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Abstract—Recognition of pain in equines is essential for their
welfare. There are several tools, such as the Horse Grimace Scale,
EquiFACS and EQUUS-ARFAP, developed for pain assessment
in equines, and there are approaches to automate assessment,
as training observers takes time, and disagreements between
observers are common. In this work, we provide a system
for pain assessment in equine faces based on the EQUUS-
ARFAP scale. The proposed system consists of three steps,
namely, automatic detection of the facial regions, automatic head
orientation detection, and automatic pain detection for each
facial region of interest separately. Our main contribution is
a detailed analysis of the usage of regions of interest as the
main representation of the assessment pipeline, instead of facial
landmarks. We show improved pain classification on the publicly
available UU Equine Pain Face Dataset and advance the state of
the art in this problem.1

Index Terms—Animal behaviour analysis; pain estimation;
equines; horses; face analysis

I. INTRODUCTION

Equine welfare is impacted by the recognition and quantifi-
cation of pain [1], [2]. Therefore, the assessment and treatment
of pain is vital in maintaining healthy and happy equines. Hu-
man pain assessment is facilitated through verbal examination,
equines however do not possess verbal communication and are
reliant on observers to locate and quantify their pain.

Several studies have shown that pain in equines can manifest
as a change in behaviour, such as aggressiveness, reluctance to
move, vocalisation and diminished socialisation [3]. However,
pain can also be observed via subtle changes in their facial ex-
pressions [4].Several frameworks were developed to evaluate
pain from facial expressions of equines, such as EquiFACS [5],
the Horse Grimace Scale (HGS) [6], and the Equine Utrecht
University Scale for Facial Assessment of Pain (EQUUS-
FAP) [7]. Although the use of these scales to assess pain is
proven to be efficient, it requires observer training and manual
annotation of the pain score for each Action Unit (AU) or
Action Descriptor (AD). It has also been shown that there is
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little consensus between veterinarians on the qualitative and
quantitative pain in equines [8], [9], necessitating the need to
automate this process.

The present work proposes a fully automatic system for
pain estimation in horses based on the facial regions, and
improves the state of the art in this problem. Our proposed
system is based on the Equine Utrecht University Scale for Au-
tomated Recognition in Facial Assessment of Pain (EQUUS-
ARFAP) [10], which scores different parts of a horse’s face
individually for pain indicators. The automatic assessment
system is composed of a region of interest (ROI) extractor, a
pose estimation step and a pain estimation step, which depends
on the pose and ROI localisation.

The main contributions of this paper are as follows:

• We propose a pipeline for pain estimation in equines,
incorporating several off-the-shelf tools.

• We implement a non-pose-aware ROI localisation model,
robust to variations in horse breeds and poses.

• We illustrate that training a deep-neural network based
pain model on the detected ROI’s improves the pain
estimation results, even beyond using manually selected
ground truth regions.

II. RELATED WORK

A. Facial expressions of pain

Objective analysis of pain starts by defining the type of pain
we want to analyse, namely, acute pain. Acute pain is defined
as pain that starts sharp or intense and serves as a warning
sign of disease or threat to the body [11]. It is caused by
injury, surgery, illness, trauma, or painful medical procedures
and generally lasts from a few minutes to less than 6 months.

Objective pain assessment in humans is often achieved
through the Facial Action Coding System (FACS) system [12].
FACS is designed to categorize facial movements by looking
at the underlying muscles responsible for this movement. They
divide these movements up into Action Units (AU), where an
AU can be defined as the relaxation or contraction of a muscle
group.
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Pain estimation in animals can use indicators on the body or
the face [13]. Face analysis based systems have been adopted
for several species [5], [14]–[17].

Equines have a different facial and underlying muscle
structure than humans and other primates. To get an overview
of the underlying facial muscles, a horse head was dissected to
map the connections and interactions of the facial muscles [5].
EquiFACS used the same AUs as FACS, if the same muscle
groups were responsible for a similar facial movement, and
created a new AU if there was no FACS equivalent. If a facial
movement could not be defined using AUs, it was defined as
an Action Descriptor (AD).

The complexity of these scales makes it difficult to train an
observer to assess pain. There are also alternative scales focus-
ing on the facial expressions themselves, and not on the under-
lying muscle structure. These are the so-called grimace scales.
They have been used for several species (rats, mice, rabbits,
sheep, piglets, cats, and horses) [18], [19]. Among these,
the Horse Grimace Scale (HGS) focuses on the ears, orbital
tightening, mouth strain, tension above the eyes, strained jaw,
and the nostrils, and scores each category on a scale from 0 to
2, where 0 is “pain not present”, 1 is “pain moderately present”
and 2 is “pain obviously present”. Other relevant assessment
scales are the Equine Utrecht University Scale for Facial
Assessment of Pain (EQUUS-FAP) [7], which includes static
as well as dynamic indicators (i.e. sound and video) and the
Equine Utrecht University Scale for Automated Recognition
in Facial Assessment of Pain (EQUUS-ARFAP) [10], which
combines the static features of the HGS and the EQUUS-FAP
scale into a single list of six features. While not a clinically
validated scale, it is suitable for appearance-based automatic
analysis.

B. Automatic assessment of pain

While pain assessment scales are useful, their manual ap-
plication can be time-consuming and open to subject inter-
pretation [8], [9]. Recent efforts have focused on automating
the assessment process in animals. Due to the limitations
related to data scarcity, many works adopted transfer learning
approaches. In mice, transfer learning was used to optimize
an InceptionV3 neural network model, for the binary pain vs
no-pain classification [20]. In [21], a model trained on sheep
faces was used to bootstrap a model specialized for horses.

Previous work on assessing pain in animals has concentrated
on three components: landmarking, pose estimation and pain
estimation, respectively. Landmarking is used to isolate the
ROIs of an animal’s face and for identifying morphometri-
cally relevant points, such as eye corners, nostril boundaries,
and mouth corners. Several machine learning approaches are
frequently used for automatic landmarking, such as Ensemble
of Regression Trees (ERT) models [21]–[25] and supervised
descent models (SDM) [21], [25]. These models have been
shown to work well on human faces as well. However, these
models struggle with extreme poses and the wide variety of
animal head shapes, necessitating the need for an improved
localisation method. Some approaches have advocated detect-

ing the head pose roughly first, and then using pose-specific
landmarking models [21]. This is especially reasonable for
horse faces, as the pose of the head significantly affects the
visibility of landmarks.

The pose can be detected via traditional machine learning
based approaches, such as those using Histogram of Gradients
(HOG) features with Support Vector Machine (SVM) clas-
sifiers [21], [24], [26]. The detected pose is used to inform
the ROI localisation, which needs to be accurate for pain
estimation, which is the last step [21], [25].

III. METHODOLOGY

Our proposed approach uses an SVM-based pose classifier
and a deep neural network based ROI classifier in parallel to
determine a final set of ROIs on the facial image of a horse.
The ROI’s are then processed individually by an SVM-based
classifier, and each is assigned a pain score. The summation
of all pain scores results in the overall pain score.

The main reason we use an SVM is that there is not enough
data for end-to-end deep learning; there are very few samples
with strong pain expressions. Previous works in the literature
have explored various data augmentation methods [21], but
since pain expressions are subtle, classical image augmentation
and generative AI based image synthesis both have very
limited usefulness for data augmentation and more innovative
ways should be explored.

Our results are evaluated using both the macro and weighted
metrics. The macro metric is calculated by taking the un-
weighted mean of all the per-class scores, whereas the
weighted metric is calculated by taking the support of all per-
class means into account. Equation 1 illustrates the macro F1-
score, and Equation 2 shows the weighted F1-score, where C
is the class and S the support.

MacroF1 =
F1C1

+ F1C2
+ F1

C3

total number of classes
(1)

WeightedF1 =
F1C1 ∗ SC1 + F1C2 ∗ SC2 + F1C3 ∗ SC3

total number of instances
(2)

A. Pose estimation

Head pose variations cause evident changes in the facial
appearance in equines due to self-occlusions. In this work, we
use the pose to determine whether a particular ROI is supposed
to be present in the image and whether or not it should be
allocated to the left or right side of a horse. To this end, we
implemented a 5-class pose classifier distinguishing between
profile left, tilted left, frontal, tilted right, and profile right
poses.

Based on results from the literature, we use Histogram of
Oriented Gradients (HOG) features [27] with an SVM classi-
fier for this purpose. All images were resized to (128× 128)
before the HOG features were extracted. We performed a



nested 3-fold cross-validation within the training set to find
the best HOG parameters (orientations, pixels per cell, and
cells per block). We used a linear kernel SVM and balanced
class weights, assuming no prior distribution information for
any pose class. Furthermore, we used a one-vs-one decision
function, which means that each sample gets a score for every
pairwise class comparison the class with the most votes is the
predicted class [28].

In our preliminary experiments, we observed that SVM
made errors in images where the background was of a similar
color as the horses coat, leading to HOG descriptors that
included parts of the background. To mitigate this problem, we
added an extra step of preprocessing, using the U2-network for
background removal [29] before resizing the images. The off-
the-shelf REMBG Python library provides an implementation
of this, which we employed without any adjustments.

B. ROI localisation

ROI localisation is a necessary step in the automatic assess-
ment of pain. Previous works have focused on using transfer
learning from landmarking models for human faces [30] and a
pose-informed Ensemble of Regression Trees (ERT) [21], [24],
[25]. In this work, we compare the performance of a pose-
informed ERT model and a YOLOv8 (You Only Look Once)
model [31] for ROI localisation. The baseline landmarking
approach based on ERT uses three different models, one for
each pose class, predicting 54, 44, and 45 points for the frontal,
tilted and profile poses, respectively. The images are resized
to a fixed height of 1000, with the width being calculated
by the average aspect ratio for each pose, resulting in images
of different size for frontal (582× 1000), tilted (582× 1000)
and profile (706× 1000) poses, respectively. The ERT models
are implemented using the dlib library, with a tree depth of
5, 500 trees per cascade level and an oversampling rate of
30, which applies data augmentation jitter to the images. We
assume that face detection is correctly performed, therefore
we use the ground truth facial bounding boxes for estimation.
The images in our dataset (see next section) contain prominent
horse faces without much else, so face detection is not an issue,
but a more challenging dataset may require the assessment of
this step to determine its impact on the overall performance.

The ERT model’s performance is measured using the Suc-
cess Rate (SR) and the Mean Normalised Error (MNE). The
SR refers to the percentage of landmark predictions with a
distance lower than 6% of the eye-nostril distance from the
manual ground truth (after [21]), and the MNE is the Euclidean
distance between the prediction and ground truth normalised
by the eye-nostril distance.

The YOLOv8 model is not pose-informed, meaning that
the model uses a single model for each ROI under any pose.
To maintain consistency across all pipeline components, we
separate a test set, and the training set was further divided into
training and validation sets using an 80-20 split within each
pose group, resulting in 1187 training images, 297 validation
images, and 371 test images. The images are resized using the
average aspect ratio of all images with a fixed height of 1000,

resulting in an image size of (615×1000). The bounding boxes
are obtained by drawing rectangles around the landmarks of
each ROI, with zero padding, and the classes of the ROI have
been reduced by combining each left-right pair into a single
category (e.g. left-eye and right-eye are both stored as the eye
ROI). The YOLOv8 model was trained using the following
parameters: image size of 512 (resizing all images to this
dimension is done to reduce computational complexity), 100
epochs, a batch size of 10, and a random seed of 0. The YOLO
model for bounding box localization is evaluated via precision,
recall, mean Average Precision 50 (mAP50), mAP50-95 and
the Intersection over Union (IoU) measures. For the latter, an
overlap of 95% is considered as a very good agreement with
the ground truth bounding box. mAP50 measures the mean
average precision at an IoU threshold of 0.5, while mAP50-
95 measures the mean average precision across IoU thresholds
ranging from 0.5 to 0.95.

C. Pain estimation

To estimate the pain in horses we make use of a SVM
trained on HOG features, following previous research [21],
[25]. We trained a pose-and-ROI-specific SVM for every pose
and ROI combination. Each ROI was resized to a size of
(64,128) before the extraction of HOG features. We tested
different values for the HOG parameters (orientations, cells
per block, pixels per cell), as well as different SVM parameters
(kernel, regularization parameter C) on the training partition,
to find the optimal configuration per ROI and an optimal
configuration for all ROIs on average. The best combination
of parameters on average for all ROI was obtained by scoring
all classification reports of a pose and ROI on highest macro
avg recall, macro avg precision and last macro avg f1-score.
The top 100 configurations for each pose and ROI were then
given a score based on where they stood in the ranking, the
configuration with the highest average ranking was then picked
as the final configuration for the pain classifier and tested on
the test set to produce the performance measurement results.

When only one ROI of a left-right pair is detected, but
more are expected, the missing ROI is created by mirroring
the detected one, assuming general symmetry between both. If
there is no ROI detected, the expected ROI will be depicted as
a zero array of the same size with the expected feature matrix
size.

In total, we evaluate three pain classifiers with the optimal
average hyperparameters. The first classifier is trained and
tested on the ground truth ROIs. The second classifier is
trained on the ground truth ROI and tested on the YOLO-
predicted ROIs. The final classifier is trained and tested on
the YOLO-predicted ROIs. We have chosen not to include
the classifier that was trained on the ground truth and tested
on the ERT-predicted ROIs, as the results for ERT-based ROI
localisation were worse than the YOLO localisation results.

IV. DATA AND ANNOTATIONS

The UU Equine Pain Face Dataset consists has 1855 horse
images and 531 donkey images and is publicly available,



Fig. 1: Horse faces for each pose group with their respective
landmarks in green.

including the pain scores per ROI [25]. The horses have
different pose, illumination and background conditions, and
some of them have bridles. Part of the data comes from
horse owners, and part of it was collected by a veterinary
medicine faculty during a clinical procedure. Ethics approvals
were obtained in the preparation of the dataset.

The images used in this work are only those of horses and
we focus on the facial region of these animals. Each image
was annotated with pain labels and landmarks for each ROI
in the EQUUS-ARFAP scale. The landmark schemes differ
between the profile, tilted and frontal poses as different ROI
are occluded per pose.

A. ROI annotations

The landmarks of the images are annotated using the
landmark annotation scheme from [10]. The head orientations
frontal, tilted, and profile have their own landmark scheme us-
ing 54, 44, and 45 points, respectively (Figure 1). These land-
marks came with the database distribution. We supplemented
these annotations with bounding box annotations around the
face, eyes, ears, nostrils, jaw, and the mouth. Some regions are
occluded in different poses. The bounding boxes are formatted
as (x centre, y centre, width, height) on a scale of 0 to 1. This
allows convenient scaling for the different image resolutions
present in the dataset.

B. Pain distribution

The database we have used is publicly available [25]. The
images were annotated for potential signs of pain by three
expert raters (one senior expert researcher and two graduate
students) according to the EQUUS-ARFAP scale presented in
Table I. All experts scored the entire dataset using the full
images. In this work, we use the pain score annotations made
by the senior expert researcher, following [21]. The distribu-
tion of these annotations can be found in Figure 2, where we
observe that the severe pain label “2” is underrepresented for
each ROI.

TABLE I: Score sheet for EQUUS-ARFAP

Data Categories Score

Ears

Both ears are turned forwards
At least one ear lateral
position or further to backwards
Both ears turned backwards

0
1

2

Orbital tightening
Relaxed
A bit of tightening of the eyelids
Obviously tightening of eyelid/ eyelid closed

0
1
2

Angulated upper eyelid
Relaxed
A bit more visible
Obviously more visible

0
1
2

Visibility of the sclera
Sclera is not visible
An edge of the sclera is visible
Obviously more visible

0
1
2

Corners of mouth / lip
Relaxed
Lifted a bit
Obviously lifted/ strained

0
1
2

Nostrils
Relaxed
A bit more opened
Obviously more opened (dilated mediolaterally)

0
1
2

Total .../12

C. Data preparation

We have split the 1855 images into a training and a test set
with a roughly equal distribution of pain labels and following
an eighty-twenty split. This is done by stratifying the data on
pain scores. The distribution of the pain scores for the training
and the test set can be seen in Figure 2.

V. EXPERIMENTAL RESULTS

A. Pose estimation

The 3-fold cross-validation of the HOG parameters showed
that the optimal parameters are nine orientations 4× 4 pixels
per cell and 4 × 4 cells per block Table II. When removing
the background with REMBG before resizing the images and
extracting the HOG features with the same parameters, we see
a slight uplift in the overall performance (see Table III). The
errors observed were often related to ambiguous head poses,
or mistakes in the background removal process, being either
too harsh or too subtle in some cases.

Fig. 2: Distribution of the pain scores in the dataset for the
training and test sets.



TABLE II: Performance of the pose classifier trained on the
HOG features with parameters: (9, 4x4, 4x4).

Orientation Precision Recall F1-score Support

Profile left 0.873 0.923 0.897 52
Tilted left 0.859 0.850 0.854 100
Frontal 0.818 0.750 0.783 72
Tilted right 0.892 0.938 0.915 97
Profile right 0.959 0.940 0.950 50

Macro avg 0.880 0.880 0.880 371
Weighted avg 0.875 0.876 0.875 371

TABLE III: Performance of the pose classifier using HOG
parameters (9, 4×4, 4×4) with the background removed of the
images using REMBG.

Orientation Precision Recall F1-score Support

Profile left 0.877 0.962 0.917 52
Tilted left 0.896 0.860 0.878 100
Frontal 0.836 0.778 0.806 72
Tilted right 0.901 0.938 0.919 97
Profile right 0.940 0.940 0.940 50

Macro avg 0.890 0.895 0.892 371
Weighted avg 0.889 0.889 0.889 371

B. ERT-based ROI localisation

The ERT model shows promising results for landmark
localisation (see Table IV), which is in line with previous
findings in the literature [21], [25]. However, the wide range
of poses and horse breeds present in the dataset causes mis-
classifications for extreme poses and underrepresented breeds.
[21] notes that incorporating the pitch, roll, and yaw improves
the results. However, such a model would still struggle with
breeds that are underrepresented or that have out of distribution
appearances. Furthermore, some ROIs appear to perform well
on paper when using the SR and MNE as evaluation, such
as the eyes. However, it is important to place a caveat on
these results. The eye ROI is a lot smaller and the landmark
grouping is a lot closer to its peers, making it easier to pass the
evaluation methods while still being off, leading to inaccurate
ROI cropping. Finally, splitting the data over different pose-
dependent classifiers reduces the quantity of available data for
each classifier, possibly hindering performance.

Figure 3 left shows an example of a wrong ERT prediction,
where the background misleads the detector to predict a wrong
pose class, and leading to wrong HOG features further down
the pipeline.

C. YOLO-based ROI localisation

The YOLO model similarly shows promising results for
landmark localisation (see Table V). It performs well on
the box precision, recall, and mAP50, showing the model is
capable of detecting and selecting the right bounding boxes
for an image. However, the IoU and mAP50-95 scores are a
bit lower, showing that the model is not perfectly accurate,
which can be seen when looking at the pain estimation results

Fig. 3: Example showing the impact of wrong pose estimation
on ERT-based (left) and YOLO-based (right) ROI detection.
The green boxes represent the ground truth for each ROI, while
the red boxes indicate the predicted ROI.

trained on the ground truth ROI and tested on the YOLO ROI
(see Table VII). However, it must be noted that the IoU is 0 if
there are either too many predictions or too few predictions.
Figure 3 shows an example of the YOLO model still providing
accurate ROI localisation, where the predicted pose is different
from the ground truth pose, due to the models’ independence
of pose when detecting ROIs. It also shows the shortcoming
of the YOLO-based approach, as not every detected ROI is
allocated, due to the pose-informed allocation logic.

D. Pain estimation

The best-performing pain classifier configuration (on the
three-fold validation set) averaged over all ROIs consists of
the following HOG parameters: 9 orientations, 8×8 pixels
per cell, and 3×3 cells per block, and C regularization of
1 with a linear kernel for the SVM parameters. Table VI
shows the classification scores for each ROI trained and tested
on the ground truth bounding boxes with the best average
pain classifier mentioned above. The model performs well on
the ears and mouth, but the results for the other ROIs are
less accurate. This table will serve as a baseline for the pain
classifiers.

Table VII shows the performance of a classifier trained
on the ground truth ROI and tested on the YOLO bounding
boxes. The results are worse, suggesting that the bounding
boxes identified with YOLO have discrepancies compared to
the ground truth bounding boxes. This may be an effect of how
closely these are cropped, and therefore it may make sense to
use automatically detected ROIs for both training and testing
to remove the discrepancy in these two conditions.

To verify the hypothesis of discrepancies between ground
truth bounding boxes and YOLO bounding boxes, a third



TABLE IV: The Success Rate (SR) and Mean Normalised Error (MNE) using the Ensemble of Regression Trees (ERT) models
on the landmarks for each region-of-interest (ROI) and pose. Missing values indicate that the ROI is not defined in that class.
Results are obtained with the ground truth pose.

ROI Frontal SR Tilted SR Profile SR Frontal MNE Tilted MNE Profile MNE Average SR Average MNE Average IoU

Left Ear 0.669 0.715 0.519 0.061 0.063 0.080 0.673 0.065 0.693
Right Ear 0.678 0.652 0.610 0.055 0.067 0.075 0.651 0.066 0.712
Left Eye 0.766 0.918 0.772 0.053 0.033 0.049 0.834 0.043 0.514
Right Eye 0.792 0.844 0.783 0.049 0.040 0.046 0.813 0.044 0.507
Left Nostril 0.616 0.557 0.821 0.068 0.060 0.041 0.637 0.058 0.491
Right Nostril 0.646 0.558 0.837 0.075 0.076 0.039 0.651 0.067 0.474
Mouth - - 0.868 - - 0.037 0.868 0.037 0.634
Jaw - - 0.579 - - 0.057 0.579 0.057 0.777

TABLE V: The performance metrics for the ROI prediction
of the YOLO model on the test set.

ROI Images Instances Box precision Box recall Box mAP50 Box mAP50-95 IoU

Face 371 371 0.999 1.000 0.995 0.977 0.964
Eyes 371 443 0.946 0.907 0.953 0.502 0.665
Nostrils 371 443 0.950 0.936 0.963 0.532 0.701
Ear 371 639 0.988 0.962 0.984 0.732 0.799
Mouth 102 102 0.922 0.929 0.935 0.543 0.666
Jaw 102 102 0.942 0.841 0.967 0.644 0.753
All 371 2100 0.958 0.946 0.966 0.655 0.767

TABLE VI: Pain prediction scores per ROI, classifiers trained
and tested on the ground truth ROIs.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.756 0.740 0.744 0.878 0.883 0.879
Nostril 0.566 0.539 0.549 0.639 0.644 0.640
Sclera 0.750 0.493 0.532 0.724 0.721 0.711
Orbital 0.637 0.485 0.528 0.821 0.834 0.825
Angulated 0.379 0.387 0.382 0.555 0.565 0.559
Mouth 0.667 0.703 0.679 0.807 0.780 0.791

classifier was trained and tested on YOLO-detected bounding
boxes, the results of which can be seen in Table VIII. The
results of this classifier improved for each ROI compared to the
previous model, but did not perform as well as the ground truth
model, aside from the nostril ROI, which seems to perform
better.

The demonstrated improvement in ROI classification shows
the potential of fully automating equine facial pain assess-
ment using YOLO. However, it is important to note that the
predicted YOLO bounding boxes with which we have trained
the pain classifier are more likely to be closer to the ground
truth bounding boxes than the predicted bounding boxes of the

TABLE VII: Pain prediction scores per ROI, classifiers trained
on ground truth ROIs and tested on the YOLO-detected ROIs.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.702 0.695 0.696 0.856 0.862 0.857
Nostril 0.582 0.550 0.560 0.639 0.639 0.636
Sclera 0.406 0.419 0.412 0.670 0.701 0.685
Orbital 0.568 0.467 0.500 0.809 0.826 0.816
Angulated 0.352 0.359 0.355 0.515 0.525 0.520
Mouth 0.582 0.592 0.586 0.746 0.730 0.737

TABLE VIII: Pain prediction scores per ROI, classifiers
trained and tested on the YOLO-based ROIs.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.725 0.735 0.717 0.875 0.873 0.869
Nostril 0.582 0.544 0.566 0.633 0.639 0.635
Sclera 0.616 0.483 0.515 0.698 0.715 0.700
Orbital 0.626 0.457 0.497 0.822 0.845 0.829
Angulated 0.364 0.370 0.367 0.533 0.542 0.537
Mouth 0.639 0.609 0.619 0.769 0.790 0.777

test set. This potential difference in accuracy could explain the
slight reduction in performance when comparing this classifier
to the ground truth baseline.

TABLE IX: Pain prediction scores per ROI, classifiers trained
on the ground truth ROIs and tested with ERT ROIs.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.684 0.660 0.669 0.819 0.832 0.824
Nostril 0.466 0.401 0.385 0.543 0.533 0.520
Sclera 0.537 0.416 0.438 0.640 0.670 0.647
Orbital 0.388 0.389 0.387 0.788 0.790 0.789
Angulated 0.371 0.377 0.370 0.543 0.548 0.539
Mouth 0.561 0.565 0.562 0.731 0.720 0.725

Table IX shows the performance of a classifier trained
on the ground truth and tested on ERT-predicted ROIs. The
results are similar to the Table VII, albeit with lower macro
precision and macro recall for every ROI, except for sclera,
indicating that the ERT detected ROIs are less accurate than
the YOLO detected ROIs. Table X shows the performance of
a pain classifier trained and tested on the ERT-predicted ROIs.
Table X shows a different improvement pattern compared to
Table VIII, as the Angulated upper eyelid, Ears, and Mouth
ROI macro precision and macro recall values do not improve
over Table IX. The detected ROIs of the test set are not as
accurate as those of the training set, and thus provide poorer
boundaries to aid decision making.

Table XI and Table XII show the fully automated pipeline
with predicted pose. When looking at the macro recall and
macro F1, we see a small reduction in Table XI in comparison
to Table VIII indicating that the YOLO model adapts well to
mistakes in pose classifications. Similarly, Table XII shows an



TABLE X: Pain prediction scores per ROI, classifiers trained
and tested on ERT ROI.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.655 0.644 0.647 0.811 0.821 0.815
Nostrils 0.567 0.489 0.505 0.614 0.617 0.609
Sclera 0.706 0.421 0.450 0.667 0.682 0.656
Orbital 0.469 0.442 0.453 0.800 0.807 0.803
Angulated 0.361 0.368 0.364 0.529 0.537 0.531
Mouth 0.536 0.548 0.534 0.719 0.660 0.684

identical reduction pattern in comparison to Table X, which
is against our expectations that ERT is more prone to make
pose-informed mistakes. A possible explanation for this is that
the images with a wrongly predicted pose are often related to
ambiguous head poses that are similar to the predicted pose.

TABLE XI: Pain prediction scores per ROI, classifiers trained
and tested on YOLO ROI with predicted pose.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.704 0.724 0.706 0.867 0.864 0.863
Nostrils 0.559 0.525 0.539 0.617 0.625 0.620
Sclera 0.558 0.472 0.492 0.701 0.721 0.707
Orbital 0.626 0.457 0.497 0.822 0.845 0.829
Angulated 0.371 0.379 0.375 0.543 0.553 0.548
Mouth 0.645 0.618 0.629 0.785 0.802 0.792

TABLE XII: Pain prediction scores per ROI, classifiers trained
and tested on ERT-based ROI with predicted pose.

Model Macro
precision

Macro
recall

Macro
f1

Weighted
precision

Weighted
recall

Weighted
f1

Ear 0.646 0.632 0.638 0.811 0.821 0.815
Nostrils 0.535 0.474 0.485 0.602 0.609 0.600
Sclera 0.697 0.415 0.443 0.660 0.673 0.649
Orbital 0.478 0.451 0.462 0.805 0.812 0.809
Angulated 0.355 0.363 0.357 0.520 0.528 0.522
Mouth 0.520 0.528 0.515 0.722 0.653 0.682

TABLE XIII: Pain prediction using aggregated ROIs for the
ground truth (gt), YOLO, and ERT models, all using the gt
pose. Bold numbers indicate statistical significance (5×2 CV
F-test, α = 0.05) between the gt and the model.

Model/Metric Macro
precision

Macro
recall

Macro
F1

GT (baseline) 0.626 0.558 0.572
YOLO (YOLO ROIs with gt pose) 0.592 0.533 0.547
ERT (ERT ROIs with gt pose) 0.549 0.485− 0.492−

Table XIII shows the 5×2 CV F-test results [32] comparing
the ground truth model with models trained and tested on
YOLO and ERT detected ROIs. All models use the ground
truth pose, as the pose classifier is trained on the data used
in the significance test and would therefore not make wrong

predictions. Bold results indicate rejection of the null hypoth-
esis, showing significant performance differences. The ERT
model performs significantly worse in macro recall and macro
F1 compared to the ground truth model, while the YOLO
model does not show significant differences. This suggests our
proposed method outperforms the previously used ERT model.

VI. CONCLUSION

The pose of a horse’s head greatly affects the visibility of
facial landmarks and regions of interest, and earlier approaches
for facial pain analysis for horses employed multiple models,
each trained for a different pose class. In this paper we
have provided an alternative way for region of interest (ROI)
localisation, circumventing the need for pose-informed ROI
localisation models. We contrasted an Ensemble of Regres-
sion Trees (ERT)-based landmark detection approach with
a YOLO-based region detection approach for obtaining the
ROIs. Our experiments showed that training the pain classifier
on the automatically detected ROIs improved the results for
all ROIs when using a YOLO-based model, compared to
manually selected ROIs (i.e. ROI ground truth). The results
show that the automatic ROI detection for both training and
testing provides consistency, and can be preferable to using a
manual ground truth in the training stage.

Our model is not pose-informed, but uses a pose logic. One
advantage of our approach over the traditional pose-informed
ROI localisation lies in its handling of pose prediction errors.
In the pose-informed methods, if the pose prediction is incor-
rect, such as the detection of a frontal pose when the actual
pose is a profile pose, the model would falsely detect non-
existent ROIs for the second eye, nostril, and ear. In contrast,
our model mitigates this issue by not having a fixed set of ROIs
it needs to detect. If the pose prediction is incorrect, the worst-
case scenario would be that some ROIs are either not detected
or are misallocated to the wrong side of the face. This avoids
wrong HOG features being fed into the pain classifier. When
comparing the YOLO-based ROI detector to the ERT-based
detector, we see similar results, but in favour of the YOLO-
based classifier when using the classifier trained on the ground
truth ROI, except for the Sclera. However, when training
the pain classifiers on the predicted ROIs, only the YOLO-
based model saw an improvement for all ROIs, whereas the
ERT-based model worsened for three of the six ROIs. This
indicates that the ERT-based model is not as consistent in
ROI detection as the YOLO-based model. This point is also
confirmed by a 5×2 CV F-test, which shows no statistical
difference between YOLO and GT models, but significantly
worse performance for the ERT model. In conclusion, our
move from a landmark estimation based approach to a patch
based representation of the regions of interest improved the
downstream pain estimation results, and pushed the state of
the art in the publicly available UU Equine Pain Face Dataset
benchmark.



VII. ETHICAL IMPACT STATEMENT

This paper concerns itself with the automatic pain estima-
tion in equine faces, with a focus on more effective region
of interest localisation and usage. We acknowledge that our
dataset comes from an ethics-board approved study which
made the dataset and pain annotations available publicly.

Automatic pain estimation for animal welfare is a task that is
potentially useful for detecting health issues with animals, and
for monitoring. The main risk of such automated approaches
is that people may rely too much on these systems and reduce
the actual human oversight in animal welfare. The technology
for monitoring has not progressed to the point of replacing
professional caregivers, and this needs to be clearly realized
in any actual use of such systems.
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