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Abstract. Diffusion models achieve remarkable quality in image gen-
eration, but at a cost. Iterative denoising requires many time steps to
produce high fidelity images. The denoising process is crucially limited by
an accumulation of the reconstruction error due to an initial inaccurate
reconstruction of the target data. This leads to lower quality outputs,
and slower convergence. To address these issues, we propose compensa-
tion sampling to guide the generation towards the target domain. We
introduce a compensation term, implemented as a U-Net, which adds
negligible training overhead. Our approach is flexible and we demon-
strate its application in unconditional generation, face inpainting, and
face de-occlusion on benchmark datasets CIFAR-10, CelebA, CelebA-
HQ, FFHQ-256, and FSG. Our approach consistently yields state-of-
the-art results in terms of image quality, while accelerating the denoising
process to converge during training by up to an order of magnitude.
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1 Introduction

Diffusion models have achieved great success in image generation [15,32,35,36].
Compared to other deep generative models such as Generative Adversarial Net-
works (GANs) [9, 13], diffusion models offer stable training, easy model scaling,
and good distribution coverage [33]. But despite their success, diffusion models
suffer from low training and inference efficiency because they typically require
many time steps to converge and to generate high-quality outputs. Compared to
GANs, which only require a single forward pass through the generator network,
inference in diffusion models is two to three orders of magnitude slower [42]. Sim-
ply reducing the number of time steps disrupts the Gaussian assumption of the
denoising process, and has been shown to reduce the synthesis quality [41,52].

Due to the iterative sampling, inaccurate reconstruction early in the train-
ing process causes the accumulation of reconstruction errors in subsequent time
steps [28]. This hinders convergence speed and the final quality of the model. To
address the issue of error accumulation, several works have encoded condition-
als in the denoising process to improve the initial sample quality, and to speed
up the process. These approaches include encoding image features or images
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Fig. 1: Compensation (red) compared to traditional sampling (dashed) for
T = 3. Both processes start from a noisy data distribution. Compensation sampling
guides the reconstruction towards the clean data distribution for faster convergence.

generated by Variational Autoencoders (VAE) [35,36], and assigning prioritized
weights on specific noise levels in the denoising process [7, 8].

Conditioned denoising processes take fewer time steps to converge but the
additional conditions often require significant computation cost. Conditioning is
also arguably more dataset-specific, which could limit generalization. But more
importantly, simply adding conditions does not address inherent issues in the
denoising process. In other words, it does not avoid the error accumulation that
causes slower convergence towards a sub-optimal model. The challenge thus re-
mains to improve the efficiency during training and inference in a principled way
without compromising the output quality. This is especially true for uncondi-
tional generation, in the absence of a powerful conditioning signal.

In this work, we address the efficiency issue of diffusion models by introducing
compensation sampling (CS). It allows us to use 10 times fewer time steps during
training and inference without breaking the Gaussian assumption of the denois-
ing process. Compensation sampling can be applied in both unconditional and
conditional generation tasks. An illustration of compensation sampling appears
in Figure 1. At the core of our approach is the use of a learned compensation
term to direct the reconstruction towards the clean data distribution, and con-
sequently avoid error accumulation. We show that this process results in quicker
training convergence, and higher-quality images. Our main contributions are:

1. Novel sampling algorithm. We propose the compensation sampling al-
gorithm, with rigid mathematical derivation, that can reduce the number of
time steps in diffusion models during training by an order of magnitude.

2. State-of-the-art results. We apply compensation sampling and achieve
results that are on par with, and typically outperform, current state-of-the-
art diffusion models on unconditional generation, face inpainting, and face
de-occlusion on CIFAR-10, CelebA, CelebA-HQ, FFHQ, and FSG.

We discuss related work (Section 2), detail our method in Section 3, present
our experiments and ablation study in Section 4, and conclude in Section 5.
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2 Related Work

Denoising diffusion probabilistic models (DDPM) [15] have several advantages
over other generative models such as Generative Adversarial Networks (GAN)
[9,13,20] and Variational Autoencoders (VAE) [47]. Diffusion models transform
a complex clean data distribution pdata(x) into noise distribution N (0, I) and
learn the reverse process to restore data from noise. Denoising Diffusion Implicit
Models (DDIM) [43,44] also iteratively solve the stochastic differential equation
but with fewer time steps. Although DDIM shows impressive image generation
results, the training process takes many time steps (e.g., T = 1, 000) to converge.
To this end, researchers have reconsidered the sampling process during training.

During training, the denoising starts from a low-quality image in the early
stages. Current methods do not guide the network’s reconstruction direction but
instead rely on multiple iterations using loss to find the correct sampling direc-
tion. As a result, diffusion models often fail to find the correct reconstruction
direction during early training, leading to reconstruction errors. Moreover, since
iterative sampling methods are used, the network accumulates this reconstruc-
tion error [28]. To eliminate this error, the network requires many time steps,
ultimately achieving convergence. Therefore, it is crucial to help the network
find the reconstruction direction at the beginning.

Several works have addressed this issue based on inserting additional condi-
tionals into the diffusion models. GDP [12] uses a protocol of conditional guid-
ance, which enables the diffusion models to generate images with high quality.
STF [54] combines the reference batch to reduce the covariance, such that they
can accelerate the intermediate regime generation. QD [26] uses an additional
PTQ tool to compresses the noise estimation network to accelerate the genera-
tion process. DA [36] proposes a semantic encoder to encode image features into
the sampling process during training to accelerate the inference while generat-
ing images with high quality. Similarly, DiffuseVAE [35] injects VAE-generated
images into the sampling process as additional conditions during training. P2 [7]
prioritizes the later noise levels. An emphasis on the training of the reverse stage
of these later noise levels encourages the model to reduce the accumulated error.
Consequently, the convergence is sped up while better image quality is obtained.

In this paper, we depart from the idea of encoding additional conditionals
into the sampling process during training. We propose a compensation algo-
rithm for diffusion models that not only boosts the convergence during training
without breaking any of the assumptions, but also improves the image quality.
Our approach can be applied in various generation tasks, in both unconditional
and conditional generation. Closest to our work is the recently introduced Cold
Diffusion [2]. This work uses a Taylor expansion of the degradation function
to represent the diffusion process, but it has to deal with diffusions that lack
significant gradient information. While the method is beneficial for linear degra-
dations, it fails to improve over the DDIM baseline because it violates the linear
degradation assumption due to the addition of Gaussian noise. In contrast, our
proposed approach has rigid mathematical underpinnings that adhere to the
Gaussian assumption of the denoising process.
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3 Compensation Sampling in Diffusion Models

We discuss common sampling practice in diffusion models before introducing
our compensation sampling. We then discuss the architecture and training of
the model with compensation sampling that is used in our experiments.

3.1 Common sampling in diffusion models

During training, diffusion models first degrade a complex clean data distribution
pdata(x) into noise distribution N (0, I) and learn the reverse process to recon-
struct data from noise [15]. The diffusion process gradually corrupts clean data
x0 with predefined noise scales 0 < β1 < β2, ..., βT < 1, indexed by time step t
(1 ≤ t ≤ T ), T the number of time steps. Corrupted data x1, ..., xT are sampled
from x0 ∼ pdata(x) with a diffusion process, defined as the Gaussian transition:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)
Here, q denotes the distribution of the noise image at time t. When a clean data
point x0 is provided, the noisy xt can be obtained from the following equation,
by adding noise for each time step:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (2)

where αt = 1 − βt and αt =
∏t

s=1 αs. When t is close to T , xt can be approxi-
mated as a Gaussian distribution. Diffusion models learn the reverse process to
generate samples from the data distribution. The optimization objective of the
reverse transition can be derived from a variational bound [22]. Ho et al. [15]
employ a variational solution and assume its reverse transition kernel also sub-
jects to a Gaussian distribution. This way, the generation process parameterizes
the mean of the Gaussian transition distribution and fixes its variance as [24]:

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I) (3)

µθ(xt) =
1

√
αt

(xt −
1− αt√
1− αt

ϵ
(t)
θ (xt)) (4)

with ϵ
(t)
θ is a function with trainable parameters θ(t) with variance σ2

t as a train-
ing hyper-parameter. The authors of DDIM [42] proposed an efficient sampling
process that has the same training objectives as DDPM (which is described in
Eq. 1-4), but with faster training. The main insight is instead of using Eq. 4 to
obtain xt−1 from xt, DDIM directly predicts the original clean data x0 from xt,
and then use the predicted x0 by Eq. 2 to generate xt−1:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1 − σ2

t ϵ
(t)
θ (xt) + σ2

t z (5)

where fθ(xt, t) is the prediction of clean data point x0 when the noisy xt is
observed and a noise prediction model ϵθ(xt, t) is given:

fθ(xt, t) =
xt −

√
1− αtϵ

(t)
θ (xt)√

αt
(6)
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When variance σt is set to 0, the sampling process becomes deterministic.
The non-Markovian diffusion process [42] allows the generation quality to remain
unchanged with fewer denoising steps.

Although DDIM can accelerate the training process to some extent, however,
since the prediction of x0 is inaccurate at the start of training, convergence will
be slow. In the conditional sampling algorithm, the solution is to iteratively
predict the original data x0 based on xt−1 [37, 52]:

pθ(xt−1|xt) = q(xt−1|xt, x0 ≈ x̂0 = fθ(xt, t)) (7)

First, xt−1 is sampled using the posterior distribution in Eq. 7, and subsequently
used as the input to predict the original data x0. The above sampling process
iteratively runs over t until the final result x0 is generated.

3.2 Training limitation of previous common sampling

We first consider deterministic sampling where the noise pattern is selected prior
to the generation process. The diffusion process is mathematically presented as:

D(x, t) =
√

1− βtx+
√
βtz (8)

with D(x, t) the deterministic interpolation between data x and fixed noise pat-
tern z ∈ N (0, I), at time step t.

To obtain the sample distribution pθ(xt−1|xt) in Eq. 7, a neural network fθ
is typically used to predict the original data x0, or noise ϵ. However, learning
such fθ is not easy, mainly because in the early stages of training, due to the
poor initial quality of xt, the quality of the learned x̂0 guided solely by a simple
loss (e.g., Eq. 14) is also poor. This leads to a significant disparity between the
sample distribution pθ(xt−1|xt) learned through Eq. 7 (i.e., the distribution of
xt−1), and the actual ground truth D(x, t− 1), resulting in some reconstruction
error in xt−1. Furthermore, as xt−2 is obtained through Eq. 7 in the iterative
denoising process based on the distribution of xt−1, these errors will further
accumulate. Subsequently, existing methods that rely solely on a simple loss
function will lead to an extended convergence time and, eventually, to reduced
image quality of the generated images [28].

3.3 Compensation sampling for accelerating training convergence

To prevent reconstruction error accumulation, we propose compensation sam-
pling (CS). Based on Eq. 8, we define a general deterministic diffusion process:

D(x, t) = g(t)x+ f(t)z (9)

with g(t) and f(t) functions that define the noise scales, x is the input, z ∈
N (0, I). Considering the forward diffusion process, xt is defined as:

xt = g(t)x0 + f(t)z (10)
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During the training of the denoising process, the compensation sampling
algorithm relies on a learnable initial sample reconstruction model R :

x̂0 = R(xt, t) (11)

With x̂0, we define the compensation weight w(t) as the component to eval-
uate the noise scales difference at time step t:

w(t) = g(t)− g(t− 1) (12)

We then obtain the perfect inverse of xt−1 from xt:

xt−1 = xt −D(x̂0, t) +D(x̂0, t− 1) + w(t)(x̂0 − x0)

= g(t)x0 − g(t)x̂0 + g(t− 1)x̂0 + f(t− 1)z + w(t)(x̂0 − x0)

= x̂0(g(t− 1)− g(t)) + w(t)x̂0 + g(t)x0 − w(t)x0 + f(t− 1)z

= g(t)x0 − w(t)x0 + f(t− 1)z

= g(t− 1)x0 + f(t− 1)z

= D(x0, t− 1)

(13)

From Eqs. 9–12, it follows that xt = D(x0, t) for all t < T , regardless of R
during training, i.e., the generated xt−1 will be the same as the ground truth
D(x, t−1). This means that the accumulated error will be highly alleviated since
the iterates xt will be the same as when R is a perfect inverse for the degradation
D. We notice that Cold Diffusion [2] also adds the term D(x̂0, t) +D(x̂0, t− 1)
during sampling. However, only using this term has been shown to yield worse
performance than DDIM [42]. Instead, our algorithm mathematically realizes
the perfect inverse to reduce the accumulated error. We define w(t)(x̂0 − x0)
as the compensation term, which is based on the differences between x̂0 and
x0, as well as w(t). So the compensation term can be seen as addressing the
remaining shortcomings in reconstructing x0 under the current time step t and
the difference in noise scales w(t). Our ablation studies provide insight into the
practical operation of the term during training.

We use the final image x0 in Eq. 12 but, during generation, we do not have
access to ground truth x0. Consequently, we cannot directly calculate the com-
pensation term. To circumvent this issue, we use a lightweight U-Net model [38]
during training as a compensation module to learn the compensation term. It is
worth noting that we only utilize a single training epoch to train the compensa-
tion module to further save computation cost. There is significant diminishing
return in further training of this module, which we avoid. We show in the sup-
plementary material that further training will trade-off increased precision for
decreased recall, but the FID will remain roughly the same. After one epoch
of training, the compensation module indicates the direction of the denoising
process, which is sufficient to guide xt towards the original data distribution and
to avoid error accumulation.

With Eqs. 9–12, compensation sampling realizes improved convergence of dif-
fusion models during training. Importantly, our approach is not limited to fixed
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noise scales β1, β2, ..., βT or fixed Gaussian noise patterns, but can be applied
to any diffusion pattern. Also, since the compensation module is lightweight, it
brings negligible computation cost during inference.

Algorithm 1: Training using compensation sampling

1: Input: x0, T ← sample image, total time step
2: Input: E ← epochs to train compensation module
% Diffusion process
3: for t = 1 to T
4: xt = D(x0, t) ▷ Eqs. 9 & 10
5: end for
% Denoising process
6: for t = T to 1 step -1
7: x̂0 = R(xt, t) ▷ Eqs. 11 & 14
% Train compensation module
7: for e = 1 to E
8: CT = U-Net(x̂0, t)
9: end for
10: xt−1 = xt −D(x̂0, t) +D(x̂0, t− 1) + CT ▷ Eq. 13
11: xt = xt−1

12: t = t− 1
13: end for

3.4 Training and inference of compensation diffusion model

To make a fair comparison with recent diffusion models with common sampling,
we opt to use the popular Ablated Diffusion Model (ADM) [9] as a backbone.
ADM is based on the U-Net architecture [38] with residual blocks and self-
attention layers in the low-resolution feature maps. In our main experiments,
we use our compensation sampling in DDIM [42], and term the resulting model
DDIM+CS. See architecture details, computation and parameter comparisons
of the original U-Net and compensation module in the supplementary material.

The training process pipeline is provided in pseudocode form in Algorithm
1. To train ADM, we use the inner iteration training scheme [45], i.e., during a
single training of ADM, the compensation module can be trained multiple times
(default is one, see supplementary material for other options) using L1 loss,
which is a common loss function that measures the absolute difference between
the predicted and actual compensation term. With ADM, we reduce the training
time steps T to 100, which is a ten-fold reduction compared to the original ADM.
Since the ADM can be interpreted as an equally weighted sequence of denoising
modules ϵθ(xt, t), we train by optimizing loss function LDM with respect to θ:

LDM =

T∑
t=1

Ex0,ϵt

[
∥ϵθ(xt, t)− ϵt∥22

]
(14)
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with x0 the original image, and ϵt ∈ R3×H×W ∼ N (0, I).
During inference, the input is xt, and the output is x0. However, we do not

require the compensation module during inference. This is evidenced by our
investigation in the ablation study and by Figure 5 which reveal that, once the
diffusion model has converged, the compensation term’s value approaches zero.
Consequently, our inference process aligns entirely with that of DDIM, both
utilizing Eqs. 5 and 6 for sampling.

4 Experiments

We experiment on benchmark datasets CIFAR-10 [23], CelebA [29], CelebA-
HQ [17], FFHQ [19], and FSG [6]. We address unconditional generation, con-
ditional face inpainting, and face de-occlusion. We then analyze the training
speed-up and present our ablation study. Additional results appear in the sup-
plementary material.

4.1 Unconditional generation

Experiment setting. We evaluate on CelebA-64 (200k images, 64×64), FFHQ-
256 (70k images, 256 × 256), and CIFAR-10 (60k images, 32 × 32 resolution).
CelebA-64 and FFHQ-256 are frontal face datasets. CIFAR-10 contains images
of 10 different classes such as airplane and cat. For fair comparison, we use
the training hyper-parameters from DDIM [42]. We use Gaussian noise as our
corruption mechanism and adopt the fixed linear variance schedule β1, ..., βT

as in previous works [15, 18, 34, 42] for the diffusion process in Eq. 1. Given the
quicker convergence of compensation sampling, we reduce the training time steps
T to 100. Both compensation and diffusion model use the Adam optimizer.

Evaluation metrics. How to quantitatively assess how accurately a gener-
ated distribution mimics the training data distribution remains an open research
topic. We employ the widely used FID [14]. The FID score measures the KL di-
vergence between two Gaussian distributions in the Inception-V3 feature space,
computed by comparing real reference samples to generated samples. We ran-
domly generate 50k images to compute the FID score (FID-50k) with the same
implementation as in EDM [18]. Note that we treat the U-Net and the denoising
network as separate network function evaluations (NFEs), as they are updated
within one time step, we increase the NFE count by 2.

CelebA & FFHQ. We focus on face synthesis using diffusion models and
GANs in Table 1. We compare the reported FID-50k performance from the pub-
lished papers with the number of function evaluations (NFE) during generation.
The top part of the table contains diffusion-based methods including our base-
lines Cold Diffusion [2] and DDIM [44] with common sampling, whereas the
bottom part summarizes the performance of GANs.

We first discuss regular training, before moving to patch-based training. With
regular training at NFE=1,000, our DDIM+CS achieves the best performance
of all tested diffusion models. On CelebA, we outperform baselines DDIM with
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CelebA-64 FFHQ-256

Methods Backbone
NFE 10 20 50 100 1,000 100 200 500

Cold Diffusion [2] ADM 32.81 20.45 12.93 7.13 7.84 31.32 29.53 28.11
DDIM [42] ADM 17.33 13.73 9.17 6.53 4.88 17.89 11.26 8.41
P2 Diffusion [7] ADM 20.37 16.11 11.96 9.04 7.22 16.78 10.38 6.97
D2C [40] NVAE+U-Net 17.32 11.46 6.80 5.70 5.15 13.04 9.85 7.94
Diffusion Autoencoder [36] ADM 12.92 10.18 7.05 5.30 4.97 15.33 8.80 5.81
Analytic-DDIM [4] ADM 15.62 10.45 6.13 4.29 3.13 14.84 9.02 5.98
DPM-Solver [30] ADM 5.83 3.13 3.10 3.11 3.08 10.82 8.47 8.40
SN-DDIM [3] ADM 10.20 6.77 3.83 3.04 2.90 14.82 8.79 5.44
F-PNDM [27] ADM 7.71 5.51 3.34 2.81 2.86 17.51 8.23 4.79
DDIM+CS (ours) ADM 7.80 5.11 2.23 2.11 1.98 11.89 7.31 4.02
DPM-Solver+CS (ours) [30] ADM 5.22 2.35 2.22 2.12 2.04 9.73 4.66 4.01
PDM [49] (patch-wise training) ADM 35.88 8.36 1.77 1.86 1.82 23.55 6.47 3.13
PDM+CS (ours) (patch-wise training) ADM 4.93 1.97 1.42 1.44 1.38 6.11 3.52 2.57
U-Net GAN [39] U-Net 19.31 10.90
VQGAN [11] CNN+Transformer 12.70 9.60
GANFormer2 [1] CNN+Transformer 6.87 7.77
Diffusion StyleGAN2 [50] StyleGAN 1.69 3.73
Diffusion StyleGAN2+CS (ours) [50] StyleGAN 1.21 2.95

Table 1: Unconditional image generation results. Comparison on FID-50k with
the state-of-the-art on CelebA-64 and FFHQ-256. Top part of the table contains base-
lines DDIM and Cold Diffusion, the middle part are state-of-the-art diffusion models,
and the bottom part summarizes the performance of GAN models. Best results for
diffusion and GAN models in bold, second best are underlined.

common sampling and Cold Diffusion by 59% (4.88→1.98) and 75% (7.84→1.98).
For FFHQ-256 at NFE=500, gains of 52% and 86% are achieved. More impor-
tantly, all tested models at NFE=1,000 are also outperformed by DDIM+CS
with NFE=100 or even NFE=50. This indicates that we obtain higher quality
images with much lower training time. We analyze this in Section 4.4.

We also obtain better performance at various NFEs compared with other
approaches. For example, when we apply our compensation sampling in DPM-
Solver (DPM-Solver+CS), we obtain improved performance on both CelebA-64
and FFHQ-256.

Patch-wise training as used in PDM [49] allows for even better results owing
to the more performant generation scheme. Our resulting PDM+CS obtains
state-of-the-art performance on both CelebA-64 (FID-50k=1.38 at NFE=1,000)
and FFHQ-256 (FID-50k=2.57 at NFE=500).

For GANs, the superior performance of Diffusion StyleGAN2 can be at-
tributed to the powerful backbone. When applying our compensation diffusion
method to this backbone (Diffusion StyleGAN2+CS), we obtain the best per-
formance with an improvement of 28% (1.69→1.21) on CelebA-64 and 21%
(3.73→2.95) on FFHQ-256.

CIFAR-10. To validate our approach on general image synthesis, we report
on CIFAR-10 in Table 2. We evaluate with NFE=35, in line with EDM [18] and
PFGM++ [53]. Compared to approaches trained with 10 times more time steps,
our DDIM+CS achieves competitive results with much less training time (see
Table 5). When trained with T = 1, 000, DDIM+CS (FID-50k=1.57) outper-
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Fig. 2: Visualization of our compensation diffusion results. (left) The uncon-
ditional generation results of FFHQ-256 (256×256 resolution) and CelebA-64 (64×64
resolution) datasets (NFE = 100). (right) Illustration of the diversity of our compen-
sation sampling on random Gaussian noise, visualized at time steps 40 and 100.

forms the current state-of-the-art. We observe that the previous best approach
PFGM++ [53] has a significantly more complex backbone, as it combines dif-
fusion models with Poisson Flow Generative Models. When we apply compen-
sation sampling in PFGM++ (PFGM++ + CS), a lower FID score is achieved
(1.91→1.74) with the same NFE, but 10 times fewer time steps. When we in-
crease the time steps to T = 1, 000, we obtain the state-of-the-art result of 1.50.

Qualitative evaluation. Images generated by DDIM with compensation
sampling for CelebA-64 and FFHQ-256 appear in Figure 2 (left). Images gener-
ated for CIFAR-10 are shown in the supplementary material. For different resolu-
tions, our method generates images with realistic details. We show the stochastic
process with a wide diversity in outputs in Figure 2 (right). We present more
examples, including failure cases, in the supplementary material.

Method FID-50k ↓

DDPM (T=1,000, NFE=1,000) [15] 3.17
DDIM (T=1,000, NFE=1,000) [42] 3.95
DPM-Solver (T=1,000, NFE = 44) [30] 3.48
DiffuseVAE-72M (T=1,000, NFE=1,000) [35] 2.62
DDPM++ (T=1,000, NFE=1,000) [21] 2.56
LSGM (T=1,000, NFE=138) [48] 2.10
EDM (T=1,000, NFE=35) [18] 1.97
PFGM++ (T=1,000, NFE=35) [53] 1.91

DPM-Solver+CS (ours) (T=100, NFE = 35) 1.93
DDIM+CS (ours) (T=100, NFE=35) 2.01
DDIM+CS (ours) (T=1,000, NFE=35) 1.57
PFGM++ + CS (ours) (T=100, NFE=35) 1.74
PFGM++ + CS (ours) (T=1,000, NFE=35) 1.50

Table 2: Unconditional image generation re-
sults on CIFAR-10. Best result in bold.

Method PSNR ↑ SSIM ↑

Occluded image 10.4764 0.6425
CycleGAN [60] 13.7667 0.6459
DeepFill [56] 14.5140 0.7029
OA-GAN [10] 17.1828 0.7215
FSG-GAN [6] 21.1112 0.7936
Cascade GAN [57] 26.4736 0.8422
SRNet [55] 27.0031 0.8493

DDIM 19.3211 0.7308
DDIM+CS (ours) 31.3842 0.8699

Table 3: Face de-occlusion on
FSG. Best results in bold.
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Methods Half Completion Expand Thick Line Medium Line

LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓

CoModGAN [59] 0.445 37.72 0.406 43.77 0.671 93.48 0.091 5.82 0.105 5.86
LaMa [46] 0.342 33.82 0.315 25.72 0.538 86.21 0.080 5.47 0.077 5.18
CDE [5] 0.344 29.33 0.302 19.07 0.508 71.99 0.079 4.77 0.070 4.33
RePaint [32] 0.435 41.28 0.387 37.96 0.665 92.03 0.059 5.08 0.028 4.97
MAT [25] 0.331 32.55 0.280 20.63 0.479 82.37 0.080 5.16 0.077 4.95
GLaMa [31] 0.327 30.76 0.289 18.61 0.481 80.44 0.081 5.83 0.080 5.10
FcF [16] 0.305 27.95 0.378 31.91 0.502 73.24 0.086 4.63 0.071 4.42
DDIM 0.377 33.25 0.328 29.30 0.446 57.93 0.088 8.44 0.112 9.02
DDIM+CS (ours) 0.272 20.37 0.259 15.33 0.372 39.05 0.079 4.21 0.064 3.58

Table 4: Results of face inpainting on CelebA-HQ-256. DDIM with our compen-
sation sampling shows consistent improvement over state-of-the-art methods, for both
LPIPS and FID-50k metrics. Best results in bold.

4.2 Face inpainting

The goal of face inpainting is to restore missing or damaged parts in a face image,
resulting in a complete facial image. It is a conditional image generation task.

Experiment setting. We perform the inpainting experiment with DDIM+CS
on CelebA-HQ-256 with NFE = 100 and 40 training epochs for the compensation
module to reduce the output diversity. Results with different numbers of epochs
for the compensation module appear in the supplementary material. All other
training hyper-parameters are the same as for the unconditional generation ex-
periment. We employ the same schedule of corruption transforms as in previous
works [5,32]. Each training image of the reconstruction model is corrupted with
a synthetically generated mask. The superimposition process starts with input
images x0, which are iteratively masked for T steps via multiplication with a
sequence of masks m ∈ [0, 1]. We follow [31, 32] and use five mask types: Half,
Completion, Expand, Thick Line, and Medium Line, see Figure 3.

Evaluation metrics. Following recent image inpainting literature, we use
Learned Perceptual Image Patch Similarity (LPIPS) [58] and FID as similarity
metrics. Compared to PSNR and SSIM [51], LPIPS and FID are more suited to
measure the performance of inpainting for large masks [31].

Quantitative evaluation. Results of diffusion and GAN-based approaches
appear in Table 4. We report results from the papers, and use open source
implementations to calculate missing numbers. DDIM+CS outperforms other
approaches in almost all cases. Despite slightly worse LPIPS scores than RePaint
for the Thick Line and Medium Line masks (0.059→0.079, 0.028→0.064), we
show better performance for other masks. Moreover, we consistently outperform
all tested methods on FID-50k score. Models trained with Expand masks give
worse results than other mask types, which is consistent with observations in
GLaMa [31]. Still, our approach significantly reduces both LPIPS and FID scores.

Qualitative evaluation. Inpainting results appear in Figure 3 and the sup-
plementary material. Compared to state-of-the-art approaches LaMa [46] and
GLaMa [31], our generated images are more detailed and have fewer flaws.
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Fig. 3: Visualization of inpainting results on CelebA-HQ-256. Compared to
state-of-the-art methods, our method generates more realistic images.

4.3 Face de-occlusion

We further experiment with face de-occlusion. Compared to face inpainting, face
de-occlusion is more challenging since the missing contents of the face images are
not black pixels but pixels with values potentially similar to faces. During the
reconstruction process, the models therefore not only have to infer which parts
belong to the face, but also fill in the content of the missing parts.

Experiment setting. We train and evaluate our DDIM+CS using FSG
(200k images) [6]. The face images are synthesized with common occlusion ob-
jects that are semantically placed relative to facial landmarks. We use the same
settings as in the face inpainting experiments.

Evaluation metrics. While face de-occlusion has been addressed with GANs,
we believe ours is the first work to apply diffusion models to face de-occlusion
without any additional information such as a segmentation mask. To compare
to other works, we use PSNR and SSIM as metrics.

We summarize the results in Table 3. DDIM with compensation sampling
shows significantly better performance than any of the tested GANs. For exam-
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Fig. 4: Training time for uncondi-
tional face generation on CelebA-64.
DDIM and DDIM+CS are trained with
1,000 and 100 time steps, respectively.

Fig. 5: Compensation term value
per training iteration, unconditional
face generation on FFHQ-256, DDIM+CS
T = 100.

ple, DDIM+CS achieves 20% lower PSNR compared to the best tested SRNet.
More examples are included in the supplementary material.

4.4 Training computation cost

We consistently observe competitive or better results when using compensation
sampling with 10 times fewer time steps. Here, we investigate the benefit of our
algorithm in accelerating the training process. Figure 4 clearly illustrates the
value of our contribution. It shows FID-50k scores during the DDIM training
process with common and compensation sampling for unconditional generation
on CelebA-64. DDIM+CS (T = 100) takes only 2 hours to converge to a FID-50k
of 2.11, while DDIM (T = 1, 000) takes 16 hours to achieve 4.88.

Method Property CIFAR-10 CelebA-64 FFHQ-256

DDIM
(T = 1, 000)

GFLOPS 7.76 15.52 248.17
Total time 7h 16h 26h
FID-50k 3.95 4.88 8.41

DDIM+CS
(ours)

(T = 100)

GFLOPS 7.78 15.58 249.07
Total time 0.4h 2.0h 5.3h
FID-50k 2.01 2.11 4.02

Table 5: Training time for DDIM and ours on
different datasets/resolutions.

Method FID-50k

DDIM 17.89

Cold Diffusion 31.32

DDIM+CS 11.89

DDIM+CS (Train) 11.84

Table 6: Effects of compen-
sation term.

In Table 5, we report training times and FLOPs for three datasets with
different resolutions. DDIM+CS is consistently much faster owing to the fewer
required time steps. The limited increase in FLOPs demonstrates that the train-
ing of the compensation module has a negligible effect on the computation cost.
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4.5 Ablation study

Compensation term value during training. We study how the compensa-
tion term varies during training for unconditional generation on FFHQ-256 of
DDIM+CS. In Figure 5, we show the average compensation term value over all
training images every 10 time steps with T = 100 steps. We make the following
conclusions. First, the value of the compensation term continuously decreases at
each time step. The accumulated error is higher in early training, and more com-
pensation is needed. Second, the highest value gradually moves from time step 1
to 100 as training progresses. The compensation initially aims at recovering fine
details, before focusing on the more difficult task of generating structure [7].

Effect of compensation term during training and generation, on uncondi-
tional generation on FFHQ-256, T = 100. We compare with common sampling
(DDIM [44]) and Cold Diffusion [2]. For DDIM+CS, we investigate the set-
ting in which the compensation term is used during training but not generation
(DDIM+CS (Train)), and the setting where it is used in both (DDIM+CS).

From Table 6, we observe the performance improvement when using compen-
sation sampling. This difference is mainly due its use during training. When also
using the compensation term in the generation phase, the FID-50k score slightly
improves (11.89→ 11.84). The worse performance of Cold Diffusion might be
caused by incorrect assumptions about the noise distribution. These results
demonstrate that the compensation term is beneficial in producing higher-quality
outputs. However, the added value of the compensation term in inference is min-
imal. This makes sense, since its value decreases as the training progresses, see
Figure 5. Using a small residual term during inference has a limited effect.

5 Discussion and Conclusions

We have introduced compensation sampling, a novel algorithm to guide the
training of diffusion models. The main limitation is that our method is currently
applied on score-based linear generative models, in the future, we will deploy
our method into nonlinear diffusion models. Also, our reverse process is deter-
ministic rather than stochastic. This may affect the quality of generated images,
because deterministic processes may not capture all the variability of the target
distribution. However, our compensation term is freely learnable by the network,
which introduces some variability in the target distribution during this process.

Our innovation has three main benefits. First, training diffusion models with
our approach converge to a better solution due to the reduction of accumu-
lated error. Second, by guiding the convergence, we can reduce the number of
time steps up to an order of magnitude. Finally, our approach is no free lunch,
but addresses error accumulation with negligible computational cost in linear
diffusion models, the most common type of diffusion model. We show this on
unconditional face generation, face inpainting, and face de-occlusion. Our results
on benchmark datasets consistently demonstrate superior performance and in-
creased efficiency compared to state-of-the-art diffusion and GAN models. Our
sampling approach is general and can be used in a wide range of diffusion models.
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