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ABSTRACT
Breathing patterns are shown to have strong correlations with emo-
tional states, and hence have promise for automatic mood order
prediction and analysis. An essential challenge here is the lack
of ground truth for breathing sounds, especially for medical and
archival datasets. In this study, we provide a cross-dataset approach
for breathing pattern prediction and analyse the contribution of
predicted breath signals for the detection of depressive states, using
the DAIC-WOZ corpus. We use interpretable features in our models
to provide actionable insights. Our experimental evaluation shows
that in participants with higher depression scores (as indicated by
the eight-item Patient Health Questionnaire, PHQ-8), breathing
events tend to be shallow or slow. We furthermore tested linear
and non-linear regression models with breathing, linguistic sen-
timent and conversational features, and show that these simple
models outperform the AVEC17 Real-life Depression Recognition
Sub-challenge baseline.

CCS CONCEPTS
• Computing methodologies → Machine learning approaches;
Feature selection.
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1 INTRODUCTION
Automatic emotional assessment from voice is a tool with great
potential for mood disorder analysis and prediction. However, stud-
ies in the literature focus primarily on non-verbal paralinguistic
qualities for this purpose [18, 26]. This paper investigates breathing
patterns for such applications, in general, and depression, in partic-
ular. Breathing is known to correlate with emotional states, and it
was previously shown that for instance, in the emotional moments
during the recounting of traumatic events, there are significant
changes in the use of breathing and silences [1]. Here, we propose
a novel approach with interpretable features to process breathing
during speech for depression prediction.

For the analysis of breathing, the lack of ground truth is a re-
current challenge. Although the ground truth is measurable with
breathing belts, performing such measurements is not the standard
for most naturally recorded data. Cross-dataset learning provides a
potential solution for this problem: the models can be learned on ex-
ternal data for which ground truth is available. However, since the
breathing ground truth often comes in the form of changes in diam-
eter of the thorax/abdomen (and not necessarily as measurements
related to a sound signal), it is not intuitive to evaluate its accuracy
by comparing the audio and signal plots manually. Here, we propose
an approach that will enable assessing the accuracy of the breathing
predictions based only on the audio recordings. With this goal in
mind, we use the INTERSPEECH 2020 Computational Paralinguis-
tics Challenge (ComParE) Breathing Sub-challenge dataset [26] to
observe correlations between audio and breathing signals and then
extrapolate this knowledge to other settings for breathing signal
prediction.

In our proposed multimodal approach, we combine linguistic and
breathing features to assess psychopathology. Our ultimate goal is
to understand how breathing during speech relates to emotionality
in both verbal and voice features, such as pitch and voice quality.
We empirically observe variations in the breathing patterns during
emotional moments, such as faster and shallow breathing, holding
the breath and taking deep breaths, which can serve as indicators.

This paper is structured as follows. In Section 2, we briefly sum-
marise the related work on depression analysis from speech, as well
as discuss breathing analysis in affective computing. In Section 3,
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we detail the datasets we make use of, i.e. the INTERSPEECH Com-
ParE 2020 Breathing Subchallenge corpus for cross-dataset learning
and the DAIC-WOZ corpus for experimental evaluation of depres-
sion analysis. In Section 4, we detail our approach for cross-dataset
breathing prediction, as well as feature extraction and depression
regression. We report our experimental results and observations
in Section 5, and provide future directions and a discussion in Sec-
tion 6.

2 RELATEDWORK
2.1 Breathing, speech and language
Breathing is a constant in a human’s life and happens naturally
and effortlessly. This process is adjusted continuously to the indi-
vidual’s needs. For example, we coordinate breathing with eating
or speaking. Breathing occurs via the inspiratory pump muscles
contracting to draw air into the lungs. Expiration occurs mainly
passively, with the recoil of the chest wall and lungs during quiet
breathing. If needed, expiratory muscles can produce active expi-
ration. During the respiratory cycle, the volume of the lungs will
vary.

Vocalisation will impose aeroacoustic constraints and so require
adaptations of breathing control. However, breathing adaptations
during speech go beyond that; respiration needs to be adjusted to
different linguistic and communicative levels. For example, syn-
tactic boundaries, sentence length, prosody and listener-speaker
behaviour can influence this adaptation mechanism [8]. From a
physiological point of view, speech breathing will involve more
variable and deeper inhalations, depending on the breathing capac-
ity needed for the spoken sentence, followed by a long exhalation.
The respiratory volume during speech was studied by Winkworth
et al. [32] with the help of respiratory belts (on chest and abdomen),
who found that the majority of inspirations (i.e. inhalations) oc-
curred at structural boundaries during reading and “grammatical
junctures" during spontaneous speech. As predicted, the latter show
a higher number of grammatically inappropriate inspirations. They
also noted that the initiation lung volume (inspiration) is corre-
lated with the breath group length. Consequently, we expect a
higher inspiration volume before a long utterance, particularly dur-
ing spontaneous speech, where the subject has the opportunity to
make adjustments to the utterance on the go.

Emotions happen with physiological changes within the entire
body, including changes in breathing. The respiratory motor system
commands the contraction of the respiratory muscles following
complex neural networks in our brain and primarily adapts in
response to metabolic demands. However, this system’s output can
also be influenced by internal and external environmental changes,
resulting in behavioural breathing. An example is the relationship
between anxiety and breathing: studies show an increase in the
respiratory rate with anticipation anxiety, which is not related to
a higher demand for oxygen. Unpleasant respiratory sensations,
such as an uncomfortable urge to breath, depend on the affective
state of the subject and can be elicited by anxiety and distress [11].

Observations focusing on negative emotions and breathing pat-
terns indicate that the arousal dimension is essential for the analysis.
For example, although low valence and high arousal emotions such
as anger or stress increase the respiratory rate and breathing depth,

this phenomenon is not found for all negative emotional conditions.
Emotions such as sadness or being depressed are associated with
decreased respiratory rate, as well as slow and shallow breathing.

It should be noted that defining a general breathing variation pat-
tern for clinically depressed patients is challenging. These patients
will often have an anxiety disorder responsible for an increased
breathing rate, which might point to a voluntarily induced slowing
of the respiratory rate to cope with the stimulus [4]. Furthermore,
a higher respiratory pattern variability is correlated with depres-
sion, presenting more variation in pause duration and respiratory
frequency [37].

If the emotion-related changes in breathing patterns can be distin-
guished from other factors influencing breathing, they can serve as
useful and interpretable features for the analysis of mood disorders.
Efforts to provide interpretability to accurate but complex models
for mood disorder recognition have received increased attention
over the past years [2, 3, 19]. However these efforts still amount to
only a small fraction in the computational health research domain.
In the context of depression, most studies do not assess the potential
of breathing features explicitly. Our main premise in this paper is
that such features can provide explainable indicators, and help for
diagnostics.

2.2 Depression analysis
Looking at the relevant depression analysis literature, we observe
that a large number of features are potentially useful for depression
detection, including speech behaviour, speech prosody, eye move-
ments, and head pose. Neuro-physiological changes associated with
depression influence motor coordination and the effects can be de-
tected in acoustic features, such as jitter and shimmer [23, 24]. Such
analysis can be used for automatically screening subjects and to
facilitate diagnosis [31]. Recent studies also find speech behaviour
features (e.g., pauses) to be very distinctive for diagnosis [2].

Banerjee et al. [3] described a single model for predicting three
mood disorders, depression, anxiety, and anhedonia, respectively,
as three binary prediction tasks. First, unimodal convolutional neu-
ral network (CNN) models are trained on audio, video, and text
modalities, and the features are transferred to a multimodal model.
Then, encodings are concatenated and processed further by an at-
tention mechanism and a fully connected layer. Some features are
not very informative by themselves (such as “Contrast Spectrogram
10”), while others are more interpretable, such as “Word Valence” or
“Number of Characters”. The fact that the top ten most important
features contain many linguistic features, as well as that the linguis-
tic model was found to be the highest performing unimodal model,
indicates that linguistic features are quite important for these tasks.

Depression analysis from conversational data allowed the inves-
tigation of a range of features. The Audio/Visual Emotion Chal-
lenge (AVEC) has been instrumental in the development of new
approaches, and depression analysis was specifically addressed
in these challenges. During the AVEC’16, AVEC’17 and AVEC’19
Challenges on depression analysis [21, 22, 30], multiple solutions
were presented for depression assessment on the Distress Analysis
Interview Corpus - Wizard of Oz (DAIC-WOZ) dataset, which is
part of the larger Distress Analysis Interview Corpus (DAIC) [10].
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The database contained human-agent interactions, and the chal-
lenge participants were required to classify whether the human
was depressed or not, where the binary ground-truth was based on
the severity of self-reported depression as indicated by the Patient
Health Questionnaire (PHQ-8) [13] score for each human-agent
interaction. Hybrid solutions combining video, audio, and text fea-
tures were shown to be the most successful, taking advantage of
the transcriptions provided for participant turn segmentation and
topic modelling [9, 27, 35, 36].

The modelling of the conversation topic is useful, because dif-
ferent topics elicit different emotions in subjects, and this leads to
different amounts of information for depression analysis. In the
challenge data, several questions were answered by the participants,
and these are used to steer the topic. In [27], the questions posed
were divided into classes inspired by the PHQ-8 domains: lack of
interest, depressed feelings, sleep quality, tiredness, appetite, failure,
concentration, and psycho-physiological events such as moving
and speaking very slowly. Similar conclusions were reached in [33]
showcasing the different predictive values of each question for
post traumatic stress disorder (PTSD), on an extended set of DAIC
interviews with both war veterans and non-veterans.

The lack of annotated data for the study of depression screen-
ing motivated researchers to focus solely on audio features for
depression detection, achieving motivating results in the challenge
development sets [18, 34]. Further work has shown the potential of
speech-related features for depression assessment using deep learn-
ing approaches across various depression scored datasets [17], with
the most recent work proposing a Mel Frequency Cepstrum Coeffi-
cient (MFCC)-based Recurrent Neural Network model, focusing on
the effect of depression in vowel pronunciation [20].

Apart from recurrent neural networks, attention-based models
have recently been employed for depression analysis. The winners
of the AVEC’19 Detecting Depression with AI Sub-challenge (DDS)
have developed an attention-based model, with multiple stages of
attention layers using three modalities (audio, video, text) to predict
the PHQ-8 scores [19]. The audio and video features were indepen-
dently processed through a Bi-LSTM attention network and the text
features through an ordinary Bi-LSTM layer. Then, the output from
these three modalities were merged by means of an extra attention
layer. In this way, the attention weights gave an indication of the
importance of each modality. Indicated by the weights, the text
modality was found to be very important (0.57) with respect to the
visual and audio modalities (both 0.21). The authors also trained
unimodal models, with a text-only model resulting in the best score.
Both results indicate that the text modality, processed in this way,
also provides valuable cues towards prediction of depression.

3 CORPORA
In this work, we use several corpora for breathing analysis and
depression analysis. We describe these resources in this section.

3.1 Speech Breath Corpus (SBC)
The SBC database is a subset of the UCL Speech Breath Monitor-
ing (UCL-SBM) corpus and is introduced for the breathing Sub-
Challenge of the INTERSPEECH 2020 Computational Paralinguis-
tics Challenge [26]. The dataset includes spontaneous speech about

the participant’s daily experiences, such as visiting a city. It consists
of 49 audio interviews, each of four minutes, with the correspond-
ing breath signal measured with a piezoelectric respiratory belt in
the thorax area.

For the present work, we have further annotated audible breath
events in 10 recordings from the SBC database, corresponding to
40 minutes of spontaneous speech, according to the type of event
(“Inhale" or “Exhale"), as well as the location of the event in the
speech signal (“Middle of the speech", or a “pause"), segmenting a
total of 433 breath events.

3.2 Distress Analysis Interview
Corpus-Wizard-Of-Oz (DAIC-WOZ)

TheDistress Analysis InterviewCorpus-Wizard-of-Oz dataset (DAIC-
WOZ) consists of semi-structured clinical interviews designed to
support the diagnosis of psychological distress conditions, partic-
ularly depression and post-traumatic stress disorder (PTSD). The
interviews were conducted by an AI based virtual agent, under a
wizard-of-oz framework, meaning that human agents controlled
the agent’s non-verbal behaviours and verbal utterances [6, 10].
This corpus motivated the Depression, Mood and Emotion Chal-
lenge in the Annual Workshop on Audio/Visual Emotion Challenge
(AVEC) in 2016 [30], and the Real-life Depression Challenge in
AVEC 2017 [22]. In the remainder of our work, we will refer to the
2017 challenge and related publications as a baseline.

For each session of the Depression corpus used in AVEC’17, audio
recordings, transcriptions, and baseline audio and video features are
available. The dataset includes 107, 35, and 47 subjects for training,
development, and test sets, respectively. The average depression
severity on the training and development set is M = 6.67 (SD = 5.75)
out of a maximum score of 24.

In addition, for depression prediction, self-assessed PHQ-8 scores
are provided. We use the breathing annotations presented in [12]
for breath signal cross-dataset prediction evaluation. A total of 1478
breath event are annotated across 16 recordings. These annotations
were performed on the extended version of the dataset proposed in
the 2019 edition of the AVEC [21].

4 METHODOLOGY
Figure 1 illustrates the proposed pipeline for depression severity as-
sessment. One of the contributions of the present work is the breath
signal prediction module and the extracted breathing features. In
this section, we discuss the cross-dataset prediction method, con-
textual segmentation, and correlation analysis for each feature
proposed. Lastly, we propose a depression regression model.

4.1 Cross-dataset prediction for breath signal
A continuous breathing signal provides extensive information about
the respiratory patterns, allowing the measurement of depth, respi-
ratory speed, and pattern variability. When looking into emotions
in a depressed subject, the depth of the respiratory events and over-
all pattern variability are essential factors, motivating us to focus on
continuous breath signal prediction instead of simple audible breath
event segmentation. To tackle the lack of a breath signal ground
truth in theDAIC-WOZdataset (andmost other real-world datasets),
we propose a cross-dataset prediction approach, based on the 1D
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Figure 1: Proposed method for depression severity assessment. On the right, a deep breath event is highlighted on both audio
and breath signals for visualisation purposes. Q1 and A1 refer to the first question and answer, with the remaining questions
and answers following the same notation.

CNN+ LSTM architecture proposed by the ComPaRE2020 challenge
winner team, Markitantov et al. [14], on the Speech Breath Cor-
pus (SBC). This study suggests a prediction window of 16 seconds,
suitable for the continuous speech characteristics in the dataset.
However, our target dataset (DAIC-WOZ) consists of dialogues
between participants and an AI agent taking turns to speak. There-
fore, the participant’s continuous speech sections are smaller, and
predicting a continuous breath signal across the session becomes
highly challenging due to the AI speech component.

To adapt the 1D CNN + LSTM architecture proposed in [14] to
the DAIC-WOZ, we focus solely on predicting the breath signals
during the participants’ reactions. The first challenge is to deter-
mine a suitable window size for the analysis of the breathing signals.
Subsequently, we first analyse the DAIC-WOZ training set to find
a suitable input window considering the length of the participants’
reactions following a question. The resulting model performance
is evaluated on the SBC, using the same cross-validation scheme
proposed in the original paper.

We first segment the interview sections where the interviewee
is speaking. These sections have annotations for the Participant (P),
Filler (F), Breath (B), Laughter (L), and others that have a minimum
duration equal to the selected window size. This division intends
to mimic the participant’s action segmentation implemented in
the DAIC-WOZ. A small window size increases the number of
participant reactions from which we can obtain breathing signal
predictions. However, if the size is too small, it becomes difficult to

catch breathing events. We evaluated the selected parameters on
the annotated breath events introduced by Kaya et al. [12].

Lastly, we compared simple functionals of the predicted breath
signal between the annotated breath events of the SBC dataset and
the target dataset. If the cross-dataset breath signal prediction is
successful, we expect these events to have similar characteristics.

4.2 Question segmentation and correlation
analysis

The analysis of the responses of a patient can be improved by taking
into account the context of the signals. The literature on DAIC-
WOZ corpus presents correlations between depression recognition
and certain question types, especially the ones related to PHQ-8 do-
mains [9, 27]. Following the literature, we also segment the dataset
according to question-answer pairs, and target interactions that
lead to more prolonged reactions from the participants. This ap-
proach has certain challenges. Above all, the dataset is based on a
semi-open interview approach, meaning that not all participants
are asked the same questions. With the breath signal prediction
constraints described in Section 4.1, we further impose a reduction
in the number of processed answers, eliminating some additional
questions. Since the interviews are not fully structured, the ques-
tions derive from a limited question pool, and hence this approach
is still possible.

We use the labels provided with the train set transcriptions that
annotate the AI agent’s actions, for example, “dream_job" refers to
the question “what is your dream job?".We extend these annotations
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to the development and test sets by comparing each action of the
AI Agent with the “tag" - “action speech" pairs defined in the train
set. In addition, we manually annotate the actions that were not in
the initial action set. We further categorise the different questions
according to their polarity into five groups as “Positive" (“what do
you enjoy about traveling?", “who’s someone that’s been a positive
influence in your life?"), “Negative" (“What are some things you
wish you could change about yourself?", “Tell me about a time when
someone made you feel really badly about yourself?"), “Neutral"
(“Why did you move to LA?", “How long ago were you diagnosed?"),
“Mixed", meaning emotional questionswith no implicit polarity (“Do
you find it easy to be a parent?", “Tell me about your kids?") and
“General", follow up questions (“Can you give me an example of
that?", “Tell me more about that").

We extract the corresponding answer for each question, defined
as the participant’s speech between the inquiry and AI Agent’s
following action. Considering the window size of our breathing
prediction model, we solely consider the participant reactions with
a duration equal to or longer than the breath prediction window
defined in the cross-dataset breath signal prediction experiment.
We then explore the correlation between the continuous diagnosis
score, PHQ-8 Score, and question-specific features under three main
categories: conversational features, linguistic sentiment features,
and breath signal features as presented in Table 1. These features
are chosen due to their interpretability.

We calculate valence, arousal, and dominance (VAD) features
based on the NRC VAD lexicon [15]. Each word is associated with
a reliable human-rated value for VAD. Then, we calculate the an-
swer’s sentiment by applying functionals to the list of values of all
the words in the response.

We pre-process the predicted breath signal for breathing feature
extraction to remove noise in the prediction and produce inter-
pretable functionals based on the literature in the field. Hence, we
apply a Savitzky-Golay filter [25] with a polynomial of 2nd degree
and a window of 13 samples, corresponding to 0.52 seconds, in line
with the average breath event duration observed in the SBC. We
extract simple functionals from the resulting smooth signal and the
respective first derivative. Further, we perform peak detection over
the signal to identify the local maxima and minima, expected to
be associated with inhale/exhales. To filter out the smaller peaks
detected, likely related to small breath events during the speech,
we define the minimum prominence as 0.13, corresponding to the
median prominence in the annotated breath events on the SBC,
calculated on the predicted, smooth signal. Additionally, we de-
fine the minimum distance between maximum peaks as 2 seconds,
approximately half of a typical breath cycle for young, healthy in-
dividuals [28]. Furthermore, to evaluate the breath signal during
silences, we extracted the breathing signal for the reaction time
and silences longer than 0.3 seconds. When it is not possible to
calculate a feature, for instance, in the absence of two peaks in the
case of peak-to-peak distance, we set its value to zero.

For each session, we extract features from 1) each answer, 2)
the combined set of answers for each question type, 3) the entire
set of answers, and 4) all participant’s reactions. Then, we group
the resulting feature vectors across the train set according to the
answer selection criteria, i.e. 1) question, 2) question type, 3) all
participants’ answers, and 4) all participants’ actions. Finally, we

evaluate the Pearson Correlation Coefficient (PCC) between the
individual features and the depression severity label for each subset,
excluding all PCC with a p-value > 0.05.

4.3 Depression severity prediction via
regression

As the last step of our processing pipeline, we want to evaluate
the predictive power of the feature set and contextual segmenta-
tion proposed in the previous section for depression assessment.
Since depression severity scores are continuous, we tackle this as a
regression problem.

The requirement of interpretability poses some challenges in
regression modelling. Non-linear models are more flexible com-
pared to linear models, but can be less interpretable. When feature
extraction approaches are used, the original feature space can be
transformed into new features that are more parsimonious, but not
readily interpretable. Furthermore, multiple linear regression as-
sumes a low correlation between the independent variables, which
is not always efficiently dealt with in cases when transforming
the feature space is undesirable, for example, due to the loss in
explainability. However, there will be some degree of collinearity in
all real-world data. Previous studies report extensively on the infor-
mative value of collinearity and solutions to overcome performance
loss due to redundant variables [7, 16].

Based on the correlations observed in the exploratory study, we
train simple linear models (i.e. Linear Regression), and non-linear
models (i.e. Random Forest), to evaluate the predictive value of the
features defined and their generalisation power across different
sets.

Random forests have shown to produce good results in the
AVEC’17 Challenge [9, 22, 27]. The parameters of the Random
Forest model were optimised using ten-fold cross-validation and
experimenting with different numbers of estimators (1, 10, 30, 40,
50, 100, and 200, respectively). After selecting the best parameters
using a 10-fold cross validation in the training set, a model was
trained across the entire training set and evaluated on the devel-
opment set. We combined the train and development sets for test
set predictions and followed a similar approach. Additionally, the
features were standardised according to their distribution in the
train set, and the diagnosis labels were min-max normalised.

5 EXPERIMENTAL EVALUATION
5.1 Cross dataset prediction for breath signals
In this section, we discuss the adapted 1D CNN + LSTMmodel used
and validate its performance on the annotated breath events from
the SBC and the Extended DAIC-WOZ datasets.

To define a set of desirable input window sizes for the 1D CNN
+ LSTM model, we analysed the duration of the answers to all
the questions present in this set. From the 92 questions presented
in the train set, the average response time per question is 10.8
seconds, with a standard deviation of 6.1 seconds. For this reason,
we explored breath signals with a window size of 4, 6, 8, and 10
seconds.

Initially, we explored the effects of EBUR128 loudness normalisa-
tion [29] in breathing signal prediction in the SBC. When applying
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Table 1: Summary of the features used for PHQ-8 correlation analysis. The functionals will be calculated across the selected
reactions, for instance, “all questions" or “positive" questions only.

Feature (functionals) Description

Conversational Reaction time Time between the end of AI Agent’s question and the beginning of the answer.

Word rate Number of words in the answer divided by the speech duration.

Sentiment Valence (max, mean) Positive-negative dimension of the answer [15].

Arousal (max, mean) Active-passive dimension of the answer [15].

Dominance (max, mean) Powerful-weak dimension of the answer [15].

Breath Breath signal and 1st derivative (mean, std) Predicted chest volume and respective variation rate across time.

Breath signal during silences and 1st derivative
(mean, std)

Predicted chest volume and respective variation rate across time during silences,
comparable to individual breath events.

Inhalation slope (mean, std, max) Slope of the line defined between the inhalation onset and the following exha-
lation onset.

Peak-to-Peak distance (mean, std, max) Duration of a breathing cycle.

Volume (mean, std, max) Volume of the chest post-inhalation.

loudness normalisation to the input for both training and evalua-
tion phases, with the original window size, we observed a sharp
decrease in the model performance on the cross-validation set, with
a performance below the baseline. The 1D CNNs seem to work bet-
ter with non-loudness-normalised data. Therefore, we trained the
breath prediction model used in this study in the non-normalised
dataset. We present the results from the cross-validation of the
breathing signal prediction model, using different windows, in Ta-
ble 2. We see a slight decrease in performance when using a window
of six seconds; however, the prediction performance is still above
the baseline defined for the ComParE2020 Challenge [26]. Thus,
we consider the trade-off between window size minimisation and
performance loss satisfactory.

Table 2: Pearson Correlation Coefficient (PCC) of the breath-
ing signal prediction using a 1D CNN + LSTM model with
different window sizes. Baseline corresponds to the perfor-
mance of the baseline of the ComParE2020 Challenge [26]
in the development set.

Baseline 1D CNN + LSTM

window size (s) - 16 [14] 10 8 6 4
PCC 0.507 0.607 0.582 0.574 0.583 0.367

We evaluated the selected models under three different pre-
processing conditions: 1) applying the model proposed in [14] to the
complete audio signal, with no pre-cropping of the AI-speech parts;
under this approach, we have a continuous signal for the entire
session, 2) cropped successive non-AI instances and predicted the
breath signal using the adapted model with a window of six sec-
onds, which results in continuous predictions per answer, but not
for the full interview, and lastly, 3) similar to the second condition,
but applying EBUR128 normalisation to the resulting audio chunks
before breath prediction.

We compared the similarity between annotated breath events
for the target dataset and the SBC. For this purpose, we extracted

simple functionals (mean and std of the breath events points) from
the breath signal and the first derivative (see the respective func-
tionals in Table 3). First, we evaluated how the prediction models
affected the breath event characteristics in the SBC. The original
and the adapted prediction models lead to a high increase in the av-
erage first derivative value and signal standard deviation compared
with the respective ground truth. As anticipated, breath predic-
tion along the entire signal leads to predictions that deviate from
the expected values. The designed model produces a breath pre-
diction using a sliding window, so if we do not remove the AI
component of the speech, this part will contribute to the breath pre-
diction of the respective window. There is no significant variation
in model performance when applying the model to the recording’s
non-AI instances. Overall, the predicted breath signals for breath
events for both sets have similar functional values with the train-
ing/development dataset predictions.

Finally, we evaluate the effect of the window size constraint
and the number of individual answers extracted per session in the
DAIC-WOZ. After discarding five samples with answers shorter
than six seconds, the training, development, and test set have 105,
33, and 46 samples, respectively. Among these samples, 21, 7, and
14 participants have depression, according to the binary labels
(PHQ-8 > 10), highlighting the importance of using continuous
PHQ-8 scores to analyse the validity of the proposed feature set.
The number of excluded questions due to the time restraint imposed
by the breath signal prediction model in each session has a similar
distribution across the three sets.

5.2 Correlation analysis between
psychopathology and features

In this section, we evaluate if the proposed breath features are
informative for a depressive state, we probe if a particular type of
question is more predictive of depression symptoms, and we assess
the advantages of answer selection versus processing all participant
instances.
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Table 3: Comparison of basic statistics on annotated audible breath events.

signal value 1st derivative

Dataset Model and input variations mean std mean std

SBC
Ground truth 0.030 0.081 0.257 0.469

Original model [14] -0.074 0.239 1.016 0.846
Adapted model (6 second input) -0.122 0.251 1.108 0.860

Extended
DAIC-WOZ [12]

Full recording (original model) 0.197 0.076 0.347 0.352
Cropped non-AI instances (adapted model) 0.043 0.135 0.614 0.532
Cropped normalised non-AI instances (adapted model) 0.049 0.179 0.807 0.653

Table 4: Linear regression models to predict depression severity scores. The significance of each model was defined based on
the p-value of each regression F-score. The F-score values with a p-value ≤ 0.05 are highlighted. We present the root mean
square error (RMSE) on the development set for the significant models. No significant correlations were found for the question
types “Negative", “Neutral" and “Positive". * - p-value ≤ 0.05; ** - p-value ≤ 0.01; *** - p-value ≤ 0.001.

All Conversational Sentiment Conv + sent Breath

Summary n F-score RMSE F-score RMSE F-score RMSE F-score RMSE F-score RMSE

Mixed questions 103 2.06** 6.13 6.85*** 6.12 2.80** 6.66 3.03** 6.17 2.00** 6.35
General questions 64 2.26** 5.93 3.31* 5.82 1.57 - 1.92 - 2.10* 6.10

All questions 105 1.77* 5.10 2.52 - 3.31** 6.40 2.49* 6.23 1.89* 5.98
All reactions 105 1.48 - 3.26* 6.29 1.70 - 2.07* 5.80 1.73* 5.84

We present the performance of the linear regressions model
for depression prediction in Table 4. The Bonferroni-corrected p-
value threshold for the five tests conducted per question is 0.01.
Considering the dependency between tests and the exploratory
nature of this study, we report all instances with a p-value ≤ 0.05.
The number of cases per question type is not the same, since some
samples have no representation in the session.

The question types that show more predictive values are mixed
and general questions, corresponding to questions without clear
polarity, allowing for a more diverse set of answers and follow-up
questions that go deeper into the participant’s previous questions.
Unfortunately, the differences in sample sizes do not allow us to
compare the predictability performance between general and mixed
questions. However, based on these preliminary results, we hypoth-
esise that ambiguous and open questions have relevant predictive
values. Furthermore, answers to negative questions do not show
a clear correlation with depression in the current dataset, despite
what we initially expected. There may be several reasons for this.
Interviews are not standardised, making it difficult to directly as-
sess the correlation of a specific question subgroup, since not all
the participants will have the same number of negative questions
asked to them, and the depression severity distribution is not con-
sistent between question sets. Furthermore, the answer duration
may have a strong impact on the performance of conversational
and breath features. Finally, perceived valence may vary depend-
ing on the participant. The current question type categorisation
was designed with a focus on emotion elicitation, assuming that
“negative" questions will more likely elicit “negative" emotional
states. In the future, we would like to extend the present question

categorisation method by segmenting the questions based on key
topics.

The number of questions per session is a limiting factor for ro-
bust feature summarisation; for this reason, as a preliminary study,
we explore the feature/diagnosis correlation across all participant
reactions. The summarisation across all responses does not lead to
significant models for the sentiment features. The conversational
and breath feature models present a lower p-value, ≤ 0.05, although
still not significant enough after the Bonferroni correction. When
evaluating only the answers, we observe a substantial performance
increase for the model trained using sentiment features, suggesting
that the key emotional content of the session is in the answering
components of the interview. The model trained with breathing
features shows an F-score with a p-value of 0.03, motivating us to
hypothesise that breath features are more meaningful when applied
to the answer component of the interview.

When comparing the p-values of the different models trained
across all questions, breath features were the second most predic-
tive feature set, only surpassed by the combination of all features.
This is a good finding to motivate the relevance of these features for
interpretable depression assessment, but a more robust distinction
between answers and reactions would allow a more meaningful
feature analysis. Currently, the participant speech chunks are split
based on AI Agent’s interactions, independent of their length. The
main advantage of this strategy is that we guarantee that the AI
Agent’s speech does not affect the continuous breath signal pre-
diction. However, future work on the viability of semi-continuous
signals for feature analysis would be relevant to advancing the field,
since it would allow us to assess breathing characteristics’ variation
during interviews over a more extended period.
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To better understand the particular relation between each sepa-
rate feature and depression, we analysed the Pearson Correlation
Coefficient between each feature set and the respective PHQ-8 score
in the train set (Table 5).

We observed a longer reaction time per question in depressed
participants. Further, valence values are negatively correlated with
depression, suggesting that participants with depression express
more negative emotions across the session. Combined with the
negative correlation with maximum arousal and dominance, we
can infer that participants with higher levels of depression have a
higher expression of emotions related to sadness [5].

For breathing, we observe lower first derivative values during si-
lences for participants with higher PHQ-8 scores, suggesting either
shallow or slow breathing events, or breath-hold events. In addi-
tion, we find that the inhalation slopes in participants with higher
PHQ-8 values have a lower maximum value across the session,
which supports the hypothesis that depressed participants gener-
ally have shallow and/or slow breathing episodes. Consequently,
the standard deviation of the same function is smaller.

The PHQ-8 scores provided are based on a simple self-assessment
questionnaire and are not comparable to a clinical diagnosis. Hence
we avoid a direct comparison with breathing literature on major
depressive disorders. Nevertheless, the breathing characteristics
highlighted are related to depression and affect literature (particu-
larly concerning sadness) and are consistent with the low arousal
and valence values observed. Furthermore, we see a significantly
higher mean breath signal value for participants with higher PHQ-8.
Due to the speech variations in the breath signal, this feature is
not easily interpretable. However, less interpretable features were
added to the feature list to account for losses in information due to
errors in peak detection, and consequent errors in volume, peak to
peak distance, and inhale slope definition.

5.3 Depression score regression
We give the comparative performances of the proposed linear and
non-linear models in Table 6. In addition, we present the challenge
baseline and the top challenge submissions for comparison pur-
poses.

The best performance was achieved in the development set using
a Linear Regressionmodel with conversational, linguistic sentiment,
and breath features. The resulting model leads to an RMSE decrease
of 23% compared with the best performing baseline for the same
set. However, as observed in the challenge baseline, audio-based
models have significantly reduced performance on the test set, as
opposed to the development set. Looking at the linear regression
results for the model trained with only breath features, we observed
a similar tendency, with a significant decline in performance be-
tween development and test sets. Nonetheless, the performance for
this estimator outperforms the more complex baseline audio-based
model, encouraging further exploration of the impact of breath
features on depression assessment.

The best performing model on the test set omits breath features,
pointing to a different breath feature value distribution between
the combined train and development sets used to train the final
model and the test set. This model surpasses the challenge baseline
and is one of the top submissions in the test set. Moreover, we

observed that Random Forest regressors performed more consis-
tently between the development and test set; these models do not
assume linearity between the feature and prediction, allowing more
flexibility in the feature importance between sets.

To further explore the differences in acoustic information across
different sets, we looked at the total duration of all participant an-
swers (including reaction time), and the average length of a turn
after a question per session. We present the respective distribu-
tions in Figure 2. Since we want to focus on depression analysis,
we compared the distributions of depressed and non-depressed
participants.

(a) Total turn duration

(b) Average turn duration per answer

Figure 2: Distribution of a) total answer duration and b) mean
answer duration per session in each set. The division between
“Non-Depressed" (ND) “Depressed" (D) was based on the bi-
nary classification provided.

There is a significant difference in the number of questions se-
lected and total answer time between the development and test
sets. This pattern is observed for both depressed and non-depressed
participants. We expect the variation in the number and duration
of answers to have a high impact on turn level feature extraction.
Particularly, breathing signal prediction will be more significant
when evaluated across a longer audio sample, since the model uses
a sliding window approach. Hence, we suggest that audio features
will be less robust on the test set due to the comparative lack of
relevant audio information. The performances of the top challenge
submissions are consistent with this conclusion, with a text-based
model achieving the best performance on the test set, and the low-
est variation in performance between both sets. Hybrid models
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Table 5: Pearson correlation coefficients between the average of each feature across all the answers or all participant actions
and the continuous diagnosis for depression. The values presented correspond to the performance on the train set (* - p-value
≤ 0.05; ** - p-value ≤ 0.01. The functionals regarding “Peak to Peak distance" and “Breath Volume" did not achieve significant
correlation values in the train set.

Type Feature Functional All answers All actions

Conversational Reaction time - 0.214* 0.222*

Sentiment

Valence mean -0.293** -0.274**
max -0.278** -

Arousal mean - -
max -0.283** -

Dominance mean - -
max -0.301** -

Breath

Breath signal mean 0.305** 0.235*
std - -

1st derivative mean - 0.273**
std - -

Breath signal during silences mean 0.239** 0.247**
std - -

1st derivative during silences mean -0.221* -
std - -

Inhale slope
mean - -
max -0.207* -
std -0.195* -

Table 6: Root mean square error (RMSE) results for the de-
pression assessment task on development and test sets. For
comparison, we provide the challenge baseline and top sub-
missions. The best RMSE performance and corresponding
MAE per subset is highlighted for each model group. LR -
Linear Regression model; RF - Random Forest model; DL -
Deep Learning approach; SGD-LR - Stochastic Gradient De-
scent Linear Regressor.

Model Dev Test

Challenge baseline
audio RF 6.74 7.78
video RF 7.13 6.97
audio + video RF 6.62 7.05

Proposed methods

conv + sent + breath RF 6.63 5.85
LR 5.10 6.80

conv + sent RF 6.33 5.83
LR 6.23 5.62

breath RF 6.98 6.40
LR 5.98 7.65

selected features RF 5.96 6.37
LR 6.53 5.67

Yang et al [36] audio + video + text DL 3.09 5.40
Yang et al [35] audio + video + text DL 4.65 5.97
Sun et al [27] selected-text RF 4.97 4.98
Gong et al [9] audio+video+text SGD-LR 3.54 4.99

see a significant but less steep increase in performance between
sets. Further analysis of the referred works on the contribution
of each modality for the test set predictions would be useful for
understanding the limitations of the dataset.

Although further work is required to confirm the potential of
breathing features for depression detection, the results presented
show the value of this new set of interpretable features. Additional
engineering of the feature set, such as feature selection, and tackling
the effects of collinearity, are the following steps to extend our
understanding of the proposed approach.

6 CONCLUSIONS
In this paper, we explored the potential of simple breath features
for depression assessment, based on an imperfect measurement of
breath signals. We used the well-documented DAIC-WOZ dataset
for the depression analysis task. However, since this dataset did
not have a breathing ground truth annotation, we used a cross-
dataset prediction approach, which we validated on a subset of
DAIC-WOZ annotated with breath events. The interview setting of
the DAIC-WOZ dataset further allowed us to test the performance
of the proposed cross-dataset breathing prediction under mismatch
situations that more closely resemble interactions observed during
therapy sessions.

One of our premises was that during an interview, different
questions would provoke different emotional tones in subjects, and
questions could be grouped accordingly. Our results suggest that
session summarisation based on “General" and “Mixed" questions
leads to good linear models, implying that open questions will
produce more meaningful reactions for mood interpretation. The
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results obtained are motivating, with informative breathing fea-
tures across these question types. However, negative questions did
not provide any clear correlation with breathing features. One rea-
son of this might be the shortness of the answers, which is one
of the limitations we found for breathing features. Compared to
conversational features, they are affected more from the answer
duration since short answers do not provide an opportunity to ex-
tract useful features. Our study furthermore revealed that dataset
characteristics, particularly turn duration, can impose limitations
on the prediction accuracy of the breath signal.

Another limitation of our study lies in the use of PHQ-8 scores
for depression severity estimation, which relies on self-assessment
and cannot be directly compared with most of the literature on ma-
jor depression disorder. Also, the co-morbidity between depression
and anxiety disorder makes analysis more difficult, as anxiety is
frequently observed in patients with PTSD, and might affect breath-
ing features, hence limiting the assessment potential of them for
depression analysis specifically.

Overall, the present study evaluated the correlation between
breathing-related features and conversational, linguistic sentiment,
and depression severity level, focusing on interpretable features
to compare the correlations found within the literature. Our com-
parisons showed that features such as duration and deviations of
breathing episodes provide intelligible features with the advantage
of carrying non-identifiable information and hence being more
privacy-preserving than the audio signal. When evaluating the in-
dividual Pearson correlation coefficients between features and the
PHQ-8 scores, we observed a negative correlation between depres-
sion and arousal, valence and dominance, pointing to states such
as sad and depressed. Moreover, correlations found for breathing
features suggested slow and shallow breaths to be indicative of
high depression scores, consistent with the detected mood.

The suggested approach could have applications in assessmentby
clinicians with an interpretable automated prediction as well as
emotion detection in conversational speech analysis. Our results
suggest that there is room for further exploration on using breath-
ing features for interpretable depression detection. More robust
breathing rate assessment could improve the contribution of this
feature even further, and frequency-domain features, such as con-
tinuous wavelet transforms, present a potential future direction.
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