may not fully capture. This results in a low correlation with
the expected clear sky irradiance, presenting a challenge for even the smart
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persistence model, which aims to predict such variations more effectively. The
impact of cloudiness on the performance of persistence models has been previ-
ously discussed by [2]. Furthermore, the complete dataset includes three cloudy
days, with two of these days being part of the test set. Notably, on the predic-
tion of the first cloudy day, the models had not yet encountered such conditions
during training. The second prediction instance involved a training set that
included only one previous cloudy day, which is insufficient for the models to
learn and adapt accurately to these conditions. This limitation in the dataset
explains the underperformance of current models on cloudy days when com-
pared to persistence, as demonstrated in Figure 11. These findings highlight
the need for more sophisticated forecasting models that are better equipped to
handle the rapid variability introduced by cloud dynamics over Almeŕıa, Spain.

All models perform relatively well in partially cloudy weather compared to
the baseline, likely because the baseline assumes some continuity. However, in
partially cloudy weather, there is more fluctuation, and the models perform
differently. When considering the furthest prediction horizon of 20 minutes,
the difference with (smart-)persistence is more significant, and the best model
achieved an improvement of 32% in RMSE, 50% in MAE, and 48% in ramp-score
(with respect to the baseline) (see Tables A.1, A.2, A.3 ).

Overall, considering that the full dataset consists of 121 sunny days, 29
partially cloudy days, and 3 cloudy days, the LSTM model performs best on
average.

4.10. Model Benchmark

We conducted a comparative analysis of our deep learning model in relation
to the model-based SKIPP’D dataset, a cutting-edge technique for short-term
solar forecasting using sky imagery introduced by [4]. Our experimental ap-
proach involved two different strategies: initially, we directly employed the pre-
trained model based on the SKIPP’D dataset and compared it to our model,
followed by a fine-tuning process using the training partition of our dataset.

As depicted in Figure 18, the LSTM model demonstrated a remarkable per-
formance over the CNN model, particularly in validation scenarios, thus high-
lighting its robustness in capturing temporal dynamics which are crucial for solar
forecasting. The LSTM model showed a more significant reduction in RMSE
across epochs for both training and validation, which indicates a stronger gen-
eralization capability compared to the CNN model. The performance disparity
is attributable primarily to the different meteorological conditions embedded
in the datasets used for developing the model based on the SKIPP’D dataset
compared to our own data. However, the fine-tuning of the model based on the
SKIPP’D dataset on our dataset led to enhanced forecasting accuracy, signify-
ing the versatility and adaptability of our approach across varied environmental
contexts. This benchmarking exercise not only validates the effectiveness of our
model but also establishes a comprehensive comparative framework within the
solar forecasting domain, showcasing our commitment to continuous improve-
ment and adaptability in the face of changing data dynamics.
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Fig. 18: Training vs Validation RMSE for LSTM and CNN models over several epochs.

5. Discussion

In this section, we discuss the results of all tested models. The results give
insight into what models work well for what particular prediction horizons and
weather circumstances. Additionally, a notion is given of what data is suitable
as input for these models. However, these are sets of multiple features (in the
example set ’meteor’). The elements in a set have a similar data source. But,
for every subset of features, there is a possibility that it includes a feature that
is not relevant for good predictions. It may be that dropping some of these
features or partially merging subsets will increase forecast performance.

The RF and ANN models achieve their best performance when using only
the “onsite” feature subset, indicating that they fail to capture valuable infor-
mation from features extracted from images. However, LSTM outperforms them
when given access to this subset. By grasping the complexity of these features,
LSTM delivers the best predictions among all models tested. Furthermore, the
“all-data” feature set performs best for LSTM on average, under all weather
conditions.

In sunny conditions, our models underperform compared to baselines for
short-term predictions (under 5 minutes). The performance gap narrows in
partially cloudy weather or beyond the initial fiveminute period. Baselines rely
on continuous GHI and CSI values, with sunny weather showing less GHI fluc-
tuation, explaining the performance differential in varying weather conditions.

Among all the models we tested, the superior performers outperform smart-
persistence under partially cloudy and sunny weather conditions. However,
none of the models were able to outperform smart-persistence when predicting
cloudy weather. This may be due to a shortage of cloudy days in our dataset
and may not occur under more balanced weather conditions. In partially cloudy
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weather circumstances, the absolute difference between LSTM and the baseline
is greater than in sunny weather conditions. Nevertheless, when examining the
relative difference, this disparity is not present.

In this study, we computed the ramp-score by averaging the values every 5
minutes. In prior literature, it was suggested to normalize over an hour when
forecasting 5 hours into the future. The 5-minute averages capture fluctuations,
but it is an estimation.

Our benchmarking activities entailed a comparative analysis between our
deep learning model and the model based on the SKIPP’D dataset, known for its
use of sky imagery in short-term solar forecasting [4]. The process involved two
phases: first, deploying the pre-trained model based on the SKIPP’D dataset
on our test data, and then fine-tuning it with our dataset. This approach
led to notable improvements in accuracy. As shown in Figure 18, the LSTM
model outperformed in validation, demonstrating superior temporal dynamics
capture, crucial for solar forecasting. This model showed a consistent reduction
in RMSE (Root Mean Square Error) in training and validation, highlighting
its robust generalization, unlike the CNN model. The performance disparity is
largely due to the different meteorological conditions in the datasets. However,
the successful fine-tuning of the model-based SKIPP’D dataset on our data
highlights its adaptability in various environments. This benchmarking not
only confirms our model’s effectiveness but also establishes a comprehensive
comparative framework in solar forecasting, underscoring our commitment to
ongoing improvement and adaptability in a dynamic data landscape. Moreover,
this exercise exemplifies our method’s flexibility across diverse environmental
conditions.

It’s important to note that our research data comes exclusively from Almeŕıa,
Spain. Recent approaches have shown the effectiveness of transfer learning and
dataset fusion in solar forecasting across various locations [43]. Similarly, [44]
explored the performance of deep learning models using sky image datasets
collected from diverse global locations with different climate patterns. They
compared local models, global models trained on fused datasets, and transfer
learning models. Their findings suggest that local models work well within
their original context, but exhibit significant errors when applied offsite. In
contrast, global models adapt well to individual locations, and transfer learning
models, trained on a large diversified source dataset, generally achieve superior
performance over other strategies.

These studies highlight the potential of DL models in solar forecasting across
different geographical and climatic conditions, especially when utilizing transfer
learning and dataset fusion approaches. They underscore the importance of
considering data diversity and model adaptability, and propose resampling and
data augmentation as further ways to increase robustness.

6. Conclusions

This study describes the application and implementation of Long Short-Term
Memory (LSTM) networks to forecast Global Horizontal Irradiance (GHI) using
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different subsets of data input. We compared this with more traditional meth-
ods like Random Forest (RF), Artificial Neural Networks (ANN), Convolutional
Neural Networks (CNN), and LSTM. In our pursuit of identifying a good set of
hyper-parameters, we investigated the importance of feature subsets. Our re-
sults indicated that onsite measurement equipment was the most crucial feature
subset. However, certain features demonstrated varied performance depending
on weather circumstances. For instance, the subset ’meteor’ was valuable in
sunny weather, but its usefulness was limited in partially cloudy weather. Ad-
ditionally, to validate the accuracy of our method with the advancing technolo-
gies in the state-of-the-art, a benchmarking study was conducted with [4]. The
benchmarking results further highlighted the LSTM model’s proficiency, espe-
cially when fine-tuned with additional data, demonstrating its adaptability and
indicating potential for future application.

We initially used Clear Sky Index (CSI) to estimate GHI, but this approach
did not enhance our models. Therefore, we realized that directly predicting
GHI would be more effective. Additionally, we experimented with incorporating
data from a different location into our models, but this did not result in any
improvements.

Regarding the imbalance in our dataset due to the specific weather circum-
stances in southern Spain, we acknowledge that this is a limitation that we
cannot change. However, following the suggestion of [45], we recognize that
resampling and data augmentation methods could be employed to address this
issue. Such methods, as also suggested by [46], might include techniques like
oversampling the minority class or generating synthetic examples, which could
potentially improve the model’s performance in less-represented weather condi-
tions.

Our findings contribute to the current literature by presenting an approach
that combines All Sky Images (ASI) and numerical data in machine learning.
Furthermore, our study highlights the importance of using short sequences of
features for forecasting GHI instead of long sequences.

7. Future Work

The data set’s imbalance, caused by the predominant weather conditions
in southern Spain, presents a challenge. A multi-year approach may offer a
viable solution, as our models currently underperform in cloudy conditions due
to the scarcity of such days. Implementing data augmentation could be an
effective strategy not only to address this imbalance but also to enhance overall
prediction accuracy.

We are currently considering the three days before the prediction moment for
early stopping. This duration was chosen through manual tuning, and further
research could explore alternative time frames. Moreover, there is potential in
treating cloud pixels differently based on their proximity to the sun, rather than
treating all cloud pixels uniformly.

In this study, we had access to an additional site with similar equipment.
Expanding the network of sensor sites around the prediction location and incor-
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porating wind speed and direction data could significantly improve the accuracy
of predictions by leveraging real-time data from multiple locations.

Finally, advanced DL methods that process sky imagery, like convolutional
or transformer-based models, e.g., [47], [13], will be explored, as they have shown
remarkable success in various domains. These transformer-based architectures,
known for their ability to handle sequential data effectively, could provide sig-
nificant enhancements in analyzing visual data from sky imagery.
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Appendix A

Figures A.1 and A.2 show monthly averages of temperature and humidity
at the location of camera 1.
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Fig. A.1: Average (left) and variance (right) in temperature (in Celsius) at camera site 1.

Fig. A.2: Average (left) and variance (right) humidity at camera site 1.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 92.17 60.21 51.94 44.93 NA NA NA NA
Smart-persistence 83.9 39.23 159.26 35.03 NA NA NA NA
ANN M 5 all data 69.34 39.54 32.31 31.39 0.25 0.34 0.38 0.3
LSTM M 5 all data 65.66 34.23 47.03 27.53 0.29 0.43 0.09 0.39
LSTM M 5 onsite 70.48 37.05 40.51 29.58 0.24 0.38 0.22 0.34
LSTM M 5 onsite+img 73.75 41.07 40.44 31.22 0.2 0.32 0.22 0.31
RF M 5 onsite 75.09 39.01 20.09 33.05 0.19 0.35 0.61 0.26
RF M 60 onsite 74.01 38.28 18.93 33.88 0.2 0.36 0.64 0.25

Table A.1: Average performance on test-set with prediction horizon 20 minutes, with weather
circumstance sunny.

Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 109.83 69.36 66.33 49.76 NA NA NA NA
Smart-persistence 109.87 67.43 79.26 48.18 NA NA NA NA
ANN M 5 all data 94.47 61.61 50.28 46.49 0.14 0.11 0.24 0.07
LSTM M 5 all data 86.03 52.42 97.7 37.1 0.22 0.24 -0.47 0.25
LSTM M 5 onsite 91.07 54.38 53.95 39.57 0.17 0.22 0.19 0.2
LSTM M 5 onsite+img 92.54 54.58 52.09 40.08 0.16 0.21 0.21 0.19
RF M 5 onsite 119.71 77.08 64.5 56.73 -0.09 -0.11 0.03 -0.14
RF M 60 onsite 105.42 74.57 70.16 54.65 0.04 -0.08 -0.06 -0.1

Table A.2: Average performance on test-set with prediction horizon 20 minutes, with weather
circumstance partially cloudy.
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Model RMSE ↓ MAE ↓ MAPE ↓ Ramp-score ↓ FS-RMSE ↑ FS-MAE ↑ FS-MAPE ↑ FS-RAMP ↑
Persistence 27.39 18.51 62.57 14.52 NA NA NA NA
Smart-persistence 26.87 18.36 81.59 14.36 NA NA NA NA
LSTM M5 PXL 52.72 37.61 66.37 29.47 -0.92 -1.03 -0.06 -1.03
LSTM M10 all data 64.78 49.61 66.32 39.55 -1.37 -1.68 -0.06 -1.72
LSTM M5 all data 35.85 22.83 63.07 17.59 -0.31 -0.23 -0.01 -0.21
LSTM M5 all data 2CAM 46.78 32.53 60.27 25.47 -0.71 -0.76 0.04 -0.75
LSTM M5 onsite 57.98 34.35 65.76 26.94 -1.12 -0.86 -0.05 -0.86

Table A.3: Average performance on test-set with prediction horizon 20, with weather circum-
stance cloudy.
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