
LA-layer: General local attention layer for full
attention networks

Hui Lu1∗, Ronald Poppe1, Albert Ali Salah1,2
1 Department of Information and Computing Sciences, Utrecht University, Utrecht

2 Department of Computer Engineering, Bogazici University, Istanbul, Turkey
{h.lu1, R.W.Poppe, a.a.salah}@uu.nl

Abstract—Attention layers have contributed to state-of-the-
art results on vision tasks1. Still, they leave room for improve-
ment because position information is used in a fixed manner,
and the computation cost is typically high. To mitigate both
issues, we propose a convolution-style local attention layer (LA-
layer) as a replacement for traditional attention layers. LA-
layers not only encode the position information of pixels in a
convolutional manner, but also produce position offsets following
a novel constrained rule so that keys will deform and result
in larger receptive fields. Query and keys are processed by a
novel aggregation function that outputs attention weights for the
values. In our experiments with different types of ResNets, we
replace convolutional layers with LA-layers and address image
recognition, object detection and instance segmentation tasks.
We consistently demonstrate performance gains, despite having
fewer FLOPs and training parameters. Our code is available at:
https://github.com/hotfinda/LA-layer.

Index Terms—Local attention, CNN, Deformable Kernel

I. INTRODUCTION

Convolutional neural networks (CNNs) are the backbone
for many computer vision tasks [1] [2]. One challenge with
CNNs is to model long-range interactions between pixels to
obtain large receptive fields. To overcome this issue, recent
work introduces self-attention (SA) [3], [4] to capture long-
range interactions of pixels at different position. Building
on SA layers, vision transformer models (e.g., [5] [6] [7])
typically outperform CNNs in terms of accuracy by integrating
transformer-style modules into CNN-based architectures.

Despite the success of SA layers, two issues remain. First,
the self-attention layer is the content-based summarization
of features, and lacks of position information of pixels in
feature maps, which will cause decreased performance. The
second issue is that most transformers neglect the performance
improvement from the extraction of useful tokens, while
focusing on enlarging the receptive field to achieve long-
range dependencies. This leads to excessive memory use and
computational cost for the attention layer.

To address these issues, researchers have proposed local
attention layers to reduce the computation cost of SA layers.
They also proposed to encode the position information of pix-
els in the feature map through manually designed encoders [5],
[8] or convolution projection operations [9]. Both approaches
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result in additional computation cost. Moreover, the receptive
field of local attention layers is constrained by the kernel size,
and uninformative features are not filtered out.

Another solution is to generate position offsets from the
feature map such that the local kernel becomes deformable.
In this way, the network can learn to extract useful features
and filter out irrelevant inputs. Moreover, the receptive field
is enlarged. For example, inspired by the deformable convo-
lution [10], the DAT model uses a deformable self-attention
module [11]. However, the current deformable process is
unconstrained, so the network tends to focus on a limited
number of, potentially remote, informative regions, possibly
missing out on complementary information. Also, the high
computation and memory cost of attention layers limit the
applicability of the deformable kernel.

In this work, we propose LA-layer, a novel convolution-style
local attention layer. In the LA-layer, we first extract the single
query within a kernel region-like convolution operation. Keys
are added with position offsets adjusted through a constraint
rule. This will expand the receptive field while avoiding a
too narrow focus on a small number of regions. The query
and keys pass through a novel attention aggregation function
to produce the attention weights with lower computation and
memory cost. The attention weights are used to aggregate all
input values, and the final output is generated when the kernel
slides over the whole feature map.

By integrating the LA-layer into common CNN models,
we obtain full attention models of the same architecture with
fewer parameters and FLOPs. Our two main contributions:

• We introduce LA-layer, a deformable local attention layer
that can serve as an efficient and effective replacement for
convolution layers. The LA-layer kernel deforms based
on the proposed constraint rule to avoid focusing on
specific regions, and the output is generated through an
efficient novel attention aggregation function to highly
reduce the computation cost.

• We use ResNets with LA-layers as full attention net-
works. Extensive experiments on image classification,
object detection and instance segmentation demonstrate
that LA-layers outperform popular backbones.

We first discuss related work on convolution and self-
attention layers. We then introduce the LA-layer in Section III.
In Section IV, we demonstrate the performance of the LA-
layer on various core vision tasks. We conclude in Section V.

https://github.com/hotfinda/LA-layer


II. RELATED WORK

Convolution Layers and Extensions: The convolution
layer is the basic building block for CNNs, and the size
of the receptive field is a key factor that highly affects the
performance of the convolution layer [12]. Although larger
kernels of convolution layers can result in larger receptive
fields, this generally requires a carefully designed network ar-
chitecture [13]. Otherwise, large kernels in convolution layers
tend to harm the performance due to the lack of a locality
constraint [14].

A common way to increase the receptive field of the
convolution layer without using large kernels is to model the
interactions between spatially distant regions with a limited re-
ceptive field through successive convolution layers [1]. While
typically increasing the accuracy, this approach reduces the
efficiency of CNNs. To overcome the short-range problem for
small kernels, several extensions to the regular convolution
layer have been proposed. Group convolutions [15] and depth-
wise convolutions [16] are examples of such efforts. Another
option is to modify the spatial scope for aggregation, which
can enlarge the receptive field. One popular implementation
of this idea is the dilated convolution [17], which increases
the spacing inside the kernel to increase the receptive field of
the convolution layer.

Self-Attention and Extensions: Researchers have begun
to apply self-attention (SA) to computer vision tasks [3],
[4]. This is achieved by employing SA over feature vectors
across different spatial locations within an image, such that
a larger content-based receptive field is obtained. Inspired
by advantages of SA, researchers have further proposed full
attention networks which replace the convolution layers inside
CNN models with attention layers [8]. Full attention networks
based on SA layers have achieved state-of-the-art results for
various computer vision tasks [18]. Despite their popularity,
global SA layers in such networks incur high computation and
memory demands due to the complicated aggregation method
of SA. To address this issue, researchers have introduced local
attention layers to constrain the attention pattern fixed local
windows (e.g., [8], [19]).

Although the local attention layer reduces the computation
cost, most research focuses on the content-based summa-
rization of features. They propose to encode the position
information through manually designed encoders [5], [8] or
convolution projection operations [9], which results in ad-
ditional computation costs. Also, the local attention layer
calculates the interaction of all pixels in the local window,
which will include the irrelevant features. This will limit the
performance of networks. Also, the receptive field of the local
attention layer is constrained by the local window or kernel
size.

An intuitive method to solve these issues is to generate the
position offsets from the input feature map. Based on these
offsets, the kernel becomes deformable, such that only useful
features will be extracted and irrelevant features in the original
kernel region will be ignored. Moreover, the receptive field

will be naturally enlarged. Although a deformable kernel is
realized in Deformable Convolution Networks (DCN, [10]),
applying DCN to attention layers is a non-trivial problem.
Compared to the convolution layer, the space complexity of
the SA layer is generally bi-quadratic. Deformable DETR [20]
implements the idea of deformable attention with a lower
number of keys at each scale to reduce the computation cost.
This works well as a detection head, but also causes a loss of
information due to the strongly reduced number of keys. Based
on the assumption that different queries may have similar
attention maps, DAT [11] generates a few groups of position
offsets for the local attention layers, such that they can share
shifted keys and values for each query to achieve an efficient
trade-off. However, since different pixels in the same group
use a shared query offset, the network concentrates on specific
regions, which limits the receptive field.

Instead of using convolution projection operations or po-
sition encoders [8], [19], our proposed LA-layer is a local
convolution-style self-attention layer. The position information
is implicitly encoded in a convolutional manner, inspired by
implicit encoding of position information along with the fea-
ture maps that the convolution operation produces [21]. Com-
pared with traditional works, our LA-layer uses deformable
kernels based on the proposed constraint rule to focus the
attention locally and obtain rich inforamtion for the model.
Besides, we propose a novel aggregation method for LA-
layers, which can highly reduce the computation and memory
cost.

III. LOCAL ATTENTION LAYER (LA-LAYER)

We introduce a local attention layer (LA-layer) as a re-
placement for convolution layers in CNNs, to produce full
attention networks. The framework of LA-layer is shown in
Figure 1. We will introduce the LA-layer, followed by the
implementation of full attention networks using the LA-layer.

A. Overview of the LA-Layer

For the LA-layer, similar to the kernel in the convolution
layer, we assign a local region, i.e., a k× k neighborhood, to
aggregate the input features. We first revisit the local attention
layer in recent vision transformers [8]. Taking a flattened
feature map x ∈ RW×H×C as the input, the Query map Q,
Key map K, and Value map V are generated through the self-
attention mechanism, which is formulated as:

Q = xWq (1)
K = xWk (2)
V = xWv (3)

where Wq,Wk,Wv ∈ Rdin×dout are learned transformation
matrices. Local Query map Qk, Key map Kk, and Value map
Vk are extracted from the feature maps K, Q, and V . At
each anchor position ij, the attention matrix is produced by
multiplying qij and Kk. Content-based aggregated feature yij
is generated after Vk and the attention matrix pass through the
feature multiplication. Finally, we obtain the attention feature



Fig. 1: Schematic overview of the LA-layer. (a) Computations repeated for each element in the input feature map. The output is the sum
of deformable features under the constraint rule. (b) Offset module. The input feature map passes through a 3× 3 convolution, GELU, and
two 1× 1 convolutions. The output is an H ×W × 2 offset feature map. Values are the deformed position indices.

map by sliding the kernel through the entire input. For input
xij with corresponding position ij, output yij can be computed
as:

yij =
∑

a,b∈Nk(i,j)

softmaxab(qijk
T
ab)vab (4)

where qij = xijWq , kab = xabWk, vab = xabWv , with
a, b ∈ Nk(i, j) the pixels at positions ab with spatial extent k
centered at xij .

Multiple attention heads are used to learn multiple distinct
representations of the input [3]. This works by partitioning the
pixel features xij into m groups xn

ij ∈ Rdin/m in the depth
channel and then calculate each group independently using
distinct transformations. Finally, we concatenate the resulting
representations in the depth channel and generate the final
output.

To avoid the problems of the traditional local attention
layer, a small network is used for the offset generation
following [10]. It processes the input feature map and outputs
the offset values for reference points in the kernel region. The
input features are firstly passed through a 3 × 3 convolution
to capture local features. Then, Gaussian Error Linear Unit
(GELU) activation and two 1× 1 convolutions are applied to
produce the 2D offsets.

Although the learned position offsets can enlarge the recep-
tive field, we notice that the offset values tend to concentrate
on specific regions and neglect regions include less important
features. This reduces the quantity of relevant features and
limits the performance of the network. To solve this issue,
we propose a simple but effective constraint rule during the
deformation process. We first round up the 2D offsets ∆p, and
then assign the size of constraint region l, which is used to
constrain the position offsets as:

∆p′ =
∆p

|max(∆p)|+ |min(∆p)|
l (5)

where l is typically in the order of 1–2 times the kernel size
k, and ∆p′ is the constrained offset position.

With Eq. 5, the learned offsets are limited by constraint
region size l. When the offset moves toward specific regions
outside l (the value of ∆p is bigger than l), it will be scaled
and move towards less specific regions inside l during the
training process. Since the kernel will slide over the whole
feature map, all useful features will be included during the
process, and features belong to the specific regions will also
be collected.

After producing the offsets for a target position t in local
attention region, we propose a novel aggregation function to
effectively aggregate the Key map and Query map, the result of
which is combined with the Value map through multiplication.
In this way, we could highly reduce the computation cost of
the LA-layer.

For the local Query map Qk, Key map Kk, and Value
map Vk extracted from feature maps K, Q, and V , our
aggregation approach can be performed by using the following
mathematical operation:

yt =
∑(vt′ +∆p

′

t
′ )
⊙ ∑[

(kt′ +∆p
′

t
′ )
⊙

qt
]

∑
(kt′ +∆p

′

t
′ )

 (6)

where
⊙

represents the element-wise multiplication, t′ is
the reference index in the kernel region, yt is the output of
the LA-layer at position t, kt′ is the key inside Key map Kk,
vt′ is the value inside Value map Vk. See Figure 1 for an
illustration.

In Eq. 6, the term that is element-wise multiplied with
(vt′ + ∆p

′

t′
) can be seen as a weighted average of attention

value or the pixel similarity between qt and the pixels kt′ for
vt′ . Consequently, we can build up the content relationships
among different locations while effectively avoiding expensive
computations and storage of the attention matrix.



TABLE I: ImageNet-1K image classification on ResNet and
ResNext backbones. Comparison with state-of-the-art local attention
approaches. Differences with the original ResNet/ResNext models is
shown in parentheses. Best results in bold.

Model FLOPs Params Top-1 Top-5
(G) (M) Acc.(%) Acc.(%)

B
ac

kb
on

es ResNet-50 [22] 4.1 25.5 77.3 93.6
ResNet-101 7.9 44.6 78.5 94.2

ResNeXt-50 [23] 4.2 25.0 78.2 93.9
ResNeXt-101 8.0 44.2 79.1 94.4

L
oc

al
at

te
nt

io
n

Stand-Alone-50 [8] 3.6 18.0 77.6 -
Swin-T-ResNet-50 [5] 4.6 30.7 78.4 94.0
DAT-T-ResNet-50 [11] 4.6 30.7 78.9 94.5

LR-Net-50 [19] 4.3 23.3 77.3 93.6
LR-Net-101 8.0 42.0 78.5 94.3

AA-ResNet-50 [25] 4.2 25.8 77.7 93.8
AA-ResNet-101 8.1 45.4 78.7 94.4
CoTNet-50 [18] 3.3 22.2 79.2 94.5

CoTNet-101 6.1 38.3 80.0 94.9
CoTNeXt-50 4.3 30.1 79.5 94.5

CoTNeXt-101 8.2 53.4 80.3 95.0

L
A

-l
ay

er LA-ResNet-50 (ours) 3.4 21.0 79.7 (+2.4) 94.9 (+1.3)
LA-ResNet-101 (ours) 5.7 35.9 81.0 (+2.5) 95.7 (+1.5)
LA-ResNeXt-50 (ours) 4.2 24.2 80.6 (+2.4) 95.4 (+1.5)
LA-ResNeXt-101 (ours) 7.6 39.5 81.5 (+2.4) 95.8 (+1.4)

B. Full Attention Network Implementation

We use the LA-layer to replace the 3×3 convolution layers
in ResNet [22], ResNeXt [23], and ResNeSt [24]. We chose
these networks for illustration, because they are widely used
and understood. The corresponding full attention networks are
referred to as LA-ResNet, LA-ResNeXt, and LA-ResNeSt,
respectively. We also replace the 3 × 3 convolution layers
in other state-of-the-art local attention approaches for further
comparison.

IV. EXPERIMENTS

We evaluate our LA-layer on common computer vision
tasks: image classification, object detection, and semantic
segmentation (Sections IV-A-IV-C), followed by qualitative re-
sults to better understand how our LA-layer leads to improved
performance (Section IV-D). We investigate the influence of
constraint region size l in Section IV-E.

A. ImageNet Classification

Setup: We perform experiments on ImageNet-1K image
classification [26], which contains 1.28M training images and
50k test images. For the LA-layer, we use a kernel size of
k = 3, constraint region size l = 7 and m = 8 attention heads.
We adopt the training setup of [18]. Specifically, we perform
SGD optimization with a batch size of 512 on 8 NVIDIA
A100 GPUs for all experiments. The total training period is
110 epochs, with a weight decay of 0.0001 and a momentum
of 0.9. For the first five epochs, the initial learning rate is 0.4
with linear warm-up. The learning rate is decayed via a cosine
schedule [27].

Results: Table I shows the results of the full attention
ResNet (LA-ResNet) compared to the convolution baseline,
and state-of-the-art local attention and deformable attention
methods. Using an advanced training setting highly improves
the performance. More results with these advanced settings
are presented in the supplementary material.

TABLE II: Object detection results on MS COCO validation
set, with Fast R-CNN and Cascade R-CNN as detection heads.
For our models with LA-layer, the difference with the original
ResNet/ResNext models is shown in parentheses. Best results for
each detection head in bold.

Method Model FLOPs AP AP50 AP75

Fa
st

er
R

-C
N

N

ResNet-50 [22] 180G 39.34 59.47 42.76
ResNet-101 246G 41.46 61.99 45.38

ResNeXt-50 [23] 279G 41.31 62.23 44.91
ResNeXt-101 406G 42.91 63.77 46.89

ResNeSt-50 [24] 291G 42.39 63.73 46.02
ResNeSt-101 422G 44.13 61.91 47.67

LA-ResNet-50 (ours) 164G 44.28 (+4.94) 65.61 (+6.14) 47.98 (+5.22)
LA-ResNet-101 (ours) 215G 46.63 (+5.19) 68.07(+6.08) 50.41(+5.03)
LA-ResNeXt-50 (ours) 274G 44.60 (+3.29) 66.29(+4.06) 48.10(+3.19)

LA-ResNeXt-101 (ours) 384G 46.71 (+3.80) 68.12(+4.35) 50.75(+3.86)

C
as

ca
de

R
-C

N
N

ResNet-50 [22] 201G 42.45 59.76 46.09
ResNet-101 274G 44.13 61.91 47.67

ResNeXt-50 [23] 313G 44.53 62.45 48.38
ResNeXt-101 422G 45.83 63.61 49.89

ResNeSt-50 [24] 336G 45.41 63.92 48.70
ResNeSt-101 451G 47.51 66.06 51.35

LA-ResNet-50 (ours) 173G 46.81 (+4.36) 65.40 (+5.64) 50.42 (+4.33)
LA-ResNet-101 (ours) 226G 48.83 (+4.70) 67.59 (+5.68) 52.86 (+5.19)
LA-ResNeXt-50 (ours) 301G 47.56 (+3.03) 66.24 (+3.70) 51.29 (+2.91)

LA-ResNeXt-101 (ours) 399G 49.64 (+3.81) 68.25 (+4.64) 53.68(+3.79)

Compared to the ResNet-50 baseline, the full attention
network LA-ResNet-50 achieves 2.4% higher classification
accuracy (from 77.3% to 79.7%), while having 17.1% fewer
floating point operations (FLOPs) and 17.6% fewer pa-
rameters to train. This performance gain is consistent for
ResNet-101 (+2.5%), ResNeXt-50 (+2.4%) and ResNeXt-
101 (+2.4%). Besides, LA-layer outperforms all state-of-the-
art local attention methods with comparable FLOPs or pa-
rameters. For example, LA-ResNet-50 achieves higher top-
1 accuracy (+0.8%) than deformable local attention method
DAT-T-ResNet-50 [11]. Compared with Swin-ResNet-50 [14],
LA-ResNet-50 achieves +1.3% higher top-1 accuracy with
20% fewer FLOPs. With similar FLOPs, our LA-ResNets
outperform LR-Nets [19] by 2.4-2.5% on top-1 accuracy.

B. Object Detection

Setup: To further understand how our local attention layer
performs on a more fine-grained task, we experiment on object
detection on MS COCO dataset [28]. We use LA-ResNets and
LA-ResNeXts pretrained on ImageNet-1K as the backbones
with Faster R-CNN [29] and Cascade R-CNN [30] as the
detection heads. The standard AP metric of single scale is
adopted for evaluation. For a fair comparison, we follow the
method in [23] and train our models on the COCO-2017
training set (118K images) and evaluate them on COCO-2017
validation set (5K images). During the training process, the 1×
learning rate schedule is used, and the size of the shorter side
is sampled from the range [640, 800] for each input image
during the data augmentation process. All the other hyper-
parameters remain the same for fair comparison with other
backbones.

Results. We summarize our object detection results in
Table II. Our models with LA-layer consistently shows better
performance than the baselines with both Fast R-CNN and
Cascade R-CNN detection heads. For example, compared to
ResNet-50, our LA-ResNet-50 shows 4.94% higher AP with
Fast R-CNN, and 4.36% higher AP with Cascade R-CNN.
Compared to ResNeXt-101, our LA-ResNext-101 achieves



TABLE III: Semantic segmentation results on ADE20K validation
split. The difference with the original ResNet/ResNeSt models is
shown in parentheses. Best results in bold.

Backbone Pix Acc. mIoU
ResNet-50 [22] 80.39 42.10

ResNet-101 81.11 44.14
ResNeSt-50 [5] 81.17 45.12

ResNeSt-101 82.07 46.91
LA-ResNet-50 (ours) 80.91 (+0.42) 43.31 (+1.21)

LA-ResNet-101 (ours) 81.73 (+0.62) 45.46 (+1.32)
LA-ResNeSt-50 (ours) 81.70 (+0.53) 46.22 (+1.10)

LA-ResNeSt-101 (ours) 82.59 (+0.52) 48.02 (+1.11)

3.80% higher AP with Fast R-CNN, and 3.81% higher AP
with Cascade R-CNN. Also, the number of FLOPs for all
models with LA-layer is comparable. Again, these results
demonstrate that the improvements are not achieved by using a
more complex model, but originate from the ability to encode
more informative features.

C. Instance Segmentation

Setup: We also evaluate the effectiveness of the LA-layer
on the challenging scene parsing dataset ADE20K [31]. We
use DeepLabV3 [32] as the instance segmentation approach
with ResNet and ResNext backbones pretrained on ImageNet-
1K. A resolution of 512×2048 is used, and we report the pixel
accuracy (pixAcc) and mean intersection-of-union (mIoU) as
the evaluation metrics. We follow the method in [24] and train
the models for 120 epochs on the ADE20K training set (20K
images). The trained networks are evaluated on the ADE20K
validation set (2K images).

Results: The evaluation results are shown in Table III. We
observe that networks with LA-layers consistently outperform
their ResNet and ResNeSt baselines with solely convolution
layers for both pixel accuracy (pixAcc) and mean intersection-
of-union (mIoU). The improvements for pixel accuracy are
modest, but consistent. For the mIoU, the improvements are
a bit higher. For example, compared to ResNeSt-101, our
LA-ResNeSt-101 achieves 0.52% higher pixel accuracy and
achieves double higher mIoU (1.11%). This further validates
the effectiveness of our LA-layer when applied to downstream
tasks.

D. Qualitative Analysis of LA-layer Attention Map

To understand qualitatively how the LA-layer facilitates the
extraction of spatially distributed image patterns, we use Grad-
CAM [33] to visualize which parts of the input a trained model
attends to. We compare ResNet-50, DAT-ResNet-50, and LA-
ResNet-50 models trained on the image classification task on
ImageNet-1K.

Figure 2 shows heatmaps for these models on three random
samples. Both DAT and LA-layer models attend to more of
the object regions than ResNet, which explains the higher
performance of DAT and LA-layer models (see Table I).
Although DAT also contains the deformable kernel that makes
the focus areas more distributed over the whole object, the
network tends to concentrate on specific regions of the object.

Fig. 2: Grad-CAM comparisons for three architectures. Our LA-
layer covers more areas over the object compared with others.

TABLE IV: Image classification ablation study on ImageNet-1K
with LA-ResNet models. Best results in bold.

Model
Top-1(%) Value of l

3 5 7 9 11

LA-ResNet-50 82.3 82.0 81.8 81.2 81.2
LA-ResNet-101 83.0 83.4 83.5 83.0 82.7
LA-ResNeXt-50 82.7 82.9 83.0 82.6 82.5
LA-ResNeXt-101 83.4 83.9 83.9 83.4 83.2

This reduces the quantity of captured relevant features and
limits the receptive field of the network to some extent, thus
reducing the performance of the network. Compared with
DAT, the constraint rule on the deformable kernel in the LA-
layer helps the network to cover more of the object of interest
and allows for the integration of a multitude of informative,
possibly complementary, features to contribute to the final
image classification.

E. Ablation: Effect of Constraint Region Size

We investigate the effect of the value of the constraint region
size l on the overall accuracy through an ablation study on the
ImageNet-1K image classification task. We follow the training
method in DeiT [34] to train these models from scratch.
All experimental results are trained for 300 epochs with the
AdamW optimizer. We vary l from 3 to 11, while the kernel
size is fixed at 3× 3.

From Table IV we can see that for the LA-ResNet-50 model,
the highest accuracy is obtained when l is the same as the
kernel size, and the performance continuously decreases when
further increasing l. The situation changes for the LA-ResNet-
101, where the highest accuracy is achieved when l is around
two times of the kernel size. The same applies to the LA-
ResNeXt-50 and LA-ResNeXt-101. So we infer that the proper
value of l for LA-layer should be around 1–2 times the kernel
size. When increasing the constraint region, kernels in different
areas tend to concentrate on specific features and produce
higher weights, thus lower the receptive field of the network



to some extent. In this case, informative features with lower
weights are neglected, such that the performance starts to
decrease. We therefore conclude that a good balance between
focusing on more globally relevant features and including
more local features is optimal. Our LA-layer can achieve just
this balance.

V. CONCLUSION

This paper introduces a novel local attention layer (LA-
layer), a basic image feature extractor that overcomes the
short-range problem of convolution layers and addresses
limitations of traditional self-attention layers. LA-layers can
straightforwardly replace convolution layers to obtain full
attention models. Experimentation on ImageNet-1K image
classification demonstrates improved performance over ResNet
backbones and other local attention approaches. Moreover,
LA-layers require fewer parameters and FLOPs than related
methods, which suggests that the improved performance is
due to the extraction of more informative features, rather than
being the result of a more complex model. On object detection
(MS COCO) and instance segmentation (ADE20K) tasks,
models with LA-layers also show significantly better perfor-
mance compared to the original networks. The visualization
result based on GradCAM further validates the effectiveness
of the LA-layer, and the ablation study on the constraint
region size proposes a good balance between focusing on more
globally relevant features and including more local features.
We expect that these performance gains of the LA-layer also
extend to more complex CNN architectures.
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