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Snakes and Ladders: Two Steps Up for VideoMamba

Abstract

Video understanding requires the extraction of rich spatio-001
temporal representations, achieved by transformer models002
through self-attention. Unfortunately, self-attention poses a003
computational burden. In NLP, Mamba has surfaced as an004
efficient alternative for transformers. However, Mamba’s005
successes do not trivially extend to vision tasks, includ-006
ing those in video analysis. In this paper, we theoretically007
analyze the differences between self-attention and Mamba.008
We identify two limitations in Mamba’s token processing:009
historical decay and element contradiction. We propose010
VideoMambaPro (VMP) that addresses these limitations by011
adding masked backward computation and elemental resid-012
ual connections to a VideoMamba backbone. VideoMam-013
baPro models surpass VideoMamba by 1.6-3.0% and 1.1-014
1.9% top-1 on Kinetics-400 and Something-Something V2,015
respectively. Even without extensive pre-training, our mod-016
els present an attractive and efficient alternative to current017
transformer models. Moreover, our two solutions are or-018
thogonal to recent advances in Vision Mamba models, and019
are likely to provide further improvements in future models.020

021

1. Introduction022

Video understanding is challenging and requires models023
that can extract rich spatio-temporal representations from024
video inputs. Transformers are powerful neural networks025
capable of effectively capturing temporal and spatial in-026
formation from videos [19, 29, 50]. Current state-of-the-027
art video understanding models are transformers [41, 51].028
At the core of transformers is self-attention [49], the self-029
alignment between tokens in an input obtained by estimat-030
ing the relative importance of a token with respect to all031
other tokens. The long-range token dependency accounts032
for much of the success of transformer models [5, 49].033

Calculating self-attention is computationally costly,034
which eventually limits the application of powerful trans-035
former models in practical settings [17]. Recently, alterna-036
tive models with lower-cost operators have been proposed037

for national language processing (NLP), including S4 [13], 038
RWKV [38], and RetNet [46]. Among these, Mamba [11] 039
shows the best performance on long-range and causal tasks 040
such as language understanding [31] and content-based rea- 041
soning [37]. 042

Motivated by the favorable computational cost, re- 043
searchers have recently extended Mamba from the NLP do- 044
main to the computer vision domain. The core adaptation 045
involved splitting the input image into multiple regions and 046
embedding these as continuous tokens [61]. For video un- 047
derstanding, the recently proposed VideoMamba [22] ex- 048
tracts key frames from videos as the continuous input se- 049
quence. However, compared to previous transformer-based 050
methods, VideoMamba’s performance on video bench- 051
marks is markedly lower. For example, VideoMamba 052
achieves 82.4% top-1 on Kinetics-400, compared to 85.2% 053
for VideoMAE [47], indicating room for improvement. 054

In this paper, we first analyze differences in the fea- 055
ture extraction capabilities of transformers and Mamba. We 056
identify two limitations of Mamba: historical decay and 057
element contradiction. We then extend VideoMamba [22] 058
to mitigate these limitations. The proposed VideoMam- 059
baPro (VMP) addresses historical decay through masked 060
backward computation in the bi-directional Mamba pro- 061
cess, allowing the network to better handle historical tokens. 062
We introduce residual connections to Mamba’s matrix el- 063
ements to tackle element contradiction. VideoMambaPro 064
consistently improves the performance of VideoMamba on 065
video understanding tasks, positioning it as a strong, effi- 066
cient competitor to transformers. Our contributions are: 067

• We derive a formal representation of Mamba from the 068
perspective of self-attention and identify two limitations 069
of Mamba in the video analysis domain. 070

• We propose VideoMambaPro, effectively addressing 071
Mamba’s limitations for video understanding. 072

• We report strong video action recognition performance 073
compared to recent Vision Mamba-based models, and 074
surpass the original VideoMamba by clear margins. 075

We first discuss related work. Then, we provide a the- 076
oretical analysis and introduce VideoMambaPro. Experi- 077
ments are presented in Section 5. We conclude in Section 6. 078
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2. Related Work079

Transformers. One core aspect of transformers is self-080
attention [49] to achieve long-range interactions by measur-081
ing the similarity between tokens. Self-attention was intro-082
duced in the computer vision domain for tasks such as im-083
age recognition [26, 45] and object detection [7, 58]. Subse-084
quent works (e.g., [9, 21, 47, 53] extended vision transform-085
ers to the video domain, to achieve superior performance.086
However, the mechanism of self-attention introduces sig-087
nificant computational overhead because of the similarity088
between all pairs of tokens needs to be calculated.089

Alternative models. Recent work has introduced al-090
ternative models with reduced computational complexity,091
while maintaining the advantages of self-attention [30, 40,092
59]. SOFT [30] uses Gaussian kernel functions to re-093
place the dot-product similarity, which enables a full self-094
attention matrix to be approximated with a low-rank matrix095
decomposition. Combiner [40] employs a structured fac-096
torization to approximate full self-attention, realizing low097
computation and memory complexity.098

Peng et al. [38] propose the Receptance Weighted Key099
Value (RWKV) architecture that combines self-attention100
training with an efficient recurrent neural network (RNN)101
inference using a linear attention mechanism. Through102
parallel computation, a lower, constant-level computational103
and memory complexity is achieved. RetNet [46] includes104
another variant of self-attention, by dividing the input into105
multiple chunks. Within each chunk, the self-attention106
mechanism can be computed in parallel, while information107
is transmitted between chunks based on an RNN.108

State-space models. The S4 model completely aban-109
dons self-attention and, instead, builds upon a state space110
model [13]. Instead of calculatings a similarity matrix by111
performing matrix multiplications for pairs of tokens, it en-112
ables the network to directly learn a global high-order poly-113
nomial projection operator (HiPPO) matrix to handle rela-114
tions between tokens. Additionally, for the simultaneous115
input of multiple tokens, S4 proposes a convolutional pro-116
cessing approach, enabling parallel training and thereby ac-117
celerating the training process.118

Based on S4, Mamba [11] proposes a selection mech-119
anism where, for each input token, a unique HiPPO ma-120
trix [12] is generated. This allows the model to selectively121
process input tokens, enabling it to focus on or ignore spe-122
cific inputs. Due to Mamba’s strong representation abil-123
ity in NLP, and linear-time complexity, it has garnered at-124
tention as a promising alternative to transformers. In the125
computer vision domain, researchers have proposed Vision126
Mamba [61] and VMamba [27] for tasks such as image clas-127
sification and object detection.128

In the video domain, several Mamba variants have been129
proposed [22, 23, 34]. Their performance is somewhat130
lower than expected, with limited understanding of the131

causes. We argue that a systematic, mathematical analy- 132
sis of Mamba from the perspective of self-attention could 133
reveal shortcomings of Mamba’s inner workings. Better 134
understanding of these limitations allow us to develop im- 135
provements, and to close the accuracy performance gap 136
with transformers, while enjoying Mamba’s efficiency. 137

3. Theoretical Analysis 138

We revisit Mamba from the perspective of self-attention. 139
Then, we analyze its limitations for video understanding. 140
To address these, we propose VideoMambaPro in Section 4. 141

3.1. Mamba from the perspective of self-attention 142

Self-attention. Given an input sequence X := 143
[x1 , · · · ,xN ] ∈ RN×Dx of N feature vectors of depth 144
Dx, self-attention [49, 60] computes the output sequence 145
Y from X following two steps: 146

Step 1: Similarity matrix computation. The input se- 147
quence X is linearly projected onto the three different sub- 148
spaces query Q ∈ RN×D, key K ∈ RN×D, and value 149
V ∈ RN×DV : 150

Q = XW⊤
Q,K = XW⊤

K ,V = XW⊤
V . (1) 151

with WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx 152
the corresponding weight matrices. Specifically, Q := 153

[q1 , · · · , qN ]
⊤, K := [k1 , · · · , kN ]

⊤, and V := 154

[v1 , · · · , vN ]
⊤ with vectors qi , ki , vi for i = 1, · · · , N 155

the query, key, and value vectors, respectively, for input i. 156
Based on Q and K, similarity matrix S ∈ RN×N contains 157
the correlations between all query and key vectors, with a 158
softmax function applied to each row of S: 159

S = softmax(QK⊤/
√
D). (2) 160

Each component sij (i, j = 1, · · · , N ) represents the simi- 161
larity score between qi and kj . 162

Step 2: Output computation. Output sequence Y := 163

[y1 , · · · ,yN ]
⊤ is then calculated based on S as: 164

Y = SV. (3) 165

It follows that each output vector yi (i = 1, · · · , N ) can 166
be written in vector form as: 167

yi =
N∑
j=1

sijvj . (4) 168

Any output vector yi is a linear combination of vectors 169
vj (j = 1, · · · , N), with similarity score sij serving as co- 170
efficient. The larger the similarity score, the greater the in- 171
fluence of vj on output yi [43]. 172

Mamba. State Space Models (SSMs) serve as the foun- 173
dation of Mamba [11]. They are based on continuous sys- 174
tems that map 1D functions or sequences, x(t) ∈ RL → 175
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y(t) ∈ RL to output sequences y(t) through a hidden state176
h(t) ∈ RN . Formally, SSM implements the mapping as1:177

h(t) = Ah(t− 1) +Bx(t), (5)178
179

y(t) = Ch(t) (6)180

where A ∈ RN×N is the evolution matrix of the system,181
and B ∈ RN×1, C ∈ RN×1 are the projection matrices.182
Often, the input is discrete rather than a continuous func-183
tion x(t). Therefore, Mamba performs discretization, ef-184
fectively creating a discrete version of the continuous sys-185
tem. A timescale parameter ∆ is used to transform the con-186
tinuous parameters AandB into their discrete counterparts187
A,B, and the transformation typically employs the zero-188
order hold method [57]. This process is expressed as:189

A = exp(∆A), (7)190
191

B = (∆A)−1(exp(∆A)− I) ·∆B, (8)192
193

ht = Aht−1 +Bxt, (9)194
195

yt = Cht. (10)196

Considering that parameters A,B,C in the original197
SSM are independent of the input data x(t) and cannot be198
tailored to specific input data, Mamba employs a Selective199
Scan Mechanism as its core operator. More precisely, three200
functions SB(x), SC(x), S∆(x) are introduced to associate201
parameters B,C, and∆ in Eqs. 7–10 to the input data x.202
Based on S∆(x), A can also be associated with the input203
data x. For example, given the input x1, functions S∆(x)204
will produce the corresponding A1 based on Eq. 7, and205
functions SB(x) and S∆(x) will produce the correspond-206
ing B1 based on Eq. 8. C1 is obtained based on function207
SC(x). Following Eqs. 9 and 10, we analyze the process208
to obtain output sequence Y when given an input sequence209
X := [x1 , · · · ,xN ] ∈ RN×Dx of N feature vectors. Each210
vector’s hidden state is denoted as:211

h1 = B1x1 , (11)212

h2 = A2h1 +B2x2213

= A2B1x1 +B2x2 , (12)214

h3 = A3h2 +B3x3215

= A3A2B1x1 +A3B2x2 +B3x3 , (13)216

· · ·217

hN = ANhN−1 +BNxN218

= ANAN−1 · · ·A2B1x1 +ANAN−1 · · ·A3B2x2219

+ANBN−1xN−1 +BNxN . (14)220

1The original SSM [13] employs h′(t) = Ah(t) + Bx(t), with h(t)
the hidden state from previous time step t − 1, and h′(t) the updated
current hidden state, replacing h(t). Considering this approach may lead
to ambiguity, we have adopted the updated description.

Eqs. 11–14 can be written in matrix form: 221

H = [h1, h2, h3, · · · , hN ]
⊤

=



B1 0 0 · · · 0
A2B1 B2 0 · · · 0

A3A2B1 A3B2 B3 · · · 0
...

...
...

. . .
...

(
2∏

j=N

Aj)B1 (
3∏

j=N

Aj)B2 (
4∏

j=N

Aj)B3 · · · BN




x1
x2
x3
...

xN

.

(15) 222
For output sequence Y := [y1 , · · · ,yN ]

⊤, each vector 223
yi (i = 1, · · · , N ) can be expressed as: 224

yN = CNhN , (16) 225

and in matrix form as: 226

Y =


C1 0 0 · · · 0
0 C2 0 · · · 0
0 0 C3 · · · 0
...

...
...

. . .
...

0 0 0 · · · CN




h1

h2

h3

...
hN

 = Ch. (17) 227

By substituting Eq. 15 into Eq. 17, we obtain: 228

Y = C



B1 0 0 · · · 0
A2B1 B2 0 · · · 0

A3A2B1 A3B2 B3 · · · 0
...

...
...

. . .
...

(
2∏

j=N

Aj)B1 (
3∏

j=N

Aj)B2 (
4∏

j=N

Aj)B3 · · · BN




x1
x2
x3
...

xN

,

(18) 229
which can be expressed as: 230

Y = C(MX ), (19) 231

where M represents the second term on the right-hand side 232
of Eq. 18. Recall from Eq. 3 that the result Y obtained by 233
self-attention processing can be expressed as: 234

Y = SV = (SX )W⊤
V (20) 235

From the perspective of self-attention, by comparing 236
Eqs. 19 and 20, the essence of Mamba is to generate a ma- 237
trix M similar to similarity matrix S, such that the result 238
of MX is based on the correlation between vectors of X . 239
Although the final result of MX is left multiplied by a map- 240
ping matrix C, while the result of SX is right multiplied by 241
a mapping matrix W⊤

V , the geometric meaning of the two 242
are the same. 243

3.2. Limitations of Mamba in video understanding 244

From the perspective of self-attention, the concept of 245
Mamba is similar: both use similarity matrices. We now 246
analyze the differences between the similarity matrices of 247
Mamba and self-attention, and discuss the limitations of 248
Mamba in the context of the video understanding task. 249
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Limitation 1: Historical decay. Matrix M in Eq. 19250
corresponds to the second right-hand term in Eq. 18, which251
is a lower triangular matrix of the form:252

M =


m11 0 0 · · · 0
m21 m22 0 · · · 0
m31 m32 m33 · · · 0

...
...

...
. . .

...
mN1 mN2 mN3 · · · mNN

 . (21)253

By comparing M with matrix S in self-attention, we254
find that outputs in Mamba favor more recent information,255
because the more weights are zero, the earlier the token256
is observed. For example, for input [x1 ,x2 ,x3 ], the out-257
put Mx1 in Mamba is m11x1 while the output Sx1 is258
s11x1 +s12x2 +s13x3 in self-attention. This indicates that,259
in Mamba, the influence of earlier observed tokens on the260
final result is greatly diminished. We refer to this limitation261
as historical decay.262

In the NLP domain, more recent dialogue information263
often has more impact on the final judgment, so this effect264
is acceptable. However, in the computer vision domain, the265
order of the tokens has less meaning. Previous works such266
as Vision Mamba [61] and VMamba [27] tried to solve this267
issue by processing the token sequence in both forward and268
backward directions. This produces better results, but sig-269
nificant deficiencies still exist. We will explain this theoret-270
ically below.271

When processing bi-directionally, the results generated272
from input forward tokens [x1 , · · · ,xN ], denoted as MfX ,273
and the results generated from input backward tokens274
[xN , · · · ,x1 ], denoted as MbX , are linearly combined to275
generate the final result MbiX with Mbi a dense matrix.276
As a result, the influence of historical information on the277
result is increased, consequently leading to better results.278

For example, for the input tokens [x1 ,x2 ,x3 ], MfX279
and MbX can be expressed as:280

MfX =

f11 0 0
f21 f22 0
f31 f32 f33

x1x2
x3

 =

h1f

h2f

h3f

 , (22)281

MbX =

b33 0 0
b23 b22 0
b13 b12 b11

x3x2
x1

 =

h3b

h2b

h1b

 , (23)282

where fij represents the similarity score during the forward283
process, and bij is the similarity score in the backward di-284
rection. After bi-directional computation, with the outputs285
linearly combined, the results are expressed as:286

h1 = h1f + h1b = f11x1 + b13x3 + b12x2 + b11x1

h2 = h2f + h2b = f21x1 + f22x2 + b23x3 + b22x2

h3 = h3f + h3b = f31x1 + f32x2 + f33x3 + b33x3

(24)287

We can write Eq. 24 in matrix form: 288h1

h2

h3

 =

f11 + b11 b12 b13
f21 f22 + b22 b23
f31 f32 f33 + b33

x1x2
x3


= Mbi

x1x2
x3

 .

(25) 289

The bi-directional computation transforms matrix M 290
from a lower triangular matrix to a dense matrix Mbi, 291
thereby capturing more historical information and effec- 292
tively avoiding historical decay. When extending to the case 293
of N input tokens [x1 , · · · ,xN ], Mbi can be written as: 294

Mbi =


f11 + b11 b12 b13 · · · b1N

f21 f22 + b22 b23 · · · b2N
f31 f32 f33 + b33 · · · b3N

...
...

...
. . .

...
fN1 fN2 fN3 · · · fNN + bNN

. (26) 295

The diagonal elements of Mbi contain duplicates of the 296
similarity between a token and itself. For example, f33 297
and b33 each represent the similarity between token x3 and 298
itself. Consequently, the similarity is effectively doubled 299
which weakens the association with other tokens. One pos- 300
sible approach is to adjust Mf and Mb using a weight 301
coefficient z through a linear combination. However, this 302
method is not very effective. For example, to prevent the 303
similarity of diagonal elements from being doubled, the z 304
value is set to 0.5. However, after multiplying other ele- 305
ments by 0.5, their weight values are significantly reduced, 306
which means that the association of each token with other 307
tokens is weakened. 308

Limitation 2: Element contradiction. By analyzing 309
non-zero elements mij in M of Eq. 18, we derive: 310

mij = Aimi−1,j (27) 311

After multiple iterations, the above equation results in im- 312
plicit consideration of the correlation between previous to- 313
kens and token j when computing the correlation between 314
token i and token j. As a result, mij exhibits stronger con- 315
textual dependencies compared to the elements sij in the 316
matrix S. This might explain why Mamba achieves better 317
performance than transformers in the field of NLP. While 318
this is advantageous in the NLP domain, for the computer 319
vision domain, input tokens often lack semantic connec- 320
tions. The consideration of the influence of other tokens 321
on each element can lead to significant drawbacks. 322

Interleaved token structures are common when process- 323
ing images. Tokens that “belong together” might not be 324
subsequently processed. For example, in an image classifi- 325
cation task, input tokens [x1 ,x2 ,x3 ] might represent image 326
regions [dog, other, dog]. Ideally, m31 should be high and 327

4

Uncorrected author proof



ICCV
#8505

ICCV
#8505

MLP Head

Bi-Directional Mamba Blocks

(b) Bi-Directional Mamba Block

Class
Biking

Running
Swimming

...

1 2 3 4 1 2 3 4 1 2 3 40
Spatial 

Position Embedding

* Extra Learnable
Classification Token 

[CLS] 
3D Embedding of Flattened Patches

*

Temporal 
Position Embedding

（a) VideoMambaPro

Embedded Patches

Norm

Forward 
Conv1d

Forward 
Residual SSM

Backward 
Conv1d

× K

Masked Backward 
Residual SSM

Projection Layer

𝑥𝑥

Figure 1. (a) Framework of VideoMambaPro with K bi-directional Mamba blocks. (b) In each bi-directional Mamba block, we employ
forward residual SSM and masked backward Residual SSM.

m21 low. Following Eq. 27, m31 = A3m21, so A3 needs to328
increase. However, this causes m32 = A3m22 to increase329
because m22 is also high. But, theoretically, m32 should330
be low. This causes an element contradiction. Especially331
for video understanding, such contradictions are common332
because most video regions contain background and other333
irrelevant information, making relevant tokens sparse. Con-334
sequently, the performance of Mamba applied to video anal-335
ysis tasks is underwhelming [22, 24, 56].336

4. VideoMambaPro337

We use VideoMamba [22] as backbone, and propose two338
adaptations to address historical decay and element contra-339
diction. The resulting architecture is termed VideoMam-340
baPro (VMP). With minor adjustments, our adaptations can341
also be applied to related Mamba models.342

To address historical decay, we keep the result of MfX343
but we use masked computation in the backward process.344
Specifically, we assign a mask to the diagonal elements of345
Mb, setting their values to 0, and then proceed with the cal-346
culations in Eqs 21–25. We thus eliminate the duplicate347
similarity on the diagonal, without affecting other elements.348
The final Mbi is expressed as:349

Mbi =


f11 b12 b13 · · · b1N
f21 f22 b23 · · · b2N
f31 f32 f33 · · · b3N

...
...

...
. . .

...
fN1 fN2 fN3 · · · fNN

 . (28)350

To solve element contradiction, we propose residual351
SSM. This solution is inspired by residual connections, to352
distribute the requirement for Ai in mij over multiple Ai.353

This helps to avoid contradictions caused by interleaved se- 354
quence structures. For example, for our previous exam- 355
ple input sequence [x1 ,x2 ,x3 ], which represents regions 356
[dog, other, dog], we let m31 = A3m21 + A3. This way, 357
the requirement for a single A3 can be split into two parts, 358
thus avoiding contradictions. This can be expressed as: 359

mij = Aimi−1,j +Ai (29) 360

We implement these solutions into VideoMamba [22], to 361
form VideoMambaPro (see Figure 1). Given input video 362
X v ∈ R3×T×H×W , we first use a 3D convolution with a 363
1 × 16 × 16 kernel to convert X v into L non-overlapping 364
patch-wise tokens X p ∈ RL×C with L = t × h × w (t = 365
T, h = H

16 , w = W
16 ). Because SSM is sensitive to token 366

positions, and in line with [22], we include learnable spatial 367
and temporal position embeddings ps ∈ R(hw+1)×C and 368
pt ∈ Rt×C . Input tokens X are expressed as: 369

X = [X cls,X ] + ps + pt , (30) 370

where X cls is a learnable classification token positioned at 371
the start of the sequence. Input tokens X pass through K 372
Mamba blocks, and the final layer’s [CLS] token is used for 373
classification, after normalization and linear projection. 374

5. Experiments 375

5.1. Experimental setup 376

Datasets. We evaluate VideoMambaPro on five video 377
benchmarks: (a) Kinetics-400 (K400, [3]) comprises 378
∼240K training and ∼20K validation videos, each with 379
an average duration of 10 seconds and categorized into 380
400 classes. (b) Something-Something V2 (SSv2, [10]) in- 381
cludes ∼160K training and ∼20K validation videos with 382

5

Uncorrected author proof



ICCV
#8505

ICCV
#8505

an average duration of 4 seconds, and 174 motion-centric383
classes. (c) UCF-101 [44] is a relatively small dataset, con-384
sisting of ∼9.5K training and ∼3.5K validation videos. (d)385
HMDB51 [18] is also a compact video dataset, containing386
∼3.5K training and ∼1.5K validation videos. (e) AVA [14]387
is a dataset for spatio-temporal localization of human ac-388
tions with ∼211k and ∼57k validation video segments.389

Implementation. In line with VideoMamba, we introduce390
three models with increasing embedding dimension and391
number of bi-directional Mamba blocks K: Tiny, Small,392
and Middle (details in supplementary material). To com-393
pare with VideoMamba, we pre-train VideoMambaPro on394
ImageNet-1K (IN-1K). On K400, we also pre-train with IN-395
1K, fine-tune on the training set and report on the validation396
set. For K400, we also report on the larger 3362 input size.397
During pre-training, we follow DeiT [48] by applying a cen-398
ter crop to obtain the 2242 sized images. We apply random399
cropping, random horizontal flipping, label-smoothing reg-400
ularization, mix-up, and random erasing as data augmen-401
tations. We use AdamW [28] with a momentum of 0.9, a402
batch size of 1024, and a weight decay of 0.05. We employ403
a cosine learning rate schedule during training, 1 × 10−3404
initial learning rate over 300 epochs. The fine-tuning set-405
tings follow VideoMAE [47]. We resize frames to 2242,406
and use AdamW with a momentum of 0.9 and a batch size407
of 512. The evaluation process is the same as VideoMamba,408
and more details are in the supplementary materials. These409
materials also include results on IN-1K image classification.410

Method Pre-train Input Crops Param FLOP Top1 Top5

MViTv1-B [6] 32× 2242 5×1 37M 350G 80.2 94.4
MViTv2-S [25] 16× 2242 5×1 35M 320G 81.0 94.6
Uniformer-S [20] IN-1K 16× 2242 4×1 21M 168G 80.8 94.7
Uniformer-B [20] IN-1K 16× 2242 4×1 50M 388G 82.0 95.1
Uniformer-B [20] IN-1K 32× 2242 4×3 50M 3.1T 83.0 95.4
STAM [42] IN-21K 64× 2242 1×1 121M 1.0T 79.2 -
TimeSformer-L [2] IN-21K 96× 2242 1×3 121M 7.1T 80.7 94.7
ViViT-L [1] IN-21K 16× 2242 4×3 311M 47.9T 81.3 94.7
Mformer-HR [36] IN-21K 16× 3362 10×3 311M 28.8T 81.1 95.2
VideoMAE-H [47] IN-21K 16× 2242 5×3 633M 17.9T 86.6 97.1
X-CLIP-L/14 [32] CLIP-400M 16× 3362 4×3 453M 37.0T 87.7 —
MTV-H [55] 60M1 32× 2242 4×3 1120M 44.5T 89.1 98.2
InternVideo-1B [51] 412M2 64× 2242 16×4 1300M 86.2T 91.1 98.9
InternVideo2-1B [52] 414M3 16× 2242 16×4 1000M — 91.6 —
InternVideo2-6B [52] 414M3 16× 2242 16×4 5903M — 92.1 —

VideoMamba-Ti IN-1K 32× 2242 4×3 7M 0.4T 78.8 93.9
VideoMamba-Ti IN-1K 64× 3842 4×3 7M 2.4T 80.3 94.8
VideoMamba-S IN-1K 32× 2242 4×3 26M 1.6T 81.5 95.2
VideoMamba-S IN-1K 64× 3842 4×3 26M 4.7T 82.7 95.6
VideoMamba-M IN-1K 32× 2242 4×3 74M 4.8T 82.4 95.7
VideoMamba-M IN-1K 64× 3842 4×3 74M 28.4T 83.3 96.1
VideoMambaPro-Ti IN-1K 32× 2242 4×3 7M 0.4T 81.6 95.9
VideoMambaPro-Ti IN-1K 64× 3842 4×3 7M 2.2T 83.3 96.1
VideoMambaPro-S IN-1K 32× 2242 4×3 25M 1.6T 83.3 96.0
VideoMambaPro-S IN-1K 64× 3842 4×3 25M 4.4T 84.5 96.6
VideoMambaPro-M IN-1K 32× 2242 4×3 72M 4.7T 84.0 96.4
VideoMambaPro-M IN-1K 64× 3842 4×3 72M 27.0T 85.0 96.7

Table 1. Performance on K400. Top part of the table are Trans-
former models, bottom part are Mamba models. We report crops
(temporal × spatial) and FLOPs for inference. —: not reported.
1 IN-21K+WTS
2 CLIP-400M+WebVid+HowTo+K710+SSv2+AVA2.2+more.
3 LAION-300M+KMash+WebVid+InternVid+LLaVA+more.

5.2. Comparison with state-of-the-art 411

K400. Results appear in Table 1. Compared to Video- 412
Mamba, VideoMambaPro has slightly fewer parameters and 413
FLOPs. This is primarily because VideoMamba employs an 414
additional projection layer to generate the weight coefficient 415
z to adjust Af and Ab. See the supplementary materials for 416
an architecture comparison. VideoMambaPro outperforms 417
VideoMamba across model and input sizes. With 2242 in- 418
puts and pre-trained only on IN-1K, the best-performing 419
VideoMambaPro-M achieves a top-1 accuracy of 84.0%, 420
1.6% higher than VideoMamba-M. Further comparisons ap- 421
pear in Section 5.4. Increasing the input size to 3362 leads 422
to a performance improvement of 1.0-1.7%. 423

VideoMambaPro scores lower than the recent 424
InternVideo2-1B [52] by 7.6%, but was only pre-trained on 425
IN-1K and has significantly fewer parameters ( 1000M vs 426
72M) and inference only takes ∼5.5% of the FLOPs. 427

Method Pre-train Input Crops Param FLOP Top1 Top5

MViTv1-B [6] K400 16× 2242 1×3 37M 213G 64.7 89.2
MViTv1-B [6] K400 32× 2242 1×3 37M 510G 67.1 90.8
MViTv2-S [25] K400 16× 2242 1×3 35M 195G 68.2 91.4
MViTv2-B [25] K400 32× 2242 1×3 51M 675G 70.5 92.7
Uniformer-S [20] IN-1K+K400 16× 2242 1×3 21M 126G 67.7 91.4
Uniformer-B [20] IN-1K+K400 16× 2242 1×3 50M 291G 70.4 92.8
TimeSformer-L [2] IN-21K 16× 2242 1×3 121M 5.1T 62.5 -
ViViT-L [1] IN-21K+K400 16× 2242 4×3 311M 47.9T 65.4 89.8
Mformer-HR [36] IN-21K+K400 16× 3362 1×3 311M 3.6T 68.1 91.2
MaskFeat-L [53] IN-21K 64× 3122 4×3 218M 8.5T 75.0 95.0
VideoMAE-L [47] IN-21K 32× 2242 1×3 305M 4.3T 75.4 95.2
TubeViT-L [39] IN-1K 32× 2242 4×3 311M 9.5T 76.1 95.2
InternVideo-1B [51] See Table 1 64× 2242 16×4 1300M 86.2T 77.2 95.9
InternVideo2-1B [52] See Table 1 64× 2242 16×4 1000M — 77.1 —
InternVideo2-6B [52] See Table 1 64× 2242 16×4 5903M — 77.4 —

VideoMamba-Ti IN-1K 16× 2242 2×3 7M 102G 66.0 89.6
VideoMamba-S IN-1K 16× 2242 2×3 26M 408G 67.6 90.9
VideoMamba-M IN-1K 16× 2242 4×3 74M 2.4T 68.3 91.4
VideoMambaPro-Ti IN-1K 16× 2242 2×3 7M 96G 67.9 91.2
VideoMambaPro-S IN-1K 16× 2242 2×3 25M 382G 68.8 91.4
VideoMambaPro-M IN-1K 16× 2242 4×3 72M 2.2T 69.4 91.6

Table 2. Performance on SSv2. —: not reported. Top part of the
table are Transformer models, bottom part are Mamba models.

SSv2. Results appear in Table 2. VideoMambaPro 428
outperforms VideoMamba by 1.1–1.9%. It also out- 429
performs several popular transformer models. Although 430
InternVideo-1B [51] and InternVideo2-6B [52] outperform 431
our VideoMambaPro-M by 7.8% and 8.0%, respectively, 432
they require 18.0-82 times more parameters and at least 39 433
times more FLOPs. Again, we expect that the performance 434
for VideoMambaPro will increase with more pre-training. 435

UCF-101/HMDB51/AVA V2.2. From Table 3, it shows 436
that VideoMambaPro-M is competitive, and outperforms 437
VideoMamba by 3.4% and 1.8% on UCF-101 and 438
HMDB51, respectively. VideoMambaPro-M achieves 31.9 439
mAP on AVA V2.2, which is 10.7% lower than VideoMAE 440
V2 [50] but with an order of magnitude fewer parameters 441
and FLOPs and pre-trained only on IN-1K (see Table 4). 442
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Method Params UCF-101 HMDB51

VideoMoCo [33] 15M 78.7 49.2
CoCLR [16] 9M 81.4 52.1
MemDPC [15] 32M 86.1 54.5
Vi2CLR [4] 9M 89.1 55.7
VideoMAE [47] 87M 91.3 62.6
GDT [35] 33M 95.2 72.8
VideoMAE V2 [50] 1050M 99.6 88.1

VideoMamba-M 74M 88.2 60.8
VideoMambaPro-M 72M 91.6 63.2

Table 3. Results on UCF-101 and HMDB51.

Method FLOPs Param mAP

SlowFast R101 [8] 138G 53M 23.8
VideoMAE-B [47] 180G 87M 26.7
MViTv2-B [25] 225G 51M 30.5
ObjectTransformer [54] 243G 86M 31.0
MViTv2-L [25] 2828G 213M 34.4
ST-MAE-H [9] 1193G 632M 36.2
VideoMAE V2 [50] 4220G 1050M 42.6

VideoMamba-M [19] 202G 74M 30.1
VideoMambaPro-M 183G 72M 31.9

Table 4. Results on AVA V2.2.

Models Input Top-1 Top-5

VideoMamba-M (baseline) 32× 2242 82.4 95.7
VideoMambaPro-M (w/o residual) 32× 2242 83.6 (+1.2) 96.0 (+0.3)
VideoMambaPro-M (w/o masking) 32× 2242 83.0 (+1.0) 95.8 (+0.1)
VideoMambaPro-M 32× 2242 84.0 (+1.6) 96.4 (+0.7)

Table 5. Ablation study on K400, with and without masked back-
ward computation and elemental residual connections.

5.3. Ablation study443

Influence of masked backward computation and ele-444
mental residual connection. We have identified two lim-445
itations that exist in VideoMamba: historical decay and446
element contradiction. We introduced masked backward447
computation and elemental residual connections to address448
these respective issue. Here, we analyze the impact of449
each solution. We use the same settings as before, with450
VideoMambaPro-M and pre-training on IN-1K. We sum-451
marize the performance of VideoMambaPro-M on K400 in452
Table 5. Both solutions contribute to an improved score,453
and their effect is partly complementary. This indicates that454
the two limitations exist simultaneously in VideoMamba.455

Evidence of limitations of Mamba. We have theo-456
retically identifies historical decay and element contradic-457
tion as fundamental problems in Mamba, and propose the458
masked backward computation and elemental residual con-459
nection to solve the limitations. Previous experiments on460
image and video action recognition demonstrated the ef-461
fectiveness of our approach, and we further provide con-462
crete evidence that the increased performance stems from463

addressing these two issues. 464
We performed two tests on ImageNet-1K image clas- 465

sification task to build the connection between the issues 466
in practice and our approach. First, to investigate whether 467
the residual connection alleviates element contradiction, we 468
randomly replaced a percentage of the patches by randomly 469
selected patches from other classes, which will increase el- 470
ement contradiction because more irrelevant information is 471
present. The table 6 shows that the relative performance 472
of VideoMambaPro over VideoMamba increases to 9.2% 473
when 20% of the patches is replaced. For higher percent- 474
ages, the gap is reduced along with the overall score. This 475
demonstrates that irrelevant (or even misleading) informa- 476
tion can better be dealt with using our approach.

Replacement ratio
0 5 10 20 30 50 80

VideoMamba-Ti 76.9 73.2 68.0 59.4 52.9 47.6 28.9

VideoMambaPro-Ti 78.9 78.0 76.1 68.6 55.9 48.2 29.1

Table 6. Top-1 accuracy of VideoMambaPro-Ti and VideoMamba-
Ti with various replacement ratios (in %) on ImageNet-1K.

477
Second, to verify that masking addresses the issue of his- 478

torical decay, we adopted a progressive masking approach, 479
gradually decreasing the mask values of the diagonal el- 480
ements of Mb from 1 to 0, and then retrained the model 481
on ImageNet-1K. The results below show that VideoMam- 482
baPro’s accuracy gradually increases when more masking 483
is applied, evidencing the merits of the approach. 484

Mask value
1 0.7 0.5 0

VideoMambaPro-Ti 76.9 77.0 77.2 77.8

Table 7. Top-1 accuracy across mask values on ImageNet-1K.

5.4. Comparison with VideoMamba on K400 485

We more thoroughly compare the differences between 486
VideoMamba and VideoMambaPro by investigating the rel- 487
ative performance per class. We then present a statistical 488
comparison between the results of both backbones. 489
Class analysis. We compare VideoMambaPro-M with 2242 490
image size pre-trained on IN-1K to a VideoMamba-M base- 491
line with the same settings. We show the relative perfor- 492
mance for all classes of K400 in Figure 2. For over 95% 493
of the classes, VideoMambaPro shows improvement. Al- 494
though there is a lower performance for certain classes, the 495
decrease is typically limited. 496

The majority of the classes sees a ∼1.8% improvement, 497
which is substantial. For a small number of classes, Video- 498
MambaPro performs >2% better than VideoMamba. Only 499
a fraction of the classes is negatively affected by the solu- 500
tions introduced in VideoMambaPro. 501
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Figure 2. Relative accuracy per class on Kinetics-400 by compar-
ing VideoMambaPro-M to VideoMamba-M.

Statistical comparison. In order to understand whether502
the improvements of VideoMambaPro over VideoMamba503
are statistically significant, we compare the K400 results of504
the respective Middle models, both pre-trained on IN-1K505
and size 224 × 224. Other settings are also the same. For506
each test sample, we check whether if it correctly classified507
by either model. The results appear in Table 8.508

VideoMambaPro-M

True False Total

VideoMamba-M
True 14,302 469 14,771
False 1,833 3,302 5,135

Total 16,135 3,771 19,906

Table 8. Contingency table for K400 test items for VideoMamba-
M and VideoMambaPro-M.

We used the McNemar test, a non-parametric test with509
a single degree of freedom. It checks whether the num-510
ber of items that are incorrectly classified by VideoMam-511
baPro (n10) but not VideoMamba is substantially lower512
than the number of items misclassified by VideoMamba513
but not VideoMambaPro (n01). The test is calculated as514

χ2 = (n01−n10)
2

(n01+n10)
. The resulting value of 808.2 corresponds515

to a significance level of p < 0.001. We can thus conclude516
that VideoMambaPro-M is statistically significantly better517
than VideoMamba-M. Because we relied on the aggregated518
performance reported in papers for other methods, we can-519
not report statistical comparisons here.520

5.5. Computation cost analysis521

Finally, we compare the performance of VideoMambaPro522
with various model sizes with other approaches on K400.523
We map the top-1 to the number of parameters and FLOPs524
in Figures 3 and 4, respectively. VideoMambaPro per-525
forms favorably in terms of the accuracy-compute trade-526

Figure 3. Top-1 accuracy versus number of parameters of Video-
MambaPro and other models on Kinetics-400.

Figure 4. Top-1 accuracy versus number of FLOPs of VideoMam-
baPro and other models on Kinetics-400.

off. Importantly, VideoMambaPro was trained on much less 527
data than other models, which might provide opportunities 528
for further accuracy gains without additional compute and 529
memory requirements. 530

6. Conclusion 531

From a mathematical comparison with self-attention, we 532
have identified two limitations in how Mamba processes to- 533
ken sequences. We argue that these limitations constrain 534
Mamba’s potential, especially in video understanding tasks. 535
To address the two limitations, we have introduced Video- 536
MambaPro (VMP). It takes VideoMamba and introduces 537
the masked backward State Space Model (SSM), and adds 538
residual connections in both forward and backward SSM. 539
In experiments on Kinetics-400, Something-Something V2, 540
HMDB51, UCF-101, and AVA V2.2, VideoMambaPro 541
consistently demonstrates improved performance over the 542
vanilla VideoMamba. We expect that extensive pre-training 543
further elevates the performance of Mamba models for 544
video tasks, making it an increasingly attractive, efficient 545
alternative to large transformer models. 546
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pher Ré. Hippo: Recurrent memory with optimal polynomial593
projections. NeurIPS, 33:1474–1487, 2020. 2594

[13] Albert Gu, Karan Goel, and Christopher Ré. Efficiently595
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Snakes and Ladders: Two Steps Up for VideoMamba 
Supplementary Material

We provide the architectures for VideoMambaPro mod-001
els in Section 1. A comparison between the architectures002
of VideoMamba and VideoMambaPro appears in Section 2.003
Training details are presented in Section 3. Finally, we re-004
port ImageNet-1K image classification results in Section 4,005
to illustrate the potental of the proposed solutions for image006
classification tasks.007

1. VideoMambaPro architectures008

We present the architecture details of VideoMambaPro-009
Tiny (Ti), -Small (S), and -Middle (M) in Tables 1–3. The010
differences are in the embedding dimension (192, 384, 576)011
and the number of SSM blocks (24, 24, 32).012

Stage Tiny

Patch Embedding nn.Conv3d (kernel size = 16× 16× 1, embedding dimension = 192)

SSM

 MLP(768)
MLP(3072)

MHA (head = 12)

× 24

Projection

Layer Normalization
Dropout (ratio)

Linear layer (1000)
Softmax

Table 1. Architecture details of VideoMambaPro-Ti.

Stage Small

Patch Embedding nn.Conv3d (kernel size = 16× 16× 1, embedding dimension = 384)

SSM

 MLP(768)
MLP(3072)

MHA (head = 12)

× 24

Projection

Layer Normalization
Dropout (ratio)

Linear layer (1000)
Softmax

Table 2. Architecture details of VideoMambaPro-S.

2. Architecture comparison with VideoMamba013

We compare the architectures of VideoMambaPro and014
VideoMamba [1] in Figure 1. VideoMambaPro does not015

Stage Middle

Patch Embedding nn.Conv3d (kernel size = 16× 16× 1, embedding dimension = 576)

SSM

 MLP(768)
MLP(3072)

MHA (head = 12)

× 32

Projection

Layer Normalization
Dropout (ratio)

Linear layer (1000)
Softmax

Table 3. Architecture details of VideoMambaPro-M.

have the linear layer to generate parameters z. Additionally, 016
our residual SSM and mask scheme do not introduce addi- 017
tional parameters or computational overhead, so our method 018
has slightly fewer parameters and FLOPs. 019

Em
bedded Patches

Norm

Forward 
Conv1d

Forward SSM

Backward 
Conv1d

(a) VideoMamba Block

K ×

Backward  
SSM

Projection Layer

𝑥𝑥

𝑧𝑧 Activation

Em
bedded Patches

Norm

Forward 
Conv1d

Forward 
Residual SSM

Backward 
Conv1d

(b) VideoMambaPro Block (ours)

K ×

Masked Backward  
Residual SSM

Projection Layer

𝑥𝑥

Figure 1. Comparison between the bi-directional VideoMamba
(top) and VideoMambaPro (bottom) blocks.

3. Implementation details 020

We conduct pre-training on ImageNet-1K and fine-tuning 021
on the Something-Something V2 and Kinetics-400 datasets 022
with 16 NVIDIA A100-80G GPUs. Models for UCF101 023
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and HMDB51 are trained with 8 A100-80G GPUs. The ex-024
periments on AVA V2.2 are conducted with 32 A100-80G025
GPUs. The values of the hyperparameters are largely sim-026
ilar to those used in VideoMamba [1]. We linearly scale027
the base learning rate with respect to the overall batch size,028
lr = lrbase × batchsize/256. The pre-training details are029
shown in Table 4, and the fine-tuning details on the other030
datasets are listed in Tables 5–8.031

config image size: 224× 224

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.1 (Tiny), 0.05 (Small, Middle)
minimal learning rate 1.0e-6
optimizer momentum β1, β2 = 0.9, 0.95
batch size 512
learning rate schedule cosine decay
warmup epochs 5 (Tiny), 10 (Small), 40 (Middle)
dropout ratio 0 (Tiny), 0.15 (Small), 0.5 (Middle)
augmentation MultiScaleCrop
label smoothing 0.1

Table 4. Pre-training setting on ImageNet-1K

config image size: 224× 224

optimizer AdamW
base learning rate 1.5e-4
weight decay 0.1 (Tiny), 0.05 (Small, Middle)
minimal learning rate 1.0e-6
optimizer momentum β1, β2 = 0.9, 0.99
batch size 256
learning rate schedule cosine decay
warmup epochs 5 (Tiny), 5 (Small) 10 (Middle)
dropout ratio 0.1 (Tiny), 0.35 (Small), 0.6 (Middle)
augmentation RandAug (7, 0.25) (Tiny), RandAug (9, 0.5) (Small, Middle)
label smoothing 0.1
flip augmentation yes

Table 5. Fine-tuning setting for Kinetics-400

config image size: 224× 224

optimizer AdamW
base learning rate 4e-4
weight decay 0.1 (Tiny), 0.05 (Small, Middle)
minimal learning rate 1.0e-6
optimizer momentum β1, β2 = 0.9, 0.999
batch size 256
learning rate schedule cosine decay
warmup epochs 5 (Tiny), 5 (Small) 10 (Middle)
dropout ratio 0.1 (Tiny), 0.35 (Small), 0.6 (Middle)
augmentation RandAug (7, 0.25) (Tiny), RandAug (9, 0.5) (Small, Middle)
label smoothing 0.1
flip augmentation no

Table 6. Fine-tuning setting for Something-Something V2

4. Results on ImageNet-1K032

We argue that the proposed solutions in handling the fea-033
ture extraction capabilities of Mamba models are most ef-034
fective when relevant tokens are more sparsely distributed035

config image size: 224× 224

optimizer AdamW
base learning rate 4e-4
weight decay 0.1 (Tiny), 0.05 (Small, Middle)
minimal learning rate 1.0e-6
optimizer momentum β1, β2 = 0.9, 0.99
batch size 128
learning rate schedule cosine decay
warmup epochs 5 (Tiny), 5 (Small) 10 (Middle)
dropout ratio 0.1 (Tiny), 0.35 (Small), 0.6 (Middle)
augmentation RandAug (7, 0.25) (Tiny), RandAug (9, 0.5) (Small, Middle)
label smoothing 0.1
flip augmentation yes

Table 7. Fine-tuning setting for UCF101/HMDB51

config image size: 224× 224

optimizer AdamW
base learning rate 1.5e-3 (Tiny), 2.5e-4 (Small, Middle)
weight decay 0.051 (Tiny, Small, Middle)
minimal learning rate 1.0e-6
optimizer momentum β1, β2 = 0.9, 0.999
batch size 128
learning rate schedule cosine decay
warmup epochs 5 (Tiny), 5 (Small) 10 (Middle)
dropout ratio 0.1 (Tiny), 0.35 (Small) 0.6 (Middle)
augmentation RandAug (7, 0.25) (Tiny), RandAug (9, 0.5) (Small, Middle)
label smoothing 0.1
flip augmentation yes

Table 8. Fine-tuning setting for AVA 2.2

in the input. While our main focus is on the video do- 036
main, we also summary our experiments on image classi- 037
fication. We pre-train VideoMambaPro on ImageNet-1K, 038
which contains 1.28M training images and 50K validation 039
images across 1,000 categories. All models are trained on 040
the training set, and top-1 accuracy on the validation set is 041
reported. For fair comparison, we adopt the same method 042
as VideoMamba, and our training settings primarily follows 043
DeiT [2]. When training on 2242 input images, we use 044
AdamW with a momentum of 0.9 and a total batch size of 045
512. Training is performed on 8 A800 GPUs, with more 046
details provided in Table 4. The results are summarized in 047
Table 9. VideoMambaPro achieves accuracy gains of 0.9- 048
2.0% over VideoMamba. 049

Input Param FLOPs Top-1

VideoMamba (Ti) 224 2 7M 1.1G 76.9
VideoMambaPro (Ti) 224 2 7M 1.1G 78.9
VideoMamba (S) 224 2 26M 4.3G 81.2
VideoMambaPro (S) 224 2 25M 4.2G 82.4
VideoMamba (M) 224 2 74M 12.7G 82.8
VideoMambaPro (M) 224 2 72M 12.4G 83.8
VideoMamba (M) 448 2 75M 50.4G 83.8
VideoMambaPro (M) 448 2 73M 49.6G 84.7

Table 9. ImageNet-1K pre-training results for VideoMamba and
VideoMambaPro.
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