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Abstract— This paper explores gendered toy preference in
parent-child interactions. We focus on free-play, which allows
for unique natural and dynamic interactions in which toy pref-
erences might be less constrained by the experimental setting.
We operationalize toy preference through the child’s visual
focus of attention (VFOA). Our analyses of 25 interactions of
12-13 minutes each reveal statistically significant differences
between boys and girls in terms of time spent looking at
a doll and a jump box. We then investigate whether these
effects can also be obtained through automated analyses of
the video data. To this end, we leverage an automated VFOA
algorithm to predict which toys are attended to. Our automatic
algorithm reveals similar patterns as when using manual
annotations, albeit with less statistical power. This advancement
holds promise for developmental research by providing efficient
and objective assessments of children’s interactions, potentially
guiding early developmental interventions and informing strate-
gies to mitigate gender bias in play environments12.

I. INTRODUCTION

The automated analysis of parent-child interactions (PCIs)
has the potential to speed-up research into a wealth of verbal
and nonverbal individual and dyadic behaviors and their rela-
tion to various developmental constructs [1]. Especially free-
play parent-child interactions are rich in terms of affective
and social signals [2]. In this paper, we analyze free-play
scenarios where toys play an essential role. When children
are allowed to freely choose which toys to play with, and how
to play with them, we can investigate how a child engages
with certain toys. For example, a child might be attracted to
specific types of toys, or engage in specific types of play,
either alone or with a parent. Such play preferences might
aid in forecasting the child’s development [3].

Toy play is highly gendered, because it is characterized by
large average differences across groups of girls and boys [4].
The large body of research into gendered toy preference
builds on either self- or child-reported preferences, or ob-
servations in controlled experiments. Furthermore, previous
research has predominantly considered individual toy pref-
erences. We argue that a setting in which a child can play
with, or is stimulated by, a peer, parent, or caregiver, might
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invoke a shift in toy preference. We hypothesize that such
an effect might occur because of different expectations on
the one hand, and different toy affordances in terms of co-
operative play on the other [5], [6]. Understanding these early
patterns through automated analyses, especially in naturalis-
tic free-play scenarios, can thus provide critical insights into
developmental processes and potential early interventions.
For instance, early detection of stereotyped behaviors could
inform targeted approaches aimed at promoting gender eq-
uity and diversified developmental opportunities [7], [8].

In this paper, we depart from controlled experimental
setting paradigms to focus on free-play, and explore toy use
via camera-based automated approaches. Our contributions:

1) We explore children’s gendered toy preference in nat-
ural and highly dynamic free-play interactions with a
parent through the analysis of visual focus of attention.

2) We develop an automated processing pipeline to esti-
mate visual focus of attention from two views, and to
determine joint attention of parent and child towards
the various toys.

3) Our analyses provide insights into the potential of ex-
amining gendered toy preference in free-play settings
and highlights the challenges.

The remainder of this paper is structured as follows. We
first discuss related work. Next, we investigate gendered toy
preference from manually annotated visual focus of attention
labels in Section III. We then turn to automated analysis
in Section IV, and compare and discuss our findings in
Section V. We conclude in Section VI.

II. RELATED WORK

A. Gendered toy preference

The importance of play preferences in child development
is well-documented. Studies have highlighted how different
types of play, including toy play, contribute to cognitive,
motor, and emotional development. Through play, children
develop key skills like problem-solving, social interaction,
and emotional resilience [9]. Toy preferences among chil-
dren often exhibit significant gender3 differences [10] that
reflect broader societal gender norms [4]. Girls’ toys are
often associated with physical attractiveness, nurturance, and
domestic skill, whereas boys’ toys are rated as violent,
competitive, and somewhat dangerous [11], [12]. Infants
begin to exhibit distinct preferences for gender-associated
toys by the age of 9 months, though such preferences are

3The term ‘gender’ is predominantly used to denote biological sex.
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Fig. 1. Overview of our automated approach. We use gaze estimation and object detection to determine the visual focus of attention of both child and
parent. We combine both to detect joint attention. Then we aggregate detections over an entire interaction to investigate gendered toy preference.

absent at 5 months [13], [14]. Kung et al. link early gender-
typed play preferences to later gender-typed occupational
interests, suggesting that the toys children prefer in preschool
can predict their occupational interests a decade later [15].
Recent studies suggest these early preferences also relate to
basic visual attention patterns. Infants tend to focus longer
on objects that appear larger and more visually prominent
during play [16].

It is important to examine social context in assessing
gender-typed play preferences. The presence of a parent or
teacher has been shown to magnify the level of gender-
typed play in some studies but not others [13], [12], [2].
In addition to overall level differences between boys and
girls, toy play has another gendered component, as it is also
characterized by beliefs about the appropriateness of toys for
each gender [17], [18].

Play environments allow infants more independence in
selecting and engaging with toys, than the predominantly
used semi-structured toy-play settings. In the latter, parents
often guide the infants towards specific toys [19]. When
parents differ in their joint attention depending on the gender-
appropriateness of the toy, this could be considered as a
subtle gender socialization practice that reinforces gender-
typical toy play in children [20]. We argue that investigating
gendered toy preferences in a free-play interactive setting
with a parent could therefore reveal different insights com-
pared to a setting in which only the child appears.

B. Automated analysis of VFOA

Automated analysis of visual focus of attention (VFOA) in
parent-child interactions is crucial for understanding social
communication skills, especially in children at risk for de-
velopmental disorders [21]. Early approaches to infant gaze
estimation during parent-infant interaction using cameras
focused on whether the infant’s gaze was on the parent
or not [22]. Free interactions were challenging to observe
from a single camera, as a clear view of the faces of the
interactants was necessary to observe joint attention. Ceiling-
mounted depth cameras [23], head-mounted cameras [24],
[25], and eye-tracking glasses [26] were used to overcome
such difficulties.

Recent advances in computer vision algorithms enable
powerful analysis capabilities. Typically, such algorithms

first detect head locations, and then infer gaze targets based
on the analyzed orientation of the head and the saliency
of the image [27], [28]. By linking gaze to a predefined
set of targets, including faces of others, visual focus of
attention is estimated. When the VFOA of multiple people
is considered, social attention patterns such as joint attention
can be leveraged [29]. In the context of PCIs, Fraile et al.
used a single viewpoint to investigate gaze patterns, but
the interactants were sitting across each other at a table,
which helped with constraining the poses [30]. Li et al.
investigated a free-play scenario and leveraged [27] to detect
joint attention and mutual gaze between the parent and the
child [31]. Given the challenging nature of the data, a limited
accuracy was achieved. In this paper, we show that using
multiple camera viewpoints improves the analysis.

For the automated study of VFOA in PCIs, there are
several datasets available. The recently introduced ChildPlay
dataset [32] contains 400+ parent-child interactions, and
comes with gaze annotations. Despite the tremendous value
of such data for the development of automated analysis, we
refrain from using ChildPlay because the lack of systematic
involvement of a fixed set of toys. Instead, we focus on
the YOUth Cohort dataset [33] that consists of 2000+ inter-
actions in the same physical environment. For the purpose
of the current study, we produced and make available gaze
annotations for a subset of the data.

III. GENDERED TOY PREFERENCE FROM LABELED DATA

First, we focus on the potential of investigating a child’s
gendered toy preference in free-play parent-child interac-
tions, by considering annotated visual focus of attention. We
discuss the data and annotations used in our experiments, be-
fore presenting the results of our analyses. Our experiments
with automatically estimated VFOA appear in Section IV.

A. Data and annotation

For our analyses, we use parent-child interaction videos
from the YOUth Cohort study [33], which are accessible
to researchers following an ethical approval process. These
videos are recorded in a confined space (see Figure 5) and
feature a parent and a child, approximately 10-12 months
old, playing with various-sized toys on the floor. The in-
teractions are relatively unstructured. Parents are instructed



beforehand to introduce the shape sorter and a textile book
after some time. But when and how to play with the toys
is not mandated, leading to significant variability in play
behaviors. Each interaction is captured from four camera
angles, but our analyses are limited to two views from
opposing perspectives.

TABLE I
NUMBER OF HEAD ANNOTATIONS IN DIFFERENT CAMERA VIEWS.

Input Parent Child 2 heads

view1 1,841 1,819 1,791
view2 1,845 1,842 1,818
2 views 1,874 1,874 1,874

Selected recordings. We selected 25 interactions from a
pool of videos (i.e., 960 × 540 pixels). Of these, 15 videos
feature a boy, and in the remaining 10, a girl is interacting
with the parent. Of the parents, two are fathers and the
remaining 23 are mothers. Due to this skewed distribution,
we will not investigate the gender of the parent in this paper.

We have temporally cropped the videos to begin when
the experimenter exits the scene, leaving the parent and the
child to play. The approximate duration is 12-13 minutes
per video. The number of interactions considered is modest,
which makes our statistical analyses conservative. However,
the analysis is dense: the amount of analyzed footage spans
315 minutes (5:15 hours).

TABLE II
NUMBER OF FRAMES THE CHILD SPENT LOOKING AT EACH OF THE

TOYS AND THE PERCENTAGE OF TIME SPENT LOOKING AT EACH TOY

FOR BOYS AND GIRLS, SEPARATELY.

Toy Count Boys Girls

doll 1746 6.13% 15.80%
car 1683 5.15% 5.72%
jump box 1726 35.50% 18.15%
shape sorter 1101 38.40% 38.97%
flower 1599 8.39% 5.40%
book 755 29.12% 38.57%
baby bottle 1065 2.78% 13.81%
green star 365 17.54% 24.34%
yellow cylinder 479 21.71% 21.65%
blue cube 371 19.32% 29.33%
pink triangle 400 12.39% 21.42%
shape sorter lid 999 28.99% 42.76%

Annotation. For manual annotation, we sampled a frame
every 10 seconds. We annotated bounding boxes for all
visible toys and heads using the DarkLabel 2.4 tool4. We
differentiated between the heads of parents and children to
aid subsequent analyses. A single coder annotated all heads
and objects across two camera views.

In total, 1,874 frames are used in our study, containing at
least one visible head of a child and one of a parent across
both views. The distribution of the heads within these frames
is detailed in Table I. The use of two camera views allows

4https://github.com/darkpgmr/DarkLabel

us to process more frames than either single view alone,
allowing for a more comprehensive analysis.

Given the inherent ambiguity in determining VFOA due to
(partial) occlusions of faces and toys, low resolution of the
face in the image, or proximity of objects, VFOA annotations
are somewhat subjective. To understand the difficulty of
the annotation task, two coders independently annotated the
VFOA for children and parents, for all toys. Annotations
were based on simultaneous observation of the two camera
views. This approach allowed annotators to accurately deter-
mine which toys were being focused on by either the parent
or the child. Multiple VFOA attentions were allowed per
person in each frame. This strategy is more applicable given
the numerous challenging scenarios we encounter, where it
becomes difficult to ascertain the specific object of attention.
For instance, toys are commonly positioned close to each
other, an individual’s attention can span a larger area, and the
line of sight of either parent or child can be obstructed. The
modest inter-annotator agreement, measured using Cohen’s
kappa, yielded results of 63.57% (F1 score 0.671) for the
VFOA of the children and 74.15% (F1 score 0.777) for the
parent perspective, indicating that our task is challenging.

We consider joint attention to each toy when both child
and parent attend to the toy at a specific moment. Joint atten-
tion represents a crucial social-cognitive milestone, revealing
a child’s developing interest in shared activities and social
referencing. [34], [35]. We simply calculate joint attention as
the binary AND of the VFOA of both interactants. Inter-rater
agreement measured using Cohen’s kappa for joint attention
is 78.24% (F1 score 0.741).

Annotation summary. Table II presents an overview
of the attention given to various toys by boys and girls.
Green star, yellow cylinder, blue cube, and pink triangle are
the shapes for the shape sorter. Each toy’s visibility count
indicates how often it was marked across 1,874 frames. We
observe that there is significant variation in VFOA between
toys. For example, the jump box, shape sorter, book, and
the lid of the shape sorter are attended to more, especially
in comparison to the doll, car, flower, and baby bottle. The
occurrences of some toys are correlated. For example, when
the lid is on the shape sorter, VFOA is typically annotated
for both, or neither. When a shape is about to be placed in
the shape sorter, a similar situation occurs. This also happens
when the baby bottle is positioned at the doll’s mouth.

B. Analysis and results

We first investigate whether we can observe known gen-
dered toy patterns in free-play settings. To this end, we
investigate a potential difference in VFOA for different toys
by comparing the average VFOA between the PCIs with boys
(15 subjects) to PCIs with girls (10 subjects). Per interaction,
we calculate the average VFOA to each toy by dividing the
number of frames spent looking at a toy by the number
of frames the toy is visible. Because a child can attend to
multiple (or no) toys at each moment, and toys are not always
visible, percentages do not necessarily sum up to 100%.
Average VFOA is summarized in Figure 2.



Fig. 2. Average VFOA (%) for each toy for boys (blue) and girls (pink),
obtained via manual annotation.

Figure 2 reveals differences in VFOA between boys and
girls. Overall, girls spent more time looking at the toys. This
effect is mainly because boys more often tried to move out
of the play area, consequently not focusing on toys.

Difference between toys. The toys in the YOUth Cohort
dataset have not been selected to be gender-specific, nor
is preference data reported. To this end, our investigations
are exploratory and we will align with patterns found in
literature. For several individual toys, we notice gender
differences. Girls (15.80%) show a notably higher attention
ratio for the doll compared to boys (6.13%). Dolls are
traditionally more often preferred by girls [17], [36], which
aligns with the data. A similar observation can be made for
the baby bottle, which is more often attended to by girls
(13.81%) than boys (2.78%). In many cases, the baby bottle
was used together with the doll. In several occasions, children
put the baby bottle in their own mouths, but there would
typically not be gaze on the object in these situations.

Boys demonstrated a substantially higher average VFOA
(35.50%) for the jump box compared to girls (18.15%). The
jump box might be associated with more active play, which
can be more aligned with traditional boy play patterns [11].
The attention ratios for the car, generally found to be more
preferred by boys, were quite similar between boys and girls.
Overall, the VFOA of the car is low. Over all videos, we
noticed very little active play with it. None of the children
were actively pushing or moving the car, irrespective of the
gender of the child.

Apart from its lid, the average VFOA for the shape sorter
and its parts was relatively similar for boys and girls. One
reason could be that parents are instructed beforehand to
introduce the shape sorter at some time and play with it.
This might have caused a certain persistence for the parent
in engaging with the toy, while the child might not have
directly preferred it over other toys. A similar observation
can be made for the textile book. Parents were instructed to
take out the toy at some point. Many parents then put the
child on their laps. Frequently, the child then tried to move
away, towards a more preferred toy.

Statistical analysis. We conducted a series of t-tests
between the average VFOA for boys and girls for each
toy. From all comparisons, we only observed a statistically

significant effect for the doll (t(23) = −2.651, p = 0.022)
and jump box (t(23) = 3.437, p = 0.002). The same effect
is observed in joint attention, with t(23) = −2.601, p =
0.0233 for the doll and t(23) = 2.650, p = 0.0145 for
the jump box. Given that we consider 12 toys separately,
the accepted approach is to apply a Bonferroni correction
to the initial α = 0.05, reducing our significance level to
αB = 0.05/12 ≈ 0.0042. After accounting for multiple
comparisons, only the difference in the jump box data
remains statistically significant.

Overall, the data suggest that some traditional gendered
preferences in toy preference continue to be evident, with
girls showing a higher interest in dolls and boys showing
a stronger preference for more active play toys such as the
jump box. However, a pronounced preferrence was not found
for the majority of toys. While several co-founding factors
have been mentioned previously, it is of note that no gender
differences were found for the car. This is at variance with
the literature, where there is broad consensus that cars are
generally preferred by boys [4]. The softer appearance and
color could have reduced the appeal for boys [14].

C. Qualitative analysis

The dynamic and varied nature of free-play is reflected in
the VFOA. Over an interaction, the attention of both child
and parent changes rapidly. We show the annotated VFOA
over time for all considered interactions in Figure 3. For
viewing considerations, we have merged several toys into a
single category.

Fig. 3. Visualization of annotated VFOA for combined toy categories
for all 25 videos, ordered by gender. Black is VFOA to the head of the
parent, white is no VFOA to any of the considered targets. When VFOA
covered two categories simultaneously, one was chosen randomly.

When comparing the VFOA patterns of these videos,
several observations can be made. First, we observe that the
shape sorter is introduced at around one third of the time



in all interactions. For most interactions, we observe a pro-
longed episode of focused interaction. Similarly, we observe
that the textile book is introduced around two thirds into
the interaction in both videos. While parents were instructed
to read the book with their children, several interactions
show the child looking at other objects, or outside the scene.
From these visualizations, we can quickly verify that parents
have followed the instructions, but that the effect of the
introduction of the toys varied.

Especially near the start and end of the session, children
were free to choose which toy to play with, consequently
revealing a stronger toy preference. These observations em-
phasize the importance of observing play behavior in un-
constrained settings. Despite gender patterns, the differences
between individual subjects are large. For example, three
girls focus predominantly on the doll near the end of the
interaction. None of the boys play with the doll in the final
phase. However, three boys appear to interact with the car.

IV. AUTOMATED ANALYSIS OF GENDERED TOY
PREFERENCE

We now turn to the automated analysis of gendered toy
preference, to investigate whether our gendered toy prefer-
ence findings are replicated. We describe the methodology
and results of our automated pipeline. We then look at VFOA
aggregated over an interaction in Section IV-E.

A. Automated analysis methodology

Figure 1 schematically describes our processing pipeline.
We first discuss the estimation of VFOA for a single view,
before detailing how we process multiple views. Finally, we
assess joint attention by fusing the VFOA data of both parent
and child, focusing on simultaneous gaze towards the same
toy. Our approach thus not only provides an assessment
of individual attention, but also captures moments of joint
attention, essential for understanding interactive behaviors.

VFOA estimation. We generate gaze attention heatmaps
for the parent and child independently using the method
in [27], based on the annotated head locations. This method
takes an image frame and the region of the head represented
as a bounding box. The algorithm then assesses the prob-
ability that a specific 2D location within the frame is the
focus of attention. Given the absence of depth information,
the emphasis is placed on salient regions, based on the
assumption that attention is often directed towards objects
that stand out from their environment [34].

The method employs a CNN with two primary compo-
nents: a head feature extractor and a scene feature extractor.
The head feature extractor isolates and analyzes facial re-
gions within video frames to produce feature vectors. The
scene feature extractor processes different elements of the
scene relevant to gaze direction, generating corresponding
feature vectors. These vectors are input into a Multi-Layer
Perceptron (MLP) that predicts the focus of gaze in each
frame, resulting in a heatmap of gaze likelihood.

Our free-play setting includes several toys that the child
(or the parent) can play with (see Figure 1). To determine

the VFOA to each toy and the head of the interaction
partner (parent or child), we integrate the gaze heatmaps
with the annotations of the corresponding toy bounding
boxes, following [31]. Specifically, we calculate the average
heatmap values within each region, denoted by V FOAavg,
and also record the maximum value within each region,
denoted by V FOAmax. While the former feature is more
distinctive when the entire object is attended to, the latter
might be more informative when objects cover a larger area
in the frame. Given that the toys in our data vary significantly
in size, we opt to use both features. This approach improves
upon previous methods by using an MLP to dynamically
model attention outcomes.

Multi-view estimation. By incorporating multiple camera
views, we enhance the accuracy of VFOA assessments and
can account for missing head and toy observations and
potentially unfavorable viewing angles. For each view and
toy, we calculate V FOAavg and V FOAmax for both parent
and child. For an interactant, the attention representation is
a vector of N + 1 dimensions, where N is the number of
objects of interests (i.e., toys) in the scene, and +1 is for the
head of the other person. Since our setting contains 12 toys,
with two interactants and two views, each moment in our data
results in 52-dimensional binary feature vectors, indicating
attention of both parties to toys and each other.

We set feature values to zero when an object is absent,
corresponding to a VFOA probability of zero. Given the
challenge of isolating a single target when other objects are
nearby, we employ a multi-attention strategy. This approach
allows both parents and children to potentially attend to mul-
tiple targets simultaneously, enabling multiple dimensions of
the label vector to be set to one.

Since we have a classification task with limited input
dimensionality and a restricted amount of training data,
a simple MLP is used for multi-class classification. The
network has a single hidden layer with 20 neurons. This
model is capable of learning correlations between objects.
When two objects are in close proximity, there may be biases
about which object is typically attended to. For example,
when a small shape toy is inserted into a shape sorter, the
VFOA is typically on the shape. Since the regions of shape
and shape sorter overlap, both V FOAavg and V FOAmax
of these two objects will be high. In this case, the MLP
can learn to prioritize the smaller shape.The MLP directly
outputs the predicted VFOA results.

Joint attention estimation. Joint attention at a toy re-
quires that both parent and child look at it. By combining the
VFOA of both parent and child, we obtain a binary indication
of joint attention, calculated for each object that we consider.
The processing of the parent’s and child’s VFOA is identical.

B. Automated experiment setup

We developed the automated pipeline detailed in Sec-
tion IV-A. Our experimentation follows a leave-one-session-
out strategy. The child and parent MLPs to determine VFOA
for each toy and face are trained on the data of 24 PCIs,



whereas the data of the final recording is used for testing.
Results are averaged over all 25 test sessions.

Baseline. To better understand the merits of our automated
pipeline quantitatively, we introduce two baselines. Both use
heuristics to predict the visual focus of attention on each
toy and head from the perspectives of both the child and
the parent, involving a series of binary decisions. The first
baseline (50-50) assumes a naive 50% probability that the
visual focus is on any given target. A 50% probability is
high, and ignores differences in the prior distribution of
VFOA over the various toys. As an alternative, we introduce
a second baseline (prior) that predicts for each detected toy
in the test recording, for both parent and child, the VFOA
with a probability that is calculated from the training set.
In this baseline, the number of estimated attended targets is
typically much lower compared to the 50-50 baseline.

Measures. We employ precision, recall, and F1 score as
our evaluation measures. The F1 score is particularly effec-
tive in addressing sample imbalance, providing an objective
performance measure. For parent and child, we compute
these measures for each of the 12 toys and one head. We
then average the results across all 13 targets. Only toys and
heads that were annotated are considered, as the visibility
and number of objects varies per frame.

TABLE III
PERFORMANCE OF AUTOMATED VFOA AND JOINT ATTENTION

DETECTION ACROSS VARIOUS COMPUTATIONAL SETTINGS.

Setting Perspective Precision Recall F1 score

2 views
parent 45.92% 34.76% 38.23%
child 48.57% 35.01% 40.04%
joint attention 49.05% 32.35% 38.16%

view1
parent 29.63% 11.99% 15.39%
child 38.33% 14.96% 20.34%
joint attention 40.39% 7.35% 10.97%

view2
parent 50.22% 24.29% 28.89%
child 42.27% 23.76% 28.55%
joint attention 41.81% 16.82% 21.64%

baseline (50/50)
parent 16.95% 49.48% 23.67%
child 15.17% 46.41% 21.19%
joint attention 13.43% 22.94% 15.58%

baseline (prior)
parent 15.71% 17.89% 16.66%
child 16.73% 19.94% 18.11%
joint attention 12.27% 5.28% 7.21%

C. Automated results

Multi vs. single-view. From Table III, we observe that
the multi-view setup yields higher performance, compared to
both single-view scenarios. The multi-view setting improves
the F1 score by 20-23% and 10-12% for the first and second
view, respectively. Using two views partly mitigates the
shortcomings of single views and underscores the value of
incorporating multiple perspectives in VFOA detection tasks.
Still, both recall and precision values are modest. From the
inter-rater reliability analyses, we already concluded that
VFOA estimation is not a trivial task.

Compared to the 50-50 baseline, the multi-view’s F1
score enhancement is noteworthy. The multi-view exceeds
by approximately 14.56% and 18.85% for parent and child
perspectives, respectively. The performance of the prior base-
line experiments is suboptimal due to the low probabilities
of actual visual focus of attention (VFOA).

Parent vs. child. There is a difference in automated
VFOA classification performance between parent and child.
The child perspective consistently yields a higher precision
than the parent perspective across the single- and multi-view
settings. This may suggest that the children’s interactions
with their environment, possibly more concentrated and
less obstructed, are easier to track, or that the patterns of
children’s engagement with objects are more distinctly cap-
tured due to their more predictable behavior. An alternative
explanation lies in the relative position of the child in the
play space. Typically, the child is closer to the toys, with
larger viewing angles between toys. In contrast, the parent
is more often situated at the side of the play area, with both
toys and child in roughly the same viewing direction.

Fig. 4. Average VFOA (%) for each toy for boys (blue) and girls (pink),
obtained from the automated detection using the multi-view setting.

Toys. We show the automatically assessed VFOA per toy
using the multi-view setting in Figure 4. When compared
to Figure 2, a couple of observations can be made. First,
detected VFOA is, on average, lower than manually anno-
tated VFOA. We discussed before that the lower recall of
the automated detection is the main cause. Especially for
the smaller objects, such as the shapes of the shape sorter,
the car, and the baby bottle, we observe much lower ratios.
Small inaccuracies of the gaze heatmap can have a larger
effect on these small objects, since the effects cannot be
averaged over larger areas. Still, the effects observed with
manual annotations, such as girls’ preference for the doll
and boys’ preference for the jump box are apparent.

Statistical analysis. To understand whether the gender
differences found when using annotated data remain when
applying automated analyses, we perform t-tests between the
VFOA estimated for boys and girls, for the doll and jump
box only. Differences were statistically significantly different
for the jump box (t(23) = 2.175, p = 0.0416) but not the
doll (t(23) = −1.846, p = 0.0926).

Joint attention. Results for joint attention also appear in
Table III. Again, joint attention benefits from the multi-view



setup. Regarding differences between boys and girls in joint
attention for the doll and jump box, we conducted two t-tests.
Neither of those showed a statistically significant difference
for gender, t(23) = −1.613, p = 0.178 and t(23) = 1.503,
p = 0.176 for the doll and jump box, respectively.

Fig. 5. Example visualizations of child VFOA predictions on a video
not used in the experiment (printing permitted). Objects and mother’s head
are potential child VFOA targets. Green: correct prediction, Red: Incorrectly
predicted to be attended, Yellow: Missed detection.

D. Visualization of results

To better understand how the automated VFOA estima-
tions relate to manual annotations, we visualize example
outputs side-by-side in Figure 5. We observe that the VFOA
predictions appear in the line of sight, with incorrect predic-
tions caused by depth ambiguities and the limited resolution
to analyze eye gaze. We also observe mismatches between
the number of annotated and predicted targets, which signif-
icantly affects the performance measures. VFOA annotation
is often based on the assumption that manipulation of an
object requires and draws attention. However, the automated
VFOA predictions have no readily available information
about object manipulation.

E. Aggregation over the entire interaction

Our automated analyses were at the frame level but often,
we are interested in statistics aggregated over an interaction.
Here, we investigate the relation between annotated and
automatically predicted VFOA over the entire interaction.

Fig. 6. Correlation of manually annotated and automatically predicted
VFOA (red for doll and blue dashed for jump box).

VFOA and gendered toy preference. We investigate
whether gender differences found for the jump box and doll
are replicated with automated measurements. For each toy,
we calculated the VFOA ratio based on both annotated and
detected results. This approach provided us with 25 samples
per toy, allowing us to compute trendlines (see Figure 6).

The Pearson correlation between the predictions and the
annotations of doll and jump box are r(23) = 0.635,

p < 0.001 and r(23) = 0.573, p = 0.003, respectively.
Specifically, the trendlines for children’s attention to the
doll and jump box were found to be y = 0.389x + 0.013
and y = 0.366x + 0.121, respectively. The slopes reflect
the lower recall values for automated VFOA estimations.
We also conducted a t-test on the automatically estimated
VFOA between boys and girls, for each toy. The results
revealed a statistically significant effect for the jump box,
with t(23) = 2.175, p = 0.042, but not the doll (t(23) =
−1.846, p = 0.093). When compensating for multiple tests,
none of the differences are statistically significant.

The correlation between our automated results and the
ground truth highlights the merits of our automated approach
in estimating VFOA. However, the effects found between
boys are girls are weaker from a statistical perspective.

Joint attention and gendered toy preference. We per-
formed similar analyses for joint attention on the jump box
and doll. Again, the measures are correlated. Two t-tests
between the joint attention for boys and girls did not reveal a
statistically significant effect for either doll (t(23) = −1.613,
p = 0.178) or jump box (t(23) = 1.503, p = 0.176).

V. DISCUSSION

Structured vs. free-play. Departing from the predominant
controlled research into gendered toy preference [4], we
have used a free-play setting. While no ground truth about
the children’s preferences was available, our findings largely
align with the literature. Our findings indicate that children’s
gaze was predominantly directed towards the shape sorter
and book, which aligns with the structured process of the
experimental design. This process seems to have effectively
channeled the children’s attention, suggesting that the order
and nature of activities can significantly shape VFOA.

Gendered toy preference. We observed different amounts
of VFOA for several toys. VFOA towards the doll and jump
box was statistically significant. In the literature, cars are
reported to be preferred more by boys [4], which we do not
see. The car in our study does not look realistic and it is
too large to manipulate with a single hand, which may have
been a factor.

Automated vs. manual coding. While manually anno-
tated and automatically estimated VFOA measurements were
correlated, the recall of automated VFOA was notably lower.
The correlation was approximately 0.6, which indicates that
some of the strength of the signal is lost in the automation.
Consequently, statistically significant differences between
boys and girls in VFOA for different toys were not fully
replicated. While the amount of VFOA to the jump box was
still statistically significant, this was not true for the doll.
Our sample size is low, as manual annotation is very time-
consuming, but automated coding will help us to process
much more data, which could reveal whether gendered differ-
ences are more systematic or not. Moreover, our automated
analyses could further be used to discover other factors that
influence object manipulation and toy preferences.

Limitations. Due to the complexity of the data, including
occlusions and varied zoom levels, we relied on manual



annotations of head and toy positions. Achieving robust
automatic detection proved challenging.

While our analyses cover over 5 hours, only 25 children
were involved. In our free-play setting, we did not control for
potentially co-founding factors such as equal toy visibility.
Our analyses show the merits of a free-play setting and
the potential for automated processing, but observing more
interactions could potentially reveal more patterns.

Finally, we did not explore the role of the parent in shaping
the interactions. While the introduction of toys by the parent
clearly shaped childrens’ VFOA, a similar but more modest
effect could have occurred for the other toys.

Future work should consider a larger cohort. Employing
sequential analysis on automated analyses frame-by-frame
could elucidate interaction patterns. For instance, investigat-
ing whether children’s gaze follows parents’ gaze or vice
versa could reveal insights into the child’s development.

VI. CONCLUSION

We have explored gendered toy preference in free-play
parent-child interactions. Our analyses reveal distinctions
between boys and girls in the time spent looking at various
toys, aligning with the literature. To investigate whether
similar observations could be made automatically, we have
developed an automated processing pipeline to estimate
child’s and parent’s VFOA and joint attention towards vari-
ous toys. Natural free play settings are more challenging than
controlled lab settings. By using two cameras, we addressed
the limitations of a single viewpoint, thereby enhancing the
reliability of our results. Despite a lower recall in the VFOA
estimations of the toys, findings of our analysis of the manual
annotations are largely replicated. This indicates the potential
to investigate patterns in gendered toy preference or other
object manipulations in an automated manner.
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