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ABSTRACT
Observing a child’s interaction with their parents can provide us
with important information about the child’s cognitive develop-
ment. Nonverbal cues such as joint attention and mutual gaze can
indicate a child’s engagement, and have diagnostic value. Since
manual coding of gaze events during child-parent interactions is
time-consuming and error-prone, there is a need for automatic as-
sessment tools, capable of working with camera recordings without
specialized eye-tracking equipment. There are few studies in this
setting, and accessing naturalistic parent-child videos is difficult. In
this paper, we investigate the feasibility of detecting joint attention
and mutual gaze in videos. We test approach on challenging data of
a child and a parent engaged in free play. By combining multiple off-
the-shelf approaches, we manage to create a system that does not
require much labeling and is flexible to use for view-independent
interaction analysis.1

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding; • Information systems → Video search; • Applied
computing → Psychology.

KEYWORDS
joint attention, mutual gaze, parent-child interaction, cognitive
development
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1 INTRODUCTION
The physical interaction between children and their parents has a
significant impact on a child’s development and well-being [9]. Pos-
itive interactions between parents and their children can improve
children’s self-esteem and social skills [11, 27], as well as children’s
academic achievement and cognitive development [22]. Manual
assessment of such interactions by experts can provide in-depth
insights and indicators about the child’s development. However,
it requires significant time and human resources, and subjective
biases of researchers may affect the results. There is a need for
accurate and scalable approaches to support the experts.

There are a number of cues that are relevant for such analysis,
including mutual gaze, joint attention, touching and body position-
ing, affective cues such as vocalizations and facial expressions. In
this paper, we propose an automatic approach to determine mu-
tual gaze and joint attention during child-parent interactions (see
Figure 1). Joint attention refers to the shared focus of attention
between two individuals on an object or event, and has been shown
to play a crucial role in children’s language development and social
skills [35]. Mutual gaze refers to the visual exchange between two
individuals, where they both look at each other’s faces. It has been
linked to a range of positive outcomes in children such as increased
social competence and empathy [15]. Dynamics of mutual gaze and
joint attention can reflect the quality of the relationship between
parents and children, and provide diagnostics on developmental
problems, such as Autism Spectrum Disorders [17].

Figure 1: Joint attention (left) and mutual gaze (right)
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Dedicated eye tracking systems are typically employed for atten-
tion studies, but such equipment may not be available in all settings
or in legacy datasets. Furthermore, wearable eye trackers reduce the
ecological validity of the interactions. In this paper, we therefore
focus on freely recorded interaction videos, as this is an unobtrusive
way of observation. We propose a novel approach that works in
free parent-child play settings to estimate mutual gaze and joint
attention. By leveraging off-the-shelf machine learning algorithms,
our approach enables large-scale studies that are more accessible
and cost-effective than traditional eye-tracking methods2.

The remainder of the paper is organized as follows. We discuss
related work on detection of nonverbal cues in parent-child interac-
tions, as well as on gaze attention estimation in Section 2. Details of
our method are introduced in Section 3. In Section 4, the video data
and annotations are described. Section 5 contains our experimental
results and discussion. We conclude in Section 6.

2 RELATEDWORK
Researchers have used both manual and automated methods to
analyze parent-child interactions. Manual methods include cod-
ing schemes, observational techniques, and self-report measures.
Coding schemes are based on various behavioral categories, which
can include warmth, control, negativity, positive affect, negative
affect, and communication patterns [1, 7, 18]. Observational tech-
niques systematically observe parent-child interactions and doc-
ument different aspects of the interaction, such as gaze direction,
facial expressions, body language, and tone of voice. They are often
used to capture the emotional tone of parent-child interactions and
how parents and children interact with each other under various
circumstances [10, 21]. Self-report measures involve collecting data
directly from parents and children about their perceptions of their
relationships and interactions. For example, questionnaires have
been used to assess parental warmth or control [33].

2.1 Nonverbal cues for parent-child interaction
Automatic coding methods are used to analyze both verbal and
nonverbal components of human interactions, with the latter being
especially important during infancy and toddlerhood, as they play
a critical role in facilitating parent-child interactions during early
stages of development [8, 13, 26]. Vocal behavior, face expression,
body activity, proxemics, physical appearance, eye gaze, and visual
focus of attention have been widely investigated.

Facial expressions have been analyzed using computer vision, but
infant faces are different compared to adults, and methods trained
with adults perform poorly on infant facial expression recogni-
tion tasks [29]. Similarly, pose detection and body activity analysis
needs to be adopted for infants. Body activity refers to physical
movements and gestures. Body gestures and head movements can
help understand the interaction styles between parents and chil-
dren, and thus provide insights into their relationship dynamics [2].
Proxemics refers to the physical distance between individuals dur-
ing the interaction. Avril et al. [3] used skeletal tracking to monitor
the proximity between an interacting parent and child seated at
a table. Physical appearance refers to the observable visual traits

2Our code is open source: https://github.com/Chelseapt/Joint-Attention-and-Mutual-
Gaze-in-Free-Play.

Mutual gaze

Joint attention

Parent Child

Figure 2: Conceptual overview of our approach. Based on
the estimated visual focus of attention of parent and child,
we estimate their mutual gaze and joint attention over the
entire interaction. Stills are from an interaction not used in
this study. Permission for reproduction granted.

of an individual that are present during social interactions, such
as height, weight, body shape, skin/hair color, clothing style, and
the use of makeup or accessories. The appearance of individuals
and contextual objects can be used to distinguish between various
types of social relationships Liu et al. [20]. Vocal behavior refers
to all aspects of speech, such as the use of vocalizations like fillers,
laughter, and sobbing, as well as pauses and turn-taking in conver-
sation. Nguyen et al. [28] used Bayesian meta-analysis method to
analyze the development of turn-taking in adult-child vocal inter-
actions. As it can be seen from this brief overview, there are plenty
of non-verbal cues for interaction analysis. In this paper, we focus
on two gaze-related indicators.

2.2 Gaze attention estimation
Eye gaze and visual focus of attention (VFOA) refer to the direction
of individuals’ gaze during the interaction. Analyzing gaze behavior
can help understand social dynamics in parent-child interactions
and reveal individual differences [12].

Head pose estimation is important for gaze estimation in free
settings, but we will not focus on this task here. Liu et al. [20] pro-
vides a comprehensive overview of different head pose estimation
techniques, including their advantages and limitations. Piccardi
et al. [32] previously analysed an infant’s gaze patterns for the
focus of attention, using a wearable camera. This decouples the
gaze estimation from head pose estimation, but wearable cameras
are difficult to use, and can cause ecological validity issues.

Zhang et al. [39] provides a list of recent databases for gaze esti-
mation, but these are all focused on frontal face-based estimation,
which is a common scenario in human-computer interaction, where
a person is facing a screen. An example system that works in such
a setting is EyeShopper [5], which is designed to track shoppers’
gaze in surveillance systems. Kodama et al. [14] employed two
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non-overlapping cameras fixed on opposite sides of an audience to
identify the target of attention for multiple individuals.

A technique for estimating and tracking visual focus of attention
during multi-party social interactions is proposed in Massé et al.
[25]. The method uses head movements and Bayesian state-space
modeling to infer VFOA and gaze, suggesting potential applications
in situations where conventional eye-tracking techniques may not
be practical. However, our experimental setting presents a more
challenging task in which individuals can move around freely. Their
eyes are also not always visible, so we cannot rely on precise esti-
mation of the gaze target. As a potential solution, Chong et al. [6]
recently presented an approach for tracking individuals’ VFOA (in
images) without explicitly relying on eye gaze, which is adopted
here for estimating attention distribution. The method works even
when the target is beyond the frame boundaries, and produces a
heat map of VFOA estimations.

For detecting and localizing joint attention, Sumer et al. [34]
proposed a novel method called attention flow, which does not
require the use of face detectors or head pose/gaze estimators and
is based solely on the raw input image. Their data comes from TV
programs, which may not represent real-world social scenes.

Yücel et al. [37] analyzed the focus of attention of adults from
frontal videos in a limited interaction setting, where joint attention
is establishedwith a robot on an object of interest. Because the video
resolution in their setting was too low to track the eyes accurately
-which is a common problem- they have used head pose estimation
to interpolate the gaze, using a bottom-up computational model to
find salient objects in the estimated gaze cone. If the object of focus
can be determined for both participants of a dyadic interaction, joint
attention can be established. Kwon et al. [16] proposed a method
for inferring a common focus of attention based on visual (object
and face detection) and linguistic clues. While our work shares
similarities with this approach, our application domain is more
challenging as people could move around freely. Moreover, we limit
the analysis to only visual cues, as speech capibilities of the infants
in our study are just developing.

Mutual gaze is of particular interest when studying interactions.
In an early work on social interactions, Ba and Odobez [4] detected
mutual gaze based on head pose in meeting scenarios. More recent
approaches with similar goals use deep neural networks that take
detected and cropped head images as input [23, 24]. Zhang et al.
[38] also considered a meeting scenario and used OpenFace and
gaze inputs to detect whom of the other participants was looked
at. When working with video data, the temporal duration of the
interaction and spatial localization of the relevant individuals is a
factor that can be helpful. Palmero et al. [31] focused on identifying
mutual gaze occurrences in face-to-face dyadic interactions using
two calibrated monocular RGB cameras, but, similarly to [4, 38],
cameras are placed in front of each participant, which is a more
restrictive setting than our free play application scenario.

3 METHODOLOGY
3.1 Overview of our approach
Our approach is schematically visualized in Figure 3. Based on a
video of a scene in which the interaction takes place, we detect the
heads of the parent and child, and the objects in the scene. Heat

maps of likely 2D gaze locations in the image are obtained from a
video frame and corresponding head detection of both the parent
and the child. Based on the heat maps, we calculate likelihood scores
for the detected head and object regions. By combining these scores
for the parent and child, we produce a final binary classification for
both joint attention and mutual gaze. The only step that requires
training in our current setup is object detection; off-the-shelf models
are used for other modules.

3.2 Head tracking
We perform head detection on both parents and children, followed
by head tracking. We employ LAEO-Net [23], which uses a head
detector trained as Single Shot Multi-box Detector (SSD, [19]). The
head detector was designed to detect the entirety of the head, not
just the face, which is more robust with cases where the face is
turned away from the camera, and has fewer missed detections
compared to face detection.

We use DeepSort [36] to track and consistently link the head
detections to the parent or the child. DeepSort associates detec-
tions with existing tracks through a combination of position and
appearance information. We use the trained model that was pro-
vided by the authors for a pedestrian tracking scenario, without
making adjustments to the appearance term. As a result, DeepSort
occasionally adds new tracks instead of prolonging existing ones.
This typically happens when changes in the appearance of the head
region are significant during quick changes in the head orientation,
or when head occlusions occur. To perform detailed evaluations,
we provide manual annotation for the tracks as coming from the
parent or the child. This tracking can be automated relatively easily,
for example by relying on the substantial significant age difference
between our subjects or differences in facial identity.

Finally, we interpolate the missing head detections. Since we
operate within an free-play setting, occlusions and turned heads
will lead to missed head detections. Especially for children, more
erratic head movements occasionally lead to detection or tracking
failures. The vast majority of such gaps are short in duration, and
the location differences before and after the gap are modest. We
linearly interpolate gaps less than two seconds (corresponding to
50 or 60 frames in different videos) and with a Euclidean distance
between the head detection centers of less than 45 pixels (with
frames of 960 × 540 pixels).

3.3 Object detection
In this study, we are interested in joint attention to any of the toys
that are present in the scene. To this end, we employ object detection
to locate these toys. We consider 12 object categories, summarized
in Table 2. The top part of the table contains independent toys; the
objects in the lower part of the table are parts of a shape box that
can be independently manipulated. Typically, objects in the latter
category are smaller and are less often visible as they are frequently
inside the shape box. Since the toys are specific for our scene, we
train object detectors for each class. We use YoloV53 as our convo-
lutional neural network (CNN) object detection model. YoloV5 is
widely used and it shows competitive performance without com-
plex parameter tuning during the training process. Specifically, we
3Online available at: https://github.com/ultralytics/yolov5
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Figure 3: Schematic overview of our approach: heads and objects are detected first. Heat maps for 2D gaze attention are estimated
from a frame and the head regions using [6]. We then calculate the visual focus of attention by considering the heat map values
for each region of interest. Finally, we combine the outcomes of parent and child to classify whether there is mutual gaze or
joint attention to an object.

use the default training parameters with SGD optimization with a
weight decay of 0.01 and a momentum of 0.937.

3.4 Joint attention and mutual gaze estimation
As a first step to assess joint attention or mutual gaze between
parent and child, we examine where either is looking at. We obtain
heat maps of the gaze attention for the parent and the child indepen-
dently, using the method presented in [6]. When provided with an
image frame and the region of the head, the algorithm determines
the likelihood that a 2D location in the frame is attended to. Since
depth information is lost, particular attention is paid to salient re-
gions, building on the assumption that we tend to attend to objects.
At the core of this method is a spatio-temporal model based on a
CNN, consisting of two main components: a head feature extractor
and a scene feature extractor, respectively.

The head feature extractor extracts facial regions from video
frames and generates feature vectors related to the head. To take
advantage of the temporal continuity in head movement when
analyzing videos, we use our interpolated head regions instead of
the head detection in [6]. The scene feature extractor extracts scene
regions from video frames and generates feature vectors related
to the gaze. The outputs of these two components are fed into a
multi-layer perceptron (MLP) to predict where a person is looking
in each frame. The output of this process is a gaze likelihood heat
map.

Since we are interested in the visual focus of attention, we com-
bine the heat map with the regions of the objects and the other’s
head. To this end, we combine the heat map values within each
region. We average the heat map values within the region to cal-
culate the VFOA value: VFOA𝑎𝑣𝑔 . To determine whether a region
containing a head or toy is attended to, we apply a threshold on the
VFOA values. For VFOA𝑎𝑣𝑔 , we empirically determined a threshold
of 80 on the normalized heat maps produced from [6].

By finally combining the VFOA of both parent and child, we
obtain a binary indication of mutual gaze and joint attention. For
mutual gaze, the parent should look at the child, and vice versa.
Joint attention at a toy requires that both parent and child look at it,

determined by the VFOA classification. For each object that we con-
sider, we calculate the joint attention.We adopt a multiple-attention
strategy. During manual annotation and automated detection, we
allow parents or children to attend to several targets simultaneously.
We choose this strategy since it proved to be difficult to confidently
identify one target when other toys were close. For joint attention,
our output is therefore a vector of binary indicators for each object.

Note that the processing of the parent’s and child’s VFOA to clas-
sify joint attention and mutual gaze is identical. Strictly speaking,
we therefore do not need to know which head belongs to the parent
and which to the child. It’s only for reporting the performance
separately here that we distinguish between the two.

4 DATA COLLECTION AND ANNOTATION
4.1 Video data description
For analyses, we use parent-child interaction videos from the YOUth
Cohort study [30], which are freely available to researchers after
an ethical approval process4. In each video, a parent and a child of
approximately 10 months old play together with toys of different
sizes in the playground. Parent occasionally introduce a new toy,
but the interactions are relatively unstructured, as the use of specific
toys is not required, and show show significant variation in play.

Recordings in the YOUth Cohort are currently still ongoing.
Each interaction is recorded from four cameras, but we restrict our
analyses to a single overhead view, see Figure 2. We selected 20
interactions from a pool of videos that have been recorded with the
highest spatial resolution (i.e., 960 × 540 pixels). The total length
of 20 videos is around 250 minutes. In 18 videos, the parent is the
mother. In the remaining 2 videos, the father plays with the child.

We have temporally segmented the videos to start when the
experimenter left the scene, and stopped our analyses when the
experimenter returned. The part of the interaction that we analyze
is approximately 12–13 minutes per video. For the manual anno-
tations, we select a frame every 10 seconds. In total, our analyses
cover 1522 frames of which 1486 contain two heads.

4More information at: https://www.uu.nl/en/research/youth-cohort-study
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Table 1: Number of head annotations and detections with
either child or parent, or both. Agreement is the number of
frames in which manual annotation and interpolated detec-
tion overlap.

Type Manual Detected Agreement

Both 1486 1026 990
Child only 2 31 2
Parent only 20 413 3

4.2 Annotation and detection of heads
We provide detailed manual annotations to compare automatic and
manual estimation approaches, as well as to assess accuracy. For
the manual annotation of the heads of parent and child, we used the
DarkLabel 2.4 annotation tool5, which allows for drawing bounding
boxes for a number of pre-specified classes. We distinguished be-
tween the head of the parent and the head of the child, to facilitate
subsequent analyses for each. A single coder annotated all heads,
and a second coder verified the annotations.

For the automated detection, we used [23] and interpolated miss-
ing frames. Interpolation increased parents’ head frames by 2.57%
and children’s head frames by 15.14%. The total number of manually
annotated and automatically detected frames are given in Table 1.
The automated detection misses a number of heads and occasion-
ally generates false positives. From the table, it can be observed
that the majority of the missed head detections are from the child.

Table 2: Number of object annotations and detections. Agree-
ment is the number of frames in which manual annotation
and interpolated detection overlap. Percentage is relative to
the manual annotations.

Type Manual Detected Agreement

Car 1182 1154 1124 (95.09%)
Doll 1173 1034 996 (84.91%)
Switch box 1126 1080 1053 (93.52%)
Flower 988 841 770 (77.94%)
Book 507 438 363 (71.60%)
Baby bottle 203 59 37 (18.23%)

Shape box 700 646 618 (88.29%)
Green star 234 167 143 (61.11%)
Yellow cylinder 246 139 101 (41.06%)
Blue cube 188 110 78 (41.49%)
Red triangle 562 228 188 (33.45%)
Shape box lid 583 248 126 (21.61%)

4.3 Annotation and detection of objects
We annotated all the toys in the 1522 frames used in this study. A
single coder made the annotations, which were checked by a second
coder. To train the YoloV5 model for toy detection, we annotated a
non-overlapping set of 10 videos in the same interaction setting and
5Online available at: https://github.com/darkpgmr/DarkLabel

with the same resolution. Our training set consisted of 3K training
and 1.5K test images.

A summary of the manually labeled and automatically detected
toys appears in Table 2. We consider a manual and detected region
to be in agreement if they have the same label and their Intersection
over Union (IoU) overlap is at least 0.5.

The agreement is generally high for the larger objects but is sig-
nificantly lower for smaller shapes in the shape box and for the baby
bottle. This effect is partly due to the difficulty in detecting partly
occluded small objects, and partly because inaccurate localization
has a larger effect on the IoU for smaller objects.

4.4 Annotation of the visual focus of attention
Two coders independently annotated mutual gaze and joint atten-
tion to specific toys. In each frame, multiple VFOA annotations
per person could be made, for example when toys were in close
proximity or when a person attended to a larger area. Because the
VFOA annotations are based on the head and object detections, the
number of targets is the same for both coders. Moreover, a VFOA
annotation per target is binary.We can therefore calculate the agree-
ment between the two coders as the percentage of matching VFOA
labels per frame, averaged over all frames. For joint attention and
mutual gaze, the inter-annotator agreement (Cohen’s kappa) are
82.93% and 73.51%, respectively.
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Figure 4: Percentage of time attending to each object and
head. Percentages from Coder 1 for parent (blue) and child
(orange).

Since the annotations of the two coders are largely similar, we
focus on Coder 1 in this section. The percentage of frames with
mutual gaze is 1.46%. This is a relatively low number but it can be
understood by observing the percentage of time that parent and
child spend looking at each other. In Figure 4, it becomes clear that
parents look at their child in 26.33% of the time, whereas children
only look at their parents 2.35% of the time. From Figure 4, no large
differences in the VFOA for different toys are observed.
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Table 3: Joint attention and mutual gaze evaluation results (%) for combinations of labeled/detected heads/objects and baselines.
C1/C2: Coders 1 and 2. GT: ground truth, manually labeled. D: automatically detected.

Joint attention

C1 C2 Average

Heads Objects Recall Precision F1 score Recall Precision F1 score F1 score

GT GT 63.52 38.92 46.57 63.65 35.84 44.13 45.35
Baseline_GT 50/50 26.27 14.52 16.77 26.86 13.44 15.92 16.35
Baseline_GT Prior 0.72 5.95 1.24 0.79 5.91 1.36 1.30
GT D 45.11 44.15 41.99 44.17 40.79 39.74 40.87
D GT 46.18 38.41 40.27 47.46 36.24 39.27 39.77
D D 30.42 40.31 33.25 31.19 39.41 33.24 33.25
Baseline_D 50/50 10.32 13.06 10.20 10.52 12.32 10.11 10.16
Baseline_D Prior 0.29 4.80 0.74 0.33 4.73 0.76 0.75

Mutual gaze

C1 C2 Average

Heads Recall Precision F1 score Recall Precision F1 score F1 score

GT 25.00 4.00 6.90 11.54 2.40 3.97 5.44
Baseline_GT 50/50 30.00 1.68 3.18 34.62 2.52 4.70 3.94
D 20.00 4.00 6.67 11.54 3.00 4.76 5.72
Baseline_D 50/50 20.00 1.56 2.89 15.38 1.56 2.83 2.86

5 EXPERIMENT AND RESULTS
In this section, we discuss our baselines and metrics, followed by
the results for joint attention (Section 5.1) and mutual gaze (Sec-
tion 5.2). A discussion appears in Section 5.3 and we present quali-
tative results (Section 5.4) and an analysis at the level of the entire
interaction (Section 5.5), to further understand the potential of our
approach.

Baselines. We are predicting the visual focus of attention for
each object and head, from both the child and the parent perspective.
This corresponds to a series of binary decisions. We conducted two
types of baseline experiments for comparison. The first was based
on a 50% probability of visual focus of attention to a given target
(50/50). Since there are many potential targets, this naive baseline
will be a significant over-representation of the actual amount of
VFOA. To this end, we use a second baseline using a prior (Prior),
incorporating prior knowledge about the proportion of different
objects and heads viewed from the parent’s and the child’s perspec-
tives, respectively.

We divided each baseline experiment into two groups based on
the different input data: manually provided ground truth annota-
tions (GT) and automated detections (D). For the manual annota-
tions (GT), more heads and objects are available. Consequently,
we expect higher recall rates compared to the baseline based on
automated detections (D).

It’s important to note that the results from the prior baseline
experiments were quite poor due to low probabilities of actial VFOA.
For mutual gaze, the results of the prior baseline becomes zero so
we don’t report it. Therefore, in subsequent comparisons, we only
compare our results with the random baseline. For completeness,
we report the evaluation metrics to both coders individually, as
well as the average over both.

Metrics. We utilized recall, precision, and F1 scores as our eval-
uation metrics. For joint attention, we calculated these metrics
individually for each of the 12 objects, obtained from a coder and
from automatically processing with our approach. Then, we aver-
aged the results across all 12 objects to obtain an overall measure of
joint attention performance For each frame, we only consider the
objects that were actually annotated, since the set of visible objects
is possibly different. Moreover, different numbers of objects can
be attended to by each person. F1 scores proved to be effective in
handling the issue of sample imbalance, providing a comprehensive
objective measure of performance. Regarding mutual gaze, we had
a single binary output. Therefore, by iterating through all frames,
we directly obtained the results for recall, precision, and F1 scores.

5.1 Joint attention
Results for joint attention are given in Table 3 (top part). Our ap-
proach was evaluated using manually annotated (GT) heads and
objects, yielding an average F1 score for joint attention classifi-
cation of 45.35%. The difference between the VFOA annotations
of Coder 1 and Coder 2 is also minimal. Although the results are
not as high as we might have wished, we outperform the base-
line (Baseline_GT 50/50) at 16.35%. Compared to the baseline, we
have achieved an improvement of 30% in F1 score, indicating that
the adopted algorithm has a fairly effective performance in joint
attention detection.

When changing the manual labels to automated detections, we
observe that the results are slightly more affected by the detection
of heads than objects. When head detections are used together with
manually annotated objects, the score decreases to 39.77%. This
decrease is predominantly caused by the lack of two detected heads.
In Table 1, we already observed that many heads, especially of
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the child, are not detected automatically. Consequently, we cannot
make joint attention classifications. This is reflected is the much
lower recall.

When we use manually labeled heads but automatically detected
objects, the score compared to ground truth input decreases to
40.87%. This decrease is caused by the missing detections. Still, the
decrease is not dramatic, and mainly because both parent and child
are predominantly looking at the larger objects, see Figure 4. These
objects are also better detected (see Table 2).

When applying our VFOA method using only automatically
detected heads and objects, so using only automated detections, the
score is lowest, at 33.15%. The missing heads and missing object
detections both contribute to the missing VFOA detections, which
consequently lower the detection of mutual attention.

5.2 Mutual gaze
We now proceed to the detection of mutual gaze, which is a binary
classification task. Since our analysis is solely focused on heads,
the presence of objects is not relevant. The F1 score when using
manually annotated heads is 5.44%. This result might seem poor,
which is largely due to the physical setting. When parent and child
look at each other, typically they are facing each other. In this
setting, at least one of the heads cannot be well observed. This has
consequences for the estimated VFOA, as well as for the annotations.
Upon inspection of the annotation, we found that both coders
were conservative indicating VFOA when the face of the parent or
child was not visible. Since this was true for both coders, the inter-
annotator agreement for mutual gaze was good at 73.51%. At the
same time, this consequently lowers the precision for our approach
because VFOA at the other’s face might have been classified for
heads that are significantly turned away from the camera view. Still,
when compared to the baseline, which has an F1 score of 3.94%, our
experimental results show an improvement in accuracy. The small
percentage of actual mutual gaze complicated drawing stronger
conclusions, as is also witnessed by the significantly different recall
values between the two coders.

Interestingly, when using detected heads as input, the score for
mutual gaze actually increases. This is because in the case of using
GT (ground truth) heads, there are more false positives compared
to using D (detected) heads (heads not detected are recorded as no
gaze attention), resulting in a slight overall accuracy increase of
0.28%, bringing it to 5.72%.

5.3 Discussion
Overall, we see that a deterioration in the quantity (more than
quality) of the detections causes the largest drop in VFOA detection,
for both joint attention and mutual gaze. If one of the heads is not
detected, it is not possible to obtain VFOA estimations. Missing
object detections have a smaller effect, especially since the detection
performance for the most common objects is relatively good.

Several factors caused differences between the results of our
automated approach and the manually coded joint attention and
mutual gaze. First, heads were sometimes turned away significantly,
complicating the estimation of the gaze heat map. Second, some
objects were barely visible, for example, due to occlusions by either
a person or other toys. From the manual annotation, we could

make out the presence of the object. But, in certain cases, the object
appeared too small to be reliably detected. This often happened for
the shapes in the shape box. If these are in a person’s hand, it’s
very difficult to detect them automatically. Third, we used only a
single view of a cluttered play area. From the perspective of the
camera, toys would typically be overlapping, thus complicating the
distinction between them. Finally, while the agreement between
the two coders was high, it was not perfect.

The results of joint attention and mutual gaze scores show a
high variation between different videos, for which there are various
reasons. First, each interaction has a different distribution of joint
attention and mutual gaze, causing different baselines for both
measures. Second, there is a significant difference in the seating
arrangement. Both parent and child could be standing, crawling,
or sitting. Not every situation allows for a good assessment of the
visual focus of attention. Third, some videos showed more dynamic
interactions, with more frequent switching of attention for different
toys, the parent, and other targets in the environment. Especially
when parent and child would observe an area with toys, rather
than focusing on a specific toy, we observed lower inter-annotator
agreement and lower agreement with the automatically estimated
VFOA.

Mutual gaze

Joint attention

Mutual gaze

Joint attention

Figure 5: Joint attention (green) and mutual gaze (orange) dis-
tribution in two videos show the differences across sessions.

5.4 Qualitative analysis
We have analyzed our VFOA detection approach on a collection of
1522 frames from 20 videos. Our analyses have provided insights
into the performance of different components. Here, we addition-
ally demonstrate how our approach can be used to understand the
nature of parent-child interactions. To this end, we have selected
two out of the 20 videos. We summarize the joint attention and
mutual gaze annotated by Coder 1 for these videos over time in Fig-
ure 5. Similar visualizations could be produced based on automatic
detections of heads and objects. These visualizations would have a
higher temporal resolution but would be less accurate due to the
missing detections.

For the first video in Figure 5 (top), we notice multiple periods
of joint attention. In the first period, the child is exploring the toys.
In the second period, roughly halfway into the interaction, the
parent and the child play with the shape box. In the final minutes
of the interaction, the parent reads a soft book to the child. The
joint attention is mainly on this book. There are also two periods
in which there is mutual gaze. In the first period, the parent holds
up the toy and proposes how they could play with it. The second
period is marked by the parent explaining that she will read a book.

In the second video in Figure 5 (bottom), we didn’t observe
any mutual gaze. The child is predominantly focused on the toys.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICMI ’23 Companion, October 9–13, 2023, Paris, France Peitong Li, Hui Lu, Ronald Poppe, and Albert Ali Salah

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Similarly, the parent follows the actions of the child. We see roughly
the same periods of increased joint attention as in the first video.
These correspond to the phases of initial exploration, playing with
the shape box, and reading a book.

Here, we didn’t distinguish between the joint attention for the
various objects. Moreover, we didn’t look at the timing of the indi-
vidual visual focus of attention. We expect that a more fine-grained
temporal analysis could reveal patterns of exploration. Moreover,
we expect such analyses will allow for the investigation of leading
and following, for example when a parent shows how a toy can be
used.

Figure 6: Correlation between the joint attention predictions
based on ground truth head and object annotations, and the
visual focus of attention annotations of Coder 1 (C1, in red)
and Coder 2 (C2, in blue), respectively. Trendlines are super-
imposed.

5.5 Whole-interaction analysis
Finally, we explore the potential of our automated joint attention
estimation at the level of an entire interaction. While predictions
at the frame level can be inaccurate, when there is no systematic
bias, these could be averaged out over an entire interaction and still
yield accurate estimates of the overall amount of joint attention.

To investigate whether our method can be used to predict joint
attention over an entire interaction, we have aggregated the joint
attention values over all objects and frames as the average number
of objects that is attended to by both parent and child per frame. In
Figure 6, we visualize these joint attention predictions in relation
to the VFOA annotations of Coder 1 and Coder 2, respectively.

We observe that the predictions follow the annotations. The
Pearson correlation between the predictions and the annotations
of both coders is (marginally) significant, respectively r(19) = 0.410,
p = 0.051 and r(19) = 0.447, p = 0.037 for C1 and C2.

The trendlines of the two coders are similar, with slightly higher
VFOA scores for C1. The trendlines for C1 and C2, respectively,
are 0.300 + 0.461𝑥 and 0.331 + 0.447𝑥 , with the 𝑥 the annotated
average number of objects per frame that receive joint attention.
We observe that the correlation is mainly skewed by one interac-
tion with a relatively high predicted score (81.58%), whereas the

averaged annotated VFOA of all objects is markedly lower with
35.53% and 32.89% for C1 and C2, respectively. In this interaction,
the father looks down in a significant part of the interaction. The
attention heat map is more diffuse due to the limited visibility of
the face. Therefore, the object that the child interacts with typically
is predicted as being looked at by the father. Instead, both coders
have predominantly annotated gaze at the child’s face.

The correlation between predictions and ground truth shows
that our method might be suitable for screening of interactions that
contain a lot or, conversely, little joint attention. As such, it can be
a proxy to understand the quality or type of interaction.

6 CONCLUSIONS
In this paper, we propose an automatic method to detect joint
attention andmutual gaze during free play parent-child interactions.
Our approach combines head detection, object detection, and visual
focus of attention classification. Our experiments are conducted on
naturalistic parent-child videos, which do not require specialized
eye-tracking equipment. We manually annotate and analyze 250
minutes of interaction videos to evaluate our approach and compare
our results with those obtained from automated face and object
detection methods. Finally, we offer qualitative insights into how
continuously measured visual focus of attention can improve our
understanding of parent-child interactions. Our approach requires
minimal training and overcomes some of the challenges of finding
and annotating large amounts of interaction data.

Our work also has some limitations. In terms of the setting, sig-
nificant head movements make it difficult to precisely estimate the
gaze heat map. Additionally, detecting small objects (like shapes
within the shape box) is seen to be unreliable using automated
methods. Regarding our approach, using a single-view camera in-
troduces difficulties due to toys overlapping with each other. In
future work, we plan to technically improve the VFOA prediction
by including multiple viewpoints and actively take into account
the confidence of the head detection in promoting the best view.
In addition, we expect that leveraging temporal continuity will
also aid in improving the predictions. Finally, we plan to combine
the VFOA estimations with a notion of human action, in particular
regarding object use. We expect that these advances help us to more
thoroughly measure the nature of parent-child interactions.
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