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Preface

These proceedings contain the results that have been ebtduring the Study
Group Mathematics with Industry, which was held at the Ursitg of Twente in
the Netherlands from January 28th until February 1st, 2dD8ring such Study
Group weeks, mathematicians and other people with a straagest in mathemat-
ics work on a several problems that have been formulated dysinial partners.
The idea being that the participants try to solve these problduring one week
with mathematical techniques.

In 2008 there were 78 participants from various countrid®) together attacked
six problems. These varied from problems on larger scaled) as the optimal
arrangement of trains and large sensor networks, the rmggafialuminium alloys,
and the drainage of rain water, to two problems on much smsdiales, one of
which involved neurons in the brain and the other one molhitee electronics. The
reader will notice when studying the articles that substhptogress has been made
on all problems and in some cases concrete solutions haadglbeen proposed.

These scientific proceedings are accompanied by a separakéebin Dutch,
in which the results have been described for a wider nomstieaudience by
journalist Bennie Mols.

It is a pleasure to take the opportunity to thank the sponsioitse Study Group
for their generous donations. STW and NWO, our main sponsage been fi-
nancing these events for many years and their continuecbsuigprery much ap-
preciated. The research institutes CTIT and IMPACT, botthg@iethe University of
Twente, also contributed substantially. The CWI in Amsaenchas again sponsored
the printing costs of these proceedings.

In closing, we thank all the participants for their outstiagdcontributions to an
inspiring week of industrial mathematics.
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1 Shunting passenger trains: getting
ready for departure

Marjan van den Akkér  Hilbrandt Baarsma  Johann Hurink*
Maciej Modelsk?  Jacob Jan Paultis  Ingrid Reijner?
Dan Roozemord  Jan Schreudéf

Abstract

In this paper we consider the problem of shunting train umits railway
station. Train units arrive at and depart from the staticcoeting to a given
train schedule and in between the units may have to be stoithbe atation.
The assignment of arriving to departing train units (caleakching) and the
scheduling of the movements to realize this matching i€dashunting. The
goal is to realize the shunting using a minimal number of shuwvements.

For a restricted version of this problem an ILP approach keas Ipresented
in the literature. In this paper, we consider the generahshg problem and
derive a greedy heuristic approach and an exact solutiomaddbased on
dynamic programming. Both methods are flexible in the semeiethey allow
the incorporation of practical planning rules and may besreotéd to cover
additional requirements from practice.

Keywords: shunting trains, greedy heuristic, dynamic programming

1.1 Introduction

In this paper we study a practical train shunting problenppsed by Dutch Rail-
ways. This problem has already been studied by Kroon et hlb[it their work
does not exploit the full potential of shunting trains.

Shunting of trains is a process that supports the execufitimearain schedule
at the station. Trains arrive at and depart from the statmmoming to the train
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1 Shunting passenger trains: getting ready for departure

schedule. Each arriving and departing train may consistwfipte and possibly
different types of train units. This composition of the s specified in the train
schedule. For an arriving train it now has to be decided whatntext duties of
the arriving train units are and for a departing train it hmbé guaranteed that the
corresponding train units are available on time on the @tatf During rush hours
almost all train units available are required to transpadsgengers and, thus, are
on duty, but in between, and especially during the night, yrteain units are not
needed for transporting passengers. Thus, train units raeay to be parked at a
shunt yard of a station for a certain period. An example ohsaishunt yard is
givenin Figure 1.1, which represents the infrastructurthefstation and shunt yard
of Alkmaar.

[Am_} 42050

Figure 1.1: Shunt yard and station of Alkmaar.

The train units are classified according to their types abtyges. Train units of
the same type can be combined into longer trains, even if shbditypes differ. An
example of a train unit is an ICM (Inter City Material) with &rtiages, as shown
in Figure 1.2. ICM denotes the type, and the subtype is spdcidy the number
of carriages. There also exist ICMs with 4 carriages, whih lse combined with
the ICM with 3 carriages since they are of the same type, agthamot of the same
subtype.

Figure 1.2: Train unit of type ICM with 3 carriages.

To park a train unit, a crew has to take several actions. Ifrdia has to go only
forward, the driver can stay on one side of the train and dheetrain directly to
the shunt yard. This is not always possible and it may e.gh&edse that the train
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has to go forth, back, and forth again to be parked. In thas taes engine driver
has to switch places two times, since he always has to be iftdheof the train.

Each time going back or forth is called a shunt movement. fSeeionly need to
go forth, this is counted as one shunt movement and if we hage forth, back,

and forth then this is counted as three shunt movements.

When a train unit parked at the shunt yard is needed againeirs¢hedule to
transport passengers, it has to be taken out of the shunapargut at the platform
from which the corresponding train will depart. Again it miagppen that several
shunt movements are needed to transport the unit to theptatBut it may even
be worse in the sense that no train unit of the desired typ&eastty reachable on
a shunt track. In this case, before getting the desired trai first some other
blocking train units of another (sub)type have to be remdvenh a shunt track.
This can also take several shunt movements.

As a consequence, to execute the train schedule, a feakilh¢ schedule is
required at each station. A shunt schedule consists of aflesttions that indicate
which train units are shunted and between which places. fdehkts, also the exact
shunt movements of the train units can be specified. A shineidade is feasible if
all arrivals and departures of the train schedule can beués@dn the desired way.
This implies for example that a platform has to be empty whémia is passing
through or that train units of the desired (sub)types andhéndesired order are at
the right time at the right platform for a departing train.

However, not every feasible schedule is desirable: if thenshchedule consists
of many shunt movement, the schedule causes a high workbodke crew and is
very sensitive for disruptions. This can cause delays irtrdie schedule, which
should be avoided. Therefore, the goal is to have a shuntdatdheith a minimal
number of shunt movements.

Next to the main goal to create shunt schedules with a low mub shunt
movements, some other practical aspects have influence gutity of a schedule
and lead to additional rules to be taken into account in orgaghunt schedules. For
example, for the crew it is convenient to have similar traiitsiclose together. This
implies for instance that shunt tracks of the shunt yard khloeiused only for train
units of the same type. Another practical aspect focuseiontsnovements just
before a departure. Small disruptions in a shunt schedule suich movements
directly may lead to delays of departing trains and, theefmay disturb the train
schedule. As a consequence, it is desirable that the nurhbeunt movements for
a train that needs to depart is minimized. It would even beéibd®e train units are
already waiting in the needed composition for the depadtitee shunt yard.

1.1.1 Problem Description

The input for the shunting problem at a given railway statonsists of the train
schedule at that station and the layout of the station @otai$ and shunt yard).
The given train schedule prescribes the train arrivals aphdures at the railway
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station. Each of these events is characterized by a timepti@osition of the train,
its direction, required platform and whether the train\aasior departs. Since not
all arriving train units are scheduled to leave the statlmmediately, the train units
that stay behind may have to be stored at the shunt yard tothke@latform for the
next train.

The shunt yard consists of a number of shunt tracks to stane tmits. Most
of the shunt tracks are dead-end tracks. This implies that tmits are blocked
by train units parked at a later time. Thus, train units @awnd depart ihast in
first out (LIFO) order. The shunt tracks and platforms have a limitepacity for
storing train units. There is a network of tracks connectiregshunt tracks with the
platform tracks.

Between successive events of the train schedule, it may ¢essary to move
train units to make the next event possible. Such movemeatsaied shunt move-
ments. A one-directional movement is counted as one moveaneievery change
of direction is counted as an extra movement. A solution istaof shunt move-
ments that take place between the events such that all es@mttake place. The
objective is to find a solution with minimum number of shuntvements.

In this paper we assume a timeless model; i.e. we assumeghanamovement
takes zero time. This implies that an unlimited number ofnshmovements can
be performed between two events. However, it is possibl&ldbextra constraints
within the developed methods, which restrict the numbethoihs movements be-
tween two events.

1.1.2 An Example

To illustrate the shunting problem we give a small examplensider a railway
station with the layout given in Figure 1.3. In this example e@onsider four types

"Shijh't"tl'ré'ck 2
Shunt track 3

[ plattorm1 |

X X

b | platform 2 |
Shunt track 1

Figure 1.3: Layout of the example station.

of train units, denoted by, B, C andD. Each train consist of some train units of
these types. When we talk about a traiB we mean a train consisting of a train unit
of type A and a train unit of typd3, where the typeA unit is positioned to the left
of the typeB unit. This is regardless of the direction the train is trangin. Thus,
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trains AB and B A are different in composition. We assume that the capacigllof
shunt tracks and platform tracks is limited to accommodateid units. According

to the train schedule the following trains are arriving amgatting in the given
order.

Train AB arrives from the left-side at platform 1.

Train AAarrives from the right-side at platform 2.
Train CCC arrives from the right-side at platform 1.
Train CC departs from the platform 1 to the left-side.
Train AAdeparts from the platform 2 to the right-side.
Train DC arrives from the left-side at platform 1.
Train C DC departs from platform 1 to the right-side.
Train B Aarrives from the right-side at platform 2.
Train B B departs from platform 2 to the right-side.

e;p Train AAdeparts from platform 1 to the left-side.

SRPLILLLRP

In this small example there are already a number of nonatrskiunting decisions
to make. It is not difficult to verify that the following solon is a valid shunt
schedule.

Betweene, andes  Shunt trainAB from platform 1 to shunt track 2.
Betweenes andeg  Shunt trainC from platform 1 to shunt track 1.
Betweeneg ande; Shunt trainC from shunt track 1 to platform 1.
Betweeneg andey  Shunt trainA from platform 2 to shunt track 2,
and shunt trairA A from shunt track 2 to platform 1,
and shunt trairB from shunt track 2 to platform 2.

The solution contains six shunt movements. In this exantf@echoice whether
to shunt to the tracks on the left-hand side or to the trackihemight-hand side is
the most important decision. Observe that shunting train@ro any of the shunt
tracks on the right-hand side is not a good decision. Whenmgdte unit back, it
has to go around thB C train, to connect to it from the left to form tl@DC train.
Going around thé®C train implies a change of direction in the shunt movement and
is counted as two shunt movements. Furthermore, ifABetrain is shunted to the
shunt track on the left-hand side, the efficient moves batvwg@andeg would not
be possible. It turns out that the above solution is indeditnah for the example.

1.1.3 Complexity of the Shunting Problem

The general problem of integrated matching (to which dépgitains are the units
of an arriving train matched?) and parking of train unitsngoduced in [7] and
in [8] its computational complexity is determined. The gah@roblem as well as
the subproblem of matching the train units and the subpnololieparking the train
units are shown to be NP-hard.
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In the train matching problem we are given a set of arrivimyns and a set of
departing trains. We are supposed to partition the incormaigs into parts which
can later be assembled into departing trains. Since eacluged part is shunted
separately, our main goal is to minimize the number of pattswhich we partition
the arriving trains. This problem is a generalization ofrtiaimum common string
partition problem known from computational biology. In f&e minimum common
string partition problem is shown to be NP-hard even if wdrigtsourselves to
instances with only two strings as input. This means thatrthie matching problem
is NP-hard even if we are given just one arriving and one dijggirain.

Blasum et al. [1] introduce a problem of scheduling the diepas of trams from
a shunt yard in the morning. This problem turns out to be Ni-aad the authors
provide a dynamic program for a special case of the probleimnestricted number
of shunt tracks. This problem can be seen as a subproblenr ehaating problem
where all the trains are already placed in the shunting yard.

Cornelsen et al. [2] study the problem of generating shreg-§chedules in sta-
tions consisting of parallel two-sided tracks. They redtieeproblem to a graph
coloring problem of a conflict graph resulting from the traochedule. For most of
the versions of the problem the conflict graph is perfect amrdbe colored in poly-
nomial time. For other cases efficient approximations atlgars are presented.

In similar setting Dahlhaus et al. [3] consider a problemroiuging of train units.
In this problem a sequence of incoming train units is giveactidrain has to be sent
to one of a given set of parallel tracks and later pulled ouh®other side. The
outgoing sequence has to be ordered in such a way that urthe shme type are
grouped together. Designing a schedule that minimizes uihgber of used tracks
is shown to be NP-hard.

In freight train classification hump yards are commonly usechunting. Jacob
et al. [6] model the shunting task as a problem of finding a btrary codes. It
allows them to find optimal solutions for most versions of pineblem. Some other
versions are shown to be NP-hard.

1.1.4 Current Solution Approach

Currently there is no decision support system to aid thegpers in solving the
shunting problem. However, Dutch Railways is testing thEe-thodel proposed
in [7] on small stations. However, this ILP-model has a nundfelrawbacks. First
of all it does not cover all possible shunting moves. For gxant does not allow
trains to stay at a platform, waiting to be combined with atrieain. It is clear
that such a waiting possibility can be beneficial. Moreoutedpes not model the
possibility of moving train units between different shurgaks. Whenever a train
arrives, it either has to be shunted away or depart immdgiate

Furthermore, in the current ILP-model the number of vagaland constraints is
already very large, and extending this model to cover theabunting possibili-
ties would increase the number of constraints and variables further. Although
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for a typical instance the current model can be solved withmreasonable time,
one may expect that the extensions make the number of vesiabllarge that the
computation time required to solve the problem becomesaamably large.

1.1.5 Goal of the Research

The task of this paper is to present alternative approachtésetshunting problem

which do allow waiting on platforms and rearrangements aintiunits between

shunt tracks. In the following we describe two solution agmhes, one which aims
at finding fast a reasonable cost solution (a greedy algojitmd one which aims
at the optimal solution (a dynamic-programming algorithie conclude with an

outlook on future research.

1.2 First Approach: A Greedy Algorithm

In this section, we present a heuristic approach for the tehgiproblem. This
heuristic has to be fast and has to result in a reasonablygmotion. The basic idea
is to scan the event list and iteratively decide which acitintake. The decisions
in each iteration are based on the situation resulting fleaptevious decisions and
the current event. In this way, the approach tries to loealtgnd the given situation
as good as possible and, therefore, falls in the categayyeeidyapproaches.

From practice it is indicated that planners prefer situstihere the train units of
departing trains are already waiting somewhere (eithermatéorm track or a shunt
track) in the composition they have to depart in. We take ghitosophybe ready
for departure as a guideline for building the greedy approach. As a carsscg,
we scan the event list backwards in time and make the desigissuch a way that
they lead to the desired composition for the departing $rain

For the presentation, we assume that during the planningdmthe arriving
train units correspond one to one to the departing trainsa¥geme that the train
station is empty at the beginning and the end of the plannamzdn. This can be
justified by taking the planning horizon to be form one rushrio the next, since
during rush hour all material is needed in the train schedthe presented heuristic
can easily be adopted when this assumption is dropped.

Our algorithm consists of two main steps, step 2(a) and 2¢(bijch we explain
in more detail later.

The Greedy Algorithm:
1. Start with empty platforms and shunt tracks

2. Scan the event list backwards in time, and for each évént

a) IF the eventis a departure evenEN assign the entire train to a shunt
track
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Events L& | 63 &4 & | 6 | € | €
Arrivals C| A| BB AA

Departures B| BA AA
Platform 211 2 (2|1 2 1

N O

Table 1.1: Event list Example 1.

b) ELSE the event is an arrival eveMHEN match the train units to train
units already placed on the shunt track

The most important steps in our algorithm are steps 2(a) énd & these steps
the main decisions are made. In step 2(a) we decide on whight stack we set
the train ready for departure. At this point, we do not care lleese train units
come to this shunt track, but just decide that the units waithe assigned shunt
track for departure. How these units arrive on their posgion the shunt track will
be decided in subsequent iterations. Possible rules fagrasg the trains to shunt
tracks are given later. In step 2(b) we match the train uriiggriving trains to train
units that are already placed for departure from a certagktin one of the previous
iterations. Again, concrete rules for this matching aregilater.

Example 1  To get a better understanding of the basic idea of this grapdyoach
we present an example consisting of two platforms and twatdinacks. The event
list of this example is presented in Table 1.1 (in this takbfprm numbers are
given as well, since we use them later on).

If we scan the event list from the back, we first have to treahéss. Since this is
a departure, we may decide to assign this train to shunt fra€ke situation on the
two shunt tracks after this decision is given in Figure 1).4{&e next everg; is also
a departure, and we may assign the tiailato shunt track 2 (see Figure 1.4(b)). For
shunting the arriving train units of evees we now have the nice option to match
the whole train to the two train units of typ®being assigned to shunt track 2. By
this matching, i.e. shunting the two train units to shuntkra, this shunt track gets
empty and the resulting situation is as in Figure 1.4(c).tNe& may assign the train
of departure everds to shunt track 2 and the train of departure evento shunt
track 1 resulting in the situation as in Figure 1.4(d). If weantreat the arriving
eventes, the train consisting of two typB units cannot be matched as a whole to a
shunt track, but we have to split the train and match the tye Byunits to the two
type B units in front of the two shunt tracks leading to the situaiioFigure 1.4(e).
Note that this matching leads to two separate shunt moveiné&imally, the two
arriving events, ande; are processed by matching the corresponding train units to
the units of the same type still being on the shunt tracks.

As can be seen from the above example, the presented atgaditicides for
each arriving train unit to which departing unit it is couplaend via which shunt
track this assignment takes place. In this way shunt movisveea specified. For
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track 1 C track 1 C track 1 C
track 2 track 2 AA track 2
() (b) ()
track 1 BC track 1 C
track 2 BA track 2 A
(d) (e)

Figure 1.4: Situations on the shunt track for Example 1.

departing trains the shunt movement can be done with thedsaa whole since we
always assign to be ‘ready for departure’. We implicitlywase that there are shunt
tracks long enough to accommodate for departing train. Forirgg trains more
complex shunt movements may be necessary. In the above Exaatighe shunt
movements were directly possible, but in general it may lmes&ary to rearrange
the train units on the shunt tracks at certain moments teegela feasible solution.
If, for instance, the arriving everg would have been that of afAC train, first the
two B units already being at the shunt tracks would have to be rethtovplace the
A andC unit at the dead-end of the shunt tracks.

The advantage of the presented approach is that it alwags gifeasible solution
as long as the list of arrival and departing events is comsisin the sense that there
is never a negative stock of train units of some type, theeeshunt tracks long
enough to accommodate for the departing trains, and thexevesys some empty
(part of) track to move a train unit around. Furthermore,dkparting trains can
always be handled efficiently. The price to achieve thisas the may create costly
shunt movements for arriving events.

In the following we sketch some possible improvements oftieedy method and
give some more detailed information on possible implententa of the assignment
and matching in steps 2(a) and 2(b).

Leaving train units on platform tracks One of the goals of this research is to
develop methods which allow the option of leaving train sioih platform tracks or
to move it from one platform to another platform without packit in between at
the shunt yard. A simple approach is to scan the solutioresehiby the greedy
heuristic and to search for 'shortcuts’. In the above exanspch a short cut is for
example possible between the evemtande;. The AA train arriving on platform

2 (eventes) may be passed directly to platform 1 from which it departs\ante;.

In this way, theA A train does not have to be moved to the shunt track 2, probably
saving shunt movements. Another short cut is possible lwrigane of the arriving
type B units of events on platform 2. In this way the departing train of evenis
already on the platform without any movement.
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A more effective method than a scan after finishing the gresggyroach may
be to take such possibilities already into account durirggtreedy algorithm. If
we have to assign a departing event in step 2(a) of the aigoritve may scan the
event list some positions further back in time to detect dréhis an assignment
of this train to a shunt track which allows using shortcutacisan assignment is
preferable over other assignments.

Delaying the shunt movement If for an arriving event the shunt movements of
possible matchings take a large effort (e.g. the correspgnehits do not occur at
a reachable end of a shunt track), we may scan the event tiktibdime to see
if we can improve the situation by letting some other argvtrains wait on their
platform. To clarify this possibility, let us assume thathe given example the train
of evente, is a B train and that ogz an AB train. If we now deal with everds, no
easy matching is possible since on shunt track 2 the trais are not in the correct
order (see Figure 1.4(d)). But we may delay the movementsgaig to eveney,
since this event is on a different platform. For the greedyr@gch this means that
we consider everd, beforees. By matching theB unit of that train to theB unit

in front of shunt track 2, we achieve a situation where on strack 1 we haveBC
and on shunt track 2 we havie Now we can match the two units in front of the
two shunt tracks to form thAB train of eventes.

Formally, in step 2(b) of the greedy approach we may seaelevhnt list back-
wards and consider for each platform the first occurring evérthis event is an
arrival, we may treat this event before the current eventellwat it is not possible
to delay departure events or two arriving events on the sdati®pn.

Assignment rules in step 2(a) Up to now, we have not specified the way how we
assign in step 2(a) the trains to shunt tracks. The most sim@y is to assign them
in someround robinway (meaning that the tracks are used in a given cyclic order)
or to assign them based on some priorities of the tracks.illegsiorities may be:
smallest number of shunt movements to reach the platfongeda free capacity,
et cetera. However, it may be worthwhile to incorporate gdsmning rules of
the planners of Dutch Railway into this step. One such ruldoisexample: do
not park more than two different unit types on the same shaokt Furthermore, a
backward scan in the event list by a few positions may helpéoeamme problems in
the next iterations. Consider, for example, the eventiistable 1.2. Two possible
shunt track assignments after treating the evegtss, e; are given in Figure 1.5.
The first assignment is made using round robin, but has nenhtaio account the
arriving B train. The second assignment does not have this problem.

Matching rules in step 2(b)  As in step 2(a), also in step 2(b) there may be some
freedom in matching the arriving trains to units alreadygrs=d to the shunt tracks.
Again, this decision may be based on priority rules like thenber of necessary

10
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Events €| € | €3 €| 6|6
Arrivals Al A|B
Departures A|lA|B

Table 1.2: Event list Example 2.

track 1 AB track 1 AA
track 2 A track 2 B

Figure 1.5: Situations on the shunt track for Example 2.

shunt movements but, as in the previous case, it may also ldéwlale to incor-
porate some backward scan to see which resulting remairurggien on the shunt
tracks forms the better situation for the next events. Teithte this consider Ex-
ample 2.

Example2 This example is the same as Example 1, with the differendetients

e andes are interchanged and that after considering eggnte have the first shunt
track assignment in Figure 1.5. If we now have to deal witméeg, matching the
type A unit of this event to théA unit in front of shunt track 1 allows a direct access
to the B unit on that track in the next iteration. Having chosen fa funit on
shunt track 2 would not have given this possibility leadim@ situation where units
on the shunt tracks have to be rearranged.

Improvements  Several of the suggested improvements contain some sodatrof p
tial backward scan of the event list to improve the decismmtlie current event.
In principle this means that some sort of simultaneousrireat of several events
is considered. Based on the outcome of this, a decision ctirent event is
fixed. This treatment of several events simultaneouslybeaseen as a new opti-
mization problem on its own. This problem gets harder theenewents are taken
into account. An interesting topic of further research igydo find a good balance
between the effort spent on this backward scan and the ireprert in quality. Fur-
thermore, concrete decision rules for the treatment ofraéegents simultaneously
have to be developed.

To sum things up: the greedy algorithm we have developed les tabcreate
feasible schedules for the shunting problem quite fast. édew without additional
improvements, the achieved solution may not be of much jgedaise. Above we
have shown, that the basic structure of the method forms d fyamework which
easily can be extended by more sophisticated elements andigth rules used by
planners.
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1 Shunting passenger trains: getting ready for departure

1.3 Second Approach: A Dynamic Programming
Algorithm

To solve the shunting problem, a response to each eventalaor departure, has
to be given. This response has some influence on the positioaiio units on the
different tracks and platforms and has to guarantee, tleahéxt event can take
place.Getting ready for a departunmeans that the right train composition is on the
departure platform, angetting ready for an arrivameans that the arrival platform
can accommodate for the arriving train.

To describe the given situation of train units on the différshunt tracks and
platform tracks (called a configuration), we define a ve&o6 is called the state
of the system and is an ordered list of train type units on eddhe tracks. For
the example given in Section 1.1.2, the first elemer gescribes the train units
on platform 1, the second on platform 2, the third on shurtktdy et cetera. With
(S, g) we indicate that the train units are in st&gqust before eveng happens.
The pair(S, g) is valid if and only if eveniy can take place with the given stede
i.e. in stateSwe are ready for ever.

With this notation we can describe the solution for the exianop Section 1.1.2
as in Table 1.3.

— AB - CcccC C
_ - AA AA AA

c=0 c=1 c=0 c=0 c=1
- |.a— - |.e— - |.e = - , 84— - |.es =
_ - AB AB AB
- cDC - AA AA
~ c=1 - c=0 - c=3 BB c=0 -
C |.e& - , 87 = - |.e8—> - € — - |.ew
AB AB AB - -

Table 1.3: Solution of the example.

1.3.1 Network of (S, g)-pairs

The basic idea behind the dynamic programming algorithrhaddllowing. From
the initial state and the first event we can determine alliptsseesponses which are
compatible with the second event. In this way a set of newsg&ire,) are created
which are then treated recursively in the same way. For adbdascription, let
each pair(S, g) be a node and let each transition (set of shunt movementihtga
to a following node be an arc. This way we get a network in whiehcan move
from one pair(S, ) to an other paifS, g1). In this network we only allow
valid pairs, and each transition has an associated costaeni to the number of

12



1.3 Second Approach: A Dynamic Programming Algorithm

shunt moves required for carrying out the transition. ltasdifficult to see that the
shunting problem is equivalent to finding a shortest pathigmnetwork.

level 1 level 2 level 3 level 4
AB - '
— AA
- - b e3
— AB
— AA
AB AB &
- , € -
A
B

Figure 1.6: Dynamic programming network.

Although the network becomes very large, the network isligigtructured. The
network consists of a number of levels, where each leveksponds to one event,
see Figure 1.6. Hence, there are only arcs going from iet@leveli + 1. This
means that the cost of getting to a particular state is giyetié cost of the states
in the previous level plus the cost associated with the arcs.

To obtain the optimal solution, we just have to constructribévork level by
level and calculate the cost of getting in each of its nodesweéver, though this
would work in theory, in practice the running time of thisalghm may explode as
the instances get larger (remember that the problem is M#-ha

1.3.2 Eliminating Nodes

To make the dynamic programming approach work in practicenaed to bring

down the size of the dynamic programming network. In thisieaave present sev-
eral suggestions to speed up the dynamic program algoridmwever, by applying
some of these suggestions we can no longer guarantee thagtiheal solution is

found.

13



1 Shunting passenger trains: getting ready for departure

Eliminate symmetry ~ Whenever there are two tracks with the same characteristics
(same capacity and reachable with the same number of shwsmamts from the
platforms), there are many nodes in the network that arealhsithe same. In the
example given earlier we have not used shunt track 3. If alluhits assigned to
track 2 are assigned to shunt track 3, we have a differentisolwhich is essentially

the same. So, in the network we can delete many states wigiglyarmetric without
affecting the solution.

Disallow costly transitions Given a transition with a high number of shunt move-
ments, one might not want to allow this transition from a picat point of view. We
can incorporate this, by simply deleting the arcs corredpanto these costly tran-
sitions from the network. This may reduce the number of aatgarcs from nodes
and may even lead to nodes which are not reachable anymduejmg the number
of nodes in the network. Note, that disallowing costly titoss may exclude the
optimal solution.

Upper bounding the solution For each node in the dynamic programming net-
work we know the cost of getting to this node. If by some (h&tia) procedure we
know that there exists a solution with castwe do not have to proceed with nodes
in the network that have cost exceedird.e. these nodes can be deleted from the
network. Reducing the dynamic programming network in thég/\does not affect
the optimal solution.

Detecting bad paths  Suppose we have created the dynamic programming net-
work up to leveli. If we now compare the cost of all nodes in levelwe may
expect that the costly ones have only a small chance to riestlie overall opti-

mal solution. Deciding not to continue from the nodes withhh¢osts reduces the
dynamic programming network. However, this may excludedghimal solution.

Rolling horizon ~ To make a decision for level 1, we may restrict ourselvesdater
ing the dynamic programming network only up to leveBased on the information
up to leveli we may decide which arc to take leaving level 1. Starting vl
resulting node on level 2, we now may create the network ugvell + 1 and
use this network to decide upon the level 2, et cetera. This ¢f decision making

is calledrolling horizon Each time we make a decision, only a small part of the
network is considered. Again, we may exclude the optimaltgmh.

1.3.3 Computational Results

We have made a proof-of-concept implementation of the dympanagramming ap-
proach in C++, comprising about 1000 lines of code. The exawiSection 1.1.2
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1.3 Second Approach: A Dynamic Programming Algorithm

is used to test both the implementation and some of the dditioim rules. The
results are summarized in Table 1.4.
In this table,

e clm indicates the maximum allowed cost between each level,
e sym indicates whether or not symmetry elimination is used,

e ntp indicates whether or not states, in which more than 2 typésaof units
are on the same shunt track, are forbidden,

e tp indicates whether or not states, in which unit of tyge8 andC/D are
mixed, are forbidden,

e #states givesthe number of states on each level in the network. Iri pases,
only state counts up to level 4 are given, as the runtime asg®dramatically
after that,

e runtime gives the runtime for those computations that we ran to cetigui
(the running times are after various optimizations of theegcmn a 2.16 GHz

laptop),

e cost gives the resulting costs for those computations that wea@omple-
tion.

The number of valid states does not tell the entire storyygho The number of
intermediatestates, i.e. those states that have to be computed and magyanoh
be valid, has a large impact on the runtime as well. In casach ef the 128 states
in level 2 generates about 25000 new states, of which in ¢otigd about 1500 are
valid. This is quite a large number compared to e.g. case 4®&revthe number
25000 is already reduced to about 3700.

The impact of limiting the costs between levels in the nekwsrclear: If we do
not enforce any limits, the network is simply too large to gaie. If we limit to
4, we can complete the computation, but if we limit to 3 theesjup is almost a
factor of 5 without losing the optimal solution. Limitingelcosts of the arcs to 2
removes the optimal solution, but could provide a good ls¢igrior upper bounding
the solution (see Section 1.3.2).

The other elimination rules also cut down the number of staignificantly, al-
though not as dramatically as limiting the costs of arcs.

One of the major advantages of this approach is that addinguies (e.g. heuris-
tics used by Dutch Railways planners) is extremely easyuimroplementation it is
literally a matter of minutes. Furthermore, the chosen Ppr@ach is very suitable
for parallelization.
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Elimination rules run-
id | cim | sym | ntp | tp || #states time | cost
~25000
L oo | - | - | - |28 1282 1500 ...
an. | 4 | - | - |- | 285 128721500 180 ... - | 7375 6
141
~2410
4B. | 4 y -/ -119->72 - 780— 108 —> ... > | 280s| 6
10> 1
~2410
4C. | 4 y y | -|19> 72 -5 630> 90 > ... > | 242s| 6
10> 1
~2410
4D. || 4 y y |y|19—- 72 - 178—> 40— ... —» |153s| 6
10— 1
Al 3| - | - | - |28 1287%%1500— 180 ... — | 1465 6
141
3. 3y | - -]195710%77%65 108> ... 5|63 6
10— 1
3c.| 3y |y | -]195 7156285 90 ... |54s| 6
10— 1
3D.| 3| y |y |yll195 71 %8%178 540> ... 5| 245| 6
10— 1
oA | 2| - | - - |19 1207 %%1196-5 180 ... — | 185 | 7
12— 1
D 2y |y | yll1zo645%166540-... 58| 35| 7
1

Table 1.4: Dynamic Programming Results.
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1.4 Alternative Approaches

1.4 Alternative Approaches

Besides the presented Greedy Algorithm and Dynamic PragiagAlgorithm,
other solution approaches may be possible. In this secteogive some comments
on such approaches.

1.4.1 Local Search

One might expect that a local search approach is useful @rofgbod solutions,
since each solution is a list of shunt movements compatilille the event list.
However, we feel that defining small local operations onlikisvhich resultin new
compatible lists of shunt movements, is extremely difficiithen a small change
is made in the movement list, many repair operations may dpained to keep the
list compatible with the event list. Consider the examplegiin Section 1.1.2,
where between evengs andes train AB is shunted to track 2. Suppose we modify
this first shunt movement by movingB to shunt track 1 instead of moving it to
shunt track 2. This small change makes the remainder ofghmtiompatible with
the events, i.e. the shunt movement between esgraadey cannot be performed.
This example shows that changing a single movement is nogjlgcal change,
it requires repair operations that can be much further ddwerlist. Furthermore,
it seems to be difficult to calculate the resulting changehi abjective value in
a simple way since we know nothing about the amount of regarations. This
convinces us that a local search approach may be not an eggy ga.

1.4.2 Integer linear programming

A possible approach is to extend the model from [7] by othemsimoves. For
example, to include the possibility to wait at the platforndalelay shunting, we
need to include the ‘shunting time’ explicitly. The currembdel includes a variable
zjs which equals 1 if train unif is parked at or retrieved from tracks We could
replace these variables by signaling if train unitj is parked at or retrieved from
trackss at timet. Another possibility is to add variablésrepresenting the shunting
time of train unitj. Although the number of reasonable shunting times for a trai
unit is limited, both options significantly complicate thedel: the first by strongly
increasing the number of variables and the second by thefaeadditional ‘nasty’
constraints. The computation time will probably increaseoadingly.

A different LP-based approach is to apgglumn generationin [4] a column
generation algorithm for the planning of aircraft at gateplatform stands at Ams-
terdam Airport Schiphol is presented. Because of the siityilvith the problem of
planning train units on a shunt yard, i.e., shunt tracksaspond to gates at an air-
port, the idea seems useful to explore. The idea is that thi@gm is decomposed
into two levels. At the highest ‘master’ level we have valesrepresenting a com-
plete shunting plan for one shunt track and the most impbc@amstraint is that the
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1 Shunting passenger trains: getting ready for departure

retrieval of each departing train unit and the parking ofheariving train unit is
included in exactly one shunting plan. At the detailed osablem level we deter-
mine feasible shunt plans for one track which are expectée toeneficial for the
optimization at the master level. Column generation apgres have been success-
ful to solve large optimization problems in many differepplcations. However,
certain shunt moves such as rearrangements of trains betifesrent shunt tracks
seem to be quite complicated to include in the model and fitvereve are not con-
vinced that it is worth to investigate this approach further

1.5 Further research

In this paper we have presented two approaches for shum#imgunits. The first
one is a greedy algorithm that can find a feasible shunt plarkiyuThis algorithm
typically chooses one single possibility that looks besthat current moment in
time. The second one is a dynamic programming algorithncidrafind the optimal
shunt plan and typically explores many possible states. septed an outline
and a basic version of the algorithms and developed a pradirpiprototype of the
dynamic programming algorithm.

Each of the algorithms can be improved by moving more towHrdther ap-
proach. The greedy algorithm can be improved by includingrsfook-ahead rules
and rules used by operational planners. The dynamic pragmagrcan be improved
by rules to prune non-promising states and in this way ma&esét of states that
have to be explored smaller. To have the best of both wordsiwo algorithms
can also be combined. For example, a state within the dynprogram can be
extended to a complete feasible solution by the greedy ighgor This solution can
then be used as an upper bound to prune non-promising skavestigating these
possible improvements is a topic of future research.
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Abstract

The paper analyses signals that have been measured by twhésluring
surgery. First background noise is removed from the sigriEi& remaining
signals are a superposition of spike trains which are sulesgly assigned to
different families. For this two techniques are used: ®aBCA and code
vectors. Both techniques confirm that amplitude is themlystishing feature
of spikes. Finally the presence of various types of peribdia spike trains
are examined using correlation and the interval shift histm. The results
allow the development of a visual aid for surgeons.

Keywords: spike sorting, deep brain stimulation, PCA, interspikenwl his-
togram

2.1 Introduction

The problem addressed in this study involves helping a rseugeon get his or her
bearings during deep brain surgery. A stereotactic franusesl to fix a patient’s
head during an operation, and simultaneously to provid@edaoate system for the
surgeon to navigate. The region to be operated is determiynedaging techniques
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2 Neural spike sorting with spatio-temporal features

prior to the surgery. For some tasks, like taking out a turthar,resolution of the
image is good enough for the operation. For finer tasks, hewyelre structural
anatomy of the brain is less relevant than the functionataang An example
of the latter is deep brain stimulation (DBS), which regsieehigh resolution to
determine the location at which to stimulate.

One method to determine the functional anatomy is to inseet fieedles into
the brain to record neuron action potentials during theesyrgThis can indicate
whether the targeted area is reached or not. However, gksgaery difficult, and
requires a lot of expertise. The medical group we are workiith uses the fol-
lowing approach. Several micro-needles (10 micron thicultiple needles about
2 millimeters apart) are inserted into the operating regidhe neural activity is
recorded for periods of 10 seconds, converted to sound wawekplayed to the
surgeon, who then decides whether the needle is on target.df not, the surgeon
moves the needle some 0.5mm and the procedure is repeated.

Our aim in this project is to determine which methods of asialgnd information
presentation would help the surgeon to classify the recbngeiral activity in real
time. Moreover we would like to incorporate the knowledgehe expert surgeon
into the analysis in a way that helps inexperienced surgemarticularly as expert
knowledge is highly qualitative, depends on intuition hdbbhg many surgeries and
is very difficult to state as a procedural description.

Apart from the difficulty of modeling expert knowledge, tbeare several other
challenges in this problem. When a needle is recording heat&ity, it records a
great deal of background noise too, which needs to be aceddat. Deep brain
recordings have much higher noise levels than corticalrddegs. Depending on
the proximity of neurons in the area, several neural a@witan be recorded with
a single needle, and the fact that closely spaced neuroadlyubave highly corre-
lated activities makes their separation difficult. A singéiron can have relatively
regular interspike intervals, or it can alternate periotisow activity and high-
frequency firing. Furthermore, neurons can go active ortivacuring a single
recording, and the number of neurons contributing to theadighay change. The
recording time is typically short, which makes temporaksléication via statistical
methods difficult, if not impossible. On the other hand, sifisation via the spike
shape is not trivial either.

2.1.1 The data and problem details

The basic object of study are voltage tragés L) with L the level of insertion and
t the time. Possible levels ate € {0, 50, 100, ..., 500 m and the time ranges
over precisely 10 secondse [0, 10]. Available for analysis are sampled

Xk := X(KTs, L)
at a sampling frequency of
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Figure 2.1: Tracex(t, L) for levels L = 50,100 ...,500um and timet e
[0, 10]s.
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This means that frequencies up to 10kHz can in principle ptucad by the discrete
measurements,. Note that from now on the levél is suppressed in our notation
Xk. We will analyze voltage traces only for a given fixed levebwerline artifacts
and similar disturbances are assumed to have been remamrackfr Figure 2.1
shows a typical set of traces for various levkls Its behavior changes per level
but also within each level the signal characteristics magnge over time. We
assume that signals are stationary within 1 second. At neesid in Figure 2.1
peaks are clearly visible, which suggests that significeymas power is attributed
to these peaks. A quick scan however shows that the powerodte tpeaks is
negligible and also in the frequency domain the power dubdgeaks turns out to
be not clearly separated from that of background noisethie: respective spectra
overlap significantly. Inspection of Figure 2.1 suggestt trackground noise can
be removed in the time domain using a threshold. This is @xgtein Section 2.2,
where we follow the approach given in [10].

The basic waveform, and repeated waveform, respectivadywkrasspikeand
spike traincan be depicted as follows:

spike spike train
- . s —
~ 1.4ms € [5,200]ms

Given the sampling frequency of 20kHz this means that a sisglke covers at
least 20 samples. Spikes with a large amplitude stand ouguré2.1. Surgeons
distinguish three types of spike trains:

1. spike trains ofegular firing rate. These originate from neurons that fire at a
rate of 5SHz to 50Hz;

2. spike trains ofegular-HF firing rate. These originate from neurons that fire
at a rate of 50Hz to 150Hz;

3. spike trainbursts These originate from neurons with firing rates around
100Hz with the main feature that pockets of activity areriateed with pock-
ets of inactivity. The amplitude of spikes may vary withinua$t.

This is a coarse classification and irregular firing pattam$many other types may
be present as well. For instance a neuron can stop firing foesgione or change its
amplitude. There are many other sources of non-statign®ite source is due to
the movement of the neurons with respect to the needle. &nadhlthe dynamics
of the neuron itself. For example, when a needle advanceanistun the nearby
tissue, so that the neuron stops firing completely or at lemsporarily alters its
firing behavior, before turning back to normal behavior. daging time windows of
near stationarity is crucial and this is why the analysistoaske place for every
window of, about, 1 second.
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The problem is to automate what the surgeon does and to daealitime, with
a delay of at most 5 seconds. In short, we want to:

1. pinpoint the location of spikes (i.e. remove backgrouoida),

2. separate the set of spikes trains into various classeeéponding to different
neurons),

3. determine for each of the classes of spike trains to whi¢heothree types
they belong (if any),

4. visualize the findings.

Problems 2 and 3 combined are known as the probleapiik sorting In the rest
of the paper we describe a set of ideas that could be usefohimg these problems
in real time. A color-coded visualization as exemplified igufe 2.2 is a possible
desired outcome of the project, as it would help the surgeaietide on the nature
of neuronal activity in the measured area.

burst burst

regular HF regular HF

regular

t=0 t=10

Figure 2.2: Visualizing the presence of regular spike &aigreen), regular-HF
spike trains (blue) and spike train bursts (red) as a funaifdime.

2.1.2 Literature survey

Spike sorting has been around since the 1960s. The earlitbodgerelied on tem-
plate matching, and required heavy offline processing [Midre recent methods
combine feature extraction, probabilistic modeling, ahgtering. The accuracy
and efficiency of these methods are much greater than béjiarejost of them are
still too computationally intensive to be used during thegsuy, and they do not
work well with deep brain recordings. An excellent receniew of the problem is
the one by Lewicki [6].

The success of spike sorting methods is determined by siimngaon artificial
data (for which the correct classification is known) or by gamsons to human-
annotated real recordings. Hargsal. studied the performance of a human op-
erator when sorting spikes recorded from a tetrode (4-wiet®de) manually,
and decided that human operators sort the spikes subolytif8pl Single-needle
recordings (as we study in this work) were markedly morediffito classify than
tetrode recordings, where the presence of multiple semBokgdes robustness in
the decisions. Their conclusion was that “automatic sgikeing algorithms have
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the potential to significantly lower error rates.” Similabservations were made
in [17], which reports average error rates of 23% false p@sénd 30% false neg-
ative for humans sorting synthetic data. In artificiallyatexl data sets, this type of
error is reduced. Consequently many researchers crediegartiata sets by mod-
ifying a small set of annotated signals, adding noise andrpgsing them to make
the problem more difficult [1, 2, 10, 18], or by resamplingifr¢he distribution that
characterizes the data [17]. Generation of realistic dat@npther issue. In [8],
a cortical network simulation based on GENESIS was used tergée artificial
spike data. The authors note that the spike sorting algostiested on their simu-
lated data failed. More recently, Smith and Mtetwa propaséibphysical model
for the transfer of electrical signals from neural spikesuioelectrode to generate
realistic spike trains for benchmarking purposes [15].

Assuming that the procedure to validate a proposed spikmganethod is ade-
guate, the first phase is usually filtering to remove artfactd noise. The record-
ings are influenced by the ambient signals, interferenaa fiearby electronic de-
vices, vibrations caused by movement and noise from otharons firing in the
vicinity. The amplitude of the signal is a good indicator ofeural spike, and is
frequently used to determine spike occurrences. It is sacgg0 select static or
adaptive thresholds for this purpose. Once a thresholdeésteel, activity below
the threshold is considered to be noise. To eliminate naisthe selected spikes,
a smoothing procedure can be applied. In [3] the signal smgded with a cubic
spline interpolation for a better alignment of the spikepshavith its peak ampli-
tude. (Section 2.2 of our paper describes an efficient atsapproach.) In [13]
spikes are detected by looking at threshold crossings afad émergy measurement
of the bandpass of a filtered signal, which is shown to be naliaglle than the raw
signal.

Once the spikes are extracted, they can be classified bystiegie characteristics,
temporal characteristics, or both. For temporal charesties, the interspike inter-
val distribution and its correlation-based analysis careakdifferent spike firing
patterns [11]. But these methods ignore the spike shapeshape-based character-
ization, the spike shapes are normalized by their maximupliaude, cropped, and
treated like shape vectors. The two approaches that areeintlyy used are clus-
tering to get the mean shapes for spikes, or matching agaps-specified set of
templates. The difficulty in the clustering approach liethia fact that the number
of clusters is usually unknown. One method proposes to witirta large number
of clusters, and to combine clusters that are sufficientge/ until a stopping cri-
terion is reached [3]. This resembles the method proposdtdueiredo and Jain
for determining the complexity of a Gaussian mixture modgbeatically [4]. In
this approach, the number of clusters in the mixture is netiigd prior to model
learning, but determined on the fly. The algorithm is iniedl with n clusters,
and during each step of the algorithm the smallest clustnsbined with another
cluster, and the expectation-maximization (EM) algoriismun until convergence.
Each step ends with one component less than the previoysusi#ponly a single
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component remains. Then, all the intermediate steps ateaggd by a minimum
description length criterion to select one model as the fm#put of the system.
In [3], instead of generating all possible models, a statistest is employed to
stop the combination procedure.

Both template matching and clustering methods face thenpateroblem that
spikes do not have fixed amplitude and shapes. During thediecgy movements
of the electrode or a change in the membrane potential caseaaechange in the
spike amplitude and shape [6]. Similarly, Quiragial. remark that when the spike
features deviate from normality, most unsupervised ctigiemethods will face
difficulties [10].

In [16], several spike characteristics were contrasteeé¢onghich features lead to
a better classification. The parameters of the waveformaimplitude, spike width,
peak-to-zero-crossing time, peak-to-peak time) wereddorbe insufficient for ef-
fective discrimination. The authors also contrasted ogtiittering techniques [12],
template matching (with root-mean squares error crit¢riand principal compo-
nents analysis (PCA)-based techniques. Their results shakeven though it is
possible to obtain good results with the costly templatechiagy method, PCA-
based approaches were much more robust against higherexgé® The overlap
of waveforms was found to be greatly impairing the accurdactemplate-based
methods. A possible solution to this problem was propos¢tidh where PCA and
clustering techniques are combined to test incrementdilgtiaer a single source or
multiple sources contribute to the signal. Recently, Raglal. contrasted wavelet
and PCA-based methods, and argued that wavelet-based dsethald perform
better than PCA, yet they need to be carefully tuned for thippse [9].

For real-time applications, even the PCA-based methodsbeapo computa-
tionally intensive. In [19] a front-end hardware architeetis described for spike
sorting, but the system is tested on a ‘clean’ sample for WRICA achieves 100%
accuracy. Still, the proposed algorithm can achieve goedlt® with much less
computation steps.

2.2 Spike classification

In this section we formulate ways to separate dominant spikem background
noise and subsequently try to split the many spikes intsekhat correspond to
individual neurons, or at least to neurons with similar firmehavior.

2.2.1 Detection, double spike removal and time shifting

Consider a noisy trace, such as in Figure 2.1. If the valug of the signal is above
a certain threshold, it is assumed to belong to a spike. Tperdd0O] describes
how to choose the threshold using the standard deviatjaf the noise. Under the
assumption of being normally distributed (and the backgdmpise indeed appears
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2 Neural spike sorting with spatio-temporal features

to be so) the standard deviation equals

1
= ——— mediar(|X1], ..., [Xn]).
on = 56745 x| IXNT)
The usual formula using an average of squares is not usedugedthen the ex-
tremes due to the spikes would affegt too much. The threshold is given by a
constantx timesop,

Vihr = athr on,

with ainy = 4 or 5, or a number in between, the choice of which appears to be
somewhat subjective as different values were found in thealiure.

Each spike will lead to a small interval of values above theghold. To have a
simple criterion, we takenaxima in the signals whose value is above the threshold
which define a set of pointg j (p for ‘peak’). This is our initial set of ‘raw’ spike
time<. We crop a temporal window that contains the spike, staflidgms before
the peak and ending after 1.2 ms, resulting in a 1.6 ms da@ominThese form our
‘raw’ set of spike traces. An example of such a raw set is diggd in Figure 2.3.

In this example 674 spikes where found in 10 seconds of data.

spike book, comp_trace for double spike removal and taper
0.6 T T T T T

Voltage

0
time (ms)

Figure 2.3: 'Raw’ spikes, cropped and aligned by their pestkBme zero. Also
displayed are the functionsy, used for identifying double spikes (thick
solid line), and the taper function (thick dashed line), ethive use
to select only the part of interest for each spike. (Everytfospike
plotted.)

The transformation from the no-activity state (signal withoise level) to the
peaked activity is very fast, comprising about 0.15 ms, Wheeans that with our

8The coding was done in MLAB, and the experiments were conducted on a set of traces that
were available from patient measurements
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2.2 Spike classification

sampling rate, three samples can be acquired for the spikestiepeaks. After the
peak some of the spikes continue for up to about 25 sampl25S (is), although
for the shape analysis the first 20 samples seem to be sufficien

There are several potential problems at this stage:

e Double detectionA single spike could be mistaken for two individual spikes
due to noise, say within two or three sample points. A possshiategy to
deal with this is to consider the largest of two close peaksetthe real peak,
and to ignore the other. For the limited set of sample tracaswe worked
with, this problem did not occur.

e Overlapping spikeslt is possible that a second spike occurs shortly after or
before a spike. It can be seen in the figure that this happens idata. These
are outliers for the purpose of spike shape analysis, agéesieuron cannot
fire again in such a small period, and we should therefore vertieem.

To remove double spikes, we use two threshold areas aroengetik, one
containing samples [-0.2ms, 0.2ms] around the peak (absatrthles) and
the second from [0.25ms, 0.8ms] after the peak (about 11 Iesnp/alues
above the threshold (depicted with a thick solid line in FegR.3) indicate the
presence of a double spike. Obviously, it remains to be tiyated whether
the parameter settings we use are suitable for other measents, i.e. on
larger collections of recordings. But a visual inspectidirigure 2.3 and a
plot of the rejected spikes can be used to assess reliatiifibye result. In our
data set 24 of the 674 spikes were rejected as double spikes.

We use a taper function to limit the interval around the paaki the subse-
guent smoothing of the signal depends on the choice of thex fapction.
This can be important when interpolation is applied latehmprocess. The
taper function we have used had a width of 0.1 ms to keep tagpéria mini-
mum, and to prevent lossy smoothing. A scaled version ofgpertfunction
is plotted as the thick dashed line in Figure 2.3. The spikes &re thus
excluded from the analysis and the remaining valid spikegpbotted in Fig-
ure 2.4.

e Negative polarity spikesSpikes with negative polarity were ignored.

The next step would be to appiiyne shift correctionso the spike traces, to align
them better. Spikes can have a time shift that is a fractidghee$ampling period, so
interpolation becomes necessary to apply such time shifs Scholarpedia paper,
it is proposed to interpolate the spikes at a finer resolusiod then align them
by their maxima. To keep keep the subsequent computatiomaplexity low we
developed an alternative approach. Each sgike), j = 1, ..., N is time shifted

8www.sc:holarpedia.org/article/Spike;sorting
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2 Neural spike sorting with spatio-temporal features

over atimefj. Now the vectop = (f1, ..., fn) is chosen thanaximizes the total
correlationof the traces, given by

/‘WZ fjt — Bj)
j

Fourier interpolation was used, so that the interpolatioth @ptimization can both
be done in the Fourier domain, using off-the-shelf inteaioh algorithms. Compu-
tation time in MATL AB takes about 0.5 second for 640 spikes on a regular machine,
which indicates that an optimized code will have acceptsdtgporal complexity.

A comparison of Figures 2.3 and 2.4 shows that time shiftesd$ to much
higher similarity between the spikes. In the next sectioa,will show that time
shifting is also beneficial for PCA-analysis. Optimal tintefsng results in much
better clustering behavior, with tighter clusters, andasganally with better sepa-
ration, resulting in more clusters.

To summarize, we have implemented the necessary codesféoltbwing pur-
poses:

?,  with constrainty_ §j = 0.
i

1. Detection of maxima above the threshold.

2. Removing double spikes.

3. Tapering the remaining spikes.

4. Time shift corrections in order to maximize total cortila.

These steps give an adequate pre-processing for the sesetpape analysis, see
Figure 2.4(b), and our method of computation of time shifrections makes the
overall procedure efficient.

2.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a popular toot thased in numerous
scientific, medical, and engineering applications suchaéserreduction in signal
processing and face recognition. Here we will use the PCAdognize and analyze
the different types of spikes.

Let A e R™" pe the wide matrix containing the spike data as columns,

A;j = samplé of spike]j, ie{l,...,m}, je{l,....n}.
Heren is the number of spikes found in the signal (for instantey 650 in the
previous subsection), amd is the number of samples per spike, typicatiy~ 20.

Although it is no real restriction, for convenience we wiisame in the following
thatn > m; in practicen may be much larger tham.
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2.2 Spike classification

Rejected (double) spikes Spike_book after double spike removal, tapering and time shift correction
T T T T T T T T

Voltage
°
2
Voltage

A\ HAY ]

Figure 2.4: (a) Double spikes removed from the set of spikesspikes after re-
moval of double spikes, tapering and time shift correctmre(y fourth
spike plotted in part (b)).

The PCA is based on the Singular Value Decomposition (SV¢nethe SVD
and PCA are used as synonyms. However, in PCA the SVD is ajplitne matrix
A obtained fromA by subtracting from each trace (column) the mean of thaetrac

m ~
2 A
k=1

The SVD of a matrix is a decomposition of the form

Aj = Aj —

Sl

A=UxVT

with UTU = |, VVT = | and X a diagnonal matrix with nonnegative, non-
increasing entriesy; > o> > - -- on its diagonal (Thé denotes transpose.) There
are two forms of an SVD: a full and a reduced SVD. In the full S\WOthU andV
are square matrices. For almost all applications the dateaeed in the full SVD
are superfluous and it is much more efficient to use the red8v&2 in whichU
is still square, sizen x m, with ¥ now sizem x m as well, andv has sizen x n.

The columnauq, up, ..., uy of U are theleft singular vectorsor principal com-
ponentsand give information on the patterns that are present in ¢ieation of
spike data. Their corresponding singular valagsso, . . ., oy indicate how strong
the respective patterns are. By construction the patterns, . .., uy are orthog-
onal; they do not represent spikes exaept

We compute the PC’s of the spike collection and show the nesnlts in the
figures below. In Figure 2.5 we plot the first two singular wsagainst each other
for all spikes in a single tracg. This kind of plot is useful to find clusterings
of spike shapes in the trace, i.e. groups of spikes with aimsihapes. In this case
three clusters can be observed. This was exceptional, rtse araces had only
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2 Neural spike sorting with spatio-temporal features

two clusters, one consisting of large spikes, and the oth#reoremaining spikes.
Some had no clear clustering. In Figure 2.6 we plot the me#medfaces (the thick
dashed line), and the first four principal components, tlekést being the first, and
the thinnest the fourth.

Principal component coordinates, pc2 vs. pcl
T T T T

0.15

0.1p

0.051

Figure 2.5: The first two singular values from PCA analystteld against each
other. Three clusters can be observed.

Mean and principal component vectors
0.6

Voltage

time (ms)

Figure 2.6: The mean (dashed black line), and first 4 principaponent vectors,
the first corresponding to the thickest solid line.

Since in Figure 2.7 is much smaller thagay, this figure suggests that there is
one quite dominant spike pattern. Indeed, the distingngsfeature is the size of
the spikes. Of course, this outcome is influenced by the rahwdvhe outliers (the
second spike in a sequence of two consecutive spikes) inréwops subsection.
In signals where many spikes with negative polarity aregmgsve expect a much

32



2.2 Spike classification

largero, corresponding to a pattewp. In Figure 2.7 we plot the largest singular
value against time. This picture shows that the presenaevefal clusters is related

to a change in observed spike shapes that occurs atoundB000ms, and thus

reveals even more structure in the data.

pcl versus time

0.6

0.4

o
N

pcl

I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time (ms)

Figure 2.7: The largest singular value from PCA plotted agfaiime (in milisec-
onds). The clustering can also be observed in this picture.

at

T

Figure 2.8: Coding spike features.

2.2.3 Coding

Another technique to classify spikes is to represent anyngigishing feature by a
number on a scale and combine these numbers to crestdeavector There are
several features that can be defined:

¢ A spike has dopvaluea™. As the amplitude depends on how close the probe
is to the neuron, it should be normed e.g. by considesing a/anax where
amax IS the maximum amplitude occurring during a measurement.
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2 Neural spike sorting with spatio-temporal features

e A spike also has hottomvaluea™ (taken positive). Now the totaimplitude
b =a* —a~ can be considered as a feature, scaleo)/asax(b).

e Thepolarity p depends on the temporal orderaf anda~. It is positive,
p =1, if a; is attained before_, and negativgg = —1 otherwise.

e Thewidth w can be defined as the time difference between the tinveghen
the signal reaches half peak valre/2 and the timer, when it first exceeds
a~ /2 after the occurrence af~ for a spike with positive polarity. For a spike
with negative polarity the width can be defined as the widtmafus the
signal.

These features are illustrated in Figure 2.8. The idea oingod now as follows.
After normalizationa, takes a value in the interval [@]. This value could be taken
as the encoding of the amplitude, but the interval may alsdiladed into some,
say three, equal parts that can be encoded by & (& [0, 3)), 1 (if a € [3, 3)),
and 2 (ifa, € [%, 1]). The amplitude is thus encoded on a 3-point scale: "low”,
"medium” and "high”. In a similar way the width, polarity aranplitude of a spike
can be encoded on either a 2-point or a 3-point scale. Witetfeur features we
have 3x 2 x 2 x 2 = 36 different code vectors

(@, b, p,w) € {0, 1,2} x {0,1} x {-1,1} x {0, 1}.
Some other features were also suggested:

e Similar to total amplitude, theelative height ) = |g—f| can be defined and
may be encoded by a 2-point scale, 6/ > 1 and 1 ifh, < 1.

e The slope at the second halftimg, as there are some neurons which can
show an afterhyperpolarization, i.e. a prolonged negathase.

e Different types of neurons may show spikes that differ in bgeneration
guotientof the two time intervals between start and passage of zepeoe
tively passage of zero and the end. So for "width” there are®ua ways to
define "start” and "end”.

As we have seen in the former subsection it seems doubtfulrthay essentially
different types of spikes occur. This is confirmed by thigmiative classification
method. In fact encoding only amplitude, polarity and ne&atheight, leads to
only 12 different code vectors, froig®, 0, —1) to (2, 1, 1). Figure 2.9 shows four
histogram of two traces, one at ledel= 200 and one at levdl = 50. First, we
see thata, andb within a single trace encode more or less the same feature. A
fast majority of spikes have positive polarity, and manunapiection of spikes with
negative polarity led to the conclusion that there was in &aother cause for an
early negative peak to be present. The few spikes with negatilarity we did find
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2.2 Spike classification

Total Amplitude b=(a+-a—)/max
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40

20

0 0.5 1

polarity
600

400

200

-1 -0.5 0 0.5 1

Total Amplitude b=(a+-a—)/max

0 0.5 1
polarity
800
600
400
200
0

level L = 50; (bottom four) trace at levél = 200.

Figure 2.9: Histogram for four coding features for two trexg (top four) trace at
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2 Neural spike sorting with spatio-temporal features

—————

400 600 800 1000

Figure 2.10: Data that cause problems when defining featliogs negative polar-
ity; middle: several spikes after each other; bottom: bufsie peaks
are above threshold.

could be due to a dying cell. So polarity does not distingsisikes. Neither does
the width. Moreover, the “half’-times; andz, did not always exist in case several
spikes occurred shortly after each other or during a buestFsgure 2.10.

These computations show that the neurons can be distiregliissing just the
maximuma,.. Only a few code vectors are relevant, i.e. correspond torotg
types of spikes. This is in agreement with the PCA results.

2.3 Regularity extraction

Now we assume that background noise in a trace has been rdrandethat the
remaining spikes ixy are classified (separated) into a collection of a few differe
spikes, each with its own characteristics. In this sectiercantinue with the anal-
ysis of asinglespike train. By definition then any spike in a spike train sisaihe
same features, hence we need only specify the time instae@sich the spikes
occur (e.g. where the maximum of the spikes occur). Wesusge denote such a
spike train time series. That is; = 1 if a spike occurs at discrete time indiex
andsq = 0 if no spike occurs dt. The repeating firing patterns of neurons induce
periodicities in the spike traig; and we should now try to pinpoint what type of
firing pattern is present isc: a regular firing rate, a regular-HF firing rate or a burst,
and possibly a superposition of the above.

2.3.1 Autocorrelation and Fourier Analysis

Classically periodicities are determined by correlatipn= > ; s+ks and the dis-
crete Fourier transform (DFT). A distinct advantage of bodinrelation and DFT
is that computation is very efficient: for a tracerofamples it take®(nlog,(n))

opertions to compute correlations and the DFT. Fourier guivalent autocorrela-
tion analyses are fairly robust with respect to small varet in the periodicity of
the spikes. A more severe problem occurs when the spikeir@superposition
of periodic signals (and noise). Figure 2.11(a) demoresr#tis problem: while
the signals clearly is a superposition of two purely periodic signalsihvperiod
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2.3 Regularity extraction

5 and 8—the autocorrelation analysis does not clearly pimpoe periodicities of
the involved signals, and does not help in separating them.

autocorrelation Interspike interval histogram
10 Q 10
8 8
6 6

0 EBEEEEES SSS eSSy 0
-40 -20 0 20 40 -40 -20 0 20 40

Figure 2.11: Autocorrelation (left) and interspike intarisistogram (right) of spike
trains¢ with spikes at = (0, 5, 8, 10, 15, 16, 20, 24, 32, 40).

While autocorrelation and DFT consider a spike train as &tfan s¢ of time
k, it is more efficient for computational purposes to storé&epiains as sequences
t = (t1, tp, .. .) of time instances at which spikes occur. For instance tHeedpain

N ]

0 k=4 k=10 k=15 k—

can be stored more efficiently as the sequéanee (0, 4, 10, 15). The analysis of
time sequenceisis considered next.

2.3.2 Interspike interval histogram

Several mathematical techniques are known for discoveggglarity in time se-

guences, with autocorrelation, discussed in the formesextibn, being one of
them. The method that we will describe in this subsectioreiated to autocor-
relation, but turns out to be appropriate for determinirgtieginning and end point
of periods of regular firing of neurons, even when there ackeis of inactivity be-

tween windows of regular activity. The idea will be introgdcfor strictly regular

sequences. Let us consider a regular time sequencewiithd 5,

t = (0,5, 10, 15, 20, 25, 30).

The regularity with period 5 is discovered simply by lookatghe consecutive time
differences, which indeed are all equal to 5. Now supposeaie is contaminated
with time instances at,86 and 18, so

t = (0,5,8, 10, 15, 16, 18, 20, 25, 30).
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2 Neural spike sorting with spatio-temporal features

The period 5 is now masked. Considering consecutive diffage now gives rise to
new “periods”8-5=3,10-8=2and 16-15=1,18—16=2,20— 18 = 2.
The idea now is that by comparing not only neighboring tinfeedences, but also
other possible time differences, we can recover the donhtiffarence, which is 5

in this case. In fact, addition of the series of neighboriiffgtences will produce,
among others, in our caset32 = 5 and adding up once again produces$ 2 +

2 = 5. Consideringall differences between pairs of time instances will result in a
histogram in which the period 5, as well as multiples of 5 duate. If there aren
time instances, the(})) = sm(m — 1) differences are to be calculated.

The resulting histogram is called theterspike Interval Histogramor IIH for
short [11]. The IIH procedure can be visualized as followsr dll ty € t the
sequence is first shifted by—ty (effectively shifting itskth element to zero) and
the resulting sets of shiftdd-ty are then added up, see Figure 2.12. As we count the
differences to obtain the histogram, it might also be cai&dfference Histogram
but we stick the literature standard of IIH.

|V BV S S —t—1

|V SV SV A —t—t

| B S A —t—t3

| B 1 —t—t

1 I 1 —t—ts

_|_

I....I.II.I.II.‘.II.I.II.]....I

Figure 2.12: Visualization of the construction of the I1H.

To illustrate the procedure differently we superimposeraoan set of times on
our example sequence. Say we have

t =(0,5,8,10, 14, 15, 16, 18, 20, 25, 27, 28, 30). (2.2)
The consecutive differences form the sequence
(t2 - tla t3 - t29 .. ) = (55 39 29 49 19 19 29 29 59 29 19 2)

In this sequence the difference 2 occurs five times whileedsfice 5 occurs only
twice. Adding two consecutive differences leads to the sage

(8,5,6,5,2,3,4,7,7,3,3).
Adding three consecutive differences leads to the sequence

(10,9,7,6,4,5,9,9,8,5).
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R

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure 2.13: IIH of the of Eqn. (2.1). By symmetry we need only specify the IIH
for positive lags, as done here.

V]

5

On the basis of these three sequences of differences wepakea that “2” and “5”
show up as likely periods of regular subsequences. ThelHilifbr positive lag, is
shown in Figure 2.13.

The six intervals irt of length 2 are [810],[14, 16],[16, 18], [18, 20], [25, 27]
and [28 30], whereas the six intervals of length 5 areq{) [5, 10], [10, 15], [15, 20],
[20, 25] and [25 30].

The first six intervals show regular sequences 8-10, 14-8&64d, 25-27 and
28-30, while the second six intervals show one regular sesp6-5-10-15-20—
25-30. We thus find the regularity with period 5 aharation(total length) 30 but
also a regularity with period 2 and duration 6. Just two ticeasnot be considered
a real sequence. Looking upon intervals as train wagonsctdrabe coupled by
spikes which occur at common times (the ends of the wagong)deed can speak
of spike trainsas coming forward by this procedure.

Figures 2.14 and 2.15 show how IIH can be employed to deteriiia firing
frequency of the dominant neuron in the recording. In Figlufel, a small portion
of the raw spike data is shown on the left. Once the data isgss®dl, and the spikes
are localized, the IIH is constructed by pooling spike esaiter each spike. The
peak of the IIH represents the dominant interspike intetiwa, i.e. 187 Hz. When
we look at the rest of the IIH, the global wave pattern is iatlie of long-term
tremor. In Figure 2.15, the high-frequency signal from andymeuron is depicted.
The IIH reveals that the neuron bursts with 227 Hz frequency.

2.3.3 Connection between autocorrelation and IIH

The IIH procedure generates from a sequenaa tine instances a new sequence
of m — 1 positive time lags and it appears to requidém?) operations. Forming
the autocorrelationy = Zj Sj+j of a signals € R" on the other hand requires
O(nlog(n)) operations. In theory there is no relation betwaeandm (other than
n > m and some variations) so without further assumptions it rsl h@ compare
the complexity of the two approaches. Oddly enough autetation and IIH are
equivalent for a single event typie

9When different categorical events can be related to eaar,ate inter-event interval histogram
can be employed to determine the regular patterns too, $ee [7
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The raw data 187 Hz, i.e. once every 5.35 milliseconds
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Figure 2.14: 187Hz period+long term tremor. Left: raw dgtaright: 1IH with a
peak at = 5.35ms corresponding to frequency of 1861z.
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Figure 2.15: X-cell (RIP). Left: raw data; right: lIH with peaks at = 4.4ms
and multiples, indicating a frequency of 23 Hz
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Lemma 2.3.1. Lett € N™ and s e N" form a pair of time sequence and corre-
sponding time series. Then the autocorrelation of s eqi@siine series of the 11H
of t.

Proof. The IIH seen as an operation sr{rather thart) is a sum of shifte¢ and
therefore is a discrete convolutidn: s. It is easily seen thdt is in fact the time
reverseds, but then the convolutioh = s is the autocorrelation. O

Indeed the two plots in Fig. 2.11 are equivalent. The resmitains valid if time
instances appear more than once,im which cases; should be defined to mean
the number of times that appears irt. The result also implies that IIH and spec-
tral analysis (DFT of or its autocorrelation) contain the same information. The
difference is the way they are computed and stored. It is aary®pen problem
which of the two approaches is more efficient computatignallhe IIH appears
more natural.

2.3.4 Approximate regularity

Neurons will fire at time intervals that are not completelya&gn length, but suffi-
ciently close to call it regular firing. We therefore congidpproximate regularity
for firing rates, demonstrated on a very simple but illustes¢éxample. Let the time
sequence for spike events be

s = (0, 30,59, 87, 119, 150).

The consecutive intervals have lengths 2@ 28, 32, 31, which would correspond
to quite “close” values in the IIH. A strictly regular sequenwith period 30 would
show five times 30, but now there are five intervals close tor@Dvéth average 30.

The question of determining the regularity of a sequencebsaanswered by
considering intervals [30 A, 30+ A] around the average valua. = 0 corresponds
to the strictly regular sequence. We propose to use thewmlipmeasurefor the
regularity sequences:

A
R=1- ~ 0.93
average

whereR = 1 corresponds to strict regularit is the maximum difference occuring
betweeb interval lengths and the average for a set of cldfezatices of times that
is tested for regularity. We assume that no set should bedsnesl for whichA is
larger than the average, so thits a non-negative number in the interva) 10.

It must be stressed that once a set of differences is choserstil has to check
whether indeed one spike train has been found. A very sinxalmple of two spike
trains with period 5 that interfere, is given by the sequence

t=1(0,15,6,10, 11, 15, 16).
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2 Neural spike sorting with spatio-temporal features

The histogram shows peaks at “1” and at “5”. The four diffeeshof 1 do not form
atrain at all, whereas the six differences 5 turn out to fosmtrains: (0, 5, 10, 15)
and(1, 6,11, 16).

An alternative approach to detect regularity using stzisnethods is indicated
next. For a sequence of time instantes (i3, to, .. .) at which spikes occur, define
the sequence of differences

At = (o —t1,t3 — 1o, ...).

Assume that the differencég; 1 — tx are a realization of a single random variable
T. Based on the emperical distribution and using an unparartesit it is possible
to find the distribuition of the random variablle. Under the assumption that

is normally distributedN (x, ¢?) and based on the available realizatian it is
possible to find estimators andé2 of the mean and the variance of the normal
distribution. Then taking into consideration a confidermeel of, say, 95% for all
the realizations thetx,1 — tx € (& — 26, it + 26) can be considered indicating
approximate regularity of the firing rates.

2.4 Concluding remarks

In this paper we mentioned four goals in Section 2.1.1.

The first goal mentioned was pinpointing the location of epikThe main prob-
lem was the removal of background noise in combination wdltfonal time shift
correction. This problem was dealt with in Section 2.2.1thwkigure 2.4(b) as
description of the final result.

The second goal, classification of spikes, was treated tmssc2.2.2 and 2.2.3.
We can view a spike as having several features (width, hemgtth and height of
upward part, width and height of downward part, et ceterdyoA&ombinations of
features can be relevant. The PCA treated in Section 2&@matically selects
features that distinguish spikes. In the coding approac®ection 2.2.3 these fea-
tures are sananually It turns out that the main feature is the amplitude. The PCA
analysis revealed that occasionally other features ageast, as shown by the pres-
ence of three clusters in Figure 2.5. To obtain this secoataife from the PCA itis
important that the alignment of the spikes in time is goode THree clusters were
only observed after the fractional time shifts of Sectiah 2were done.

In Figure 2.5 values for the two dominant features from thé\R@e displayed
for a set of spikes. Clearly groups (clusters) can be distsiged. Although these
groups are clearly visible, it is still a question how to seléde groups. For this
purpose automatic clustering algorithms exist. Of counssuch simple examples
manual grouping is also easily done. We feel that automéaistering combined
with visual inspection of the outcome and the possibilitghange the cluster areas
could be of interest for the application.
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2.4 Concluding remarks

Both the manual and the PCA based feature selection wereappljed to very
few traces, so it is difficult to say whether the manual or PG&dal method is
better. Also, the main difference between spikes is in thplénade, which is easy
to measure. But overall our judgment at this moment is inffafdhe PCA. It is
a well established technique, which produces picturesisigitas input for cluster
analysis. Results of the manual method are less clear.

The third goal was to distinguish spike trains accordindteé¢ types. This was
discussed in Section 2.3. The main problem was to deterngike $rains with
certain characteristic time spacings and determine thaiatibn. The difficulty
lies in the fact that different spike trains may overlap. kcton 2.3.1 classical
autocorrelation was applied, whereas in Section 2.3.2ha&napproach, the so-
called interspike interval histogram (IIH) was considerbdSection 2.3.3 the two
techniques were connected. Since the two techniques agatiedly equivalent
they share the same advantages and disadvantages, exciygifeomputational
complexity which is yet unsettled. For overlap free spikens and artificial data
the two methods are transparent and appear to work well. a&e af overlapping
spike trains needs to examined further before conclusiande drawn.

To deal with the fact that the intervals between two condeauiirings of a neu-
ron will only be approximately the same in Section 2.3.4 threocept of approximate
regularity was introduced.
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Abstract

Due to climate changes that are expected in the coming V& sharac-
teristics of the rainfall will change. This can potentiatiguse flooding or have
negative influences on agriculture and nature. In this rebeave study the
effects of this change in rainfall and investigate what cardbne to reduce
the undesirable consequences of these changes.

Keywords: climate change, rainfall, drainage system

Introduction

At the 2008 Study Group Mathematics with Industry one of ttedfems concerned
the impact of climate change on Dutch water managementipeactMore specif-
ically, we were asked to study the effect of the increasirignsity of peaks of
precipitation events on the water system managed by “heeM&iap Regge en
Dinkel”. Some explanation of the nature of this problem omigaén order. A Dutch
“waterschap” is an institution run by a democratically ébeldboard that is in charge
of the management of the water quantity and quality of opaematreams, brooks,
lakes, ditches and canals) in a given region. The board wdegldy the local in-
habitants and the institution is self financing: it deteresithe level of certain local
taxes and collects those taxes for its own use. One of its tagks is to protect the
inhabitants against flooding and to manage the water leuels that agriculture,
nature and shipping are supported. In the remainder of tpgpwe will use the
term “water board” as a rough translation of “waterschap”.
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3 Math Fights Flooding

Figure 3.1: Twente (source: Waterschap Regge en Dinkel).

The Water board Regge and Dinkel is in charge of an area obapately 40 by
40 kilometers containing the towns of Almelo, Enschede aadd¢lo (Figure 3.1).

The problem statement limited the area of interest to the @rat, due to terrain
elevation and hydrology, discharges its precipitation the stream the Regge. This
area is called theatchmenbf the Regge. The Regge in its turn discharges into the
river Vecht.

We examined the Sob&knodel that was made available by the water board and
found that the region below the Twente Kanaal dischargeslynioso the Twente
Kanaal despite the presence of culverts under the Twentad{aifhis provided a
clear southern border for the catchment. The total Reggsgent consists of a
considerable number of subcatchments. A subcatchmentiisa@esa that discharges
all its water via one point on its boundary into a small strearoanal.

In brief, the problem is to find a way to design and evaluatgtdmns of the
Regge catchment that will keep the discharge peak into tloht\Weithin a given
envelope. Of course, this discharge peak varies in timesfbésh general recom-

6Trademark of WL — Delft Hydraulics (part of Deltares)
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3.1 Introduction

mendations, the water board agreed on defining a typicaigtaon event, which

serves as a kind of benchmark for any system. This is sintulatder the assump-
tion of uniform rainfall over the catchment. This standardqgipitation event is a
10-day period of rainfall data (preceded by a long periodimiost 40 days with a
constant minimal amount of rain to counter initializatidfeets in a model such as
Sobek) as shown in Figure 3.2. For each subcatchment asgarégipitation event
will lead to a discharge curve that lags behind the predipitecurve and is longer
than 10 days. Examples of such discharge curves are shoviguref3.3.
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Figure 3.2: Benchmark precipitation event before (blue)alter (red) after climate
change.

The discharges from different subcatchments flow togethitra Regge. The wa-
ter involved arrives at the Regge with a time delay that istyadetermined by the
distance between the discharge point of the subcatchmelet wonsideration and
the Regge. The discharges from all the subcatchments sunithuphe appropriate
time delays in the Regge. In turn, the Regge discharges teswdo the Vecht and
a typical Regge discharge curve for the benchmark pretimitavent in the current
climate is the blue curve in Figure 3.4. This discharge haslsemputed using the
Sobek model. In this figure, the red curve is the maximal @disgd imposed to us
by the Water Board Regge and Dinkel. The discharge curvetaraa when the
standard precipitation event, which is a kind of worst-casefall in the current
climate, is applied to the present situation in the Reggehcagnt. It is important
to preserve the dip in the discharge after 46 days to allowHerdischarge peak
from another catchment that flows into the Vecht further rgash. This is an im-
portant boundary condition for the study of this projectteifthe climate change
the response to theewstandard precipitation event, which is a kind of worst-case
rainfall in the future climate should respect the upper lsburthe discharge curve
indicated in red. However, as shown in Figure 3.5, withouditahal measures,
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Figure 3.3: Discharge of selected catchments.

the expected discharge (indicated in blue) clearly vialdkés upper bound. The
objective of this study is to look at measures that can bentakeh that we get for
instance a discharge as indicated in green which mostheotsphe given upper
bounds.

In other words, the aim of this project is to study what happiérithe rainfall
would intensify due to climate change. To show the effect wié@ally increased
the peak discharge in the standard precipitation eventdh auwvay that the total
volume in the event increased by ten percent (see Figure 3.2)

140

120

=
1S}
=)

80

60

Discharge (m3/s)

40

20

0 I I I I I I I I I ]
34 36 38 40 42 44 46 48 50 52 54

Time (days)

Figure 3.4: Discharge in current climate (blue) and maxidist¢harge (red).
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Figure 3.5: Discharge after climate changihout and with additional measures
together withmaximaldischarge.

To avoid undesirable discharge rates of the Regge due tedased rain fall, the
water board suggested the following possible measuresaakwiomponents for a
solution.

e Improved drainage in a subcatchmemhis results in an earlier release, and in
a narrower discharge peak from that subcatchment. The iraprent could
be achieved by additional drainage pipes and/or draindgheti. However,
this can also be realized, to a certain extent, by loweringhefoverflow
heights of the weirs. Earlier arrival of the run-off at theckefrom a certain
subcatchment could reduce the height of the peak by a betteading over
time of the discharge of the different catchments over time.

e Slower drainage in a subcatchmeiitiis results in a later release and a flatter
discharge peak from the subcatchment. Reduction of th@alyai can be
achieved by removal of drainage pipes and/or drainageebtoh by raising
the water level in the drainage ditch network. This can dtsa,certain extent,
be realized by increasing the overflow heights of the weirkis Thcreases
the available storage in the soil and the local collectionata It flattens
and delays the entry of the discharge peak from this subeegchinto the
transport canals. Later arrival of a flattened dischargé paa reduce the
height of the total discharge peak arriving at the Vechtdliyey the flattened
peak of the discharge of the subcatchments or, indirectlg, etter spreading
over time of the discharge of the different catchments.

e Storage Adding storage basins has effects that are similar to thbslewing
the drainage of a subcatchment, but they are more flexibleegscan also be
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3 Math Fights Flooding

used to flatten and/or delay a discharge peak that has alkefatlye soil and
the collection canals of a subcatchment. It can affect peakse transport
canals. Again, as argued before, later arrival of a flattelecharge peak can
reduce the height of the peak arriving at the Vecht.

For the total discharge into the Vecht, we must take all ¢outions of the sub-
catchments into account. If we link subcatchments whosehdrgie peak reaches
the Vecht at approximately the same time, we get a set of isaels on the map.
This illustrates two aspects of the problem. First, for oarpeaks the longest
isochrone (the line connecting points from which water t#ke the same amount
of time to reach the discharge point into the Vecht) will teaclominate the dis-
charge peak. Second, for wide peaks or rainfall-runoff esimwith fat tails the later
peaks will piggy back on top of the earlier ones and dominatedischarge peak.
The second process will later be confirmed by a sensitivighyeis. The scale of
the area (about 48 40 knT), combined with the width of the peaks from separate
subcatchments and the average transport velocity ofsl=a86.4 km/day (accord-
ing to Regge and Dinkel) implies that the first process do¢play a role of much
importance.

In Section 3.2 we will obtain a simple model for the dischargsed on fitting the
data provided to us by the very detailed Sobek model. In &&i3 we will model
one meadow with adjacent ditches in detail. It will be shohatt this model, after
suitable fitting of the physical parameters, fits very clpselthe earlier model even
for an area of more than 1000 hectare which has a lot of ddtatleicture (small
ditches; non-uniform soil characteristics, etc) which ao¢ taken into account in
the physical model. In Section 3.4, the sensitivity of trectiarge curve in the Vecht
to changes in the parameters of the model is analyzed forafispgibcatchment.
This gives an idea what can be done to modify the dischargehitVecht by taking
specific actions in suitably chosen subcatchments. Regukicommendations of
our analysis are presented in Section 3.5.

3.2 A dynamical relation between precipitation and
discharge

In this section we develop a dynamic model to relate a knownldirge curve of
a subcatchment to a known precipitation curve, see [1]. énréxt section we
shall outline how a physical model for the discharge curva stibcatchment can
be obtained which, for a given rainfall data, will result iischarge curve. The
latter curve clearly still depends on certain physical paters used in the model.
In contrast, in this section both the rainfall and dischangeves are given and then
a dynamic relationship is fitted between the two curves.

In a subcatchmer®, we have during day an amount of rainfall;, which leads
to a total discharge; in m? over that day into the release point of the subcatchment.
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3.2 A dynamical relation between precipitation and disgbar

Herer; is the amount of mof rainfall which is the product of the rainfall in a par-
ticular day (indicated in Figure 3.2) times the area of thecsitichment (we assume
uniform rainfall over the whole region).

A transition is introduced that quantifies on diayhe fractionp of r; that is
discharged and a fraction-lp of r; that is kept within the catchment. The dynamics
within one day are discarded. That means that in the firsticdayat the start of the
rain event, a fractiop of the rainfallr; is discharged, and a fraction-lp is kept in
the catchment. To initialize the model we assume there isatenin the catchment
at the beginning of this event. At the next day, the dischdsgs given by:

do=pro+pA—pira,

where a fractiorp of the new rainfall is discharged but also a fractiens dis-
charged of the remaining water in the system due to rainfadbolier days. For a
specific subcatchment we have observations of rainfall aschdrge oven days
and we obtain:

dir1= Q- p)d + priqa, do = 0. (3.1)

This can alternatively be presented using a matrix reptasen:

d; P 0 0 ri ri
d — " : r r
2l @=rp 0 S N N =N N W)
: : . 0 : :
On A=p)"1p oo @=p)p p) \In n

Hence, the discharge has been approximated by a one paranuatel. This pa-
rameter, however, is specific for each subcatchment. Itvemmgped by the physical
conditions of the catchment, like the lateral movementytngical changes in ele-
vation, the carriage capacity of the soil and the physiciusit composition. The
parameter indicates in an averaged way how fast the raiséhdiged into the canal
system outside the area.

3.2.1 Estimation

Estimation of parameter was carried out by a least squares method. Using (3.1),
we first note that the matrix in (3.2) has an inverse with a sitacture and we

obtain:
/1 o ... ... o\
p—1 1 " :
Al=, 1| O
: 0
\ 0 - 0 p-11
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For several subcatchment we compared the actual dischrargelie Sobek model
to the discharge predicted by our model. The expression
2

dl I

o e r
pAT L T =0 :

dn Mn

which is is equivalent to:

n

D lldivs = @ = p)d = prisall?

i=0
is then a quadratic function jmand the minimization of this error to find the optimal
value for p is then easily achieved. The first 35 days of the rainfall & e
intended to reduce the effect of initialization. This isagl in the Sobek model.
In our case, the initialization is only related to settoyg= 0. However, our model
needs to be more accurate in days where the discharge isstistWe improved
this process slightly by scaling the squared error by thesdclischarge per day:

n
D ldigalllidi 1 — (L= p)di — prigal®
i=0

This weighting makes the model more accurate during daysaviarge discharge.

3.2.2 Results

~

Area D
Elen 0.15
Oldenzaal| 0.16
Den Ham | 0.27
Albergen | 0.39
Rijssen 0.40

Table 3.1: Estimategd coefficients for 5 selected catchments.

We obtained the results listed in Table 3.1 for five selectdhiments. Rijssen
and Albergen have the largest valuespoivhich corresponds to a high peak and a
short tail, since most of the rain is discharged into the kapstem within a few
days. This is clearly consistent with the discharge curmdsigure 3.3. Elen and
Oldenzaal have a low value pfand hence a low peak and a long tail. These areas
keep the rain within the catchments and slowly discharggatthe canal system.

These results are as expected since the Rijssen catchnmrdtisd on sandy soll
on a large elevation and, hence, the catchment will have desroarrying capacity
than the other catchments. Consequently, the dischargesoicca shorter period.
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3.3 Rake model

3.3 Rake model

The model proposed in the previous section uses a simplelrgaeing for in-
stance the faster dynamics during the day but also ignohiegspatial structure
within a subcatchment. In this section, we propose a sirmeglifine-dimensional
ground water and hydraulic model to investigate an optitionastrategy for de-
signing catchment basins and ground water level managertentorporates ex-
plicitly the weirs and the spatial structure and hence camsled to study the effects
of raising or lowering the overflow heights of the weirs or thigoduction of ad-
ditional ditches. It is called the “rake model” because tlerrRegge is assumed
to be connected to a series of ditches associated with tvezaalj meadows. Rain
will uniformly fall on the whole region, thus also on each rdewa. A simple one-
dimensional diffusion model is set-up to manage the tranggoain water into the
ground to an adjacent ditch. Each (half) meadow is connéotadlitch. Each ditch
runs into the Regge and is controlled by a weir at its exit poknd, finally, this
exit point has a certain distance to the mouth of the Reggdatriver Vecht. Each
meadow is chosen to be rectangular and has a Widdnd lengthL, the latter also
being the length of the ditch. See also Figure 3.7.

.

Vecht

Regge

Figure 3.6: Sketch of subcatchments with a different distao the Vecht, leading
to a time lag; in the time when the water reaches the Vecht.

We considem = 1, ..., M meadows and consider one meadow-ditch combi-
nation or catchment with indem, dropping the indexn at first for ease of no-
tation. Rain water seeps into the ditch from the meadow aedgtbund water
level h = h(x,t) in the pasture depends on the distamciom the ditch with
x € [0, W/2], and timet. The ditch lies ak = 0 and the middle of the meadow at
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Rainfall Rainfall

Figure 3.7: Cross section of a meadow with a ditch on each Side water level is
also indicated.

x = W/2. Diffusion with diffusion constant and soil permeabilitk governs the
dynamics as well as the rain fdl = R(t). The ground water level is assumed uni-
form in the direction along the ditch; hence we ignore endaff. The governing
equation is

oh o°h R
= 3.3
a tae T, (3.3)

with ¢ the porosity of the soil. The water levie) = ho(t) in the ditch is as follows

P00 = 2101 — ho(t)] - @ maxtho — h,,, 0)°"%, (34)
in which k is a permeability coefficienty is the acceleration of gravity, and the
last term models a weir at the entrance of the ditch into thggRe The last term
consists of a standard hydraulic approximation for flow oweirs, see [4]. The
height of the weith,, = h,, (1) is a specified function (of time); it can be used to
control the outflow of water into the Regge hydraulic syst@atchment basins are
modeled simply by specifying a different width= b(t) of the ditch; it is also a
specified function of time. The boundary conditions invadyenmetry ak = W/2,
and consistency at = 0:

oh oh
S @D =KhO.H ~ho®] and  —(W/2.1) =0, (3.5)

It is useful to consider the volume balances of water. Thengban time of
the volumeV = V(t) of water in the meadow, associated with one ditch, follows
by integration of the diffusion equation (3.3) over the valat areaV//2 x L and
multiplication byg, while using the boundary conditions (3.5); we obtain

dv d W2
S =0 L —/ h(x,t)dx = —u ke L (h(0,t) —ho(t)) + ARLW. (3.6)
0
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3.3 Rake model

The change of volum¥j of water in the ditch follows by multiplication of (3.4)
with L b, to obtain
dVo d

¢ =P Lgho® (3.7)

= ukg L (h(0,1) = ho(t)) — v2g b maxtho(t) — h, (t), 0)¥2.

Hence, we observe that the discharge from the meadow inttittteis consistently
modeled as

wko L (h(0,t) — ho(t)).

The total discharg€® = Q(t) of the ditch over the weir and into the river Regge
follows from (3.7) as

Q(t) = v/2g b max(ho(t) — h, (1), 0)*2. (3.8)

We useQn(t), instead ofQ(t), to indicate the discharge of ditch-meadow combi-
nation numbem into the Regge which lies at a distanbg, from the mouth of the
Regge into the Vecht. It is assumed that water releasedhet®égge from a ditch
flows with a constant velocity to the Vecht. Hence, water released from ditches of
meadows lying further away from the Veecht will travel longéfe immediately see
an optimization strategy emerge: by delaying or accelegatallen rain water to
reach the Regge as a function of the location of the meadowtine Vecht we may
be able to avoid flooding downstream at the Vecht. Hence, @izémum discharge

of water into the Vecht may be managed.

3.3.1 Numerical discretization

To facilitate the numerical discretization, we used a noneshsional form of the
model (3.3)—(3.5). These non-dimensional equations haleegjuently been dis-
cretized with a finite difference methods, second order acepand first order in
time. An explicit forward Euler time discretization is usfed the diffusion equa-
tion, and the water level equation (3.4) is discretized semplicitly by integrating
ho—h,, instead ohg and splitting the nonlinear term @,é hg —h?) (h(r)”rl — h[‘,)“)
with current time leveh{ and future time Ievelh{)‘“, and so forth. A time step re-
striction follows directly from a maximum principle. We e#fto a standard text
book on numerical methods, see [3].

3.3.2 Numerical results

For simplicity we took a square meadow, ile.= W/2 and let rainwater, fallen
on a meadow of areh?, seep diffusively into one ditch. Firstly, we gauged the
parameters:, k and¢ based on a reference simulation of the Sobek model. The
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Figure 3.8: Comparison of the Sobek model (blue) and rakeefr(oed) for an area
near Den Ham.

Sobek model was run with the heavy ten-day rainfall distrdsushown in Fig. 3.2.
Subsequently, the discharge of a catchment area locatecgéetDen Ham and
Vroomshoop concerning an areasf = 118 x 10° m? was taken. We performed
a run for one meadow of side? = 200 n? scaled with factos; such that_2s; =
A, and compared the run-off curves. For the values 412/ T andk = 10/Ls
and spatial scales = 50 m and time scal& = 1day, the agreement between the
Sobek model and one meadow in our rake model is surprisirggy gsee Fig. 3.8.
Other parameter values dve= 2m, h,, = 0.5m, and initially we filled the ditch
to weir level, e.g., using initial condition(0) = h,,, and alsch(x, 0) = hg(0).
Or, perhaps more appropriately, we note that the model mdathdriven, and the
sensitivities ornu andk appear to be relatively small.

Secondly, we considered the rake model with three meadodwslaches, at
distancesDy, = m Lg with m = 1, 2, 3 away from the Vecht. We tooky =
20x 10°m = 20 km and the flow velocity was taken to be = 1m/s. The (imagi-
nary) water board for the Vecht has given us a maximum digehate of 8 /s of
Regge water that is allowed to flow into the Vecht. In the basetihe three ditches
have the same parameter values as above, the only diffebeg their distance
to the river Vecht. Our simulations for the same rainfallrgigure 3.2 then show
that the discharge peaks of each catchment arrives withay délabout a quarter
day (20x 10°/(3600 x 24) day) into the Vecht, see the lines for the three shifted
peaks of about discharge heights #/min Figure 3.9. The accumulated discharge
of these three catchment supersedes the allowed dischaxgenom denoted by
the fat horizontal line approximately between days 42 and6ur first attempt to
optimize, we increased the weir height in the last catchraezd to 065 m, while
starting the ditch level at.B m. Hence, the ditch of length, first needs to be filled
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Figure 3.9: Discharge rates of the three catchment areathaimcccumulated val-
ues (blue).

before rain water flows into the Regge. This constitutes aydéh Figure 3.10, we
see that the discharge peak of the third catchment are&itedi in magenta) starts
later, at day 42 instead of day 38 as we saw in the first run,Haiatcumulated
discharge denoted by the blue line, is still too high. Flegdihus still occurs. Our
final strategy, in Figure 3.11, is to heighten the weir 161 and lower the water
level in the ditch and the meadowtg(0) = h(x, 0) = 0.25m, for example, by an
early precautionary release of water. This mimics the usanadditional storage
basin. As a consequence, the discharge peak (in magentzg Iower right half
of the plot, is greatly reduced, and assures that the acatedvater discharge of
Regge water into the Vecht stays below the maximum discHavgé Clearly, these
changes need to be optimized but this can only be done if ddlctors are taken
into account. For instant, increasing or decreasing theflovelevel of a weir has
economic effects on agriculture in the region, has ecolg@ffects, et cetera. Also
zoning plans might not allow certain actions to be taken.

3.4 Sensitivity analysis

In this section we investigate the influence of measuresntakendividual sub-
catchments on the discharge curve of the ReQ@®. The latter is the sum of the

discharge curves of individual subcatchmebtg(t), m= 1, - - - , M in the follow-
ing way
M
D(t; p1,- -+, M) = D Dm(t — 75 pi). (3.9)
m=1
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Figure 3.10: Discharge rates with weir heigh6®m and initial ditch level & m
for one subcatchment (red).

Here, 7y is the time lag resulting from the fact that the water from acsuch-
ment needs to flow from the exit point of that subcatchmenéopoint where the
Regge discharges into the Vecht, see Figure 3.6. As disguissection 3.2, each
individual discharge curv®,, can quite accurately be characterized by only one
parameterpy,. From the simple structure of (3.9) it directly follows that

oD(t; p1, -+, M) _ ODm(t — tm; pm)
0pm 0pm '

In Section 3.2 we introduced discretized versidn@ndicating the discharge dur-
ing dayi) of Diy(t; pm) (indicating the discharge at tint¢. In that representation
the derivative with respect ta,, can for anym be explicitly indicated as:

(3.10)

dl 1 0 0 r
o | & | (1-2pm) 1 0 r2
opm | ¢ | : : :
dn L= pm)" 2 A —1pm) ... A=2pm) 1) \ rn

(3.11)

So, given the valugy, of a subcatchment and given a standard (or adjusted) precip-
itation curve, the derivative cun&Dy,/0pm is easily approximated as a function of
time. An example is given in Figure 3.12.

This curve gives an indication of the sensitivity of any tiiage curve to changes
in the corresponding. From this figure it is clear that the effect ofpais largest
about 6 days after the rainfall started. This strongly coies with the peak po-
sitions in both the precipitation and discharge peaks. Trelasions from such
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Figure 3.11: Discharge rates with weir heigh® &h and initial ditch level 25m
for one subcatchment (red).

sensitivity analysis can be easily read in Figure 3.12: Asraase inp; strongly
increases the height of the peak in the discharge cDpand flattens the tail. And
reversely, ifp is decreased the discharge curve will get a lower peak andhketh
tail. This agrees with the interpretation@fs the parameter measuring the fraction
of water fallen on some day that is discharged that same day.

3.5 Recommendations

The discussions above yield the insight that changingethgarameter of a sub-
catchment influences the height of the discharge curve keg dot influence the
respective peak and tail positions in the discharge curigceShe delay times;

are relatively small compared to the widths of the peaks imfai and discharge
curves, the peaks in the discharge curesll accumulate in the peak of the Regge
discharge curvé and the same holds for the tails. This immediately leadséo th
following recommendation:

In case of intensified peaks in the rainfall due to climatengfea
thep value of a number of subcatchments should be decreased.

The implementation of this recommendation requires sorbtesconsiderations,
which we summarize in the following remarks:

Remark a.:Reduction of thep value of a subcatchment implies that the drainage
of the area should decrease. This could be achieved by glesime ditches or by
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Figure 3.12: Time behavior of the derivative of a typicalotiiarge curve with re-
spect to the parametgr

raising the water level in the drainage ditch network, byeasing the height of the
weir, which at the same time increases the water storageitapéathe soil.

Remark b.:It does not matter whether is reduced by a great amount in a rela-
tively small number of subcatchments opifs reduced by a small amount in many
subcatchments. The total effect is in both cases nearlyaime s

Remark c..Reducingp in some subcatchments reduces the peak height in the Regge
discharge curve, but enhances also its tail. So, the opthwmte must follow from

a balance between these effects. The total effect of regu@fuesp; should be
such that the peak height in the Regge discharge curve remaiter the critical
value, dictated by the risk of flooding along the Vecht, andhea same time, the tail

in the Regge discharge curve should remain so low that noettang interference
with the peak in the Vecht discharge curve occurs. This ibdesbalance. Since the
choice of the subcatchments that are most suitable for ayehardrainage capacity
heavily depends on the local conditions and possibilities have not worked out

this choice in detail.

Remark d.:The effect of the time delays is relatively small. If one would like
to make use of the fact that the subcatchments differ in gpeet, one could best
reduce the parameter in the subcatchments with the largest time delag®nes
furthest away from the discharge point of the Regge into #eht/ This is because
their peaks would arrive latest at the discharge point and tould interfere most
with the peak in the Vecht discharge curve.
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Abstract

Radio Frequency (RF) switches of Micro Electro Mechanicgbt&ms
(MEMS) are appealing to the mobile industry because of tarergy effi-
ciency and ability to accommodate more frequency bands.ederythe elec-
tromechanical coupling of the electrical circuit to the im@&gical components
in RF MEMS switches is not fully understood.

In this paper, we consider the problem of mechanical defbomaf elec-
trodes in RF MEMS switch due to the electrostatic forces ediny the differ-
ence in voltage between the electrodes. It is known fromipusvstudies of
this problem, that the solution exhibits multiple deforioatstates for a given
electrostatic force. Subsequently, the capacity of théctmthat depends on
the deformation of electrodes displays a hysteresis bebaagainst the volt-
age in the switch.

We investigate the present problem along two lines of attadekst, we
solve for the deformation states of electrodes using nwalemethods such as
finite difference and shooting methods. Subsequently,aioekhip between
capacity and voltage of the RF MEMS switch is constructede Jaiutions ob-
tained are exemplified using the continuation and bifuocagiackage ATO.
Second, we focus on the analytical methods for a simplifiegdioe of the
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problem and on the stability analysis for the solutions dbdeation states.
The stability analysis shows that there exists a continyeatis of equilibrium
deformation states between the open and closed state.

4.1 Introduction

Radio Frequency switches (RF) of Micro Electro Mechanicgt&ns (MEMS)
have achieved considerable attention in the mobile ingistcause of the need for
an increase in frequency bands and energy efficiency. RF M&Mt8hes have sev-
eral advantages over traditional semiconductors suchwasrgmnsumption, lower
insertion loss, higher isolation and good linearity. Hoerea thorough understand-
ing of the electromechanical coupling between the eledtaccuit and mechanical
component of an RF MEMS switch is not fully established ansl fibrms the sub-
ject of the present paper.

Problem description: RF MEMS switches typically consist of two electrodes
which are thin membranes parallel to each other as showreirrigure 4.1. In
the schematic cross-section of the switch, Figure 4.1if@)thick black lines indi-
cate the bottom and top electrodes in which the bottom eléetrs fixed and the
top electrode is free to deform with its ends fixed. In the @neg of equal and op-
posite electric charg® in the electrodes, the top electrode deforms to balance the
electrostatic forceejectrostaticinduced with its mechanical spring foré&pring for
equilibrium. To avoid the contact between the two electspdedielectric of thick-
nessdgiel is provided on the top of the bottom electrode as indicatetl dashed
lines in Figure 4.1(a). Further, the thickness of the toptetele ish and it is sepa-
rated by a distancg from the dielectric in the unforced state. The deformed shap
of the top electrode at equilibrium is described by the dispinenti(x).

The equilibrium states are the critical points at which thetotal energy is min-
imized. The total energ¥;qt is given by the sum of the electrical energy and
the mechanical energ§¥mech

Etot = Eel + Emech

The electrical energieg is given as

2

Q , / €o dxdy
Eei= — with C(u(x, = )
= 2C . ) Apor 9+ U(X, Y) + diel/€diel

whereC is the capacitance the electric charge, u(x,y) the displacemesntthe
vacuum permittivity coefficientlyie the thickness of dielectriegiel the dielectric
constant andAyo; the area of bottom electrode. In determining the capaatanc
C, the two electrodes are assumed to be parallel under noeiratye unforced
state. Taking only the bending forces into account and asguthe thickness of
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the electrode to be very small with zero initial stress, tleehanical energy is given
by

2h3Y

D
Emech= —|Aul?dxdy, where D= -——
mech /top 5 |Aul| Y, 31— vz)a

h is the thicknesshyp area of the top electrod¥, is Young’s modulus and is the
Poisson ratio of the top electrode.

F . l spring
Spn ng bottom electrode ! anchior

co]ntact M th /: ‘2&‘. = :&‘\

l & electrode
Felectrostatic \'\ -

air gap etch hole x

(@) (b)

Figure 4.1: (a) Schematic cross-section of a capacitive REMS® switch. (b)
Scanned electron microscope picture of a capacitive RF MEWM&h.

Problem formulation: ~ The main problem is the following: find all the displace-
ment states of the top electrodeleq g, (X, y) for which the forces on the top elec-
trode are in equilibrium at a fixed chargg on the top electrode (or for a fixed
voltageV between the electrodes). Several sub-problems are posektbas:

e Is there always a continuous path of equilibrium statgsy i (X, y) between
the open stateleqg,i = 0 for all X, y € Awp and the closed stateqoo,n =
—gforall x,y € Apot.

e Isthere a functiorf (ueq i (X, ¥), Q) that is monotonically increasing along
this path?

e Can it be shown that along this continuous pdti,e.dC > O is always
valid? HereEmecnis the mechanical energy a@is its capacitance.

e Is there a simple way to determine whether a state is stahlasiable at a
fixed voltage or charge?

e For which geometries and boundary conditions is the proldealytically
solvable? Most interesting is the situation in which the étgrtrode springs
are clamped (zero displacement and zero slope) at somesdiits bound-
ary.
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e The dynamics of the structure under the presence of gas dgrigoa related
interesting problem.

Finite element method: ~ The deformation shapes at equilibrium are often solved
using finite element packages. However, it is not straighiéod to find multiple

or all deformation shapes at equilibrium for a given volt&gas some of them are
unstable. Given the deformation shape of the electtqaey), the capacitance of
the RF MEMS switch is determined. SuclCa/-curve is shown for two examples
of RF MEMS switch in Figure 4.2(a) and (b). Multiple valuesocafpacitancé& for

a given voltageV are clearly seen in Figure 4.2; a phenomenon cdliederesis

Overview: The equilibrium problem of a RF MEMS switch is interestingttbo
from a practical as well as a mathematical point of view. kgl be stressed,
however, that the entire problem is too general and diffidd#nce, in the present
paper, we have considered a one dimensional version tonobtane interesting
insights and solutions.

First, we prove that under certain conditions on the totargy of RF MEMS,
the deformation states at equilibrium are stable. Secoadpmnulate an inequality
from which the stability conditions are derived. Third, weoye that when the
top electrode touches the dielectric, its deformation shaii have no gaps in the
contact area with dielectric. Finally, we prove the exiseenf a continuous path of
equilibrium states under some given mild conditions on tiergy of the system.

Besides these theoretical results, we make use of numerithilods such as the
finite difference and shooting methods to solve for the dispinents of the defor-
mation shape of the top electrode. To acquire insight irgatture of solutions, we
generate several sets of deformation shapes using thengatiin and bifurcation
package ATo. AuTO [3] typically generates sets of solutions to a given problem
by continuation, i.e., it calculates a solution for any giy@rameter of the system.
The main advantage of this approach as opposed to usingdieiteent packages
is that the non-unique or multiple solutions for a given peot are easily found.
In addition, an article on modeling MEMS by using continoatis in preparation
(see [14])).

The paper is divided into two parts. In the first part, we pnéslee numerical
methods to the present problem to gain some insight into #tere of solution.
We then employ the continuation method 70 and a shooting method to generate
numerical solutions. In the second part, we discuss vaaoasytical approaches
to the problem. We derive full solutions to the linearizediem. Linear problems
with any suitable boundary conditions have a unique satugiond hence, no hys-
teresis is found. Finally, we present various other regattthe nonlinear problem.
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Figure 4.2: Calculate@ V-curve (capacitance-voltage characteristic) of two diffe
ent switches. (alL V-curve of the switch of Figure 4.1. (1§ V-curve
of the so-called “seesaw” RF MEMS switch.
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4.2 Numerical Methods

4.2.1 Finite difference scheme

We consider a one dimensional model problem of the RF MEMScbwiwhich
exhibits the important qualitative aspects of the systeih igs1non-dimensional
form follows from the minimization of total energy:

o%u Eon

ax4=—1_’7+u+¢(u) onx € [0, 1] (4.1)

0
Withu=—u:0atx:0andx:1,
oX

whereu(x) is the displacement; a small parametegg the vacuum permittivity,
V the voltage between the electrodes a@d) the contact force between the plate
and the dielectric which is non zero far < —1, i.e., when the scaled downward
displacement is greater than the scaled gap 1 between the electrodes.

A simple finite difference scheme for the 1D model probleni)4s developed
and implemented in MTLAB. The numerical solutions of this scheme are com-
pared to the analytical approximations and they can sengehasis for more ad-
vanced 2D simulations in the future. To obtain the finiteatéince scheme, we first
divide the domain intm — 1 grid cells with grid sizeAx andn grid points. The dis-
placement at each grid poirt is denoted asi(x;) = u;. The biharmonic operator
in (4.1) is discretized using a central difference schenfelasvs:

% Uj_p —4ui_1 + 6U;j — 4Uj41 + Uit o
~ O(AX I=2,....,n—1
ox4 Ax4 +0(AX%)
4.2)

Near the boundaries, we employ the boundary conditians u, = 0,up—ug =0
andun.1 — Un—1 = 0 which are second order central difference approximations
the boundary conditions in order to get a consistent appration. Substituting the
approximation of biharmonic operator (4.2) in (4.1), thetérifference discretiza-
tion takes the following form:

€oV?
AU= ——— u), 4.3
i) (4.3)
where A is a constant matrix and is the displacement vector at the points=
Xi,i = 2,...,n— 1. The discretized biharmonic operatdrcan be efficiently

inverted using an iterative solver such as conjugate gnadiethod (CG). However,
the right hand side of the equation is non-linear and hendas,typically treated
with a fixed-point iteration. The fixed-point iteration sameis easily described by
rewriting (4.3) as follows:

2
utl = A1 (—% + ¢(uk)) . (4.4)
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Now given a guessX for displacementi, we compute for displacement*! using
(4.4) per grid cell and iterate with respectkauntil the solution converges. From
a physical point of view, it is clear that the equation is notquely solvable for

a certain range of voltageg. In fact, this is reflected in the fixed-point iteration
scheme as it could converge to two different solutions ferdisplacement vector.
Typically, the solution to which it converges depends ondtating point for the
iteration. This suggests thatGV-curve with stable solutions of the system can be
drawn. To draw th€ V-curve, we start with a low voltagé for which the solution

is unique and stable. Subsequently, we increment voNaged use the previous
solution as the starting for the fixed-point iteration sckemnich resulted in a quick
convergence to the nearby solution. Similarly, to obtam témaining branch of
solutions, we started with a high voltayeand repeated the previous procedure by
decreasing the voltagé. This has lead us to construct a “continuous” branch of
theCV-curve.

4.2.2 Shooting method

In this section, we consider a shooting method to solve thdimear one dimen-
sional model problem of RF MEMS switch. The shooting methodame sense
is the easiest method to find numerical solutions for a boyndgaue problem of
a nonlinear ordinary differential equation. It relaxes geblem by ignoring one
of the boundary conditions and replacing it by a “free” ialitthoice instead. This
initial choice is adapted until the obtained solution gessthe boundary condition
that was ignored. We refer to [11] for a detailed descriptibthe shooting method.
We distinguish three situations for the shooting method:

1. The top electrode touches the dielectric over some iakerv

2. The top electrode touches the dielectric at one point.

3. The top electrode does not touch the dielectric.
Each of these cases contribute to different parts ofdkecurve. We describe the
shooting method in detail for the first situation, i.e., wite plate touches the
dielectric on some interval, and solve the shooting probldme remaining two

situations are solved analogously and hence, we omit theigaen. Finally we
compute theC V-curve according to

Aeg [1 dx
C = . 4.5
)= /_11+u(x;u>—n (4-2)

For all computations, we employ MHEMATICA 6.
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Electrode touches dielectric over some interval

Because of symmetry, we consider the electrode membrahe hetf interval [0 1]
and take that the membrane touches the dielectriczata, wherea is the distance
measured from the fixed end= 0 of the membrane and€ a < 1. The nonlinear
differential equation describing the shape of the membtare between the fixed
end and the contact with the dielectric is

o%u o eoV2

- - 4.6
ox4 1—p+u’ (4.6)

with boundary conditions
ul =0, U@ =0 u@=-1 U@ =0 Uu'@=0. 4.7)

Here, an additional conditiom(a) = —1 is required for the unknown contact point
atx = a on the dielectric.

It is convenient to make a change of varialsléo X = x — a, G(X) = u(x).
Consequently, boundary conditions (4.7) now become as

(l—-a)=0 0(1—-a)=0 G0 =-1 G0 =0 0"0) =0, (4.8
and (4.6) remains the same as

6()V2
1-p+0

~I

(4.9)

In order to solve (4.6) and (4.7), we study the initial valuelgpem for (4.9) with
initial conditions

40)=-1, (0 =0, U0 =0 0”0 =P, (4.10)

which has a solutiofi(X; P) with P an unknown parameter to be found later. Now,
it remains to find a solutiol® = Ps such that the solution of (4.9) and (4.10)
satisfies the following condition at some point O:

G(b; Ps) =0, @'(b; Ps) = 0. (4.11)

Settinga = 1—b, we obtain the solution(x) = G(X; Ps) satisfying (4.6) and (4.7).
Note that, for the casle > 1 a solution of (4.6) and (4.7) does not exist.

The functionl(X; P) increases as function d?, see Figure 4.3(a). For small
P, G(X; P), as a function ofk, increases, reaches a negative maximum and then
decreases, see curves below the red one in Figure 4.3(a)larger P, G(X; P)
increases and has positive first derivative where it crabselnet = 0 for the first
time, see curves above the red one in Figure 4.3(a)PFerPs the functioni(X; P)
has a local maximurd = O (the red curve in Figure 4.3(a). This function satisfies
the conditions (4.11) anldis the value ofk at which has the local maximum.
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a(x; P)
7 P increases—

1.5
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Figure 4.3: (a) The functiod(X; P) for different values of the shooting parame-
ter P andV = 890. Here,l(X; P) increases a$ increases. The
red curve corresponds to a solutid(X; Ps) which satisfies (4.11) and
solves (4.6) and (4.7). (b) The membrane shape for differaioies of
V. The red line depicts a part of membrane in contact with digke
The blue curve is the shape of the membrane between the $wgmubr
the dielectric.
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Next, we present an alternative method for solving (4.6)(@nd). This method is
convenient for fast construction of&V-curve because it requires solving a bound-
ary value problem only once. Then using a scaling argumerget@n easily cal-
culable expression faC.

First we rescalek according toX = X/(1 — a) and((X) = G(X) . Then the
boundary value problem (4.6) and (4.8) becomes

V(1 —a)*
1-n+4a

N

(4.12)

G =0, G'L)=0, G0)=-1, GO0 =0, 0"©0)=0. (4.13)

To solve (4.12) and (4.13) using the shooting method rounnpéemented in MTH-
EMATICA 6 we rewrite (4.12) as follows

oV (R)2

o100 V/(X) = 0. (4.14)

0//// ()’i) —

Here the unknowvV2(1 — a)# is described as an unknown constant funcitiit).

A solution (%) and V(%) = Vs of (4.14) describes the shape of the membrane
u(x) = 0(x) for a = 0, andVs is the minimum value o¥ for which (4.6) and (4.7)
has a solution. A solution(x) for arbitraryV > Vs is written as

V,
UK =0((x-a)/(1-a), a=1-/v
The shape of the membrane is

UG = [ G((xI —a)/(1—a), fora<|x| <1,
-1, for |x| < a,
see Figure 4.3(b).
With increasingV the contact with the dielectric increases and the membrane
shape between the support and the dielectric becomes steepe
The value ofC is computed from (4.5) as

— NV 1 2
C\V) = 2/;]60(1 Vs/V + %Il), where | :/ dx
0

n 1+0X) + 74’

from which follows thatC (V) has a horizontal asymptotic

(4.15)
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Figure 4.4:CV-curve for all three cases. The membrane first touches thecthie
at the pointA. The change between the situations when the membrane
touches the dielectric at one point, and on some intervaldigated by
the pointB.

CV-curve and influence of model parameters

Summarizing the results of tl@V-curves for all three situations, we construct the
CV-curve for allV, see Figure 4.4. The comple@V-curve has discontinuous
derivative at the transition point when the membrane tosithe dielectric for the
first time (pointA in Figure 4.4). At the transition between the situations mvhe
the membrane touches the dielectric at one point and on sot@e/al (pointB

in Figure 4.4), theCV-curve isCl. For some interval ol three values ofc
are possible (see Figure 4.4). This is a consequence of tir@mqueness of the
solution to the original problem far.

4.3 The continuation problem

AUTO is a software package that is used for finding and displayahgtisns, and
tracking bifurcations of solutions of ordinary differesitequations (ODES) by con-
tinuation of some system parametek bifurcation is, loosely formulated, a sudden
change in the qualitative behaviour of ODEs when some syptaameter (obi-
furcation parametéercrosses a certain threshold (tbritical value). For example,

8The package has been developed initially by E. Doedel ansesutently expanded by a range of
authors, see [3]
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an equilibrium solution may loose stability when the bifatrton parameter crosses
a critical value. For more on the notion of bifurcation, sép [

By continuation we mean the process of changing this systeranpeter and
calculating the deformation of a solution when this par&nistchanged. A typical
continuation starts out with some (acquired) solution fa $ystem with a certain
value for the system parameter. Then the parameter is ctiangd the solution
is calculated for each value of the parametew.TA also detects bifurcations when
they take place. So, in order to do a continuation, one hasitbdne solution
for a specific value of the bifurcation parameter (often Zer@ smart choice). By
changing a parameter (i.e. bycantinuationin one of the parameters) the solution
generically changes as well. This solution can be found by@ for each value of
the bifurcation parameter.

Most continuation software, and especially 70, allows for continuation in two
or more parameters as welluAo is not only able to perform continuation of equi-
libria to ODESs, but also the continuation of periodic satas of ODES, fixed points
of discrete dynamical systems, and even solutions to paliffarential equations
(PDEs) that can in some sense be transformed to ODEs, likemkpaniform so-
lutions (i.e. solutions that do not depend on any spatiabb#) of a system of
paraboli€ partial differential equations (parabolic PDES), traivigjlwave solutions
to a system of parabolic PDEs, and even more.

It is presently not of our interesiow AuTO finds this solution. For convenience,
we only note here that all continuation methods basicallyupon some version of
Newton’s method (and therefore the Implicit Function Tlezoy.

We want to stress that continuation always leads to a (diged§ continuum
of solutions. This is an advantage with respect to the othererical methods we
described so far. Moreover, a continuation and bifurcgb@ackage such asx o is
able to detect bifurcations of the system as well. This is#end main advantage.

We show the method of continuation applied to our equilitoriproblem which
consists of a nonlinear ordinary differential equation athis difficult to solve an-
alytically. The nonlinear differential equation for whithe voltageV and capaci-
tanceC are calculated, reads

o%u V& €0 _ou

od = T2 wrdez e (%.16)
with u’(0) = Uu(1) = u(0) = u(l) = 0 anda a dummy parameter to switch
between nonlineax = 1 and linear problem = 0. Settinga. = 0, the associated
linear problem is obtained as

o%u V2 ¢ge

pr i > d (4.17)
with u”(0) = u”(1) = u(0) = u(1) = 0.

9We do not explain the notion of parabolicPDE here; it is of no importance to us. But see any
introductory text on partial differential equations
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4.4 Analytical results

By solving the above linear equationyAo knows a solution of the “nonlinear”
problem fora = 0. By continuation inx, it subsequently finds solutions for the
nonlinear problem witle # 0. For each of these solutions the capacita@and
voltageV are calculated and@V-curve is plotted in Figure 4.5. ThH@V-curve in
Figure 4.5 exhibits a hysteresis behaviour.

10.0 \

0.00 2.00 4.00 6.00 8.00 10.0

\

Figure 4.5:CV-curve generated by #vo.

4.4 Analytical results

4.4.1 The linearized problem

It is possible to fully solve the linearized problem for tardifferent cases: (i) the
case in which the membrane does not touch the dielectrit(@) #he case in which
the membrane touches the dielectric in one point only and{g case in which the
membrane touches the dielectric on an interval. Since nmuesard problems have
unique solutions, itis clear from the outset that the tylhgateresis behaviour does
not show up in the linearized model. Some of those calculatinay nevertheless
be of interest, we have placed a summary of the linearizell@moin the appendix

4.4.2 Collected analytical results

We prove some results for a functiortakhat may be interpreted as the total energy.
The functional can be written as an integral over some dorfain R?. To read
this section, it might be necessary to consult a text on wtanal methods, see for
example [4] or [5].

First, it is proved that the solution for the membrane caooth the dielectric
“with holes”, i.e. in one dimension, the membrane is stuctheodielectric between

77



4 Some studies on the deformation of the membrane in an RF M&dltsh

every two points where the membrane touches it. Seconddgrised that every
critical pointu for whichu = 0 on some open s&€; c Q, hasAu = 0 on
0Q1. Third, we prove that stationary solutions for the enelgfor which it holds
thatdC/dV < 0 are necessarily unstable. The final result is argued duneti
completely proved. It states that if for both largeand smallV a unique critical
point exists, then under some conditions on the energy ifumadt a continuous
family of solutions connects the two solutions.
Just for notation’s sake: the main functional we consider is

2 [ frn

whereQ is a domain (e.g. a rectangle, or a circleRfior an interval inR, depend-
ing on the question considered. The second integral isdpacity

C_/Q(u+d/e)'

The boundary conditions ate= g andou/on = 0 onoQ. Unless stated otherwise,
all integrals are oveQ.

Short list of results

1. For any minimizer (or general critical point)of the infinitely-hard bottom
problem
(D , V2
mln{E/A u-— 7C ’ u> O} (4.19)

there exists10 nonempty open sef; C Q satisfyingu|q, > 0 andu|sq, =
0. In particular, in dimension = 1, the contact s€ix € Q|u(x) = 0} is a
(possibly empty) interval; in two-dimensions it means tih&t contact set has
only simply connected components (no rings).

2. If u is minimizer of (4.19), or more generally a critical poirfienh ifu = 0
on an open se®1 C Q, thenAu = 0 onoQ; (also of course on the interior
of Q1).

3. Stationary points oE lying on a branch for whiclC/dV < 0, are neces-
sarily unstable That is, there exists a perturbatiensuch that

E'(u) - w-w <0.

More generally, consider energies of the form

F(u,C,V) =/ f(x,u, Vu, Au, ...)dx+ G(V, C),
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4.4 Analytical results

whereC = [c(u(x))dx andV is a parameter (the Voltage for example).
Then if6°G/aCaV < 0, any solution lying on a branch for whictC/dV <
0, is unstable.

4. The last result is more tentative; it should be true, bquires additional
work to prove: if there exists a unique critical point Bf both for small
V and for largeV, and provided that some type of coercivity holds for the
energy functional (4.18), then there exists a continuouoslyaof solutions
connecting these two.

Sketches of the proofs

Ad 1 In 1D: letu be a stationary point, satisfying, whare- 0,

m_ €0

~ (u4d/e)?

Note that the right hand side of (4.20) is strictly positi@eipposel has two contact
pointsx; < Xp. Sinceu(xj) = U (Xj) = 0 andu > 0, we must havel”(x;) > 0.
Furthermore—(u”)” > 0 and it follows from the maximum principle that (x) >
min{u”(x1), u”(x2)} > 0 for x € (X1, X2). This implies, again by the maximum
principle, thatu < 0 on(x1, X2). We thus conclude that= 0 on [X1, Xo].

In more dimensions exactly the same (pair of maximum priegiprguments
prove that the contact region can have no holes, as asserted.

(4.20)

Ad 2 We do not give a full proof, but illustrate the main idea. Oma-aimensional
domainQ = [—L, L], let ur(x) be a smooth family of symmetric solutions with
“forced” contact region +R, R], with R < L. By symmetry, we only need to
consider the left half of the solution:

. €
—Du/g/—m for —L<X<—R,
Ur(—L) =g, ug(-L) =0,
UR(=R) =0, ux(=R) =0.

Now, ur is a critical point ofE if and only if d E(ur)/d R= 0.
- -

b\tN'mmg E(u) = [, %u/ﬂ + g(u)dx, whereg(u) = Jl?(uf% + kge ke, we

obtain

-R D -R
E(uR) = 2/ Eu’,’qzdx - 2/ g(ur)dx + 2Rg(0).
—L -L
Calculating this derivative with respect RBwe infer that
dE(UR)
dR

sinceur(—R) = 0 andEy(ur) = 0, becauser is a critical point when keeping
fixed It follows thatu”(—R) = 0 if u is a critical point ofE.

= Ey(uR) 1 ~ DURA(~R) ~ 20(UR(~ R)) +29(0) = ~DUK’(-R),
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4 Some studies on the deformation of the membrane in an RF M&dltsh

This argument can be extended to higher dimensions quitky,easder theas-
sumptionthat the solution for fixed contact region varies smoothlihwie geom-
etry of the contact region. Without this assumption, momaglicated arguments
are needed.

Remark 4.4.1. We note that if the contact set is a single point, then thersico
derivative in this point needot be zero. Indeed, in one dimension for example,
there is a branch of solutions with contact only in the midpoif the domain (in-
terval) and with varying second derivative.

Ad 3 Let us first give the argument for the specific enegiy the one-dimensional
case. Consider

€0 —kou
— - — kie 2",
/ u+rdeo T

Let us look at stationary points, i.e., solutions of
V2 €0

2 (U+d/e)?
which are, on the branch under consideration, paramethbyed. Let us writeu

for the derivative of the solutions with respect tov along the branch. Taking the
derivative of (4.21) along the branch, we obtain

Du” = + kakoekeY, (4.21)

eou Vv €0
(U+d/e)s (U+d/e)?
The second variation of the energy in the directiogives
E// 0.1 — D —//2 _ V2 GOU k k / k2U 2
ot /u Utdje?

After performing partial integration twice on the first terwe can substitute (4.22)
and, with most terms cancelling, we obtain

DU = V? — kikZe~*elg (4.22)

/" —= — eou
E'(u)-u-u= 7(u+d/e)2'
This simplifies as
, o eou P dC
w-u-u U+ d/e)? U=V

Hencedv < 0 implies thatu is unstable.
For the general case, critical points= u(V) satisfy, subscripts denoting partial
derivatives,

Fuu(V)) - w + Ge(V, Cu(V))) Cyu(V))-w =0 for anyw.
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4.4 Analytical results

Taking the derivative with respect ¥ gives (always evaluating at= u(V)),

(4.23)

On the other hand, the second variation (for fix€dgives
FN(U)'U)'U)/: Fuu'w'w,‘i‘GCCCu'wCu'U)/+GCCuu'w'w,,

hence, using (4.23), we obtain for= w’ = uy

FN(U) Uy - Uy = =Gy Cy - uy.
When we writeC(V) = C(u(V)), this reduces to
dC
F”(U) - Uy - Uy = —Gey—.
(U) - uy - uy Vv

Hence, if3°G/aCoV < 0 then solutions on branches whet€/dV < 0 are
always unstable.

Remark 4.4.2. One can also consider the problem where we put a ch@rgeV C
on the switch. In that case the physically relevant energgdotinclude the energy
stored in the battery, which is given byW2C. The energyEq thus becomes

D » Q2 _
Eqn = — u// < /k e kzu’
Q=7 / txet /.

and the arguments above show that solutions on curvesiitd Q < 0 are always
unstable.

Ad 4 Such a result follows from degree theory, see e.g. [8]. Henetstill needs

to be checked rigorously that there indeed does exist a amiqtical point for very
large and very smaW. ForV = 0 this is obvious, the energy being convex in that
case, but the situation for largéis less straightforward, since the energy contains
both convex and concave parts, although in numerical ex@geris uniqueness is
observed.

4.4.3 Functional estimates

In this section, two estimates for the first and second vanatf the total energy
are derived.

The energy functional modeling the deformation of a clampkde @ under
influence of an electrical field due to a potential differenctn a fixed plate reads

E[u] = Emech+ Eel
1 1 2 &0

— ~D(Au)® — ZV2—" | dxdy, 4.24
/Q[Z()ZUHH%} y (4.22)
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4 Some studies on the deformation of the membrane in an RF M&dltsh

whereu € Hg(Q), implyingu = g—g = 0 onoQ. Equilibria for the system are the
zeroes of the first variation,

JE[0,h] =0, Vh e HZ(Q).

These can be stable and unstable equilibria (e.g. saddiespoh stable equilibrium
is a minimum of the functional. Such states are charactdigethe fact that the
second variation at the equilibrium state is strictly posit

0%E[d,h] > 0, Vhe H3(Q)

We here wish to give a sufficient condition for an equilibritorbe stable.
The first variation is found by putting = G + ¢h, whereh e Hg(Q) is a test
function, and taking the derivative with respectiate = 0. We then obtain

SE[d, h] = / [DAZU + }VZLO'} h dxdy.
Q 2 (u+g+ %)2
The variation lemma yields the boundary value problem fergistem from this
functional. Let us assume we have a solution for the systewmw thie question
is whether the solution is stable or not. The second vanadtidhe directiorh e
HZ(Q) is found to be

2
5°E[u, h] :/Q |:D(Ah)2 _ Vzﬁ} dxdy. (4.25)

In this form it is difficult to check positivity. However, weaa prove a Cauchy-type
inequality for the test functions in the spddé(Q) whenQ has a simple shape. For
the case of a rectangle with sides andL, we have

4
Ah)2dxdy > / h2dxd
/Q( ) y‘max[L“,zLiLg, L3l Ja y

Using this inequality together with equation (4.25) we hthefollowing estimate
for the second variation,

2E[u.H] > / 4D2 i B VZLO. h?dxdy
o | max[Ly, 2L5L3, L] U+g+:)°

Necessary conditions for the stability of the functionah ¢e obtained from this
estimate. For example, také = min(u), then

SE[u, h] > 4D2 o — V2 © /hzdxdy,
max[L{, 2L2L2, L3] W +g+:)% /e

and it is sufficient to check the positivity of the constant.
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4.4 Analytical results

Appendix

As said in section 4.4.1, the linearized problem can be felaborated for three
different cases: (i) the case in which the membrane doesnohtthe dielectric at
all (ii) the case in which the membrane touches the dieleatst = 0 only and (iii)
the case in which the membrane touches the dielectric orsamglifor 0 < a < 1.
We will make a few remarks on how to do this, in the case of aathdsymmetric
MEMS switch. We consider case (iii). It will be clear from thesult that the typical
hysteresis behaviour does not show up in the linearized mode

To focus on the right parameter combinations in the probleenrescale it. For
example, in the 2-D radially symmetric version of the problene obtains for the
capacitance:

2 1
Clw) = 220 / ' dr.
g o 1+ 7+ w()

and, by computing the Euler-Lagrange equation correspgnid this energy we
find

ov?

ANow=———" .
r 1+ 7+ w)?

(4.26)

whereA, = %%, 0 some algebraic expression in terms of the other parametars,
non-dimensionalized voltage anda scaled version of the distangeThis problem
can subsequently be linearized aroumé- O:

1
Aw = o (—% -I—w) )

wherew =4 (fjr’;z)s is just a scaling. Regarding as a radially symmetric function
depending om only we get

w(r) = Ad(wr) + BYo(ar) + Clo(ar) + DKo(or) + 1%'7 (4.27)

where Jg and Yy are Bessel functions of the first and second kind respegtavadi
lo and Ko are modified Bessel functions of the first and second kind. tdethe
following boundary conditions:

wl) =w@l)=vE@=w'@=0w@=-1

By rewriting this system as a four-dimensional first-ordgstem, one obtains the
constantsA, B, C andD.
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Abstract

We study a surveillance wireless sensor network (SWSN) cgeg of
small and low-cost sensors deployed in a region in order tectl@bjects
crossing the field of interest. In the present paper, we addwgo problems
concerning the design and performance of an SWSN: optinmsoseplace-
ment and algorithms for object detection in the presencaleéfalarms. For
both problems, we propose explicit decision rules and efiicalgorithmic
solutions. Further, we provide several numerical examgtespresent a sim-
ulation model that combines our placement and detectiohaodst

Keywords: sensor deployment, detection probability, overlap, hiyesis test-
ing, Bayesian approach, hidden Markov models, Viterbi mdlgm, simula-
tions.

5.1 Introduction

An important class of wireless sensor networks (WSN) is tH&N4& comprised of
small and low-cost sensors with limited computational asvd@munication power [1].
Sensors are deployed in a region, they wake up, organizestiees as a network,
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5 Increasing Detection Performance of Surveillance SelNstworks

and start sensing the area. The objective of the sensorsiséngethe environ-
ment and communicating the information to a data colleatemter. Many types of
employment are envisaged for WSNs ranging from the momnigooif endangered
animal populations to military surveillance or the surlaite of critical infrastruc-
tures [12], archaeological sites [2], perimeters, or couhbrders [10]. The tasks
of a surveillance wireless sensor network (SWSN) is to detiejects crossing the
field of interest. The sensors monitor the environment and seports to a central
control unit. The major requirement of a surveillance agailon is that the SWSN
is to monitor the environment with a certain quality for a @fie period of time.
Important issues in designing an SWSN are the deploymeigidas such as the
sensing range of sensor nodes and density of the SWSN, afay/oegmt strategy
(random, regular, planned, et cetera.) to be applied [10].

Different types of sensors may have to be utilized in a WSNdtiress the prob-
lem at hand. For outdoor surveillance systems, radar, mare, ultrasonic and/or
infrared sensors are typical. To analyze the detectioropeegnce of the sensors
or the surveillance systems, a common measure such as ghe-sansor detection
probability p may be utilized since it allows to abstract the different kieg prin-
ciples of the sensors. The factors that affeere the object-to-sensor distance, en-
vironmental characteristics, the size and the motion patiethe object, et cetera.
Moreover, He et al. [7, 8] showed that sensors produce a eghgible amount
of false alarms. The false alarms are defined as positivateepba sensor when
no object exists. Each sensor may produce a false alarm wightain probability
g. If data/decision fusion [5] is allowed, then the false algrobabilityq nega-
tively affects the detection performance of the networke Thst of false alarms
varies depending on the application. For example, it is fawa home surveillance
system when compared to the cost of false alarms in a swanedl application of
mission-critical infrastructure such as a nuclear readti@nce, the objective of an
upstanding SWSN design is to maximize the detection prdibabf the system
while minimizing or bounding the false alarm rate of the syst To this end, in
the present paper, we study two problems concerning thgresid performance
of an SWSN: optimal sensor placement and algorithms found#r detection in the
presence of false alarms. Our main performance chardeatercd the SWSN are
the system’s intruder detection probability and falseralprobability, for given in-
put parameterp andq representing single-sensor probabilities. The problem of
correctly communicating the reports of the sensors to thé&akecontrol unit (with
possibly additional failure probabilities) is beyond tlvege of the present study. It
has been studied elsewhere, among others in a previous gtody Mathematics
with Industry [9]. Therefore, we will assume perfect comneation of the reports.

The sensor placement problem addressed in this work is fatedias follows:
given a limited number of homogeneous sensors with an eféesensing range
r and a field of interest modelled as a one- or two-dimensiored,adetermine
the optimal location of the sensors that maximizes the tieteperformance of
the SWSN. In Section 5.2.1, we study the trade-off involvedverlapping sensor
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5.1 Introduction

ranges. If the number of sensors is limited then, clearlgrlaps decrease the total
sensing part of the area but increase the detection penfmeria the overlap of two
or more sensor ranges. We give an explicit condition whemnl@awén sensor ranges
leads to better detection performance of the system. Negection 5.2.2 we pro-
pose an algorithm for efficient coverage of a 2-D area, basediori knowledge
on the probability distribution of the intruder position. hh the distribution of
an object’s location in the area is uniform, our algorithnifgens closely to the
optimal hexagonal placement.

Given a particular layout of the sensors, the probabilitingluder detection and
the false alarm probability of the network depend on thesiegirule that prescribes
in which situation an intrusion alarm has to be reportedgetiasn observations
from all deployed sensors. For instance, if we have two cetepl overlapping
sensors and report an intrusion alarm only if both sensgrgasian intruder, then
the intruder detection probability of the SWSN@$é and the false alarm probability
is 2. The problem is to determine a decision rule for reportingnémision alarm
such that the detection performance of the network is madchi In Section 5.3
we attempt to resolve this problem by statistical methodst. i@ain conclusion is
that several observations of the same object are absoluelyssary to report an
intrusion alarm with a reasonable confidence. However,ipiaelobservations will
result in a huge variety of observed patterns. Which pagtsignal the intruder and
which are caused by false alarms only? This question is¢ddkISection 5.4 where
we design a procedure for intruder detection, based on hitftsgkov models and
the Viterbi algorithm.

Finally, in Section 5.5 we present a simulation model thahloimes our place-
ment and detection methods. Using this model, we charaeténe detection per-
formance in several configurations of a detection area.

Throughout the paper, we use the following notations:

e p — single-sensor detection probability, the probabilitgtth sensor signals
an object given that the object is present in the sensingeréagsumed to be
a circle, or sphere);

e (g — the single-sensor false alarm probability, the probgbihat a sensor
signals an intruder given that there is no intruder in thessgyrange;

e I —sensing radius of a sensor;

Further, a random variabl¥ € {0, 1} is an indicator of the event that an object is
present in the sensing range of a sensor, and a random eaxiabl {0, 1} is an
indicator of the event that a sensor gives an alarm. We wab alssume that the
alarm events of individual sensors are mutually indepenaéien conditioned on
the absence or presence of the object.
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5.2 Optimal coverage of the area

In this section we study the problem of optimal sensor plaa#or sensor deploy-
ment, formulated as follows. Consider an area where a nuoflsansors are to be
deployed, and assume that there is an object in the area. fille dspgetectionthe
probability that at least one sensor correctly detects biject. The goal is to find a
sensor deployment maximizinGetection IN order to comput@getection throughout
the section we assume an a priori statistical knowledge ®@obfect position.

One natural solution to this problem is to maximize the cagerof the observed
area for a given number of sensors, or, equivalently, mirgrtie number of sensors
employed while covering the complete area. If each sensalange with radius
r, then we model the sensing area as a circle of radigh a center at the sensor
location. Thus, the question of minimizing the number ofssea while covering
the complete area is equivalent to the so-catleeering problenin two dimensions:
cover a given area completely with the least amount of @relgh a given fixed
radius. This problem (and many others like the packing amsgikg problems)
is solved by using the hexagonal lattice, defined as the spbiots 1o + uw,

A, u € Z, whereo = (1,0) andw = (1/2, +/3/2) are the vectors spanning the
lattice. To cover an area with circles of radiusthe vectors), w must be scaled
by a factorr +/3. In the asymptotic limit, with a large area covered by sensad
with negligible boundary effects, the sum of the sensor earig 1.209 times the
covered area, meaning that about 20.9% of the area is cobgredb sensors and
the remainder by one sensor. For further details, see [4]example of 7 sensors
placed by using the hexagonal lattice and completely cogeai rectangular area
is given in Figure 5.1. An example of hexagonal placementGi 4ensors with
non-covered gaps in between is given in Figure 5.3.

Figure 5.1: Rectangular area covered by seven sensorslfigeesing a hexagonal
lattice.
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5.2 Optimal coverage of the area

Intuitively, a sensor placement with minimal overlappinmgrathout overlapping
must be optimal if the distribution of the object’s positimuniform. Below in
Section 5.2.1 we show that this is often the case also forumisform distributions,
and in Section 5.2.2 we propose a procedure for close-toapsensor placement.

5.2.1 Optimal allocation of two sensors

Does it make sense to let two sensors overlap? Having sont&apvaight be
reasonable if we want a better detection in most vulneradgens. However, if
the number of sensors is limited then overlaps reduce thkdoverage. In order to
resolve this trade-off, we consider the following simpledeb We restrict ourselves
to a one-dimensional area, which constitutes an intervianafth two, and a pair of
sensors withr = 1/2. For each of the two sensors, the detection probability is
and the probability of a false alarmgs The question is how to place these sensors
so that the detection probabilifjyetectioniS maximized.

Formally, letS = [0, 2] be the area under surveillance. Denotexpthe leftmost
point of the first sensor’s coverage andyythe leftmost point of the second sen-
sor’s coverage. Thus, the first sensor covers the seg&ent[x1, X1 + 1] and the
second one covers the segm&nt= [x2, X2+1], wherex; € [0, 1] andx, € [X1, 1],
as shown in Figure 5.2.

— > |
0 1 X2 S 2

Figure 5.2: Partial overlapping of two sensors.

Now assume that the intruder locatitnhas a distributioP(L < x) = F(x),
X € [0, 2]. Then in the doubly covered segmeitn S the detection probability
by the two-sensor system & + 2p(1 — p), and the object is in this segment with
probability F (x1 + 1) — F(x2). In the singly covered segme( U $) \ (SN S)
detection probability isp, and the object is there with probabilify(x; + 1) —
F(x14+ 1) + F(x2) — F(x1). Finally, in the remaining uncovered p&t (S U &)
the detection probability is O.

Rearranging the terms, we can formulate the problem of miamgnthe detec-
tion probability pgetectionas follows:

MaX Pdetectiod X1, X2)} (5.1)
X1,X2

= [(Tr’;gqp(F(Xz +1) - FXx))+pd-p) (Fx1+1) - F(x2))}.

In general, in order to find an optimal paki( X2) we need exact knowledge of
F(x). However, as a direct consequence of (5.1), we can provildallowing
particular decision rule.
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Lemma 5.2.1 (No-overlap principle). It is optimal to allocate sensors without
overlapping, if
1-p< f(X) - 1
fx+1) " 1-p

for every xe [0, 1], where f(x) = % is the probability density function of the

object location.

Proof . By differentiating the expression to be maximized in (5\ show that
it decreases irxy, if f(x1)/f(xy +1) > 1 — p, for everyx; € [0,1]. In this
case, 0O is the optimal value for. Similarly, this expression increases xa if
f(x2)/f(x2+1) <1/(1— p) for xo € [0, 1], which sets 1 as the optimal value for
X2. ]

The no-overlap principle indicates that it is optimal to nmaize the coverage
if the distribution of the intruder’s position is sufficigytclose to uniform. We
illustrate the no-overlap principle by means of two exarapfeamely one example
where the principle is applicable, and another where it ts no

Example 5.2.2. Assume that the intruder’s entering position has uniforstritiu-
tion, i.e., f (x) = 1/2, for everyx e [0, 2]. In this case our decision rule says that
it is optimal to avoid any overlapping.

Example 5.2.3. Assume that the intruder’s position has a linear densitgtion,
e.g., f(x) = x/2, for everyx e [0,2]. The no-overlap rule cannot give us an
unambiguous answer in this case. By solving (5.1), we olatamore sophisticated
joint sensor’s allocation:

1—
X1 = min [Tp 1} andxp, = 1.

5.2.2 Sensor deployment in a 2-D area

LetN € N, and letX C {1,..., N} x {1, ..., N} be a two-dimensional discrete
grid. Further, foralk € X, let f (x) be the probability that an object is at position
provided that there is an object in the area. As beforis an effective sensing
range of a sensor, arnlis the detection probability of one sensor. Our objective is
to provide an algorithm which finds the ‘optimal’ deploymertsensors int’, so
that the probability to miss the object is decreased as msigdossible. Note that
the problem now is discretized by allowing only placememsome pre-specified

points.
We say that a sensordeployed at position ¥ X if y is the center of the sensor’s
sensing range. Further, a tupte= (y1,...,¥n) € X" (n € NU {0}) is called a

deployment of size,nf n sensors are deployed at positions. . ., y,. We used
for the empty deployment.
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5.2 Optimal coverage of the area

Now, forx € X, n e Nandy = (y1,...,¥n) € X", defineg(y | x) to be
the probability that an intruder isot detected by any of the sensors deployed at
positionsys, ..., Yo provided that the intruder’s position s Further, denote by
Pmissed Y) the probability thanoneof the sensors of the deploymentietects the
intruder. Then, given that there is an intruder in the areapttain:

pmissec(y) = Z f(x)g(y | X)a for )7 = (YL sy Yn) € Xna ne N (52)
xXeX

One can computpmissed (Y1, - - ., Ym)) forallm € {1, ..., n} iteratively as follows.
First, note that, naturallg(@ | x) = 1 for all x € X, and thus

Pmissedd) = Z f(x)g@ | x) = Z f(x) =1

xeX XeX

Next, letd : X x X — R be the Euclidean distance function. Takes {1, ..., n},
x € X and consider a deploymefy, ..., ym) of sizem. Since the sensors are
independent, we get

g((yz, - -+ Ym) | X) = g((Ym) | X)9((Y1, - - -, Ym-1) | X)

:[ 9((Y1, - > Ym-1) | X) if d(X, Ym) >
(1-pa(y1, ..., Ym-1) | X) ifd(X,ym) <T.
(5.3)

Now, given the deploymery, ..., Ym—1), the probability

Pmissed (Y1, - - - » Ym—1, Ym))

can be computed using (5.2) and (5.3).

Using the described iterative approach, we can now addres&tosely related)
optimization problems: Minimum Size Deployment (MSD) anéhivhum Proba-
bility Deployment (MPD).

e MSD: Givenp e [0, 1], find a deploymenty of minimal size such that
Pmissed ) < .

e MPD: Givenn < N, find a deploymen§ of sizen such thatpmissedy) is
minimal.

We provide a heuristic algorithm described below, whichloamnised for both prob-
lems. The only difference is in the stopping criterion. le tinain iterative step
of the algorithm, a sensor is added to the deployment in suglyathat the non-
detection probabilityomissed ) is minimized (in case of a tie, the algorithm sticks to
the candidate deployment that has been found first). ThiBesifhat the algorithm
will find a ‘locally optimal’ solution, not necessarily théadpally optimal one.
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The heuristic algorithm

Input:

e MSD: g € [0, 1];

e MPD:n e N.
Initialization: m:= 0.
Iterative Step:
Ym+1 :=arg yrg;(n Pmissed (Y1, - - -5 Ym. ¥))

=argmin> | f00g((Ya. - ym. ¥) 1 %),
XeX

whereg((y1, ..., ¥m, Y) | X) is computed by (5.3) for alt € X;

m:=m-+ 1.

Termination:

e MSD: pmissed (Y1, - - -» Ym)) < f, then STOP;

e MPD: m = n, then STOP.

Output: YV := (Y1, ..., Ym).

Note that there is a strong connection between the propdgedtam and the
no-overlap principle (see Lemma 5.2.1). Indeed, (3) sagsttie deployment of a
new sensor at a positionreduces the non-detection probabilityx)g(y|x) by a
factor 1— p for all x such thad(x, y) < r. Since, ideally, we would like to reduce
the highest values of (x)g(y|x), the equivalent formulation of the iterative step is
as follows:

Ymiri=argmax > FO0G((YL, - Ym) | ). (5.4)
ye x:d(x,y)<r

Now assume that we have deployed two sensors, and our &lgoaliowed an
overlap. Denote the sensing range of semserl, 2 by §. Then, since (5.4) holds
for the deployment of sensor 2, it follows that

> a-pfeo+ D =D fx

XeS§ NS XeS\S XeS
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5.2 Optimal coverage of the area

Figure 5.3: The hexagonal deployment of 105 sensors.

for any possible sensor rangén the area that does not overlap wiéh (Otherwise,

S could have been chosen insteadf) Since the density in the first term of the
left-hand side is taken with the factor-1 p we see that for the inequality to hold,
the values off (x) in § N $ and/or iInS\ S should be considerably larger than in
their neighborhoods. This can be seen as the condition afdk®verlap principle,
applied in two dimensions: overlap is possible only if thexést positionsx such
that the densityf (-) varies considerably (by a factor of1p) within a sensor range
of a sensor deployed ix.

In case two positiony would reduce the maximum non-detection probability
by the same amount, we can break the tie arbitrarily, e.g.doyguthe first such
position encountered, or by doing this randomly. The adiadbreaking procedure
does not matter too much on a global scale, because in thet@etton it is most
likely that the other position will be chosen, except if thetpositions are close
(within a distance ). Locally, there may occur significant effects of tie-break
We did not study this, but this topic warrants further iniggstion.

We have implemented the proposed algorithivathematica Below we present
two examples of the deployment which is the output of our @iigo. Another
example will be given in Section 5.5.

Example 5.2.4. Supposet = {1,...,200 x {1,...,195, p = 0.9 andr = 10.
Moreover, suppose thdtis the uniform distribution. We can construct a hexagonal
deployment of 105 sensors i such that an intruder cannot be within the range
of two different sensors (see Figure 5.3). It is easy to sattthis deployment is
optimal for the given number of sensors, and a simple calonlahows that the
non-detection probability of this deployment i285. Deploying the 105 sensors
according to our algorithm leads to the deployment showngure 5.4. The non-
detection probability of this deployment i287 which is close to the non-detection
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Figure 5.4: Deployment of 105 sensors according to the MBrahm: uniform
distribution of the object location.

probability of the optimal hexagonal deployment.

Example 5.2.5. Supposet = {0, ..., 100} x {0, ..., 100, p = 0.8 andr = 10.
Moreover, defines = 25 and defingy as the distance of to the north-east axis
(the liney = x) of X for eachx € X. Now suppose that (x) = ce~3()? for all

x € X, wherec is the normalization constant makirfga probability distribution
on X. In other words, the signed distance between the intrugession and the
north-east axis aft follows a discrete version of the normal distribution witkeam

0 and standard deviatian = 25. Here, the sign is positive for positions above the
line, and negative for those below.

Having 200 sensors at our disposal, applying our algoritwl$ to the deploy-
ment in Figure 5.5. As one would expect, the density of thessedeployment
increases when approaching the north-east axis. Moreav@mple calculation
shows that the non-detection probability of this deploytme0.066.

We conclude that our heuristic algorithm can be used to fimdogenents which
result in a good detection probability and are in line witl #malytical results from
Section 5.2.1. In particular, in the case of a uniform a ppoobability distribution
of the intruder position we found a nearly optimal solution.

5.3 Statistical methods for intruder detection

Optimal sensor deployment studied in the previous secsiamportant for increas-
ing the overall detection probability, that is, the numbfetree alarms produced by
the system. However, since the false alarm probahijigan be high in practice
(e.g.q can be about 2%, which already has a considerable impanfosaetworks
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Figure 5.5: Deployment of 200 sensors according to the MRDrahm: normal
distribution of the signed distance between the objecttionaand the
north-east axis.

may even produce multiple false alarms at each moment in tigtidl, the pres-
ence of an intruder increases the number of alarms, andssteral observations
one should be able to recognize an intrusion and report amalo this end, we
present in this section two statistical methods for intrudkgection: one is based
on classical hypothesis testing, and the other employs asay approach.

The hypothesis testing approach in Section 5.3.1 providiesision making tool
for reporting an intrusion alarm after a single observatém identical sensors.
In practice, false alarm reports are highly undesirableer&fore, we bound the
probability of a false report by choosing a high confidenaell®f the test. This
sometimes leads to a poor performance of the test in a seatseith high proba-
bility, after one observation af sensors, an object will stay undetected. In practice,
however, this is not a big problem because there is usuatiygimtime to produce
several observations, not necessarily by the same senken the probability of
the intruder’s presence can be updated after each obseryédr instance, using
the Bayesian approach described in Section 5.3.2.

The Bayesian approach allows for great flexibility, becaaseng with the total
number of alarms, it also takes into account the locatiorie@tlarms. Therefore,
in Section 5.3.2 we analyze a more general model than in@esiB.1. Specifically,
we consider several non-overlapping parts of the coverag, ®ach deploying
a number of completely overlapping sensors. Furthermoeeletvthe intrusion
probabilities, as well as the detection and false alarm glrdities, depend on the
sensor location. The motivation for this model is that alifjo identical sensors
will usually cover parts of the intrusion area with roughlyual sizes, the terrain
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in which the sensors are placed may vary, e.g. in altitudésiwtan influence the
local intrusion probabilities and the performance of thesses.

5.3.1 Hypothesis testing for intruder detection

In the following, we consider the two extreme cases:
e Case I:n sensors, all at the same position; i.e. with identical sgnsange;
e Case ll:n non-overlapping sensors.

If there is an object in the area, then Case | is the case inhndlicsensors follow
the same Bernoulli distribution with paramefeand Case 1l is the case that one of
the sensors detects the object with probabititgnd each of the remaining sensors
detect the object with probability.

Assume that there can be at most one object in the area. Withihypothesis
testing formulation, we test the null-hypothesis that ¢hierno intruder in the area
against the alternative that the area is penetrated. Iftm@airnumber of alarms
is observed then we reject the null-hypothesis and repomtamsion alarm. For
I =1,...,nlet[Y; = 1] be the event that sensodetects an object andi[ = 0] be
the complementary event. Assuming that there is an intrundiie range of sensor
I, we haveP(Y; = 1) = p.

Consider Case In sensors deployed at the same position with 100% overlap.
Thus, our hypothesis testing formulation is as follows:

Ho: P(Y;=1)=qforalli=1,...,n,

Case I: [Hl: P(lel):pfora”|:1,,n

In Case Il, the sensors are not overlapping. Thus, the obgetipenetrate the
range of at most one sensor. This leads to the following fornat#on:

Ho: P(Yj=1) =qforalli=1,...,n,
Caselll: Hi: P(Yj=1) = pforexactlyonej =1,...,n;
P(Yy =1 =qfori=1...,n 1 #].

In both cases, as a statistic, we use the stochastic vaifiablé's + - - - + Yj, the
number of alarms produced by the system. We regcif and only if T > c, for
some criticak > 0. Clearly, undeHp, T has a Binomidhh, q) distribution. Denote
the Binomial density function with parametersnd p atk by B, p(K):

Bn.p(k) = (E) p*L - p". (5.5)

In our test, two types of errors can be made: false positindgase negatives (in
statistical terms, type-one and type-two error, respelt)v A false positivaneans
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n|3|4|5|6|7|8|9]10
q

0.02 1111 j1|11(1] 1
0.04 11111 |1(1] 2
0.06 1111|122 |2]| 2
0.08 (12|22 |2|2]| 2
0.10 112|222 |2|3]| 3
0.12 1122|223 |3] 3
0.14 212|121 2|3|3|3] 3
0.16 212]|12(3|3|3|3]| 4
0.18 212]|12(3|3|3|4)| 4
0.20 212]|13|3|3|4|4] 4

Table 5.1: Critical number of alarntsfor Cases | and II.

a false report, i.e., an intruder alarm is reported whilegh no object in the area.
In both Cases | and II, one has

n
Praise = P (false positivg = Py, (T > ¢) = Z Bn,q(K).
k=c

We choose in such a way that the above probability does not exceed aptainle
frequency of false alarm reports. fAlse negativeneans that an intruder is missed
by the system, i.e., the intrusion alarm will not be repoxtéide there was an object
in the area. For Case I, we get

c-1
Phisseq= P (false negative= Py, (T < ¢) = > By p(K),
k=0

and for Case Il, we obtain

c—2 c-1
Prissed= P (false negative= p > Bn_1q(K) + (1— p) D_ Ba1,4(K).
k=0 k=0

In this setting, the detection probabilipgetection0f the system is equal to the power
of the statistical test, i.e.,

Pdetection= 1 — P (false negative

We select some values fgrandq and calculate corresponding valuescadnd
PdetectionSO thatpraise < 0.05. In Tables 5.1 and 5.2 we present the valuesfof
Cases | and Il. Table 5.3 gives the valuegdicciionfor Case |, whereas Tables 5.4
and 5.5 give the values for Case Il. In all the tables, thelsisgnsor detection
probability is fixed atp = 0.9. The values o€ used in Tables 5.3-5.5 are chosen
according to the results of Tables 5.1 and 5.2.

As we see in Case IpgetectioniS very high. This is not surprising because in
fact, in this case we have to distinguish between Binofmjgb) and Binomia(n, q)
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n| 15| 30| 45|60 | 75| 90 | 105 | 120 | 135 | 150
q
0.02 1 2 3 3 4 4 5 5 6 6
0.04 2 3 4 5 6 7 8 9 9 10
0.06 3 4 6 7 8 9 11 12 13 14
0.08 3 5 7 8 10 | 12 13 15 16 18
0.10 4 6 8 10 | 12 | 14 16 18 19 21
0.12 4 7 9 12 | 14 | 16 18 20 23 25
0.14 4 7 10 | 13 | 16 | 18 21 23 26 28
0.16 5 8 11| 14 | 17 | 20 23 26 29 32
0.18 5 9 12 | 16 | 19 | 22 26 29 32 35
0.20 6 10| 14 | 17 | 21| 24 28 31 35 38
Table 5.2: Critical number of alarntsfor Cases | and Il.
n 3 4 5 6 7 8 10
q
0.02 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| 1.0000
0.04 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000 | 1.0000 | 1.0000 | 1.0000
0.06 0.9990 | 0.9999 | 1.0000| 1.0000| 1.0000 | 1.0000| 1.0000| 1.0000
0.08 0.9990 | 0.9999 | 0.9995| 0.9999 | 1.0000 | 1.0000| 1.0000 | 1.0000
0.10 0.9990 | 0.9963 | 0.9995| 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.12 0.9990 | 0.9963 | 0.9995| 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.14 0.9720 | 0.9963 | 0.9995| 0.9999 | 0.9998 | 1.0000 | 1.0000 | 1.0000
0.16 0.9720 | 0.9963 | 0.9995| 0.9987 | 0.9998 | 1.0000 | 1.0000 | 1.0000
0.18 0.9720 | 0.9963 | 0.9995| 0.9987 | 0.9998 | 1.0000 | 0.9999 | 1.0000
0.20 0.9720 | 0.9963 | 0.9914 | 0.9987 | 0.9998 | 0.9996 | 0.9999 | 1.0000
Table 5.3: Values 0pgetectionfor Case I;p = 0.9.
n 3 4 5 6 7 8 10
q
0.02 0.9000 | 0.9001 | 0.9002 | 0.9004 | 0.9006 | 0.9008 | 0.9010| 0.9013
0.04 0.9002 | 0.9005 | 0.9009 | 0.9015| 0.9022 | 0.9029 | 0.9038 | 0.2772
0.06 0.9004 | 0.9010| 0.9020 | 0.9032 | 0.2795| 0.3170| 0.3524 | 0.3857
0.08 0.9006 | 0.9018 | 0.2554 | 0.3073 | 0.3551 | 0.3993 | 0.4402 | 0.4780
0.10 0.9010 | 0.2440 | 0.3099 | 0.3694 | 0.4233 | 0.4721 | 0.1687 | 0.2035
0.12 0.9014 | 0.2868 | 0.3609 | 0.4265| 0.4846 | 0.1816 | 0.2242 | 0.2672
0.14 0.2344 | 0.3278 | 0.4087 | 0.4788 | 0.1807 | 0.2310 | 0.2817 | 0.3318
0.16 0.2650 | 0.3670 | 0.4534 | 0.1654 | 0.2232| 0.2818 | 0.3396 | 0.1473
0.18 0.2948 | 0.4044 | 0.4951| 0.2006 | 0.2672 | 0.3332 | 0.1454 | 0.1907
0.20 0.3240 | 0.4400| 0.1629| 0.2371| 0.3119| 0.1337| 0.1838 | 0.2376
Table 5.4: Values 0pgetectionfor Case Il;p = 0.9.
n 15 30 45 60 75 90 105 120 135 150
q
0.02 0.9031 | 0.4010| 0.1989 | 0.3008 | 0.1680 | 0.2404 | 0.1421| 0.1975| 0.1208 | 0.1648
0.04 0.3935 | 0.2944 | 0.2346 | 0.1922 | 0.1599 | 0.1344 | 0.1138 | 0.0968 | 0.1569 | 0.1337
0.06 0.1841 | 0.2288 | 0.1114 | 0.1298 | 0.1429 | 0.1526 | 0.0876 | 0.0945 | 0.1004 | 0.1053
0.08 0.2811 | 0.1813 | 0.1252 | 0.1759| 0.1255| 0.0909 | 0.1183 | 0.0875| 0.1094 | 0.0822
0.10 0.1434 | 0.1448 | 0.1339 | 0.1213| 0.1091 | 0.0980 | 0.0879 | 0.0789 | 0.1135| 0.1009
0.12 0.2103 | 0.1157 | 0.1393 | 0.0836 | 0.0943 | 0.1020 | 0.1077 | 0.1117 | 0.0741| 0.0772
0.14 0.2836 | 0.1952 | 0.1424 | 0.1065| 0.0810 | 0.1040 | 0.0798 | 0.0971 | 0.0754 | 0.0891
0.16 0.1583 | 0.1567 | 0.1438 | 0.1297 | 0.1164 | 0.1044 | 0.0935| 0.0839 | 0.0753 | 0.0677
0.18 0.2143 | 0.1253 | 0.1440 | 0.0908 | 0.0987 | 0.1036 | 0.0691 | 0.0722 | 0.0743 | 0.0756
0.20 0.1180 | 0.0995| 0.0792 | 0.1084 | 0.0833 | 0.1020 | 0.0790 | 0.0925| 0.0725| 0.0828
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distributions. This can be done with a good precision bezafiga large difference
betweenp andg. For instance, for 10 sensons,= 0.9, q = 0.02, andc = 5, the
probability Pgetectionis 0.9999 whileprase is as small as @ x 1077,

In Case I, pgetectioniS low except for the cases when= 1, that is, a detection
signal of one sensor already triggers an intrusion alarne.vEtuec > 1 is obtained
when the probability of just one alarm is reasonably highmef/there is no intruder
in the area. Effectively; > 1 means that at least— 1 false alarms are needed to
detect the intruder. This is an undesirable result, whighars, in particular, the
low power of the test. We conclude that in Case Il one obsenvas simply not
enough for efficient intruder detection, because in thie ¢he observations with
and without the intruder differ by at most one signal, whigldlifficult to reveal by
classical hypothesis testing. One either has to make seosgerlap (as in Case |)
or use several observations in a row. The latter can be dosevieral ways, for
instance, one can use the Viterbi algorithm as in Section 5.4

5.3.2 Bayesian approach for intruder detection

Consider Case Il from the previous section, where N different sensors are
placed in such a way that the sensing ranges of differenosg® not overlap.
Let X € {0, 1} denote the number of intruders present, WitbiX = 1) = a an

a priori probability of the intruder being present in thearé\s before, lefl be
the stochastic variable denoting the total number of sisglesor alarms given at a
particular time instant, sd € {0, 1, ..., n}. We have

P(X=0|T =k)
B P(T =k | X =0)P(X = 0)
T PT=k[X=0PX=0+P(T=k|X=D)P(X=1)

Let F be the (unobservable) number false alarms among th&. Then for all
k > 0 we obtain

P(T=k|X=1)=P(T=kF=k-1|X=1)
+P(MT=kF=k|X=1)
= PBr_1q(k—=1) 4+ (1 = p)Bnr_1,q(k)
_ kp , (n=k(1-p
= Bn,q(kK) [—q + 7] ,

0 n-q)
P(T =k | X =0) = Byq(K).
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Hence, the a posteriori probability of the presence of araib$

PX=1|T =kK)
P(T=k|X=0)P(X=0)

—1—

P(T=k| X=0PX=0+P(T=k|X=1)P(X=1)

1
=1-
P(T=k|X=1)P(X=1)
1+ Br=xix=0)P(x=0)
-1

— kp , (=K (1-p)
=1- (l+ ]ﬁa |: + n(l—q)]) . (5.6)

This formula can be generalized to the case combining Caaed Il from Sec-
tion 5.3.1 as follows. Assumenon-overlapping ranges. Range- 1, ..., n con-

tainsm; € N completely overlagping sensors. Likte {0, ..., m;} be the number
of alarms for rangé and denotd = (Ty, ..., Tp).

The stochastic variables; € {0, 1},i = 1, ..., n, indicating the presence of an
object in range, have a priori probabilitie® (X;j = 1) = ¢; i.e., we allow certain
parts of the area to have a higher a priori probability foruston than others. Also,
we allow the detection and false alarm probabilities to delpen the sensor range;
we usep; andg; to denote these respectively.

Since we assume that there can be at most one intruder at\aytgne instant,
the vectorX = (Xg, ..., Xp) can attain values inthe sg; : j =0, ..., n} where
gj is the jth unit vector inR" andey the zero vector in that space. We will use the
notation\V = {0, 1, ..., n}. We then calculate

3

1L
~

PX=g|T=

{

B P(T=k|X=¢)P(X=¢g)

CP(T=Kk|X=g¢)P(X=¢)+P(T=k|X£e)P(X#eg)
P(T=Kk|X=¢)P(X=¢)

KIX=e)PX =€)+ Xspyj P(T =k X =e)P(X =6

/.\
—u
I

Further, we immediately have fgr> 0 that

P(T=K|X=¢)=Bm.pk) [[ Bmngk). (5.7)
ieN\{j}

If we definemg = kg = 0, this formula also holds fof = 0. Furthermore, if we
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defineag = 1 — > .\ (o) @i, WE Can state

B P(T=k|X=€j)P(X=gj)
- P(T:k|X:ej)P(X:ej)+zse/\/\{j} P(T=k|X=65) P(X=6s)

_ (14 Zsewy PO=KIX=0) P(X=ey) -
o P(T=k|X=¢j)P(X=gj)

-1
— (14 2 sen\(j) @sBms, ps(ks) [Ticary sy By (ki)
aj ij »Pj (kJ) HueN\{j} Bmv,CIv (kv)

-1
ks, 1— —k. i\—Ki 1—p;i « — Dk
=1+ Z 2_?(%) S(l—gz)ms S(S_JJ) 1(_1_8;) (mj—k;j)
seNM\{j}

-1
= s ( Ps\Ks ¢ 1=Psyms—ks ¢ Pj y—kj 1= Pj y—(mj—k;)
_(Z aj(QS) (1—CIS) (Qj) (1—CIj)
seN
~(Pivkj (1=Pi \mj—k;
B a](q—j) ](l——qj) I
= T —.
ZSeNaS(%)ks(l——gz)ms ks

For j = 0, we thus find

(5.8)

1-25 eN\{0} i
1_ _ b
1= 2heano % + 2seanio) as(%)ks(l__gz)ms ks

so the conditional probability of an intruder given the abee area alarms vector
T equals

PX=g|T=k =

PX#e|T=K = 1-P(X=g|T=k)

s \Ks 1- s—Ks -1
11, Zs=nv0 as(g) (=)™
1-2; eN\{o} ¢i

Notice that the Case Il treated in Section 5.3.1 corresptnds
pi=p G=49 m=1 oa =a/n,

for alli € A and we then find back our earlier formula (5.6) for the coodil
probability of an intrusion.

In the case where we use only one time instant to observe énes| it seems
natural to conclude that an intruder is present whenever

Ps ks (1=Psyms—ks -1
2senio) %s(q) (=g ) (5.9)

AK) =P(X#e|T=k=1-(1+
1=l ¢
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satisfiesA(E) > y for some critical thresholg, where e.g. we can choose
(0.5, 1), which means that we raise an alarm whenever the conditmoabbility
of an intruder is sufficiently larger than the conditionabipability that there is no
intruder. The probability of a false intrusion alarm thecdmes

Prase = P((A(T) = 7)A (X =ep))
= D Liags PT =k X =e)P(X = eg),

O<k<m

where we use the shorthand notatf(bri k < m for {R c0<k <mj,i e N\
The probability of a missed intrusion is

Pmissed = P((A(T) <) A (X # eg))

= Z Liagy<y) Z P(T=Kk|X=g)P(X=e¢).
O<k<m jeN\{0}

By substituting (5.7) and (5.9) in these expressions, wencancalculate explicitly
what the probabilities of a false intrusion alarm or misgeduision are (based on a
single observation in time) for the given a priori probai®k in p andd and a given
sensor configuration vectar.

We note that the Bayesian approach can be also extendedqoense of obser-
vations. For instance, the a posteriori probabilities imleta by using (5.8) after the
first observation, can be substituted back into (5.8) imktéa j's to recompute the
probabilities of the intruder’s presence after the secdrsbovation, and so on.

5.4 Viterbi algorithm for intruder detection

In this section, we present a novel method of using sequenitiservations for
intruder detection. We model the signals from the sensoms s&-called hidden
Markov model. This is a stochastic process, based on a Makain to which
noise is added. Using this representation we can distihduesween the signals
that should have been given off by the sensors, i.e. the’ ‘sta¢e of the system,
and the signals that are actually given off, including tHedalarms and missed
detections.

Given a sequence of signals we determine the most likelyesemguof true states,
using the so-called Viterbi algorithm. In this way, we dexidhether the signals
indicate indeed an intruder, or are only false alarms. Filnewre derive a decision
rule for when to report an intrusion alarm, thus reducingtineber of false reports.
All calculations needed to obtain this rule can be pre-caenghu

We outline the proposed method for the case of one sensorarticylar, we
explain the hidden Markov model, and illustrate how, based ¢ew signals from
the sensor, we decide if an intrusion alarm should be givea.intficate how the
method can be extended to networks of sensors. As the state,sand so the
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5.4 Viterbi algorithm for intruder detection

number of calculations, increases exponentially with tbenber of sensors, we
show how to truncate it in a clever way.

5.4.1 A one-sensor model

Consider the case of one sensor, where an object possitdggphy. Assuming a
low speed of the object, the object is in the range of the geiesanultiple time
steps. Let the stochastic procds§ }ien denote if an object is in the range of the
sensor, where

1 if an objectis in the range of the sensor at time

X=10 otherwise.

So X; gives the ‘true’ state of the system at time

We assume that the proceSs;} is a Markov chain, so the probability law for
Xi+1 only depends orX;. Denotepjj = P(Xi+1 = j | Xt =i). The speed of
the object and its path through the range of the sensor arelliaddn the transition
probabilities. The number of consecutive ones in a Markaircfollows a geomet-
ric distribution, withE (# of steps in sensor range- 1/ p1o. We want the stationary
distribution of{ X}, say X, to be suchthaP (X, = 1) =1 — P(Xs = 0) = «a,
the a priori probability that there is an object in the systdimis gives the following
transition probability matrixA:

A— ( 1- 155 P10 1f—ap10).
P10 1-po

We take the initial distribution foXg to be equal to the stationary distribution.

To the procesgX;} we add noise, which consists of false alarms and missed
detections. This gives the process of signals given off leysénsor, sayY; }ten-
Let

v 11 if the sensor gives an alarm at tirhe
7] 0 otherwise.

SoY; is the observed state at tiheThe noise is such that only depends oiX;, in
an independent and identically distributed (i.i.d.) wayfafse alarm occurs when
[Y; = 1] given [X; = 0], and this happens with probability A missed detection
occurs if [Y; = 0] given [X; = 1], and this happens with probability-1 p.

We now have that the procef%} is ahidden Markov moddlL1]. We can inter-
pret{Y;} as observingX;} via a noisy channel. Only the proced§} is observed,
while the states of the proce§X;} are not known, i.e. hidden, which explains the
name of this model. The procegX;} is often referred to as the underlying or hid-
den process. Whereas for a Markov chain it holds that thestate of the process
depends only on the previous state, or a fixed number of prs\gtates, for a hid-
den Markov model the transition probabilities depend onehtire history of the
process.
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5.4.2 The Viterbi algorithm for the one-sensor model

Given a sequence of observed states, ®@y= {O1, Oo, ..., Or}, the question
now rises, what is the most likely sequence of underlyingué? states,Q =
{Q1, Q2, ..., QL}. There is an efficient algorithm for solving this probleml|ed

the Viterbi algorithm[6]. This algorithm, based on dynamic programming, calcu-
lates

mgxP(Q | O).

Applying this algorithm we are able to correct false alarmd eissed detections
for a given sequence of observations. For example, a simgarobetween many
zeros is likely to be a false alarm, while a zero in betweenynwares is probably a
missed detection. If we, for instance, observe the sequéd@E11011000 then itis
not surprising that the most likely underlying state seqeas 000111111000, i.e.,
a missed detection is corrected. More important are thectons of false alarms.
The observed sequence 0001000 will most likely have an Gynidgrsequence of
all zeros, so a false alarm is corrected. In this way, we priekeporting a false
intrusion alarm. While for these two examples the most \ikelderlying states are
straightforward to see, the algorithm also helps with cike©0010100. Here, itis
not immediately clear whether the ones are two false alasntbe zero in between
represents a missed detection.

Based on the results of this algorithm, we give a decisioa whether or not to
report an intrusion alarm for a given sequence of obsemstid/e illustrate this for
two and for three consecutive observed states, but it carmbe fibr every desired
number of observations. We give an intrusion alarm if the tntikely underlying
state sequence contains at least one 1 in it, signifyingithtite most likely sce-
nario, an intrusion took place in at least one moment in tile.also calculate the
probability that the underlying state sequence consistgbyf zeros, given the ob-
servation. One minus this quantity equals the probabiif there was an intruder.
The latter is equal to the probabilifymisseqthat the intruder will pass undetected
in case the sequence of all zeros happens to be most likelycalulations can
be done off-line, resulting in a list of observed states forch an intrusion alarm
should be given.

For the valuep = 0.9,q = 0.02,a = 0.01 andE (# of steps in sensor range-
10, the probabilities for all possible combinations of esafre given in Table 5.6
for two and three consecutive observations. For two obsens we only give an
intrusion alarm in case both observations are a 1. With fnitiha0.9441 this is
indeed the underlying sequence, and the probability theetivas no intruder is
about 005. Giving no intrusion alarm when the observed sequencearwd two
or one zeros turns out to be correct with probabiliti€2997 and B2, respectively.
For three observations, there are four cases for which we aivintrusion alarm.
To improve the probability of correct decisions furthereaould make use of more
consecutive observations.
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5.4 Viterbi algorithm for intruder detection

O Q alarm? P(Q|O) P(Q=0]|0)
0 0 0 0 No 0.9997 0.9997
0 1 0 0 No 0.9196 0.9196
1 0 0 0 No 0.9196 0.9196
11 11 Yes 0.9441 0.0512
0 0O 0 0 0 No 0.9998 0.9998
0 01 0 0 0 No 0.9491 0.9491
010 0 0 0O No 0.9833 0.9833
011 0 1 1 Yes 0.4016 0.2177
1 00 0 0 0O No 0.9491 0.9491
1 01 1 1 1 Yes 0.6060 0.3577
110 1 1 0 Yes 0.4016 0.2177
111 1 1 1 Yes 0.9936 0.0013

Table 5.6: Hidden Markov Model for the case of one sensor. daah observed
stateO the most likely underlying stat® is given.

For this model we have assumed thX;} is a Markov chain. The number of
steps in the range of the sensor is geometrically distributdnich models a vari-
able speed and direction of the object. We can improve thiketiyng {X;} be a
Markov chain of ordek, where the probability law oK;;1 depends on the la&t
states: Xi—k+1, ..., Xt. This allows us to vary the distribution of the number of
steps in the sensor range. For instance, in this way one cdelraaleterministic
number of steps. The state space then increase’s stafes, but the problem re-
mains numerically tractable since the calculations fordeeision rule need to be
done only once.

5.4.3 A sensor-network model

We can extend this method to networks of several sensorssi@arfor instance
the following example witth = 4 non-overlapping sensors as given in Figure 5.6.
Let X = (Xut, X2, X3, Xat), WhereX;; = 1 if there is an intrusion in the
range of sensarat timet, and X; 1 = 0 otherwisej = 1,2,3,4;t > 1. Assume
that there is at most one object in the area at any moment & 8mthat the state
space of{ X;} consists oin + 1 = 5 states: the all-zero state and theﬁstates where
the object is in the range of one of thesensors. We assume the procgsg again

to be Markov. The path and the speed of the object are modaellgt transition
probabilities. This can be based on historical data, or bardknowledge about the
system. If the object can remain in the range of one sens@efggral time steps,
pii is positive. Here, we assume that the object always entarsessor 1, and
then continues its path through sensor 2, 3 or 4, or outs@leatiige of any of these
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N

&

Figure 5.6: A network with four sensors. Indicated are daedransitions.

sensors. The transition probabilities and the correspaystiates are given by

1—a o 0 0 0 (0,0,0,0)

1-p. P11 P12 P13 P14 (1,0,0,0

A= 1-p2 0 p2o O O |, (0,1,00)
l1—ps3 0 O p33 O (0,0,1,0
1-pss 0O O O pgs (0,0,0,1)

with the necessary conditions on tpg imposed to letA be a stochastic matrix.
Here,p1e = Z?zl P1j-

The probability law of observin& given X: follows a multinomial distribution.
As before, there are four possibilities for the p@¥; +, Yi.t), specifically,P(Yi+ =
1Xit=0)=qgandP(Yi; =0Xjt=1) =1—p.

The state space ¢i/;} now consists of 2 states: each sensor can give an alarm
or not. As the size of the state space grows exponentiallly witalready for a
moderately large number of sensorthe problem becomes huge. Because of this,
but moreover because many of these states are very unlikelgcur, we truncate
the state space ({)f?t}. For this, we calculate the number of false alarms,csdlyat
has a probability of occurring less than sag@..:

P (# false alarms>- c¢) < 0.001

Now we allow only the vectorg’t in the state space Qﬂ?t} that are at Hamming
distance< c away from any of the states ({)ﬁt}, where theHamming distance
between two zero-one vectors is the number of indices intwttiey are different.
In this way, we drastically reduce the state spacg€Ypf, making the calculations
more tractable.

We now again have a hidden Markov model, for which we can daidecision
rule when to give an intrusion alarm in the same way as for #se ©f one sensor.
We can list all possible sequences of a number of obsengtibtine proces§Y;}.
By the Viterbi algorithm, we calculate the most likely unigerg state sequences
of the procesg X;}. If it contains at least one 1, for such a sequence an intmusio
alarm should be given. By calculating the probability theg tinderlying states are
only zeros, the probability of making an error is found.
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The hidden Markov model method of the present section carseé in combi-
nation with the heuristic algorithm for placement of sesgmesented in Section 2.
One way of doing this to use the Viterbi method to combine #waiits of multi-
ple single-sensor readings into one result, giving impdoxedues forp andq that
can be used in the placement algorithm. This is done in sonikeohumerical
experiments of the next section.

5.5 Numerical results

We verify and combine the proposed methods for sensor deydoyand intruder
detection using a simulation model of a network consistifg wumber of individ-
ual sensors, which perform under uncertainty. The perfoneaf each individual
sensor is characterized by the probability of true detagi@nd the probability of
false alarmg. As before, we use similar performance measures for cleraicly
the performance of the sensor network. Thus, our perforsmameasures are the
probability of true detection of the networgetectionand the probability of a false
intrusion alarmpsase

The objective of a surveillance wireless sensor network $8Mdesign is to get
a value pgetectionthat is as high as possible and a valuepgjse that is as small
as possible. In this study, we explore numerically the pmlitsi of affecting the
valuespgetectionand pPraise Of the sensors by arranging their locations as well as by
exploiting multiple readings. In the numerical experinggnte estimat@getection
and prgise for an SWSN. Numerically, these measures are defined asviallo

Ng '
Pdetection= %n, (5.10)
Ntal
Pralse = Islse’ (5.11)

where Ngetection@Nd Niaise are the number of true and false detections respectively,
while N is the total number of experiments, with or without the objadhe area,
respectively.

The experimental setup is as follows. The presence of arcbinjeghe SWSN
is simulatedN times, and the intrusion alarm is reported based on themngadif
n individual sensors, according to the criteria of detectieig. as in Sections 5.3
and 5.4. ThempgeteciioniS computed by formula (5.10). In this study, is set to
1000. To account for the variability of the simulation réspive have repeated all
experiments 100 times. The estimatemkiectioniS represented by the average of
the results as well as by the standard deviation. The reatdtalso presented as
a histogram, where the-axis gives the values of the estimates obtained and the
y-axis represents the relative frequency of occurrenceetttimates. The same
experimental setup is used for computing fftgse of the SWSN by setting the
object to reside outside of the SWSN coverage areaNfamonsecutive times and
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then using (5.11). In all the experiments presented heeentlividual sensors are
identical withp = 0.9 andqg = 0.02. The other parameters are varied in the
different examples to obtain the most demonstrative result

To verify that our simulation gives correct estimatespgétectionand Praise, We
first perform an experiment using a simple sensor networknefsensor but with
two consecutive readings. In this case, as suggested byitdgrdialgorithm from
Section 5.4, the criterion of an intrusion alarm is that tees®r raises an alarm in
two consecutive readings. Since the two readings are imdkgpe of each other, we
havepgetection= P? = 0.81 andpraise = g2 = 0.0004. The numerical results shown
in Figure 5.7 demonstrate that the numerical method givesrate estimates.

.
0.5
1 04
1 0.3
0.2
| 0.1
m | B B _

Figure 5.7: (Left) Estimate OpgetectionfOr one sensor with two consecutive read-
ings. The mean is 0.8093, the standard deviation is 0.01Bigh{)
Estimate ofprase the mean of the estimate is#dx 10~* and the stan-
dard deviation is ® x 1074

In the example above, we have verified that our simulatiogiamm gives correct
estimates 0fgetectionand Praise AS a next step, in our simulation model we will
combine the results on sensor deployment and intrudertit@ifocom the previous
sections to detect a moving target. The area of interestsisnasd to be the unit
square, defined by € [0, 1] andy € [0, 1], where(x, y) represents the location
of a point. We describe the motion of an object using the wiitise acceleration
model described e.g. in [3, p. 263]:

Xo(tk+1) = Xo(tk) + vxdt + \/aax’?x(tk), (5.12)
Yoltict1) = Yo(ti) + vydt + Vdtayny (o), (5.13)

where(Xo(tk), Yo(tk)) represents the object coordinate at tigelt the time stepyy
andvy the velocity in thex andy direction, respectivelya, anday the acceleration
terms, andyy and 7y the noise terms, which are independent standard-normally
distributed at each time step. The valuesygf vy, ax anday are all set to 0.01
anddt is equal to 0.1. For illustration, we presented two realiret of the object’s
motion in Figure 5.8.
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Figure 5.8: Some realizations of the object path used in xperénentsyg is the
starting point and, is the end point.

Now we would like to investigate the impact of sensor deplegitn To this end,
consider an SWSN consisting of eight individual sensorste@&ldifferent sensor
arrangements are studied. In arrangements A and B, thedosatdf the sensors are
determined randomly. In arrangement C, the sensors artetbeacording to the
MPD deployment algorithm from Section 5.2.2. Therefore, sensors in arrange-
ment C are located along a diagonal of the area of interese shese are the most
likely locations of the object. The SWSN arrangements apaotied in Figure 5.9.
The position of the object is depicted by an asterisk and émsa that gives an
intrusion alarm by a highlighted circle.

In this study, we have computed tipgetectionand praise Of the three sensor net-
works by exploiting the multiple readings by each sensarc&the sensing ranges
practically do not overlap, we are in the situation of Casaf bection 5.3.1. How-
ever, since each sensor raises an alarm based on the rédutesaglings according
to the decision rule from Table 5.6, we have to adjust the givdities p andq to
the detection probabilityp(k) and the false alarm probability(k) for k = 1, 2, 3.
Simple calculations give:

pl) = p, q@l = g;
pR2) = pi a2 = 93
pl) = p3+3p*1-p), a® = g3+3g%1-q).

According to Table 5.1, the critical value fqr= 0.02 is 1, that is the SWSN should
give an intrusion alarm if the alarm is coming from at least ofthe sensors. Since
g(2) andq(3) are smaller thaig = 0.02 the critical value remains the same if we
use multiple readings from each sensor. Thuk réadings of each sensor are used
at each time point, for our three SWSN arrangements we have

Pdetection= Pcoverage: P(K), (5.14)
Praise = 1 — (L — q(k))®, (5.15)
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Figure 5.9: Example of sensor networks: (top) network A;dghe) network B;
(bottom) network C.

110



5.6 Conclusions

where peoveragels the probability that the object is within the network coage,
i.e., within one of the sensor ranges. Cleagdyk) in (5.14) andpsase in (5.15) are
identical for the layouts A, B and C if the same number of regsdlis used. In this
case, the performance of the SWSN is determined by how ltkelpbject will pass
through the network coverage, allowing the network to detee existence of the
object. This relative frequency is the estimate of the pbdlig pcoveragethat affects
Pdetectionin (5.14).

To estimatepcoverage We Simulate the object’s motion into the area for each sen-
sor network and compute the relative frequency of the olgassing through the
sensor network coverage. As in the previous experimergsplbfect is allowed to
move inside the area of interest for 1000 time steps. Momretive experiments are
repeated 100 times to account for the variability in thenestes. The results are
presented in Figure 5.10. The estimate®gferageare 0.2884, 0.1420, and 0.6367
for sensor network A, B, and C, respectively. The conclugdhat the SWSN C is
more likely to detect the object than the others.

Now, consider an SWSN of 50 sensors deployed by means of tiizaigdrithm
from Section 5.2.2 (see Figure 5.11). As before, the adwanai the object in the
area is described by (5.12) and (5.13), where we chogse 0.02,vy = 0.02,
axy = 0.001,ay = 0.01. Again, we report an intrusion alarm if a sensor signals
an intruder in two consecutive readings, as suggested ile Tab in case of two
observations. In Figure 5.11, we show one time instant ofrauksition run. An
asterisk denotes the object position. The two overlappigiglighted circles depict
the two sensors that give a correct intrusion alarm. Theligigted circle that does
not contain the object, gives a false alarm.

For this network, the rate of false intrusion alarms.3004. Furthermore, since
the SWSN consists of an ample amount of sensors, our deplaygtrategy ensures
that peoverage(@lmost) equals one. The histogram for the detection pritityaat
each time point is given in Figure 5.12. The high valuep@fectionare due to a
considerable overlap of sensor ranges for the most liketjtipos of the object.

5.6 Conclusions

In this paper, we addressed two problems concerning desijperformance of an
SWSN: sensor placement and object detection. For the fioblgm, we suggest to
use a hexagonal placement for optimal coverage. Furthere@@mmend to cover
most vulnerable locations first, but avoid an overlap in eemanges unless the
distribution of the object position is highly irregular. Asrule of thumb, one may
call a distribution highly irregular if there exist pairsdints such that the distance
between two points in such a pairds2r while the value of the density differs by a
factor 1— p.

For the detection problem, we state that several obsenstibthe same object
are absolutely necessary to report an alarm with reasowcabiainty. A classical
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Figure 5.10: Estimate 0fcoverage0f SWSN. (Top) Network A. The mean of the
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estimate is 0.2884 and the standard deviation is 0.069&Ide)j Net-

work B. The mean of the estimate is 0.1420 and the standardtasv
is 0.0631. (Bottom) Network C. The mean of the estimate iS®76
and the standard deviation is 0.2658.
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Figure 5.11: One time instant of a simulation run of the SW$B0sensors con-
taining a moving object«). Highlighted circles: two correct intrusion
alarms and one false alarm.

25

Figure 5.12: Estimate OfgetectionOf the SWSN in Figure 5.11. The mean of the
estimate is 0.9205 and the standard deviation is 0.0224.
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hypothesis testing works well only if multiple sensors dapilin the same location.
Otherwise, one must use information from consecutive regdof the SWSN. In
the latter case, either a Bayesian approach or a hidden Mankadel (HMM) ap-
proach can be used for object detection. To the best of ouvletige, the HMM
approach involving the Viterbi algorithm to filter out theis® of non-detections
and false alarms, has never been used in an SWSN before. Vastage of this
approach is that it allows to pre-compute off-line all olvs¢ion patterns that sig-
nal an intruder. Then the decision rule is very simple: reporintruder if one
of the alarming patterns is observed. The HMM techniquesiégnSWSN context
definitely deserve further study.

In this research, one could clearly see that the two problemdsr consideration
are closely related. Although each of the proposed methadsba useful in its
own right, it is essential to develop an integral approacsetasor deployment and
intruder detection, in order to enhance the SWSN performamahe last numerical
example (see Section 5.5), we demonstrated that our tagks@pn be successfully
combined, thus considerably increasing the efficiency eftstwork.

We would like to add that, potentially, our methods can be aked for tracking
a target advancing through the area. For instance, by dbgeavsimulation run
of a moving object in the last numerical example, one couldtbat in spite of
occasional false alarms, the correct intrusion alarmsatdia clear path that can
be easily deciphered from multiple sensor readings.
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6.1 Introduction

In aluminum half products such as direct-chill (DC), cagfdts (aluminum blocks
of 0.5 x 1.5 x 6 m°), and billets (aluminum poles of ®— 05 m diameter and 6 m
length) the spatial distribution of alloying elements isywenportant. In advanced
aluminum products a considerable number of elements @ilpielements such
as Cu, Cr, Fe, Mg, Mn, Si, Zn) is involved at small to internadiconcentrations.
These elements are very important as they determine thdispeoperties of the fi-
nal alloy such as strength, fracture toughness, hardnegkeress, dent resistance,
surface quality et cetera. The aluminum research in inghgsstuch as Corus aims
at developing new products for demanding applications sisctine aerospace and
automotive markets. It is the objective of this researclptinaoize the specific prop-
erties of the alloy for the particular applications by mgdif) the alloy composition
in a generally narrow composition window. The consistenoy homogeneity of
the cast product in the solid phase is a prime aspect of cgsiimnology. However,
due to the casting process the homogeneity of the cast piocey be compro-
mised. Understanding and controlling the mechanisms thatibute to formation
of spatial heterogeneity, also called macrosegregatahgirefore crucial.

In the casting process initially all elements in the mixtare in the liquid phase
and spatially well-mixed. In semi-continuous casting efmrainum alloys the liquid
metal is poured into a cooled mould. The molten metal isetiily contact with the
mould and application of cooling water. As the temperat@@&eases solidification
sets in and a front between the already solidified and thidigtiid part develops.
It is exactly this transition band between solid and ligaido known as the ‘mushy
zone’, that plays a crucial role in the uniformity and hertoe quality of the final
cast product. Upon solidification the elements tend to tabige between the solid
and the liquid phases. Each element does this in its own mamhieh is controlled
by the thermodynamic equilibrium. Consequently, the ligphase can become
enriched and the solid phase can become depleted in elemeotsl transport
of the liquid phase due to shrinkage induced straining ofsthiel phase and due
to buoyancy driven flow effects in the liquid part of the dom#éius will cause
redistribution of the elements on the scale of the ingot betitross-section. For a
comprehensive overview of macrosegregation literatued e

This partial segregation is detrimental to the quality @f tesulting cast and gen-
erally the resulting cast is beyond repair. As a consequtreeesulting product
is off-spec and has a reduced economic value or becomesegj@chich results in
recycling of the entire cast product and obvious econonss.lorhese additional
production costs can potentially be reduced if a more peaamslerstanding of the
origin of these cast defects can be obtained. In this papeateseribe mathemat-
ical models that aim to simulate the details of solidificatand transport induced
segregation that take into account a large number of diffespecies. We specifi-
cally present efficient methods for including in a computadilly efficient manner
the complex thermodynamics that characterize the soldifio of many-species
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mixtures used in modern aluminum products.

In casting technology research over the last decennia mamencal models
have been developed for the prediction of the many diffepbysical phenomena
involved in the casting process (for example [2, 3, 4]). Scamputational models
generally predict the fluid flow in the liquid part, compute tholidification (the
transition from liquid to solid) and calculate how the meataforms when cooling
down. These models often assume a constant compositiamghoat the domain.
This assumption ignores the effect of spatial segregatdnch is at the heart of
current aluminum casting problems. The crucial step fouatons of industrially
relevant alloys is that a large number of elements (aboutdiveore) should be
included in the simulations to achieve a proper modelinpefirocesses and phase-
transitions. This leads to a strong increase in the simaridimes. The challenge is
to propose computational strategies to establish thigalrsiep in an efficient way.

Currently solidification models are under development iheltide the variation
of composition during solidification (e.g. [5, 6, 7]). Thisquires that the relation
between the local composition and temperature is compiited.good approxima-
tion, this relationship is determined by considerationsheirmodynamic equilib-
rium. A key element is the phase diagram, which gives theiogldetween phases,
composition and temperature. For a binary mixture thisaalyeesults in a complex
parameter-space with widely different transitions ineliént regions. In case of a
realistic multi-element mixture the complexity of the thmerdynamic representation
rapidly increases. Direct coupling of a thermodynamic base to a solidification
simulation may impose limitations to the practical appbitisy.

In simulations of the casting process that include the efi€composition, the
thermodynamic equilibrium needs to be determined eachgtey@and in each grid
cell. Commercial software is available to compute the tloelymamic equilibrium
via a minimization of the Gibbs free energy (examples are fi@jtsage[9], jmat-
pro[10]), but this is a computationally time consuming step direct coupling
between the database and the casting simulation will ressinlfeasible simulation
times. The challenge is to propose efficient coupling methmetween the solidifi-
cation simulation and the thermodynamic database. Theiqnas how the solid-
ification path in the computations can be constructed in goedationally efficient
manner, considering that thermodynamic equilibrium datgans highly irregular
features such as discrete transition points (e.g., an ufsant) and large varia-
tions in the regions in which phase equilibria appear (e@ne phases appear over
a range of 5 Kelvin, others are present over several hundeddr{. One approach
applied and presented in this work is to adopt local polyrabriis to thermody-
namic data. This resulted in a significant reduction of theagotational expense
with full recovery of the physical properties of the castipgcess within the re-
qguired numerical accuracy. The problem posed by CORUS t&3ne&European
Study Group Mathematics With Industmas twofold: (1) Propose a simple PDE
model for the simulation of the aluminum casting processragthods to establish
an efficient coupling between the thermodynamic databage¢heninvolved PDEs.
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(2) Assure that the model can simulate efficiently an indaisgrrelevant number
of alloying elements.

In this paper we review the continuum modeling in Sectiona@hd present an
efficient method for simplifying the complex and computatly intensive ther-
modynamics that occur in Section 6.3. A one-dimensionalenioal model will be
adopted in Section 6.4 to illustrate the basic physicalgsees arising in the casting
process, emphasizing the treatment of the solid-liquidhpz®ne front. Finally,
concluding remarks will be collected in Section 6.5.

6.2 Modeling transport and phase-transitions in
multi-component aluminum casting

In this section, we present a complete model for transpatipdrase transitions that
occur during the aluminum casting process. Our aim heretisone@do more in-
volved mathematical models describing aluminum casting (B2, 12]), but to find
a simple, yet realistic description of fluid flow and solidifion of an aluminum
alloy which allows to develop and test techniques for hangdthe multi-element
thermodynamics during solidification. The formulationd vésult in the definition
of a one-dimensional model that will be used in Section 6rdtésting the ther-
modynamics evolution and to assess whether the main ckasticss of the casting
process can be recovered.

n —
N—

mould

water

Figure 6.1: Sketch of the basic geometry in the aluminuminggirocess. The
bottom block is continuously lowered as liquid aluminum dsled on
the top. Throughout water is applied for cooling the bougdzrthe
aluminum block.

We consider a spatial domain split into a solid and a liquglae, see Fig. 6.1.
The two regions are separated by a mushy zone, whose exa@tpbsas to be cal-
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culated along with the flow and temperature fields. To desdtib fluid mechanics
and solidification physics a number of unknowns needs to tbedaced. We refer
to Table 6.1 for the unknowns of the problem as well as Talidd.the list of the
necessary ‘parameters’. We refer to these as parametids,gh strictly speaking
their values are functions of the primary unknowns (e.cg, ltent heatAh is a
function of the molar concentrations of various alloy elatsethermal properties
of the hosting material and, of course, of the local tempeeat For simplicity, we
assume no pouring of liquid material into the solid domaid aeither changes nor
motion of the physical domain.

Notation Dimension| Description
€ 1 local volume fraction occupied by liquid
e&s=1—¢ | 1 local volume fraction occupied by solid
c,X mol/m3 molar concentration of material X in liquid
cX mol/m?3 molar concentration of material X in solig
% m/s fluid velocity
p kg/(ms?) | fluid pressure in liquid and mushy region
T K temperature
Table 6.1: Unknowns of the model.

Notation | Dimension | Description

m* kg/mol molar mass of specie$

v, m?/s kinematic standard/bulk viscosity of liquid
g m/s? gravitational acceleration

K m? permeability tensor in the mushy zone

K kg m/(Ks®) | heat conductivity

Ah kg/(mS) latent heat of phase transition

Cp kg m?/(K s?) | heat capacity at constant pressure

Table 6.2; Parameters of the model.

Our model consists of conservation laws for the liquid ardisnass of all alloy
elementsXy, ..., Xy, the averaged momentum of the fluid flow, and the total inter-
nal energy. Since the formation of micro-structure (detedrisee Fig. 6.2) creates a
mushy environment with a definite porous structure of theennal{ the momentum
equation is formally replaced by the conceptually simplardy law; see, e.g., [11].
The unknowry| serves to distinguish between those parts of the domaiatbaiur-
rently liquid, mushy, or solid. Note that, e.g., the “liquigtgion could be defined
as that part of the domain with € (0.9, 1].

As afirst step toward the mathematical model we present tinetiess describing
conservation of mass of each individual elemgrgarticipating in the solidification
process. We express the balance of mass of the liquid ardisgdcies separately.
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() é (b) (c)

Figure 6.2: Local conditions in liquid (a), mushy (b), andidaegions (c) of the
domain.

Assuming that diffusion due to concentration gradientsegligible at the char-
acteristic flow time scale in the solidification process, ¢baservation of mass of
speciesX in the liquid state is

o€ C|X
ot

+ V- (vag*) =0. (6.1)

This evolution equation assures that the integraﬂcﬂ‘ over any volume in the
flow domain can change only due to fluxes through the bounda€y. Gimilarly,
the conservation of mass of speciksn the solid state reads

8ESC§(
ot

+ V- (vescd) = 0. (6.2)

To characterize the flow in this scenario, we distinguishwieen liquid, mushy
and solid zones. The balance equation for the linear momentdnich applies in
the liquid zone, is given by

om; 0aij

—+V.-(myv) =g — 6.3

8t+ (m;v) glp+8xj’ (6.3)
fori,j = 1,...,3. The liquid is considered incompressible wjhs constant.

Throughout, we adopt the Einstein convention on summatien epeated indices.
Here, we have used the total momentum densijtyn the x; direction

m; =vojp,

p = pl+ ps = € Clkaxk + Escgkmxk,
withk =1, ..., N. The two terms on the right-hand side of (6.3) representityrav
and viscous drag, modeled as Newtonian fluid for simplicity:

5 ov; ovj 2 Ov 81)|5
P ST < .
' Paij OX; OXi 3’78x| N §8x| N
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6.2 Modeling transport and phase-transitions in multi-ponment aluminum casting

In the mushy zone, solidified alloy dendrites form a densep®medium. In-
spired by [12], we use Darcy’s expression to relate velcanitgt pressure:

1 - op
€up| ' 0X;j '

v = —

This is only an Ansatz. A rigorous derivation via homogeti@matype arguments
is still needed (see, e.g., [13]). Finally, the solid zore @luminum) is described
as a state of rest:

v=0.

In the liquid region § ~ 1) we define the velocity through solving the momentum
equation, in the solid zoned ~ 1) we use the state of rest and in the remaining
mushy zone the Darcy formulation is chosen. Temperatureeaacyy dynamics is
sketched next. We express the total internal energy deasity

5« 1 2
e =CpT + 0] + const.
The conservation of total internal energy is given by

%@€H4%@€W=Q+Vwmh (6.4)

with the heat source rate expressed as
o€
Q=V-(kVT) + Ahﬁ'

Heat is thus added to the system by the liquid-solid phaseitians taking place
in the mushy region, expressed by the latent lidatas well as by heat conduction
with coefficientk (Fourier’s law). Viscous heating due to friction is negeatt

Besides the calculation of the model parameters (whictc@jtyi depend on the
unknowns of the problem), we need to close our model by amditiconstitutive
relations. Here we suggest two such relationships. In jplec(local) thermody-
namic properties could be used to determine the pressuréuastson of tempera-
ture and species concentrations:

p=Fu(T, ¢, ..., ¢%). (6.5)

Alternatively, we could use information from thermodynarphase diagrams to
calculate the liquid fraction

a = F(T, clxl, . ..,qx", P). (6.6)

The evaluation of (6.5) (or (6.6)) can be based on infornmadieailable from ther-
modynamic databases. Only one of these two expressions nede selected -
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which particular one is chosen may depend on the applicatiurthermore, to
solve the pressure a more involved analysis is required ichw{6.5,6.6) do not
play an important role. The closure poses the problem ofieffity accessing the
thermodynamic information, especially in the case whenytspecies are present.
Alternatively, this may be obtained via variational pripleis (by minimizing the
corresponding Gibbs functional), which poses the problésimultaneously solv-
ing a PDE system and finding local minimizers to a non-linean-nonvex func-
tional. Both these approaches increase the computatitioal éConsiderable care
in the reduction of the mathematical model and algorithrmetgyment is needed to
achieve realistic costs of simulation. We present an agbrbased on local poly-
nomial fitting in Section 6.3 and estimate theoretically doenputational saving
compared to a full gridding of the thermodynamic state-spac

In Section 6.4, some example calculations are given for algied one-dimen-
sional model for a slow solidification process of a singlecig® This model can
be readily appreciated as a special case of the general fatiorugiven above. The
purpose of this reduced model is to isolate the main charatits of the solidifica-
tion process and to test the efficiency of the evaluation witich thermodynamic
properties such agh are being processed. The 1D model that is proposed can be
written as

oo ta =0

o oxt ¢ (6.7)
o€ o0ce
- _ -0,
ot ox

wherelL is a coefficient related to the latent heat used to producetiase transi-
tions, whileM is a constant effective diffusivity of the liquid. The rat@le behind
this model is that we neglect all fluid flow, thus= 0, i.e., both in the liquid and
in the solid. Correspondingly, only diffusive transport & remains in this very
crude model. In the absence of gravity and at constant presgie momentum
equations are trivially fulfilled. It remains to discuss #reergy conservation equa-
tion (6.4). Under the additional assumption that the patarag, k, andC are
constant, equation (6.4) yields = CpT in which temperature is governed by

oT o€
Copir = V. (KVT) + AhZE.
PP 5t (kVT) + Ah—

If in additionk = Cpp, then the last equation reduces to

whereL = Ah/(Cpp) and we dropped the subscript The second equation of
the simplified model (6.7) is then obtained by assuming thatijuid fraction is
proportional to the temperatuiie within some reasonable range™f In this case,
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the second equation of (6.7) is recovered. This model hasfect ef latent heat
being released, while the solidification front progressgshpd by diffusion. This
is a particularly appealing model for numerical analysid élastration of the main
physics of solidification. We return to this in Section 6.4.

6.3 Thermodynamic representations and data
reduction

Any CFD simulation of solidification of an alloy requires theodynamic input in
each fluid cell and at each time-step. This input may be trentdieat, the heat
capacity, and the local predictions of phase concentratéomd compositions that
occur for a given temperature under certain thermodynassaraptions. Mini-
mization of the Gibbs functional ‘on the fly’, i.e., everywbeand anytime, is too
time-consuming in this context. One way to circumvent tmahem is to employ a
thermodynamic database, which is also called a mappingnfilled literature [18].
This database can be pre-computed by performing Gibbs nzaiions for a large
number of specific combinations of temperature and phaseectrations. The
database is a discrete numerical representation of themiatton contained in the
physical phase diagram. In general, the local temperangghase concentrations
in a fluid cell in the CFD simulation are not precisely equathe available dis-
crete values of the entries in the database. Interpolatitimiis necessary, which is
much less time-consuming than the Gibbs minimization caatmn itself. In this
section we will pursue this method and incorporate polyrabfitting to reduce the
storage requirements for the database. Theoretical éssnoéthe efficiency are
also provided.

6.3.1 Polynomial fit

The problem with precomputed databases is that they eastdgrbe much larger
than the present memory of computers. Consider for exampkdlay solidified
from the four materials Al, Cu, Fe and Mg. Then a thermodymaguiantity, such
as the heat-capacit@p, is dependent on temperatufeand on three independent
species concentratioms, ¢, andcs, while the remaining oney is given bycy :=
1—-c1—cp—c3in anon-dimensionalized situation. The funct@pthen depends on
4 variables. If we would use a uniform grid for each of the farguments, covered
each by 600 points for sake of argument, we would need a meofi@ry4 x 600" =
4TB to store two thermodynamic quantities with single . Such a database
approach has been considered in [18], where it was noteddhatlations of up to
four elements can thus be realized, but calculations imnglfive or more elements
seem to be beyond reach at present. The aim of the preseioinsiedb investigate
whether it is possible to reduce the size of the databasegitowithout unduly
affecting the accuracy of the thermodynamic input deliddcethe CFD-simulation.
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Figure 6.3: Example of the dependency of the heat capacigroperature for fixed
composition at 5% of Cu, Fe and Mg in an Al alloy.

Since the thermodynamic quantities in phase diagramsaifpidisplay strong
jumps, a large number of grid points is necessary in eacltdreif a uniform grid
is used for the entries of the database. Unstructured nfoxomimeshing of the
table automatically adapted to the shape of the phase diagraxpected to reduce
the size of the grid needed to represent the table. That ssichtagy leads to much
smaller databases is illustrated in the remainder of thiticse by considering a
simple example of homogeneous solidification.

The temperature in a process of homogeneous solidificatidrealloy Al-Cu-
Fe-Mg can be described by the following equation:

dT
Cp(T, cy, C2, Cs)a =-0Q <0, (6.8)

whereT is the temperature, assumed to be spatially independehisicase, and
Q the heat extracted from the system. The heat-cap&uitys the so-called ef-
fective heat-capacity, in which the latent heat is includBaree concentrations,
c; andcz are needed to describe the concentration distributioas,the relative
amount of molecules of Al, Cu, Fe and Mg. For the present examp assume
that the three concentrations of Cu, Fe and Mg are equak c; = c3 = 5%
(mass concentrations). Since the solidification processidered in the present ex-
ample is homogeneous, the concentrations are constanade sput also constant
in time, because of mass conservation. Therefore, to s6l8¢the thermodynamic
database (the phase diagram) can essentially be redudetrepresentation @p
as a function of temperature.

We computed the temperature dependendepotinder these concentration con-
ditions for the Al-Cu-Fe-Mg system by minimizing the Giblbbed energy. The
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result is shown in Fig. 6.3, clearly illustrating a centreafure of the phase dia-
grams: strong jumps appear, but in between these ‘disaotiés’, the function is
relatively smooth. Fig. 6.3 has been obtained with a unifssmperature grid con-
taining 600 points. Obviousl¥p can be accurately captured with much less points
if one would only store the locations at which the ‘discountiies’ appear, while
the smooth parts in between would be approximated by seifadlynomials. This
basic observation will be worked out in more detail next,ltovs the principle.

To reduce the thermodynamic database storage we define algaoaion by
a threshold of & J/(gK), fixed a priori for simplicity. We consider two options
for the smooth pieces between jumps: first-order (straigles) and second-order
Lagrange polynomials (parabolae). The coefficients of tigrmmials can simply
be computed from the values at and between two jumps. The mageints of
a smooth region are collocation points for the first-orderdiso for the second-
order polynomial. For the second-order polynomial a thotlocation point needs
to be added. For this we take the point half way in the intenvaler consideration.
Thus instead of 600 floating point numbers (uniform grid) veedhto store much
less floating point numbers to represent the behavior in &ig.with piecewise
continuous polynomials. In particular, we require only linbers in case of linear
polynomials, and 23 in case of second-order polynomials.

To assess the quality of the reduced data representatiossives(8) for the three
different numerical representations©f. We compare (a) the fine-grid represen-
tation consisting on 600 uniformly distributed points, ébinear polynomial and
(c) a second-order polynomial fit. In each case a four-stagggB-Kutta method
with a sufficiently small time-step is used to integrate thaaion. The right-hand
side is assumed to be constant and equ&) te —1 J/(gs). The results of the com-
putations are shown in Fig. 6.4. The second order polynofitiptovides a very
accurate approximation of the fully resolved case — thermisliscernible differ-
ence between the curves based on method (a) and (b). It itudexicthat in this
example the size of the database can be reduced by a factoyurfca30 without
significant loss of accuracy (in this example a reductiomf@)O0 data points to 17
or 23 in case linear or quadratic interpolation is used).

The homogeneous case above is very simflg;is reduced to a function of
temperature alone because the concentrations remainsthnarin practical CFD-
calculations the concentrations change. Neverthelessfdbve method can in prin-
ciple also be applied to more practical cases: the temperaimension can be
treated as in the example above, using piecewise discantsypolynomials, while
the concentration dimensions are still treated with linaggrpolation on uniform
grids. If we would use a structured nonuniform meshing otthrecentrations (clus-
tering in the most important regions) for the Al-Cu-Fe-Mtpglwe might be able
to obtain a reduction of a factor of 3 in each concentratialucgion. Thus the total
storage reduction would be a factor:382 ~ 800, such that the original database of
4TB would reduce to 5GB and thus fit well into the memory of arodern personal
computer.
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Figure 6.4: Simulation results for 1D solidification withrgtant composition.

The above basic approach to reducing the storage requiréaefthermodynam-
ics database can be extended to a more complete computakidaaepresentation
scheme for demanding casting problems. In the next sectidescribe the main
elements of this methodology.

6.3.2 Alternative approaches

In the following sections we consider an alternative apgpinobased on a non-
uniform mesh representation and discuss its merits andvhsgages. The devel-
opment of this method has been guided by the following ppiles::

1. The thermodynamic quantities of interest fall into twifetent categories:

a) Quantities that are smooth and change slowly with redpectianges
in composition and temperature, for exampknthalpiesand phase
compositionwhat elements are present in a certain phase).

b) Quantities that change abruptly and discontinuoushgxample:phase
information(what phases are present and in what relative amounts) and
effectiveheat capacities

2. Some regions of the phase diagram are more important anddsbe repre-
sented with higher accuracy than other regions of lessastefl his is partly
due to the occurrence of phase changes, but also since sdime @ements
are only present in rather small concentrations in the sysseich that large
parts of the phase diagram are (probably) never needed mudation.
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Figure 6.5: Example hierarchical sparse grids (Curtisa€ihaw type) containing
five levels of successive approximations (left panel) ardesiels (right
panel), respectively.

3. The evaluation of phase diagram data needs to be veryeeffiguch that
complicated interpolation schemes are out of the question.

With regards to the last point, the optimal solution wouldat@atabase approach
and multi-linear interpolation of the values of query psintvhich is very fast to
implement, running inO(n) time when the database is represented on a regular
grid with n grid points per dimension. As has been noted in the previeasos,
however, such an approach is ultimately infeasible dueddatge number of grid
cells needed to represent the phase diagram accuratespdlce complexity being
of orderO(n%), whered is the dimension.

It should be noted, though, that all thermodynamic qua#itf interest, for ex-
ample the heat capacities, can be derived from two ingrésligione: smoothly
varying enthalpies anghase informationWere this phase information discrete, we
could proceed with two different strategies:

1. Model the continuous enthalpies by some simple intetjpolacheme.
2. Model the discontinuous phase boundaries separately.

The first point can be realized, for example, by a hierar¢hiepresentation
on sparse grids [16], for which an efficient implementatiorlMATLAB is avail-
able [21]. The mean of a quantity of interest over the phaagrdim is represented
as a single number in the first node of the hierarchy, and nocedized changes are
represented by a number of sparsely distributed pointsiadrltevels of the hierar-
chy. Fig. 6.5 shows an example of the sparse grids typicakyat different levels
of detail.
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If the thermodynamic data were representedhiermodynamic variabl@sthen
the phase diagram would consist of a so-cattetl structure[17], such that each
cell represents one unique phase. Unfortunately, it isrivaatto transform element
concentrations into thermodynamic variables and viceavelBait when concentra-
tions are used as variables, thaixturesof phases occur, where two or more phases
are coexisting in the system in varying amounts. For bingsgesns, these phase
mixtures can be described by analytical formulae, for eXartipeleverrule [17],
which is simply linear interpolation of two phases with respto concentration,
but already for ternary systems no such simple rule is availaThis means that
in certain regions of the phase diagram unfortunately niyt e phase boundaries
have to be represented, but also the complete phase inform@n the other hand,
this information is usually also smooth inside a given ragiothe phase diagram.

To conclude: In principle the thermodynamic informatioreded in actual sim-
ulations of solidification processes concerns either (19atily varying data, or
(2) discrete information about the phase boundaries. Tiktgdtion was already
apparent in the example discussed in Subsection 6.3.1.

6.3.3 Tracing the phase boundaries

From the above it is clear that the biggest problem in theiefftccalculation of
thermodynamic properties is the accurate representafidmecboundaries of the
phase diagram. These boundaries form-a 1 dimensional hyper-surface if the
system isr dimensional, i.e., is described by the relative conceioinatofn distinct
elements and temperature. Note that concentrations has@aup to one, so in
fact there are onlp— 1 independent concentration variables to consider. Inapin
system, the phase boundaries are one-dimensional, forpeam

In general, one can distinguish two basic approaches forgpeesentation of
hyper-surfaces such as occur in the thermodynamic closserithing the phase
transitions. Anexplicit surface is represented by some parametric surface, given
by a multidimensional spline, for example, or a represéntads an unstructured
grid by simplices. In two dimensions the latter is often imad by a Delaunay
triangulation [15]. On the other hand, amplicit surface is represented by a number
of smooth, local basis functions and the surface is definemhaso-contour of a
scalar function. This method is attractive, since it alldéwtrace surfaces elegantly
and accurately by level set methods [25], but unfortunatedycomputational costs
can be very high.

Since we need phase boundary information for the approattinediin the fol-
lowing section, we describe here a simple method to tradedbedaries. The infor-
mation obtained consists of a number of points lying vergelto the actual phase
boundaries (within a user-specified numerical toleranoé)@an be used as input

9Thermodynamic variables form a complete set that uniquelcdbes a thermodynamical sys-
tem. For the solidification process, these are usually takdre the temperature, pressure and
chemical potentials associated to the involved species
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for the more advanced level set methods mentioned. The agipis demonstrated
on a binary system consisting of the two elements Pb and Serniddynamic data
for this system is available through calls to the&mAPP library® which is the
calculational back end of the commerciahEMSAGE software [19, 20]. The in-
dependent variables are temperaflirand compositiorx. The latter measures the
relative amount of Pb, such that€f x < 1. The region of the phase diagram we
considered was a temperature range of 320 < 620, measured in Kelvin.

The boundaries of the phase diagram have been traced byletingcmethod.
For simplicity, we have distributed a number of points (3&@ularly along thel
axis and then bracketed all points where a phase changespseuyingx, by an
iterative bisection method [24]. The algorithm stores tviffedent concentration
valuesx; < X2 and evaluates the discrete phase information at both poifts
a difference is found, the phase information at the middletpry, = 252 is
evaluated. If the phase &i» is the same as the oneat, thenx; gets updated to
X12, otherwisex, gets updated. If the phase at the middle point is differesrnfr
both phases at; andx», respectively, both subintervals are (recursively) disgc
The algorithm continues untik; — x2| < €; here we used = 1074,
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Figure 6.6: Traced phase diagram of Pb-Sn binary examptersys

Complementing this “vertical” tracing, we have analoggudilstributed points
along thex axis and bracketed all phase changes, varyling-or this horizontal
tracing we have used 500 points. The resulting phase boigsdare shown in
Fig. 6.6. In each of the six areas in the figure a physicallfedéht equilibrium
state is found.

10A restricted version called @MAPPLITE is available for private, non-commercial use.
URL: http://gttserv.lth.rwth-aachen.de/"cg/Software/Chem App/
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Figure 6.7: Distance (left panel) and size function (rigabel) for the liquid-Pb
mixture phase in the Pb-Sn binary example system.

6.3.4 Triangulation of phase regions

The next step is the triangulation of the different phaséoreg These have been
performed with the simple mesh generator developed in [R2¢ input needed for
this code is a signed distance functa(T, x) that returns the distance to the nearest
phase boundary, and a size functhoi, x) that returns the desired edge length of
the triangulation at each point, thereby allowing non-omif adaptive meshing.

Fig. 6.7 shows the distance function for a certain phasenegi the liquid-Pb
mixture phase. We use the Euclidean distance

d(T, x) = ((T —TH2 4k (X — x*)z)l/z,

where(T*, x*) denotes the point on the phase boundary close@I t&) andk =
200 was used to weigh the contribution of concentration gharwith respect to
temperature changes. The distance function we used ipatéed on a regular
grid, where the distance to the closest phase boundary Ipaériteen approximated
by the minimum of the distances to the previously traced damnpoints.

From this distance function, a size function has been coegputor simplicity,
we used

h(T,x) =14 10 exp(|d(T, x)/2do|) ,

wheredp = mint x d(T, X) is the characteristic width of the phase region. Results
of such an adaptive meshing are shown in Fig. 6.8.

In a practical application of this method, one needs to mestphase diagram
separately in each region and then join the triangulatiotiseainternal interfaces,
i.e., the phase boundaries. A discussion of these issudsectund in [23]. Also,
the size function should depend on the local accuracy léalis required. In
fact, one can also consider a data-driven approach, wheaetaal simulation is
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Figure 6.8: Example triangulation of the liquid-Pb mixtyptease. Left panel shows
results by uniform size function, right panel shows resoijtslistance-
dependent size function.

performed in which the locations in the phase diagram tleahaeded are recorded.
From these data one can construct a density fun¢t{@n x), where regions of the

phase diagram that are needed often in a simulation wouldgresented in more

detail than regions that are needed rarely. Of course, analsa combine all these
considerations into one common size function.

This method generalizes todimensions by replacing triangles (2-simplices) by
n-simplices. Each simplex is then representednby 1 points and consists of
(”erl) edges. The storage requirements are therefore of @d@e?) in the number
of simplices used. More importantly, when a CFD simulati@eas to evaluate
phase diagram information, first the corresponding simpéseds to be found, and
then the values stored at its edges are linearly interphlaféne location of the
simplex containing the query point is an example of a poicatmn problem with a
typical time complexity! of orderO(logn) [15] in the number of stored simplices
n, whereas the interpolation is linear.

6.3.5 Localized caching

From the above it should be clear that the problem of effibjeepresenting phase
diagram information is quite difficult, and the familiar deoff between storage
and time complexity is encountered. Probably the biggeshga in computing

time can therefore be expected to be achieved on quite aatfifféevel. Recall

that thermodynamic data is needed for each grid cell andcht teme step, but (1)
the local state in each cell (temperature, concentratiosisally changes slowly in
between time steps, and (2) in most cases the local statgebatowly between
spatially neighboring cells. An efficient implementatidmosld therefore try to also
make use of these two properties, recycling already cordghermodynamic data

1In MATLAB this is implemented in the functiasearch, which is based on the iQULL code [14]
freely available fromhttp://www.ghull.org/
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as much as possible and only recomputing these data if dbohecessary.

The basic idea is to store a pointer in each grid cell thattpdimthe thermody-
namic data used in the last time step. If the state of the o&lsdhot change in a
certain range, the thermodynamic data is reused withoupatation (in a more ad-
vanced implementation, linear changes could be taken agoumt and interpolated
locally at each time step). Of course, the tolerance useddvswally depend on the
location in the phase diagram: close to a phase boundarphémmbdynamic data
of each cell should be updated more often than in the middhgpbfase region. Fur-
thermore, if the local state of a grid cell changes too much $iat re-computation
of thermodynamic data is necessary, the local structurbeftid could be used
advantageously. Quite often a neighboring grid cell coaldehused the necessary
data in the previous time st&p Only if no neighbor has the necessary data cached,
a re-computation/lookup should be started. Even then, talsagepresentation of
the phase diagram could use local structure advantageduostgad ofO(logn) a
constant time complexity (on the average) seems possible.

6.4 Computational modeling of solidification fronts

In this section we consider the PDE system (6.7) to illustsadme basic mech-
anisms that characterize a progressing solidificationtfré&&mphasis is given in
this model to the effects of latent heat release in the alesehfiow. The model
describes the phenomena in one spatial dimension onlyhtpagmicking the be-
havior along the central axis of the ingot. It will be showattla simple spatial
discretization suffices to capture the physics of the probded that the qualita-
tive features of the solidification front are well capturethis implies that (6.7)
can be used as an efficient vehicle for testing improvemarttssi thermodynamics
treatment without leading to lengthy simulations. This barbeneficial in devel-
opment stages of reduced thermodynamics representatvbiis,retaining a clear
view at the accuracy penalty incurred. In the future, it vdolé helpful to extend
this simple model with a realistic thermodynamic descoiptof the latent heat, to
illustrate the computational gain that may be achieved wité of the approaches
outlined above. Currently, this model is only used to iltatt the occurrence of
solidification fronts in case the latent heat is only rougtdyameterized.

We consider the coupled system of equations (6.7) on theinteaitval 10, 1[.
The initial temperature is taken constant and larger thamtblting temperature of
the mixture, denoted by,,. Moreover, we consider the initial state to be liquid,
implying that att = 0 we haver; = 1 throughout the system. For convenience, we
drop the index and implicitly assume that= ¢ refers to the volume fraction in the
liquid phase. Fully solidified material corresponds ther te 0. To complete the
basic description, we impose Neumann conditions &t0, i.e., putde /0x(0, t) =

12t even seems possible to use a grid cell's spatial neightmoisterpolate the thermodynamic
values at that cell, sufficiently far away from phase bouiesaat least
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6.4 Computational modeling of solidification fronts

0T /ox(0,t) = 0 and Dirichlet conditions at = 1, i.e.,e(1,t) = 0andT (1,t) =
To where, with proper non-dimensionalizatidp = 1 < Ty, indicating that at
x = 1 the solidification front starts:

oT 82T o€

ot ox2 ot
o€ 02%¢ _
ot ox2

0

(6.9)
TX,00=1<Tm, e(Xx,00=1

oT o€

—(@0,t) = —(0,t) =0
ax( , 1) ax( , 1)
TLt)=1, €1,t)=0

where, for convenience, we use a unit diffusion coefficidnt 1.

This problem can be readily discretized using standarcefihifferences and an
explicit time-stepping method. For convenience, we foatrithe discrete model
on a uniform gridx; = jh whereh = 1/N denotes the mesh spacing. Likewise,
we choose a constant time-st&p and approximate the solution at timgs= nAt.
Following the usual steps, we arrive at

n+1 _
€ =€ +vlefig— 26 + €y 6.10)
o0e\N .
n+1 _ Tn n _ n n n(~*
T = TP o (TR, — 2T +TJ_1)+AtLJ(at)j

ot
approximated backward in time. At the boundaries weTiuit= 1 andey, = 0 and

use the simple approximation for the Neumann boundaxy-at0 as:T{' = T;" and
€y = €. In this formulationv = At/h? which has to be kept sufficiently small in
order to maintain stability of the simulation.

The effect of heat released during solidification is repméeszk by the functior.
Purely intuitively, one may expedt to be large in case the temperature is close to
the melting temperature and considerably smaller at teatypers away from the
melting temperature. Suitably normalized, the simplessjae discrete model for
Lis

forl1<j <n-—1. Here,e? ~ €(Xj,tn) ande” ~ T(Xj,tn). The term(a_f)? is

n_ {ﬁ aTm < TP < Ty (6.11)

711 otherwise

where for illustration purposes we assuphg> 1. More involved models fok. can
be obtained analogously to that presented in Section 3. kawat this level of
detail it is sufficient to indicate the effect of heat releasthis crude modeling.
Simulating the solution to the simple model can be done wekraightforward
MATLAB implementation. For this purpose we adopiegd = 2, # = 100 and
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Figure 6.9: Developing temperature profile characterizhmg solidification front.
The solid develops from the right - subsequent curves coores to
snapshots at different times.

o = 0.8. The moving solidification front that is obtained in thisyia shown in
terms of the temperature profiles in Fig. 6.9. We clearly gacre the progressing
solidification. Particular to the adopted model fors the slight jump in the deriva-
tive near the front. In Fig. 6.10 we display the effect of hedtase on the location
of the mushy zone. We notice that an increased heat releakts yi more rapid
solidification. This problem was also treated indepengenith an implicit time-
stepping method in combination with an adaptive mesh. Tllogva to capture the
phenomena in more detail at lower computational cost. Tla fesults of the two
codes compared very closely, thereby providing an indepaincheck.

6.5 Concluding remarks

In this paper we described the modeling of solidificationcesses in aluminum
casting. We emphasized the central role that the thermauligseof solidification

has. Particularly at realistic numbers of alloying elersahie proper description
of the thermodynamic components is a strong limiting factbine obvious brute
force approach based on minimization of the Gibbs free gndogs not provide a
realistic option. Rather, database approaches, not uthidse used in combustion
research, need to be developed to bring the computatiofwat dbwn to a more

manageable level. It was argued that simply using a pre-otedplatabase to rep-
resent the thermodynamics is insufficient and further dediaction is mandatory.
In Section 3 a simple approach based on piecewise polyndittired was described
and shown to bring the data-handling down to a realistidldé¥ewever, the method
cannot be easily extended to spatially dependent situsatigor that purpose more
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Figure 6.10: Effect of heat release on the solidificatiomfrdefined atk where
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involved data representations and methods for efficientgesing were suggested
as well. The confrontation of these methods with realissldgication simulations
as are adopted in industry is still an open challenge. Basdteexperience with
the simplified approach, savings on the order of 100 or mopeappossible with-
out affecting the accuracy of predictions too much. Whiledalieping the improved
data-base handling for solidification processes, use dmildade of the simplified
one-dimensional simulation model that appears to capterenain physics of a pro-
gressing solidification front at modest computational €o$his could be a helpful
testing ground for the incorporation of several of the psmgzbdata-reduction tech-
niques and measures to speed-up the computations. Resedhett direction is
much needed and constitutes a challenge for the future.
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