
Eyes Do Not Lie: Spontaneous versus Posed Smiles
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ABSTRACT

Automatic detection of spontaneous versus posed facial ex-
pressions received a lot of attention in recent years. However,
almost all published work in this area use complex facial
features or multiple modalities, such as head pose and body
movements with facial features. Besides, the results of these
studies are not given on public databases. In this paper,
we focus on eyelid movements to classify spontaneous ver-
sus posed smiles and propose distance-based and angular
features for eyelid movements. We assess the reliability of
these features with continuous HMM, k-NN and näıve Bayes
classifiers on two different public datasets. Experimentation
shows that our system provides classification rates up to 91
per cent for posed smiles and up to 80 per cent for sponta-
neous smiles by using only eyelid movements. We addition-
ally compare the discrimination power of movement features
from different facial regions for the same task.

Categories and Subject Descriptors

I.2.10 [Vision and Scene Understanding]: Video analy-
sis; H.1.2 [User/Machine Systems]: Human factors, Hu-
man information processing

General Terms

Human Factors, Algorithms, Experimentation

Keywords

Facial expression, Spontaneous versus posed smile detection,
Eyelid movements

1. INTRODUCTION
It is well known that facial expressions are the main means

of bodily communication. In fact, just by looking at one per-
son’s face, it is possible to deduce his feelings and his state
of mind. Facial expression analysis can give a more natural
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form to human-computer interaction, similar to communi-
cation between humans. The literature on automated recog-
nition of facial expressionsis is extensive, we refer the reader
to [11] and to the more recent [16]. Newer approaches have
shifted the focus to the automatic recognition of deceit, or
the discrimination of spontaneous versus posed facial expres-
sions. Specifically, [4] and [15] focused on the detection of
fake smiles. However, to our knowledge, no computational
study has been made for the search of what is the most
important facial feature that indicates genuineness.

Recent work on spontaneous smile detection generally fo-
cuses on temporal changes in shape and facial activation in-
formation [9, 1]. Cohn and Schmidt analyzed amplitude and
duration of smile onsets and showed that spontaneous smiles
have smaller amplitude, but a more stable relation between
amplitude and duration [4]. By using a linear discriminant
classifier, they reported 93 per cent classification accuracy
for spontaneous and posed smiles. [5] analyzed coordination
of facial movements, head rotation, and eye motion during
spontaneous smiles. Valstar et al. proposed a multimodal
system to classify posed and spontaneous smiles with fusion
of shoulder, head and inner facial movements, and reported
94 per cent accuracy by using all these modalities [15].

It is said that eyes are the mirror of the soul. We believe
that this expression indicates the fact that much of the state
of mind of one person can be seen through the eyes. There-
fore, this work focuses on the use of this specific feature to
detect posed smiles. As a case study, we analyze what pre-
cisely in the eyes can be used to discriminate between posed
and spontaneous smiles.

In the rest of the paper, we will validate that eyes are
indeed the most discriminative feature for the task. Our
second contribution is a detector of genuineness of smiles,
which achieves comparable results to state of the art meth-
ods by using eyelid features only. We have no claim to eco-
logical validity, as we disregard holistic face perception in
humans [10], and physiological measures do not necessarily
reflect perceptual experience of observers. Yet, this doesn’t
preclude the possibility that some individual features may
contain complete information for the classification of a given
expression. The main advantage of the proposed method is
in the fact that it is possible to use it to determine spon-
taneity even in cases of major facial occlusions (eg. when
wearing a scarf) and under voluntary suppression of expres-
sion. It is known that in some cultures, people suppress
their emotions by preserving a close-to-neutral face in the
presence of authorities.
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2. FACIAL FEATURES

2.1 Facial Muscles
Smiles can be simply distinguished from other facial ex-

pressions by analyzing movement of mouth corners and cheeks.
But as it is known, there are two distinct types of smiles,
which are distinguished as spontaneous (felt) and posed.
This distinction was predicted by Guillaume Duchenne in
the mid-nineteenth century, so spontaneous smiles are also
called Duchenne smiles. Researchers confirmed Duchenne’s
observation with empirical findings after 120 years [7]. In
this study, Ekman proposed that spontaneous smiles are
formed by the contraction of both the zygomatic major and
the orbicularis oculi muscles, where posed smiles involve
only the zygomatic major muscle. Zygomatic major muscle
raises the corners of the mouth, and orbicularis oculi mus-
cle raises the cheeks and forms crows-feet around the eyes.
Ekman also reported that asymmetry and timing of smiles
are discriminative to classify different types of smiles [7].
We hypothesize that the eye openings can become smaller
by the activity of orbicularis oculi muscle in spontaneous
smiles, which can cause lowered eyelids.

2.2 Features
In this work we focus on eyelid movements to distinguish

posed and spontaneous smiles. First we track 21 points on
eyebrows, eyelids, eye corners, nose tip and mouth corners,
as shown in Figure 1, to assess the reliability of eye region
over other face regions for smile expressions. Facial fea-
ture points are grouped into four main regions as eyebrows,
eyelids & eye corners, cheeks and mouth corners. Then,
landmarks in each group are manually initialized at the first
frame, and tracked. Estimated movements are normalized
with respect to tilt rotation, translation and scale of the face,
and used for classification. Preliminary results showed that
the eye region is the most reliable one. We then focus on
eye region of the face and analyzed temporal changes in this
region. We extract distance-based and angular features to
discriminate the movements of eyelids. For this purpose, we
track inner and outer eye corners, eyelids and nose tip (15
points, see Figure 2). We manually initialize the tracker on
the first frames of the videos for reliable and accurate track-
ing. Before feature extraction, all faces are normalized in
terms of rotation, scale and translation. For normalization,
eye centers are estimated as middle points between inner
and outer eye corners. The tilt rotation of the face is esti-
mated and normalized using the line between eye centers.
After normalization of rotation, face is translated to origin
with respect to nose tip. Then, inter-occular distance dio
(distance between eye centers) is calculated and the face is
scaled with a factor of 100/dio.
We use an angular measure, βm, to determine the amount

of eye opening. βm is the angle between v1 and v2 where
v1 and v2 denote the vectors from outer eye corner to clos-
est eyelid landmark and from outer eye corner to inner eye
corner, respectively (see Figure 3). We calculate βm for left
and right eyes, seperately.
If dm denotes the Euclidean distance between eyelid and

the eye center, displacement of eyelids can be defined as
change in dm (see Figure 3). To estimate displacement of
eyelids, dm values are normalized by subtracting the dm
value of the first frame. Displacement of eyelids are cal-
culated for both left and right eyes seperately. As indicated

Figure 1: Feature points on different face regions.

Figure 2: Feature points on eye corners, eyelids and
nose tip.

in recent studies [12], asymmetry in movements of different
sides of the face can be discriminative. Consequently, differ-
ence between left and right eyelid displacements is used as
an asymmetry feature.

3. METHOD

3.1 Tracking
The face tracking used in our system is based on the sys-

tem proposed in [3], which is in turn based on the system de-
veloped by Tao and Huang [13], called the Piecewise Bézier
Volume Deformation (PBVD) tracker. This tracker con-
structs an explicit 3D wireframe model of the face. The
generic face model consists of 16 surface patches embedded
in Bézier volumes and is warped to fit selected facial features
(such as the eye and mouth corners) manually selected in the
first frame of the image sequence. Given a set of n+ 1 con-
trol points b0, b1, . . . , bn, the corresponding Bézier curve (or
Bernstein-Bézier curve) is given by

x(u) =
n
∑

i=0

biB
n

i (u) =
n
∑

i=0

bi

(

n
i

)

ui(1− u)n−i, (1)

where the shape of the curve is controlled by the control
points bi and u ∈ [0, 1]. As the control points are moved,
a new shape is obtained according to the Bernstein polyno-
mials Bn

i (u) in Eq. (1). The displacement of a point on the

 m
dmv1

v2

Figure 3: Movement features of eyelids.
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Figure 4: The Bézier volume model.

curve can be described in terms of linear combinations of
displacements of the control points.
The Bézier volume is a straight-forward extension of the

Bézier curve and is defined as V = BD, where V is the dis-
placement of the mesh nodes, D is a matrix whose columns
are the control point displacement vectors of the Bézier
volume, and B is the mapping in terms of Bernstein poly-
nomials. In other words, the change in the shape of the face
model can be described in terms of the deformations in D.
Once the model is constructed and fitted (see Figure 4),

both general head motion and local deformations of the fa-
cial features, such as the eyebrows, eyelids, and mouth, can
be tracked. First 2D image motions are measured using tem-
plate matching between frames at different resolutions. Im-
age templates from previous frames are used for more robust
tracking. The measured 2D image motions are modelled as
projections of the true 3D motions onto the image plane.
From the 2D motions of several points on the mesh, the 3D
motion can be estimated. In our specific case we need to
focus on fine details that change between spontaneous and
posed smiles. To this end, instead of collecting these mo-
tions into Ekman AU’s as in [14], each tracked point is used
as a feature in the final estimation in our system.

3.2 Classification
To analyze the discriminative power of eyelid movements

over other regions for classification of spontaneous versus
posed smiles, we model movement features of eyebrows, eye-
lids & eye corners, nose tip and mouth corners by continuous
hidden Markov models (CHMM) [6]. Each group is modelled
by two left-to-right CHMMs (one for spontaneous, one for
posed smiles), separately. For continuous input structure
of HMM we use a mixture of Gaussians to represent ob-
servations for each region. Six Gaussians are used for each
mixture. For classification, log-likelihood scores of sponta-
neous and posed CHMMs are checked and the class with the
highest score is selected.
We employ both the indicated CHMM structure, k-nearest

neighbor (k-NN) algorithm and näıve Bayes classifier with
eyelid-focused features to classify smiles. For näıve Bayes
classifier and k-NN, we use standard deviation, maximum,
minimum and mean values of each stream as features, in-
stead of using feature sequences. So we have four parame-
ters for each feature stream. Neighborhood size of k-NN is
selected as one (k=1), empirically.
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Figure 5: Classification rates with different features
and different number of hidden states.

4. EXPERIMENTS
In this section, the accuracy of the proposed system is

evaluated on two different public datasets.

4.1 Datasets
We use the BBC smile dataset [2] and the Cohn-Kanade

AU-Coded Facial Expression Database [8] for our experi-
ments. BBC smile dataset was gathered from “Spot the
fake smile” test of Paul Ekman on BBC website. There are
videos of 20 subjects, each starting and ending with a neu-
tral face and showing a posed/spontaneous smile. Image
resolution is 314×286 pixels. The Cohn-Kanade AU-Coded
Facial Expression Database has approximately 500 image
sequences from 100 subjects, each starting with a neutral
face and showing a basic expression. Only frontal images
are open to public use, and we only used smile sequences
in those (46 sequences). Image resolution is 640 × 480 pix-
els. These datasets were manually landmarked for tracking
initialization. 10-fold (trained with nine folds and tested on
the remaining fold) cross-validation is used for BBC smile
dataset. The Cohn-Kanade database has only posed smiles,
hence the tests we run with it involve training on BBC, and
measure cross-database generalization.

4.2 Results and Discussion
First, we test the reliability of features on eye region with

respect to other regions for classification. As indicated in
Section 3.2, CHMM-based classification is tested on eye-
brows, eyelids & eye corners, nose tip and mouth corners
with different number of hidden states. Our results show
that for each feature group, eyelid movements provide the
highest classification rates (up to 80 per cent) with six and
more hidden states, as shown in Figure 5.

After the verification of our hypothesis, we test the pro-
posed distance-based and angular features which focus on
eyelids. Classification results with CHMM, 1-NN and näıve
Bayes classifiers on BBC and Cohn-Kanade datasets are
given in Table 1 and Table 2, respectively. Confusion of
CHMM, 1-NN and näıve Bayes classifiers on BBC are same
and the classification rate is 85.0 per cent. There are only
posed smiles on Cohn-Kanade dataset, so the results on
this dataset are given just for posed smiles with a training
on BBC dataset. Classification rates on the Cohn-Kanade
dataset with CHMM, 1-NN and näıve Bayes classifiers are
82.6 per cent, 87.0 per cent, and 91.3 per cent, respectively.
As it is reported, the highest classification rates are provided
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by näıve Bayes classifier with standart deviation, minimum,
maximum and mean values of the feature sequences. Be-
sides, it is obvious that proposed features are usable with
simple classifiers as k-NN and näıve Bayes, instead of using
CHMM with its time consuming training phase.
It is interesting that the highest results are obtained on the

Cohn-Kanade dataset with a training on the BBC dataset.
To find the reason of this increase we analyzed the eyelid fea-
tures. Extracted features showed that eyelid positions are
higher (eyes are more opened), and more stationary in both
datasets, except blinks in posed smiles. As a result, we can
say that people tend to lower their eyelids while they are
smiling spontaneously. Image sequences are much shorter
in the Cohn-Kanade dataset, which means there are less
eye blinks in the smile sequences of this dataset with res-
pect to the BBC dataset. Indicated change might raise the
mean position of the eyelids, which in turn might increase
the classification rate of posed smiles on the Cohn-Kanade
dataset. Additionally, classification of posed smiles (90 per
cent on the BBC dataset) are more accurate than sponta-
neous smiles (80 per cent on the BBC dataset), because eye-
lids are more stationary (except for blinks) in posed smiles.

Table 1: Classification results of spontaneous versus
posed smiles on BBC dataset. All three classifiers
give the same results.

Classified Class Real Class
Spontaneous Posed

Spontaneous 8 2
Posed 1 9

Table 2: Classification results of posed smiles on
Cohn-Kanade dataset. There are no spontaneous
smiles in Cohn-Kanade dataset.

Classifier Classified Class Real
Spontaneous Posed Class

CHMM 8 38 Posed
1-NN 6 40 Posed
Näıve Bayes 4 42 Posed

5. CONCLUSIONS
In this paper, we have presented a smile classifier, which

can distinguish posed and spontaneous smiles. The method
is based on the hypothesis that eyelid movements can iden-
tify the smiles. First, we compared discrimination power of
the eye region movements with other facial movements and
showed the reliability of the eyelid movements for classifi-
cation of smiles. Then, we assessed the performance of the
system with proposed eyelid-focused features. Our system
reached 85 per cent and 91 per cent classification rates on
BBC and Cohn-Kanade datasets, respectively. The obtained
results are very promising, as they only use eyelid move-
ments. Additionally, the proposed system is fast enough for
real time usage.
Currently, a more extensive spontaneous/posed smile data-

set is being collected for further experiments and more de-

tailed analysis of eyelid movements. The proposed method
is being extended for lower eyelids as well.
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