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Abstract—First impressions play a critical role in shaping
social interactions and consequently have a high impact on
people’s lives. This study presents an explainable system that
models apparent personality traits that influence first impressions
as a function of automatically predicted arousal, valence and
likeability (AVL) scores. To this end, we enrich the ChaLearn
Looking at People - First Impressions (LAP-FI) dataset by
annotating a portion of it for the AVL dimensions and carry out
extensive uni-modal and multimodal experiments by using state-
of-the-art acoustic, visual and linguistic features. We propose to
use a glass-box model, namely, Explainable Boosting Machine,
to model the Big Five personality traits. Our results demonstrate
that personality trait impressions can be effectively predicted
through the mood and likeability scores of a given video. We
show that the proposed model, which is trained on only a few
features, not only provides more meaningful explanations but
also yields competitive performance (with a 0.09 Mean Absolute
Error) compared to the state-of-the-art methods. The annotated
benchmark dataset and the scripts to reproduce the results are
available at: https://github.com/gizemsogancioglu/mood-project.

Index Terms—Big Five personality traits, valence, arousal,
mood recognition, affective computing, multimodal fusion

I. INTRODUCTION AND RELATED WORK

The relationship between affect and personality is an im-
portant research question in affective computing and has ap-
plications including analysis of mental health [1], personality
disorders [2], and personal assessment [3]. Several related
databases were previously released for research purposes [3],
[4], as well as approaches to analyse affect dimensions such
as mood, emotions, and personality, including both unimodal
and multimodal [5] approaches.

Apparent personality, i.e. the trait impressions perceived
by an observer regarding other people, is one of the key
elements in personality computing [6]. Personality is typically
summarized and assessed along the “Big Five” personality
traits [7]. The five factors are Openness to Experience, Con-
scientiousness, Extraversion, Agreeableness, and Neuroticism
(commonly abbreviated as OCEAN). While there are other
personality models, such as HEXACO [8], adding Honesty-
Humility as a sixth dimension, the Big Five is used more in
the literature.

A single modality may not provide sufficient information to
predict real or apparent personality [3]. Although most of the
earlier works have analysed a single modality, such as textual

cues [9], phonetic information [10], or facial expressions [11],
availability of recent multimodal affect datasets helped to
investigate this problem in a richer way.

The relation of personality traits and emotions and like-
ability is well studied in psychology. An earlier study [12]
reported substantial correlations between primary emotions,
mood, and the Big Five traits, such that all traits except
Neuroticism were shown to be positively correlated with a
positive mood. Another study [13] showed that Extraversion
is highly associated with likeability. Based on the available
literature, we hypothesized that apparent personality traits can
be accurately modeled with the mood states and likeability of
the people.

Taking a similar approach with [4], which presents a system
for the use of valence and arousal as a meta-feature for longer
mood state monitoring such as depression, we used the mood
and likeability as intermediary features to predict apparent
personality traits. In this paper, we define the mood in terms of
valence (positive vs negative) and activation (calm vs. excited),
both of which are observable from expressed behaviors such
as speech, facial expressions, and language.

The ChaLearn Looking at People First Impressions (LAP-
FI) challenge series, which were conducted in 2016 [14]
and 2017 [15], have also boosted research in the multimodal
personality computing field. These challenges asked for an
audiovisual prediction of (apparent) Big Five personality im-
pressions, and whether a person would be invited to a job
interview, using explainable models [3]. The BU-NKU system
that won the CVPR 2017 edition of the challenge proposed
audio, video, and scene-based two-staged system [16]. Two
extreme learning machine (ELM) models were trained from
an early fusion of face, scene, and audio features, followed
by stacking the predictions of sub-systems to an ensemble of
decision trees. The most recent studies on this task (published
after the challenge) employ a trimodal (audio, visual and lin-
guistic) approach, showing positive contribution via linguistic
modeling [17], [18]. In all state-of-the-art systems, the visual
modality is found to be the most predictive and extensively
benefits from transfer learning. Aslan et al. [18] proposed
more complex deep multimodal architectures with modality-
specific deep sub-networks, which are subsequently combined
and complemented by feature attention and regression layers.
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TABLE I
AVERAGE INTER RATER AGREEMENT (COHEN’S KAPPA) SCORES USING

THREE WEIGHTING SCHEMES.

Task Unweighted Linear Quadratic
Arousal 0.37 0.41 0.48
Valence 0.36 0.39 0.44
Likeability 0.23 0.30 0.41

Li et al. approached the problem differently from the pre-
vious studies and proposed a deep Classification-Regression
network to overcome the regression-to-mean problem [17].
Most of the successful studies used deep architectures with
high-dimensional feature spaces, which makes interpretability
difficult.

We used the ChaLearn LAP-FI dataset (detailed in the next
section) to evaluate our approach to predict the personality
impressions. First, we annotated a portion of the dataset for the
new AVL dimensions. By using the three different modalities
(transcript, audio, and video) that are already available, an ex-
tensive set of uni-modal and multimodal experiments with an
SVM classifier were conducted for the classification of arousal,
valence, and likeability. The predictions of the AVL models
were used as mid-level features for the second-level learner.
Another motivation to use mood and likeability as features in
this study was to increase the explainability of the systems
by using a few and easily understandable features unlike the
previous studies on this dataset. For this reason, Explainable
Boosting Machine (EBM) [19], which is an explainable model
by its nature, was used as a second-level learner.

The contributions of this paper are twofold:
• We demonstrate that using mood and likeability as mid-

level features can effectively help recognize apparent
personality traits and obtain comparable performance to
the literature in addition to providing more transparent
predictions.

• We present a set of manual annotations and benchmark
experiments for AVL dimensions that can be used for
training and evaluation in future studies. Experiments
were performed on this set using the state-of-the-art
linguistic, acoustic, and visual feature sets.

II. DATASET

We used the publicly available ChaLearn LAP-FI
dataset [3], [14], which comprises 10,000 video clips with
an average duration of 15 seconds. The clips were collected
from over 3,000 videos available on YouTube. The videos were
annotated for apparent personality traits, using the Big Five
model, and later normalized into [0, 1].

Besides sensory data, the dataset also contains manual text
transcriptions of the videos. In total, 435.984 words were
transcribed (183.861 non-stopwords), which corresponds to
43 words per clip on average. The ethnicity, age, and sex
of people in the videos were annotated later to investigate
annotator and algorithm biases [3].

In order to answer our research question of whether the
overall apparent mood in the video is significant to predict

TABLE II
CLASS DISTRIBUTION OF THE NEWLY ANNOTATED DIMENSIONS.

Task Low Medium High
Arousal 57 588 315
Valence 36 709 215
Likeability 119 655 186

apparent personality, we enriched a portion of the ChaLearn
dataset (a total of 960 video clips) with three new dimensions:
valence, arousal, and likeability. These dimensions were an-
notated by three different annotators (Gender: all male, Age:
21-22, Native language: Dutch) for three categories (1:low,
2:medium, 3:high). Most voted class among three different
annotations was assumed as a ground-truth value for the
corresponding clip. In case of a tie, the “low” class was
used, i.e. we broke the tie in favor of the minority class (see
Table. II).

As shown in Table I, Kappa scores for unweighted (orig-
inal), linear, and quadratic weighting (also reported, since
categories are ordinal) schemes were computed to measure
the inter-rater agreement of the annotations and show fair
to a moderate agreement. The arousal dimension has the
highest agreement among annotators, the agreement level for
likeability is lower than both valence and arousal annotations.
While Kappa scores are admittedly low due to the subjective
nature of the assessments, we illustrate next that a system built
using these annotations is still capable of achieving state-of-
the-art performance.

Table II shows a histogram of the AVL annotations. For all
three dimensions, annotations of the dataset were imbalanced,
as more than 60 % of the examples were annotated in the
‘medium’ class. We also observed that there are very few
examples belonging to the ‘low’ class, especially for valence
and arousal dimensions, which indicates a possible bias in the
YouTube videos.

The annotated dataset was partitioned into development
(training/validation) and test sets to set a standard for future
studies. The development partition consists of 660 examples,
while the remaining 300 instances served as the test set.

Fig. 1. The test set UAR (%) performance of each human annotator with
respect to the ground truth.

We computed each annotator’s performance to assess task
difficulty. Figure 1 shows the test set unweighted average recall
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TABLE III
MEAN ANNOTATIONS PER SENSITIVE GROUP. AROUSAL MEAN: 2.27,

VALENCE MEAN: 2.19, LIKEABILITY MEAN: 2.07

Arousal Valence Likeability
Female 2.29 2.24 2.18
Male 2.24 2.13 1.94
African American 2.27 2.13 2.06
Caucasian 2.27 2.19 2.07
Asian 2.13 2.33 1.97
Female (Younger) 2.28 2.24 2.26
Female (Older) 2.31 2.22 1.92
Male (Younger) 2.27 2.15 1.93
Male (Older) 2.19 2.05 1.99

(UAR) (%) scores of each annotator’s labels per dimension
with respect to the ground truth. The lowest accuracy scores
among annotators are 77.4, 77.9, 73.2 for valence, arousal,
likeability, respectively. These results are rather optimistic
since annotators voted for the ground-truth label. However,
scores still give a good idea about human-level performances
on a given task and set upper bound algorithmic approaches.
Both upper-bound scores and inter-rater agreement scores
given in Table I show that likeability is a more difficult
dimension to predict accurately.

A. Limitations

We observe two important limitations about the ChaLearn
dataset and the annotations. Firstly, since the main task was
recognition of first impressions about personality from short
videos, the original video clips were randomly cut off to 15
seconds. Most of the transcripts thus end with incomplete
sentences. Unfortunately, this causes losing an important lin-
guistic context and weaker representation compared to other
modalities.

Secondly, the joint study of the ChaLearn organizers and the
competitors [3] showed that personality trait annotations are
biased towards sensitive groups such as gender and ethnicity.
We performed a similar analysis and reported the mean value
of each sensitive group for the new AVL annotations in
Table III. We classified the numerical age annotations as
‘younger’ and ‘older’ by setting a threshold (t = 33) based
on the distribution of the examples in our dataset. For the
likeability dimension, a larger gap was observed between
sensitive groups of gender and ethnicity. Interestingly, while
younger female groups had a higher likeability score than
older females, older males were considered to be more likeable
compared to younger males. A similar bias was also reported
in [3]. As such annotator biases are learned by machine
learning models, we caution the readers in the usage of these
methods: They are suitable for assessing the assessors and for
training purposes, but they should not be used directly for
screening job candidates.

B. Correlation Analysis

Figure 2 illustrates the correlation matrix of personality
traits and mood variables for the annotated portion of the
ChaLearn First Impression dataset (960 clips). We first observe

Fig. 2. Pearson correlation matrix of target variables (all correlations are
significant at p < .0001 level).

that all correlations are positive, noting that Neuroticism
scores in this dataset refer to Non-Neuroticism. The second
general observation is that the majority of the inter-trait
correlations are substantial (higher than 0.6), while inter-state
(mood/likability) correlations are fair at best. The high inter-
trait correlations imply that there may be a common factor
(e.g. an overall impression left on the annotator) that affects all
personality trait impressions. We observe moderate trait-state
correlations, particularly between arousal and OEN (open-
ness, extroversion, and neuroticism) trait impressions as well
as likeability and CEN (conscientiousness, extroversion, and
neuroticism) trait impressions. Although lower than inter-trait
correlations, these moderate state-trait correlations motivate
an investigation to use them in a two-level framework as
interpretable mid-level predictive features for trait impressions.

III. METHODOLOGY

In this section, we present the proposed feature sets for
apparent personality analysis. As depicted in Fig.III-C, the
proposed system consists of two main components; 1. mood
and likeability classification through a support vector machine
(SVM) classifier, 2. personality trait impression prediction
using the predicted mood and likeability scores with an
explainable boosting machine (EBM) regressor.

A. Feature Extraction

We experimented with a rich set of state-of-the-art and
hand-crafted linguistic features that can be correlated with
personality traits and affect. On the other hand, for acoustic
and visual modalities, we followed the work of Kaya et
al. [16]. We selected the visual feature set used in their system
that won the ChaLearn LAP challenge.

1) Linguistic Features: As a common linguistic baseline,
Term Frequency-Inverse Document Frequency (TF-IDF) was
used. Two affective lexicon-based approaches, a state-of-the-
art (SoA) embedding method, and two statistical feature sets
were experimented with. We describe each of these in turn.
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a) Text Entity Per Second (TEPS): The number of the
word- and sentence entities per second were used as one of
the linguistic features in this study. Since the speech length is
fixed with 15 seconds for all the videos, the total number of
words and sentences were divided by 15. The resulting two-
dimensional features are not purely linguistic, because speech
duration was also exploited to construct these features.

b) Sentence-BERT: BERT [20] is a contextualized word
embedding method, which is the SoA for various Natural
Language Processing (NLP) tasks including sentiment anal-
ysis and semantic textual similarity. We used the pre-trained
Sentence-BERT [21] model, which is a modification of BERT
word embeddings to sentence-level space. Each transcript was
processed by the Sentence-BERT encoder to construct 768-
dimensional vectors. We used the BERT-Base-NLI, which was
pre-trained on the NLI dataset [21].

c) Valence, Arousal, Dominance (VAD): As an affect
lexicon-based feature, the NRC VAD lexicon [22], consisting
of more than 20,000 English words and their VAD scores,
was used. After extracting the scores for each word, func-
tional statistics, namely mean, standard deviation, minimum,
maximum, range, and sum, were computed per transcript.
Scores of the words that do not exist in the VAD lexicon
were considered as 0 (disregarded for the computation of the
minimum statistic).

d) TF-IDF: TF-IDF is commonly used as a text repre-
sentation technique in NLP studies [23]. It was used as the
baseline linguistic feature in this study. In the preprocessing
step, stop words that are available in the NLTK library [24]
were removed and stemming was applied by using the Porter
Stemmer algorithm [25]. TF-IDF weights were computed over
the set of uni-grams and bi-grams. Only the most frequent
500 entities were used for feature representation to reduce the
dimension of the highly sparse vector.

e) Linguistic Inquiry and Word Count (LIWC): Earlier
studies [9] evidenced that there are small but significant
correlations between linguistic dimensions and personality
traits. As words and the ways people use them can provide rich
information about their relationships, personalities, emotions,
and many more dimensions, Pennebaker et al. [26] developed
the LIWC tool, which allows doing text analysis by means
of rich dictionaries and pre-defined categories. We used the
LIWC 2015 tool to extract information from the given text
about 93 LIWC categories, which can be grouped into main
categories such as affect information, language metrics, infor-
mal speech, etc. All the features that were extracted by the
tool were used, without any pre-selection.

f) Polarity Statistics: As sentiment analysis is a hot re-
search topic in NLP, various pre-trained models and tools have
been made available for research purposes. In this study, three
SoA sentiment analysis libraries, namely NLTK Vader [27],
TextBlob [28], and Flair [29], were used to extract polarity
features from the transcripts. Since each of these libraries
have some strengths and drawbacks in different dimensions
for assessing the sentiment of the sentences, we combined the
features from these three methods to benefit from the strengths

of each approach. However, those libraries are designed to
work at the sentence level, while transcripts in our dataset
may consist of more than a sentence. To compute the polarity
scores over a transcript, sentence-level scores are summarized
with the same set of functional statistics that were used for
calculating the VAD features.

2) Acoustic Features: The open-source openSMILE1

tool [30] is popularly used to extract acoustic features in a
number of international paralinguistic and multimodal chal-
lenges [31], [32]. The idea is to obtain a large pool of po-
tentially relevant features by passing an extensive set of sum-
marizing functionals on the low level descriptor contours (e.g.
Mel Frequency Cepstral Coefficients, pitch, energy, and their
first/second order temporal derivatives). We use the toolbox
with a standard feature configuration (called IS13 hereafter)
that served as a baseline for challenges since the INTER-
SPEECH 2013 Computational Paralinguistics Challenge [31],
[32]. This configuration was found to be the most effective
acoustic feature set for personality impression prediction [33].

3) Visual Features: Following the winner systems in ICPR
2016 and CVPR 2017 ChaLearn LAP-FI challenges [16], [33],
we use embeddings from a fine-tuned CNN for face repre-
sentation. Facial features are extracted over an entire video
segment and summarized by statistical functionals. Faces are
detected on all frames of the video input. The Supervised
Descent Method (SDM) is used for face registration, which
gives 49 landmarks on each detected face [34]. The roll
angle is estimated from the eye corners to rotate the image
accordingly. Then a margin of 20% of the interocular distance
around the outer landmarks is added to crop the facial image.
Faces are detected, aligned, and resized to 64×64 pixels. After
aligning the faces, image-level deep features are extracted
from a convolutional neural network (CNN) trained for facial
emotion recognition. A deep neural network pre-trained with
VGG-Face [35] and fine-tuned with FER-2013 database [36]
is used from [37]. The final trained network has a 37-layer
architecture (involving 16 convolution layers and 5 pooling
layers). The response of the 33rd layer, which is the lowest-
level 4 096-dimensional embedding, is used.

After extracting the frame-level features from each aligned
face using the fine-tuned CNN, videos are summarized by
computing functional statistics of each dimension over time,
including mean, standard deviation, offset, slope, and cur-
vature. Offset and slope are calculated from the first order
polynomial fit to each feature contour, while curvature is
the leading coefficient of the second order polynomial. An
empirical comparison of these individual functionals is given
in [38].

Unlike the winning systems in the ChaLearn LAP-FI chal-
lenges, we do not use Local Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP) video descriptor [39], due
to its very high-dimensionality (~100K). However, we should
note that LGBP-TOP representation of the face sequence was

1Available from https://www.audeering.com/opensmile/
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Fig. 3. Pipeline of the proposed two-staged personality traits prediction system. FS: Feature Selection, PCA: Principal Component Analysis, SVM: Support
Vector Machine, EBM: Explainable Boosting Machine.

TABLE IV
3-FOLD CROSS-VALIDATION UAR (%) PERFORMANCES OF UNI-MODAL

(PART I AND II) AND MULTIMODAL (PART III) MODELS. FOR UNI-MODAL
MODELS, THE DIMENSION OF THE FEATURE VECTOR IS GIVEN IN

PARENTHESES. FF: FEATURE FUSION.

Features Arousal Valence Likeability
LIWC (93) 47.58 42.96 34.43
Polarity Stats (35) 48.46 47.49 36.47
TEPS (2) 55.61 43.83 42.58
VAD (18) 53.26 42.67 40.03
TF-IDF (500) 34.96 37.40 34.52
Sentence-BERT (768) 43.30 48.90 37.14
IS13 (1309) 65.73 37.62 48.15
VGG-FER (2138) 48.82 51.75 52.73
FF(VAD, IS13, VGG-FER) 70.02 54.45 55.47
FF(Polarity, TEPS, VGG-FER) 52.79 61.76 53.63
FF(TEPS, VAD, IS13, VGG-FER) 69.08 55.60 55.99

found to yield the most successful uni-modal descriptor for
predicting the personality impressions [16], [33].

B. Mood/Likeability Prediction

The first stage of the proposed system is the prediction
of mood and likability variables from the given video. As
mentioned in Section II, 660 examples were used for training
and validation, while the remaining 300 examples were used
as the test set. Hyperparameter tuning was performed with a 3-
fold Cross Validation method. Separate SVM classifiers were
trained for valence, arousal, and likeability. To overcome the
data imbalance problem stated above, class weights inversely
proportional to respective prior probabilities were used in
training the SVMs.

Using the features explained in Section III-A, extensive uni-
modal and multimodal experiments were performed. Because
of the high dimensionality of acoustic (6374) and visual
features (20480), not only the end-results are un-interpretable,
but also the training procedure is costly. With the purpose of
improving these issues, principal components analysis (PCA)
was applied to both acoustic and visual features, resulting in
reduced dimensions of 1309 and 2138, respectively. We have
selected the projection dimensionality that retains % 99 of the
variance.

Along with uni-modal experiments, early fusion experi-
ments on all the combinations of different modalities were
conducted. Before using feature fusion with acoustic and
visual modalities, a further stage of feature reduction using the
L1 feature selection method available in Scikit-learn [40] was
applied to avoid dominance over lower dimensional linguistic
features. As a linear model penalizing L1 error, the linear
SVM model was used and only the features having non-zero
coefficients were kept by the model. Then, the retained features
were concatenated with the other modality features, and the
same training procedure was applied with the SVM classifier.

C. Personality Impression Prediction

As illustrated in Figure 3, apparent personality traits were
modeled as a function of mood and likeability prediction
probabilities that are provided by the trained models described
in Section III-B. Since one of the goals of this study is to
promote an intelligible model with a small set of features that
help us to understand what is learned and the reason for the
decisions made by the model, a glass-box model, explainable
boosting machine (EBM) [19], was used as a regression model.

EBM is a type of Generalized Additive Model (GAM) [41],
whose formula is given in Eq. 1.

g(y) = f0 +
∑

fj(xj) (1)

GAM is interpretable because the impact of each feature xj

and the learned function fj can be known and visualized.
As two key improvements over traditional GAMs, EBM
uses modern machine learning methods such as bagging and
gradient boosting [42] and includes the pairwise interaction
terms as given in Eq. 2.

g(y) = f0 +
∑

fj(xj) +
∑

fij(xi, xj) (2)

This extended version has accuracy comparable to the SoA
techniques such as SVM and Random Forests, and addition-
ally, is highly intelligible and explainable due to the GAM-
based additive structure of the model.

We used only low and high classes’ probabilities of mood
and likeability models to prevent co-linearity among features.
This results in six continuous features. The original training
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TABLE V
TEST SET UAR (%) PERFORMANCES OF THE MODELS THAT PERFORMED

BEST ON THE VALIDATION SET.

Features Arousal Valence Likeability
Polarity Stats 43.89 49.63 31.74
TEPS 53.71 38.07 37.22
VAD 56.97 33.44 37.08
IS13 60.29 34.19 41.4
VGG-FER 46.12 52.64 50.36
FF(VAD, IS13, VGG-FER) 71.15 52.98 48.50
FF(Polarity, TEPS, VGG-FER) 46.29 54.29 55.21
FF(TEPS, VAD, IS13, VGG-FER) 70.53 53.72 50.27

(6000), development (2000), and test set (2000) partitions
given in the ChaLearn LAP-FI challenge were used for per-
sonality impression prediction experiments.

IV. EXPERIMENTAL RESULTS

In this section, first, we present the preliminary results for
the mood and likeability models, which comprise the first stage
of the proposed framework. Next, we show the results of the
apparent personality recognition system and compare it with
the previous studies that are described in Section I.

A. Mood/Likeability Preliminary Results

As explained in Section II, mood and likeability annotations
were done in three categories, high, medium, and low. To
evaluate the performance of the ternary SVM classifiers, an
unweighted average recall (UAR) measure was chosen due
to its common use as a performance measure for imbalanced
datasets [31], [32].

Table IV gives the validation set performances of uni-
modal and top-performed multimodal models, which were
obtained with feature-level fusion (FF). Results show that
visual features (VGG-FER) perform best for both valence
and likeability dimensions, while acoustic features obtain the
highest score for arousal prediction, which is in line with the
literature [43].

A chance-level baseline returning the majority (“medium”)
class for all the examples gives a 33.3% UAR score. The
TF-IDF model that was used as a strong linguistic baseline
performs just slightly higher than this simple approach. We
observed that different sets of linguistic features perform well
for different dimensions. For example; on the arousal task,
TEPS and VAD features gave 55.61% and 53.26% validation
set UAR scores, respectively, which are quite higher than
the baseline and outperform the visual model. On the other
hand, Polarity Stats and Sentence-BERT outperform other
linguistic approaches and the acoustic model for the valence
task. Although the linguistic attributes alone did not rank best
in any of the three dimensions, they contributed to all of the
most successful multimodal models. Fusing visual features
with Polarity Stats and TEPS yielded a ~10% absolute UAR
improvement over the highest uni-modal score for valence
model while combining VAD features with the acoustic and
visual features improved the performance of the arousal model
by ~5%. Due to the page limit, we were not able to report all

feature fusion experiments. These are made available as extra
material on the Github repository of the paper.

Test set performances of the multimodal models that per-
formed best on the validation set are shown in Table V
along with the performance of their uni-modal components.
Results are consistent with the upper-bound scores that were
determined for each AVL dimension. While the multimodal
models performing best on the validation set also obtained
the highest score for arousal and valence, we did not see this
pattern for the likeability dimension. The top likeability fusion
scheme on the validation set does not generalize as well as the
model that fuses Polarity, TEPS, and VGG-FER features.

B. Personality Impression Prediction over Mood and Likeabil-
ity

We employ the Mean Absolute Error (MAE) as the evalua-
tion measure for a fair comparison with the LAP-FI challenge
results. The performance of each trait is evaluated in terms of
this measure, which is formulated as:

E =
1

N

∑
|yi − ŷi|, (3)

where N indicates the number of predicted samples, while yi
and ŷi denote the ground truth and predicted value of sample
i, respectively.

As explained in detail in Section III-C, the EBM model
was trained to predict the personality traits over mood and
likeability predictions. For each dimension, predictions of
the models that were most successful on the validation set
(regardless of the test set performance, obviously) were used
as features at this stage. The test set performances of the
proposed system and some of the previous studies on this
dataset are given in Table VI. The baseline is a simple,
but effective approach that returns the per-trait training set
average for all test examples. The models using only valence,
arousal, and likeability features obtain 0.113, 0.108, 0.107
MAE, respectively, each of which outperforming the baseline.
Moreover, the combination of AVL features yielded an average
MAE of 0.098, outperforming some of the previous studies.
However, the proposed system does not outperform the state-
of-the-art (SoA) models that use much more complex features
and architectures. We should also note that those systems
are trained with a large set of annotated data (6000 train +
2000 validation set video clips annotated for OCEAN), while
we have used only 660 video clips to train and validate our
mood and likeability recognition models, as our goal was to
investigate the effectiveness of mood based explainable and
cost-efficient modeling.

The relative importance of EBM features for each personal-
ity trait is visualized in Fig. 4. On the overall, negative weights
for low and positive weights for high personality impressions
is inline with the former works in social psychology [12].
Although as a single factor, likeability has the strongest
impact (according to Table VI, with 0.107 MAE), results
show that different dimensions have the highest impact on
the recognition of personality traits in the trained model. For
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TABLE VI
TEST SET PERFORMANCE OF THE PROPOSED MODELS IN TERMS OF MEAN ABSOLUTE ERROR.

Method Agreeableness Conscientiousness Extraversion Neuroticism Openness MEAN
Ours 0.097 0.107 0.094 0.099 0.095 0.098
Valence 0.105 0.124 0.108 0.116 0.109 0.113
Arousal 0.101 0.120 0.107 0.107 0.103 0.108
Likeability 0.104 0.115 0.103 0.111 0.103 0.107
Baseline [3] 0.107 0.126 0.122 0.123 0.117 0.119
Vo et al. [5] 0.104 0.123 0.118 0.123 0.114 0.116
ROCHCI [3] 0.097 0.105 0.097 0.099 0.095 0.099
Gurpınar et al. [38] 0.093 0.087 0.084 0.098 0.092 0.091
Kaya et al. [16] 0.086 0.080 0.079 0.085 0.083 0.083
Aslan et al. [18] 0.084 0.078 0.080 0.085 0.084 0.082
Li et al. [17] 0.082 0.078 0.080 0.085 0.081 0.081

Fig. 4. Relative importance of features for the indirectly modeled personality
trait impressions.

instance, valence was found to be the most important factor to
predict extraversion, closely followed by likeability; while the
predicted arousal score of the person has the highest impact on
the remaining four personality impressions. On the other hand,
the probability of high likeability has the biggest importance
for openness to experience and conscientiousness. These find-
ings are corroborated by the test set prediction performances
reported in Table VI, where we observe that likeability, which
is less studied in affective computing compared to the other
two dimensions, exhibits the highest performance in three
impressions including extraversion, which is inline with [13].

V. DISCUSSION

Inspired by the significant correlation between mood, like-
ability, and personality traits available in the literature, in this
study, we investigated whether we can implement a successful
personality prediction model by using mood predictions on
short videos of people. To the best of our knowledge, this is the
first study that uses predicted mood dimensions as features to
model apparent personality traits directly. We demonstrate that
mood and likeability features can effectively predict apparent
personality traits. Although not accurate as the state-of-the-
art methods, we have shown that the proposed glass-box
model with a small set of intelligible features can produce

insightful explanations. When we analysed the explanations
that were provided by the EBM model, we observed that trait
predictions were linearly correlated with the valence, arousal,
and likeability values. We observed that the highest total
importance is attributed to arousal, which may be explained
by the relatively higher predictive accuracy of this dimension.
The proposed approach yields comparable performance to
the current state-of-the-art methods, although it learns the
personality traits from only six features of mood and likeability
and provides explanations for the user to understand the
underlying decisions made.

Another important contribution of this study is that we
provide a strong baseline, as well as enriched annotations
for valence, arousal, and likeability dimensions on a portion
of the ChaLearn dataset. The manually annotated dataset is
made publicly available for research purposes in this do-
main. Preliminary unimodal and multimodal experiments were
conducted using a clear experimental protocol to provide a
comparable baseline for future studies. Experimental results
demonstrate that although unimodal features were more suc-
cessful in the prediction of individual traits (audio features for
arousal and visual features for valence and likeability), early
fusion of the three modalities yields the highest performance
for each mood and likeability dimension.

It should be noted that the proposed model’s accuracy is
dependent on the performance of the mood and likeability
prediction systems. There is a multitude of ways to improve
the accuracy of the first stage, such as increasing the size
of the training dataset, and upsampling the minority classes
(low and high) to balance the training data distribution. On
the other hand, achieving good performance by using only six
meta-level mood features is very promising. Moreover, recent
studies showed that both the dataset and the top algorithms
trained on it carry some gender and ethnicity bias [3], [44],
[45]. In terms of biases towards sensitive groups, the proposed
approach serves to highlight them and to provide opportunities
for systematic analysis. Bias mitigation can be done via pre-
processing/balancing the data, but this will result in losing rep-
resentativeness. Since we recommend using these systems for
training and to gain a better understanding of the biases instead
of directly for job screening, we suggest using bias mitigation
strategies outside the system (e.g. as post-processing).
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[14] V. Ponce-López, B. Chen, M. Oliu, C. Corneanu, A. Clapés, I. Guyon,
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