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Abstract— Social interactions are fundamental for human
beings, motivating the abundance of studies into the behavioral
correlates of constructs such as personality and relationship.
The primary drivers of this research are video-taped recordings
of interactions. Recent advancements in automatic behavior
analysis provide a cost-effective and more objective alternative
to manual coding by trained experts. Still, the use of automated
analysis is far from trivial. In this literature survey, we
discuss the current state-of-the-art in automated parent-child
interaction analysis, and critically assess opportunities and
limitations. We focus on parent-child interactions as they reflect
various aspects of a child’s development, and provide distinct
challenges for the automated measurement and interpretation
of the interactive behavior. We briefly discuss single-person
and dyadic nonverbal measurements, and identify measure-
ment challenges. We then provide an overview of various
developmental constructs that can be measured through the
classification of extracted cues. Finally, we outline persistent
limitations of the current state-of-the-art, and we highlight
promising directions to bridge the gap between manual and
automated measurements.

I. INTRODUCTION

Parent-child interactions (PCIs) offer insights into many
aspects of a child’s development, including cognition, lan-
guage acquisition, and socio-emotional growth, as well as the
achievement of developmental milestones [1]–[3]. Observa-
tion of videotaped PCIs stands out as an integral assessment
technique in tracking child development [4], [5].

Videos of PCIs contain numerous informative cues and
the quantitative analysis of these cues provides insights into
a wealth of constructs including the child’s development. In
conventional non-computational studies, videos are manu-
ally labeled by trained coders [6]–[8]. Manual labeling is
typically laborious and requires extensive training [4]. Em-
ploying computer analysis techniques promises a paradigm
shift, allowing for automated extraction of important features
from PCIs, thus facilitating more objective analysis of larger
amounts of data. Despite the prevalence of computer analysis
in adult behavior analysis studies, research addressing PCIs
remains limited. This review seeks to bridge the areas of
developmental psychology and computer science, shedding
light on opportunities to automate behavioral coding for
the interpretation of developmental constructs and specific
challenges in analyzing child behavior, and understanding
the complexity of PCIs.
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Fig. 1. Schematic overview of the process of measuring and interpreting
interactive behavior in parent-child interactions. Recordings are analyzed
for single-person behaviors, before combining these into dyadic features.
Finally, interpretation takes places in terms of constructs for the child’s
development or the interaction quality.

We focus on nonverbal behavior because it is the primary
mode of communication of young children, and remains
important while speech is still under development [9]. There-
fore, a substantial portion of PCI research with young chil-
dren, in particular in infants, has concentrated on nonverbal
behaviors [10]. An overview of the process of measuring and
interpreting interactive behavior in parent-child interactions
appears in Figure 1.

High-level constructs such as attachment style are too
complex to measure directly and require expert interpreta-
tions. Therefore, researchers have focused on measurable
features associated with developmental constructs. Analysis
of the dyad requires the prior measurement of single-person
behaviors of both parent and child, typically in terms of
facial expressions, body movements, and vocalizations. The
analysis of interaction dynamics must consider behaviors
within the dyadic context [11], and involves techniques
such as time-series analysis, or dyadic measures such as
proximity and synchrony. Most of the surveyed studies aim
at understanding the correlates of behavior cues and aspects
of personality, the nature of the interaction, or developmental
constructs such as attachment style. Others take a real-time
approach, such as understanding the success of parent-child
interaction therapy (PCIT) and improving the quality of
interaction [12], [13]. Since these studies focus on speech
modality, they are not included in this literature survey.
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The remainder of this paper is structured as follows.
Section II presents an overview of parent-child interaction
paradigms. In Section III, we discuss automatic behavior
measurement at the single-person and dyadic levels. We
then turn to developmental constructs assessed through the
interpretation of extracted behavioral cues in Section IV.
In Section V, we identify persistent gaps in the field of
automated PCI analysis and outline directions for future
research. We conclude in Section VI.

II. PARENT-CHILD EXPERIMENTAL SETTINGS

Parent-child interaction videos have been conventionally
explored in observational studies using behavioral tasks,
including the Ainsworth Strange Situation, Manchester Child
Attachment Story Task, and Still-Face paradigm. More re-
cently, less controlled paradigms are explored, including
structured play, free play, story reading, as well as psycho-
dynamic therapy sessions. The physical and social setting
in which the interaction is observed determines to a large
extend the type of behaviors that we can expect to observe,
and which type of measurement tools are appropriate. In this
section, we discuss the most common experimental settings
that have been addressed in automated PCI analysis research.
Table I provides an overview of studies that have used a
specific paradigm.

The Ainsworth Strange Situation Assessment (SSA)
is the recognized measure of attachment quality via ob-
serving the infant’s exploration behavior and responses to
the separation and reunion with the parent, as well as the
reaction to a stranger [14]. By coding attachment behaviors
including proximity seeking, secure base behavior, stranger
anxiety, separation anxiety, and reunion response, children’s
attachment security is classified into secure, insecure, or
disorganized, depending on the reactions of the child in
different phases of the task.

Manchester Child Attachment Story Task (MCAST)
is another method to assess attachment style. While SSA is
the standard method to measure attachment style in infancy,
MCAST is designed for pre-school children [15]. During this
assessment, children listen to five distress-related stories in
different contexts: breakfast, nightmare, hopscotch, tummy-
ache, and getting lost in a shopping mall. At the end of each
story, children are asked to play with two dolls (baby doll
and mommy doll) to complete the stories of the examiner.
With this procedure, children are rated in terms of their
attachment-related behaviors, narrative coherence, disorga-
nized attahment behaviors, and the mentalizing ability.

Face-to-Face/Still Face (FFSF) is a validated procedure
measuring socio-emotional regulation of infants facing a
social stressor [16]. It consists of phases of face-to-face (FF)
interaction such as a play episode, followed by a still-face
(SF) period in which the caregiver stops communication,
and ending with a reunion (RE) phase in which the infant
and the caregiver resume normal face-to-face interaction.
The SF phases typically induce stress in the infants. The
FFSF paradigm is frequently employed to assess infants’
emotional regulation development. The emotions, behaviors,

and interaction dynamics observed during each episode offer
valuable information on the PCIs, and contribute to the
assessment of the infant’s development of emotion regulation
skills and resilience.

Structured and free play: While structured play includes
inherent rules and goals, in free play, parents and the children
engage together in their own preferred way, selecting toys or
activities without strict guidelines [17]. For instance, coop-
erative and competitive games are being used in structured
play settings to observe the behavioral patterns in different
conditions of cooperation and competition [18]. Parents and
children adjust their leading behaviors depending on the con-
dition, in synchrony during cooperation and independently in
competitive settings [19].

In semi-structured play settings, interactants are placed in
a play situation to achieve a specific goal such as measuring
joint attention. For example, the Three-Bag Procedure is
a semi-structured play task in which parents are asked to
play with their children using three bags of age-appropriate
toys in a set order [20]. Joint storybook reading is another
interaction setting used to observe the mutual engagement
in PCIs [21]. Naturalistic observations might be in the
context of structured or free play, as well as observation
of routines between parents and children during various
activities regardless of context and location [22], [23].

Parent-Child Interaction Therapy (PCIT) is a real-
time application of PCI research. PCIT is an evidence-based
treatment program designed to support caregivers and their
children, aged between 2 and 7 years old, with behavioral and
emotional difficulties. PCIT consists of two phases: a Child-
Directed Interaction Phase (CDI) encouraging the child to
lead the play activity, aiming at enhancing parent-child
relationship during child-led play, and a Parent-Directed
Interaction Phase (PDI) where parents enhance their behavior
management strategies with the ultimate goal of creating a
supportive home environment.

III. AUTOMATIC BEHAVIOR ANALYSIS

We discuss automatic analysis of nonverbal behaviors first
at the single-person level, before discussing dyadic nonverbal
measurements. Nonverbal dyadic features are those behav-
ioral cues that relate to both parent and child, such as syn-
chrony, proximity, visual focus of attention, and emotional
contagion, that are derived from the single-person measure-
ments. In our overview Table I, we summarize automated
PCI analysis publications, and indicate the features, both
single-person and dyadic, in the first column, whereas the
methods themselves are in the “Tools” column.

A. Single Person Features

We identify facial expressions, body movements and non-
linguistic vocalizations as the main sources of nonverbal
behavior cues.

1) Facial Expressions: The predominant representations
of facial expressions are rooted in the facial action coding
system (FACS) [43] and its infant-specific adaptation, Baby-
FACS [44]. FACS breaks down individual or groups of facial



Single-Person Features Dyadic Features Construct Ref Age Tool(s) Setting

Facial Expressions Emotional Contagion
Engagement Level
Attachment Style [24] 6m Face analysis FFSF

Attachment Style [25] 4m Face analysis FFSF

Body Movements

Emotional Contagion Attachment Style [26] 4m Face tracking FFSF

Synchrony Attachment Style [27] 4m Head tracking FFSF

[28] 5.5m Object tracking
Gaze tracking Free Play

[29] 41-100m Pose estimation Free PlayEngagement Level
[30] 2-7y Movement tracking Free Play

Vocal Emotional Contagion [31] 3-24m Audio analysis Free Play, FFSF

Multimodal: Body Movements
Body part regions Engagement Level [32] 3-7y Image analysis Storybook Reading

Multimodal: Body Movements,
Vocalizations

Synchrony Engagement Level
Interaction Quality [33] 2-18m Pose estimation

Audio analysis FFSF

Attachment Style [34] 5-8m Image analysis
Audio analysis FFSF, SSA

Multimodal: Facial Expressions
Vocalizations

Attachment Style [35] 5-9y Facial analysis
Audio analysis MCAST

Body Movements Synchrony
Engagement Level [10] 3-7y Pose estimation Storybook Reading
Interaction Quality
Attachment Style

[36] 12-24m MEA Free Play

Attachment Style [19] 8-12y MEA Structured Play

Proximity [37] Image analysis Seated FFInteraction Quality
Attachment Style [38] 10m Pose estimation

Image analysis Free Play

Head Movements VFOA [39] 14m Image analysis Semi-Structured PlayEngagement Level
[40] 16m-14y Image analysis Structured Play

Interaction Quality [41] 10m Head tracking Free Play

Multimodal: Body Movements, Vocalizations,
Proximity Attachment Style [42] 6-18m Pose estimation

Audio analysis Semi-Structured Play

TABLE I
OVERVIEW OF STUDIES FOCUSING ON AUTOMATED ANALYSIS OF PCIS. SEE TEXT FOR FEATURES, CONSTRUCTS AND EXPERIMENTAL SETTINGS.
YELLOW CELLS REPRESENT STUDIES DIRECTLY FOCUSING ON CONSTRUCTS, WHILE GRAY CELLS REPRESENT STUDIES INDIRECTLY ADDRESSING

CONSTRUCTS. M: MONTHS, Y= YEARS, MEA: MOTION-ENERGY ANALYSIS, FFSF: FACE-TO-FACE/STILL FACE, SSA: AINSWORTH STRANGE

SITUATION ASSESSMENT, MCAST: MANCHESTER CHILD ATTACHMENT STORY TASK, FF: FACE-TO-FACE

muscles into Action Units (AUs), allowing the identification
of specific facial expressions through the combination of
these action units [45].

Facial expressions and their dynamics have been mainly
associated to categories or dimensions of affect [46]–[49].
Due to importance of emotional development of the infant for
positive parent-child relationships and high-level constructs,
such as attachment style [50], studies exploring facial ex-
pressions frequently focus on emotional states or changes in
these states.

Smile production in infants start at birth [51]. Social smile,
emerging in the first three months, is one of the first observ-
able behaviors to track the socio-emotional development of
the infant, indicating positive emotion in early interactions
[52], [53]. To differentiate different types of smiles, such
as Duchenne vs non-Duchenne smiles, researchers explored
components of smile intensity, mouth opening, and eye
constriction [54], and explored different aspects of smile like
reciprocating positive affect or exuberance [51].

The FFSF paradigm is commonly employed to measure
the affect interplay throughout the episodes [25], [46]–
[48]. Generally, facial expressions are naturally associated
to positive emotions observed during the FF episode, while
the SF episode leads to an overall increase in the occurrence
of negative emotions [25], [55]. Exploring Duchenne cry-
faces for the occurence of negative emotions during FFSF

paradigm, researchers found increased Duchenne cry-faces
during SF episode while there were no difference for non-
Duchenne cry-faces [56]. These findings demonstrates the
importance of differentiating intense Duchenne forms of
expressions as a sensitive index of affective valence [25].

A substantial part of the studies classified facial expres-
sions as positive, negative and/or neutral emotional states
[46], [47], [49]. Shifting from categorical approaches, di-
mensional approaches are emerging [57], which typically
consider valence and arousal as two orthogonal dimensions.
However, the use of these methods in PCI is limited,
potentially due to a scarcity of methods to analyze affect
in children. Mang et al. adopted a dimensional approach,
marking the first automated attempt to estimate the emotional
valence of infant affect from facial expressions [48].

2) Body Movements: Body movements play a fundamen-
tal role in social interactions [58], including those between
parents and their children. Isolated behaviors such as head
and body gestures convey information about the dynamics
between parent and the child related to emotional contagion,
and joint engagement [26], [29], [30]. Moreover, quantiative
representations of body movement can be used to analyze
proximity and interaction synchrony [27], [30].

Head trackers [27] provide head orientation in three or-
thogonal directions. Body tracking systems [30] are used to
record full-body poses. More recently, video-based methods



have been introduced as a cost-effective and less intrusive
alternative to body-worn trackers [29]. Body tracking meth-
ods typically represent body poses as skeleton data, with
the position of key joints in the body either in 2D image
coordinates or in 3D world coordinates [59]. Popular video-
based pose estimation algorithms include OpenPose [60],
DensePose [61], and DarkPose [62]. Movement measures
are obtained by considering pose measurements over time.

While analysis can focus on continuous variables such as
the amount of movement or the orientation of the head,
and body poses, movements can also be classified into
specific actions or gestures [58]. Recent efforts are aiming
to bridge the gap in infant action recognition. Yurtsever et
al. conducted a pioneering study to classify the meanings of
infants’ activities [63]. They captured temporal information
obtained from keypoints from different pose estimators and
proposed a novel system for decoding infants’ body language
in videos. Dechemi et al. presented the BabyNet network,
incorporating temporal inter-dependencies for video-based
infant reaching action recognition [64].

3) Vocalizations: Because infants are not linguistically
competent, parents and other caregivers modify their speech
to them in a variety of ways to communicate [65]. Infant
vocalizations, especially expressions of emotions, often serve
communicative purposes in dyadic social processes. Basic
emotional infant outbursts, such as cry, fuss, laugh, babble,
and screech can convey meaningful information to parents.
Additionally, parent vocalizations have been frequently ex-
plored as motherese/fatherese, adult-directed speech, infant-
directed speech, playful noises, rhythmic sounds, laughter,
and whispering [31].

Studies of infant vocalizations often utilize speech analysis
tools such as openSMILE [66] to extract inter-vocalization
intervals and acoustic features including pitch (level, range,
and contour of the fundamental frequency F0), intensity as
the energy of the voice, and duration [31], [67].

4) Multimodal: Human behavior is inherently multi-
modal, where dyadic interaction signals manifest through
the interplay of body language, facial expressions, and vo-
calizations [68]. Fusion of features from various modalities
enhances the efficacy of models in extracting meaningful in-
formation by resolving ambiguity and improving the overall
quality of noisy data [33], [42], [69].

In an effort to enhance emotion recognition, Yang et al.
investigated the fusion of gaze and head pose behaviors in
interactions between infants and parents [69]. Through man-
ual coding of the gaze behavior and emotions, they trained
a deep neural network to capture the temporal information
and image details, demonstrating improved recognition of
gaze and affect with the incorporation of head pose and gaze
features.

Furthermore, especially for young children whose commu-
nicative skills are developing, specific communicative func-
tions could be expressed in different modalities as the child
develops. Modalities are combined to explore developmental
constructs including engagement level and attachment style
[33], [34], [42].

Techniques to fuse multiple modalities can be broadly
categorized into feature-level fusion and decision-level fu-
sion. Feature-level fusion is performed by combining the
extracted features from each modality and to integrate them
into a large vector to reach a joint representation. Behavior
classifications are subsequently made on these vectors. In
contrast, decision-level fusion integrates the classification
of each modality for a final output. In literature, decision-
level fusion techniques are most common for various reasons
such as to avoid overfitting as a result of the inbalance
in the feature dimensionality and number of observations,
and to reach better representations for temporarily correlated
asynchronous modalities [70], [71].

B. Dyadic Features and Interaction Analysis

Single-person measurements are typically combined per
modality, to reveal specific inter-personal measures. We
discuss the most prominent ones.

1) Emotional Contagion: Affect plays a significant role
in shaping and regulating our behaviors and interpersonal
relationships with others in social interactions. The dynamic
nature of affect, intimately tied to the ongoing dynamics
of social interactions, exerts a continuous influence on be-
haviors throughout the interaction. Consequently, researchers
have shown a keen interest in exploring emotional contagion
in interactions, where an interactant’s emotional state is a
precedent of other interactant’s emotional state in a respon-
sive manner [72]–[74].

In the context of PCIs, facial expressions have been the
predominant modality to explore emotional contagion during
the interaction [24], [25]. Head movements also play a
significant role in interpreting emotional states. Mother and
infant angular displacement has been measured, shedding
light on the perturbation and recovery of head movement
coordination in emotion exchanges [26].

Vocal behaviors also convey information about the emo-
tional contagion between the parent and the child. Studies
exploring nonverbal vocalizations highlighted the importance
of fundamental frequency compared to other acoustic fea-
tures to recognize emotional state of the individuals [31],
[67].

2) Proximity and Touch: The role of proximity and touch
in parent-infant interaction is also critical, influencing in-
fants’ attention, arousal levels, behavioral and emotional
states, as well as contributing to emotion regulation [37].
This tactile dimension has been also associated with the
quality of interaction in previous studies [38].

Tracking systems are often employed to identify touch
events within parent-infant interactions. Chen et al. intro-
duced a touch event detection system integrating hand track-
ing and body analysis, as well as addressing a common
concern of hand occlusions during tracking [75]. In this
setting, they defined a touch event as the merging of contours
of the adult’s hand with the infant’s contour. In a subsequent
study, the authors shifted from motion trackers to a com-
puter vision-based approach for the automated recognition
of different types of caregiver touch classified based on the



infant’s touched body parts [37]. Their model allowed the
trained analysts to skip annotating a remarkable portion of
frames while still capturing the vast majority of actual touch
frames.

These studies have been conducted on seated interactions
with limited freedom of movement for both participants,
also only focusing on hand-to-body touch events. To address
limitations of working within a narrow situational context,
Doyran et al. provided an approach utilizing Convolutional
Neural Networks (CNNs) to detect frame-level touch in
free-play settings [38]. They also extended the focus to all
physical touch events. Similar to [37], using body part seg-
mentation allowed a more semantically structured modeling
for interaction analysis, by distinguishing between different
body parts that are used in different contexts [38].

3) Visual Focus of Attention: Gaze is another commu-
nication channel to convey emotional and mental states of
individuals [76]. Investigating under the umbrella of Visual
Focus of Attention (VFOA), gaze provides insights into the
area an individual is looking at, providing a valuable aspect
in understanding interactions. The dyadic exploration of
VFOA extends to various contexts, including joint attention,
mutual gaze, and gaze following [77]. While mutual gaze
refers to the visual exchange between two individuals, joint
attention refers to the shared focus of attention.

Mutual gaze, or eye contact, emerges as a significant
factor in fostering effective communication and enlightening
social interactions by signalling interest, attention, and active
participation [40], [77]. Consequently, measurements of eye
contact find application in diverse areas such as assessing the
social communication skills of children at risk for develop-
mental disorders like Autism Spectrum Disorder (ASD), as
well as analyzing turn-taking and social roles [40].

Many studies opt for estimate VFOA through face and
head pose detection. By identifying head pose angles, a vec-
tor representing the person’s face direction can be calculated,
allowing for the estimation of VFOA. Extracted cues of
VFOA has been associated with developmental contents of
emotional states [69] and quality of interaction [41] in PCIs.

4) Interactional Synchrony: Interactional synchrony is
the temporal coordination of behavioral patterns between
interactants [78]. It has been characterized with behaviors
involving direct imitation or mirroring of others and congru-
ency between interactants [79]. Mirroring occurs when one
person consciously or unconsciously mimics the nonverbal
communication of the other. Mirroring has been found to
correlate with empathy between people and it is an early
indicator of a positive outcome in an interaction [80], [81].
Infants copy caregiver’s actions for social learning, to acquire
social, communication, and emotion regulation skills [81].

Synchrony manifests in various forms, spanning behav-
ioral, emotional, physiological, and neurological dimensions
[82]. Its association with the development of social skills
in early childhood has garnered significant attention. In the
literature, synchrony has been defined in various ways and it
is distinguished from mirroring by emphasizing the dynamic
nature of timing over the nature of behaviors [83]. Behaviors

in an interaction setting are synchronized in both timing
and form in a patterned way which is providing insight
into interpersonal coordination [79]. As such, interpersonal
coordination has been associated with the engagement level
and quality of interaction [83].

While timing in synchrony quantification is often ignored,
other methods explicitly take into account the relative timing
of the behaviors of both child and parent. Temporal methods
such as time-lagged cross-correlation and recurrence analy-
sis, and spectral methods such as cross-spectral coherence
and power spectrum overlap, are commonly employed for
assessing interaction synchrony [83].

Researchers have also explored synchrony in terms of
leader-follower dynamics. PCIs can be globally classified
into leader-follower dynamics “parent-led” and “infant-led”.
The latter is associated with higher levels of parent-child
synchrony while parent-led interactions are typically stronger
associated with the fulfillment of needs throughout the course
of the interaction [84]. Yarmolovsky et al. distinguished
between in-phase and anti-phase synchrony and identifying
leaders in synchronous interactions [19]. While in-phase syn-
chrony refers to movements that are in perfect harmony being
associated with cooperative actions, anti-phase synchrony is
characterized by alternating movements [85].

Synchrony has also been explored in turn-taking behavior
within the context of affective synchrony of facial expres-
sions. Understanding the preconditions of infant intentional-
ity, studies have modelled dyadic state transitions and turn-
taking behavior, unveiling early patterns of simultaneous
responsivity [86]. In the context of turn-taking behavior,
vocal features have also been frequently explored [87].

Behavioral synchrony is commonly analyzed using track-
ers during face-to-face interactions. While head-trackers are
often utilized in seated settings [27], movement trackers have
been used for less constrained settings such as free play,
unveiling patterns of synchrony crucial for understanding
interaction dynamics [28]. Increasingly, free play settings
have been investigated, such as by Hammack et al. who
measured dyadic movement synchrony using motion energy
analysis (MEA) in at-home free play sessions [36].

Recent studies also explored inter-modal synchrony in
PCIs. Klein et al. integrated features such as head position,
arm position, and vocal fundamental frequency, achieving
more robust models with expanded feature space against
missing data [33].

C. Measurement Challenges

Despite significant advances in automated behavior analy-
sis, several measurement challenges persist in the unobtrusive
measurement and interpretation of behavior.

Analyzing infants: Computer vision and audio processing
algorithms predominantly concern adults. Extending their
use to children, especially young ones, is non-trivial. For
example, infants have significantly different body dimen-
sions, which complicates the estimation of their poses when
adult-trained algorithms are used [89]. Also, infants exhibit
more sudden and rapid movements, posing a challenge for



Fig. 2. Examples of challenging measurement situations regarding partial
visibility and occlusions (see Section III-C) in free play PCIs. Images taken
from the YOUth PCI dataset [88], with permission.

traditional computer vision models [90]. Inherent differences
in the dynamics of facial expressions between infants and
adults further present challenges [48], [91].

Partial visibility: Video cameras are unobtrusive but they
might not be able to record all essential information in
the scene. Especially in setups with a single or limited
number of cameras, faces or parts of the body might be
turned away from the cameras. Another issue is the (partial)
occlusion of faces and bodies by either the same person
or the interaction partner. Examples appear in Figure 2.
For facial expression recognition, researchers have proposed
methods to deal with occlusions like employing generative
models for learning [92], weight adjustment methods [93]
or region-based attention mechanism to deal with facial
occlusions [47]. Occlusions are particularly evident in dyadic
interactions with close proximity [94]. Issues related to
proximity can cause early commitments due to the failure
of the person detector in top-down pose detection [60],
effectively complicating the robust assessment of physical
contact in these setting.

In studies involving toys, existing algorithms designed to
detect faces and body parts may struggle to discern between
toys and body parts. This limitation highlights the need for
specialized algorithms capable of accurately identifying and
tracking toys and objects during interactions.

While the use of multiple cameras can alleviate some of
these issues, combining partial information from multiple
views requires a robust setup and more extensive processing.

Data scarcity: With the increasing sophistication of al-
gorithms, in particular deep learning models, there is an
increased need for data to train these algorithms sufficiently.
Limited labeled data reduce the effectiveness of algorithms.
One prominent risk is overfitting, where the performance of
trained models does not extend to novel situations. Currently,
many algorithms in automated behavior analysis are typically
trained on large amounts of relatively general data, such as
images of faces and bodies in a wide variety of situations.
More specific algorithms are further adapted to perform
well in more specific settings such as a seated parent-
child interaction, e.g., [95]. For example, Huang et al. have
explored invariant representation learning settings for pose
estimation, and have fine-tuned adult models for infant pose
estimation [89].

Adaptation is sometimes challenging because domain-
specific data are required. Especially for infants, such data
might not always be available due to the lack of consent
to share video material of minors. The relative scarcity of
infant data complicates the development of robust algorithms,
but also prevent proper benchmarking. In turn, the rate
of advances in algorithm development specifically targeting
infants and children is lower compared to work focusing on
adults.

One solution to deal with the limited availability of infant
data is to resort to synthetic data. For example, Huang et
al. created a hybrid dataset that consists of synthetic and
real infant pose data [89]. The synthetic data is based on a
3D human model that is animated based on pose data. By
varying the viewpoint, the body appearance and poses, more
data can be obtained that are to some extend representative
for the target application domain.

Another solution is to make the most out of the lim-
ited data that is available. Researchers have explored data
augmentation techniques to create variation in the time
dimension such as randomly cropping a segment or frame
sampling in the dimension of time [48].

IV. DEVELOPMENTAL AND INTERACTION
CONSTRUCTS

Using video-based nonverbal features, researchers have
focused on various indicators for the interaction state or the
development of, mainly, the child. In the social sciences,
many instruments including surveys have been developed and
validated to measure these various constructs. Methods from
computer science attempt to provide quantitative measure-
ments for these constructs [96]. Achieving this can enhance
the robustness of behavior coding, with the ultimate goal
of advancing our understanding of PCIs. The “construct”
column in Table I summarizes the various constructs that
have been the focus on research on automated PCI analysis.

A. Engagement Level

Social engagement stands as a critical indicator of an
individual’s socio-emotional and cognitive states, and helps
to understand interpersonal dynamics and communication
[97]. Within the domain of PCI, considerable attention has
been directed towards studying child engagement and joint
engagement. Studies leverage body pose features as insight-
ful nonverbal cues to predict engagement. While parent
nonverbal cues, such as pose features, are suggested as
predictive of child’s engagement, studies also revealed that
child’s engagement and disengagement ratings were better
predicted with dyadic features such as proximity [10].

Given the neccessity of affective states for social in-
teractions and their profound links to learning and socio-
emotional development, researchers have explored the inter-
play of affective states to measure joint engagement [32]. In a
recent study, researchers classified engagement into positive
affect, neutral affect, negative affect, and object engagement.
Leveraging the high classification accuracy of deep neural



networks, promising results were obtained for coding infant
engagement in FFSF recordings [98].

To enhance the recognition of affect interplay, action
recognition techniques have been seamlessly integrated with
various video augmentation techniques, introducing a hybrid
model for improved joint engagement recognition. The in-
corporation of video augmentation techniques demonstrated
increased performance, showcasing sensitivity to subtle so-
cial cues indicative of interaction dynamics [32].

Researchers also used movement and pose features to
obtain information about parental responsiveness and sen-
sitivity, which are instrumental to assess engagement levels.
In a study using features from movement tracking systems,
the event of reaching to a toy was used as a proxy for
initiating or responding to toy play, as well as for caregivers’
responsiveness [29]. By automating the measurement of
caregiver responsiveness, researchers provided a promising
monitoring technique for the engagement level in dyadic
interactions.

B. Quality of Interaction

Understanding the quality of parent-child interactions can
facilitate the investigation of healthy parent-child relation-
ships [82]. In early studies, researchers used statistical anal-
yses to characterize interaction quality of different groups of
children by age and diagnosis, e.g., ASD, mental retardation,
versus typically developed children [99]. Also, focusing on
age groups, Egmose et al. investigated quality of mother-
infant interactions at 4 and 13 months using motion features
[84]. They found stronger correlations between the interac-
tion quality and motion features at 4 months compared to 13
months, which emphasizes the importance of motion features
to predict quality of interaction.

In later studies, rather than direct measurements, re-
searchers focused on dyadic measurements such as proximity
and joint attention, which are suggested to be informative to
detect quality of interactions [37], [38], [41]. Even though
there are studies paving the way by automatically extracting
important behavioral cues such as body pose, joint attention,
and proximity, there are no fully automated detection of
interaction quality in PCI settings.

C. Attachment Style

Attachment is an enduring emotional bond that connects
one person to another across time [42]. Early attachment
styles are established in childhood through the interaction
between infants and caregivers, in particular parents.

Research focusing on feature extraction within PCI offers
insights into attachment styles. Responsivity and parental
sensitivity are associated to attachment security. For exam-
ple, researchers measured smile parameters, including smile
strength and eye constriction of the mother to investigate
the influence of interactants on each other’s positivity as a
signal of responsivity [24]. In another study using human
posture analysis and voice activity, researchers focused on
three components of maternal sensitivity as positive regards,

intrusiveness, and sensitivity which are critical for the devel-
opment of infant attachment security [42].

Body movements also provide information for the attach-
ment style. Chen et al. used a vector autoregressive model
with time-varying parameters, capturing temporal dependen-
cies [26]. In this study they found variations in infant-mother
head dynamics based on infants’ attachment security, which
demonstrates the role of coordination for secure attachment,
and emphasises the importance of taking into account the
dynamics of the behaviors.

Researchers also integrated different modalities with body
movements, such as vocalizations. Employing a multimodal
approach, Li et al. fused classifications of motion and
acoustic features during FFSF paradigm and achieved to
distinguish between different attachment styles of secure and
insecure attachment [34]. Alsofyani et al. combined facial
expressions and vocalizations for attachment prediction in
school age children [35]. Overall, their results demonstrated
better performance when using multimodal approach.

V. DISCUSSION AND FUTURE STEPS

The exploration of interaction dynamics through nonverbal
behavior analysis has become a thriving research area, par-
ticularly in interdisciplinary studies examining developmen-
tal indicators in PCI using state-of-the-art computer vision
techniques. While promising progress has been made, several
limitations and gap still exist.

A. Standardized behavior measurement

As seen from Table I, there is little overlap in the types of
tools and methods that have been used to analyze PCIs. Part
of the pragmatic introduction and deployment of tools is the
variety of experimental settings that have been addressed.
But with the increasing sophistication of these algorithms,
and consequently a more flexible and robust way of using
them, also provides the opportunity for the development
of a standardized set of behavior measures. We argue that
common tools would ensure good uptake of advances in
automated analysis, and would consequently improve the
potential to directly compare the outcomes of studies.

In particular, the availability of common tools would allow
the automated re-analysis of previously manually coded
recordings. By examining differences in manual and auto-
mated coding, especially between studies, the validation and
development of theory could be improved, in line with [100].

As a prerequisite for standardized measurement, there is
a need for better tools to measure infant facial expressions
and body pose. The distinct differences of children compared
to adults in terms of the physical appearance and dynamics
complicate the use of algorithms that have been developed
predominantly with adult data.

B. Interaction dynamics

The focus on limited dyadic features such as proximity and
synchrony, or behavior frequency distracts from examining
the dynamic patterns inherent in interactions. The interac-
tional contingency between interactants cannot be solely



represented by counting interactants’ behaviors [101]. Yet,
the majority of current studies are still focused on single-
person rather than dyadic features. There is a need for
temporal analyses that take into account causal relations
between behaviors, such as a parent’s smile in response to a
child’s movement, or the pick-up of a toy in response to a
child’s gaze.

The inclusion of the function of behaviors, potentially
independent of the modality in which they are expressed,
might be a way forward. This avenue also opens up possi-
bilities for a more symbolic analysis, in contrast to the purely
data-driven methods that are currently popular. Examples
are graph-based methods or attention maps to provide local
explanations [39].

In addition to only considering the two interactants in the
PCI, there should be more focus on interactions with objects
such as toys, or the environment. How children interact with
the objects, and how the individuals manipulate the objects
could also be explored.

C. Measurable constructs

Future studies should strive for standardized definitions
of developmental constructs to enhance the understanding
of PCIs. Bridging gaps in defined developmental constructs
can facilitate studies exploring other complex constructs,
such as empathy and Theory of Mind, and ensure better
understanding of complex dynamics of PCIs [102], [103].

While a significant portion of the studies focus on sub-
components of higher-level developmental constructs, there
are only a few studies directly focusing on developmental
constructs. In the future, these higher-level constructs should
be targetted more by employing state-of-the-art computer
analysis techniques. We argue that this requires a critical
re-analysis of the more subjective and interpretation-focused
aspects of currently popular assessment instruments. A good
understanding of the relation between objective dyadic be-
haviors and common constructs would also support the inter-
pretability of automated methods, and provide explanations
to predicted outcomes.

D. Benchmark datasets

A significant necessity is a large multimodal dataset that
researchers can use to develop and benchmark their algo-
rithms. Methods cannot be directly compared because of a
lack of standard, publicly available data. This prevents a
good assessment of the relative strengths and weaknesses
of approaches.

There are some public datasets provided to explore social
interactions of children such as Multimodal Dyadic Behavior
(MMDB) [104], Play Therapy 13 (PT13) [105], and Dyadic
Affect in Multimodal Interaction - Parent to Child (DAMI-
P2C) [106]. While these public datasets have valuable
contribution to the field, the need for a large multimodal
dataset generalizable to unstructured experimental settings,
such as free-play PCIs, persists. Consequently, the iterative
improvement that is common in algorithm development is
significantly hindered.

While a domain-specific multimodal dataset might initially
bias the research towards a specific physical or task-related
setting, a common focus would aid in the consolidation
of tools and standardized measures, as discussed before.
When common, robust tools are available and there is more
confidence in the potential and limitations of applying these
tools, application in broader contexts is more straightforward.

E. Application outside the lab

In the long term, automated analysis of PCIs has many
applications outside the confined experimental settings that
are currently common. The majority of studies rely on fixed
settings, neglecting naturalistic environments and tasks such
as home settings or unstructured free-play scenarios. How-
ever, there is a trade-off between the real-world applicability
of the interaction settings and the quality of the data. As
mentioned in Section III-C, low-quality recording settings
and the variations in the environment, such as lighting
differences, cause challenges for efficient feature extraction
from videos [39].

Naturalistic observation of interactions requires natural-
istic experimental settings, such as free play. While the
less confined setting poses challenges in analyzing more
complex behavior patterns that involve potential others and
the environment, there are still stable interactive behaviors
that can be focused on. For example, Jayaraman et al.
[107] analyze gaze at the parent, including mutual gaze,
by analyzing head-worn cameras. Such measurements, albeit
somewhat obtrusive, can be made over extended periods of
time, thereby providing a more complete picture of a child’s
development.

VI. CONCLUSION

We have discussed the state-of-the-art in automated analy-
sis of nonverbal behavior in parent-child interactions (PCIs).
Increasingly, automated methods provide a low-cost, objec-
tive alternative to manual coding. At the same time, we ob-
serve a trend in full automatically providing a qualitative or
quantitative assessment of higher-order constructs regarding
the interaction quality or development of the child.

Despite significant progress in the robustness of mea-
surement tools, there is comparatively little focus on the
analysis of children. We have identified the lack of public
datasets that can generalize to unstructured PCI settings as
a main obstacle. There is an urgent need for robust, broadly
applicable tools that can aid in the standardization of the
measurement across studies and settings.

Furthermore, there is room for improvement in terms of
the assessment of temporal dyadic behaviors such as leader-
follower dynamics and the investigation of behavior patterns
across modalities. By pursuing a more multimodal approach,
we can increasingly shift from form to function. This shift
will aid in the interpretability of the measurements, and will
bridge the gap between objective coding by algorithms, and
the more subjective assessment of higher-level constructs.
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