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ABSTRACT
Perceptual understanding of media content has many applications,
including content-based retrieval, marketing, content optimization,
psychological assessment, and affect-based learning. In this paper,
we model audio visual features extracted from videos via machine
learning approaches to estimate the affective responses of the view-
ers. We use the LIRIS-ACCEDE dataset and the MediaEval 2017
Challenge setting to evaluate the proposed methods. This dataset
is composed of movies of professional or amateur origin, anno-
tated with viewers’ arousal, valence, and fear scores. We extract
a number of audio features, such as Mel-frequency Cepstral Co-
efficients, and visual features, such as dense SIFT, hue-saturation
histogram, VGG16 FC6. We reduce feature dimensionality with
PCA, summarize them via Fisher vector encoding and further apply
a feature selection stage prior to classification with Extreme Learn-
ing Machine classifiers. In a post-processing stage, the predictions
of individual models are fused. Moreover, some statistical feature
summarization methods are applied to these features as well as
facial action units in the first approach. For fear problem, weighted
ELM classifier is applied. We contrast this approach with SVM and
Random Forest regressors. On these classifiers, different fusion and
smoothing strategies are assessed. We demonstrate the benefit of
feature selection and multimodal fusion on estimating affective
responses to movie segments.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection; Sentiment analysis;Multimedia and multimodal re-
trieval;
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1 INTRODUCTION
Media content including text, images, audio, and videos in various
platforms have been growing at an amazing speed with the recent
mobile technologies. Research on multimedia summarization, an-
notation, indexing and retrieval, suggestion and event detection
are subsequently prioritized [13]. Similar to multimedia studies, af-
fective video content analysis focuses on perceptual understanding
of emotions of viewers to effectively be applied on emotion based
media content delivery, summarization, and protection of younger
viewers from harmful content. Emotional engagement of the viewer
is driven by audio visual media content with powerful presentation
and composition techniques. Methods of computer vision, tech-
niques of machine learning and cognitive research are executed
to explore and measure the perceptual affect of the multimedia
content. In our study, we have implemented various pipelines for
the prediction of affective content of video clips denoted by va-
lence, arousal and fear scores in the MediaEval LIRIS-ACCEDE
dataset [5]. We used well-known regression models and a classi-
fication model on the audio-visual domain for this purpose. The
feature sets extracted available in the dataset have also been used to
form a baseline system to understand the properties and relations
of the most important features for prediction.

This work explains details of the two pipelines we have imple-
mented while developing emotion estimators. Our first pipeline
extracts a number of features, reduces their dimension with PCA,
summarizes themwith Fisher vector encoding, and further applies a
feature selection stage prior to classification. As audio features, we
computed Mel-frequency Cepstral Coefficients and we used three
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types of visual features in addition to these audio features; The
Hue Saturation Histogram, Dense SIFT and VGG16 FC6 feature. In
this approach, Extreme Learning Machines (ELM) and score fusions
were applied for both arousal and valence prediction tasks. We
have previously obtained very good results with Extreme Learning
Machine classifiers on features extracted by deep neural networks,
and won two multimodal ChaLearn Challenges at ICPR’16 and
CVPR’17. In the first approach, experiments on statistical meth-
ods for feature summarization are also performed for facial action
units with the features used in this approach. For fear problem,
weighted ELM [46] is used as classifier. Our second approach uses
audio and visual features without any dimensionality reduction,
and adds low level scene features and facial features for emotion
estimation. Early fusion of the visual features are fed to a Random
Forest classifier and to Support Vector Regressors, whose hyper
parameters are explored with grid search. The audio and visual
subsystem scores are fused with simple averaging, and the scores
for a given movie are smoothed with Holt-Winters exponentially
weighted moving average method. We have used some part of this
work in the MediaEval 2017 “Emotional Impact of Movies Task"
challenge while participating as team BOUN-NKU [24].

2 RELATEDWORK
Affective analysis studies focus on the stimuli that produces certain
emotions on the audience or the viewer. There exists many aspects
to process the affective properties of multimedia content. Affective
computing framework has been a popular subject since Picard has
defined the first frameworks for computers to gain the ability to
recognize, understand, even to have and express emotions [32].

Affective video content analysis and multimedia studies on con-
tent indexing and retrieval involve describing, storing, and orga-
nizing multimedia information and assisting users to conveniently
and quickly look up multimedia resources [28]. In general, five
main procedures are defined in multimedia indexing and retrieval:
structural analysis, feature extraction, data mining, classification
and annotation, query and retrieval [21]. Structural analysis aims
to segment a video into several semantic structural elements, in-
cluding shot boundary detection, key frame extraction, and scene
segmentation. A number of works have investigated quality assess-
ment of images and videos [3, 18, 30], as well as of paintings and
photographs [2, 7, 16, 29, 41].

The Affective Impact of Movies Task was a part of the Medieval
Benchmarking Initiative in 2015, and “Emotional Impact of Movies
Task" is a part of theMedieval 2016 and 2017 challenges [17, 34]. The
overall use case scenario of the task is defined as to design a video
search system that uses automatic tools to help users find videos
that fit their particular mood, age, or preferences. Audio descriptors
and visual features are extracted from the videos with several tools.
Support Vector Regression and Random Forest models, Least Square
Boosting, Moving Average Smoothing, CNN and LSTM networks
have been studied in the challenges by the participants. Dense
SIFT, improved trajectories (IDT), histogram of gradients (HOG),
histogram of optical flow (HOF) and motion boundary histograms
(MBH) feature descriptors with Fisher Vectors, which are successful
in activity recognition, are also applied in emotion estimation to
model the motion in the movie clips to estimate the response of the

viewer [27, 42]. Mel-frequency Cepstral Coefficients (MFCC) are
popular choices as audio features used by the teams.

Recent studies on affective movie analysis include cinemato-
graphic features with machine learning and pattern recognitions
techniques executed on specific fiction movies [6, 10–12]. Canini et
al. argue that since the distance between the camera and the subject
greatly affects the narrative power of the shot, investigating the
characteristics of the shot type would contain indirect information
about the distance. In their work on classification of cinemato-
graphic shot types [12], 2D scene geometric composition, frame
color intensity properties, motion distribution, spectral amplitude
and shot content are considered for classifying shots, using C4.5
Decision Trees [33] and Support Vector Machines (SVM) [14]. The
features defined for the scene/shot are (1) color intensity distribu-
tion on local regions in the frames, (2) motion activity maps [43]
for motion distribution, (3) the geometry the scene, through the
measurement of the angular aperture of perspective lines found
by Hough transform, (4) detecting subjects in the frame by their
faces and face dimensions with the well-known Viola-Jones algo-
rithm [38] and (5) the spectral amplitude of the scene and its decay.

According to Smith [35], if a film structure aims to elicit an
emotion, the priority of movie makers should be to create a mood.
Although mood is not as strong as emotion, it is long-lasting. Being
in a mood stimulates our emotion system again and again. As an
example, a fearful mood alerts our fear system and drives us to
perceive dark shadows and scary objects. This mood orients the
viewer towards a particular frightening feeling in the future, and
continues until fear emerges [35].

Filmic cues providing emotional information can help to elicit
mood or strong emotions. Some of them are facial expressions,
dialogue, vocal expression and tone, costume, sound,music, lighting,
mise-en-scene, set design, editing, and camera usage [36]. Using a
single filmic cue is not enough to arouse a mood. Emotion systems
of audiences are very diverse and a single cue can be received
by some viewers, but other viewers may miss it. For this reason,
redundant filmic cues are used in films and that helps to increase
chances of reaching the targeted emotion for many viewers [36].
Accordingly in this work, we have investigated multiple cues, and
their fusion for estimating the affective content for movies.

3 DATASET
The main goal for Baveye et al., who proposed the LIRIS-ACCEDE
dataset, is to produce ground truth data for training and bench-
marking computational models for machine-based emotion under-
standing [5]. This dataset, including the video clips, valence/arousal
and fear annotations, features and protocols, is publicly available
at: http://liris-accede.ec-lyon.fr/. It includes 30 movies, from which
consecutive ten seconds-segments sliding over the whole movie
with a shift of 5 seconds are considered and provided with an-
notations. The audio features available in the dataset have been
extracted using the openSmile toolbox with “emobase2010.conf"
configuration [19]. 1582 features are computed, which result from a
base of 34 low-level descriptors (LLD) with 34 corresponding delta
coefficients appended, and 21 functionals applied to each of these 68
LLD contours (1428 features). In addition, 19 functionals are applied
to the 4 pitch-based LLD and their four delta coefficient contours



Feature Selection and Multimodal Fusion for Estimating Emotions Evoked by Movie Clips ICMR’2018, June 2018, Yokohama, Japan

(152 features). Finally the number of pitch onsets (pseudo syllables)
and the total duration of the input are appended (2 features).

The visual features extracted for each of the 30 movies, one
frame per second. For each of the frames, several general purpose
visual features are provided using the LIRE library (http://www.lire-
project.net/). Convolutional neural network (CNN) features (VGG16
FC6 layer output) that have been extracted using the Matlab Neu-
ral Networks toolbox. The visual features are the following: Auto
Color Correlogram, Color and Edge Directivity Descriptor, Color
Layout, Edge Histogram, Fuzzy Color and Texture Histogram, Ga-
bor, Joint descriptor joining CEDD and FCTH in one histogram,
Scalable Color, Tamura, Local Binary Patterns, VGG16 FC6 layer,
respectively.

As we examine the annotations of arousal, valence and fear of
30 movies clips, we can clearly see that most of the fear annota-
tions exists when there is a increase in arousal and decrease in
valence. Still we know that fear is located in negative valence, posi-
tive arousal in the Circumplex of Affect. On the other hand, some
of the fear annotations are contrary to this assumption (e.g. the
movie “Norm or Full Service"). It is important to observe the trend
in the valence arousal scores, which gives the most import clue
about fear. However, fear annotations are labeled by different anno-
tators whose emotional responses are very subjective and different.
Subsequently, it is challenging to produce emotion estimators that
will consistently and accurately predict the viewer response.

4 SYSTEM DEVELOPMENT
We contrast two different, but complementary approaches to the
problem of affect estimation from movies. We describe them in two
separate subsections here.

4.1 First approach: Audio-Visual Features with
Dimensionality Reduction

Figure 1: Audiovisual pipeline in the first approach.

Our first pipeline, given in Fig. 1, extracts a number of features,
reduces their dimension with PCA, summarizes them with Fisher
vector encoding, and further applies a feature selection stage prior
to classification. As audio features, we computed Mel-frequency
Cepstral Coefficients (MFCC 0-12), from 32ms windows (with 50%
overlap). First and second derivatives were added, resulting in a 39-
dimensional feature vector. We used three types of visual features
in addition to these audio features. The Hue Saturation Histogram
(HSH) feature is a 1023-dimensional histogram of color pixels, in 33
Hue and 31 saturation levels. They were sampled from one frame
per second, and frames were resized to 240x320. For the Dense
SIFT feature, the frames were further resized to 120x160, and Dense

SIFT features [8] were extracted at scales {4,6,8}, at 5 pixel intervals
and once for every 30 frames of video. Finally, we used the VGG16
FC6 feature available in the dataset, which is extracted from a deep
neural network trained for image recognition. We normalized the
features with signed square root and L2 normalization. After reduc-
ing their dimensionality by 50% via PCA, we encoded them with
Fisher vectors (FV) [31], which measures how much the features
deviate from a background probability model, in this case a mixture
of Gaussians. In other words, FV encoding quantifies the amount
of parameter shift needed to best fit the new coming data in the
probability model. The number of GMM components were selected
as 32 for DenseSIFT and MFCC, and a single Gaussian was used for
HSH and VGG16 FC6.

A ranking based feature selection approach was applied using
Random Sample versus Labels Canonical Correlation Analysis Fil-
ter (SLCCA-Rand) method [25]. The main idea is to apply CCA
between features and target labels, then sort the absolute value of
the projection weights to get a ranking. Features that sum up to 99%
of the total weight for each modality are selected in this approach.

For regression, Extreme Learning Machines (ELM) were applied
for both arousal and valence prediction tasks [22]. Grid search is ap-
plied to find the best parameters of ELM. Regularization coefficient
was searched from the range of [0.01,1000] with exponential steps.
Radial basis function (RBF) and linear kernels were tested. The RBF
kernel scale parameter is optimized in the range of [0.01,1000], also
with exponential steps. Pearson Correlation Coefficient (PCC) is
taken as performance measure, and optimized over 5-fold cross vali-
dation on the development partition. Results in Table 1 are obtained
on the test set, for which the ground truth was sequestered.

Other experiment applied for arousal and valence problem is
normalizing features with min-max, then summarizing features
with their mean, geometric mean, standard variation, maximum and
minimum. PCA is used to reduce the dimension of summarization
of features with 95% explained variance. Min-max normalization is
again applied to output of PCA before applying ELM as similiarly as
above experiment. Facial action units extracted using OpenFace [4]
are applied to this experiment as a different feature. Another similar
approach is applied to the problem of fear with the same features.
Weighted ELM[46] is used as a classifier to solve the problem of
imbalanced number of classes in fear problem. Results obtained for
these problems are shown in Table 1 and 2 for test set.

4.1.1 ELM and Weighted ELM Learners. The “extreme” learning
paradigm is based on two fast stages that are alsomeant to overcome
over-fitting. The first is random generation of the hidden node
output matrix H ∈ RN×h , where N and h denote the number of
instances and the hidden neurons, respectively. This is done via
random generation of the first layer weights and the bias vector.
While the first layer weights are unsupervised and not tuned for
the task at hand, the second layer weights β ∈ Rh×L are learned by
least squares solution to a set of linear equations Hβ = T, where
T ∈ RN×L is the label matrix and L is the number of classes. T is
a real valued vector ∈ RN×1 in case of regression. In the case of
L-class classification, T is represented in one vs. all coding:

Tt,l =
{
+1 if yt = l ,
−1 if yt , l . (1)
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The extreme learning rule is generalized to use any kernel K with
a regularization parameter C , without generating H [22], relating
ELM to LSSVM [37]:

β = ( I
C
+ K)−1T, (2)

where I is the N × N identity matrix. Weighted ELM [46] intro-
duces a diagonal weight matrixWt,t = 1/(Nl), where yt = l and Nl
represents the number of training set instances having class label l :

β = ( I
C
+WK)−1WT. (3)

Since total weight is equal for each class, models optimize aver-
age recall, counter-balancing the under-represented classes. The
weighted KELM version is particularly employed in the Fear task.

4.2 Second Approach: Audio-Visual Feature
Performances in Emotion Estimation

Our second approach used audio and visual features presented
by the organizers, as well as extracted face and low level features
without any dimensionality reduction. Dimensions are 1.582 for
audio, and 1.271 for visual features. Additionally, we have extracted
low level features and face geometric features, which have different
pipelines before fusion. Early fusion of the visual features (except
FC6) are fed to Random Forest and support vector regressors (SVR).
Hyper parameters are explored with grid search. Additionally, deep
features, which are the FC6 layer from the VGG19 network out of
frames sampled with 1 second apart.

Figure 2: Valence Arousal Regression and Fear Classifica-
tion.

4.2.1 Faces of Characters. The most important features in a
scene is the human presence which is related to main characters
in the movie. The physical properties seen on the screen of the
characters are perceived by the viewer to understand the dynamics
of the scene in general sense. Face of the character is the most
important clue, while the viewer has intrinsic knowledge with
human body proportions with the surrounding. The Viola-Jones
face detection algorithm has been used in many application since
its first published [38]. On the other hand, with the advances in
convolutional neural networks (CNN), new approaches trained with

millions of face images are giving successful results. One of them
is the dlib [26] state of the art face recognition system, built with
deep learning, which was reported to have an accuracy of 99.38%
on the Labeled Faces in the Wild benchmark. We have utilized the
face geometrics to derive scene features such as the shot scale, as
well as for the basic emotional impact of the character. A closer
shot of the character signifies stronger affect in the scene, while the
relative dimensions of the faces in a group can suggest relations
between the characters.

4.2.2 Low Level Features of Scenes. Various color spaces are
studied in computer vision research. However hue-saturation-value
HSV space is very popular in the domain of human visual perception
modeling. In general terms, hue refers to the color itself, saturation
represents the boldness of the color, and value gives the brightness
level. As an example pastel blue would be less saturated than a
very bold blue. Saturated colors are more preferred by humans over
non-saturated colors [9]. According to recent studies, since 1940s
when the color film became the standard, saturation in films has
been steadily increasing. Hue, which tends to be the more easily
identifiable color dimension, also plays a significant part in our
narrative understanding. The average hue of the whole movie may
not be particularly useful, but the average hue of a shot can be very
important [9].

Luminance is a measurement of how much light is present in
an image or a series of images. Luminance is controlled not only
during shooting but also in post production by manipulating the
contrast and exposure of the film. Well-known concepts of “low-
key" and “high-key" in the photography are also used in movies.
The histogram of the key frames image can be used as the features
of a shot. However, as Brunick et al. state, most films are composed
of slighter luminance changes. So a luminance indicator of the
movie can be estimated by first calculating the median luminance
for each frame of the film and then averaging across the entire film.
We propose the same approach to estimate the luminance of each
shot by transforming the key frame to gray scale and calculating
the median value.

Within a movie, two basic on-screen activities are defined; (1)
motion refers to the actions of an agent in front of the camera, and
(2) camera movement refers to results of change in camera posi-
tion or lens length, like pans, tilts and zooms. However, people
generally do not consciously realize the distinction between these
two activities when processing visual information [9]. Cutting et
al. proposed to combine both motion end movement into a visual
activity descriptor [15]. We propose to measure the visual activ-
ity by utilizing background models and background subtraction.
One of the commonly used approaches for this is applying prob-
ability density functions and estimators for the variance of each
pixel in the scene model. In the early works, one Gaussian model
is used per pixel [40], but later more complex models, like Gauss-
ian mixture models, improved the background subtraction [20, 44].
The method we have used is the Gaussian Mixture-based Back-
ground/Foreground Segmentation Algorithm, implementing the
improved Gaussian mixture model background subtraction pro-
posed by Zivkovic et al. [44, 45]. In this model, the scene has a
history of frames which affect the background model. And there is
a threshold on the squared Mahalanobis distance between the scene
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pixel and the model to decide whether a pixel is well described by
the background model. We have set the history to 500 (frames).
We assume the background model generated at the end of each
shot includes all the visual activity occurred during the shot. We
calculate the mean intensity to summarize this information to be
used as a low level feature of the scene.

4.2.3 Regressors. Support Vector Regression models are widely
used in affective content analysis. SVR models construct a hyper-
plane by mapping vectors from an input space into a high dimen-
sional feature space such that they fall within a specified distance
of the hyperplane.C parameter value is critical; when it is too large,
there exists a high penalty for non-separable points and many
support vectors will overfit. When it is too small, we may have
underfitting [1]. The behavior of the model is also sensitive to the
γ parameter. If γ is too large, the radius of the area of influence of
the support vectors only includes the support vector itself and no
amount of regularization with C will be able to prevent overfitting.
We use grid search to optimize these parameters.

The second approach we use is the Random Forest, which is
a widely used ensemble learning method in affective computing.
A random forest fits a number of decision trees on various sub-
samples of input data and uses averaging to improve the predictive
accuracy and to control over-fitting.

In our approach, we use early fusion of visual features (except
VGG FC6), which are fed to Random Forest classifiers and sup-
port vector regressors (SVR). CNN (i.e. VGG16 FC6) features are
fed to separate regressors. Hyper parameters are explored with
grid search. In our pipeline evaluation with grid search, for SVR,
standard scaling is used and the C and γ parameters range from
0.001 to 100. For Random Forests, the number of trees range from
100 to 1000, and the maximum number of features per tree from
3 to 20. Five train and test folds (balanced according to duration
and fear labels) are defined to ensure that each movie appears in
either in the train set or the validation set, but not in both. The
best regressors were chosen via grid search, and tested on each fold
to evaluate the performance on a subset of the development set.
According to MSE and PCC scores on each fold, the regressors are
trained with the best group. The audio and visual subsystem scores
are fused with simple averaging, and the scores for a given movie
are smoothed with Holt-Winters exponentially weighted moving
average method [39]. The pipeline is visually presented in Fig. 2.

5 RESULTS AND DISCUSSIONS
To quantify the performance of the two pipelines, mean-squared
error (MSE) and Pearson’s r are computed. The MSE for regression
models is widely used to quantify the difference between estimated
values and the true values estimated. It measures the amount by
which the estimated values differ from the ground truth and assesses
the quality of the regression in terms of its variation and degree of
bias, while the Pearson product-moment correlation coefficient (or
Pearson’s r) is a measure of the linear correlation between estimated
and true values. The measurements on the test set provided by
the organizers are used to evaluate the pipelines separately. The
results of the first approach are presented in Table 1. The first run
is the average scores of MFCC, HSH, Dense SIFT and VGG FC6
subsystems. The second run is a linear weighted combination of

the predictions used in the first run. In the third run, while an
average of MFCC and FC6 are computed for valence, the average
of MFCC, HSH and FC6 are computed for arousal. In the fourth
run, linear combination scores of MFCC, Dense SIFT and FC6 are
computed for valence, and linear combination scores of MFCC, HSH
and FC6 are computed for arousal. Results using statistical feature
summarization methods of action units, Dense SIFT, HSH, FC6 and
MFCC are also in Table 1.

For the arousal task, action units have the best PCC results in
the first approach. While Dense SIFT, FC6, HSH and MFCC have
very low results for PCC according to Table 1, their average score
fusion is promising for the arousal task. For the valence task, dense
SIFT seems to work best alone. Score fusion of MFCC, HSH, Dense
SIFT, FC6 provide better results.

The Tables 3 and 4 present the results of the test conducted with
the second approach. They are obtained on the sequestered test set
of Mediaeval 2017 Emotion Task challenge. Bar charts in Figs. 5
and 6 visualize the results in the tables.

Regarding the valence predictions in Table 3, the visual and VGG
FC6 features are more successful, while fused values produce an
average MSE and Pearson’s r. Still, low level features are not quite
successful as the visual features. Regarding the arousal results in
Table 4, we see that the fused results are better than individual
visual and audio features. On the other hand, smoothing is making
the results of low level features and audio features inaccurate.

Face geometrics are not quite successful compared to the other
features. One of the reasons is that the face is not being recognized
in most of the shots. For example, in the movie “Island" there is a
human inmost of the frames, but since the character is shot from the
back, we can not see her face most of the time. As a result, human
detection fails in those frames and this creates an inaccuracy.

Table 2 shows the performance of individual features for the
fear classification task. This is a very challenging task, with a very
unbalanced training and test set. The F1 scores are low on the
overall, with MFCC achieving the best F1 with a small margin.

To understand the effects of various features, we have visualized
the prediction scores. We have displayed the emotion predictions
for two movies in Figs. 4 and 3, namely “Cloudland" and “Chatter"
respectively. We have selected sample scenes with human presence
and annotated the corresponding approximate time in the predic-
tion curve. As one can see, visual features and CNN features with
SVR regression have the lowest error. Face features changes more
rapidly compared to the low level features such as color, lighting,
and motion of the scene. This suggests that there should be a more
elaborate approach to detect humans in the scene.

The valence and arousal predictions of our models are very sim-
ilar to the results of the Mediaeval 2017 Emotion Impact challenge.
Among the models of the participants, the system with the best
PCC for valence prediction used VGG features with SVR regressors,
while the best MSE scores were produced with fusion of custom
audio features, VGG and visual features fed to 2-layer LSTM net-
works [23]. We have produced the best MSE scores in arousal with
audio visual regression and late fusion. On the other hand, we have
obtained the best PCC scores using VGG features with SVR. The
variance of MSE scores in the challenge is low, despite the fact
that PCC scores vary noticeably, mostly because the cost functions
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(a) t=10 (b) t=11

(c) Prediction

(d) t=30 (e) t=31

(f) t=50 (g) t=51

Figure 3: “Cloudland" faces in dual-frames t=10, 30, 50

(a) t=56 (b) t=57

(c) Prediction

(d) t=73 (e) t=74

(f) t=83 (g) t=84

Figure 4: “Chatter" faces in dual-frames t=56, 73, 83

of the regressors favor minimizing the error over maximizing the
correlation.

6 CONCLUSIONS
In this work, we have investigated various approaches to predict
viewer emotions while watching movies. In the first approach,
MFCC and various visual features, different feature summarization
methods, score fusions and single feature runs are performed for
arousal and valence task. From these experiments, single repre-
sentation can sometimes work better as action units but it can be

also said that it doesn’t give a good result for defining emotion of a
movie but fusion of features can have better results. This conclusion
may have confirmed that filmic emotional clues when used alone
will not elicit expected emotion by movie makers on viewers but the
expected emotion will be achieved when used together. As a future
work, experiments will be performed with feature based fusions
and using different filmic clues including emotion information to
be able to get better results.

As it is shown in our second approach, grid search enables mod-
els with a high performance with traditional regressors, without
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Table 1: Results of the first approach

Run Arousal MSE Arousal PCC Valence MSE Valence PCC

avg: MFCC, HSH, Dense SIFT and FC6 0.123 0.129 0.186 0.026
weighted comb.: MFCC, HSH, Dense SIFT and FC6 0.143 0.099 0.225 0.046

selective avg: MFCC and FC6 (valence) + HSH (arousal) 0.123 0.105 0.189 0.039
linear selective comb.: MFCC, FC6, Dense SIFT (valence),HSH (arousal) 0.143 0.099 0.225 0.046
Stats + PCA (Statistical Feature Summarization with PCA): Action Units 0.165 0.230 0.208 -0.280

Stats + PCA: Dense SIFT 0.255 0.052 0.247 -0.028
Stats + PCA: FC6 0.176 0.026 0.209 0.055
Stats + PCA: HSH 0.173 -0.075 0.228 -0.005
Stats + PCA: MFCC 0.166 -0.006 0.221 -0.010

Table 2: Fear task classification results.

Feature Accuracy Precision Recall F1 Score

MFCC 0.539 0.161 0.340 0.192
Action Units 0.505 0.150 0.351 0.187
Dense SIFT 0.590 0.152 0.255 0.166
HSH 0.707 0.121 0.093 0.090
FC6 0.836 0.017 0.014 0.015

Table 3: Valence pipeline evaluations on challenge test set

Features Regressors Smoothing MSE PCC

Visual SVR yes 0.181 0.107
FC6 SVR yes 0.183 0.339
FC6 SVR no 0.185 0.207
Visual SVR no 0.185 0.061
avg Audio-Visual SVR yes 0.188 0.090
Face RF yes 0.206 -0.058
Face RF no 0.213 0.010
Low Level RF no 0.240 -0.061
Low Level RF yes 0.242 -0.223
Audio SVR yes 0.243 -0.025
Audio SVR no 0.245 0.013

Table 4: Arousal pipeline evaluations on challenge test set

Features Regressors Smoothing MSE PCC

avg Audio-Visual SVR yes 0.113 0.219
FC6 SVR yes 0.126 0.150
FC6 SVR no 0.128 0.073
Low Level RF yes 0.132 -0.027
Face RF yes 0.136 0.031
Visual SVR yes 0.136 0.122
Low Level RF no 0.139 -0.004
Visual SVR no 0.140 0.070
Face RF no 0.142 -0.017
Audio SVR no 0.147 0.018
Audio SVR no 0.152 -0.044

Figure 5: Valence results

Figure 6: Arousal results

any further need for feature selection. Additional visual cinemato-
graphic features and face features produce promising results, in-
dicating room for improvement through stylistic features. Post-
processing is also very helpful; the positive effect of smoothing is
clearly observed in the arousal results. In fact, the best performance
scores for valence are produced by CNN features with SVR models
and arousal prediction is generally better than valence prediction,
which is consistent with the literature and MediaEval Emotional
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Impact challenge results. The high subjectivity of emotions is the
main challenge, for which we will continue to develop more accu-
rate emotion estimators for movie viewers. In our future works,
we plan to analyze the features of speech, music and sound effects
separately in the audio domain. Each modality has a different effect
on the viewer, which we hope to observe in the dataset.
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