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Preface

These proceedings contain the results that have been obtained during the Study
Group Mathematics with Industry, which was held at the University of Twente in
the Netherlands from January 28th until February 1st, 2008.During such Study
Group weeks, mathematicians and other people with a strong interest in mathemat-
ics work on a several problems that have been formulated by industrial partners.
The idea being that the participants try to solve these problems during one week
with mathematical techniques.

In 2008 there were 78 participants from various countries, who together attacked
six problems. These varied from problems on larger scales, such as the optimal
arrangement of trains and large sensor networks, the modeling of aluminium alloys,
and the drainage of rain water, to two problems on much smaller scales, one of
which involved neurons in the brain and the other one mobile phone electronics. The
reader will notice when studying the articles that substantial progress has been made
on all problems and in some cases concrete solutions have already been proposed.

These scientific proceedings are accompanied by a separate booklet in Dutch,
in which the results have been described for a wider non-scientific audience by
journalist Bennie Mols.

It is a pleasure to take the opportunity to thank the sponsorsof the Study Group
for their generous donations. STW and NWO, our main sponsors, have been fi-
nancing these events for many years and their continued support is very much ap-
preciated. The research institutes CTIT and IMPACT, both part of the University of
Twente, also contributed substantially. The CWI in Amsterdam has again sponsored
the printing costs of these proceedings.

In closing, we thank all the participants for their outstanding contributions to an
inspiring week of industrial mathematics.

The organization of SWI 2008,

Onno Bokhove,
Diana Dalenoord,
Dini Heres-Ticheler,
Johann Hurink,
Gjerrit Meinsma,
Marielle Plekenpol,
Chris Stolk,
Michel Vellekoop.
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1 Shunting passenger trains: getting
ready for departure

Marjan van den Akker1 Hilbrandt Baarsma2 Johann Hurink2∗

Maciej Modelski3 Jacob Jan Paulus2 Ingrid Reijnen3

Dan Roozemond3 Jan Schreuder2†

Abstract

In this paper we consider the problem of shunting train unitson a railway
station. Train units arrive at and depart from the station according to a given
train schedule and in between the units may have to be stored at the station.
The assignment of arriving to departing train units (calledmatching) and the
scheduling of the movements to realize this matching is called shunting. The
goal is to realize the shunting using a minimal number of shunt movements.

For a restricted version of this problem an ILP approach has been presented
in the literature. In this paper, we consider the general shunting problem and
derive a greedy heuristic approach and an exact solution method based on
dynamic programming. Both methods are flexible in the sense that they allow
the incorporation of practical planning rules and may be extended to cover
additional requirements from practice.

Keywords: shunting trains, greedy heuristic, dynamic programming

1.1 Introduction

In this paper we study a practical train shunting problem proposed by Dutch Rail-
ways. This problem has already been studied by Kroon et al. [7], but their work
does not exploit the full potential of shunting trains.

Shunting of trains is a process that supports the execution of the train schedule
at the station. Trains arrive at and depart from the station according to the train

1Utrecht University
2University of Twente
3Eindhoven University of Technology
∗corresponding author,j.l.hurink@utwente.nl
†We thank Leo Kroon, Dutch Railways, for supplying this problem and his valuable insight and

Daniël Roelfsema, Scar Groep, who also participated in thestudy group
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1 Shunting passenger trains: getting ready for departure

schedule. Each arriving and departing train may consist of multiple and possibly
different types of train units. This composition of the trains is specified in the train
schedule. For an arriving train it now has to be decided what the next duties of
the arriving train units are and for a departing train it has to be guaranteed that the
corresponding train units are available on time on the platform. During rush hours
almost all train units available are required to transport passengers and, thus, are
on duty, but in between, and especially during the night, many train units are not
needed for transporting passengers. Thus, train units may have to be parked at a
shunt yard of a station for a certain period. An example of such a shunt yard is
given in Figure 1.1, which represents the infrastructure ofthe station and shunt yard
of Alkmaar.

Figure 1.1: Shunt yard and station of Alkmaar.

The train units are classified according to their types and subtypes. Train units of
the same type can be combined into longer trains, even if their subtypes differ. An
example of a train unit is an ICM (Inter City Material) with 3 carriages, as shown
in Figure 1.2. ICM denotes the type, and the subtype is specified by the number
of carriages. There also exist ICMs with 4 carriages, which can be combined with
the ICM with 3 carriages since they are of the same type, although not of the same
subtype.

Figure 1.2: Train unit of type ICM with 3 carriages.

To park a train unit, a crew has to take several actions. If thetrain has to go only
forward, the driver can stay on one side of the train and drivethe train directly to
the shunt yard. This is not always possible and it may e.g. be the case that the train
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1.1 Introduction

has to go forth, back, and forth again to be parked. In that case the engine driver
has to switch places two times, since he always has to be in thefront of the train.
Each time going back or forth is called a shunt movement. So, if we only need to
go forth, this is counted as one shunt movement and if we have to go forth, back,
and forth then this is counted as three shunt movements.

When a train unit parked at the shunt yard is needed again in the schedule to
transport passengers, it has to be taken out of the shunt yardand put at the platform
from which the corresponding train will depart. Again it mayhappen that several
shunt movements are needed to transport the unit to the platform. But it may even
be worse in the sense that no train unit of the desired type is directly reachable on
a shunt track. In this case, before getting the desired trainunit, first some other
blocking train units of another (sub)type have to be removedfrom a shunt track.
This can also take several shunt movements.

As a consequence, to execute the train schedule, a feasible shunt schedule is
required at each station. A shunt schedule consists of a listof actions that indicate
which train units are shunted and between which places. Nextto this, also the exact
shunt movements of the train units can be specified. A shunt schedule is feasible if
all arrivals and departures of the train schedule can be executed in the desired way.
This implies for example that a platform has to be empty when atrain is passing
through or that train units of the desired (sub)types and in the desired order are at
the right time at the right platform for a departing train.

However, not every feasible schedule is desirable: if the shunt schedule consists
of many shunt movement, the schedule causes a high workload for the crew and is
very sensitive for disruptions. This can cause delays in thetrain schedule, which
should be avoided. Therefore, the goal is to have a shunt schedule with a minimal
number of shunt movements.

Next to the main goal to create shunt schedules with a low number of shunt
movements, some other practical aspects have influence on the quality of a schedule
and lead to additional rules to be taken into account in creating shunt schedules. For
example, for the crew it is convenient to have similar train units close together. This
implies for instance that shunt tracks of the shunt yard should be used only for train
units of the same type. Another practical aspect focuses on shunt movements just
before a departure. Small disruptions in a shunt schedule with such movements
directly may lead to delays of departing trains and, therefore, may disturb the train
schedule. As a consequence, it is desirable that the number of shunt movements for
a train that needs to depart is minimized. It would even be best if the train units are
already waiting in the needed composition for the departureat the shunt yard.

1.1.1 Problem Description

The input for the shunting problem at a given railway stationconsists of the train
schedule at that station and the layout of the station (platforms and shunt yard).
The given train schedule prescribes the train arrivals and departures at the railway
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1 Shunting passenger trains: getting ready for departure

station. Each of these events is characterized by a time, thecomposition of the train,
its direction, required platform and whether the train arrives or departs. Since not
all arriving train units are scheduled to leave the station immediately, the train units
that stay behind may have to be stored at the shunt yard to clear the platform for the
next train.

The shunt yard consists of a number of shunt tracks to store train units. Most
of the shunt tracks are dead-end tracks. This implies that train units are blocked
by train units parked at a later time. Thus, train units arrive and depart inlast in
first out (LIFO) order. The shunt tracks and platforms have a limited capacity for
storing train units. There is a network of tracks connectingthe shunt tracks with the
platform tracks.

Between successive events of the train schedule, it may be necessary to move
train units to make the next event possible. Such movements are called shunt move-
ments. A one-directional movement is counted as one movement and every change
of direction is counted as an extra movement. A solution is a list of shunt move-
ments that take place between the events such that all eventscan take place. The
objective is to find a solution with minimum number of shunt movements.

In this paper we assume a timeless model; i.e. we assume that ashunt movement
takes zero time. This implies that an unlimited number of shunt movements can
be performed between two events. However, it is possible to add extra constraints
within the developed methods, which restrict the number of shunt movements be-
tween two events.

1.1.2 An Example

To illustrate the shunting problem we give a small example. Consider a railway
station with the layout given in Figure 1.3. In this example we consider four types

platform 1

platform 2
Shunt track 1

Shunt track 3

Shunt track 2

Figure 1.3: Layout of the example station.

of train units, denoted byA, B, C andD. Each train consist of some train units of
these types. When we talk about a trainAB we mean a train consisting of a train unit
of type A and a train unit of typeB, where the typeA unit is positioned to the left
of the typeB unit. This is regardless of the direction the train is traveling in. Thus,
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1.1 Introduction

trains AB andB A are different in composition. We assume that the capacity ofall
shunt tracks and platform tracks is limited to accommodate 3train units. According
to the train schedule the following trains are arriving and departing in the given
order.

e1 Train AB arrives from the left-side at platform 1.
e2 Train AA arrives from the right-side at platform 2.
e3 TrainCCC arrives from the right-side at platform 1.
e4 TrainCC departs from the platform 1 to the left-side.
e5 Train AA departs from the platform 2 to the right-side.
e6 Train DC arrives from the left-side at platform 1.
e7 TrainC DC departs from platform 1 to the right-side.
e8 Train B A arrives from the right-side at platform 2.
e9 Train B B departs from platform 2 to the right-side.
e10 Train AA departs from platform 1 to the left-side.

In this small example there are already a number of non-trivial shunting decisions
to make. It is not difficult to verify that the following solution is a valid shunt
schedule.

Betweene2 ande3 Shunt trainAB from platform 1 to shunt track 2.
Betweene5 ande6 Shunt trainC from platform 1 to shunt track 1.
Betweene6 ande7 Shunt trainC from shunt track 1 to platform 1.
Betweene8 ande9 Shunt trainA from platform 2 to shunt track 2,

and shunt trainAA from shunt track 2 to platform 1,
and shunt trainB from shunt track 2 to platform 2.

The solution contains six shunt movements. In this example the choice whether
to shunt to the tracks on the left-hand side or to the tracks onthe right-hand side is
the most important decision. Observe that shunting train unit C to any of the shunt
tracks on the right-hand side is not a good decision. When moving the unit back, it
has to go around theDC train, to connect to it from the left to form theC DC train.
Going around theDC train implies a change of direction in the shunt movement and
is counted as two shunt movements. Furthermore, if theAB train is shunted to the
shunt track on the left-hand side, the efficient moves between e8 ande9 would not
be possible. It turns out that the above solution is indeed optimal for the example.

1.1.3 Complexity of the Shunting Problem

The general problem of integrated matching (to which departing trains are the units
of an arriving train matched?) and parking of train units is introduced in [7] and
in [8] its computational complexity is determined. The general problem as well as
the subproblem of matching the train units and the subproblem of parking the train
units are shown to be NP-hard.
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1 Shunting passenger trains: getting ready for departure

In the train matching problem we are given a set of arriving trains and a set of
departing trains. We are supposed to partition the incomingtrains into parts which
can later be assembled into departing trains. Since each produced part is shunted
separately, our main goal is to minimize the number of parts into which we partition
the arriving trains. This problem is a generalization of theminimum common string
partition problem known from computational biology. In [5]the minimum common
string partition problem is shown to be NP-hard even if we restrict ourselves to
instances with only two strings as input. This means that thetrain matching problem
is NP-hard even if we are given just one arriving and one departing train.

Blasum et al. [1] introduce a problem of scheduling the departures of trams from
a shunt yard in the morning. This problem turns out to be NP-hard and the authors
provide a dynamic program for a special case of the problem with restricted number
of shunt tracks. This problem can be seen as a subproblem of our shunting problem
where all the trains are already placed in the shunting yard.

Cornelsen et al. [2] study the problem of generating shunt-free schedules in sta-
tions consisting of parallel two-sided tracks. They reducethe problem to a graph
coloring problem of a conflict graph resulting from the trainschedule. For most of
the versions of the problem the conflict graph is perfect and can be colored in poly-
nomial time. For other cases efficient approximations algorithms are presented.

In similar setting Dahlhaus et al. [3] consider a problem of grouping of train units.
In this problem a sequence of incoming train units is given. Each train has to be sent
to one of a given set of parallel tracks and later pulled out tothe other side. The
outgoing sequence has to be ordered in such a way that units ofthe same type are
grouped together. Designing a schedule that minimizes the number of used tracks
is shown to be NP-hard.

In freight train classification hump yards are commonly usedfor shunting. Jacob
et al. [6] model the shunting task as a problem of finding a set of binary codes. It
allows them to find optimal solutions for most versions of theproblem. Some other
versions are shown to be NP-hard.

1.1.4 Current Solution Approach

Currently there is no decision support system to aid the personnel in solving the
shunting problem. However, Dutch Railways is testing the ILP-model proposed
in [7] on small stations. However, this ILP-model has a number of drawbacks. First
of all it does not cover all possible shunting moves. For example it does not allow
trains to stay at a platform, waiting to be combined with a next train. It is clear
that such a waiting possibility can be beneficial. Moreover,it does not model the
possibility of moving train units between different shunt tracks. Whenever a train
arrives, it either has to be shunted away or depart immediately.

Furthermore, in the current ILP-model the number of variables and constraints is
already very large, and extending this model to cover the above shunting possibili-
ties would increase the number of constraints and variableseven further. Although
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1.2 First Approach: A Greedy Algorithm

for a typical instance the current model can be solved withina reasonable time,
one may expect that the extensions make the number of variables so large that the
computation time required to solve the problem becomes unacceptably large.

1.1.5 Goal of the Research

The task of this paper is to present alternative approaches to the shunting problem
which do allow waiting on platforms and rearrangements of train units between
shunt tracks. In the following we describe two solution approaches, one which aims
at finding fast a reasonable cost solution (a greedy algorithm) and one which aims
at the optimal solution (a dynamic-programming algorithm). We conclude with an
outlook on future research.

1.2 First Approach: A Greedy Algorithm

In this section, we present a heuristic approach for the shunting problem. This
heuristic has to be fast and has to result in a reasonably goodsolution. The basic idea
is to scan the event list and iteratively decide which actions to take. The decisions
in each iteration are based on the situation resulting from the previous decisions and
the current event. In this way, the approach tries to locallyextend the given situation
as good as possible and, therefore, falls in the category ofgreedyapproaches.

From practice it is indicated that planners prefer situations where the train units of
departing trains are already waiting somewhere (either on aplatform track or a shunt
track) in the composition they have to depart in. We take thisphilosophy,be ready
for departure, as a guideline for building the greedy approach. As a consequence,
we scan the event list backwards in time and make the decisions in such a way that
they lead to the desired composition for the departing trains.

For the presentation, we assume that during the planning horizon the arriving
train units correspond one to one to the departing trains. Weassume that the train
station is empty at the beginning and the end of the planning horizon. This can be
justified by taking the planning horizon to be form one rush hour to the next, since
during rush hour all material is needed in the train schedule. The presented heuristic
can easily be adopted when this assumption is dropped.

Our algorithm consists of two main steps, step 2(a) and 2(b),which we explain
in more detail later.

The Greedy Algorithm:

1. Start with empty platforms and shunt tracks

2. Scan the event list backwards in time, and for each eventDO

a) IF the event is a departure event,THEN assign the entire train to a shunt
track

7



1 Shunting passenger trains: getting ready for departure

Events e1 e2 e3 e4 e5 e6 e7 e8

Arrivals C A B B AA
Departures B B A AA C
Platform 2 1 2 2 1 2 1 2

Table 1.1: Event list Example 1.

b) ELSE the event is an arrival eventTHEN match the train units to train
units already placed on the shunt track

The most important steps in our algorithm are steps 2(a) and 2(b). In these steps
the main decisions are made. In step 2(a) we decide on which shunt track we set
the train ready for departure. At this point, we do not care how these train units
come to this shunt track, but just decide that the units wait on the assigned shunt
track for departure. How these units arrive on their positions on the shunt track will
be decided in subsequent iterations. Possible rules for assigning the trains to shunt
tracks are given later. In step 2(b) we match the train units of arriving trains to train
units that are already placed for departure from a certain track in one of the previous
iterations. Again, concrete rules for this matching are given later.

Example 1 To get a better understanding of the basic idea of this greedyapproach
we present an example consisting of two platforms and two shunt tracks. The event
list of this example is presented in Table 1.1 (in this table platform numbers are
given as well, since we use them later on).

If we scan the event list from the back, we first have to treat evente8. Since this is
a departure, we may decide to assign this train to shunt track1. The situation on the
two shunt tracks after this decision is given in Figure 1.4(a). The next evente7 is also
a departure, and we may assign the trainAA to shunt track 2 (see Figure 1.4(b)). For
shunting the arriving train units of evente6 we now have the nice option to match
the whole train to the two train units of typeA being assigned to shunt track 2. By
this matching, i.e. shunting the two train units to shunt track 2, this shunt track gets
empty and the resulting situation is as in Figure 1.4(c). Next, we may assign the train
of departure evente5 to shunt track 2 and the train of departure evente4 to shunt
track 1 resulting in the situation as in Figure 1.4(d). If we now treat the arriving
evente3, the train consisting of two typeB units cannot be matched as a whole to a
shunt track, but we have to split the train and match the two type B units to the two
typeB units in front of the two shunt tracks leading to the situation in Figure 1.4(e).
Note that this matching leads to two separate shunt movements. Finally, the two
arriving eventse2 ande1 are processed by matching the corresponding train units to
the units of the same type still being on the shunt tracks.

As can be seen from the above example, the presented algorithm decides for
each arriving train unit to which departing unit it is coupled and via which shunt
track this assignment takes place. In this way shunt movements are specified. For
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1.2 First Approach: A Greedy Algorithm

track 1 C
track 2

(a)

track 1 C
track 2 AA

(b)

track 1 C
track 2

(c)

track 1 BC
track 2 B A

(d)

track 1 C
track 2 A

(e)

Figure 1.4: Situations on the shunt track for Example 1.

departing trains the shunt movement can be done with the train as a whole since we
always assign to be ‘ready for departure’. We implicitly assume that there are shunt
tracks long enough to accommodate for departing train. For arriving trains more
complex shunt movements may be necessary. In the above example, all the shunt
movements were directly possible, but in general it may be necessary to rearrange
the train units on the shunt tracks at certain moments to achieve a feasible solution.
If, for instance, the arriving evente3 would have been that of anAC train, first the
two B units already being at the shunt tracks would have to be removed to place the
A andC unit at the dead-end of the shunt tracks.

The advantage of the presented approach is that it always gives a feasible solution
as long as the list of arrival and departing events is consistent, in the sense that there
is never a negative stock of train units of some type, there are shunt tracks long
enough to accommodate for the departing trains, and there isalways some empty
(part of) track to move a train unit around. Furthermore, thedeparting trains can
always be handled efficiently. The price to achieve this is that we may create costly
shunt movements for arriving events.

In the following we sketch some possible improvements of thegreedy method and
give some more detailed information on possible implementations of the assignment
and matching in steps 2(a) and 2(b).

Leaving train units on platform tracks One of the goals of this research is to
develop methods which allow the option of leaving train units on platform tracks or
to move it from one platform to another platform without parking it in between at
the shunt yard. A simple approach is to scan the solution achieved by the greedy
heuristic and to search for ’shortcuts’. In the above example such a short cut is for
example possible between the eventse6 ande7. The AA train arriving on platform
2 (evente6) may be passed directly to platform 1 from which it departs asevente7.
In this way, theAA train does not have to be moved to the shunt track 2, probably
saving shunt movements. Another short cut is possible by leaving one of the arriving
type B units of evente3 on platform 2. In this way the departing train of evente4 is
already on the platform without any movement.

9



1 Shunting passenger trains: getting ready for departure

A more effective method than a scan after finishing the greedyapproach may
be to take such possibilities already into account during the greedy algorithm. If
we have to assign a departing event in step 2(a) of the algorithm, we may scan the
event list some positions further back in time to detect if there is an assignment
of this train to a shunt track which allows using shortcuts. Such an assignment is
preferable over other assignments.

Delaying the shunt movement If for an arriving event the shunt movements of
possible matchings take a large effort (e.g. the corresponding units do not occur at
a reachable end of a shunt track), we may scan the event list back in time to see
if we can improve the situation by letting some other arriving trains wait on their
platform. To clarify this possibility, let us assume that inthe given example the train
of evente2 is a B train and that ofe3 an AB train. If we now deal with evente3, no
easy matching is possible since on shunt track 2 the train units are not in the correct
order (see Figure 1.4(d)). But we may delay the movements belonging to evente2,
since this event is on a different platform. For the greedy approach this means that
we consider evente2 beforee3. By matching theB unit of that train to theB unit
in front of shunt track 2, we achieve a situation where on shunt track 1 we haveBC
and on shunt track 2 we haveA. Now we can match the two units in front of the
two shunt tracks to form theAB train of evente3.

Formally, in step 2(b) of the greedy approach we may search the event list back-
wards and consider for each platform the first occurring event. If this event is an
arrival, we may treat this event before the current event. Note that it is not possible
to delay departure events or two arriving events on the same platform.

Assignment rules in step 2(a) Up to now, we have not specified the way how we
assign in step 2(a) the trains to shunt tracks. The most simple way is to assign them
in someround robinway (meaning that the tracks are used in a given cyclic order)
or to assign them based on some priorities of the tracks. Possible priorities may be:
smallest number of shunt movements to reach the platform, largest free capacity,
et cetera. However, it may be worthwhile to incorporate alsoplanning rules of
the planners of Dutch Railway into this step. One such rule is, for example: do
not park more than two different unit types on the same shunt track. Furthermore, a
backward scan in the event list by a few positions may help to overcome problems in
the next iterations. Consider, for example, the event list in Table 1.2. Two possible
shunt track assignments after treating the eventse6, e5, e4 are given in Figure 1.5.
The first assignment is made using round robin, but has not taken into account the
arriving B train. The second assignment does not have this problem.

Matching rules in step 2(b) As in step 2(a), also in step 2(b) there may be some
freedom in matching the arriving trains to units already assigned to the shunt tracks.
Again, this decision may be based on priority rules like the number of necessary
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1.2 First Approach: A Greedy Algorithm

Events e1 e2 e3 e4 e5 e6

Arrivals A A B
Departures A A B

Table 1.2: Event list Example 2.

track 1 AB
track 2 A

track 1 AA
track 2 B

Figure 1.5: Situations on the shunt track for Example 2.

shunt movements but, as in the previous case, it may also be worthwhile to incor-
porate some backward scan to see which resulting remaining situation on the shunt
tracks forms the better situation for the next events. To illustrate this consider Ex-
ample 2.

Example 2 This example is the same as Example 1, with the difference that events
e2 ande3 are interchanged and that after considering evente4 we have the first shunt
track assignment in Figure 1.5. If we now have to deal with event e3, matching the
type A unit of this event to theA unit in front of shunt track 1 allows a direct access
to the B unit on that track in the next iteration. Having chosen for the A unit on
shunt track 2 would not have given this possibility leading to a situation where units
on the shunt tracks have to be rearranged.

Improvements Several of the suggested improvements contain some sort of par-
tial backward scan of the event list to improve the decision for the current event.
In principle this means that some sort of simultaneous treatment of several events
is considered. Based on the outcome of this, a decision for the current event is
fixed. This treatment of several events simultaneously, canbe seen as a new opti-
mization problem on its own. This problem gets harder the more events are taken
into account. An interesting topic of further research is totry to find a good balance
between the effort spent on this backward scan and the improvement in quality. Fur-
thermore, concrete decision rules for the treatment of several events simultaneously
have to be developed.

To sum things up: the greedy algorithm we have developed is able to create
feasible schedules for the shunting problem quite fast. However, without additional
improvements, the achieved solution may not be of much practical use. Above we
have shown, that the basic structure of the method forms a good framework which
easily can be extended by more sophisticated elements and even with rules used by
planners.

11



1 Shunting passenger trains: getting ready for departure

1.3 Second Approach: A Dynamic Programming
Algorithm

To solve the shunting problem, a response to each event, arrival or departure, has
to be given. This response has some influence on the position of train units on the
different tracks and platforms and has to guarantee, that the next event can take
place.Getting ready for a departuremeans that the right train composition is on the
departure platform, andgetting ready for an arrivalmeans that the arrival platform
can accommodate for the arriving train.

To describe the given situation of train units on the different shunt tracks and
platform tracks (called a configuration), we define a vectorS. S is called the state
of the system and is an ordered list of train type units on eachof the tracks. For
the example given in Section 1.1.2, the first element inS describes the train units
on platform 1, the second on platform 2, the third on shunt track 1, et cetera. With
(S, ei ) we indicate that the train units are in stateS just before eventei happens.
The pair(S, ei ) is valid if and only if eventei can take place with the given stateS;
i.e. in stateSwe are ready for eventei .

With this notation we can describe the solution for the example of Section 1.1.2
as in Table 1.3.



−
−
−
−
−




, e1
c=0→




AB
−
−
−
−




, e2
c=1→




−
AA
−
AB
−




, e3
c=0→




CCC
AA
−
AB
−




, e4
c=0→




C
AA
−
AB
−




, e5
c=1→




−
−
C
AB
−




, e6
c=1→




C DC
−
−
AB
−




, e7
c=0→




−
−
−
AB
−




, e8
c=3→




AA
B B
−
−
−




, e9
c=0→




AA
−
−
−
−




, e10

Table 1.3: Solution of the example.

1.3.1 Network of (S, ei )-pairs

The basic idea behind the dynamic programming algorithm is the following. From
the initial state and the first event we can determine all possible responses which are
compatible with the second event. In this way a set of new pairs (S, e2) are created
which are then treated recursively in the same way. For a formal description, let
each pair(S, ei ) be a node and let each transition (set of shunt movements) leading
to a following node be an arc. This way we get a network in whichwe can move
from one pair(S, ei ) to an other pair(S′, ei+1). In this network we only allow
valid pairs, and each transition has an associated cost equivalent to the number of

12



1.3 Second Approach: A Dynamic Programming Algorithm

shunt moves required for carrying out the transition. It is not difficult to see that the
shunting problem is equivalent to finding a shortest path in this network.




−
−
−
−
−




, e1




AB
−
−
−
−




, e2




−
−
AB
−
−




, e2

c = 0




−
−
−
A
B




, e2

c = 2




−
AA
−
AB
−




, e3
c = 1




−
AA
AB
−
−




, e3
c = 1

level 4level 3level 2level 1

c = 1
c = 1

c = 1

Figure 1.6: Dynamic programming network.

Although the network becomes very large, the network is highly structured. The
network consists of a number of levels, where each level corresponds to one event,
see Figure 1.6. Hence, there are only arcs going from leveli to level i + 1. This
means that the cost of getting to a particular state is given by the cost of the states
in the previous level plus the cost associated with the arcs.

To obtain the optimal solution, we just have to construct thenetwork level by
level and calculate the cost of getting in each of its nodes. However, though this
would work in theory, in practice the running time of this algorithm may explode as
the instances get larger (remember that the problem is NP-hard).

1.3.2 Eliminating Nodes

To make the dynamic programming approach work in practice weneed to bring
down the size of the dynamic programming network. In this section we present sev-
eral suggestions to speed up the dynamic program algorithm.However, by applying
some of these suggestions we can no longer guarantee that theoptimal solution is
found.

13



1 Shunting passenger trains: getting ready for departure

Eliminate symmetry Whenever there are two tracks with the same characteristics
(same capacity and reachable with the same number of shunt movements from the
platforms), there are many nodes in the network that are basically the same. In the
example given earlier we have not used shunt track 3. If all the units assigned to
track 2 are assigned to shunt track 3, we have a different solution which is essentially
the same. So, in the network we can delete many states which are symmetric without
affecting the solution.

Disallow costly transitions Given a transition with a high number of shunt move-
ments, one might not want to allow this transition from a practical point of view. We
can incorporate this, by simply deleting the arcs corresponding to these costly tran-
sitions from the network. This may reduce the number of outgoing arcs from nodes
and may even lead to nodes which are not reachable anymore, reducing the number
of nodes in the network. Note, that disallowing costly transitions may exclude the
optimal solution.

Upper bounding the solution For each node in the dynamic programming net-
work we know the cost of getting to this node. If by some (heuristic) procedure we
know that there exists a solution with costc, we do not have to proceed with nodes
in the network that have cost exceedingc, i.e. these nodes can be deleted from the
network. Reducing the dynamic programming network in this way does not affect
the optimal solution.

Detecting bad paths Suppose we have created the dynamic programming net-
work up to leveli . If we now compare the cost of all nodes in leveli , we may
expect that the costly ones have only a small chance to resultin the overall opti-
mal solution. Deciding not to continue from the nodes with high costs reduces the
dynamic programming network. However, this may exclude theoptimal solution.

Rolling horizon To make a decision for level 1, we may restrict ourselves to creat-
ing the dynamic programming network only up to leveli . Based on the information
up to leveli we may decide which arc to take leaving level 1. Starting withthe
resulting node on level 2, we now may create the network up to level i + 1 and
use this network to decide upon the level 2, et cetera. This type of decision making
is calledrolling horizon. Each time we make a decision, only a small part of the
network is considered. Again, we may exclude the optimal solution.

1.3.3 Computational Results

We have made a proof-of-concept implementation of the dynamic programming ap-
proach in C++, comprising about 1000 lines of code. The example of Section 1.1.2
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1.3 Second Approach: A Dynamic Programming Algorithm

is used to test both the implementation and some of the elimination rules. The
results are summarized in Table 1.4.

In this table,

• clm indicates the maximum allowed cost between each level,

• sym indicates whether or not symmetry elimination is used,

• ntp indicates whether or not states, in which more than 2 types oftrain units
are on the same shunt track, are forbidden,

• tp indicates whether or not states, in which unit of typesA/B andC/D are
mixed, are forbidden,

• #states gives the number of states on each level in the network. In most cases,
only state counts up to level 4 are given, as the runtime increases dramatically
after that,

• runtime gives the runtime for those computations that we ran to completion
(the running times are after various optimizations of the code, on a 2.16GHz
laptop),

• cost gives the resulting costs for those computations that we ranto comple-
tion.

The number of valid states does not tell the entire story, though. The number of
intermediatestates, i.e. those states that have to be computed and may or may not
be valid, has a large impact on the runtime as well. In case I, each of the 128 states
in level 2 generates about 25000 new states, of which in totalonly about 1500 are
valid. This is quite a large number compared to e.g. case 4A, where the number
25000 is already reduced to about 3700.

The impact of limiting the costs between levels in the network is clear: If we do
not enforce any limits, the network is simply too large to compute. If we limit to
4, we can complete the computation, but if we limit to 3 the speedup is almost a
factor of 5 without losing the optimal solution. Limiting the costs of the arcs to 2
removes the optimal solution, but could provide a good heuristic for upper bounding
the solution (see Section 1.3.2).

The other elimination rules also cut down the number of states significantly, al-
though not as dramatically as limiting the costs of arcs.

One of the major advantages of this approach is that adding new rules (e.g. heuris-
tics used by Dutch Railways planners) is extremely easy: in our implementation it is
literally a matter of minutes. Furthermore, the chosen DP-approach is very suitable
for parallelization.
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1 Shunting passenger trains: getting ready for departure

Elimination rules run-
id clm sym ntp tp #states time cost

I. ∞ - - - 28 → 128
∼25000→ ∼ 1500→ . . .

4A. 4 - - - 28 → 128
∼3710→ 1500→ 180 → . . . →

14 → 1
737s 6

4B. 4 y - - 19 → 72
∼2410→ 780 → 108 → . . . →

10 → 1
280s 6

4C. 4 y y - 19 → 72
∼2410→ 630 → 90 → . . . →

10 → 1
242s 6

4D. 4 y y y 19 → 72
∼2410→ 178 → 40 → . . . →

10 → 1
153s 6

3A. 3 - - - 28 → 128
∼870→ 1500→ 180 → . . . →

14 → 1
146s 6

3B. 3 y - - 19 → 71
∼630→ 776 → 108 → . . . →

10 → 1
63s 6

3C. 3 y y - 19 → 71
∼630→ 628 → 90 → . . . →

10 → 1
54s 6

3D. 3 y y y 19 → 71
∼630→ 178 → 40 → . . . →

10 → 1
24s 6

2A. 2 - - - 19 → 121
∼140→ 1196→ 180 → . . . →

12 → 1
18s 7

2D. 2 y y y 13 → 64
∼120→ 166→ 40 → . . . → 8 →

1
3s 7

Table 1.4: Dynamic Programming Results.
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1.4 Alternative Approaches

1.4 Alternative Approaches

Besides the presented Greedy Algorithm and Dynamic Programming Algorithm,
other solution approaches may be possible. In this section we give some comments
on such approaches.

1.4.1 Local Search

One might expect that a local search approach is useful to obtain good solutions,
since each solution is a list of shunt movements compatible with the event list.
However, we feel that defining small local operations on thislist which result in new
compatible lists of shunt movements, is extremely difficult. When a small change
is made in the movement list, many repair operations may be required to keep the
list compatible with the event list. Consider the example given in Section 1.1.2,
where between eventse2 ande3 train AB is shunted to track 2. Suppose we modify
this first shunt movement by movingAB to shunt track 1 instead of moving it to
shunt track 2. This small change makes the remainder of the list incompatible with
the events, i.e. the shunt movement between eventse8 ande9 cannot be performed.
This example shows that changing a single movement is not just a local change,
it requires repair operations that can be much further down the list. Furthermore,
it seems to be difficult to calculate the resulting change in the objective value in
a simple way since we know nothing about the amount of repair operations. This
convinces us that a local search approach may be not an easy way to go.

1.4.2 Integer linear programming

A possible approach is to extend the model from [7] by other shunt moves. For
example, to include the possibility to wait at the platform and delay shunting, we
need to include the ‘shunting time’ explicitly. The currentmodel includes a variable
z j s which equals 1 if train unitj is parked at or retrieved from trackss. We could
replace these variables byz j st signaling if train unitj is parked at or retrieved from
trackss at timet . Another possibility is to add variablest j representing the shunting
time of train unit j . Although the number of reasonable shunting times for a train
unit is limited, both options significantly complicate the model: the first by strongly
increasing the number of variables and the second by the needfor additional ‘nasty’
constraints. The computation time will probably increase accordingly.

A different LP-based approach is to applycolumn generation. In [4] a column
generation algorithm for the planning of aircraft at gates or platform stands at Ams-
terdam Airport Schiphol is presented. Because of the similarity with the problem of
planning train units on a shunt yard, i.e., shunt tracks correspond to gates at an air-
port, the idea seems useful to explore. The idea is that the problem is decomposed
into two levels. At the highest ‘master’ level we have variables representing a com-
plete shunting plan for one shunt track and the most important constraint is that the
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1 Shunting passenger trains: getting ready for departure

retrieval of each departing train unit and the parking of each arriving train unit is
included in exactly one shunting plan. At the detailed or subproblem level we deter-
mine feasible shunt plans for one track which are expected tobe beneficial for the
optimization at the master level. Column generation approaches have been success-
ful to solve large optimization problems in many different applications. However,
certain shunt moves such as rearrangements of trains between different shunt tracks
seem to be quite complicated to include in the model and therefore we are not con-
vinced that it is worth to investigate this approach further.

1.5 Further research

In this paper we have presented two approaches for shunting train units. The first
one is a greedy algorithm that can find a feasible shunt plan quickly. This algorithm
typically chooses one single possibility that looks best atthe current moment in
time. The second one is a dynamic programming algorithm thatcan find the optimal
shunt plan and typically explores many possible states. We presented an outline
and a basic version of the algorithms and developed a preliminary prototype of the
dynamic programming algorithm.

Each of the algorithms can be improved by moving more towardsthe other ap-
proach. The greedy algorithm can be improved by including smart look-ahead rules
and rules used by operational planners. The dynamic programming can be improved
by rules to prune non-promising states and in this way make the set of states that
have to be explored smaller. To have the best of both worlds, the two algorithms
can also be combined. For example, a state within the dynamicprogram can be
extended to a complete feasible solution by the greedy algorithm. This solution can
then be used as an upper bound to prune non-promising states.Investigating these
possible improvements is a topic of future research.
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spatio-temporal features

Claude Archer1 Michiel Hochstenbach2 Kees Hoede3

Gjerrit Meinsma3∗ Hil Meijer3 Albert Ali Salah4

Chris Stolk3,5 Tomasz Swist6 Joanna Zyprych7†

Abstract

The paper analyses signals that have been measured by brain probes during
surgery. First background noise is removed from the signals. The remaining
signals are a superposition of spike trains which are subsequently assigned to
different families. For this two techniques are used: classic PCA and code
vectors. Both techniques confirm that amplitude is the distinguishing feature
of spikes. Finally the presence of various types of periodicity in spike trains
are examined using correlation and the interval shift histogram. The results
allow the development of a visual aid for surgeons.

Keywords: spike sorting, deep brain stimulation, PCA, interspike interval his-
togram

2.1 Introduction

The problem addressed in this study involves helping a neurosurgeon get his or her
bearings during deep brain surgery. A stereotactic frame isused to fix a patient’s
head during an operation, and simultaneously to provide a coordinate system for the
surgeon to navigate. The region to be operated is determinedby imaging techniques
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prior to the surgery. For some tasks, like taking out a tumor,the resolution of the
image is good enough for the operation. For finer tasks, however, the structural
anatomy of the brain is less relevant than the functional anatomy. An example
of the latter is deep brain stimulation (DBS), which requires a high resolution to
determine the location at which to stimulate.

One method to determine the functional anatomy is to insert fine needles into
the brain to record neuron action potentials during the surgery. This can indicate
whether the targeted area is reached or not. However, this task is very difficult, and
requires a lot of expertise. The medical group we are workingwith uses the fol-
lowing approach. Several micro-needles (10 micron thick, multiple needles about
2 millimeters apart) are inserted into the operating region. The neural activity is
recorded for periods of 10 seconds, converted to sound waves, and played to the
surgeon, who then decides whether the needle is on target or not. If not, the surgeon
moves the needle some 0.5mm and the procedure is repeated.

Our aim in this project is to determine which methods of analysis and information
presentation would help the surgeon to classify the recorded neural activity in real
time. Moreover we would like to incorporate the knowledge ofthe expert surgeon
into the analysis in a way that helps inexperienced surgeons, particularly as expert
knowledge is highly qualitative, depends on intuition honed by many surgeries and
is very difficult to state as a procedural description.

Apart from the difficulty of modeling expert knowledge, there are several other
challenges in this problem. When a needle is recording neural activity, it records a
great deal of background noise too, which needs to be accounted for. Deep brain
recordings have much higher noise levels than cortical recordings. Depending on
the proximity of neurons in the area, several neural activities can be recorded with
a single needle, and the fact that closely spaced neurons usually have highly corre-
lated activities makes their separation difficult. A singleneuron can have relatively
regular interspike intervals, or it can alternate periods of low activity and high-
frequency firing. Furthermore, neurons can go active or inactive during a single
recording, and the number of neurons contributing to the signal may change. The
recording time is typically short, which makes temporal classification via statistical
methods difficult, if not impossible. On the other hand, classification via the spike
shape is not trivial either.

2.1.1 The data and problem details

The basic object of study are voltage tracesx(t, L) with L the level of insertion and
t the time. Possible levels areL ∈ {0, 50, 100, . . . , 500}µ m and the time ranges
over precisely 10 seconds,t ∈ [0, 10]. Available for analysis are sampled

xk := x(kTs, L)

at a sampling frequency of

fs = 1/Ts = 20kHz.
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Figure 2.1: Tracesx(t, L) for levels L = 50, 100, . . . , 500µm and timet ∈
[0, 10] s.
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This means that frequencies up to 10kHz can in principle be captured by the discrete
measurementsxk. Note that from now on the levelL is suppressed in our notation
xk. We will analyze voltage traces only for a given fixed level. Powerline artifacts
and similar disturbances are assumed to have been removed from xk. Figure 2.1
shows a typical set of traces for various levelsL. Its behavior changes per level
but also within each level the signal characteristics may change over time. We
assume that signals are stationary within 1 second. At most levels in Figure 2.1
peaks are clearly visible, which suggests that significant signal power is attributed
to these peaks. A quick scan however shows that the power due to the peaks is
negligible and also in the frequency domain the power due to the peaks turns out to
be not clearly separated from that of background noise, i.e.their respective spectra
overlap significantly. Inspection of Figure 2.1 suggests that background noise can
be removed in the time domain using a threshold. This is explained in Section 2.2,
where we follow the approach given in [10].

The basic waveform, and repeated waveform, respectively known asspikeand
spike traincan be depicted as follows:

≈ 1.4 ms ∈ [5, 200] ms

spike spike train

Given the sampling frequency of 20kHz this means that a single spike covers at
least 20 samples. Spikes with a large amplitude stand out in Figure 2.1. Surgeons
distinguish three types of spike trains:

1. spike trains ofregular firing rate. These originate from neurons that fire at a
rate of 5Hz to 50Hz;

2. spike trains ofregular-HF firing rate. These originate from neurons that fire
at a rate of 50Hz to 150Hz;

3. spike trainbursts. These originate from neurons with firing rates around
100Hz with the main feature that pockets of activity are interlaced with pock-
ets of inactivity. The amplitude of spikes may vary within a burst.

This is a coarse classification and irregular firing patternsand many other types may
be present as well. For instance a neuron can stop firing for some time or change its
amplitude. There are many other sources of non-stationarity. One source is due to
the movement of the neurons with respect to the needle. Another is the dynamics
of the neuron itself. For example, when a needle advances, itcan stun the nearby
tissue, so that the neuron stops firing completely or at leasttemporarily alters its
firing behavior, before turning back to normal behavior. Detecting time windows of
near stationarity is crucial and this is why the analysis hasto take place for every
window of, about, 1 second.
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2.1 Introduction

The problem is to automate what the surgeon does and to do so inreal time, with
a delay of at most 5 seconds. In short, we want to:

1. pinpoint the location of spikes (i.e. remove background noise),

2. separate the set of spikes trains into various classes (corresponding to different
neurons),

3. determine for each of the classes of spike trains to which of the three types
they belong (if any),

4. visualize the findings.

Problems 2 and 3 combined are known as the problem ofspike sorting. In the rest
of the paper we describe a set of ideas that could be useful in solving these problems
in real time. A color-coded visualization as exemplified in Figure 2.2 is a possible
desired outcome of the project, as it would help the surgeon to decide on the nature
of neuronal activity in the measured area.

regular HF regular HF

regular

burst burst

t = 0 t = 10

Figure 2.2: Visualizing the presence of regular spike trains (green), regular-HF
spike trains (blue) and spike train bursts (red) as a function of time.

2.1.2 Literature survey

Spike sorting has been around since the 1960s. The earlier methods relied on tem-
plate matching, and required heavy offline processing [14].More recent methods
combine feature extraction, probabilistic modeling, and clustering. The accuracy
and efficiency of these methods are much greater than before,but most of them are
still too computationally intensive to be used during the surgery, and they do not
work well with deep brain recordings. An excellent recent review of the problem is
the one by Lewicki [6].

The success of spike sorting methods is determined by simulations on artificial
data (for which the correct classification is known) or by comparisons to human-
annotated real recordings. Harriset al. studied the performance of a human op-
erator when sorting spikes recorded from a tetrode (4-wire electrode) manually,
and decided that human operators sort the spikes suboptimally [5]. Single-needle
recordings (as we study in this work) were markedly more difficult to classify than
tetrode recordings, where the presence of multiple sensorsprovides robustness in
the decisions. Their conclusion was that “automatic spike-sorting algorithms have
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the potential to significantly lower error rates.” Similar observations were made
in [17], which reports average error rates of 23% false positive and 30% false neg-
ative for humans sorting synthetic data. In artificially created data sets, this type of
error is reduced. Consequently many researchers create artificial data sets by mod-
ifying a small set of annotated signals, adding noise and superposing them to make
the problem more difficult [1, 2, 10, 18], or by resampling from the distribution that
characterizes the data [17]. Generation of realistic data is another issue. In [8],
a cortical network simulation based on GENESIS was used to generate artificial
spike data. The authors note that the spike sorting algorithms tested on their simu-
lated data failed. More recently, Smith and Mtetwa proposeda biophysical model
for the transfer of electrical signals from neural spikes toan electrode to generate
realistic spike trains for benchmarking purposes [15].

Assuming that the procedure to validate a proposed spike sorting method is ade-
quate, the first phase is usually filtering to remove artifacts and noise. The record-
ings are influenced by the ambient signals, interference from nearby electronic de-
vices, vibrations caused by movement and noise from other neurons firing in the
vicinity. The amplitude of the signal is a good indicator of aneural spike, and is
frequently used to determine spike occurrences. It is necessary to select static or
adaptive thresholds for this purpose. Once a threshold is selected, activity below
the threshold is considered to be noise. To eliminate noise on the selected spikes,
a smoothing procedure can be applied. In [3] the signal is resampled with a cubic
spline interpolation for a better alignment of the spike shape with its peak ampli-
tude. (Section 2.2 of our paper describes an efficient alternative approach.) In [13]
spikes are detected by looking at threshold crossings of a local energy measurement
of the bandpass of a filtered signal, which is shown to be more reliable than the raw
signal.

Once the spikes are extracted, they can be classified by theirshape characteristics,
temporal characteristics, or both. For temporal characteristics, the interspike inter-
val distribution and its correlation-based analysis can reveal different spike firing
patterns [11]. But these methods ignore the spike shape. Forshape-based character-
ization, the spike shapes are normalized by their maximum amplitude, cropped, and
treated like shape vectors. The two approaches that are frequently used are clus-
tering to get the mean shapes for spikes, or matching againsta pre-specified set of
templates. The difficulty in the clustering approach lies inthe fact that the number
of clusters is usually unknown. One method proposes to startwith a large number
of clusters, and to combine clusters that are sufficiently close, until a stopping cri-
terion is reached [3]. This resembles the method proposed byFigueiredo and Jain
for determining the complexity of a Gaussian mixture model automatically [4]. In
this approach, the number of clusters in the mixture is not specified prior to model
learning, but determined on the fly. The algorithm is initialized with n clusters,
and during each step of the algorithm the smallest cluster iscombined with another
cluster, and the expectation-maximization (EM) algorithmis run until convergence.
Each step ends with one component less than the previous step, until only a single
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2.2 Spike classification

component remains. Then, all the intermediate steps are evaluated by a minimum
description length criterion to select one model as the finaloutput of the system.
In [3], instead of generating all possible models, a statistical test is employed to
stop the combination procedure.

Both template matching and clustering methods face the potential problem that
spikes do not have fixed amplitude and shapes. During the recording, movements
of the electrode or a change in the membrane potential can cause a change in the
spike amplitude and shape [6]. Similarly, Quirogaet al. remark that when the spike
features deviate from normality, most unsupervised clustering methods will face
difficulties [10].

In [16], several spike characteristics were contrasted to see which features lead to
a better classification. The parameters of the waveform (i.e. amplitude, spike width,
peak-to-zero-crossing time, peak-to-peak time) were found to be insufficient for ef-
fective discrimination. The authors also contrasted optimal filtering techniques [12],
template matching (with root-mean squares error criterion), and principal compo-
nents analysis (PCA)-based techniques. Their results showthat even though it is
possible to obtain good results with the costly template matching method, PCA-
based approaches were much more robust against higher noiselevels. The overlap
of waveforms was found to be greatly impairing the accuracy of template-based
methods. A possible solution to this problem was proposed in[18], where PCA and
clustering techniques are combined to test incrementally whether a single source or
multiple sources contribute to the signal. Recently, Pavlov et al. contrasted wavelet
and PCA-based methods, and argued that wavelet-based methods could perform
better than PCA, yet they need to be carefully tuned for this purpose [9].

For real-time applications, even the PCA-based methods maybe too computa-
tionally intensive. In [19] a front-end hardware architecture is described for spike
sorting, but the system is tested on a ‘clean’ sample for which PCA achieves 100%
accuracy. Still, the proposed algorithm can achieve good results with much less
computation steps.

2.2 Spike classification

In this section we formulate ways to separate dominant spikes from background
noise and subsequently try to split the many spikes into classes that correspond to
individual neurons, or at least to neurons with similar firing behavior.

2.2.1 Detection, double spike removal and time shifting

Consider a noisy tracexk, such as in Figure 2.1. If the valuexk of the signal is above
a certain threshold, it is assumed to belong to a spike. The paper [10] describes
how to choose the threshold using the standard deviationσn of the noise. Under the
assumption of being normally distributed (and the background noise indeed appears
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2 Neural spike sorting with spatio-temporal features

to be so) the standard deviation equals

σn = 1

0.6745
median(|x1|, . . . , |xN|).

The usual formula using an average of squares is not used, because then the ex-
tremes due to the spikes would affectσn too much. The threshold is given by a
constantαthr timesσn,

Vthr = αthr σn,

with αthr = 4 or 5, or a number in between, the choice of which appears to be
somewhat subjective as different values were found in the literature.

Each spike will lead to a small interval of values above the threshold. To have a
simple criterion, we takemaxima in the signals whose value is above the threshold,
which define a set of pointstp, j (p for ‘peak’). This is our initial set of ‘raw’ spike
times8. We crop a temporal window that contains the spike, starting0.4 ms before
the peak and ending after 1.2 ms, resulting in a 1.6 ms data window. These form our
‘raw’ set of spike traces. An example of such a raw set is displayed in Figure 2.3.
In this example 674 spikes where found in 10 seconds of data.
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Figure 2.3: ’Raw’ spikes, cropped and aligned by their peaksat time zero. Also
displayed are the functionswd, used for identifying double spikes (thick
solid line), and the taper function (thick dashed line), which we use
to select only the part of interest for each spike. (Every fourth spike
plotted.)

The transformation from the no-activity state (signal within noise level) to the
peaked activity is very fast, comprising about 0.15 ms, which means that with our

8The coding was done in MATLAB, and the experiments were conducted on a set of traces that
were available from patient measurements
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2.2 Spike classification

sampling rate, three samples can be acquired for the spike before it peaks. After the
peak some of the spikes continue for up to about 25 samples (1.25 ms), although
for the shape analysis the first 20 samples seem to be sufficient.

There are several potential problems at this stage:

• Double detection: A single spike could be mistaken for two individual spikes
due to noise, say within two or three sample points. A possible strategy to
deal with this is to consider the largest of two close peaks tobe the real peak,
and to ignore the other. For the limited set of sample traces that we worked
with, this problem did not occur.

• Overlapping spikes: It is possible that a second spike occurs shortly after or
before a spike. It can be seen in the figure that this happens inour data. These
are outliers for the purpose of spike shape analysis, as a single neuron cannot
fire again in such a small period, and we should therefore remove them.

To remove double spikes, we use two threshold areas around the peak, one
containing samples [-0.2ms, 0.2ms] around the peak (about 9samples) and
the second from [0.25ms, 0.8ms] after the peak (about 11 samples). Values
above the threshold (depicted with a thick solid line in Figure 2.3) indicate the
presence of a double spike. Obviously, it remains to be investigated whether
the parameter settings we use are suitable for other measurements, i.e. on
larger collections of recordings. But a visual inspection of Figure 2.3 and a
plot of the rejected spikes can be used to assess reliabilityof the result. In our
data set 24 of the 674 spikes were rejected as double spikes.

We use a taper function to limit the interval around the peak,and the subse-
quent smoothing of the signal depends on the choice of the taper function.
This can be important when interpolation is applied later inthe process. The
taper function we have used had a width of 0.1 ms to keep tapering to a mini-
mum, and to prevent lossy smoothing. A scaled version of the taper function
is plotted as the thick dashed line in Figure 2.3. The spikes that are thus
excluded from the analysis and the remaining valid spikes are plotted in Fig-
ure 2.4.

• Negative polarity spikes: Spikes with negative polarity were ignored.

The next step would be to applytime shift correctionsto the spike traces, to align
them better. Spikes can have a time shift that is a fraction ofthe sampling period, so
interpolation becomes necessary to apply such time shifts.In a Scholarpedia paper,
it is proposed to interpolate the spikes at a finer resolutionand then align them
by their maxima. To keep keep the subsequent computational complexity low we
developed an alternative approach. Each spikef j (t), j = 1, . . . , N is time shifted

8www.scholarpedia.org/article/Spike sorting
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2 Neural spike sorting with spatio-temporal features

over a timeβ j . Now the vectorβ = (β1, . . . , βN) is chosen thatmaximizes the total
correlationof the traces, given by

∫
dt
∣∣∑

j

f j (t − β j )
∣∣2, with constraint

∑

j

β j = 0.

Fourier interpolation was used, so that the interpolation and optimization can both
be done in the Fourier domain, using off-the-shelf interpolation algorithms. Compu-
tation time in MATLAB takes about 0.5 second for 640 spikes on a regular machine,
which indicates that an optimized code will have acceptabletemporal complexity.

A comparison of Figures 2.3 and 2.4 shows that time shifting leads to much
higher similarity between the spikes. In the next section, we will show that time
shifting is also beneficial for PCA-analysis. Optimal time shifting results in much
better clustering behavior, with tighter clusters, and occasionally with better sepa-
ration, resulting in more clusters.

To summarize, we have implemented the necessary codes for the following pur-
poses:

1. Detection of maxima above the threshold.

2. Removing double spikes.

3. Tapering the remaining spikes.

4. Time shift corrections in order to maximize total correlation.

These steps give an adequate pre-processing for the subsequent shape analysis, see
Figure 2.4(b), and our method of computation of time shift corrections makes the
overall procedure efficient.

2.2.2 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a popular tool that is used in numerous
scientific, medical, and engineering applications such as noise reduction in signal
processing and face recognition. Here we will use the PCA to recognize and analyze
the different types of spikes.

Let Ã ∈ R
m×n be the wide matrix containing the spike data as columns,

Ãi j = samplei of spike j , i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

Heren is the number of spikes found in the signal (for instance,n ≈ 650 in the
previous subsection), andm is the number of samples per spike, typicallym ≈ 20.
Although it is no real restriction, for convenience we will assume in the following
thatn > m; in practicen may be much larger thanm.
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Figure 2.4: (a) Double spikes removed from the set of spikes;(b) spikes after re-
moval of double spikes, tapering and time shift correction (every fourth
spike plotted in part (b)).

The PCA is based on the Singular Value Decomposition (SVD); often, the SVD
and PCA are used as synonyms. However, in PCA the SVD is applied to the matrix
A obtained fromÃ by subtracting from each trace (column) the mean of that trace

Ai j = Ãi j − 1

m

m∑

k=1

Ãk j .

The SVD of a matrix is a decomposition of the form

A = U6VT

with U TU = I , V VT = I and 6 a diagnonal matrix with nonnegative, non-
increasing entries,σ1 ≥ σ2 ≥ · · · on its diagonal (TheT denotes transpose.) There
are two forms of an SVD: a full and a reduced SVD. In the full SVD, bothU andV
are square matrices. For almost all applications the data contained in the full SVD
are superfluous and it is much more efficient to use the reducedSVD, in whichU
is still square, sizem × m, with 6 now sizem × m as well, andV has sizem × n.

The columnsu1, u2, . . . , um of U are theleft singular vectorsor principal com-
ponentsand give information on the patterns that are present in the collection of
spike data. Their corresponding singular valuesσ1, σ2, . . . , σm indicate how strong
the respective patterns are. By construction the patternsu1, u2, . . . , um are orthog-
onal; they do not represent spikes exceptu1.

We compute the PC’s of the spike collection and show the main results in the
figures below. In Figure 2.5 we plot the first two singular values against each other
for all spikes in a single tracexk. This kind of plot is useful to find clusterings
of spike shapes in the trace, i.e. groups of spikes with similar shapes. In this case
three clusters can be observed. This was exceptional, most of the traces had only
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2 Neural spike sorting with spatio-temporal features

two clusters, one consisting of large spikes, and the other of the remaining spikes.
Some had no clear clustering. In Figure 2.6 we plot the mean ofthe traces (the thick
dashed line), and the first four principal components, the thickest being the first, and
the thinnest the fourth.
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Figure 2.5: The first two singular values from PCA analysis plotted against each
other. Three clusters can be observed.
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Figure 2.6: The mean (dashed black line), and first 4 principal component vectors,
the first corresponding to the thickest solid line.

Since in Figure 2.5σ2 is much smaller thanσ1, this figure suggests that there is
one quite dominant spike pattern. Indeed, the distinguishing feature is the size of
the spikes. Of course, this outcome is influenced by the removal of the outliers (the
second spike in a sequence of two consecutive spikes) in the previous subsection.
In signals where many spikes with negative polarity are present, we expect a much
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2.2 Spike classification

largerσ2 corresponding to a patternu2. In Figure 2.7 we plot the largest singular
value against time. This picture shows that the presence of several clusters is related
to a change in observed spike shapes that occurs aroundt = 8000ms, and thus
reveals even more structure in the data.
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Figure 2.7: The largest singular value from PCA plotted against time (in milisec-
onds). The clustering can also be observed in this picture.
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Figure 2.8: Coding spike features.

2.2.3 Coding

Another technique to classify spikes is to represent any distinguishing feature by a
number on a scale and combine these numbers to create acode vector. There are
several features that can be defined:

• A spike has atopvaluea+. As the amplitude depends on how close the probe
is to the neuron, it should be normed e.g. by consideringan = a/amax where
amax is the maximum amplitude occurring during a measurement.
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2 Neural spike sorting with spatio-temporal features

• A spike also has abottomvaluea− (taken positive). Now the totalamplitude
b = a+ − a− can be considered as a feature, scaled asb/ max(b).

• The polarity p depends on the temporal order ofa+ anda−. It is positive,
p = 1, if a+ is attained beforea−, and negativep = −1 otherwise.

• Thewidthw can be defined as the time difference between the timeτ1 when
the signal reaches half peak valuea+/2 and the timeτ2 when it first exceeds
a−/2 after the occurrence ofa− for a spike with positive polarity. For a spike
with negative polarity the width can be defined as the width ofminus the
signal.

These features are illustrated in Figure 2.8. The idea of coding is now as follows.
After normalization,an takes a value in the interval [0, 1]. This value could be taken
as the encoding of the amplitude, but the interval may also bedivided into some,
say three, equal parts that can be encoded by 0 (ifan ∈ [0, 1

3)), 1 (if an ∈ [ 1
3, 2

3)),
and 2 (if an ∈ [ 2

3, 1]). The amplitude is thus encoded on a 3-point scale: ”low”,
”medium” and ”high”. In a similar way the width, polarity andamplitude of a spike
can be encoded on either a 2-point or a 3-point scale. With these four features we
have 3× 2 × 2 × 2 = 36 different code vectors

(an, b, p, w) ∈ {0, 1, 2} × {0, 1} × {−1, 1} × {0, 1}.

Some other features were also suggested:

• Similar to total amplitude, therelative height hrel = |a+
a− | can be defined and

may be encoded by a 2-point scale, 0 ifhrel ≥ 1 and 1 ifhrel < 1.

• The slope at the second halftimeτ2, as there are some neurons which can
show an afterhyperpolarization, i.e. a prolonged negativephase.

• Different types of neurons may show spikes that differ in theregeneration
quotientof the two time intervals between start and passage of zero respec-
tively passage of zero and the end. So for ”width” there are various ways to
define ”start” and ”end”.

As we have seen in the former subsection it seems doubtful that many essentially
different types of spikes occur. This is confirmed by this alternative classification
method. In fact encoding only amplitude, polarity and relative height, leads to
only 12 different code vectors, from(0, 0, −1) to (2, 1, 1). Figure 2.9 shows four
histogram of two traces, one at levelL = 200 and one at levelL = 50. First, we
see thatan andb within a single trace encode more or less the same feature. A
fast majority of spikes have positive polarity, and manual inspection of spikes with
negative polarity led to the conclusion that there was in fact another cause for an
early negative peak to be present. The few spikes with negative polarity we did find
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Figure 2.9: Histogram for four coding features for two traces xk: (top four) trace at
level L = 50; (bottom four) trace at levelL = 200.
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Figure 2.10: Data that cause problems when defining features. Top: negative polar-
ity; middle: several spikes after each other; bottom: burst. The peaks
are above threshold.

could be due to a dying cell. So polarity does not distinguishspikes. Neither does
the width. Moreover, the “half”-timesτ1 andτ2 did not always exist in case several
spikes occurred shortly after each other or during a burst, see Figure 2.10.

These computations show that the neurons can be distinguished using just the
maximuma+. Only a few code vectors are relevant, i.e. correspond to occuring
types of spikes. This is in agreement with the PCA results.

2.3 Regularity extraction

Now we assume that background noise in a trace has been removed and that the
remaining spikes inxk are classified (separated) into a collection of a few different
spikes, each with its own characteristics. In this section we continue with the anal-
ysis of asinglespike train. By definition then any spike in a spike train shares the
same features, hence we need only specify the time instancesat which the spikes
occur (e.g. where the maximum of the spikes occur). We usesk to denote such a
spike train time series. That is,sk = 1 if a spike occurs at discrete time indexk,
andsk = 0 if no spike occurs atk. The repeating firing patterns of neurons induce
periodicities in the spike trainsk and we should now try to pinpoint what type of
firing pattern is present insk: a regular firing rate, a regular-HF firing rate or a burst,
and possibly a superposition of the above.

2.3.1 Autocorrelation and Fourier Analysis

Classically periodicities are determined by correlationrk := ∑
i si+ksi and the dis-

crete Fourier transform (DFT). A distinct advantage of bothcorrelation and DFT
is that computation is very efficient: for a trace ofn samples it takesO(n log2(n))

opertions to compute correlations and the DFT. Fourier and equivalent autocorrela-
tion analyses are fairly robust with respect to small variations in the periodicity of
the spikes. A more severe problem occurs when the spike trainis asuperposition
of periodic signals (and noise). Figure 2.11(a) demonstrates this problem: while
the signalsk clearly is a superposition of two purely periodic signals—with period
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5 and 8—the autocorrelation analysis does not clearly pinpoint the periodicities of
the involved signals, and does not help in separating them.
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Figure 2.11: Autocorrelation (left) and interspike interval histogram (right) of spike
trainsk with spikes att = (0, 5, 8, 10, 15, 16, 20, 24, 32, 40).

While autocorrelation and DFT consider a spike train as a function sk of time
k, it is more efficient for computational purposes to store spike trains as sequences
t = (t1, t2, . . .) of time instances at which spikes occur. For instance the spike train

s =
k = 0 k = 4 k = 10 k = 15 k →

can be stored more efficiently as the sequencet = (0, 4, 10, 15). The analysis of
time sequencest is considered next.

2.3.2 Interspike interval histogram

Several mathematical techniques are known for discoveringregularity in time se-
quences, with autocorrelation, discussed in the former subsection, being one of
them. The method that we will describe in this subsection is related to autocor-
relation, but turns out to be appropriate for determining the beginning and end point
of periods of regular firing of neurons, even when there are pockets of inactivity be-
tween windows of regular activity. The idea will be introduced for strictly regular
sequences. Let us consider a regular time sequence withperiod5,

t = (0, 5, 10, 15, 20, 25, 30).

The regularity with period 5 is discovered simply by lookingat the consecutive time
differences, which indeed are all equal to 5. Now suppose thedata is contaminated
with time instances at 8, 16 and 18, so

t = (0, 5, 8, 10, 15, 16, 18, 20, 25, 30).

37



2 Neural spike sorting with spatio-temporal features

The period 5 is now masked. Considering consecutive differences now gives rise to
new “periods” 8− 5 = 3, 10− 8 = 2 and 16− 15 = 1, 18− 16 = 2, 20− 18 = 2.
The idea now is that by comparing not only neighboring time differences, but also
other possible time differences, we can recover the dominant difference, which is 5
in this case. In fact, addition of the series of neighboring differences will produce,
among others, in our case 3+ 2 = 5 and adding up once again produces 1+ 2 +
2 = 5. Consideringall differences between pairs of time instances will result in a
histogram in which the period 5, as well as multiples of 5 dominate. If there arem
time instances, then

(m
2

)
= 1

2m(m − 1) differences are to be calculated.
The resulting histogram is called theInterspike Interval Histogram, or IIH for

short [11]. The IIH procedure can be visualized as follows: for all tk ∈ t the
sequencet is first shifted by−tk (effectively shifting itskth element to zero) and
the resulting sets of shiftedt−tk are then added up, see Figure 2.12. As we count the
differences to obtain the histogram, it might also be calleda Difference Histogram
but we stick the literature standard of IIH.

+

= t − t1
= t − t2
= t − t3
= t − t4
= t − t5

Figure 2.12: Visualization of the construction of the IIH.

To illustrate the procedure differently we superimpose a random set of times on
our example sequence. Say we have

t = (0, 5, 8, 10, 14, 15, 16, 18, 20, 25, 27, 28, 30). (2.1)

The consecutive differences form the sequence

(t2 − t1, t3 − t2, . . .) = (5, 3, 2, 4, 1, 1, 2, 2, 5, 2, 1, 2).

In this sequence the difference 2 occurs five times while difference 5 occurs only
twice. Adding two consecutive differences leads to the sequence

(8, 5, 6, 5, 2, 3, 4, 7, 7, 3, 3).

Adding three consecutive differences leads to the sequence

(10, 9, 7, 6, 4, 5, 9, 9, 8, 5).
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Figure 2.13: IIH of thet of Eqn. (2.1). By symmetry we need only specify the IIH
for positive lags, as done here.

On the basis of these three sequences of differences we already see that “2” and “5”
show up as likely periods of regular subsequences. The full IIH, for positive lag, is
shown in Figure 2.13.

The six intervals int of length 2 are [8, 10],[14, 16],[16, 18], [18, 20], [25, 27]
and [28, 30], whereas the six intervals of length 5 are [0, 5], [5, 10], [10, 15], [15, 20],
[20, 25] and [25, 30].

The first six intervals show regular sequences 8–10, 14–16–18–20, 25–27 and
28–30, while the second six intervals show one regular sequence 0–5–10–15–20–
25–30. We thus find the regularity with period 5 andduration(total length) 30 but
also a regularity with period 2 and duration 6. Just two timescannot be considered
a real sequence. Looking upon intervals as train wagons thatcan be coupled by
spikes which occur at common times (the ends of the wagons) weindeed can speak
of spike trainsas coming forward by this procedure.

Figures 2.14 and 2.15 show how IIH can be employed to determine the firing
frequency of the dominant neuron in the recording. In Figure2.14, a small portion
of the raw spike data is shown on the left. Once the data is processed, and the spikes
are localized, the IIH is constructed by pooling spike events after each spike. The
peak of the IIH represents the dominant interspike intervaltime, i.e. 187 Hz. When
we look at the rest of the IIH, the global wave pattern is indicative of long-term
tremor. In Figure 2.15, the high-frequency signal from a dying neuron is depicted.
The IIH reveals that the neuron bursts with 227 Hz frequency.

2.3.3 Connection between autocorrelation and IIH

The IIH procedure generates from a sequence ofm time instancest a new sequence
of m − 1 positive time lags and it appears to requireO(m2) operations. Forming
the autocorrelationrk = ∑

j sj sk+ j of a signals ∈ R
n on the other hand requires

O(n log(n)) operations. In theory there is no relation betweenn andm (other than
n > m and some variations) so without further assumptions it is hard to compare
the complexity of the two approaches. Oddly enough autocorrelation and IIH are
equivalent for a single event type9:

9When different categorical events can be related to each other, the inter-event interval histogram
can be employed to determine the regular patterns too, see [7]
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Figure 2.14: 187Hz period+long term tremor. Left: raw dataxk; right: IIH with a
peak att = 5.35ms corresponding to frequency of 186.9 Hz.
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2.3 Regularity extraction

Lemma 2.3.1. Let t ∈ N
m and s ∈ N

n form a pair of time sequence and corre-
sponding time series. Then the autocorrelation of s equals the time series of the IIH
of t .

Proof . The IIH seen as an operation ons (rather thant) is a sum of shifteds and
therefore is a discrete convolutionh ∗ s. It is easily seen thath is in fact the time
reverseds, but then the convolutionh ∗ s is the autocorrelation.

Indeed the two plots in Fig. 2.11 are equivalent. The result remains valid if time
instances appear more than once int , in which casesk should be defined to mean
the number of times thatk appears int . The result also implies that IIH and spec-
tral analysis (DFT ofs or its autocorrelation) contain the same information. The
difference is the way they are computed and stored. It is as yet an open problem
which of the two approaches is more efficient computationally. The IIH appears
more natural.

2.3.4 Approximate regularity

Neurons will fire at time intervals that are not completely equal in length, but suffi-
ciently close to call it regular firing. We therefore consider approximate regularity
for firing rates, demonstrated on a very simple but illustrative example. Let the time
sequence for spike events be

st = (0, 30, 59, 87, 119, 150).

The consecutive intervals have lengths 30, 29, 28, 32, 31, which would correspond
to quite “close” values in the IIH. A strictly regular sequence with period 30 would
show five times 30, but now there are five intervals close to 30 and with average 30.

The question of determining the regularity of a sequence canbe answered by
considering intervals [30−1, 30+1] around the average value.1 = 0 corresponds
to the strictly regular sequence. We propose to use the following measurefor the
regularity sequences:

R = 1 − 1

average
≈ 0.93.

whereR = 1 corresponds to strict regularity.1 is the maximum difference occuring
betweeb interval lengths and the average for a set of close differences of times that
is tested for regularity. We assume that no set should be considered for which1 is
larger than the average, so thatR is a non-negative number in the interval [0, 1].

It must be stressed that once a set of differences is chosen, one still has to check
whether indeed one spike train has been found. A very simple example of two spike
trains with period 5 that interfere, is given by the sequence

t = (0, 1, 5, 6, 10, 11, 15, 16).
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2 Neural spike sorting with spatio-temporal features

The histogram shows peaks at “1” and at “5”. The four differences of 1 do not form
a train at all, whereas the six differences 5 turn out to form two trains:(0, 5, 10, 15)
and(1, 6, 11, 16).

An alternative approach to detect regularity using statistcal methods is indicated
next. For a sequence of time instancest = (t1, t2, . . .) at which spikes occur, define
the sequence of differences

1t = (t2 − t1, t3 − t2, . . .).

Assume that the differencestk+1 − tk are a realization of a single random variable
T . Based on the emperical distribution and using an unparametrc test it is possible
to find the distribuition of the random variableT . Under the assumption thatT
is normally distributed,N(µ, σ 2) and based on the available realization1t it is
possible to find estimatorŝµ and σ̂ 2 of the mean and the variance of the normal
distribution. Then taking into consideration a confidence level of, say, 95% for all
the realizations thentk+1 − tk ∈ (µ̂ − 2σ̂ , µ̂ + 2σ̂ ) can be considered indicating
approximate regularity of the firing rates.

2.4 Concluding remarks

In this paper we mentioned four goals in Section 2.1.1.
The first goal mentioned was pinpointing the location of spikes. The main prob-

lem was the removal of background noise in combination with fractional time shift
correction. This problem was dealt with in Section 2.2.1, with Figure 2.4(b) as
description of the final result.

The second goal, classification of spikes, was treated in sections 2.2.2 and 2.2.3.
We can view a spike as having several features (width, height, width and height of
upward part, width and height of downward part, et cetera). Also combinations of
features can be relevant. The PCA treated in Section 2.2.2automatically selects
features that distinguish spikes. In the coding approach ofSection 2.2.3 these fea-
tures are setmanually. It turns out that the main feature is the amplitude. The PCA
analysis revealed that occasionally other features are relevant, as shown by the pres-
ence of three clusters in Figure 2.5. To obtain this second feature from the PCA it is
important that the alignment of the spikes in time is good. The three clusters were
only observed after the fractional time shifts of Section 2.2.1 were done.

In Figure 2.5 values for the two dominant features from the PCA are displayed
for a set of spikes. Clearly groups (clusters) can be distinguished. Although these
groups are clearly visible, it is still a question how to select the groups. For this
purpose automatic clustering algorithms exist. Of course in such simple examples
manual grouping is also easily done. We feel that automatic clustering combined
with visual inspection of the outcome and the possibility tochange the cluster areas
could be of interest for the application.
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2.4 Concluding remarks

Both the manual and the PCA based feature selection were onlyapplied to very
few traces, so it is difficult to say whether the manual or PCA based method is
better. Also, the main difference between spikes is in the amplitude, which is easy
to measure. But overall our judgment at this moment is in favor of the PCA. It is
a well established technique, which produces pictures suitable as input for cluster
analysis. Results of the manual method are less clear.

The third goal was to distinguish spike trains according to three types. This was
discussed in Section 2.3. The main problem was to determine spike trains with
certain characteristic time spacings and determine their duration. The difficulty
lies in the fact that different spike trains may overlap. In Section 2.3.1 classical
autocorrelation was applied, whereas in Section 2.3.2 another approach, the so-
called interspike interval histogram (IIH) was considered. In Section 2.3.3 the two
techniques were connected. Since the two techniques are essentially equivalent
they share the same advantages and disadvantages, except for their computational
complexity which is yet unsettled. For overlap free spike trains and artificial data
the two methods are transparent and appear to work well. The case of overlapping
spike trains needs to examined further before conclusions can be drawn.

To deal with the fact that the intervals between two consequitive firings of a neu-
ron will only be approximately the same in Section 2.3.4 the concept of approximate
regularity was introduced.
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Abstract

Due to climate changes that are expected in the coming years,the charac-
teristics of the rainfall will change. This can potentiallycause flooding or have
negative influences on agriculture and nature. In this research, we study the
effects of this change in rainfall and investigate what can be done to reduce
the undesirable consequences of these changes.

Keywords: climate change, rainfall, drainage system

3.1 Introduction

At the 2008 Study Group Mathematics with Industry one of the problems concerned
the impact of climate change on Dutch water management practices. More specif-
ically, we were asked to study the effect of the increasing intensity of peaks of
precipitation events on the water system managed by “het Waterschap Regge en
Dinkel”. Some explanation of the nature of this problem owner is in order. A Dutch
“waterschap” is an institution run by a democratically elected board that is in charge
of the management of the water quantity and quality of open water (streams, brooks,
lakes, ditches and canals) in a given region. The board is elected by the local in-
habitants and the institution is self financing: it determines the level of certain local
taxes and collects those taxes for its own use. One of its maintasks is to protect the
inhabitants against flooding and to manage the water levels such that agriculture,
nature and shipping are supported. In the remainder of this paper we will use the
term “water board” as a rough translation of “waterschap”.
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3Wageningen University
4Leiden University
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†corresponding author,a.a.stoorvogel@utwente.nl

47



3 Math Fights Flooding

Figure 3.1: Twente (source: Waterschap Regge en Dinkel).

The Water board Regge and Dinkel is in charge of an area of approximately 40 by
40 kilometers containing the towns of Almelo, Enschede and Hengelo (Figure 3.1).

The problem statement limited the area of interest to the area that, due to terrain
elevation and hydrology, discharges its precipitation into the stream the Regge. This
area is called thecatchmentof the Regge. The Regge in its turn discharges into the
river Vecht.

We examined the Sobek6 model that was made available by the water board and
found that the region below the Twente Kanaal discharges mostly into the Twente
Kanaal despite the presence of culverts under the Twente Kanaal. This provided a
clear southern border for the catchment. The total Regge catchment consists of a
considerable number of subcatchments. A subcatchment is a subarea that discharges
all its water via one point on its boundary into a small streamor canal.

In brief, the problem is to find a way to design and evaluate adaptations of the
Regge catchment that will keep the discharge peak into the Vecht within a given
envelope. Of course, this discharge peak varies in time. To establish general recom-

6Trademark of WL — Delft Hydraulics (part of Deltares)
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3.1 Introduction

mendations, the water board agreed on defining a typical precipitation event, which
serves as a kind of benchmark for any system. This is simulated under the assump-
tion of uniform rainfall over the catchment. This standard precipitation event is a
10-day period of rainfall data (preceded by a long period of almost 40 days with a
constant minimal amount of rain to counter initialization effects in a model such as
Sobek) as shown in Figure 3.2. For each subcatchment area this precipitation event
will lead to a discharge curve that lags behind the precipitation curve and is longer
than 10 days. Examples of such discharge curves are shown in Figure 3.3.
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Figure 3.2: Benchmark precipitation event before (blue) and after (red) after climate
change.

The discharges from different subcatchments flow together in the Regge. The wa-
ter involved arrives at the Regge with a time delay that is mainly determined by the
distance between the discharge point of the subcatchment under consideration and
the Regge. The discharges from all the subcatchments sum up with the appropriate
time delays in the Regge. In turn, the Regge discharges its water into the Vecht and
a typical Regge discharge curve for the benchmark precipitation event in the current
climate is the blue curve in Figure 3.4. This discharge has been computed using the
Sobek model. In this figure, the red curve is the maximal discharge imposed to us
by the Water Board Regge and Dinkel. The discharge curve is obtained when the
standard precipitation event, which is a kind of worst-caserainfall in the current
climate, is applied to the present situation in the Regge catchment. It is important
to preserve the dip in the discharge after 46 days to allow forthe discharge peak
from another catchment that flows into the Vecht further upstream. This is an im-
portant boundary condition for the study of this project. After the climate change
the response to thenewstandard precipitation event, which is a kind of worst-case
rainfall in the future climate should respect the upper bound in the discharge curve
indicated in red. However, as shown in Figure 3.5, without additional measures,
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Figure 3.3: Discharge of selected catchments.

the expected discharge (indicated in blue) clearly violates this upper bound. The
objective of this study is to look at measures that can be taken such that we get for
instance a discharge as indicated in green which mostly respects the given upper
bounds.

In other words, the aim of this project is to study what happens if the rainfall
would intensify due to climate change. To show the effect we artificially increased
the peak discharge in the standard precipitation event in such a way that the total
volume in the event increased by ten percent (see Figure 3.2).
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Figure 3.4: Discharge in current climate (blue) and maximaldischarge (red).
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Figure 3.5: Discharge after climate changewithout andwith additional measures
together withmaximaldischarge.

To avoid undesirable discharge rates of the Regge due to increased rain fall, the
water board suggested the following possible measures as viable components for a
solution.

• Improved drainage in a subcatchment.This results in an earlier release, and in
a narrower discharge peak from that subcatchment. The improvement could
be achieved by additional drainage pipes and/or drainage ditches. However,
this can also be realized, to a certain extent, by lowering ofthe overflow
heights of the weirs. Earlier arrival of the run-off at the Vecht from a certain
subcatchment could reduce the height of the peak by a better spreading over
time of the discharge of the different catchments over time.

• Slower drainage in a subcatchment.This results in a later release and a flatter
discharge peak from the subcatchment. Reduction of the drainage can be
achieved by removal of drainage pipes and/or drainage ditches or by raising
the water level in the drainage ditch network. This can also,to a certain extent,
be realized by increasing the overflow heights of the weirs. This increases
the available storage in the soil and the local collection canals. It flattens
and delays the entry of the discharge peak from this subcatchment into the
transport canals. Later arrival of a flattened discharge peak can reduce the
height of the total discharge peak arriving at the Vecht directly by the flattened
peak of the discharge of the subcatchments or, indirectly, by a better spreading
over time of the discharge of the different catchments.

• Storage.Adding storage basins has effects that are similar to those of slowing
the drainage of a subcatchment, but they are more flexible as they can also be
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used to flatten and/or delay a discharge peak that has alreadyleft the soil and
the collection canals of a subcatchment. It can affect peaksin the transport
canals. Again, as argued before, later arrival of a flatteneddischarge peak can
reduce the height of the peak arriving at the Vecht.

For the total discharge into the Vecht, we must take all contributions of the sub-
catchments into account. If we link subcatchments whose discharge peak reaches
the Vecht at approximately the same time, we get a set of isochrones on the map.
This illustrates two aspects of the problem. First, for narrow peaks the longest
isochrone (the line connecting points from which water willtake the same amount
of time to reach the discharge point into the Vecht) will tendto dominate the dis-
charge peak. Second, for wide peaks or rainfall-runoff curves with fat tails the later
peaks will piggy back on top of the earlier ones and dominate the discharge peak.
The second process will later be confirmed by a sensitivity analysis. The scale of
the area (about 40× 40 km2), combined with the width of the peaks from separate
subcatchments and the average transport velocity of 1 m/s = 86.4 km/day (accord-
ing to Regge and Dinkel) implies that the first process does not play a role of much
importance.

In Section 3.2 we will obtain a simple model for the dischargebased on fitting the
data provided to us by the very detailed Sobek model. In Section 3.3 we will model
one meadow with adjacent ditches in detail. It will be shown that this model, after
suitable fitting of the physical parameters, fits very closely to the earlier model even
for an area of more than 1000 hectare which has a lot of detailed structure (small
ditches; non-uniform soil characteristics, etc) which arenot taken into account in
the physical model. In Section 3.4, the sensitivity of the discharge curve in the Vecht
to changes in the parameters of the model is analyzed for a specific subcatchment.
This gives an idea what can be done to modify the discharge into the Vecht by taking
specific actions in suitably chosen subcatchments. Resulting recommendations of
our analysis are presented in Section 3.5.

3.2 A dynamical relation between precipitation and
discharge

In this section we develop a dynamic model to relate a known discharge curve of
a subcatchment to a known precipitation curve, see [1]. In the next section we
shall outline how a physical model for the discharge curve ofa subcatchment can
be obtained which, for a given rainfall data, will result in adischarge curve. The
latter curve clearly still depends on certain physical parameters used in the model.
In contrast, in this section both the rainfall and dischargecurves are given and then
a dynamic relationship is fitted between the two curves.

In a subcatchmentC, we have during dayi an amount of rainfallr i , which leads
to a total dischargedi in m3 over that day into the release point of the subcatchment.
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3.2 A dynamical relation between precipitation and discharge

Herer i is the amount of m3 of rainfall which is the product of the rainfall in a par-
ticular day (indicated in Figure 3.2) times the area of the subcatchment (we assume
uniform rainfall over the whole region).

A transition is introduced that quantifies on dayi the fractionρ of r i that is
discharged and a fraction 1−ρ of r i that is kept within the catchment. The dynamics
within one day are discarded. That means that in the first day,i.e. at the start of the
rain event, a fractionρ of the rainfallr1 is discharged, and a fraction 1−ρ is kept in
the catchment. To initialize the model we assume there is no water in the catchment
at the beginning of this event. At the next day, the discharged2 is given by:

d2 = ρr2 + ρ(1 − ρ)r1,

where a fractionρ of the new rainfall is discharged but also a fractionρ is dis-
charged of the remaining water in the system due to rainfall of earlier days. For a
specific subcatchment we have observations of rainfall and discharge overn days
and we obtain:

di+1 = (1 − ρ)di + ρr i+1, d0 = 0. (3.1)

This can alternatively be presented using a matrix representation:



d1

d2
...

dn


 =




ρ 0 · · · 0

(1 − ρ)ρ ρ
. . .

...
...

. . .
. . . 0

(1 − ρ)n−1ρ · · · (1 − ρ)ρ ρ







r1

r2
...

rn


 =: A




r1

r2
...

rn


 . (3.2)

Hence, the discharge has been approximated by a one parameter model. This pa-
rameter, however, is specific for each subcatchment. It is governed by the physical
conditions of the catchment, like the lateral movement, thevertical changes in ele-
vation, the carriage capacity of the soil and the physical soil unit composition. The
parameter indicates in an averaged way how fast the rain is discharged into the canal
system outside the area.

3.2.1 Estimation

Estimation of parameterρ was carried out by a least squares method. Using (3.1),
we first note that the matrix in (3.2) has an inverse with a nicestructure and we
obtain:

A−1 = ρ−1




1 0 · · · · · · 0

ρ − 1 1
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 ρ − 1 1



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For several subcatchment we compared the actual discharge from the Sobek model
to the discharge predicted by our model. The expression

∥∥∥∥∥∥∥∥∥
ρ A−1




d1

d2
...

dn


− ρ




r1

r2
...

rn




∥∥∥∥∥∥∥∥∥

2

,

which is is equivalent to:
n∑

i=0

‖di+1 − (1 − ρ)di − ρr i+1‖2

is then a quadratic function inρ and the minimization of this error to find the optimal
value for ρ is then easily achieved. The first 35 days of the rainfall in 3.2 are
intended to reduce the effect of initialization. This is crucial in the Sobek model.
In our case, the initialization is only related to settingd0 = 0. However, our model
needs to be more accurate in days where the discharge is substantial. We improved
this process slightly by scaling the squared error by the actual discharge per day:

n∑

i=0

‖di+1‖‖di+1 − (1 − ρ)di − ρr i+1‖2

This weighting makes the model more accurate during days with a large discharge.

3.2.2 Results

Area ρ̂

Elen 0.15
Oldenzaal 0.16
Den Ham 0.27
Albergen 0.39
Rijssen 0.40

Table 3.1: Estimatedρ coefficients for 5 selected catchments.

We obtained the results listed in Table 3.1 for five selected catchments. Rijssen
and Albergen have the largest values ofρ which corresponds to a high peak and a
short tail, since most of the rain is discharged into the canal system within a few
days. This is clearly consistent with the discharge curves in Figure 3.3. Elen and
Oldenzaal have a low value ofρ and hence a low peak and a long tail. These areas
keep the rain within the catchments and slowly discharge it into the canal system.

These results are as expected since the Rijssen catchment islocated on sandy soil
on a large elevation and, hence, the catchment will have a smaller carrying capacity
than the other catchments. Consequently, the discharge occurs in a shorter period.
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3.3 Rake model

3.3 Rake model

The model proposed in the previous section uses a simple model ignoring for in-
stance the faster dynamics during the day but also ignoring the spatial structure
within a subcatchment. In this section, we propose a simplified one-dimensional
ground water and hydraulic model to investigate an optimization strategy for de-
signing catchment basins and ground water level management. It incorporates ex-
plicitly the weirs and the spatial structure and hence can beused to study the effects
of raising or lowering the overflow heights of the weirs or theintroduction of ad-
ditional ditches. It is called the “rake model” because the river Regge is assumed
to be connected to a series of ditches associated with two adjacent meadows. Rain
will uniformly fall on the whole region, thus also on each meadow. A simple one-
dimensional diffusion model is set-up to manage the transport of rain water into the
ground to an adjacent ditch. Each (half) meadow is connectedto a ditch. Each ditch
runs into the Regge and is controlled by a weir at its exit point. And, finally, this
exit point has a certain distance to the mouth of the Regge into the river Vecht. Each
meadow is chosen to be rectangular and has a widthW and lengthL, the latter also
being the length of the ditch. See also Figure 3.7.

τ
1

τ
3

τ
2

Regge

Vecht

Figure 3.6: Sketch of subcatchments with a different distance to the Vecht, leading
to a time lagτi in the time when the water reaches the Vecht.

We considerm = 1, . . . , M meadows and consider one meadow-ditch combi-
nation or catchment with indexm, dropping the indexm at first for ease of no-
tation. Rain water seeps into the ditch from the meadow and the ground water
level h = h(x, t) in the pasture depends on the distancex from the ditch with
x ∈ [0, W/2], and timet . The ditch lies atx = 0 and the middle of the meadow at
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Rainfall Rainfall

w w

Figure 3.7: Cross section of a meadow with a ditch on each side. The water level is
also indicated.

x = W/2. Diffusion with diffusion constantµ and soil permeabilityk governs the
dynamics as well as the rain fallR = R(t). The ground water level is assumed uni-
form in the direction along the ditch; hence we ignore end effects. The governing
equation is

∂h

∂ t
= µ

∂2h

∂x2
+ R

ϕ
(3.3)

with ϕ the porosity of the soil. The water levelh0 = h0(t) in the ditch is as follows

dh0

dt
(t) = ϕµk

b
[h(0, t) − h0(t)] −

√
2g

L
max(h0 − hw, 0)3/2, (3.4)

in which k is a permeability coefficient,g is the acceleration of gravity, and the
last term models a weir at the entrance of the ditch into the Regge. The last term
consists of a standard hydraulic approximation for flow overweirs, see [4]. The
height of the weirhw = hw(t) is a specified function (of time); it can be used to
control the outflow of water into the Regge hydraulic system.Catchment basins are
modeled simply by specifying a different widthb = b(t) of the ditch; it is also a
specified function of time. The boundary conditions involvesymmetry atx = W/2,
and consistency atx = 0:

∂h

∂x
(0, t) = k[h(0, t) − h0(t)] and

∂h

∂x
(W/2, t) = 0. (3.5)

It is useful to consider the volume balances of water. The change in time of
the volumeV = V(t) of water in the meadow, associated with one ditch, follows
by integration of the diffusion equation (3.3) over the relevant areaW/2 × L and
multiplication byϕ, while using the boundary conditions (3.5); we obtain

dV

dt
= ϕ L

d

dt

∫ W/2

0
h(x, t) dx = −µ k ϕ L

(
h(0, t) − h0(t)

)
+ 1

2 RLW. (3.6)
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The change of volumeV0 of water in the ditch follows by multiplication of (3.4)
with L b, to obtain

dV0

dt
= b L

d

dt
h0(t) (3.7)

= µ k ϕ L
(
h(0, t) − h0(t)

)
−
√

2g b max(h0(t) − hw(t), 0)3/2.

Hence, we observe that the discharge from the meadow into theditch is consistently
modeled as

µ k ϕ L
(
h(0, t) − h0(t)

)
.

The total dischargeQ = Q(t) of the ditch over the weir and into the river Regge
follows from (3.7) as

Q(t) =
√

2g b max(h0(t) − hw(t), 0)3/2. (3.8)

We useQm(t), instead ofQ(t), to indicate the discharge of ditch-meadow combi-
nation numberm into the Regge which lies at a distanceDm from the mouth of the
Regge into the Vecht. It is assumed that water released into the Regge from a ditch
flows with a constant velocityv to the Vecht. Hence, water released from ditches of
meadows lying further away from the Vecht will travel longer. We immediately see
an optimization strategy emerge: by delaying or accelerating fallen rain water to
reach the Regge as a function of the location of the meadow from the Vecht we may
be able to avoid flooding downstream at the Vecht. Hence, the maximum discharge
of water into the Vecht may be managed.

3.3.1 Numerical discretization

To facilitate the numerical discretization, we used a non-dimensional form of the
model (3.3)–(3.5). These non-dimensional equations have subsequently been dis-
cretized with a finite difference methods, second order in space and first order in
time. An explicit forward Euler time discretization is usedfor the diffusion equa-
tion, and the water level equation (3.4) is discretized semi-implicitly by integrating
h0−hw instead ofh0 and splitting the nonlinear term as

√
(hn

0 − hn
w) (hn+1

0 −hn+1
w )

with current time levelhn
0 and future time levelhn+1

0 , and so forth. A time step re-
striction follows directly from a maximum principle. We refer to a standard text
book on numerical methods, see [3].

3.3.2 Numerical results

For simplicity we took a square meadow, i.e.L = W/2 and let rainwater, fallen
on a meadow of areaL2, seep diffusively into one ditch. Firstly, we gauged the
parametersµ, k andϕ based on a reference simulation of the Sobek model. The
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Figure 3.8: Comparison of the Sobek model (blue) and rake model (red) for an area
near Den Ham.

Sobek model was run with the heavy ten-day rainfall distribution shown in Fig. 3.2.
Subsequently, the discharge of a catchment area located between Den Ham and
Vroomshoop concerning an area ofAr = 118× 105 m3 was taken. We performed
a run for one meadow of sizeL2 = 200 m2 scaled with factorsf such thatL2 sf =
Ar , and compared the run-off curves. For the valuesµ = 4 L2

s/T andk = 10/Ls

and spatial scaleLs = 50 m and time scaleT = 1 day, the agreement between the
Sobek model and one meadow in our rake model is surprisingly good, see Fig. 3.8.
Other parameter values areb = 2 m, hw = 0.5 m, and initially we filled the ditch
to weir level, e.g., using initial conditionsh0(0) = hw, and alsoh(x, 0) = h0(0).
Or, perhaps more appropriately, we note that the model is rainfall driven, and the
sensitivities onµ andk appear to be relatively small.

Secondly, we considered the rake model with three meadows and ditches, at
distancesDm = m Ld with m = 1, 2, 3 away from the Vecht. We tookLd =
20×103 m = 20 km and the flow velocityv was taken to bev = 1m/s. The (imagi-
nary) water board for the Vecht has given us a maximum discharge rate of 8 m3/s of
Regge water that is allowed to flow into the Vecht. In the base run the three ditches
have the same parameter values as above, the only differencebeing their distance
to the river Vecht. Our simulations for the same rainfall as in Figure 3.2 then show
that the discharge peaks of each catchment arrives with a delay of about a quarter
day (20× 103/(3600× 24) day) into the Vecht, see the lines for the three shifted
peaks of about discharge heights 4 m3/s in Figure 3.9. The accumulated discharge
of these three catchment supersedes the allowed discharge maximum denoted by
the fat horizontal line approximately between days 42 and 46. In our first attempt to
optimize, we increased the weir height in the last catchmentarea to 0.65 m, while
starting the ditch level at 0.5 m. Hence, the ditch of lengthAr first needs to be filled
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Figure 3.9: Discharge rates of the three catchment areas andtheir accumulated val-
ues (blue).

before rain water flows into the Regge. This constitutes a delay. In Figure 3.10, we
see that the discharge peak of the third catchment area (indicated in magenta) starts
later, at day 42 instead of day 38 as we saw in the first run, but the accumulated
discharge denoted by the blue line, is still too high. Flooding thus still occurs. Our
final strategy, in Figure 3.11, is to heighten the weir to 0.6 m and lower the water
level in the ditch and the meadow toh0(0) = h(x, 0) = 0.25 m, for example, by an
early precautionary release of water. This mimics the use ofan additional storage
basin. As a consequence, the discharge peak (in magenta) in the lower right half
of the plot, is greatly reduced, and assures that the accumulated water discharge of
Regge water into the Vecht stays below the maximum dischargelevel. Clearly, these
changes need to be optimized but this can only be done if otherfactors are taken
into account. For instant, increasing or decreasing the overflow level of a weir has
economic effects on agriculture in the region, has ecological effects, et cetera. Also
zoning plans might not allow certain actions to be taken.

3.4 Sensitivity analysis

In this section we investigate the influence of measures taken in individual sub-
catchments on the discharge curve of the ReggeD(t). The latter is the sum of the
discharge curves of individual subcatchmentsDm(t), m = 1, · · · , M in the follow-
ing way

D(t ; ρ1, · · · , M) =
M∑

m=1

Dm(t − τi ; ρi ). (3.9)
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Figure 3.10: Discharge rates with weir height 0.65 m and initial ditch level 0.5 m
for one subcatchment (red).

Here, τm is the time lag resulting from the fact that the water from a subcatch-
ment needs to flow from the exit point of that subcatchment to the point where the
Regge discharges into the Vecht, see Figure 3.6. As discussed in Section 3.2, each
individual discharge curveDm can quite accurately be characterized by only one
parameter,ρm. From the simple structure of (3.9) it directly follows that

∂ D(t ; ρ1, · · · , M)

∂ρm
= ∂ Dm(t − τm; ρm)

∂ρm
. (3.10)

In Section 3.2 we introduced discretized versionsdi (indicating the discharge dur-
ing dayi ) of Dm(t ; ρm) (indicating the discharge at timet). In that representation
the derivative with respect toρm can for anym be explicitly indicated as:

∂

∂ρm




d1

d2
...

dn


 =




1 0 . . . 0
(1 − 2ρm) 1 · · · 0

... · · · · · · ...

(1 − ρm)n−2(1 − nρm) . . . (1 − 2ρm) 1







r1

r2
...

rn


 .

(3.11)

So, given the valueρm of a subcatchment and given a standard (or adjusted) precip-
itation curve, the derivative curve∂ Dm/∂ρm is easily approximated as a function of
time. An example is given in Figure 3.12.

This curve gives an indication of the sensitivity of any discharge curve to changes
in the correspondingρ. From this figure it is clear that the effect of aρ is largest
about 6 days after the rainfall started. This strongly coincides with the peak po-
sitions in both the precipitation and discharge peaks. The conclusions from such
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Figure 3.11: Discharge rates with weir height 0.6 m and initial ditch level 0.25 m
for one subcatchment (red).

sensitivity analysis can be easily read in Figure 3.12: An increase inρi strongly
increases the height of the peak in the discharge curveDi and flattens the tail. And
reversely, ifρ is decreased the discharge curve will get a lower peak and a thicker
tail. This agrees with the interpretation ofρ as the parameter measuring the fraction
of water fallen on some day that is discharged that same day.

3.5 Recommendations

The discussions above yield the insight that changing theρi parameter of a sub-
catchment influences the height of the discharge curve but does not influence the
respective peak and tail positions in the discharge curve. Since the delay timesτi

are relatively small compared to the widths of the peaks in rainfall and discharge
curves, the peaks in the discharge curvesDi all accumulate in the peak of the Regge
discharge curveD and the same holds for the tails. This immediately leads to the
following recommendation:

In case of intensified peaks in the rainfall due to climate change,
theρ value of a number of subcatchments should be decreased.

The implementation of this recommendation requires some subtle considerations,
which we summarize in the following remarks:

Remark a.:Reduction of theρ value of a subcatchment implies that the drainage
of the area should decrease. This could be achieved by closing some ditches or by
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Figure 3.12: Time behavior of the derivative of a typical discharge curve with re-
spect to the parameterρ.

raising the water level in the drainage ditch network, by increasing the height of the
weir, which at the same time increases the water storage capacity of the soil.

Remark b.:It does not matter whetherρ is reduced by a great amount in a rela-
tively small number of subcatchments or ifρ is reduced by a small amount in many
subcatchments. The total effect is in both cases nearly the same.

Remark c.:Reducingρ in some subcatchments reduces the peak height in the Regge
discharge curve, but enhances also its tail. So, the optimalchoice must follow from
a balance between these effects. The total effect of reducing valuesρi should be
such that the peak height in the Regge discharge curve remains under the critical
value, dictated by the risk of flooding along the Vecht, and, at the same time, the tail
in the Regge discharge curve should remain so low that no dangerous interference
with the peak in the Vecht discharge curve occurs. This is a subtle balance. Since the
choice of the subcatchments that are most suitable for a change in drainage capacity
heavily depends on the local conditions and possibilities,we have not worked out
this choice in detail.

Remark d.:The effect of the time delaysτi is relatively small. If one would like
to make use of the fact that the subcatchments differ in this aspect, one could best
reduce theρ parameter in the subcatchments with the largest time delays; the ones
furthest away from the discharge point of the Regge into the Vecht. This is because
their peaks would arrive latest at the discharge point and thus would interfere most
with the peak in the Vecht discharge curve.
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Abstract

Radio Frequency (RF) switches of Micro Electro Mechanical Systems
(MEMS) are appealing to the mobile industry because of theirenergy effi-
ciency and ability to accommodate more frequency bands. However, the elec-
tromechanical coupling of the electrical circuit to the mechanical components
in RF MEMS switches is not fully understood.

In this paper, we consider the problem of mechanical deformation of elec-
trodes in RF MEMS switch due to the electrostatic forces caused by the differ-
ence in voltage between the electrodes. It is known from previous studies of
this problem, that the solution exhibits multiple deformation states for a given
electrostatic force. Subsequently, the capacity of the switch that depends on
the deformation of electrodes displays a hysteresis behaviour against the volt-
age in the switch.

We investigate the present problem along two lines of attack. First, we
solve for the deformation states of electrodes using numerical methods such as
finite difference and shooting methods. Subsequently, a relationship between
capacity and voltage of the RF MEMS switch is constructed. The solutions ob-
tained are exemplified using the continuation and bifurcation package AUTO.
Second, we focus on the analytical methods for a simplified version of the
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problem and on the stability analysis for the solutions of deformation states.
The stability analysis shows that there exists a continuouspath of equilibrium
deformation states between the open and closed state.

4.1 Introduction

Radio Frequency switches (RF) of Micro Electro Mechanical Systems (MEMS)
have achieved considerable attention in the mobile industry because of the need for
an increase in frequency bands and energy efficiency. RF MEMSswitches have sev-
eral advantages over traditional semiconductors such as power consumption, lower
insertion loss, higher isolation and good linearity. However, a thorough understand-
ing of the electromechanical coupling between the electrical circuit and mechanical
component of an RF MEMS switch is not fully established and this forms the sub-
ject of the present paper.

Problem description: RF MEMS switches typically consist of two electrodes
which are thin membranes parallel to each other as shown in the Figure 4.1. In
the schematic cross-section of the switch, Figure 4.1(a), the thick black lines indi-
cate the bottom and top electrodes in which the bottom electrode is fixed and the
top electrode is free to deform with its ends fixed. In the presence of equal and op-
posite electric chargeQ in the electrodes, the top electrode deforms to balance the
electrostatic forceFelectrostaticinduced with its mechanical spring forceFspring for
equilibrium. To avoid the contact between the two electrodes, a dielectric of thick-
nessddiel is provided on the top of the bottom electrode as indicated with dashed
lines in Figure 4.1(a). Further, the thickness of the top electrode ish and it is sepa-
rated by a distanceg from the dielectric in the unforced state. The deformed shape
of the top electrode at equilibrium is described by the displacementu(x).

The equilibrium states are the critical points at which the the total energy is min-
imized. The total energyEtot is given by the sum of the electrical energyEel and
the mechanical energyEmech:

Etot = Eel + Emech.

The electrical energyEel is given as

Eel =
Q2

2C
with C(u(x, y)) :=

∫

Abot

ǫ0 dxdy

g + u(x, y) + ddiel/ǫdiel
,

whereC is the capacitance,Q the electric charge, u(x,y) the displacement,ǫ0 the
vacuum permittivity coefficient,ddiel the thickness of dielectric,ǫdiel the dielectric
constant andAbot the area of bottom electrode. In determining the capacitance
C, the two electrodes are assumed to be parallel under no charge in the unforced
state. Taking only the bending forces into account and assuming the thickness of
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the electrode to be very small with zero initial stress, the mechanical energy is given
by

Emech=
∫

Atop

D

2
|1u|2 dxdy, where D = 2h3Y

3(1 − ν2)
,

h is the thickness,Atop area of the top electrode,Y is Young’s modulus andν is the
Poisson ratio of the top electrode.

g

u

u(x)

x
Q

−Q

Fcontact

Felectrostatic

Fspring

ǫdiel ddiel

h

(a) (b)

Figure 4.1: (a) Schematic cross-section of a capacitive RF MEMS switch. (b)
Scanned electron microscope picture of a capacitive RF MEMSswitch.

Problem formulation: The main problem is the following: find all the displace-
ment statesi of the top electrodeueq,Q,i (x, y) for which the forces on the top elec-
trode are in equilibrium at a fixed chargeQ on the top electrode (or for a fixed
voltageV between the electrodes). Several sub-problems are posed asfollows:

• Is there always a continuous path of equilibrium statesueq,Q,i (x, y) between
the open stateueq,Q,i = 0 for all x, y ∈ Atop and the closed stateueq,∞,N =
−g for all x, y ∈ Abot.

• Is there a functionf (ueq,Q,i (x, y), Q) that is monotonically increasing along
this path?

• Can it be shown that along this continuous pathd EmechdC > 0 is always
valid? HereEmech is the mechanical energy andC is its capacitance.

• Is there a simple way to determine whether a state is stable orunstable at a
fixed voltage or charge?

• For which geometries and boundary conditions is the problemanalytically
solvable? Most interesting is the situation in which the topelectrode springs
are clamped (zero displacement and zero slope) at some points of its bound-
ary.
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• The dynamics of the structure under the presence of gas damping is a related
interesting problem.

Finite element method: The deformation shapes at equilibrium are often solved
using finite element packages. However, it is not straightforward to find multiple
or all deformation shapes at equilibrium for a given voltageV as some of them are
unstable. Given the deformation shape of the electrodeu(x, y), the capacitance of
the RF MEMS switch is determined. Such aCV-curve is shown for two examples
of RF MEMS switch in Figure 4.2(a) and (b). Multiple values ofcapacitanceC for
a given voltageV are clearly seen in Figure 4.2; a phenomenon calledhysteresis.

Overview: The equilibrium problem of a RF MEMS switch is interesting both
from a practical as well as a mathematical point of view. It should be stressed,
however, that the entire problem is too general and difficult. Hence, in the present
paper, we have considered a one dimensional version to obtain some interesting
insights and solutions.

First, we prove that under certain conditions on the total energy of RF MEMS,
the deformation states at equilibrium are stable. Second, we formulate an inequality
from which the stability conditions are derived. Third, we prove that when the
top electrode touches the dielectric, its deformation shape will have no gaps in the
contact area with dielectric. Finally, we prove the existence of a continuous path of
equilibrium states under some given mild conditions on the energy of the system.

Besides these theoretical results, we make use of numericalmethods such as the
finite difference and shooting methods to solve for the displacements of the defor-
mation shape of the top electrode. To acquire insight into the nature of solutions, we
generate several sets of deformation shapes using the continuation and bifurcation
package AUTO. AUTO [3] typically generates sets of solutions to a given problem
by continuation, i.e., it calculates a solution for any given parameter of the system.
The main advantage of this approach as opposed to using finiteelement packages
is that the non-unique or multiple solutions for a given problem are easily found.
In addition, an article on modeling MEMS by using continuation is in preparation
(see [14]).

The paper is divided into two parts. In the first part, we present the numerical
methods to the present problem to gain some insight into the nature of solution.
We then employ the continuation method AUTO and a shooting method to generate
numerical solutions. In the second part, we discuss variousanalytical approaches
to the problem. We derive full solutions to the linearized problem. Linear problems
with any suitable boundary conditions have a unique solution and hence, no hys-
teresis is found. Finally, we present various other resultsfor the nonlinear problem.
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(a)

(b)

Figure 4.2: CalculatedCV-curve (capacitance-voltage characteristic) of two differ-
ent switches. (a)CV-curve of the switch of Figure 4.1. (b)CV-curve
of the so-called “seesaw” RF MEMS switch.
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4.2 Numerical Methods

4.2.1 Finite difference scheme

We consider a one dimensional model problem of the RF MEMS switch which
exhibits the important qualitative aspects of the system and its non-dimensional
form follows from the minimization of total energy:

∂4u

∂x4
= − ǫ0V2

1 − η + u
+ φ(u) on x ∈ [0, 1] (4.1)

with u = ∂u

∂x
= 0 atx = 0 andx = 1,

whereu(x) is the displacement,η a small parameter,ǫ0 the vacuum permittivity,
V the voltage between the electrodes andφ(u) the contact force between the plate
and the dielectric which is non zero foru < −1, i.e., when the scaled downward
displacement is greater than the scaled gapg = 1 between the electrodes.

A simple finite difference scheme for the 1D model problem (4.1) is developed
and implemented in MATLAB . The numerical solutions of this scheme are com-
pared to the analytical approximations and they can serve asa basis for more ad-
vanced 2D simulations in the future. To obtain the finite difference scheme, we first
divide the domain inton−1 grid cells with grid size1x andn grid points. The dis-
placement at each grid pointxi is denoted asu(xi ) = ui . The biharmonic operator
in (4.1) is discretized using a central difference scheme asfollows:

∂4u

∂x4
≈ ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

1x4
+ O(1x2) i = 2, . . . , n − 1.

(4.2)

Near the boundaries, we employ the boundary conditionsu1 = un = 0,u2−u0 = 0
andun+1 − un−1 = 0 which are second order central difference approximationsto
the boundary conditions in order to get a consistent approximation. Substituting the
approximation of biharmonic operator (4.2) in (4.1), the finite difference discretiza-
tion takes the following form:

Au = − ǫ0V2

1 − η + u
+ φ(u), (4.3)

where A is a constant matrix andu is the displacement vector at the pointsx =
xi , i = 2, . . . , n − 1. The discretized biharmonic operatorA can be efficiently
inverted using an iterative solver such as conjugate gradient method (CG). However,
the right hand side of the equation is non-linear and hence, it is typically treated
with a fixed-point iteration. The fixed-point iteration scheme is easily described by
rewriting (4.3) as follows:

uk+1 = A−1
(

− ǫ0V2

1 − η + uk
+ φ(uk)

)
. (4.4)
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Now given a guessuk for displacementu, we compute for displacementuk+1 using
(4.4) per grid cell and iterate with respect tok until the solution converges. From
a physical point of view, it is clear that the equation is not uniquely solvable for
a certain range of voltagesV . In fact, this is reflected in the fixed-point iteration
scheme as it could converge to two different solutions for the displacement vector.
Typically, the solution to which it converges depends on thestarting point for the
iteration. This suggests that aCV-curve with stable solutions of the system can be
drawn. To draw theCV-curve, we start with a low voltageV for which the solution
is unique and stable. Subsequently, we increment voltageV and use the previous
solution as the starting for the fixed-point iteration scheme which resulted in a quick
convergence to the nearby solution. Similarly, to obtain the remaining branch of
solutions, we started with a high voltageV and repeated the previous procedure by
decreasing the voltageV . This has lead us to construct a “continuous” branch of
theCV-curve.

4.2.2 Shooting method

In this section, we consider a shooting method to solve the nonlinear one dimen-
sional model problem of RF MEMS switch. The shooting method in some sense
is the easiest method to find numerical solutions for a boundary value problem of
a nonlinear ordinary differential equation. It relaxes theproblem by ignoring one
of the boundary conditions and replacing it by a “free” initial choice instead. This
initial choice is adapted until the obtained solution satisfies the boundary condition
that was ignored. We refer to [11] for a detailed descriptionof the shooting method.

We distinguish three situations for the shooting method:

1. The top electrode touches the dielectric over some interval.

2. The top electrode touches the dielectric at one point.

3. The top electrode does not touch the dielectric.

Each of these cases contribute to different parts of theCV-curve. We describe the
shooting method in detail for the first situation, i.e., whenthe plate touches the
dielectric on some interval, and solve the shooting problem. The remaining two
situations are solved analogously and hence, we omit the description. Finally we
compute theCV-curve according to

C(v) = 3ǫ0

g

∫ 1

−1

dx

1 + u(x; v) − η
. (4.5)

For all computations, we employ MATHEMATICA 6.
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Electrode touches dielectric over some interval

Because of symmetry, we consider the electrode membrane in the half interval [0, 1]
and take that the membrane touches the dielectric atx = a, wherea is the distance
measured from the fixed endx = 0 of the membrane and 0≤ a < 1. The nonlinear
differential equation describing the shape of the membraneu(x) between the fixed
end and the contact with the dielectric is

∂4u

∂x4
= u′′′′ = − ǫ0V2

1 − η + u
, (4.6)

with boundary conditions

u(1) = 0, u′(1) = 0, u(a) = −1, u′(a) = 0, u′′(a) = 0. (4.7)

Here, an additional conditionu(a) = −1 is required for the unknown contact point
at x = a on the dielectric.

It is convenient to make a change of variablex to x̃ = x − a, ũ(x̃) = u(x).
Consequently, boundary conditions (4.7) now become as

ũ(1−a) = 0, ũ′(1−a) = 0, ũ(0) = −1, ũ′(0) = 0, ũ′′(0) = 0, (4.8)

and (4.6) remains the same as

ũ′′′′ = − ǫ0V2

1 − η + ũ
. (4.9)

In order to solve (4.6) and (4.7), we study the initial value problem for (4.9) with
initial conditions

ũ(0) = −1, ũ′(0) = 0, ũ′′(0) = 0, ũ′′′(0) = P, (4.10)

which has a solutioñu(x̃; P) with P an unknown parameter to be found later. Now,
it remains to find a solutionP = Ps such that the solution of (4.9) and (4.10)
satisfies the following condition at some pointb > 0:

ũ(b; Ps) = 0, ũ′(b; Ps) = 0. (4.11)

Settinga = 1−b, we obtain the solutionu(x) = ũ(x̃; Ps) satisfying (4.6) and (4.7).
Note that, for the caseb > 1 a solution of (4.6) and (4.7) does not exist.

The functionũ(x̃; P) increases as function ofP, see Figure 4.3(a). For small
P, ũ(x̃; P), as a function of̃x, increases, reaches a negative maximum and then
decreases, see curves below the red one in Figure 4.3(a). Forlarger P, ũ(x̃; P)

increases and has positive first derivative where it crossesthe lineũ = 0 for the first
time, see curves above the red one in Figure 4.3(a). ForP = Ps the functionũ(x̃; P)

has a local maximum̃u = 0 (the red curve in Figure 4.3(a). This function satisfies
the conditions (4.11) andb is the value of̃x at whichũ has the local maximum.
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4.2 Numerical Methods

ũ(x̃; Ps)

P increases

x

ũ(x̃; P)

(a)

x
u(x)

(b)

Figure 4.3: (a) The functioñu(x̃; P) for different values of the shooting parame-
ter P and V = 890. Here,ũ(x̃; P) increases asP increases. The
red curve corresponds to a solutionũ(x̃; Ps) which satisfies (4.11) and
solves (4.6) and (4.7). (b) The membrane shape for differentvalues of
V . The red line depicts a part of membrane in contact with dielectric.
The blue curve is the shape of the membrane between the support and
the dielectric.
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4 Some studies on the deformation of the membrane in an RF MEMSswitch

Next, we present an alternative method for solving (4.6) and(4.7). This method is
convenient for fast construction of aCV-curve because it requires solving a bound-
ary value problem only once. Then using a scaling argument weget an easily cal-
culable expression forC.

First we rescalẽx according tox̂ = x̃/(1 − a) and û(x̂) = ũ(x̃) . Then the
boundary value problem (4.6) and (4.8) becomes

û′′′′ = −ǫ0V2(1 − a)4

1 − η + û
, (4.12)

û(1) = 0, û′(1) = 0, û(0) = −1, û′(0) = 0, û′′(0) = 0. (4.13)

To solve (4.12) and (4.13) using the shooting method routineimplemented in MATH-
EMATICA 6 we rewrite (4.12) as follows

û′′′′(x̂) = − ǫ0V̂(x̂)2

1 − η + û(x̂)
, V̂ ′(x̂) = 0. (4.14)

Here the unknownV2(1 − a)4 is described as an unknown constant functionV̂(x̂).
A solution û(x̂) and V̂(x̂) = Vs of (4.14) describes the shape of the membrane
u(x) = û(x) for a = 0, andVs is the minimum value ofV for which (4.6) and (4.7)
has a solution. A solutionu(x) for arbitraryV > Vs is written as

u(x) = û((x − a)/(1 − a)), a = 1 −
√

Vs

V
.

The shape of the membrane is

u(x) =
{

û((|x| − a)/(1 − a)), for a < |x| ≤ 1,

−1, for |x| ≤ a,

see Figure 4.3(b).
With increasingV the contact with the dielectric increases and the membrane

shape between the support and the dielectric becomes steeper.
The value ofC is computed from (4.5) as

C(V) = 23ǫ0

g

(
1 − √

Vs/V

η
+
√

Vs

V
I1

)
, where I1 =

∫ 1

0

dx̂

1 + û(x̂) + η
,

from which follows thatC(V) has a horizontal asymptotic

lim
v→∞

C(V) = 23ǫ0

gη
. (4.15)
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4.3 The continuation problem

A

B

C

V

Figure 4.4:CV-curve for all three cases. The membrane first touches the dielectric
at the pointA. The change between the situations when the membrane
touches the dielectric at one point, and on some interval is indicated by
the pointB.

CV-curve and influence of model parameters

Summarizing the results of theCV-curves for all three situations, we construct the
CV-curve for all V , see Figure 4.4. The completeCV-curve has discontinuous
derivative at the transition point when the membrane touches the dielectric for the
first time (point A in Figure 4.4). At the transition between the situations when
the membrane touches the dielectric at one point and on some interval (pointB
in Figure 4.4), theCV-curve isC1. For some interval ofV three values ofC
are possible (see Figure 4.4). This is a consequence of the non-uniqueness of the
solution to the original problem foru.

4.3 The continuation problem

AUTO is a software package that is used for finding and displaying solutions, and
tracking bifurcations of solutions of ordinary differential equations (ODEs) by con-
tinuation of some system parameter.8 A bifurcation is, loosely formulated, a sudden
change in the qualitative behaviour of ODEs when some systemparameter (orbi-
furcation parameter) crosses a certain threshold (thecritical value). For example,

8The package has been developed initially by E. Doedel and subsequently expanded by a range of
authors, see [3]
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4 Some studies on the deformation of the membrane in an RF MEMSswitch

an equilibrium solution may loose stability when the bifurcation parameter crosses
a critical value. For more on the notion of bifurcation, see [6].

By continuation we mean the process of changing this system parameter and
calculating the deformation of a solution when this parameter is changed. A typical
continuation starts out with some (acquired) solution for the system with a certain
value for the system parameter. Then the parameter is changed, and the solution
is calculated for each value of the parameter. AUTO also detects bifurcations when
they take place. So, in order to do a continuation, one has to find one solution
for a specific value of the bifurcation parameter (often zerois a smart choice). By
changing a parameter (i.e. by acontinuationin one of the parameters) the solution
generically changes as well. This solution can be found by AUTO, for each value of
the bifurcation parameter.

Most continuation software, and especially AUTO, allows for continuation in two
or more parameters as well. AUTO is not only able to perform continuation of equi-
libria to ODEs, but also the continuation of periodic solutions of ODEs, fixed points
of discrete dynamical systems, and even solutions to partial differential equations
(PDEs) that can in some sense be transformed to ODEs, like spatially uniform so-
lutions (i.e. solutions that do not depend on any spatial variable) of a system of
parabolic9 partial differential equations (parabolic PDEs), travelling wave solutions
to a system of parabolic PDEs, and even more.

It is presently not of our interesthowAUTO finds this solution. For convenience,
we only note here that all continuation methods basically rely upon some version of
Newton’s method (and therefore the Implicit Function Theorem).

We want to stress that continuation always leads to a (discretized) continuum
of solutions. This is an advantage with respect to the other numerical methods we
described so far. Moreover, a continuation and bifurcationpackage such as AUTO is
able to detect bifurcations of the system as well. This is thesecond main advantage.

We show the method of continuation applied to our equilibrium problem which
consists of a nonlinear ordinary differential equation which is difficult to solve an-
alytically. The nonlinear differential equation for whichthe voltageV and capaci-
tanceC are calculated, reads

∂4u

∂x4
= −V2

2

ǫ0

(u + d/ǫ)2
+ αk1e−k2u (4.16)

with u′(0) = u′(1) = u(0) = u(1) = 0 andα a dummy parameter to switch
between nonlinearα = 1 and linear problemα = 0. Settingα = 0, the associated
linear problem is obtained as

∂4u

∂x4
= −V2

2

ǫ0ǫ

d
(4.17)

with u′′(0) = u′′(1) = u(0) = u(1) = 0.

9We do not explain the notion of aparabolicPDE here; it is of no importance to us. But see any
introductory text on partial differential equations

76



4.4 Analytical results

By solving the above linear equation, AUTO knows a solution of the “nonlinear”
problem forα = 0. By continuation inα, it subsequently finds solutions for the
nonlinear problem withα 6= 0. For each of these solutions the capacitanceC and
voltageV are calculated and aCV-curve is plotted in Figure 4.5. TheCV-curve in
Figure 4.5 exhibits a hysteresis behaviour.

0.00 2.00 4.00 6.00 8.00 10.0

0.00

10.0

20.0

30.0

C

V

Figure 4.5:CV-curve generated by AUTO.

4.4 Analytical results

4.4.1 The linearized problem

It is possible to fully solve the linearized problem for three different cases: (i) the
case in which the membrane does not touch the dielectric at all (ii) the case in which
the membrane touches the dielectric in one point only and (iii) the case in which the
membrane touches the dielectric on an interval. Since most linear problems have
unique solutions, it is clear from the outset that the typical hysteresis behaviour does
not show up in the linearized model. Some of those calculations may nevertheless
be of interest, we have placed a summary of the linearized problem in the appendix

4.4.2 Collected analytical results

We prove some results for a functionalE that may be interpreted as the total energy.
The functional can be written as an integral over some domain� in R

2. To read
this section, it might be necessary to consult a text on variational methods, see for
example [4] or [5].

First, it is proved that the solution for the membrane cannottouch the dielectric
“with holes”, i.e. in one dimension, the membrane is stuck tothe dielectric between
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4 Some studies on the deformation of the membrane in an RF MEMSswitch

every two points where the membrane touches it. Second, it isderived that every
critical point u for which u = 0 on some open set�1 ⊂ �, has1u = 0 on
∂�1. Third, we prove that stationary solutions for the energyE for which it holds
that dC/dV < 0 are necessarily unstable. The final result is argued but still not
completely proved. It states that if for both largeV and smallV a unique critical
point exists, then under some conditions on the energy functional, a continuous
family of solutions connects the two solutions.

Just for notation’s sake: the main functional we consider is

E = D

2

∫

�

u′′2 − V2

2

∫

�

ǫ0

(u + d/ǫ)
+
∫

�

k1e−k2u, (4.18)

where� is a domain (e.g. a rectangle, or a circle) inR
2 or an interval inR, depend-

ing on the question considered. The second integral is thecapacity

C =
∫

�

ǫ0

(u + d/ǫ)
.

The boundary conditions areu = g and∂u/∂n = 0 on∂�. Unless stated otherwise,
all integrals are over�.

Short list of results

1. For any minimizer (or general critical point)u of the infinitely-hard bottom
problem

min
{D

2

∫
12u − V2

2
C
∣∣∣ u ≥ 0

}
(4.19)

there existsno nonempty open sets�1 ⊂ � satisfyingu|�1 > 0 andu|∂�1 =
0. In particular, in dimensionn = 1, the contact set{x ∈ � | u(x) = 0} is a
(possibly empty) interval; in two-dimensions it means thatthe contact set has
only simply connected components (no rings).

2. If u is minimizer of (4.19), or more generally a critical point, then if u = 0
on an open set�1 ⊂ �, then1u = 0 on∂�1 (also of course on the interior
of �1).

3. Stationary points ofE lying on a branch for whichdC/dV < 0, are neces-
sarilyunstable. That is, there exists a perturbationw such that

E′′(u) · w · w < 0.

More generally, consider energies of the form

F(u, C, V) =
∫

f (x, u, ∇u, 1u, . . . )dx + G(V, C),
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4.4 Analytical results

whereC =
∫

c(u(x))dx and V is a parameter (the Voltage for example).
Then if∂2G/∂C∂V < 0, any solution lying on a branch for whichdC/dV <

0, is unstable.

4. The last result is more tentative; it should be true, but requires additional
work to prove: if there exists a unique critical point ofE both for small
V and for largeV , and provided that some type of coercivity holds for the
energy functional (4.18), then there exists a continuous family of solutions
connecting these two.

Sketches of the proofs

Ad 1 In 1D: let u be a stationary point, satisfying, whereu > 0,

−Du′′′′ = ǫ0

(u + d/ǫ)2
. (4.20)

Note that the right hand side of (4.20) is strictly positive.Supposeu has two contact
pointsx1 < x2. Sinceu(xi ) = u′(xi ) = 0 andu ≥ 0, we must haveu′′(xi ) ≥ 0.
Furthermore,−(u′′)′′ > 0 and it follows from the maximum principle thatu′′(x) ≥
min{u′′(x1), u′′(x2)} ≥ 0 for x ∈ (x1, x2). This implies, again by the maximum
principle, thatu ≤ 0 on(x1, x2). We thus conclude thatu ≡ 0 on [x1, x2].

In more dimensions exactly the same (pair of maximum principle) arguments
prove that the contact region can have no holes, as asserted.

Ad 2 We do not give a full proof, but illustrate the main idea. On a one-dimensional
domain� = [−L , L], let uR(x) be a smooth family of symmetric solutions with
“forced” contact region [−R, R], with R < L. By symmetry, we only need to
consider the left half of the solution:





−Du′′′′
R = ǫ0

(uR+d/ǫ)2 for − L < x < −R,

uR(−L) = g, u′
R(−L) = 0,

uR(−R) = 0, u′
R(−R) = 0.

Now, uR is a critical point ofE if and only if d E(uR)/d R = 0.
Writing E(u) =

∫
�

D
2 u′′2 + g(u)dx, whereg(u) = −V2

2
ǫ0

(u+d/ǫ) + k1e−k2u, we
obtain

E(uR) = 2
∫ −R

−L

D

2
u′′

R
2dx + 2

∫ −R

−L
g(uR)dx + 2Rg(0).

Calculating this derivative with respect toR we infer that

d E(uR)

d R
= Eu(uR)

∂uR

∂ R
− Du′′

R
2
(−R)−2g(uR(−R))+2g(0) = −Du′′

R
2
(−R),

sinceuR(−R) = 0 andEu(uR) = 0, becauseuR is a critical point when keepingR
fixed. It follows thatu′′(−R) = 0 if u is a critical point ofE.
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4 Some studies on the deformation of the membrane in an RF MEMSswitch

This argument can be extended to higher dimensions quite easily, under theas-
sumptionthat the solution for fixed contact region varies smoothly with the geom-
etry of the contact region. Without this assumption, more complicated arguments
are needed.

Remark 4.4.1. We note that if the contact set is a single point, then the second
derivative in this point neednot be zero. Indeed, in one dimension for example,
there is a branch of solutions with contact only in the midpoint of the domain (in-
terval) and with varying second derivative.

Ad 3 Let us first give the argument for the specific energyE in the one-dimensional
case. Consider

D

2

∫
u′′2 − V2

2

∫
ǫ0

(u + d/ǫ)
+ k1e−k2u.

Let us look at stationary points, i.e., solutions of

Du′′′′ = −V2

2

ǫ0

(u + d/ǫ)2
+ k1k2e−k2u, (4.21)

which are, on the branch under consideration, parametrizedby V . Let us writeu
for the derivative of the solutionsu with respect toV along the branch. Taking the
derivative of (4.21) along the branch, we obtain

Du′′′′ = V2 ǫ0u

(u + d/ǫ)3
− V

ǫ0

(u + d/ǫ)2
− k1k2

2e−k2uu. (4.22)

The second variation of the energy in the directionu gives

E′′(u) · u · u = D
∫

u′′2 − V2
∫

ǫ0u

(u + d/ǫ)3
+ k1k2

2

∫
e−k2uu2.

After performing partial integration twice on the first term, we can substitute (4.22)
and, with most terms cancelling, we obtain

E′′(u) · u · u = −V
∫

ǫ0u

(u + d/ǫ)2
.

This simplifies as

E′′(u) · u · u = −V
∫

ǫ0u

(u + d/ǫ)2
= V C′(u)u = V

dC

dV
.

HencedC
dV < 0 implies thatu is unstable.

For the general case, critical pointsu = u(V) satisfy, subscripts denoting partial
derivatives,

Fu(u(V)) · w + GC(V, C(u(V))) Cu(u(V)) · w = 0 for anyw.
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4.4 Analytical results

Taking the derivative with respect toV gives (always evaluating atu = u(V)),

Fuu ·w ·uV +GCV Cu ·w+GCC Cu ·w Cu ·uV +GC Cuu·w ·uV = 0 for anyw.

(4.23)

On the other hand, the second variation (for fixedV) gives

F ′′(u) · w · w′ = Fuu · w · w′ + GCC Cu · w Cu · w′ + GC Cuu · w · w′,

hence, using (4.23), we obtain forw = w′ = uV

F ′′(u) · uV · uV = −GCV Cu · uV .

When we writeC(V) = C(u(V)), this reduces to

F ′′(u) · uV · uV = −GCV
dC

dV
.

Hence, if∂2G/∂C∂V < 0 then solutions on branches wheredC/dV < 0 are
always unstable.

Remark 4.4.2. One can also consider the problem where we put a chargeQ = V C
on the switch. In that case the physically relevant energy doesnot include the energy
stored in the battery, which is given by−V2C. The energyEQ thus becomes

EQ = D

2

∫
u′′2 + Q2

2C
+
∫

k1e−k2u,

and the arguments above show that solutions on curves withdC/d Q < 0 are always
unstable.

Ad 4 Such a result follows from degree theory, see e.g. [8]. However, it still needs
to be checked rigorously that there indeed does exist a unique critical point for very
large and very smallV . For V = 0 this is obvious, the energy being convex in that
case, but the situation for largeV is less straightforward, since the energy contains
both convex and concave parts, although in numerical experiments uniqueness is
observed.

4.4.3 Functional estimates

In this section, two estimates for the first and second variation of the total energy
are derived.

The energy functional modeling the deformation of a clampedplate � under
influence of an electrical field due to a potential differencewith a fixed plate reads

E[u] = Emech+ Eel

=
∫

�

[
1

2
D(1u)2 − 1

2
V2 ε0

u + g + d
ε0

]
dxdy, (4.24)
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4 Some studies on the deformation of the membrane in an RF MEMSswitch

whereu ∈ H2
0 (�), implying u = ∂u

∂n = 0 on∂�. Equilibria for the system are the
zeroes of the first variation,

δE[ũ, h] = 0, ∀h ∈ H2
0 (�).

These can be stable and unstable equilibria (e.g. saddle points). A stable equilibrium
is a minimum of the functional. Such states are characterized by the fact that the
second variation at the equilibrium state is strictly positive,

δ2E[ũ, h] > 0, ∀h ∈ H2
0 (�)

We here wish to give a sufficient condition for an equilibriumto be stable.
The first variation is found by puttingu = ũ + εh, whereh ∈ H2

0 (�) is a test
function, and taking the derivative with respect to.ε at ε = 0. We then obtain

δE[ũ, h] =
∫

�

[
D12ũ + 1

2
V2 ε0

(u + g + d
ε0

)2

]
h dxdy.

The variation lemma yields the boundary value problem for the system from this
functional. Let us assume we have a solution for the system. Now the question
is whether the solution is stable or not. The second variation in the directionh ∈
H2

0 (�) is found to be

δ2E[u, h] =
∫

�

[
D(1h)2 − V2 h2ε0

(u + g + d
ε0

)3

]
dxdy. (4.25)

In this form it is difficult to check positivity. However, we can prove a Cauchy-type
inequality for the test functions in the spaceH2

0 (�) when� has a simple shape. For
the case of a rectangle with sidesL1 andL2 we have

∫

�

(1h)2dxdy ≥ 4

max[L4
1, 2L2

1L2
2, L4

2]

∫

�

h2dxdy

Using this inequality together with equation (4.25) we havethe following estimate
for the second variation,

δ2E[u, h] ≥
∫

�

[
4D

max[L4
1, 2L2

1L2
2, L4

2]
− V2 ε0

(u + g + d
ε0

)3

]
h2dxdy

Necessary conditions for the stability of the functional can be obtained from this
estimate. For example, takeu∗ = min(u), then

δ2E[u, h] ≥
[

4D

max[L4
1, 2L2

1L2
2, L4

2]
− V2 ε0

(u∗ + g + d
ε0

)3

]∫

�

h2dxdy,

and it is sufficient to check the positivity of the constant.
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Appendix

As said in section 4.4.1, the linearized problem can be fullyelaborated for three
different cases: (i) the case in which the membrane does not touch the dielectric at
all (ii) the case in which the membrane touches the dielectric atx = 0 only and (iii)
the case in which the membrane touches the dielectric on an disc B̄a, for 0 < a < 1.
We will make a few remarks on how to do this, in the case of a radially symmetric
MEMS switch. We consider case (iii). It will be clear from theresult that the typical
hysteresis behaviour does not show up in the linearized model.

To focus on the right parameter combinations in the problem,we rescale it. For
example, in the 2-D radially symmetric version of the problem one obtains for the
capacitance:

C(w) = 2πǫ03
2

g

∫ 1

0

r

1 + η + w(r )
dr.

and, by computing the Euler-Lagrange equation corresponding to this energy we
find

12
r w = − δv2

(1 + η + w)2
. (4.26)

where1r = 1
r

d
dr , δ some algebraic expression in terms of the other parameters,v a

non-dimensionalized voltage andw a scaled version of the distanceu. This problem
can subsequently be linearized aroundw = 0:

12w = ω4
(

−1 + η

2
+ w

)
,

whereω = 4
√

2ǫv2

(1+η)3 is just a scaling. Regardingw as a radially symmetric function

depending onr only we get

w(r ) = AJ0(ωr ) + BY0(ωr ) + C I0(ωr ) + DK0(ωr ) + 1 + η

2
, (4.27)

whereJ0 andY0 are Bessel functions of the first and second kind respectively and
I0 and K0 are modified Bessel functions of the first and second kind. We add the
following boundary conditions:

w(1) = w′(1) = w′(a) = w′′(a) = 0, w(a) = −1.

By rewriting this system as a four-dimensional first-order system, one obtains the
constantsA, B, C andD.
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Abstract

We study a surveillance wireless sensor network (SWSN) comprised of
small and low-cost sensors deployed in a region in order to detect objects
crossing the field of interest. In the present paper, we address two problems
concerning the design and performance of an SWSN: optimal sensor place-
ment and algorithms for object detection in the presence of false alarms. For
both problems, we propose explicit decision rules and efficient algorithmic
solutions. Further, we provide several numerical examplesand present a sim-
ulation model that combines our placement and detection methods.

Keywords: sensor deployment, detection probability, overlap, hypothesis test-
ing, Bayesian approach, hidden Markov models, Viterbi algorithm, simula-
tions.

5.1 Introduction

An important class of wireless sensor networks (WSN) is the WSNs comprised of
small and low-cost sensors with limited computational and communication power [1].
Sensors are deployed in a region, they wake up, organize themselves as a network,
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and start sensing the area. The objective of the sensors is sensing the environ-
ment and communicating the information to a data collectioncenter. Many types of
employment are envisaged for WSNs ranging from the monitoring of endangered
animal populations to military surveillance or the surveillance of critical infrastruc-
tures [12], archaeological sites [2], perimeters, or country borders [10]. The tasks
of a surveillance wireless sensor network (SWSN) is to detect objects crossing the
field of interest. The sensors monitor the environment and send reports to a central
control unit. The major requirement of a surveillance application is that the SWSN
is to monitor the environment with a certain quality for a specific period of time.
Important issues in designing an SWSN are the deployment decisions such as the
sensing range of sensor nodes and density of the SWSN, and deployment strategy
(random, regular, planned, et cetera.) to be applied [10].

Different types of sensors may have to be utilized in a WSN to address the prob-
lem at hand. For outdoor surveillance systems, radar, microwave, ultrasonic and/or
infrared sensors are typical. To analyze the detection performance of the sensors
or the surveillance systems, a common measure such as the single-sensor detection
probability p may be utilized since it allows to abstract the different working prin-
ciples of the sensors. The factors that affectp are the object-to-sensor distance, en-
vironmental characteristics, the size and the motion pattern of the object, et cetera.
Moreover, He et al. [7, 8] showed that sensors produce a non-negligible amount
of false alarms. The false alarms are defined as positive reports of a sensor when
no object exists. Each sensor may produce a false alarm with acertain probability
q. If data/decision fusion [5] is allowed, then the false alarm probabilityq nega-
tively affects the detection performance of the network. The cost of false alarms
varies depending on the application. For example, it is lower in a home surveillance
system when compared to the cost of false alarms in a surveillance application of
mission-critical infrastructure such as a nuclear reactor. Hence, the objective of an
upstanding SWSN design is to maximize the detection probability of the system
while minimizing or bounding the false alarm rate of the system. To this end, in
the present paper, we study two problems concerning the design and performance
of an SWSN: optimal sensor placement and algorithms for intruder detection in the
presence of false alarms. Our main performance characteristics of the SWSN are
the system’s intruder detection probability and false alarm probability, for given in-
put parametersp andq representing single-sensor probabilities. The problem of
correctly communicating the reports of the sensors to the central control unit (with
possibly additional failure probabilities) is beyond the scope of the present study. It
has been studied elsewhere, among others in a previous studygroup Mathematics
with Industry [9]. Therefore, we will assume perfect communication of the reports.

The sensor placement problem addressed in this work is formulated as follows:
given a limited number of homogeneous sensors with an effective sensing range
r and a field of interest modelled as a one- or two-dimensional area, determine
the optimal location of the sensors that maximizes the detection performance of
the SWSN. In Section 5.2.1, we study the trade-off involved in overlapping sensor
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ranges. If the number of sensors is limited then, clearly, overlaps decrease the total
sensing part of the area but increase the detection performance in the overlap of two
or more sensor ranges. We give an explicit condition when overlap in sensor ranges
leads to better detection performance of the system. Next, in Section 5.2.2 we pro-
pose an algorithm for efficient coverage of a 2-D area, based on a priori knowledge
on the probability distribution of the intruder position. When the distribution of
an object’s location in the area is uniform, our algorithm performs closely to the
optimal hexagonal placement.

Given a particular layout of the sensors, the probability ofintruder detection and
the false alarm probability of the network depend on the decision rule that prescribes
in which situation an intrusion alarm has to be reported, based on observations
from all deployed sensors. For instance, if we have two completely overlapping
sensors and report an intrusion alarm only if both sensors signal an intruder, then
the intruder detection probability of the SWSN isp2 and the false alarm probability
is q2. The problem is to determine a decision rule for reporting anintrusion alarm
such that the detection performance of the network is maximized. In Section 5.3
we attempt to resolve this problem by statistical methods. Our main conclusion is
that several observations of the same object are absolutelynecessary to report an
intrusion alarm with a reasonable confidence. However, multiple observations will
result in a huge variety of observed patterns. Which patterns signal the intruder and
which are caused by false alarms only? This question is tackled in Section 5.4 where
we design a procedure for intruder detection, based on hidden Markov models and
the Viterbi algorithm.

Finally, in Section 5.5 we present a simulation model that combines our place-
ment and detection methods. Using this model, we characterize the detection per-
formance in several configurations of a detection area.

Throughout the paper, we use the following notations:

• p – single-sensor detection probability, the probability that a sensor signals
an object given that the object is present in the sensing range (assumed to be
a circle, or sphere);

• q – the single-sensor false alarm probability, the probability that a sensor
signals an intruder given that there is no intruder in the sensing range;

• r – sensing radius of a sensor;

Further, a random variableX ∈ {0, 1} is an indicator of the event that an object is
present in the sensing range of a sensor, and a random variable Y ∈ {0, 1} is an
indicator of the event that a sensor gives an alarm. We will also assume that the
alarm events of individual sensors are mutually independent when conditioned on
the absence or presence of the object.
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5.2 Optimal coverage of the area

In this section we study the problem of optimal sensor placement, or sensor deploy-
ment, formulated as follows. Consider an area where a numberof sensors are to be
deployed, and assume that there is an object in the area. We define aspdetectionthe
probability that at least one sensor correctly detects the object. The goal is to find a
sensor deployment maximizingpdetection. In order to computepdetection, throughout
the section we assume an a priori statistical knowledge on the object position.

One natural solution to this problem is to maximize the coverage of the observed
area for a given number of sensors, or, equivalently, minimize the number of sensors
employed while covering the complete area. If each sensor has a range with radius
r , then we model the sensing area as a circle of radiusr with a center at the sensor
location. Thus, the question of minimizing the number of sensors while covering
the complete area is equivalent to the so-calledcovering problemin two dimensions:
cover a given area completely with the least amount of circles with a given fixed
radius. This problem (and many others like the packing and kissing problems)
is solved by using the hexagonal lattice, defined as the set ofpoints λv + µw,
λ, µ ∈ Z, wherev = (1, 0) andw = (1/2,

√
3/2) are the vectors spanning the

lattice. To cover an area with circles of radiusr , the vectorsv, w must be scaled
by a factorr

√
3. In the asymptotic limit, with a large area covered by sensors and

with negligible boundary effects, the sum of the sensor ranges is 1.209 times the
covered area, meaning that about 20.9% of the area is coveredby two sensors and
the remainder by one sensor. For further details, see [4]. Anexample of 7 sensors
placed by using the hexagonal lattice and completely covering a rectangular area
is given in Figure 5.1. An example of hexagonal placement of 105 sensors with
non-covered gaps in between is given in Figure 5.3.

Figure 5.1: Rectangular area covered by seven sensors placed by using a hexagonal
lattice.
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Intuitively, a sensor placement with minimal overlapping or without overlapping
must be optimal if the distribution of the object’s positionis uniform. Below in
Section 5.2.1 we show that this is often the case also for non-uniform distributions,
and in Section 5.2.2 we propose a procedure for close-to-optimal sensor placement.

5.2.1 Optimal allocation of two sensors

Does it make sense to let two sensors overlap? Having some overlap might be
reasonable if we want a better detection in most vulnerable regions. However, if
the number of sensors is limited then overlaps reduce the total coverage. In order to
resolve this trade-off, we consider the following simple model. We restrict ourselves
to a one-dimensional area, which constitutes an interval oflength two, and a pair of
sensors withr = 1/2. For each of the two sensors, the detection probability isp
and the probability of a false alarm isq. The question is how to place these sensors
so that the detection probabilitypdetectionis maximized.

Formally, letS = [0, 2] be the area under surveillance. Denote byx1 the leftmost
point of the first sensor’s coverage and byx2 the leftmost point of the second sen-
sor’s coverage. Thus, the first sensor covers the segmentS1 = [x1, x1 + 1] and the
second one covers the segmentS2 = [x2, x2+1], wherex1 ∈ [0, 1] andx2 ∈ [x1, 1],
as shown in Figure 5.2.

0 2
x1

S1

x2 S2

Figure 5.2: Partial overlapping of two sensors.

Now assume that the intruder locationL has a distributionP(L ≤ x) = F(x),
x ∈ [0, 2]. Then in the doubly covered segmentS1 ∩ S2 the detection probability
by the two-sensor system isp2 + 2p(1 − p), and the object is in this segment with
probabilityF(x1 + 1) − F(x2). In the singly covered segment(S1 ∪ S2) \ (S1 ∩ S2)

detection probability isp, and the object is there with probabilityF(x2 + 1) −
F(x1 + 1) + F(x2) − F(x1). Finally, in the remaining uncovered partS\ (S1 ∪ S2)

the detection probability is 0.
Rearranging the terms, we can formulate the problem of maximizing the detec-

tion probabilitypdetectionas follows:

max
x1,x2

{pdetection(x1, x2)} (5.1)

= max
x1,x2

{p (F(x2 + 1) − F(x1)) + p(1 − p) (F(x1 + 1) − F(x2))}.

In general, in order to find an optimal pair (x1, x2) we need exact knowledge of
F(x). However, as a direct consequence of (5.1), we can provide the following
particular decision rule.
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Lemma 5.2.1 (No-overlap principle). It is optimal to allocate sensors without
overlapping, if

1 − p ≤ f (x)

f (x + 1)
≤ 1

1 − p

for every x∈ [0, 1], where f(x) = d F(x)
dx is the probability density function of the

object location.

Proof . By differentiating the expression to be maximized in (5.1),we show that
it decreases inx1, if f (x1)/ f (x1 + 1) ≥ 1 − p, for every x1 ∈ [0, 1]. In this
case, 0 is the optimal value forx1. Similarly, this expression increases inx2 if
f (x2)/ f (x2 + 1) ≤ 1/(1− p) for x2 ∈ [0, 1], which sets 1 as the optimal value for
x2.

The no-overlap principle indicates that it is optimal to maximize the coverage
if the distribution of the intruder’s position is sufficiently close to uniform. We
illustrate the no-overlap principle by means of two examples, namely one example
where the principle is applicable, and another where it is not.

Example 5.2.2. Assume that the intruder’s entering position has uniform distribu-
tion, i.e., f (x) = 1/2, for everyx ∈ [0, 2]. In this case our decision rule says that
it is optimal to avoid any overlapping.

Example 5.2.3. Assume that the intruder’s position has a linear density function,
e.g., f (x) = x/2, for everyx ∈ [0, 2]. The no-overlap rule cannot give us an
unambiguous answer in this case. By solving (5.1), we obtaina more sophisticated
joint sensor’s allocation:

x1 = min

{
1 − p

p
, 1

}
andx2 = 1.

5.2.2 Sensor deployment in a 2-D area

Let N ∈ N, and letX ⊆ {1, . . . , N} × {1, . . . , N} be a two-dimensional discrete
grid. Further, for allx ∈ X , let f (x) be the probability that an object is at positionx,
provided that there is an object in the area. As before,r is an effective sensing
range of a sensor, andp is the detection probability of one sensor. Our objective is
to provide an algorithm which finds the ‘optimal’ deploymentof sensors inX , so
that the probability to miss the object is decreased as much as possible. Note that
the problem now is discretized by allowing only placements on some pre-specified
points.

We say that a sensor isdeployed at position y∈ X if y is the center of the sensor’s
sensing range. Further, a tupleEy = (y1, . . . , yn) ∈ X n (n ∈ N ∪ {0}) is called a
deployment of size n, if n sensors are deployed at positionsy1, . . . , yn. We use∅
for the empty deployment.
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5.2 Optimal coverage of the area

Now, for x ∈ X , n ∈ N and Ey = (y1, . . . , yn) ∈ X n, defineg(Ey | x) to be
the probability that an intruder isnot detected by any of the sensors deployed at
positionsy1, . . . , yn provided that the intruder’s position isx. Further, denote by
pmissed(Ey) the probability thatnoneof the sensors of the deploymentEy detects the
intruder. Then, given that there is an intruder in the area, we obtain:

pmissed(Ey) =
∑

x∈X
f (x)g(Ey | x), for Ey = (y1, . . . , yn) ∈ X n, n ∈ N. (5.2)

One can computepmissed((y1, . . . , ym)) for all m ∈ {1, . . . , n} iteratively as follows.
First, note that, naturally,g(∅ | x) = 1 for all x ∈ X , and thus

pmissed(∅) =
∑

x∈X
f (x)g(∅ | x) =

∑

x∈X
f (x) = 1.

Next, letd : X ×X → R be the Euclidean distance function. Takem ∈ {1, . . . , n},
x ∈ X and consider a deployment(y1, . . . , ym) of sizem. Since the sensors are
independent, we get

g((y1, . . . , ym) | x) = g((ym) | x)g((y1, . . . , ym−1) | x)

=
{

g((y1, . . . , ym−1) | x) if d(x, ym) > r
(1 − p)g((y1, . . . , ym−1) | x) if d(x, ym) ≤ r .

(5.3)

Now, given the deployment(y1, . . . , ym−1), the probability

pmissed((y1, . . . , ym−1, ym))

can be computed using (5.2) and (5.3).
Using the described iterative approach, we can now address two (closely related)

optimization problems: Minimum Size Deployment (MSD) and Minimum Proba-
bility Deployment (MPD).

• MSD: Given β ∈ [0, 1], find a deploymentEy of minimal size such that
pmissed(Ey) ≤ β.

• MPD: Givenn ∈ N, find a deploymentEy of sizen such thatpmissed(Ey) is
minimal.

We provide a heuristic algorithm described below, which canbe used for both prob-
lems. The only difference is in the stopping criterion. In the main iterative step
of the algorithm, a sensor is added to the deployment in such away that the non-
detection probabilitypmissed(·) is minimized (in case of a tie, the algorithm sticks to
the candidate deployment that has been found first). This implies that the algorithm
will find a ‘locally optimal’ solution, not necessarily the globally optimal one.
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The heuristic algorithm

Input:

• MSD: β ∈ [0, 1];

• MPD: n ∈ N.

Initialization: m := 0.

Iterative Step:

ym+1 := arg min
y∈X

pmissed((y1, . . . , ym, y))

= arg min
y∈X

∑

x∈X
f (x)g((y1, . . . , ym, y) | x),

whereg((y1, . . . , ym, y) | x) is computed by (5.3) for allx ∈ X ;

m := m + 1.

Termination:

• MSD: pmissed((y1, . . . , ym)) ≤ β, then STOP;

• MPD: m = n, then STOP.

Output: Ey := (y1, . . . , ym).

Note that there is a strong connection between the proposed algorithm and the
no-overlap principle (see Lemma 5.2.1). Indeed, (3) says that the deployment of a
new sensor at a positiony reduces the non-detection probabilityf (x)g(Ey|x) by a
factor 1− p for all x such thatd(x, y) ≤ r . Since, ideally, we would like to reduce
the highest values off (x)g(Ey|x), the equivalent formulation of the iterative step is
as follows:

ym+1 := arg max
y∈X

∑

x:d(x,y)≤r

f (x)g((y1, . . . , ym) | x). (5.4)

Now assume that we have deployed two sensors, and our algorithm allowed an
overlap. Denote the sensing range of sensori = 1, 2 by Si . Then, since (5.4) holds
for the deployment of sensor 2, it follows that

∑

x∈S1∩S2

(1 − p) f (x) +
∑

x∈S2\S1

f (x) ≥
∑

x∈S

f (x)
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Figure 5.3: The hexagonal deployment of 105 sensors.

for any possible sensor rangeS in the area that does not overlap withS1. (Otherwise,
S could have been chosen instead ofS2.) Since the density in the first term of the
left-hand side is taken with the factor 1− p we see that for the inequality to hold,
the values off (x) in S1 ∩ S2 and/or inS2\S1 should be considerably larger than in
their neighborhoods. This can be seen as the condition of theno-overlap principle,
applied in two dimensions: overlap is possible only if thereexist positionsx such
that the densityf (·) varies considerably (by a factor of 1− p) within a sensor range
of a sensor deployed inx.

In case two positionsy would reduce the maximum non-detection probability
by the same amount, we can break the tie arbitrarily, e.g. by using the first such
position encountered, or by doing this randomly. The actualtie-breaking procedure
does not matter too much on a global scale, because in the nextiteration it is most
likely that the other position will be chosen, except if the two positions are close
(within a distance 2r ). Locally, there may occur significant effects of tie-breaking.
We did not study this, but this topic warrants further investigation.

We have implemented the proposed algorithm inMathematica. Below we present
two examples of the deployment which is the output of our algorithm. Another
example will be given in Section 5.5.

Example 5.2.4. SupposeX = {1, . . . , 200} × {1, . . . , 195}, p = 0.9 andr = 10.
Moreover, suppose thatf is the uniform distribution. We can construct a hexagonal
deployment of 105 sensors inX such that an intruder cannot be within the range
of two different sensors (see Figure 5.3). It is easy to see that this deployment is
optimal for the given number of sensors, and a simple calculation shows that the
non-detection probability of this deployment is 0.255. Deploying the 105 sensors
according to our algorithm leads to the deployment shown in Figure 5.4. The non-
detection probability of this deployment is 0.267 which is close to the non-detection
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Figure 5.4: Deployment of 105 sensors according to the MPD algorithm: uniform
distribution of the object location.

probability of the optimal hexagonal deployment.

Example 5.2.5. SupposeX = {0, . . . , 100} × {0, . . . , 100}, p = 0.8 andr = 10.
Moreover, defineσ = 25 and definerx as the distance ofx to the north-east axis
(the liney = x) of X for eachx ∈ X . Now suppose thatf (x) = ce− 1

2( rx
σ )2

for all
x ∈ X , wherec is the normalization constant makingf a probability distribution
onX . In other words, the signed distance between the intruder’sposition and the
north-east axis ofX follows a discrete version of the normal distribution with mean
0 and standard deviationσ = 25. Here, the sign is positive for positions above the
line, and negative for those below.

Having 200 sensors at our disposal, applying our algorithm leads to the deploy-
ment in Figure 5.5. As one would expect, the density of the sensor deployment
increases when approaching the north-east axis. Moreover,a simple calculation
shows that the non-detection probability of this deployment is 0.066.

We conclude that our heuristic algorithm can be used to find deployments which
result in a good detection probability and are in line with the analytical results from
Section 5.2.1. In particular, in the case of a uniform a priori probability distribution
of the intruder position we found a nearly optimal solution.

5.3 Statistical methods for intruder detection

Optimal sensor deployment studied in the previous section is important for increas-
ing the overall detection probability, that is, the number of true alarms produced by
the system. However, since the false alarm probabilityq can be high in practice
(e.g.q can be about 2%, which already has a considerable impact), sensor networks
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Figure 5.5: Deployment of 200 sensors according to the MPD algorithm: normal
distribution of the signed distance between the object location and the
north-east axis.

may even produce multiple false alarms at each moment in time. Still, the pres-
ence of an intruder increases the number of alarms, and afterseveral observations
one should be able to recognize an intrusion and report an alarm. To this end, we
present in this section two statistical methods for intruder detection: one is based
on classical hypothesis testing, and the other employs a Bayesian approach.

The hypothesis testing approach in Section 5.3.1 provides adecision making tool
for reporting an intrusion alarm after a single observationof n identical sensors.
In practice, false alarm reports are highly undesirable. Therefore, we bound the
probability of a false report by choosing a high confidence level of the test. This
sometimes leads to a poor performance of the test in a sense that with high proba-
bility, after one observation ofn sensors, an object will stay undetected. In practice,
however, this is not a big problem because there is usually enough time to produce
several observations, not necessarily by the same sensor. Then the probability of
the intruder’s presence can be updated after each observation, for instance, using
the Bayesian approach described in Section 5.3.2.

The Bayesian approach allows for great flexibility, because, along with the total
number of alarms, it also takes into account the locations ofthe alarms. Therefore,
in Section 5.3.2 we analyze a more general model than in Section 5.3.1. Specifically,
we consider several non-overlapping parts of the coverage area, each deploying
a number of completely overlapping sensors. Furthermore, we let the intrusion
probabilities, as well as the detection and false alarm probabilities, depend on the
sensor location. The motivation for this model is that although identical sensors
will usually cover parts of the intrusion area with roughly equal sizes, the terrain
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in which the sensors are placed may vary, e.g. in altitude, which can influence the
local intrusion probabilities and the performance of the sensors.

5.3.1 Hypothesis testing for intruder detection

In the following, we consider the two extreme cases:

• Case I:n sensors, all at the same position; i.e. with identical sensing range;

• Case II:n non-overlapping sensors.

If there is an object in the area, then Case I is the case in which all sensors follow
the same Bernoulli distribution with parameterp and Case II is the case that one of
the sensors detects the object with probabilityp and each of the remaining sensors
detect the object with probabilityq.

Assume that there can be at most one object in the area. Withinthe hypothesis
testing formulation, we test the null-hypothesis that there is no intruder in the area
against the alternative that the area is penetrated. If a critical number of alarms
is observed then we reject the null-hypothesis and report anintrusion alarm. For
i = 1, . . . , n let [Yi = 1] be the event that sensori detects an object and [Yi = 0] be
the complementary event. Assuming that there is an intruderin the range of sensor
i , we haveP(Yi = 1) = p.

Consider Case I:n sensors deployed at the same position with 100% overlap.
Thus, our hypothesis testing formulation is as follows:

Case I:

{
H0 : P(Yi = 1) = q for all i = 1, . . . , n,

H1 : P(Yi = 1) = p for all i = 1, . . . , n.

In Case II, the sensors are not overlapping. Thus, the objectcan penetrate the
range of at most one sensor. This leads to the following formalization:

Case II:





H0 : P(Yi = 1) = q for all i = 1, . . . , n,

H1 : P(Yj = 1) = p for exactly onej = 1, . . . , n;
P(Yi = 1) = q for i = 1, . . . , n, i 6= j .

In both cases, as a statistic, we use the stochastic variableT = Y1 + · · ·+ Yn, the
number of alarms produced by the system. We rejectH0 if and only if T ≥ c, for
some criticalc > 0. Clearly, underH0, T has a Binomial(n, q) distribution. Denote
the Binomial density function with parametersn andp at k by Bn,p(k):

Bn,p(k) =
(

n

k

)
pk(1 − p)n−k. (5.5)

In our test, two types of errors can be made: false positives and false negatives (in
statistical terms, type-one and type-two error, respectively). A false positivemeans
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n 3 4 5 6 7 8 9 10
q

0.02 1 1 1 1 1 1 1 1
0.04 1 1 1 1 1 1 1 2
0.06 1 1 1 1 2 2 2 2
0.08 1 1 2 2 2 2 2 2
0.10 1 2 2 2 2 2 3 3
0.12 1 2 2 2 2 3 3 3
0.14 2 2 2 2 3 3 3 3
0.16 2 2 2 3 3 3 3 4
0.18 2 2 2 3 3 3 4 4
0.20 2 2 3 3 3 4 4 4

Table 5.1: Critical number of alarmsc for Cases I and II.

a false report, i.e., an intruder alarm is reported while there is no object in the area.
In both Cases I and II, one has

pfalse = P(false positive) = PH0(T ≥ c) =
n∑

k=c

Bn,q(k).

We choosec in such a way that the above probability does not exceed an acceptable
frequency of false alarm reports. Afalse negativemeans that an intruder is missed
by the system, i.e., the intrusion alarm will not be reportedwhile there was an object
in the area. For Case I, we get

pI
missed= P(false negative) = PH1(T < c) =

c−1∑

k=0

Bn,p(k),

and for Case II, we obtain

pI I
missed= P(false negative) = p

c−2∑

k=0

Bn−1,q(k) + (1 − p)

c−1∑

k=0

Bn−1,q(k).

In this setting, the detection probabilitypdetectionof the system is equal to the power
of the statistical test, i.e.,

pdetection= 1 − P(false negative).

We select some values forp andq and calculate corresponding values ofc and
pdetectionso thatpfalse ≤ 0.05. In Tables 5.1 and 5.2 we present the values ofc for
Cases I and II. Table 5.3 gives the values ofpdetectionfor Case I, whereas Tables 5.4
and 5.5 give the values for Case II. In all the tables, the single-sensor detection
probability is fixed atp = 0.9. The values ofc used in Tables 5.3–5.5 are chosen
according to the results of Tables 5.1 and 5.2.

As we see in Case I,pdetection is very high. This is not surprising because in
fact, in this case we have to distinguish between Binomial(n, p) and Binomial(n, q)
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n 15 30 45 60 75 90 105 120 135 150
q

0.02 1 2 3 3 4 4 5 5 6 6
0.04 2 3 4 5 6 7 8 9 9 10
0.06 3 4 6 7 8 9 11 12 13 14
0.08 3 5 7 8 10 12 13 15 16 18
0.10 4 6 8 10 12 14 16 18 19 21
0.12 4 7 9 12 14 16 18 20 23 25
0.14 4 7 10 13 16 18 21 23 26 28
0.16 5 8 11 14 17 20 23 26 29 32
0.18 5 9 12 16 19 22 26 29 32 35
0.20 6 10 14 17 21 24 28 31 35 38

Table 5.2: Critical number of alarmsc for Cases I and II.

n 3 4 5 6 7 8 9 10
q

0.02 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.04 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.06 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.08 0.9990 0.9999 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.10 0.9990 0.9963 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.12 0.9990 0.9963 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.14 0.9720 0.9963 0.9995 0.9999 0.9998 1.0000 1.0000 1.0000
0.16 0.9720 0.9963 0.9995 0.9987 0.9998 1.0000 1.0000 1.0000
0.18 0.9720 0.9963 0.9995 0.9987 0.9998 1.0000 0.9999 1.0000
0.20 0.9720 0.9963 0.9914 0.9987 0.9998 0.9996 0.9999 1.0000

Table 5.3: Values ofpdetectionfor Case I;p = 0.9.

n 3 4 5 6 7 8 9 10
q

0.02 0.9000 0.9001 0.9002 0.9004 0.9006 0.9008 0.9010 0.9013
0.04 0.9002 0.9005 0.9009 0.9015 0.9022 0.9029 0.9038 0.2772
0.06 0.9004 0.9010 0.9020 0.9032 0.2795 0.3170 0.3524 0.3857
0.08 0.9006 0.9018 0.2554 0.3073 0.3551 0.3993 0.4402 0.4780
0.10 0.9010 0.2440 0.3099 0.3694 0.4233 0.4721 0.1687 0.2035
0.12 0.9014 0.2868 0.3609 0.4265 0.4846 0.1816 0.2242 0.2672
0.14 0.2344 0.3278 0.4087 0.4788 0.1807 0.2310 0.2817 0.3318
0.16 0.2650 0.3670 0.4534 0.1654 0.2232 0.2818 0.3396 0.1473
0.18 0.2948 0.4044 0.4951 0.2006 0.2672 0.3332 0.1454 0.1907
0.20 0.3240 0.4400 0.1629 0.2371 0.3119 0.1337 0.1838 0.2376

Table 5.4: Values ofpdetectionfor Case II;p = 0.9.

n 15 30 45 60 75 90 105 120 135 150
q

0.02 0.9031 0.4010 0.1989 0.3008 0.1680 0.2404 0.1421 0.1975 0.1208 0.1648
0.04 0.3935 0.2944 0.2346 0.1922 0.1599 0.1344 0.1138 0.0968 0.1569 0.1337
0.06 0.1841 0.2288 0.1114 0.1298 0.1429 0.1526 0.0876 0.0945 0.1004 0.1053
0.08 0.2811 0.1813 0.1252 0.1759 0.1255 0.0909 0.1183 0.0875 0.1094 0.0822
0.10 0.1434 0.1448 0.1339 0.1213 0.1091 0.0980 0.0879 0.0789 0.1135 0.1009
0.12 0.2103 0.1157 0.1393 0.0836 0.0943 0.1020 0.1077 0.1117 0.0741 0.0772
0.14 0.2836 0.1952 0.1424 0.1065 0.0810 0.1040 0.0798 0.0971 0.0754 0.0891
0.16 0.1583 0.1567 0.1438 0.1297 0.1164 0.1044 0.0935 0.0839 0.0753 0.0677
0.18 0.2143 0.1253 0.1440 0.0908 0.0987 0.1036 0.0691 0.0722 0.0743 0.0756
0.20 0.1180 0.0995 0.0792 0.1084 0.0833 0.1020 0.0790 0.0925 0.0725 0.0828

Table 5.5: Values ofpdetectionfor Case II;p = 0.9.
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distributions. This can be done with a good precision because of a large difference
betweenp andq. For instance, for 10 sensors,p = 0.9, q = 0.02, andc = 5, the
probability pdetectionis 0.9999 whilepfalse is as small as 7.4 × 10−7.

In Case II,pdetectionis low except for the cases whenc = 1, that is, a detection
signal of one sensor already triggers an intrusion alarm. The valuec > 1 is obtained
when the probability of just one alarm is reasonably high even if there is no intruder
in the area. Effectively,c > 1 means that at leastc − 1 false alarms are needed to
detect the intruder. This is an undesirable result, which explains, in particular, the
low power of the test. We conclude that in Case II one observation is simply not
enough for efficient intruder detection, because in this case the observations with
and without the intruder differ by at most one signal, which is difficult to reveal by
classical hypothesis testing. One either has to make sensors overlap (as in Case I)
or use several observations in a row. The latter can be done inseveral ways, for
instance, one can use the Viterbi algorithm as in Section 5.4.

5.3.2 Bayesian approach for intruder detection

Consider Case II from the previous section, wheren ∈ N different sensors are
placed in such a way that the sensing ranges of different sensors do not overlap.
Let X ∈ {0, 1} denote the number of intruders present, withP(X = 1) = α an
a priori probability of the intruder being present in the area. As before, letT be
the stochastic variable denoting the total number of single-sensor alarms given at a
particular time instant, soT ∈ {0, 1, . . . , n}. We have

P(X = 0 | T = k)

= P(T = k | X = 0)P(X = 0)

P(T = k | X = 0)P(X = 0) + P(T = k | X = 1)P(X = 1)
.

Let F be the (unobservable) number offalsealarms among theT . Then for all
k ≥ 0 we obtain

P(T = k | X = 1) = P(T = k, F = k − 1 | X = 1)

+ P(T = k, F = k | X = 1)

= pBn−1,q(k − 1) + (1 − p)Bn−1,q(k)

= Bn,q(k)
[

kp
nq + (n−k)(1−p)

n(1−q)

]
,

P(T = k | X = 0) = Bn,q(k).
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Hence, the a posteriori probability of the presence of an object is

P(X = 1 | T = k)

= 1 − P(T = k | X = 0)P(X = 0)

P(T = k | X = 0)P(X = 0) + P(T = k | X = 1)P(X = 1)

= 1 − 1

1 + P(T=k|X=1)P(X=1)
P(T=k|X=0)P(X=0)

= 1 −
(
1 + α

1−α

[
kp
nq + (n−k)(1−p)

n(1−q)

])−1
. (5.6)

This formula can be generalized to the case combining Cases Iand II from Sec-
tion 5.3.1 as follows. Assumen non-overlapping ranges. Rangei = 1, . . . , n con-
tainsmi ∈ N completely overlapping sensors. LetTi ∈ {0, . . . , mi } be the number
of alarms for rangei and denoteET = (T1, . . . , Tn).

The stochastic variablesXi ∈ {0, 1}, i = 1, . . . , n, indicating the presence of an
object in rangei , have a priori probabilitiesP(Xi = 1) = αi i.e., we allow certain
parts of the area to have a higher a priori probability for intrusion than others. Also,
we allow the detection and false alarm probabilities to depend on the sensor range;
we usepi andqi to denote these respectively.

Since we assume that there can be at most one intruder at any given time instant,
the vectorEX = (X1, . . . , Xn) can attain values in the set{ej : j = 0, . . . , n} where
ej is the j th unit vector inR

n ande0 the zero vector in that space. We will use the
notationN = {0, 1, . . . , n}. We then calculate

P( EX = ej | ET = Ek)

= P( ET = Ek | EX = ej )P( EX = ej )

P( ET = Ek | EX = ej )P( EX = ej ) + P( ET = Ek | EX 6= ej )P( EX 6= ej )

= P( ET = Ek | EX = ej )P( EX = ej )

P( ET = Ek | EX = ej )P( EX = ej ) +∑
s∈N \{j } P( ET = Ek | EX = es)P( EX = es)

.

Further, we immediately have forj > 0 that

P( ET = Ek | EX = ej ) = Bm j ,p j (k j )
∏

i∈N \{j }
Bmi ,qi (ki ). (5.7)

If we definem0 = k0 = 0, this formula also holds forj = 0. Furthermore, if we
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defineα0 = 1 −∑
i∈N \{0} αi , we can state

P( EX = ej | ET = Ek)

= P( ET=Ek| EX=ej )P( EX=ej )

P( ET=Ek| EX=ej )P( EX=ej )+
∑

s∈N \{ j } P( ET=Ek| EX=es)P( EX=es)

=
(

1 +
∑

s∈N \{ j } P( ET=Ek| EX=es)P( EX=es)

P( ET=Ek| EX=ej )P( EX=ej )

)−1

=
(

1 +
∑

s∈N \{ j } αsBms,ps(ks)
∏

i∈N \{s} Bmi ,qi (ki )

α j Bmj ,pj (k j )
∏

v∈N \{ j } Bmv ,qv (kv)

)−1

=


1 +

∑

s∈N \{j }

αs
α j

( ps
qs

)ks(1−ps
1−qs

)ms−ks(
p j
q j

)−k j (
1−p j
1−q j

)−(m j −k j )




−1

=
(∑

s∈N

αs
α j

( ps
qs

)ks(1−ps
1−qs

)ms−ks(
p j
q j

)−k j (
1−p j
1−q j

)−(m j −k j )

)−1

=
α j (

p j

q j
)k j (

1−p j

1−q j
)m j −k j

∑
s∈N αs(

ps
qs

)ks(1−ps
1−qs

)ms−ks
. (5.8)

For j = 0, we thus find

P( EX = e0 | ET = Ek) =
1 −∑

i∈N \{0} αi

1 −∑
i∈N \{0} αi +∑

s∈N \{0} αs(
ps
qs

)ks(1−ps
1−qs

)ms−ks
,

so the conditional probability of an intruder given the observed area alarms vector
ET equals

P( EX 6= e0 | ET = Ek) = 1 − P( EX = e0 | ET = Ek)

= 1 −
(

1 +
∑

s∈N \{0} αs(
ps
qs

)ks(1−ps
1−qs

)ms−ks

1 −∑
i∈N \{0} αi

)−1

.

Notice that the Case II treated in Section 5.3.1 correspondsto

pi = p, qi = q, mi = 1, αi = α/n,

for all i ∈ N and we then find back our earlier formula (5.6) for the conditional
probability of an intrusion.

In the case where we use only one time instant to observe the alarms, it seems
natural to conclude that an intruder is present whenever

A(Ek) = P( EX 6= e0 | ET = Ek) = 1−
(

1 +
∑

s∈N \{0} αs(
ps
qs

)ks(1−ps
1−qs

)ms−ks

1 −∑
i∈N \{0} αi

)−1

(5.9)
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satisfiesA(Ek) ≥ γ for some critical thresholdγ , where e.g. we can chooseγ ∈
(0.5, 1), which means that we raise an alarm whenever the conditionalprobability
of an intruder is sufficiently larger than the conditional probability that there is no
intruder. The probability of a false intrusion alarm then becomes

pfalse = P( (A( ET) ≥ γ ) ∧ ( EX = e0) )

=
∑

E0≤Ek≤ Em
1{A(Ek)≥γ } P( ET = Ek | EX = e0)P( EX = e0),

where we use the shorthand notationE0 ≤ Ek ≤ Em for {Ek : 0 ≤ ki ≤ mi , i ∈ N }.
The probability of a missed intrusion is

pmissed = P( (A( ET) < γ ) ∧ ( EX 6= e0) )

=
∑

E0≤Ek≤ Em
1{A(Ek)<γ }

∑

j ∈N \{0}
P( ET = Ek | EX = ej )P( EX = ej ).

By substituting (5.7) and (5.9) in these expressions, we cannow calculate explicitly
what the probabilities of a false intrusion alarm or missed intrusion are (based on a
single observation in time) for the given a priori probabilities in Ep andEq and a given
sensor configuration vectorEm.

We note that the Bayesian approach can be also extended to a sequence of obser-
vations. For instance, the a posteriori probabilities obtained by using (5.8) after the
first observation, can be substituted back into (5.8) instead of α j ’s to recompute the
probabilities of the intruder’s presence after the second observation, and so on.

5.4 Viterbi algorithm for intruder detection

In this section, we present a novel method of using sequential observations for
intruder detection. We model the signals from the sensors asa so-called hidden
Markov model. This is a stochastic process, based on a Markovchain to which
noise is added. Using this representation we can distinguish between the signals
that should have been given off by the sensors, i.e. the ‘true’ state of the system,
and the signals that are actually given off, including the false alarms and missed
detections.

Given a sequence of signals we determine the most likely sequence of true states,
using the so-called Viterbi algorithm. In this way, we decide whether the signals
indicate indeed an intruder, or are only false alarms. From this we derive a decision
rule for when to report an intrusion alarm, thus reducing thenumber of false reports.
All calculations needed to obtain this rule can be pre-computed.

We outline the proposed method for the case of one sensor. In particular, we
explain the hidden Markov model, and illustrate how, based on a few signals from
the sensor, we decide if an intrusion alarm should be given. We indicate how the
method can be extended to networks of sensors. As the state space, and so the
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number of calculations, increases exponentially with the number of sensors, we
show how to truncate it in a clever way.

5.4.1 A one-sensor model

Consider the case of one sensor, where an object possibly passes by. Assuming a
low speed of the object, the object is in the range of the sensor for multiple time
steps. Let the stochastic process{Xt}t∈IN denote if an object is in the range of the
sensor, where

Xt =
{

1 if an object is in the range of the sensor at timet ,
0 otherwise.

So Xt gives the ‘true’ state of the system at timet .
We assume that the process{Xt} is a Markov chain, so the probability law for

Xt+1 only depends onXt . Denotepi j = P(Xt+1 = j | Xt = i ). The speed of
the object and its path through the range of the sensor are modelled in the transition
probabilities. The number of consecutive ones in a Markov chain follows a geomet-
ric distribution, withE(# of steps in sensor range) = 1/p10. We want the stationary
distribution of{Xt}, sayX∞, to be such thatP(X∞ = 1) = 1 − P(X∞ = 0) = α,
the a priori probability that there is an object in the system. This gives the following
transition probability matrixA:

A =
(

1 − α
1−α p10

α
1−α p10

p10 1 − p10

)
.

We take the initial distribution forX0 to be equal to the stationary distribution.
To the process{Xt} we add noise, which consists of false alarms and missed

detections. This gives the process of signals given off by the sensor, say{Yt }t∈IN.
Let

Yt =
{

1 if the sensor gives an alarm at timet ,
0 otherwise.

SoYt is the observed state at timet . The noise is such thatYt only depends onXt , in
an independent and identically distributed (i.i.d.) way. Afalse alarm occurs when
[Yt = 1] given [Xt = 0], and this happens with probabilityq. A missed detection
occurs if [Yt = 0] given [Xt = 1], and this happens with probability 1− p.

We now have that the process{Yt } is ahidden Markov model[11]. We can inter-
pret{Yt } as observing{Xt } via a noisy channel. Only the process{Yt } is observed,
while the states of the process{Xt} are not known, i.e. hidden, which explains the
name of this model. The process{Xt} is often referred to as the underlying or hid-
den process. Whereas for a Markov chain it holds that the nextstate of the process
depends only on the previous state, or a fixed number of previous states, for a hid-
den Markov model the transition probabilities depend on theentire history of the
process.

103



5 Increasing Detection Performance of Surveillance SensorNetworks

5.4.2 The Viterbi algorithm for the one-sensor model

Given a sequence of observed states, sayO = {O1, O2, . . . , OL}, the question
now rises, what is the most likely sequence of underlying (‘true’) states,Q =
{Q1, Q2, . . . , QL}. There is an efficient algorithm for solving this problem, called
theViterbi algorithm[6]. This algorithm, based on dynamic programming, calcu-
lates

max
Q

P(Q | O).

Applying this algorithm we are able to correct false alarms and missed detections
for a given sequence of observations. For example, a single one in between many
zeros is likely to be a false alarm, while a zero in between many ones is probably a
missed detection. If we, for instance, observe the sequence000111011000 then it is
not surprising that the most likely underlying state sequence is 000111111000, i.e.,
a missed detection is corrected. More important are the corrections of false alarms.
The observed sequence 0001000 will most likely have an underlying sequence of
all zeros, so a false alarm is corrected. In this way, we prevent reporting a false
intrusion alarm. While for these two examples the most likely underlying states are
straightforward to see, the algorithm also helps with caseslike 00010100. Here, it is
not immediately clear whether the ones are two false alarms,or the zero in between
represents a missed detection.

Based on the results of this algorithm, we give a decision rule whether or not to
report an intrusion alarm for a given sequence of observations. We illustrate this for
two and for three consecutive observed states, but it can be done for every desired
number of observations. We give an intrusion alarm if the most likely underlying
state sequence contains at least one 1 in it, signifying thatin the most likely sce-
nario, an intrusion took place in at least one moment in time.We also calculate the
probability that the underlying state sequence consists ofonly zeros, given the ob-
servation. One minus this quantity equals the probability that there was an intruder.
The latter is equal to the probabilitypmissedthat the intruder will pass undetected
in case the sequence of all zeros happens to be most likely. All calculations can
be done off-line, resulting in a list of observed states for which an intrusion alarm
should be given.

For the valuesp = 0.9, q = 0.02,α = 0.01 andE(# of steps in sensor range) =
10, the probabilities for all possible combinations of states are given in Table 5.6
for two and three consecutive observations. For two observations, we only give an
intrusion alarm in case both observations are a 1. With probability 0.9441 this is
indeed the underlying sequence, and the probability that there was no intruder is
about 0.05. Giving no intrusion alarm when the observed sequence contained two
or one zeros turns out to be correct with probabilities 0.9997 and 0.92, respectively.
For three observations, there are four cases for which we give an intrusion alarm.
To improve the probability of correct decisions further, one could make use of more
consecutive observations.
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O Q alarm? P(Q | O) P(Q = E0 | O)

0 0 0 0 No 0.9997 0.9997
0 1 0 0 No 0.9196 0.9196
1 0 0 0 No 0.9196 0.9196
1 1 1 1 Yes 0.9441 0.0512

0 0 0 0 0 0 No 0.9998 0.9998
0 0 1 0 0 0 No 0.9491 0.9491
0 1 0 0 0 0 No 0.9833 0.9833
0 1 1 0 1 1 Yes 0.4016 0.2177
1 0 0 0 0 0 No 0.9491 0.9491
1 0 1 1 1 1 Yes 0.6060 0.3577
1 1 0 1 1 0 Yes 0.4016 0.2177
1 1 1 1 1 1 Yes 0.9936 0.0013

Table 5.6: Hidden Markov Model for the case of one sensor. Foreach observed
stateO the most likely underlying stateQ is given.

For this model we have assumed that{Xt} is a Markov chain. The number of
steps in the range of the sensor is geometrically distributed, which models a vari-
able speed and direction of the object. We can improve this byletting {Xt } be a
Markov chain of orderk, where the probability law ofXt+1 depends on the lastk
states:Xt−k+1, . . . , Xt . This allows us to vary the distribution of the number of
steps in the sensor range. For instance, in this way one can model a deterministic
number of steps. The state space then increases to 2k states, but the problem re-
mains numerically tractable since the calculations for thedecision rule need to be
done only once.

5.4.3 A sensor-network model

We can extend this method to networks of several sensors. Consider for instance
the following example withn = 4 non-overlapping sensors as given in Figure 5.6.
Let EXT

t =
(
X1,t , X2,t , X3,t , X4,t

)
, whereXi,t = 1 if there is an intrusion in the

range of sensori at timet , andXi,t = 0 otherwise,i = 1, 2, 3, 4; t ≥ 1. Assume
that there is at most one object in the area at any moment in time, so that the state
space of{EXt} consists ofn + 1 = 5 states: the all-zero state and the states where
the object is in the range of one of then sensors. We assume the process{EXt} again
to be Markov. The path and the speed of the object are modelledin the transition
probabilities. This can be based on historical data, or on other knowledge about the
system. If the object can remain in the range of one sensor forseveral time steps,
pi i is positive. Here, we assume that the object always enters via sensor 1, and
then continues its path through sensor 2, 3 or 4, or outside the range of any of these
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Figure 5.6: A network with four sensors. Indicated are possible transitions.

sensors. The transition probabilities and the corresponding states are given by

A =




1 − α α 0 0 0
1 − p1• p11 p12 p13 p14

1 − p22 0 p22 0 0
1 − p33 0 0 p33 0
1 − p44 0 0 0 p44




,

(0, 0, 0, 0)

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

with the necessary conditions on thepi j imposed to letA be a stochastic matrix.
Here,p1• = ∑4

j =1 p1 j .

The probability law of observingEYt given EXt follows a multinomial distribution.
As before, there are four possibilities for the pair(Xi,t , Yi,t ), specifically,P(Yi,t =
1|Xi,t = 0) = q andP(Yi,t = 0|Xi,t = 1) = 1 − p.

The state space of{EYt } now consists of 2n states: each sensor can give an alarm
or not. As the size of the state space grows exponentially with n, already for a
moderately large number of sensorsn the problem becomes huge. Because of this,
but moreover because many of these states are very unlikely to occur, we truncate
the state space of{EYt }. For this, we calculate the number of false alarms, sayc, that
has a probability of occurring less than say 0.001:

P(# false alarms> c) < 0.001.

Now we allow only the vectorsEYt in the state space of{EYt } that are at Hamming
distance≤ c away from any of the states of{ EXt }, where theHamming distance
between two zero-one vectors is the number of indices in which they are different.
In this way, we drastically reduce the state space of{EYt }, making the calculations
more tractable.

We now again have a hidden Markov model, for which we can derive a decision
rule when to give an intrusion alarm in the same way as for the case of one sensor.
We can list all possible sequences of a number of observations of the process{EYt }.
By the Viterbi algorithm, we calculate the most likely underlying state sequences
of the process{EXt}. If it contains at least one 1, for such a sequence an intrusion
alarm should be given. By calculating the probability that the underlying states are
only zeros, the probability of making an error is found.
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The hidden Markov model method of the present section can be used in combi-
nation with the heuristic algorithm for placement of sensors presented in Section 2.
One way of doing this to use the Viterbi method to combine the results of multi-
ple single-sensor readings into one result, giving improved values forp andq that
can be used in the placement algorithm. This is done in some ofthe numerical
experiments of the next section.

5.5 Numerical results

We verify and combine the proposed methods for sensor deployment and intruder
detection using a simulation model of a network consisting of a number of individ-
ual sensors, which perform under uncertainty. The performance of each individual
sensor is characterized by the probability of true detection p and the probability of
false alarmq. As before, we use similar performance measures for characterizing
the performance of the sensor network. Thus, our performance measures are the
probability of true detection of the networkpdetectionand the probability of a false
intrusion alarmpfalse.

The objective of a surveillance wireless sensor network (SWSN) design is to get
a valuepdetection that is as high as possible and a value ofpfalse that is as small
as possible. In this study, we explore numerically the possibility of affecting the
valuespdetectionand pfalse of the sensors by arranging their locations as well as by
exploiting multiple readings. In the numerical experiments, we estimatepdetection

andpfalse for an SWSN. Numerically, these measures are defined as follows:

pdetection=
Ndetection

N
, (5.10)

pfalse = Nfalse

N
, (5.11)

whereNdetectionandNfalse are the number of true and false detections respectively,
while N is the total number of experiments, with or without the object in the area,
respectively.

The experimental setup is as follows. The presence of an object in the SWSN
is simulatedN times, and the intrusion alarm is reported based on the readings of
n individual sensors, according to the criteria of detection, e.g. as in Sections 5.3
and 5.4. Thenpdetection is computed by formula (5.10). In this study,N is set to
1000. To account for the variability of the simulation results, we have repeated all
experiments 100 times. The estimate ofpdetectionis represented by the average of
the results as well as by the standard deviation. The resultsare also presented as
a histogram, where thex-axis gives the values of the estimates obtained and the
y-axis represents the relative frequency of occurrence of the estimates. The same
experimental setup is used for computing thepfalse of the SWSN by setting the
object to reside outside of the SWSN coverage area forN consecutive times and
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then using (5.11). In all the experiments presented here, the individual sensors are
identical with p = 0.9 andq = 0.02. The other parameters are varied in the
different examples to obtain the most demonstrative results.

To verify that our simulation gives correct estimates ofpdetectionand pfalse, we
first perform an experiment using a simple sensor network of one sensor but with
two consecutive readings. In this case, as suggested by the Viterbi algorithm from
Section 5.4, the criterion of an intrusion alarm is that the sensor raises an alarm in
two consecutive readings. Since the two readings are independent of each other, we
havepdetection= p2 = 0.81 andpfalse = q2 = 0.0004. The numerical results shown
in Figure 5.7 demonstrate that the numerical method gives accurate estimates.

Figure 5.7: (Left) Estimate ofpdetection for one sensor with two consecutive read-
ings. The mean is 0.8093, the standard deviation is 0.0181. (Right)
Estimate ofpfalse: the mean of the estimate is 4.4 × 10−4 and the stan-
dard deviation is 6.9 × 10−4.

In the example above, we have verified that our simulation program gives correct
estimates ofpdetectionand pfalse. As a next step, in our simulation model we will
combine the results on sensor deployment and intruder detection from the previous
sections to detect a moving target. The area of interest is assumed to be the unit
square, defined byx ∈ [0, 1] and y ∈ [0, 1], where(x, y) represents the location
of a point. We describe the motion of an object using the whitenoise acceleration
model described e.g. in [3, p. 263]:

xo(tk+1) = xo(tk) + vxdt +
√

dtaxηx(tk), (5.12)

yo(tk+1) = yo(tk) + vydt +
√

dtayηy(tk), (5.13)

where(xo(tk), yo(tk)) represents the object coordinate at timetk, dt the time step,vx

andvy the velocity in thex andy direction, respectively,ax anday the acceleration
terms, andηx andηy the noise terms, which are independent standard-normally
distributed at each time step. The values ofvx, vy, ax anday are all set to 0.01
anddt is equal to 0.1. For illustration, we presented two realizations of the object’s
motion in Figure 5.8.
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5.5 Numerical results

Figure 5.8: Some realizations of the object path used in the experiments;t0 is the
starting point andt1 is the end point.

Now we would like to investigate the impact of sensor deployment. To this end,
consider an SWSN consisting of eight individual sensors. Three different sensor
arrangements are studied. In arrangements A and B, the locations of the sensors are
determined randomly. In arrangement C, the sensors are located according to the
MPD deployment algorithm from Section 5.2.2. Therefore, the sensors in arrange-
ment C are located along a diagonal of the area of interest since these are the most
likely locations of the object. The SWSN arrangements are depicted in Figure 5.9.
The position of the object is depicted by an asterisk and the sensor that gives an
intrusion alarm by a highlighted circle.

In this study, we have computed thepdetectionand pfalse of the three sensor net-
works by exploiting the multiple readings by each sensor. Since the sensing ranges
practically do not overlap, we are in the situation of Case IIof Section 5.3.1. How-
ever, since each sensor raises an alarm based on the results of k readings according
to the decision rule from Table 5.6, we have to adjust the probabilities p andq to
the detection probabilityp(k) and the false alarm probabilityq(k) for k = 1, 2, 3.
Simple calculations give:

p(1) = p, q(1) = q;
p(2) = p2, q(2) = q2;
p(3) = p3 + 3p2(1 − p), q(3) = q3 + 3q2(1 − q).

According to Table 5.1, the critical value forq = 0.02 is 1, that is the SWSN should
give an intrusion alarm if the alarm is coming from at least one of the sensors. Since
q(2) andq(3) are smaller thanq = 0.02 the critical value remains the same if we
use multiple readings from each sensor. Thus, ifk readings of each sensor are used
at each time point, for our three SWSN arrangements we have

pdetection= pcoverage· p(k), (5.14)

pfalse = 1 − (1 − q(k))8, (5.15)
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Figure 5.9: Example of sensor networks: (top) network A; (middle) network B;
(bottom) network C.
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where pcoverageis the probability that the object is within the network coverage,
i.e., within one of the sensor ranges. Clearly,p(k) in (5.14) andpfalse in (5.15) are
identical for the layouts A, B and C if the same number of readings is used. In this
case, the performance of the SWSN is determined by how likelythe object will pass
through the network coverage, allowing the network to detect the existence of the
object. This relative frequency is the estimate of the probability pcoveragethat affects
pdetectionin (5.14).

To estimatepcoverage, we simulate the object’s motion into the area for each sen-
sor network and compute the relative frequency of the objectpassing through the
sensor network coverage. As in the previous experiments, the object is allowed to
move inside the area of interest for 1000 time steps. Moreover, the experiments are
repeated 100 times to account for the variability in the estimates. The results are
presented in Figure 5.10. The estimates ofpcoverageare 0.2884, 0.1420, and 0.6367
for sensor network A, B, and C, respectively. The conclusionis that the SWSN C is
more likely to detect the object than the others.

Now, consider an SWSN of 50 sensors deployed by means of the MPD algorithm
from Section 5.2.2 (see Figure 5.11). As before, the advancing of the object in the
area is described by (5.12) and (5.13), where we choosevx = 0.02, vy = 0.02,
ax = 0.001, ay = 0.01. Again, we report an intrusion alarm if a sensor signals
an intruder in two consecutive readings, as suggested in Table 5.6 in case of two
observations. In Figure 5.11, we show one time instant of a simulation run. An
asterisk denotes the object position. The two overlapping highlighted circles depict
the two sensors that give a correct intrusion alarm. The highlighted circle that does
not contain the object, gives a false alarm.

For this network, the rate of false intrusion alarms is 0.0004. Furthermore, since
the SWSN consists of an ample amount of sensors, our deployment strategy ensures
that pcoverage(almost) equals one. The histogram for the detection probability at
each time point is given in Figure 5.12. The high values ofpdetectionare due to a
considerable overlap of sensor ranges for the most likely positions of the object.

5.6 Conclusions

In this paper, we addressed two problems concerning design and performance of an
SWSN: sensor placement and object detection. For the first problem, we suggest to
use a hexagonal placement for optimal coverage. Further, werecommend to cover
most vulnerable locations first, but avoid an overlap in sensor ranges unless the
distribution of the object position is highly irregular. Asa rule of thumb, one may
call a distribution highly irregular if there exist pairs ofpoints such that the distance
between two points in such a pair is≤ 2r while the value of the density differs by a
factor 1− p.

For the detection problem, we state that several observations of the same object
are absolutely necessary to report an alarm with reasonablecertainty. A classical

111



5 Increasing Detection Performance of Surveillance SensorNetworks

Figure 5.10: Estimate ofpcoverageof SWSN. (Top) Network A. The mean of the
estimate is 0.2884 and the standard deviation is 0.0698. (Middle) Net-
work B. The mean of the estimate is 0.1420 and the standard deviation
is 0.0631. (Bottom) Network C. The mean of the estimate is 0.6367
and the standard deviation is 0.2658.
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Figure 5.11: One time instant of a simulation run of the SWSN of 50 sensors con-
taining a moving object (∗). Highlighted circles: two correct intrusion
alarms and one false alarm.
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Figure 5.12: Estimate ofpdetectionof the SWSN in Figure 5.11. The mean of the
estimate is 0.9205 and the standard deviation is 0.0224.
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hypothesis testing works well only if multiple sensors overlap in the same location.
Otherwise, one must use information from consecutive readings of the SWSN. In
the latter case, either a Bayesian approach or a hidden Markov model (HMM) ap-
proach can be used for object detection. To the best of our knowledge, the HMM
approach involving the Viterbi algorithm to filter out the noise of non-detections
and false alarms, has never been used in an SWSN before. The advantage of this
approach is that it allows to pre-compute off-line all observation patterns that sig-
nal an intruder. Then the decision rule is very simple: report an intruder if one
of the alarming patterns is observed. The HMM techniques in the SWSN context
definitely deserve further study.

In this research, one could clearly see that the two problemsunder consideration
are closely related. Although each of the proposed methods may be useful in its
own right, it is essential to develop an integral approach tosensor deployment and
intruder detection, in order to enhance the SWSN performance. In the last numerical
example (see Section 5.5), we demonstrated that our techniques can be successfully
combined, thus considerably increasing the efficiency of the network.

We would like to add that, potentially, our methods can be also used for tracking
a target advancing through the area. For instance, by observing a simulation run
of a moving object in the last numerical example, one could see that in spite of
occasional false alarms, the correct intrusion alarms indicate a clear path that can
be easily deciphered from multiple sensor readings.
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Abstract

The casting process of aluminum products involves the spatial distribution
of alloying elements. It is essential that these elements are uniformly dis-
tributed in order to guarantee reliable and consistent products. This requires
a good understanding of the main physical mechanisms that affect the solid-
ification, in particular the thermodynamic description andits coupling to the
transport processes of heat and mass that take place. The continuum mod-
eling is reviewed and methods for handling the thermodynamics component
of multi-element alloys are proposed. Savings in data-storage and comput-
ing costs on the order of 100 or more appear possible, when a combination
of data-reduction and data-representation methods is used. To test the new
approach a simplified model was proposed and shown to qualitatively capture
the evolving solidification front.
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6.1 Introduction

In aluminum half products such as direct-chill (DC), cast ingots (aluminum blocks
of 0.5 × 1.5 × 6 m3), and billets (aluminum poles of 0.2 – 0.5 m diameter and 6 m
length) the spatial distribution of alloying elements is very important. In advanced
aluminum products a considerable number of elements (typically elements such
as Cu, Cr, Fe, Mg, Mn, Si, Zn) is involved at small to intermediate concentrations.
These elements are very important as they determine the specific properties of the fi-
nal alloy such as strength, fracture toughness, hardness, brittleness, dent resistance,
surface quality et cetera. The aluminum research in industries such as Corus aims
at developing new products for demanding applications suchas the aerospace and
automotive markets. It is the objective of this research to optimize the specific prop-
erties of the alloy for the particular applications by modifying the alloy composition
in a generally narrow composition window. The consistency and homogeneity of
the cast product in the solid phase is a prime aspect of casting technology. However,
due to the casting process the homogeneity of the cast products may be compro-
mised. Understanding and controlling the mechanisms that contribute to formation
of spatial heterogeneity, also called macrosegregation, is therefore crucial.

In the casting process initially all elements in the mixtureare in the liquid phase
and spatially well-mixed. In semi-continuous casting of aluminum alloys the liquid
metal is poured into a cooled mould. The molten metal is chilled by contact with the
mould and application of cooling water. As the temperature decreases solidification
sets in and a front between the already solidified and the still liquid part develops.
It is exactly this transition band between solid and liquid,also known as the ‘mushy
zone’, that plays a crucial role in the uniformity and hence the quality of the final
cast product. Upon solidification the elements tend to redistribute between the solid
and the liquid phases. Each element does this in its own manner, which is controlled
by the thermodynamic equilibrium. Consequently, the liquid phase can become
enriched and the solid phase can become depleted in elements. Local transport
of the liquid phase due to shrinkage induced straining of thesolid phase and due
to buoyancy driven flow effects in the liquid part of the domain thus will cause
redistribution of the elements on the scale of the ingot or billet cross-section. For a
comprehensive overview of macrosegregation literature see [1].

This partial segregation is detrimental to the quality of the resulting cast and gen-
erally the resulting cast is beyond repair. As a consequencethe resulting product
is off-spec and has a reduced economic value or becomes rejected, which results in
recycling of the entire cast product and obvious economic loss. These additional
production costs can potentially be reduced if a more precise understanding of the
origin of these cast defects can be obtained. In this paper wedescribe mathemat-
ical models that aim to simulate the details of solidification and transport induced
segregation that take into account a large number of different species. We specifi-
cally present efficient methods for including in a computationally efficient manner
the complex thermodynamics that characterize the solidification of many-species
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mixtures used in modern aluminum products.
In casting technology research over the last decennia many numerical models

have been developed for the prediction of the many differentphysical phenomena
involved in the casting process (for example [2, 3, 4]). Suchcomputational models
generally predict the fluid flow in the liquid part, compute the solidification (the
transition from liquid to solid) and calculate how the metaldeforms when cooling
down. These models often assume a constant composition throughout the domain.
This assumption ignores the effect of spatial segregation,which is at the heart of
current aluminum casting problems. The crucial step for simulations of industrially
relevant alloys is that a large number of elements (about fiveor more) should be
included in the simulations to achieve a proper modeling of the processes and phase-
transitions. This leads to a strong increase in the simulation times. The challenge is
to propose computational strategies to establish this crucial step in an efficient way.

Currently solidification models are under development thatinclude the variation
of composition during solidification (e.g. [5, 6, 7]). This requires that the relation
between the local composition and temperature is computed.To a good approxima-
tion, this relationship is determined by considerations ofthermodynamic equilib-
rium. A key element is the phase diagram, which gives the relation between phases,
composition and temperature. For a binary mixture this already results in a complex
parameter-space with widely different transitions in different regions. In case of a
realistic multi-element mixture the complexity of the thermodynamic representation
rapidly increases. Direct coupling of a thermodynamic database to a solidification
simulation may impose limitations to the practical applicability.

In simulations of the casting process that include the effect of composition, the
thermodynamic equilibrium needs to be determined each timestep and in each grid
cell. Commercial software is available to compute the thermodynamic equilibrium
via a minimization of the Gibbs free energy (examples are [8], factsage[9], jmat-
pro[10]), but this is a computationally time consuming step. A direct coupling
between the database and the casting simulation will resultin infeasible simulation
times. The challenge is to propose efficient coupling methods between the solidifi-
cation simulation and the thermodynamic database. The question is how the solid-
ification path in the computations can be constructed in a computationally efficient
manner, considering that thermodynamic equilibrium data contains highly irregular
features such as discrete transition points (e.g., an eutectic point) and large varia-
tions in the regions in which phase equilibria appear (e.g.,some phases appear over
a range of 5 Kelvin, others are present over several hundred Kelvin). One approach
applied and presented in this work is to adopt local polynomial fits to thermody-
namic data. This resulted in a significant reduction of the computational expense
with full recovery of the physical properties of the castingprocess within the re-
quired numerical accuracy. The problem posed by CORUS to the63rd European
Study Group Mathematics With Industrywas twofold: (1) Propose a simple PDE
model for the simulation of the aluminum casting process andmethods to establish
an efficient coupling between the thermodynamic database and the involved PDEs.
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(2) Assure that the model can simulate efficiently an industrially relevant number
of alloying elements.

In this paper we review the continuum modeling in Section 6.2and present an
efficient method for simplifying the complex and computationally intensive ther-
modynamics that occur in Section 6.3. A one-dimensional numerical model will be
adopted in Section 6.4 to illustrate the basic physical processes arising in the casting
process, emphasizing the treatment of the solid-liquid mushy zone front. Finally,
concluding remarks will be collected in Section 6.5.

6.2 Modeling transport and phase-transitions in
multi-component aluminum casting

In this section, we present a complete model for transport and phase transitions that
occur during the aluminum casting process. Our aim here is not to redo more in-
volved mathematical models describing aluminum casting (e.g., [2, 12]), but to find
a simple, yet realistic description of fluid flow and solidification of an aluminum
alloy which allows to develop and test techniques for handling the multi-element
thermodynamics during solidification. The formulations will result in the definition
of a one-dimensional model that will be used in Section 6.4 for testing the ther-
modynamics evolution and to assess whether the main characteristics of the casting
process can be recovered.

Figure 6.1: Sketch of the basic geometry in the aluminum casting process. The
bottom block is continuously lowered as liquid aluminum is added on
the top. Throughout water is applied for cooling the boundary of the
aluminum block.

We consider a spatial domain split into a solid and a liquid region, see Fig. 6.1.
The two regions are separated by a mushy zone, whose exact position has to be cal-
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culated along with the flow and temperature fields. To describe the fluid mechanics
and solidification physics a number of unknowns needs to be introduced. We refer
to Table 6.1 for the unknowns of the problem as well as Table 6.2 for the list of the
necessary ‘parameters’. We refer to these as parameters, although strictly speaking
their values are functions of the primary unknowns (e.g., the latent heat1h is a
function of the molar concentrations of various alloy elements, thermal properties
of the hosting material and, of course, of the local temperature). For simplicity, we
assume no pouring of liquid material into the solid domain and neither changes nor
motion of the physical domain.

Notation Dimension Description
ǫl 1 local volume fraction occupied by liquid
ǫs := 1 − ǫl 1 local volume fraction occupied by solid
cX

l mol/m3 molar concentration of material X in liquid
cX

s mol/m3 molar concentration of material X in solid
v m/s fluid velocity
p kg/(ms2) fluid pressure in liquid and mushy region
T K temperature

Table 6.1: Unknowns of the model.

Notation Dimension Description
mX kg/mol molar mass of speciesX
ν, ζ m2/s kinematic standard/bulk viscosity of liquid
g m/s2 gravitational acceleration
K m2 permeability tensor in the mushy zone
κ kg m/(K s3) heat conductivity
1h kg/(m s2) latent heat of phase transition
Cp kg m2/(K s2) heat capacity at constant pressure

Table 6.2: Parameters of the model.

Our model consists of conservation laws for the liquid and solid mass of all alloy
elementsX1, . . . , XN, the averaged momentum of the fluid flow, and the total inter-
nal energy. Since the formation of micro-structure (dendrites, see Fig. 6.2) creates a
mushy environment with a definite porous structure of the material, the momentum
equation is formally replaced by the conceptually simpler Darcy law; see, e.g., [11].
The unknownǫl serves to distinguish between those parts of the domain thatare cur-
rently liquid, mushy, or solid. Note that, e.g., the “liquid” region could be defined
as that part of the domain withǫl ∈ (0.9, 1].

As a first step toward the mathematical model we present the equations describing
conservation of mass of each individual elementX participating in the solidification
process. We express the balance of mass of the liquid and solid species separately.
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(a) (b) (c)

Figure 6.2: Local conditions in liquid (a), mushy (b), and solid regions (c) of the
domain.

Assuming that diffusion due to concentration gradients is negligible at the char-
acteristic flow time scale in the solidification process, theconservation of mass of
speciesX in the liquid state is

∂ǫl cX
l

∂ t
+ ∇ ·

(
vǫl c

X
l

)
= 0. (6.1)

This evolution equation assures that the integral ofǫl cX
l over any volume� in the

flow domain can change only due to fluxes through the boundary of �. Similarly,
the conservation of mass of speciesX in the solid state reads

∂ǫscX
s

∂ t
+ ∇ ·

(
vǫsc

X
s

)
= 0. (6.2)

To characterize the flow in this scenario, we distinguish between liquid, mushy
and solid zones. The balance equation for the linear momentum, which applies in
the liquid zone, is given by

∂mi

∂ t
+ ∇ · (mi v) = gi ρ + ∂σi j

∂x j
, (6.3)

for i, j = 1, . . . , 3. The liquid is considered incompressible withρ is constant.
Throughout, we adopt the Einstein convention on summation over repeated indices.
Here, we have used the total momentum densitymi in thexi direction

mi = vi ρ,

ρ = ρl + ρs = ǫl c
Xk
l mXk + ǫsc

Xk
s mXk,

with k = 1, . . . , N. The two terms on the right-hand side of (6.3) represent gravity
and viscous drag, modeled as Newtonian fluid for simplicity:

σi j = −pδi j + ν

(
∂vi

∂x j
+ ∂v j

∂xi
− 2

3
η
∂vl

∂xl
δi j

)
+ ζ

∂vl

∂xl
δi j .
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In the mushy zone, solidified alloy dendrites form a dense porous medium. In-
spired by [12], we use Darcy’s expression to relate velocityand pressure:

vi = − 1

ǫlνρl
Ki j

∂p

∂x j
.

This is only an Ansatz. A rigorous derivation via homogenization-type arguments
is still needed (see, e.g., [13]). Finally, the solid zone (the aluminum) is described
as a state of rest:

v = 0.

In the liquid region (ǫl ≈ 1) we define the velocity through solving the momentum
equation, in the solid zone (ǫs ≈ 1) we use the state of rest and in the remaining
mushy zone the Darcy formulation is chosen. Temperature andenergy dynamics is
sketched next. We express the total internal energy densityas

e∗ = CpT + 1

2
v2

j + const.

The conservation of total internal energy is given by

∂

∂ t
(ρe∗) + ∇ · (ρe∗v) = Q + ∇ · (pv), (6.4)

with the heat source rate expressed as

Q = ∇ · (k∇T) + 1h
∂ǫl

∂ t
.

Heat is thus added to the system by the liquid-solid phase transitions taking place
in the mushy region, expressed by the latent heat1h, as well as by heat conduction
with coefficientk (Fourier’s law). Viscous heating due to friction is neglected.

Besides the calculation of the model parameters (which typically depend on the
unknowns of the problem), we need to close our model by additional constitutive
relations. Here we suggest two such relationships. In principle, (local) thermody-
namic properties could be used to determine the pressure as afunction of tempera-
ture and species concentrations:

p = F1(T, cX1
l , . . . , cXk

l ). (6.5)

Alternatively, we could use information from thermodynamic phase diagrams to
calculate the liquid fraction

ǫl = F2(T, cX1
l , . . . , cXk

l , p). (6.6)

The evaluation of (6.5) (or (6.6)) can be based on information available from ther-
modynamic databases. Only one of these two expressions needs to be selected -
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which particular one is chosen may depend on the application. Furthermore, to
solve the pressure a more involved analysis is required in which (6.5,6.6) do not
play an important role. The closure poses the problem of efficiently accessing the
thermodynamic information, especially in the case when many species are present.
Alternatively, this may be obtained via variational principles (by minimizing the
corresponding Gibbs functional), which poses the problem of simultaneously solv-
ing a PDE system and finding local minimizers to a non-linear non-convex func-
tional. Both these approaches increase the computational effort. Considerable care
in the reduction of the mathematical model and algorithm development is needed to
achieve realistic costs of simulation. We present an approach based on local poly-
nomial fitting in Section 6.3 and estimate theoretically thecomputational saving
compared to a full gridding of the thermodynamic state-space.

In Section 6.4, some example calculations are given for a simplified one-dimen-
sional model for a slow solidification process of a single species. This model can
be readily appreciated as a special case of the general formulation given above. The
purpose of this reduced model is to isolate the main characteristics of the solidifica-
tion process and to test the efficiency of the evaluation withwhich thermodynamic
properties such as1h are being processed. The 1D model that is proposed can be
written as

∂T

∂ t
− ∂2T

∂x2
− L

∂ǫl

∂ t
= 0,

∂ǫl

∂ t
− M

∂2ǫl

∂x2
= 0,

(6.7)

whereL is a coefficient related to the latent heat used to produce thephase transi-
tions, whileM is a constant effective diffusivity of the liquid. The rationale behind
this model is that we neglect all fluid flow, thusv = 0, i.e., both in the liquid and
in the solid. Correspondingly, only diffusive transport for ǫl remains in this very
crude model. In the absence of gravity and at constant pressure, the momentum
equations are trivially fulfilled. It remains to discuss theenergy conservation equa-
tion (6.4). Under the additional assumption that the parametersρ, k, andCp are
constant, equation (6.4) yieldse∗ = CpT in which temperature is governed by

Cpρ
∂T

∂ t
= ∇ · (k∇T) + 1h

∂ǫl

∂ t
.

If in additionk = Cpρ, then the last equation reduces to

∂T

∂ t
− ∂2T

∂x2
− L

∂ǫ

∂ t
= 0,

whereL = 1h/(Cpρ) and we dropped the subscriptl . The second equation of
the simplified model (6.7) is then obtained by assuming that the liquid fraction is
proportional to the temperatureT , within some reasonable range ofT . In this case,
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the second equation of (6.7) is recovered. This model has an effect of latent heat
being released, while the solidification front progresses pushed by diffusion. This
is a particularly appealing model for numerical analysis and illustration of the main
physics of solidification. We return to this in Section 6.4.

6.3 Thermodynamic representations and data
reduction

Any CFD simulation of solidification of an alloy requires thermodynamic input in
each fluid cell and at each time-step. This input may be the latent heat, the heat
capacity, and the local predictions of phase concentrations and compositions that
occur for a given temperature under certain thermodynamic assumptions. Mini-
mization of the Gibbs functional ‘on the fly’, i.e., everywhere and anytime, is too
time-consuming in this context. One way to circumvent this problem is to employ a
thermodynamic database, which is also called a mapping file in the literature [18].
This database can be pre-computed by performing Gibbs minimizations for a large
number of specific combinations of temperature and phase concentrations. The
database is a discrete numerical representation of the information contained in the
physical phase diagram. In general, the local temperature and phase concentrations
in a fluid cell in the CFD simulation are not precisely equal tothe available dis-
crete values of the entries in the database. Interpolation is thus necessary, which is
much less time-consuming than the Gibbs minimization computation itself. In this
section we will pursue this method and incorporate polynomial fitting to reduce the
storage requirements for the database. Theoretical estimates of the efficiency are
also provided.

6.3.1 Polynomial fit

The problem with precomputed databases is that they easily become much larger
than the present memory of computers. Consider for example an alloy solidified
from the four materials Al, Cu, Fe and Mg. Then a thermodynamic quantity, such
as the heat-capacityCp, is dependent on temperatureT and on three independent
species concentrationsc1, c2 andc3, while the remaining onec4 is given byc4 :=
1−c1−c2−c3 in a non-dimensionalized situation. The functionCp then depends on
4 variables. If we would use a uniform grid for each of the fourarguments, covered
each by 600 points for sake of argument, we would need a memoryof 2×4×6004 =
4TB to store two thermodynamic quantities with single precision. Such a database
approach has been considered in [18], where it was noted thatcalculations of up to
four elements can thus be realized, but calculations involving five or more elements
seem to be beyond reach at present. The aim of the present section is to investigate
whether it is possible to reduce the size of the database strongly, without unduly
affecting the accuracy of the thermodynamic input delivered to the CFD-simulation.
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Figure 6.3: Example of the dependency of the heat capacity ontemperature for fixed
composition at 5% of Cu, Fe and Mg in an Al alloy.

Since the thermodynamic quantities in phase diagrams typically display strong
jumps, a large number of grid points is necessary in each direction if a uniform grid
is used for the entries of the database. Unstructured nonuniform meshing of the
table automatically adapted to the shape of the phase diagram is expected to reduce
the size of the grid needed to represent the table. That such astrategy leads to much
smaller databases is illustrated in the remainder of this section by considering a
simple example of homogeneous solidification.

The temperature in a process of homogeneous solidification of the alloy Al-Cu-
Fe-Mg can be described by the following equation:

CP(T, c1, c2, c3)
dT

dt
= −Q < 0, (6.8)

whereT is the temperature, assumed to be spatially independent in this case, and
Q the heat extracted from the system. The heat-capacityCP is the so-called ef-
fective heat-capacity, in which the latent heat is included. Three concentrationsc1,
c2 andc3 are needed to describe the concentration distributions, i.e., the relative
amount of molecules of Al, Cu, Fe and Mg. For the present example we assume
that the three concentrations of Cu, Fe and Mg are equal,c1 = c2 = c3 = 5%
(mass concentrations). Since the solidification process considered in the present ex-
ample is homogeneous, the concentrations are constant in space, but also constant
in time, because of mass conservation. Therefore, to solve (6.8) the thermodynamic
database (the phase diagram) can essentially be reduced to the representation ofCP

as a function of temperature.
We computed the temperature dependence ofCP under these concentration con-

ditions for the Al-Cu-Fe-Mg system by minimizing the Gibbs free energy. The
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result is shown in Fig. 6.3, clearly illustrating a central feature of the phase dia-
grams: strong jumps appear, but in between these ‘discontinuities’, the function is
relatively smooth. Fig. 6.3 has been obtained with a uniformtemperature grid con-
taining 600 points. Obviously,CP can be accurately captured with much less points
if one would only store the locations at which the ‘discontinuities’ appear, while
the smooth parts in between would be approximated by suitable polynomials. This
basic observation will be worked out in more detail next, to show the principle.

To reduce the thermodynamic database storage we define a jumplocation by
a threshold of 0.5 J/(gK), fixed a priori for simplicity. We consider two options
for the smooth pieces between jumps: first-order (straight lines) and second-order
Lagrange polynomials (parabolae). The coefficients of the polynomials can simply
be computed from the values at and between two jumps. The two end-points of
a smooth region are collocation points for the first-order but also for the second-
order polynomial. For the second-order polynomial a third collocation point needs
to be added. For this we take the point half way in the intervalunder consideration.
Thus instead of 600 floating point numbers (uniform grid) we need to store much
less floating point numbers to represent the behavior in Fig.6.3 with piecewise
continuous polynomials. In particular, we require only 17 numbers in case of linear
polynomials, and 23 in case of second-order polynomials.

To assess the quality of the reduced data representations wesolve (8) for the three
different numerical representations ofCP. We compare (a) the fine-grid represen-
tation consisting on 600 uniformly distributed points, (b)a linear polynomial and
(c) a second-order polynomial fit. In each case a four-stage Runge-Kutta method
with a sufficiently small time-step is used to integrate the equation. The right-hand
side is assumed to be constant and equal toQ = −1 J/(gs). The results of the com-
putations are shown in Fig. 6.4. The second order polynomialfit provides a very
accurate approximation of the fully resolved case – there isno discernible differ-
ence between the curves based on method (a) and (b). It is concluded that in this
example the size of the database can be reduced by a factor of around 30 without
significant loss of accuracy (in this example a reduction from 600 data points to 17
or 23 in case linear or quadratic interpolation is used).

The homogeneous case above is very simple;CP is reduced to a function of
temperature alone because the concentrations remained constant. In practical CFD-
calculations the concentrations change. Nevertheless, the above method can in prin-
ciple also be applied to more practical cases: the temperature dimension can be
treated as in the example above, using piecewise discontinuous polynomials, while
the concentration dimensions are still treated with linearinterpolation on uniform
grids. If we would use a structured nonuniform meshing of theconcentrations (clus-
tering in the most important regions) for the Al-Cu-Fe-Mg alloy we might be able
to obtain a reduction of a factor of 3 in each concentration reduction. Thus the total
storage reduction would be a factor 30×33 ≈ 800, such that the original database of
4TB would reduce to 5GB and thus fit well into the memory of any modern personal
computer.
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Figure 6.4: Simulation results for 1D solidification with constant composition.

The above basic approach to reducing the storage required for the thermodynam-
ics database can be extended to a more complete computational data-representation
scheme for demanding casting problems. In the next sections, we describe the main
elements of this methodology.

6.3.2 Alternative approaches

In the following sections we consider an alternative approach based on a non-
uniform mesh representation and discuss its merits and disadvantages. The devel-
opment of this method has been guided by the following principles:

1. The thermodynamic quantities of interest fall into two different categories:

a) Quantities that are smooth and change slowly with respectto changes
in composition and temperature, for example:enthalpiesand phase
composition(what elements are present in a certain phase).

b) Quantities that change abruptly and discontinuously, for example:phase
information(what phases are present and in what relative amounts) and
effectiveheat capacities.

2. Some regions of the phase diagram are more important and should be repre-
sented with higher accuracy than other regions of less interest. This is partly
due to the occurrence of phase changes, but also since some ofthe elements
are only present in rather small concentrations in the system, such that large
parts of the phase diagram are (probably) never needed in a simulation.
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Figure 6.5: Example hierarchical sparse grids (Curtis-Clenshaw type) containing
five levels of successive approximations (left panel) and six levels (right
panel), respectively.

3. The evaluation of phase diagram data needs to be very efficient, such that
complicated interpolation schemes are out of the question.

With regards to the last point, the optimal solution would bea database approach
and multi-linear interpolation of the values of query points, which is very fast to
implement, running inO(n) time when the database is represented on a regular
grid with n grid points per dimension. As has been noted in the previous section,
however, such an approach is ultimately infeasible due to the large number of grid
cells needed to represent the phase diagram accurately, thespace complexity being
of orderO(nd), whered is the dimension.

It should be noted, though, that all thermodynamic quantities of interest, for ex-
ample the heat capacities, can be derived from two ingredients alone: smoothly
varying enthalpies andphase information. Were this phase information discrete, we
could proceed with two different strategies:

1. Model the continuous enthalpies by some simple interpolation scheme.

2. Model the discontinuous phase boundaries separately.

The first point can be realized, for example, by a hierarchical representation
on sparse grids [16], for which an efficient implementation in MATLAB is avail-
able [21]. The mean of a quantity of interest over the phase diagram is represented
as a single number in the first node of the hierarchy, and more localized changes are
represented by a number of sparsely distributed points at lower levels of the hierar-
chy. Fig. 6.5 shows an example of the sparse grids typically used at different levels
of detail.
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If the thermodynamic data were represented inthermodynamic variables9 then
the phase diagram would consist of a so-calledcell structure[17], such that each
cell represents one unique phase. Unfortunately, it is nontrivial to transform element
concentrations into thermodynamic variables and vice versa. But when concentra-
tions are used as variables, thenmixturesof phases occur, where two or more phases
are coexisting in the system in varying amounts. For binary systems, these phase
mixtures can be described by analytical formulae, for example the lever rule [17],
which is simply linear interpolation of two phases with respect to concentration,
but already for ternary systems no such simple rule is available. This means that
in certain regions of the phase diagram unfortunately not only the phase boundaries
have to be represented, but also the complete phase information. On the other hand,
this information is usually also smooth inside a given region in the phase diagram.

To conclude: In principle the thermodynamic information needed in actual sim-
ulations of solidification processes concerns either (1) smoothly varying data, or
(2) discrete information about the phase boundaries. This distinction was already
apparent in the example discussed in Subsection 6.3.1.

6.3.3 Tracing the phase boundaries

From the above it is clear that the biggest problem in the efficient calculation of
thermodynamic properties is the accurate representation of the boundaries of the
phase diagram. These boundaries form an − 1 dimensional hyper-surface if the
system isn dimensional, i.e., is described by the relative concentrations ofn distinct
elements and temperature. Note that concentrations have tosum up to one, so in
fact there are onlyn−1 independent concentration variables to consider. In a binary
system, the phase boundaries are one-dimensional, for example.

In general, one can distinguish two basic approaches for therepresentation of
hyper-surfaces such as occur in the thermodynamic closure describing the phase
transitions. Anexplicit surface is represented by some parametric surface, given
by a multidimensional spline, for example, or a representation as an unstructured
grid by simplices. In two dimensions the latter is often realized by a Delaunay
triangulation [15]. On the other hand, animplicit surface is represented by a number
of smooth, local basis functions and the surface is defined asan iso-contour of a
scalar function. This method is attractive, since it allowsto trace surfaces elegantly
and accurately by level set methods [25], but unfortunatelythe computational costs
can be very high.

Since we need phase boundary information for the approach outlined in the fol-
lowing section, we describe here a simple method to trace theboundaries. The infor-
mation obtained consists of a number of points lying very close to the actual phase
boundaries (within a user-specified numerical tolerance) and can be used as input

9Thermodynamic variables form a complete set that uniquely describes a thermodynamical sys-
tem. For the solidification process, these are usually takento be the temperature, pressure and
chemical potentials associated to the involved species
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for the more advanced level set methods mentioned. The approach is demonstrated
on a binary system consisting of the two elements Pb and Sn. Thermodynamic data
for this system is available through calls to the CHEMAPP library10 which is the
calculational back end of the commercial CHEMSAGE software [19, 20]. The in-
dependent variables are temperatureT and compositionx. The latter measures the
relative amount of Pb, such that 0≤ x ≤ 1. The region of the phase diagram we
considered was a temperature range of 320≤ T ≤ 620, measured in Kelvin.

The boundaries of the phase diagram have been traced by a bracketing method.
For simplicity, we have distributed a number of points (320)regularly along theT
axis and then bracketed all points where a phase change occurs, varyingx, by an
iterative bisection method [24]. The algorithm stores two different concentration
valuesx1 < x2 and evaluates the discrete phase information at both points. If
a difference is found, the phase information at the middle point x12 = x1+x2

2 is
evaluated. If the phase atx12 is the same as the one atx1, thenx1 gets updated to
x12, otherwisex2 gets updated. If the phase at the middle point is different from
both phases atx1 andx2, respectively, both subintervals are (recursively) bisected.
The algorithm continues until|x1 − x2| < ǫ; here we usedǫ = 10−4.
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Figure 6.6: Traced phase diagram of Pb-Sn binary example system.

Complementing this “vertical” tracing, we have analogously distributed points
along thex axis and bracketed all phase changes, varyingT . For this horizontal
tracing we have used 500 points. The resulting phase boundaries are shown in
Fig. 6.6. In each of the six areas in the figure a physically different equilibrium
state is found.

10A restricted version called CHEMAPPL ITE is available for private, non-commercial use.
URL: http://gttserv.lth.rwth-aachen.de/˜cg/Software/Chem App/
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Figure 6.7: Distance (left panel) and size function (right panel) for the liquid-Pb
mixture phase in the Pb-Sn binary example system.

6.3.4 Triangulation of phase regions

The next step is the triangulation of the different phase regions. These have been
performed with the simple mesh generator developed in [22].The input needed for
this code is a signed distance functiond(T, x) that returns the distance to the nearest
phase boundary, and a size functionh(T, x) that returns the desired edge length of
the triangulation at each point, thereby allowing non-uniform adaptive meshing.

Fig. 6.7 shows the distance function for a certain phase region of the liquid-Pb
mixture phase. We use the Euclidean distance

d(T, x) =
(
(T − T∗)2 + k (x − x∗)2

)1/2
,

where(T∗, x∗) denotes the point on the phase boundary closest to(T, x) andk =
200 was used to weigh the contribution of concentration changes with respect to
temperature changes. The distance function we used is interpolated on a regular
grid, where the distance to the closest phase boundary pointhas been approximated
by the minimum of the distances to the previously traced boundary points.

From this distance function, a size function has been computed. For simplicity,
we used

h(T, x) = 1 + 10 exp(|d(T, x)/2d0|) ,

whered0 = minT,x d(T, x) is the characteristic width of the phase region. Results
of such an adaptive meshing are shown in Fig. 6.8.

In a practical application of this method, one needs to mesh the phase diagram
separately in each region and then join the triangulations at the internal interfaces,
i.e., the phase boundaries. A discussion of these issues canbe found in [23]. Also,
the size function should depend on the local accuracy level that is required. In
fact, one can also consider a data-driven approach, where anactual simulation is
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Figure 6.8: Example triangulation of the liquid-Pb mixturephase. Left panel shows
results by uniform size function, right panel shows resultsby distance-
dependent size function.

performed in which the locations in the phase diagram that are needed are recorded.
From these data one can construct a density functionh(T, x), where regions of the
phase diagram that are needed often in a simulation would be represented in more
detail than regions that are needed rarely. Of course, one can also combine all these
considerations into one common size function.

This method generalizes ton dimensions by replacing triangles (2-simplices) by
n-simplices. Each simplex is then represented byn + 1 points and consists of(n+1

2

)
edges. The storage requirements are therefore of orderO(n2) in the number

of simplices used. More importantly, when a CFD simulation needs to evaluate
phase diagram information, first the corresponding simplexneeds to be found, and
then the values stored at its edges are linearly interpolated. The location of the
simplex containing the query point is an example of a point location problem with a
typical time complexity11 of orderO(logn) [15] in the number of stored simplices
n, whereas the interpolation is linear.

6.3.5 Localized caching

From the above it should be clear that the problem of efficiently representing phase
diagram information is quite difficult, and the familiar tradeoff between storage
and time complexity is encountered. Probably the biggest savings in computing
time can therefore be expected to be achieved on quite a different level. Recall
that thermodynamic data is needed for each grid cell and at each time step, but (1)
the local state in each cell (temperature, concentrations)usually changes slowly in
between time steps, and (2) in most cases the local state changes slowly between
spatially neighboring cells. An efficient implementation should therefore try to also
make use of these two properties, recycling already computed thermodynamic data

11In MATLAB this is implemented in the functiontsearch, which is based on the QHULL code [14]
freely available fromhttp://www.qhull.org/
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as much as possible and only recomputing these data if absolutely necessary.
The basic idea is to store a pointer in each grid cell that points to the thermody-

namic data used in the last time step. If the state of the cell does not change in a
certain range, the thermodynamic data is reused without computation (in a more ad-
vanced implementation, linear changes could be taken into account and interpolated
locally at each time step). Of course, the tolerance used would usually depend on the
location in the phase diagram: close to a phase boundary the thermodynamic data
of each cell should be updated more often than in the middle ofa phase region. Fur-
thermore, if the local state of a grid cell changes too much such that re-computation
of thermodynamic data is necessary, the local structure of the grid could be used
advantageously. Quite often a neighboring grid cell could have used the necessary
data in the previous time step12. Only if no neighbor has the necessary data cached,
a re-computation/lookup should be started. Even then, alsothe representation of
the phase diagram could use local structure advantageously. Instead ofO(logn) a
constant time complexity (on the average) seems possible.

6.4 Computational modeling of solidification fronts

In this section we consider the PDE system (6.7) to illustrate some basic mech-
anisms that characterize a progressing solidification front. Emphasis is given in
this model to the effects of latent heat release in the absence of flow. The model
describes the phenomena in one spatial dimension only, roughly mimicking the be-
havior along the central axis of the ingot. It will be shown that a simple spatial
discretization suffices to capture the physics of the problem and that the qualita-
tive features of the solidification front are well captured.This implies that (6.7)
can be used as an efficient vehicle for testing improvements in the thermodynamics
treatment without leading to lengthy simulations. This canbe beneficial in devel-
opment stages of reduced thermodynamics representations,while retaining a clear
view at the accuracy penalty incurred. In the future, it would be helpful to extend
this simple model with a realistic thermodynamic description of the latent heat, to
illustrate the computational gain that may be achieved withone of the approaches
outlined above. Currently, this model is only used to illustrate the occurrence of
solidification fronts in case the latent heat is only roughlyparameterized.

We consider the coupled system of equations (6.7) on the unitinterval ]0, 1[.
The initial temperature is taken constant and larger than the melting temperature of
the mixture, denoted byTm. Moreover, we consider the initial state to be liquid,
implying that att = 0 we haveǫl = 1 throughout the system. For convenience, we
drop the indexl and implicitly assume thatǫ:= ǫl refers to the volume fraction in the
liquid phase. Fully solidified material corresponds then toǫ = 0. To complete the
basic description, we impose Neumann conditions atx = 0, i.e., put∂ǫ/∂x(0, t) =
12It even seems possible to use a grid cell’s spatial neighborsto interpolate the thermodynamic

values at that cell, sufficiently far away from phase boundaries at least
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∂T/∂x(0, t) = 0 and Dirichlet conditions atx = 1, i.e.,ǫ(1, t) = 0 andT(1, t) =
T0 where, with proper non-dimensionalizationT0 = 1 < Tm, indicating that at
x = 1 the solidification front starts:

∂T

∂ t
− ∂2T

∂x2
− L

∂ǫ

∂ t
= 0

∂ǫ

∂ t
− ∂2ǫ

∂x2
= 0

T(x, 0) = 1 < Tm, ǫ(x, 0) = 1
∂T

∂x
(0, t) = ∂ǫ

∂x
(0, t) = 0

T(1, t) = 1, ǫ(1, t) = 0

(6.9)

where, for convenience, we use a unit diffusion coefficientM = 1.
This problem can be readily discretized using standard finite differences and an

explicit time-stepping method. For convenience, we formulate the discrete model
on a uniform gridx j = jh whereh = 1/N denotes the mesh spacing. Likewise,
we choose a constant time-step1t and approximate the solution at timestn = n1t .
Following the usual steps, we arrive at

ǫn+1
j = ǫn

j + ν(ǫn
j +1 − 2ǫn

j + ǫn
j −1)

Tn+1
j = Tn

j + ν(Tn
j +1 − 2Tn

j + Tn
j −1) + 1t Ln

j

(∂ǫ

∂ t

)n

j

(6.10)

for 1 ≤ j ≤ n − 1. Here,ǫn
j ≈ ǫ(x j , tn) andTn

j ≈ T(x j , tn). The term(∂ǫ
∂t )

n
j is

approximated backward in time. At the boundaries we putTn
N = 1 andǫn

N = 0 and
use the simple approximation for the Neumann boundary atx = 0 as:Tn

0 = Tn
1 and

ǫn
0 = ǫn

1 . In this formulationν = 1t/h2 which has to be kept sufficiently small in
order to maintain stability of the simulation.

The effect of heat released during solidification is represented by the functionL.
Purely intuitively, one may expectL to be large in case the temperature is close to
the melting temperature and considerably smaller at temperatures away from the
melting temperature. Suitably normalized, the simplest possible discrete model for
L is

Ln
j =

{
β αTm < Tn

j < Tm

1 otherwise
(6.11)

where for illustration purposes we assumeβ ≫ 1. More involved models forL can
be obtained analogously to that presented in Section 3. However, at this level of
detail it is sufficient to indicate the effect of heat releasein this crude modeling.

Simulating the solution to the simple model can be done with astraightforward
MATLAB implementation. For this purpose we adoptedTm = 2, β = 100 and
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Figure 6.9: Developing temperature profile characterizingthe solidification front.
The solid develops from the right - subsequent curves correspond to
snapshots at different times.

α = 0.8. The moving solidification front that is obtained in this way is shown in
terms of the temperature profiles in Fig. 6.9. We clearly recognize the progressing
solidification. Particular to the adopted model forL is the slight jump in the deriva-
tive near the front. In Fig. 6.10 we display the effect of heatrelease on the location
of the mushy zone. We notice that an increased heat release yields a more rapid
solidification. This problem was also treated independently with an implicit time-
stepping method in combination with an adaptive mesh. This allows to capture the
phenomena in more detail at lower computational cost. The final results of the two
codes compared very closely, thereby providing an independent check.

6.5 Concluding remarks

In this paper we described the modeling of solidification processes in aluminum
casting. We emphasized the central role that the thermodynamics of solidification
has. Particularly at realistic numbers of alloying elements the proper description
of the thermodynamic components is a strong limiting factor. The obvious brute
force approach based on minimization of the Gibbs free energy does not provide a
realistic option. Rather, database approaches, not unlikethose used in combustion
research, need to be developed to bring the computational effort down to a more
manageable level. It was argued that simply using a pre-computed database to rep-
resent the thermodynamics is insufficient and further data-reduction is mandatory.
In Section 3 a simple approach based on piecewise polynomialfitting was described
and shown to bring the data-handling down to a realistic level. However, the method
cannot be easily extended to spatially dependent situations. For that purpose more

136



6.5 Concluding remarks

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)
t

x̂

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b)
t

x̂

Figure 6.10: Effect of heat release on the solidification front defined at̂x where
T (̂x, t) = Tm. In (a) we useβ = 1 and in (b) the valueβ = 100 is
adopted.

involved data representations and methods for efficient processing were suggested
as well. The confrontation of these methods with realistic solidification simulations
as are adopted in industry is still an open challenge. Based on the experience with
the simplified approach, savings on the order of 100 or more appear possible with-
out affecting the accuracy of predictions too much. While developing the improved
data-base handling for solidification processes, use couldbe made of the simplified
one-dimensional simulation model that appears to capture the main physics of a pro-
gressing solidification front at modest computational costs. This could be a helpful
testing ground for the incorporation of several of the proposed data-reduction tech-
niques and measures to speed-up the computations. Researchin that direction is
much needed and constitutes a challenge for the future.
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