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Özetçe —2023 Kahramanmaraş Depremi 55.000’den fazla
ölüme yol açtı. Depremlerde can kayıplarını önlemek ve kaynak
tahsisini düzenlemek için etkili tahliye yönetimi gereklidir. Bu
çalışmada, kriz anlarında, özellikle deprem sonrasında cep tele-
fonu Detaylı Çağrı Kayıtlarının (CDR) kullanımını inceliyoruz.
Çalışmamızda deprem sonrası tahliye davranışlarına ve nüfus
hareketlerinin tahmin edilmesine odaklanıyoruz. Tahmin uygu-
lamasında uzaklığa göre ölçeklenmiş özelliklerle yapay öğrenme
modelleri kullanıyoruz. Deneylerimiz kurduğumuz modelin farklı
ilçeler arasında tahliye akışlarını tahmin edebildiğini göstermek-
tedir. Ana bulgularımız, nüfus dağılımı ve deprem şiddetinin
tahliye örüntülerinin en önemli faktörleri olduğudur. Deprem
bölgesindeki Türk nüfusu ile Suriyeli göçmen nüfus arasındaki
karşılaştırmalı analiz, benzer öznitelik önemi sıralaması gösterse
de, bazı farklı örüntü dağılımları sergilemektedir.

Anahtar Kelimeler—Mobil veri, deprem sonrası hareketlilik,
yapay öğrenme

Abstract—The 2023 Kahramanmaraş Earthquake resulted
in over 55,000 deaths. Efficient evacuation management can
significantly reduce secondary casualties and optimize resource
allocation. This study explores the application of Call Detail
Records (CDR) in times of crisis, with a particular focus on the
consequences of earthquakes. We focus on two issues: the post-
earthquake evacuation behavior and prediction of population
movements after earthquakes. We use machine learning models
with distance-normalized features inspired by the Gravity model
to predict population movements immediately after earthquake.
The experiments show that our model can predict evacuation
flows between different districts. Our main findings are that
population distribution and earthquake intensity are the primary
factors of evacuation patterns. Comparative analysis between
Turkish and Syrian populations shows the same feature impor-
tance rankings, but distinct pattern distributions.

Keywords—Mobile data, post-earthquake mobility, machine
learning

I. INTRODUCTION

Natural disasters such as earthquakes can have a huge
impact on people’s lives and lead to large-scale population
movements1. In recent years, mobile call detail records (CDR)
have been proposed as a unique data source for analyzing
post-disaster population movement [1]. CDR data are collected
by telecommunications operators, and contain information on
the time and duration of all cell phone calls, as well as the
geographic location of senders and receivers [2]. During an
earthquake, mobile networks usually maintain some function-
ality even if part of the infrastructure is damaged, and CDR
provides a means to observe population movements in great
detail. If the infrastructure is there, this can be done in real-
time, which can help rescue and resource planning efforts.

In this work, we use CDRs to construct a migration model
to predict the evacuation flows in the aftermath of the Kahra-
manmaraş Earthquake. Our research questions are: 1) How can
we use mobile phone data to supplement other data sources
to predict the movement of people inside the country after
an earthquake? 2) Which features will influence evacuation
behaviors? 3) Did Turkish and Syrian people respond to similar
or different factors in their evacuation decisions?

Using carefully anonymized and aggregated data from
a major telecommunications company, we analyzed post-
earthquake evacuation patterns and found that approximately
half of all displacement flows occurred within the same
city. Moreover, the vast majority of evacuation destinations
remained within earthquake-affected areas. Our city-level anal-
ysis of both Turkish and Syrian populations revealed distinct
evacuation behaviors: Turkish evacuees showed more dispersed
destination choices, while Syrian evacuees demonstrated more

1This is the uncorrected author proof. Copyright with IEEE. Please cite
as “Hu, J., B. Aydoğdu, S. Güneş, S.N. Yağcıklı, A.A. Salah, Prediction of
internal migration after an earthquake with call detail records, 33rd IEEE Conf.
on Signal Processing and Communications Applications, Istanbul, 2025."



concentrated destination preferences. Our experiments vali-
dated the use of gravity-transformed features in predicting
post-earthquake population movements.

II. RELATED WORK

Call Detail Records (CDR) are data collected by mobile
network operators when providing their services. These records
include call initiation time, duration, phone numbers of both
parties, call type, and possible device location information [3].
Using CDR, it is possible to infer population dynamics,
mobility, social networks, and socio-demographics [4]. The
spatial trajectory of each user can be obtained based on the
original CDR. Furthermore, the night-time activity range can
be used to infer the user’s home location.

Studies using mobile phone location data to study disasters
are categorized into three main categories [5]: population
displacement and evacuation modeling (our focus), long-term
recovery analysis, and inverse inferences about damage to the
built environment, respectively. CDR has a lot of promise
for counteracting and responding to the adverse effects of
disasters [6]. A post-earthquake study in Nepal used CDR
data to rapidly assess mobility patterns after the earthquake,
particularly the mass exodus from the Kathmandu Valley [7].
[8] found that the destinations of people displaced after the
earthquake were highly correlated with their prior mobility
patterns. In 2016, Kargel et al. analyzed behavioral patterns of
12 million mobile phone users following an earthquake, and
this was the first time that large-scale mobile location data
significantly aided disaster relief [9].

Yabe et al. used CDR data of over 1.9 million users before
and after five natural disasters, including the 2017 Puebla
Earthquake, to investigate population recovery trends [10] .
After all five disasters, the majority of users returned quickly
within a few weeks of the disaster, with the remainder return-
ing gradually over a longer period. Therefore, data from the
weeks following a disaster are most important in a study to
understand the pattern of population recovery after a disaster.
Our present study investigates population recovery patterns for
one and a half months after the 2023 earthquake.

III. METHODOLOGY

A. Data used for the study

We use a fine-grained CDR dataset for a total of three
months between 01/01/23-31/03/23, coming from a major
telecom operator in Turkey. The original dataset, which was
not shared, consists 325, 000 customers recorded with times-
tamp of calls (aggregated at the hour level), base station
site information (for caller and callee), randomized numbers
representing customer IDs and customer segment information,
expressed with 1 for Turkish and 2 for Syrian. Data are
anonymized and aggregated within the operator before being
shared for research2, along established guidelines to remove
all personal information [11], [2].

We use the site ID with the highest call frequency for each
subject from 19:00 to 7:00 as the home location of that day.

2See https://hummingbird-h2020.eu/images/projectoutput/d6-1.pdf

The home location with the highest frequency each week will
be regarded the home location for that week, and the same
applies to each month. The home location of most consumers
in the data set has not changed in three months, so they can be
regarded as not migrating. Within our dataset, 140, 750 people
stayed in the same city, and 15, 817 people displaced to another
city during the three months.

We supplement the CDR with census data TurkStat3,
which includes the total population of each city and district
in Turkey. Syrian populations per city is obtained from the
General Directorate of Migration Management in 20234. The
earthquake data were extracted from the USGS Earthquake
Hazard Program 5. The dataset provides the shaking intensity
in increments of 0.2. In Figure 1, the distribution of the
seismic intensities is shown. Areas with intensities above 4.5
were classified as severely impacted zones, while those below
4.5 were designated as less severely impacted zones.

Table I: Populations and sample sizes in the CDR dataset

City Population CDR Sample Percentage %

GAZIANTEP 2,164,131 25,427 1.175
SANLIURFA 2,213,964 19,144 0.865
HATAY 1,544,640 11,787 0.763
ADANA 2,270,298 9,570 0.422
KAHRAMANMARAS 1,116,618 4,256 0.381
KAYSERI 1,445,683 151 0.0105
KILIS 155,179 4,979 3.209
OSMANIYE 557,666 1,324 0.238
MALATYA 742,725 4,044 0.545
ADIYAMAN 604,978 966 0.160

Figure 1: District-level intensity map of the earthquake

We use data on buildings damaged by the earthquake to
assess the varying impacts across different regions6. From
Figure. 2, buildings damaged by the earthquake are predomi-
nantly located in major cities near the earthquake’s epicenter.
In contrast, cities situated farther from the epicenter primarily
report slight damage to buildings, with fewer instances of
buildings experiencing more severe levels of damage.

Finally, we use the Relative Wealth Index (RWI), which
was developed to accurately assess the economic status of
low- and middle-income countries7. RWI combines publicly

3https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109
4https://multeciler.org.tr/eng/number-of-syrians-in-turkey/
5https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/shakemap/

intensity
6https://sheltercluster.org/turkiye-earthquake-2023/pages/

damaged-buildings
7https://dataforgood.facebook.com/dfg/tools/relative-wealth-index



Figure 2: District-level ratio of damaged buildings

available survey data with non-traditional predictive data via
machine learning to predict absolute and relative wealth for
2.4 square kilometer grid cells.

B. Features and models

After [12] demonstrated that the amount of migration is
inversely proportional to distance, [13] formally proposed to
apply the law of gravity to population movements between
two locations. Isaacman et al. simulated migration during the
severe 2014 drought in Guajira, Colombia, using anonymized
and aggregated CDR with the Gravity model [14]. The results
showed that the prediction had a success rate of about 60
percent for the total number of people who migrated and the
locations where they migrated.

The model assumes that the flow between two areas
decreases with distance. The basic equation is as follows:

Tij ∝
mi ·mj

rij
(1)

where Tij is the amount of flow from area i to area j, mi

and mj are the populations of the two areas respectively, and
rij is the distance between the two areas. The attractiveness
of area j is proportional to mj , but there is a cost of distance
traveled:

Tij = K ·mi ·mj · f(rij) (2)

where K is a constant, and f(rij) is known as the deterrence
function, a decreasing function of distance. The distance
function f(rij) is usually modeled as a power law or expo-
nential [15]:

f(rij) = α · r−βij · e
−rij/rc (3)

where α and β are adjustable exponents. Although it looks
simple, the Gravity model fits internal migration data well [16].

Our approach is inspired by [17], which uses distance-
based feature normalization inspired by the Gravity model to
predict post-hurricane evacuation flows. All features described
in Section III-A, namely population intensity, damaged build-
ings ratio, and RWI, are first processed through a formula
conversion. Compared to directly using the characteristics of
any given two cities to predict the evacuation flow between
them, the formula in the form of a Gravity model takes into
account the influence of the distance between the two cities.

Given a district i, we represent the set of features as Di,
and for two districts i and j, the joint feature using a gravity-
inspired transformation is written as follows:

gij,k =
di,k ∗ dj,k
disti,j

(4)

where di,k is the k-th feature of district i, disti,j is the distance
between districts, and gij,k is the k-th joint feature. We do the
same normalization for features at the city level.

We tested Support Vector Machines, Random Forests, and
XGBoost as supervised machine learning models, and used
XGBoost in the final approach [18] Given that our district-
level dependent variable contains missing values and exhibits a
right-skewed distribution, we adopted Tweedie regression as a
loss function, which is a special case of the exponential disper-
sion family [19]. [20] successfully applied Tweedie regression
loss function in XGBoost for hurricane evacuation prediction,
achieving promising results. To predict evacuation flows after
the earthquake at district-level, we used the (normalized)
population size, RWI, and damaged building ratio features as
input variables, and evacuation flows as the output variables.
In order to avoid poor prediction results caused by sample
imbalance, we used stratified k-fold cross-validation.

IV. EXPERIMENTAL RESULTS

A. Description of flows

In terms of evacuation flows, most origin districts are
located in Hatay, Gaziantep, Kilis, Adana, Kahramanmaras,
and Malatya. The flow counts from Hatay and Gaziantep are
the highest, reaching 21.6% and 21.1% respectively. Our data
show that flows within the same city account for 40.74% of all
flows. For Hatay city, flows within the city reach 48.3%. Flow
from the Antakya district of Hatay was the largest among the
origin districts, with a total of 2152, accounting for 5.1% of
the total. Most people on the move did not leave the affected
area completely, but have gone to relatively less affected areas
and adjacent cities. Among the destination districts that are not
part of the affected area, Mezitli, Erfemli, Toroslar districts of
Mersin, Selcuklu district of Konya, and Cankaya district of
Ankara are the top five destinations.

Turkish and Syrian subpopulations showed similar origin
cities, with Hatay, Gaziantep, and Sanliurfa being the top
three. However, notable differences emerged in destination city
patterns. Turkish citizens showed a preference for Ankara,
while Syrians favored Istanbul. Antalya ranked as the third
destination for Turkish citizens, but did not appear among
the top five destinations for Syrians. Both populations gen-
erally showed significant intra-city movement across different
districts within their origin cities, with Gaziantep’s Syrian
population being a notable exception, where only one-fifth
remained within the city.

B. Predictive models

We tested our supervised learning approach to see how
much we could have predicted the mobility, given a cer-
tain damage profile. Table II shows our results, with simple
Gravity model and XGBoost without feature normalization as
baselines, in terms of R2, Root mean square error (RMSE),
and mean average error (MAE). Furthermore, a SHAP value



analysis shows the importance of factors8 for the predictive
modeling in Figure 3.

Table II: Prediction results for models across evaluation met-
rics

Model R2 RMSE MAE

XGBoost with normalization 0.601 6.921 1.257
Simple Gravity model 0.148 15.950 4.487
XGBoost without normalization 0.063 16.487 3.662

Figure 3: Feature importances via SHAP method.

V. CONCLUSIONS

This initial work provides some descriptive mobility re-
sults, which need further investigation via qualitative studies,
and a first attempt at predictive modeling of post-earthquake
evacuation flows. We show that CDR has potential to con-
tribute to both descriptive and predictive analyses.

The biggest limitation of our study is the access to CDR.
CDR is stored by telecommunications companies and is not
publicly available. Special arrangements and legal agreements
are required for governmental or non-governmental organi-
zations to access anonymized and aggregated versions of
these valuable datasets. Turk Telekom established the Data for
Refugees (D4R) initiative between 2016-2019, and made CDR
data public to support scientific studies that aimed at enhancing
the living conditions of Syrian refugees in Turkey [2]. We
have used a similarly prepared but private dataset in this study,
coming from a different telecom operator.

Privacy protection in CDR is an important concern, with
the need to ensure anonymity and confidentiality of personal
information during data analysis. There are established guide-
lines to achieve this, such as the application of "privacy by
design and default" [21] to ensure that no individual can be
tracked or identified in the data. Our project has been screened
by university-level and international ethics committees to ad-
here to legal and ethical guidelines.

CDR also has possible biases. Telecom operators have
different penetration rates in each area, and in very low-income
areas, only people who own and use a SIM card are included
in the dataset [22]. These should be considered in evaluating
the results of analysis.

8SCI denotes Facebook social connectivity index, which had negligible
impact and is not further discussed here.
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