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Abstract— Facial Action Unit (AU) detection has gained
significant attention as it enables the breakdown of complex
facial expressions into individual muscle movements. In this
paper, we revisit two fundamental factors in AU detection:
diverse and large-scale data and subject identity regulariza-
tion. Motivated by recent advances in foundation models,
we highlight the importance of data and introduce Face9M,
a diverse dataset comprising 9 million facial images from
multiple public sources. Pretraining a masked autoencoder on
Face9M yields strong performance in AU detection and facial
expression tasks. More importantly, we emphasize that the
Identity Adversarial Training (IAT) has not been well explored
in AU tasks. To fill this gap, we first show that subject identity
in AU datasets creates shortcut learning for the model and
leads to sub-optimal solutions to AU predictions. Secondly,
we demonstrate that strong IAT regularization is necessary to
learn identity-invariant features. Finally, we elucidate the design
space of IAT and empirically show that IAT circumvents the
identity-based shortcut learning and results in a better solution.
Our proposed methods, Facial Masked Autoencoder (FMAE)
and IAT, are simple, generic and effective. Remarkably, the
proposed FMAE-IAT approach achieves new state-of-the-art
F1 scores on BP4D (67.1%), BP4D+ (66.8%), and DISFA
(70.1%) databases, significantly outperforming previous work.
We release the code and model.

I. INTRODUCTION

The Facial Action Coding System (FACS) was developed
to objectively encode facial behavior through specific move-
ments of facial muscles, named Action Units (AU) [19].
Compared with facial expression recognition (FER) [37],
[84], [35] and valence and arousal estimation [85], [51], [54],
detecting action units offers a more nuanced and detailed
understanding of human facial behavior capturing multiple
individual facial actions simultaneously.

This problem attracted considerable interest within the
deep learning community [13], [32], [72], [56], [61], [73].
Many works used a facial region prior [39], [56], [13],
introduced extra modalities [80], [69], [81], or incorporated
the inherent AU relationships [38], [46], [75] to solve the
AU detection task and achieved significant advancements.
Diverging from these approaches, which often necessitate
complex model designs or depend heavily on prior AU
knowledge, in this paper, we revisit two fundamental factors
that significantly contribute to the AU detection task: diverse
and large-scale data and subject identity regularization.

Recently, data has become pivotal in training foundation
models [57], [2], [42], [64] and large language models [8],
[1], [65], [15]. Following this trend, we introduce Face9M, a
large-scale and diverse facial dataset curated and refined from
publicly available datasets for pretraining. Different from

contrastive learning methods [9], [13], [22], we propose to
do facial representation learning using Masked Autoencoders
(MAE) [27]. The underlying motivation is that most facial
tasks require a fine-grained understanding of the face, and
masked pretraining results in lower-level semantics than
contrastive learning according to [5]. Our large-scale facial
representation learning approach demonstrates excellent gen-
eralization and scalability in downstream tasks. Notably, our
proposed Facial Masked Autoencoder (FMAE), pretrained
on Face9M, sets new state-of-the-art benchmarks in both AU
detection and FER tasks.

Similar to the importance of data, domain knowledge and
task-prior knowledge can be incorporated into the model in
the form of regularization [26], [31], [52], [55] to improve
task performance. Our key observation is that popular AU
detection benchmarks (i.e. BP4D [83], BP4D+ [86], DISFA
[50]) include at most 140 human subjects and 192,000
images, meaning that each subject has hundreds of annotated
images. This abundance can lead models to prefer simple,
easily recognizable patterns over more complex but general-
izable ones, as suggested by the shortcut learning theory
[23], [29]. Therefore, we hypothesize that AU detection
models tend to learn the subject identity features to
infer the AUs, resulting in learning a trivial solution
that does not generalize well. To verify our hypothesis,
we employed the linear probing technique — adding a
learnable linear layer to a trained AU model while freezing
the network backbone —to measure identity recognition
accuracy. The high accuracy (83%) we obtained in predicting
the identities of the subjects clearly shows that the models
effectively ‘memorize’ subject identities. To counteract the
learning of identity-based features, we propose in this paper
Identity Adversarial Training (IAT) for AU detection task by
adding a linear identity prediction head and unlearning the
identity feature using gradient reverse [20]. Further analysis
shows that IAT significantly reduces the identity accuracy
of linear probing and leads to better learning dynamics that
avoid convergence to trivial solutions. This method further
improves our AU models beyond the advantages brought by
pretraining with a large-scale dataset.

Although Zhang et al. [87] first introduced identity-based
adversarial training to AU detection tasks, the identity learn-
ing issue and its negative effect (identity shortcut learning)
have not been explored. Also, the design space of IAT lacks
illustration in [87]. We revisit the identity adversarial training
method in depth to answer these unexplored questions. In
contrast to the weak identity regularization used in [87],
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we demonstrate that AU detection requires a strong identity
regularization. To this end, the linear identity head and a large
gradient reverse scaler are necessities for the AU detection
task. Our proposed FMAE with IAT sets a new record of
F1 score on BP4D (67.1%), BP4D+ (66.8%) and DISFA
(70.1%) datasets, substantially surpassing previous work.

Overall, the main contributions of this paper are:
• We demonstrate the effectiveness of using a diverse

dataset for facial representation learning.
• We highlight the identity shortcut learning issue and

propose the use of a linear identity head and a large
gradient reversal scalar in IAT to mitigate this issue for
AU detection.

• We release the code and checkpoint of FMAE with
various model sizes (small, base, large), aiming at
facilitating all facial tasks.

II. RELATED WORK

A. Action Unit Detection

Recent works have proposed several deep learning-based
approaches for facial action unit (AU) detection. Some of
them have divided the face into multiple regions or patches
[88], [39], [56] to learn AU-specific representations and some
have explicitly modeled the relationships among AUs [38],
[46], [75]. The most recent approaches have focused on
detecting AUs using vision transformers on RGB images
[32] and on multimodal data including RGB, depth im-
ages, and thermal images [81]. Yin et al. [77] have used
generative models to extract representations and a pyramid
CNN interpreter to detect AUs. Yang et al. [74] jointly
modeled AU-centered features, AU co-occurrences, and AU
dynamics. Contrastive learning has recently been adopted for
AU detection [41], [60]. Particularly, Chang et al. [13] have
adopted contrastive learning among AU-related regions and
performed predictive training considering the relationships
among AUs. Zhang et al. [80] have proposed a weakly-
supervised text-driven contrastive approach using coarse-
grained activity information to enhance feature representa-
tions. In addition to fully supervised approaches, Tang et
al. [63] have implemented a semi-supervised approach with
discrete feedback. However, none of these approaches have
made use of large-scale self-supervised pretraining.

B. Facial Representation Learning

Facial representation learning [9], [10], [89] has seen
substantial progress with the advent of self-supervised learn-
ing [14], [28], [7], [27], [12]. For example, Mask Contrastive
Face [68] combines mask image modeling with contrastive
learning to do self-distillation, thereby enhancing facial
representation quality. Similarly, ViC-MAE [30] integrates
MAE with temporal contrastive learning to enhance video
and image representations. MAE-face [47] uses MAE for
facial pertaining by 2 million facial images. Additionally,
ContraWarping [71] employs global transformations and
local warping to generate positive and negative samples for
facial representation learning. To learn good local facial rep-
resentations, Gao et al. [22] explicitly enforce the consistency

of facial regions by matching the local facial representations
across views. Different from the above-mentioned work that
mainly focuses on models, we emphasize the importance of
data (diversity and quantity). Our collected datasets contain
9 million images from various public resources.

C. Adversarial Training and Gradient Reverse

Adversarial training [25] is a regularization technique in
deep learning to enhance the model’s robustness specifi-
cally against input perturbations that could lead to incorrect
outputs. Although gradient reverse technique [20] aims to
minimize domain discrepancy for better generalization across
different data distributions, these two techniques share the
same spirit of the ’Min-Max’ training paradigm and are
used to improve the model robustness [36], [48], [21], [66].
Gradient reverse has also been used for the regularization of
fairness [58] or for meta-learning [4].

The most relevant research to our paper is [87], where the
authors introduce identity-based adversarial training for the
AU detection task. However, they did not thoroughly inves-
tigate the identity learning phenomenon and its detrimental
impacts. Moreover, their empirical settings, the small gradi-
ent reverse scaler and the 2-layer MLP identity head, have
been [87] verified as an inferior solution to AU detection. By
contrast, we conduct a comprehensive examination for IAT
to address these unexplored questions.

III. METHODS

A. Large-scale Facial MAE Pretraining

While the machine learning community has long estab-
lished the importance of having rich and diverse data for
training, recent successes in foundation models and large
language models illustrated the full potential of pretaining
[57], [42], [8], [1], [65]. In line with this, our research pivots
towards a nuanced exploration of data diversity and quantifi-
cation in the context of facial representation learning. Unlike
natural image datasets like ImageNet-1k, face datasets have
low variance. Also, we observe that different facial datasets
have domain shifts regarding the facial area, perspective and
background. To increase the data diversity, we propose to
collect a large facial dataset for pertaining from multiple
data sources.

We first collect facial images from CelebA [44], FFHQ
[33], VGGFace2 [11], CASIA-WebFace [76], MegaFace
[34], EDFace-Celeb-1M [79], UMDFaces [6] and LAION-
Face [89] datasets, because these datasets contain a massive
number of identities collected in diverse scenarios. For
instance, the facial images in UMDFaces also capture the
upper body with various image sizes, while some datasets
(FFHQ, CASIA-WebFace) mainly feature the center face.
We then discard images whose width-height-ratio or height-
width-ratio is larger than 1.5. Finally, the remaining images
are resized to 224*224. The whole process yields 9 million
facial images (termed Face9M) which will be used for self-
supervised facial pertaining.

Regarding representation learning methods, we apply
Masked Image Modeling (MIM) [27] as it tends to learn
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more fine-grained features than contrastive learning accord-
ing to the study in [5], which benefits facial behavior under-
standing. Specifically, we utilize Face9M to train a masked
autoencoder (MAE) by the mean squared error between the
reconstructed and original images in the pixel space. The
resulting model is termed FMAE, and the decoder of FMAE
is discarded for the downstream tasks.

B. Identity Adversarial Training

One of our key findings in this paper is that, the limited
number of subjects in AU datasets makes identity recognition
a trivial task and provides a shortcut learning path, resulting
in a AU model that contains identity-related features and
does not generalize well (see Section V). Motivated by the
gradient reverse in domain adaption [20], we propose to
apply gradient reverse on AU detection to learn identity-
invariant features, aiming at better model generalization.

Our model architecture is presented in Figure 1, where
the backbone is a vision transformer and parameterized by
θf , the AU head predicts the AUs and the ID head outputs
the subject identities, respectively. The input image xxx is
first mapped by the backbone Gf (·; θf ) to a D-dimensional
feature vector fff ∈ RD, then the feature vector fff is fed into
the AU head Gf (·; θau) and the ID head Gf (·; θid). simulta-
neously. Assume that we have data samples (xxx, y, d) ∼ Ds,
parameters θau of the AU head are optimized to minimize
the AU loss Lau given AU label y, and parameters θid of the
ID head are trained to minimize the identity loss Lid given
the identity label d.

To make the feature vector fff invariant to subject identity,
we seek the parameters θf of the backbone that maximize the
identity loss Lid (Equation 3), so that the backbone excludes
the identity-based features. In the meantime, the backbone
Gf (·; θf ) is expected to minimize the AU loss Lau. Formally,
we consider the following functional loss:

Lau = E(xxx,y)∼Ds
[CE(Gy(Gf (xxx; θf ); θau), y)] (1)

Lid = E(xxx,d)∼Ds
[CE(Gd(Gf (xxx; θf ); θid), d)] (2)

where CE denotes the cross entropy loss function. We seek
the parameters θ∗f , θ∗au, θ∗id that deliver a solution:
(θ∗f , θ

∗
au) = arg min

θf ,θau

Lau(Ds; θf , θau)− λLid(Ds; θf , θ
∗
id)

(3)
θ∗id = arg min

θid
Lid(Ds; θ

∗
f , θid) (4)

where the parameter λ controls the trade-off between the
two objectives that shape the feature fff during learning.
Comparing the identity loss Lid in Equation 3 and Equation
4, θf is optimized to maximize to increase Lid while θid
is learned to reduce Lid. To achieve these two opposite
optimizations through regular gradient descent and backprop-
agation, the gradient reverse layer is designed to reverse the
identity partial derivative ∂Lid

∂θid
before it is propagated to the

backbone. The resultant derivative −λ∂Lid

∂θf
, together with

∂Lau

∂θf
, are used to update the backbone parameter θf .

Intuitively, the backbone is still optimized to learn the
AU-related features, but under the force of reducing the
identity-related features. The ‘Min-Max’ training paradigm
in gradient reverse (see Equation 3) resembles the adver-
sarial training [49] and Generative Adversarial Networks
(GANs) [24], so we name our method ‘Identity Adversarial
Training’ for the AU detection task.

Fig. 1: Architecture of Identity Adversarial Training. The
AU head and ID head both are a linear classifier predicting
the AUs and identity, respectively. The backbone Gf (·; θf )
is the encoder of the pretrained FMAE. During training,
the AU head is optimized by ∂Lau

∂θf
and the ID head is

optimized by ∂Lid

∂θf
. The gradient reverse layer multiplies

the gradient by a negative value −λ to unlearn the features
capable of recognizing identities. Finally, the parameters of
the backbone are optimized by the two forces: −λ∂Lid

∂θf
and

∂Lau

∂θf
.

Importantly, we reveal the key design of identity adversar-
ial training for AU detection: a strong adversarial regular-
ization (large magnitude of −λ∂Lid

∂θf
) is required to learn

identity-invariant features for the backbone. Specifically,
we propose to use a large λ and a linear projection layer
for the ID head. The former scales up the ∂Lid

∂θf
and the

latter ensures a large Lid, leading to a large || − λ∂Lid

∂θf
||

during training. In Section V-C, we will show that the small
λ and 2-layer MLP ID head used by [87] would lead to a
weak identity regularization (small magnitude of −λ∂Lid

∂θf
)

and inferior AU performance. We defer more details and
analysis to Section V-C

IV. EXPERIMENTS

We test the performance of FMAE and FMAE-IAT on AU
benchmarks, using the F1 score. To illustrate the represen-
tation learning efficacy of FMAE, we also report its facial
expression recognition (FER) accuracy on RAF-DB [59] and
AffectNet [53] databases, and compare FMAE with previous
face models pretrained based on contrastive learning.

A. Datasets

BP4D [83] is a manually annotated database of sponta-
neous behavior containing videos of 41 subjects. There are
8 activities designed to elicit various spontaneous emotional
responses, resulting in 328 video clips. A total of 140,000

3
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TABLE I: F1 scores (in %) achieved for 12 AUs on BP4D dataset. The best and the second-best results of each column are
indicated with bold font and underline, respectively.

Methods Venue AU Avg.
1 2 4 6 7 10 12 14 15 17 23 24

HMP-PS [62] CVPR’21 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
SEV-Net [73] CVPR’21 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9
FAUT [32] CVPR’21 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
PIAP [63] ICCV’21 55.0 50.3 51.2 80.0 79.7 84.7 90.1 65.6 51.4 63.8 50.5 50.9 64.4
KSRL [13] CVPR’22 53.3 47.4 56.2 79.4 80.7 85.1 89.0 67.4 55.9 61.9 48.5 49.0 64.5
ANFL [46] IJCAI’22 52.7 44.3 60.9 79.9 80.1 85.3 89.2 69.4 55.4 64.4 49.8 55.1 65.5
CLEF [80] ICCV’23 55.8 46.8 63.3 79.5 77.6 83.6 87.8 67.3 55.2 63.5 53.0 57.8 65.9
MCM [81] WACV’24 54.4 48.5 60.6 79.1 77.0 84.0 89.1 61.7 59.3 64.7 53.0 60.5 66.0
AUFormer [78] ECCV’24 - - - - - - - - - - - - 66.2
MDHR [69] CVPR’24 58.3 50.9 58.9 78.4 80.3 84.9 88.2 69.5 56.0 65.5 49.5 59.3 66.6

FMAE (ours) 59.2 50.0 62.7 80.0 79.2 84.7 89.8 63.5 52.8 65.1 55.3 56.9 66.6
FMAE-IAT (ours) 62.7 51.9 62.7 79.8 80.1 84.8 89.9 64.6 54.9 65.4 53.1 54.7 67.1

frames are annotated by expert FACS annotators. Follow-
ing [39], [80], [69], we split all annotated frames into three
subject-exclusive folds for 12 AUs.

BP4D+ [86] is an extended dataset of BP4D and features
140 participants. For each subject, 20 seconds from 4 activ-
ities are manually annotated by FACS annotators, resulting
in 192,000 labelled frames. We divide the subjects into four
folds as per guidelines in [82], [80] and 12 AUs are used for
AU detection.

DISFA [50] contains left-view and right-view videos of 27
subjects. Similar to [73], [80], we use 8 of 12 AUs. We treat
samples with AU intensities higher or equal to 2 as positive
samples. The database contains 130,000 manually annotated
images. Following [80] we perform subject-exclusive 3-fold
cross-validation.

RAF-DB [59] contains 15,000 facial images with anno-
tations for 7 basic expressions namely neutral, happiness,
surprise, sadness, anger, disgust, and fear. Following the
previous work [61], [80], we use 12,271 images for training
and the remaining 3,068 for testing.

AffectNet [53] is currently the largest FER dataset with
annotations for 8 expressions (neutral, happy, angry, sad,
fear, surprise, disgust, contempt). AffectNet-8 includes all
expression images with 287,568 training samples and 4,000
testing samples. In practice, we only use 37,553 images
(from Kaggle) for training as training on the whole training
set is expensive.

B. Implementation details

Regarding facial representation learning, we pretrain
FMAE with Face9M for 50 epochs (including two warmup
epochs) using four NVIDIA A100 GPUs. The remaining
parameter settings follow [27] without any changes. After
the pertaining, we finetune FMAE for FER tasks with cross-
entropy loss, and fine-tune FMAE and FMAE-IAT for AU
detection with binary cross-entropy loss. In most cases, we
finetune the model for 30 epochs with a batch size of 64
and a base learning rate of 0.0005. Following MAE [28],
we use a weight decay of 0.05, AutoAugmentation [16] and

Random Erasing 0.25 [90] for regularization. By default,
we apply ViT-large for FMAE and FMAE-IAT throughout
this paper, if not specified otherwise. The complete code,
hyperparameters and training/testing protocols are posted on
our GitHub repository for reproducibility.

ViT-small ViT-base ViT-large62

63

64

65

66

67

F1
 sc

or
e

ImageNet pretraining (MAE)
Face9M pretraining (FMAE)

Fig. 2: F1 results of FMAE using different model sizes on
12 AUs of the BP4D. Models pretrained on Face9M are
better than the ones pretrained on ImageNet-1k. MAE paper
does not train ViT-small on ImageNet-1k, thus this entry is
missing.

C. Result of FMAE

We first show the F1 score of FMAE on the BP4D dataset
in Table I. FMAE achieves the same average F1 (66.6%) with
the state-of-the-art method MDHR [69] which utilizes a two-
stage model to learn the hierarchical AU relationships. Here,
we see the effectiveness of data-centric facial representation
learning, and demonstrate that a simple vision transformer
[18], which is the architecture of FMAE, is capable of
learning complex AU relationships. FMAE surpasses all
previous work on BP4D+ and DISFA by achieving 66.2%
and 68.7% F1 scores, respectively (see Table II and Table
III).
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TABLE II: F1 scores (in %) achieved for 12 AUs on BP4D+ dataset. The best and the second-best results of each column
are indicated with bold font and underline, respectively. MFT* uses extra depth modality.

Methods Venue AU Avg.
1 2 4 6 7 10 12 14 15 17 23 24

ViT [18] ICLR’21 45.6 38.2 35.5 85.9 88.3 90.3 89.0 81.9 45.8 48.8 57.2 34.6 61.6
CLIP [57] ICML’21 49.4 39.7 38.9 85.7 87.6 90.6 89.0 80.6 44.9 50.3 56.1 32.8 62.1
SEV-Net [73] CVPR’21 47.9 40.8 31.2 86.9 87.5 89.7 88.9 82.6 39.9 55.6 59.4 27.1 61.5
MFT [82] FG’21 48.4 37.1 34.4 85.6 88.6 90.7 88.8 81.0 47.6 51.5 55.6 36.9 62.2
MFT* [82] FG’21 49.6 42.0 43.5 85.8 88.6 90.6 89.7 80.8 49.8 52.2 59.1 38.4 64.2
CLEF [80] ICCV’23 47.5 39.6 40.2 86.5 87.3 90.5 89.9 81.6 47.0 46.6 54.3 41.5 63.1
GLTE-Net [3] Intelli’24 51.5 46.6 43.5 86.8 89.6 91.0 89.8 82.3 46.8 49.3 60.9 50.9 65.7

FMAE (ours) 53.9 45.5 45.9 86.2 88.3 91.2 89.9 82.3 51.3 56.3 60.7 42.7 66.2
FMAE-IAT (ours) 54.2 47.0 53.9 85.7 88.4 91.2 89.7 82.4 50.3 54.4 61.0 43.4 66.8

TABLE III: F1 scores (in %) achieved for 8 AUs on DISFA dataset. The best and the second-best results of each column
are indicated with bold font and underline, respectively.

Methods Venue AU Avg.
1 2 4 6 9 12 25 26

FAUT [32] CVPR’21 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
PIAP [63] ICCV’21 50.2 51.8 71.9 50.6 54.5 79.7 94.1 57.2 63.8
ANFL [46] IJCAI’22 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1
KSRL [13] CVPR’22 60.4 59.2 67.5 52.7 51.5 76.1 91.3 57.7 64.5
KS [40] ICCV’23 53.8 59.9 69.2 54.2 50.8 75.8 92.2 46.8 62.8
CLEF [80] ICCV’23 64.3 61.8 68.4 49.0 55.2 72.9 89.9 57.0 64.8
SACL [43] TAC’23 62.0 65.7 74.5 53.2 43.1 76.9 95.6 53.1 65.5
MDHR [69] CVPR’24 65.4 60.2 75.2 50.2 52.4 74.3 93.7 58.2 66.2
AUFormer [78] ECCV’24 - - - - - - - - 66.4
GPT-4V [45] CVPRW’24 52.6 56.4 82.9 64.3 55.3 75.4 91.2 66.4 67.3

FMAE (ours) 62.7 59.5 67.3 55.6 61.8 77.9 95.0 69.8 68.7
FMAE-IAT (ours) 64.7 61.3 70.8 58.1 59.4 79.9 95.2 71.3 70.1

To further verify the importance of the Face9M dataset,
we compare FMAE pretrained on Face9M with FMAE
pretrained on ImageNet-1k [17], using BP4D as the test set.
Figure 2 shows that FMAE pretrained on Face9M always
outperforms the one pretrained on ImageNet-1k given the
same model size (ViT-base or ViT-large). Also, we empiri-
cally demonstrate that FMAE benefits from the scaling effect
of model size on AU detection tasks (see the green line in
Figure 2).

TABLE IV: Results of accuracy on FER benchmarks. FMAE
surpasses all previous contrastive-related work.

Model Contrastive MIM AffectNet-8 RAF-DB

MCF [68]
√ √

60.98 86.86
FaRL [89]

√ √
- 88.31

CLEF [80]
√

62.77 90.09
FRA [22]

√
- 90.76

LA-Net [70]
√

64.54 91.78

FMAE (ours)
√

65.00 93.09

In addition to AU detection, we benchmark FMAE on the
downstream facial task of FER to verify the effectiveness
of masked image representation learning. We present the
results of FMAE on AffectNet-8 and RAF-DB in Table IV

and compare FMAE with other contrastive learning-based
models. FMAE sets a new state-of-art accuracy on both
datasets (65% on AffectNet-8 and 93.09% on RAF-DB).
Note that, we did not test FMAE-IAT on FER tasks because
these datasets do not include the identity labels and do not
suffer from identity shortcut learning due to the large number
of subjects.

D. Results of FMAE-IAT

Although FMAE has already achieved superior results on
AU benchmarks, we highlight that the Identity Adversarial
Training could further boost the performance of FMAE
across all AU datasets. Specifically, we compare FMAE-
IAT with the most recent state of the art methods on BP4D,
BP4D+ and DISFA datasets. Table I suggests that FMAE-
IAT shows superior performance by achieving an average F1
Score of 67.1% and FMAE-IAT ranks as the best or second-
best performer in several individual AUs, notably AU 1, 2,
4, 12, 17 and 23. Similarly, FMAE-IAT also stands out on
BP4D+ dataset with the highest average F1 score of 66.8%
shown in Table II. Our results on the DISFA benchmark
given in Table III are even more distinguishing, FMAE-IAT
gains the best or the second-best performance on 6 out of 8
AUs, pushing the average F1 score beyond the 70% mark.
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For the gradient reverse layer, we use λ = 2.0 for BP4D,
λ = 1.0 for BP4D+ and λ = 0.5 for DISFA. Differing from
the setting λ ∈ [0.008, 0.08] used in [87], we emphasize that
a strong IAT regularization is necessary for AU tasks and we
defer the in-depth discussion throughout Section V.

V. ANALYSIS OF IDENTITY ADVERSARIAL TRAINING

In this section, we elucidate IAT by first showing the
identity learning issue in AU tasks (Section V-A), then
demonstrating the learning dynamics refined by IAT (Section
V-B), and finally illustrating the importance of ensuring a
strong regularization of IAT (Section V-C).

A. Linear probing for identity recognition
Motivated by the shortcut learning theory [23], [29], we

hypothesize that each subject of AU datasets is exposed to the
neural network hundreds of times in a single training epoch,
which provides an identity shortcut for the model to learn
the subject identity. This identity learning issue is undesired,
as the model is supposed to generalize to unseen subjects.

To demonstrate identity learning in AU detection, we
quantitatively and qualitatively evaluate the identity features
via linear probing [14] and t-SNE [67] technique, respec-
tively. In detail, we apply linear probing on a trained AU de-
tection model (FMAE) and evaluate the identity recognition
accuracy on the BP4D dataset, which contains 41 subjects
with the identity labels. Specifically, we freeze the backbone
Gf (·; θf ) of a well-trained FMAE and add a learnable linear
classifier on top of the backbone to predict the identity
label. For each subject in BP4D, we randomly draw 70
samples for training and 30 samples for testing. The resultant
accuracy under linear probing is shown in Figure 3, the red
line indicates that FMAE can recognize more than half of
people among the 41 subjects even though the model is only
trained for one epoch. Given enough training, the identity
recognition accuracy can be as high as 83%. By contrast, IAT
significantly alleviates this identity learning issue with 4.6%
accuracy after one epoch of training and 27.9% accuracy at
epoch 19. An interesting phenomenon is that even under the
strong identity unlearning regularization, FMAE-IAT seems
still to partially learn the identity-based features, by showing
27.9% accuracy (higher than the random guess accuracy
2.4%). We believe that the inherent high correlation between
training and testing images for each subject provides the
possibility for the model to infer the identity by looking at
the non-face area.

We also visualize the feature output from the backbone
of FMAE and FMAE-IAT using t-SNE and see how these
features are clustered according to the identity label. Figure
4 presents the t-SNE results for 20 subjects in BP4D (41
subjects in total), given trained FMAE and FMAE-IAT
models. It is clear that the identity-based feature clusters in
FMAE become less linearly distinguishable (the ID head is
a linear layer) under the effect of IAT.

B. IAT mitigates identity shortcut learning
After showing that a regular AU model (FMAE) learns the

subject identity, we now illustrate that the identity shortcut

2 4 6 8 10 12 14 16 18
training epoch
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20
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80
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ay
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Fig. 3: Identity recognition accuracy (%) evaluated by lin-
ear probing on the BP4D dataset. IAT greatly reduces the
identity-related features learned by the network backbone
Gf (·; θf ).

learning leads to a trivial AU prediction solution that is
inferior to the solution delivered by IAT. Concretely, we
observe that FMAE and FMAE-IAT have totally different
learning dynamics in terms of AU predictions (indicated by
F1 score). Figure 5 shows the F1 score of both models
along the training epochs, where the two models share the
same learning rate, batch size and initial training states. It
is clear from Figure 5 that FMAE is optimized quickly and
converges at the third epoch with an F1 score of 65.45%
under the identity shortcut. In contrast, FMAE-IAT learns
the AU decision boundary progressively and converges only
at epoch 15 with an F1 score of 66.66%. One can infer that
IAT explicitly pushes the backbone Gf (·; θf ) away from the
identity-related solution region and delivers a better solution
for AU detection tasks.

C. Large || − λ∂Lid

∂θf
|| is necessary

In Section III-B, we have mentioned the key design space
of IAT: a linear projection layer for the ID head and a large
λ for the gradient reverse layer. These two factors together
ensure the large magnitude of −λ∂Lid

∂θf
during the adversarial

training of the backbone Gf (·; θf ). We elaborate here on the
specifics of the IAT design space. We postulate that learning
the subject identity is relatively easy, since there are many
facial components and non-facial cues that can be used for
identity recognition. Therefore, a strong regularization of
IAT (i.e., a large || − λ∂Lid

∂θf
||) is required to counteract the

identity-related learning tendency.
We first show the effect of using different λ on the fold-2

of the BP4D dataset. All models share the same training
settings except for λ. In Table V, ‘Epoch’ indicates the
training convergence point in terms of the F1 score and λ = 0
represents the group without IAT. We see that a small λ
(λ = 0.02), such as the one used in [87], has little gain of
F1 score, whereas the large λ (λ = 1, 2, 3) yields significant
improvement of AU prediction. Moreover, the larger λ we
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Fig. 4: t-SNE visualization of the backbone features on BP4D
dataset regarding the identity labels, each color stands for a
subject. Only 20 subjects are visualized for readability even
though BP4D contains 41 subjects. FMAE features are more
identity-clustered than FMAE-IAT features

TABLE V: The effect of different λ on BP4D. F1 is reported
on fold-2 of BP4D and Epoch means the convergence epoch
during training.

λ 0 0.02
(used in [87]) 1 2 3

F1 68.33 68.60 69.26 69.57 69.47
Epoch 2 10 20 21 27

use, the more training epochs are required to reach a better
optimization point, which is consistent with the phenomenon
in Figure 5. Additionally, we perform the ablation study on λ
using the AU datasets to demonstrate that λ is an easy hyper-
parameter to tune in practice. Table VI shows that λ values
within the set of [0.5, 1, 2], which are used across all AU
datasets in this paper, consistently result in an improvement
in the F1 score.

Furthermore, we show that recognizing identity is a trivial
task since we find that a non-linear ID head Gf (·; θid)
can still recognize the subjects given the identity-invariant
features (regularized by IAT). To investigate this in more
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training epoch
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Fig. 5: F1 dynamics of FMAE and FMAE-IAT on BP4D+
during training. Fold-2 of BP4D+ is used for visualization.

TABLE VI: Ablation study of λ on BP4D, BP4D+ and
DISFA. F1 scores are reported for one fold of each dataset,
with the numbers in parentheses indicating the absolute
improvement in F1 compared to the baseline λ = 0.

Dataset λ

0 0.5 1 2

BP4D 68.81 69.22 (+0.41) 69.26 (+0.45) 69.57 (+0.76)
BP4D+ 65.45 66.58 (+1.13) 66.66 (+1.21) 66.62 (+1.17)
DISFA 71.06 73.48 (+2.42) 73.23 (+2.17) 73.01 (+1.95)

detail, we increase the model capacity of the ID head
Gf (·; θid) given the backbone trained with a large λ, and
measure the identity loss. Table VII shows the results of
using different MLP layers for FMAE-IAT under the same
regularization strength (λ = 2). The ID loss in Table VII
suggests that the model gradually learns the identity given
some model capacity. By contrast, using the 1-layer MLP
(linear projection layer) for the ID head leads to a large
ID loss Lid, thus ensuring the large magnitude of −λ∂Lid

∂θf
.

Therefore the linear projection layer is another necessity for
IAT in AU detection. The convergence epoch and F1 score in
Table VII also imply that the 2-layer MLP and 3-layer MLP
both converge fast and learn a sub-optimal solution to the AU
tasks, which is consistent with our previous observations.

TABLE VII: The effect of different MLPs for the ID head.
Epoch in the table shows the convergence epoch during
training and ID loss indicates the average identity loss at
the convergence epoch using the training set. A higher ID
loss implies a lower ID accuracy.

ID head 1-layer MLP 2-layers MLP
(used in [87]) 3-layers MLP

F1 69.57 69.00 68.90
ID loss 0.152 0.096 0.085
Epoch 21 7 6
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VI. CONCLUSION

In conclusion, we have proposed to use a masked au-
toencoder (FMAE) with diverse pre-training for the AU
detection task in this paper. We have leveraged a vast and
diverse dataset (Face9M) for pretraining, combined with
masked image modeling to significantly improve AU detec-
tion performance. Moreover, we have demonstrated the iden-
tity learning issue and its harmful effect on AU prediction
models. The use of Identity Adversarial Training helped in
mitigating the model’s learning of identity-related features.
Also, we elucidated the two design factors of IAT, and our
experiments consistently demonstrated superior performance
over previous methods, achieving new SOTA results on AU
benchmarks like BP4D, BP4D+ and DISFA.

We also noticed that the scaling effect of FMAE pretrained
on Face9M has not converged even using the ViT-large
model. The potential of using ViT-huge and distilling it into
a smaller model for practical use is promising, and we leave
this for future work.

ETHICAL IMPACT STATEMENT

Our work on Facial Action Unit (AU) detection aims to
advance the understanding of human facial behavior while
adhering to ethical standards. We provide our trained models
and our codebase as open-source to facilitate further research
and application development. We utilize publicly available
databases to train our models. Note that some ethnicities
or age groups may not be represented well in the large
datasets. By incorporating identity removal techniques, our
work seeks to mitigate biases in facial behavior analysis and
promote fairness across diverse populations. However, the
representations obtained using our models may still contain
residual identity information. Therefore, caution should be
exercised while using our pretrained models for downstream
tasks. Our models should not be used in applications to dis-
advantage minorities (e.g., develop systems to automatically
hire employees by looking at their facial behavior during the
interviews).
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