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A BOUQUET THEOREM FOR THE MILNOR FIBRE

DIRK SIERSMA

ABSTRACT. Let f: (X, x) — (C, 0) be an analytic function germ and
(X, x) an analytic space. Assume that both (X, x) and f have an
isolated singularity. Let n = dim X — 1 # 2. Then the Milnor fibre F
has the homotopy type of a bouquet F,vS"v...vS" where F, is
the complex link of (X, x).

Introduction

In this paper we study analytic function germs f : (X,x) - (C,0
where both (X, x) and f have an isolated singularity. Our main state-
ment is:

Theorem 0.1. Let n = dimX — 1 # 2. The Milnor fibre of F is
homotopy equivalent to a bouguet

VS y_ys

where F, is the Milnor fibre of a general linear Jormon (X, x) (the com-
plex link).

This statement generalizes work of Milnor [Mi-2] in case X = Cc"*!,
Hamm [Ha] and L& [Lé-2] in case X is an isolated complete intersec-
tion and [Lé-4] in case (X, x) has “Milnor’s property”. If (X, x) is
irreducible, then the neighbourhood boundary of (X, x) is connected.
If one deals with the case X reducible, then one can restrict / to each
of the irreducible components. The spheres may be attached to different

components of F, but we still use the notation F é F,v Sy O

The paper is organized as follows: In §1 we recall properties of functions
on singular spaces and the generic approximation of those functions. The
main reference for this is [L&-4]. In §2 we show the “additivity of the
vanishing homology”, more precisely

H,(F)=H,F),
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where F is the Milnor fibre of f and the F;’s are the Milnor fibres of
the singularities in an approximation of f. This shows that F is on the
level of homology already a bouquet of spheres (also if n=2). In§3 we
define a geometric map

p:FvS"V.-vS" = F,

which induces an isomorphism of fundamental groups if » > 3. More-
over, we show that if n > 3, the fundamental groups of F and K :=
7 onxn S.(x) depend only on the fundamental group of X NS, (x),
the neighborhood boundary of (X, x). In §4 we prove our main theorem
with the help of the (generalized) Whitehead theorem. In §5 we consider
quotient spaces and show in some special cases the bouquet theorem if
n>1.

1. Preliminaries

Let (X, x) be a germ of a complex analytic space with isolated singu-
larity at x € X, and

f(X,x)—=C

a complex function germ, which has an isolated singularity in the following
sense:

Definition 1.1.  f : (X, x) — C has an isolated singularity at x if f
is regular in a punctured neighbourhood of x.

NB. Lé introduced in [L&-2] the notion of a complex function with iso-
lated singularity on a complex analytic space with a Whitney stratification
& . Incase (X, x) is isolated, then the stratification = {{x}, X\{x}}
is Whitney and L&’s definition reduces to the above definition.

The existence of a Milnor type fibration is guaranteed by the following
result of Lé:

Theorem 1.2. Let f : X — C be a complex analytic function with an
isolated singularity at x on X relative to the Whitney stratification & .
There is an embedding of a neighbourhood U of x in X into c”, such
that, there is €, > 0, such that, forany €, €, > € >0, thereis n, > 0,
such that, for any n, 1, >n >0, the function f induces amap ¢, , from

B,(x)nX N f~'(D,(f(x))) onto D,(f(x)):

9., B.)NX N fT (D (f(x)) = D, (f(x))
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which is a locally trivial fibration over the punctured disk
D, (f(x)) := D, (f(x)) = {f(x)}.

Proof. [Lé-4,1.3]. O

As stated, this theorem is a consequence of the fibration theorem in
[Lé-1], but in this particular case of an isolated singularity we furthermore
obtain a topological fibration, induced by f, of S(x)nxnf _I(Dn( fx))
onto the disk D, (f(x)).

Morsification. Let f : % — C be defined on an open neighbourhood
of 0in C" and let X be a closed analytic space in % with isolated
singularity in x =0. We call f the restriction of f to X.

A general definition of [Lé-4, 2.1] reduces in this case to

Definition 1.3. f: (X, x) — C is of Morse type if

(1) df(0) hasrank 1 and the kernel Ker d f(0) is not a limit of tangent
hyperplanes to X — {x},

(2) fly ) has only nondegenerate critical points (ordinary quadratic
points, A4, -points). :

Using the notations as above, we state the following result (cf. [L&-3,
2.2}

Proposition 1.4. There is an open dense subset Q of the space of com-
plex linear forms of C~, such that, Jor any linear form £ € Q, there is
€y > 0 such that, for any €, €,> € >0, thereis 1, > 0, such that, for any
t, t, > |t| >0, the restriction to X of the function f + t¢ is of Morse type
in B(0O)nX.

Denote by D_(0) the closed disk of the complex line C centered at 0
with radius 7 sufficiently small. We can define the following unfolding

@:(XN%)xD,0)— CxD,U0)

of f by
D(z, 1) :=(f(2) +tL(2), 1)

and denote
fi(z) = 7(2) + t(z2).

The next theorems of L& are by him mostly stated for open balls; but
his proofs are (at least in our context) also valid for closed balls.

Proposition 1.5. There exist €, n, satisfying the conditions from 1.2
and t© < t_ with the property: The unfolding ® of f induces a map

®(e, n, 1) of B.(0)x D_(0) onto D, (f(0)) x D (0), which is a locally
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trivial topological fibration over the complement in Dn( f(0)) x D_(0) of a
curve A.
Proof. [Lé-4, 3.2], where also details are given about the curve A. 0O
Corollary 1.6. Let ¢ and t be fixed as above. The fibres

®(e,n,7) " (,0) and ®(e,n,7) (u,1)

are homeomorphic whenever (u, 0) and (u, t) arein Dn( f(0)) x D_(0) -
A.

Proof. [Lé-4,3.3]. O

Proposition 1.7. There exist €, 1, ©_, T, satisfying the conditions from
1.5 with the property: For any t,T > |t|, the space ft_l(Dﬂ(f(O))) n

3 i —1 5

B_(0) is homeomorphic to f (Dﬂ( f(0))) n B_(0) and, therefore, is
contractible; moreover ft‘l(D”( f(0))) n S.(0) is homeomorphic to
f“l(Dﬂ(f(O))) NS, (0) and K, := ft_l(f(O)) NS,(0) is homeomorphic to
K, = 71 (f(0)) nS,(0).

Proof. [Lé-4, 3.4]. Choose t sufficiently small such that A does not
meet the set 6Dn(f(0)) xD (0) O ‘

2. The relative homology of a holomorphic map

Let as before (X, x) be a space with isolated singularity, embedded in
(CN, 0). Let B = B_(0) be the closed e-ball in c" around 0 and let

h:XNnB—-C
be a holomorphic function with isolated singularities and critical values
by=h(x), b, ..., b, contained in a closed disc D := D, (f(x))cC. We
make the following assumption:

h

“w)h (XnaB) forallw e D.

We choose

(i) a system of disjoint closed discs D; around every b,,
(ii) points s, € 0D; and §€ 9D,
(iii) a system of paths y,, 7, ..., ¥, from § to s; (in the usual way,
see Figure 1).

We use the following notations forany A C C and w € C

X, =h"'(4), X,=h""(w),
D/:UDia r =Uy,"
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“n

FIGURE 1

Lemma 2.1. H (X,, X)) 2@, H (X, ,X,)
Proof. Since h is locally trivial over the complement of D, the pair
(Xp, X;) is homotopy equivalent to (X, -, X7). So

ag
H,(Xp, X)) = H,(Xpr» Xp) = H(Xp , Xpop) = @D H(D;, X,)
i=0

(by excision). O

Let now x = x;, x,, ..., X, be the critical points of /4. For notational
convenience we assume that the critical values h(x,) = b, ..., h(x,) = b,
are all different. This does not influence the result. Next apply the local
Milnor construction at Xy --» X, and suppose that the sets B, = B, (x;)
and Dm(h(xi)) = D, are all different and inside B or D. Next write:

E, =B nXp, E=X,,
F,=B,nX,, F =X,
Proposition 2.2. H (E,F)=@]  H (E,, F).
Proof. First remark that (X, , X,) and (E,UX_, X, ) are homotopy
equivalent relative X (For details cf. [Lo].) Next
H*(XD,_ , Xs,.) =H(EU Xs,. , Xs,.) =H (E,;, F)

(by excision). Apply Lemma 2.1. O
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Remark 2.3. The Main Example. We apply Proposition 2.2 to the sit-
uation before, f : (X, x) — C a function with isolated singularity and
h = f, an approximation (from §1). Then F ‘is diffeomorphic to the Mil-
nor fibre of f and E is contractible. The local singularities at x, , ..., X,
are all of Morse type, so their Milnor fibres are homotopy equivalent to a
sphere S” . Although 4 itself is not linear the fibre F is diffeomorphic to
the complex link of X at x (the Milnor fibre of a generic linear function)
since dh(x) is a general linear map (cf. [Go-Ma]). It follows that

N 4 H((F)®1°, k=n,
B(F) = H (B, F) = Dy 8, By = { g 0 0D
i=0 ’ ’

Especially: ffk(F ) depends for k # n only on the complex link F;.

Remark 2.4. The same reasoning applies to other deformations of f
(having more complicated singularities) as long as £ and F are home-
omorphic to the space f _I(Dn( £(0))) N B_(0) and respectively f _l(s) n
B_(0), the Milnor fibre of f. We call the formula

g
H/(E,F)= @H*(Ei, F)
i=0

the additivity of the vanishing homology. In the case of certain nonisolated
singularities and X = C""! the formula is stated in [Si].
Notation 2.5. From now on we use the notations

E'=X

13 oy b
pur = Xp> F=Xp =2 X;,

so we work with homotopy models of the Milnor construction. Remark
that F* is homeomorphic to the product I' x F. The model of the
Milnor fibre contains the vanishing cycles de,, ..., de, for each Morse
point X, , ..., x,. The corresponding (n + l)-cells e, ..., e, are called
the “thimbles” of the vanishing cycles. Denote e = e, U---Ue_.
The notation F* Ue is now clear, and so is the inclusion F; — F*Ue.
Proposition 2.6. The inclusion F, — F * Ue induces isomorphisms of
all homology groups.
Proof. We have the following inclusions:

F,—~F —F'Ue, E,—-E =E.

For homology we have
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H(E,, F) —  H(E',F) — H/(E", F"Ue)

N !I H

B

g

By Hy(E;, F) ——  H(E,, F)

The vertical mappings are induced by deformation retractions and exci-
sion; a = inclusion onto the first factor, B = projection onto the first
factor. Since E, and E™ are contractible, this implies, that

H,(F)) — H(F"Ue)

is an isomorphism for all ¢. 0O

Notation and Definition 2.7. We first make a homotopy model for the
space F,VS" V...V S". Let p be a base point in Fy and p,,..,p_ be
base points in ¢ copies of the n-sphere S”, denoted by ST, ..., SI. Use
intervals [, ..., I to connect (Fy, p) with each of the spheres Sy, D) -
The resulting space

F,U(I,uS))u---u(, usy)
is homotopy equivalent to

FyvS{v---vs

[

The space

Fyu(uB/™yu---u(, uB"
which is defined similarly, is homotopy equivalent to F,. Take for each
k apath I, in F * from p to a point on Oe, (nonintersection with each
other, no selfintersections, only one intersection point with de, ) and map
for each k an interval I,, homeomorphically onto that path T, , each S,:

to de, and each BZH to e, . This construction results into mappings

prFR U USHU--- U US") > F*,

p R UL UBM YU U, UB™") > F ue.
After composing p and p with the homotopy inverses of the obvious

maps
FOU(IlUSln)U~~-U(IUUS:)—+FOVS;'V...V5”

o

FOU(IIUB;’H)U-‘-U(IUUB:H)—»FOVBIIHV-'-VB:H
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we get the following maps, which we still denote by p and p’ :
piF, NSV VS, — F,

*

p F,VB"'v...vBI" - Flue.

Denote by p” the obvious map

*

F,—» F,vB"'v...vB" - F"ue.
Proposition 2.8.

p:F, VSIV.VS) —F

induces isomorphisms on all homology groups.
Proof. The induced maps between the homology sequences of the pairs

(Fy,v B v VBT FyvS{v.-vS;) and (Fue, F)
are as follows:
el
H,, (relative) LI Hq+1(F*Ue,F*)
H,(F, VSV -V S)) Lo HE

! !

H,(F,) = H(F,VB}*'v L.vB™hY s H(FTue)

The map piel is nothing else than the “identity”

@ (B Hl Sk)'_*@H (e> 0¢y)

]

(this follows by excision). The map p, is an isomorphism by Proposition
2.6. This implies that p, is an isomorphism. O

3. Isomorphism of fundamental groups

Our goal is to show that

p:FOVS"V---VS"—aF*
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K

(T

FIGURE 2

is a homotopy equivalence. The main tool from algebraic topology is the
Whitehead theorem [Wh, Theorem 3]: A continuous map between CW -
complexes, inducing isomorphisms both on the Sfundamental groups and on
all homology groups of the universal covers, is a homotopy equivalence.

(NB. In many books the Whitehead theorem is mentioned only in the
simply connected case.)

We study first the induced maps on the fundamental groups. We fix
some notations

M =8B, the neighbourhood boundary of (X, x),
K=f"'0)nM, thelink of the singularity f,
F = f_l(s) NB, the Milnor fibre of f.

Consider again the generic approximation g of f (Figure 2). Identify
M, K and F with their homeomorphic images after this deformation.
For the local singularity of g at x a similar construction gives us spaces
B,, My, K,,and F,. We can assume F, C F by taking

—1 -1
Fy=g (s)NBy, F=g (s)nB
with a proper choice of s. Moreover we define
F, =F-F,, M, =B - B,.

Consider next the following diagram (all mappings are induced by inclu-
sions):
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7[1(M()) R n](M+) — n1(M)

T T T

(K)

n(K) — nl(F+) f== I

! !

nl(Fo) E— n1(F)

The relation between the homotopy types of M, K, and F are discussed
in the book of Milnor [Mi-2] if (X, x) = (C"Jrl , 0) and in the nonsmooth
case in the paper of Hamm [Ha, Satz 2.9].
Lemma 3.1. The pairs (M, K) and (M, K;) are (n— 2)-connected.
Proof. This is shown in Hamm [Ha, Satz 2.9]. He uses the function

| fI7 M\K—R

and applies Morse theory: M is constructed from K by addlng cells of
dimension > 7. The same argument applies to the pair (M, K, . O
NB. Our notation (M, K) corresponds to Hamm’s notatlon (Z ).
Lemma 3.2. The pairs (F,K), (F,,K), and (F,F,) are (n - 2)-
connected.
Proof. Let X be embedded in cV as before. Consider a point p € c
and the distance square function

D, 'CN—>Rdeﬁnedby D, (x )=|lx—P||2.

In Milnor’s book on Morse Theory [M1-1] is shown Let Z be an n-
dimensional complex analytic submanifold of c", then D,, restricted to

Z is a Morse function for almost all p € c” . Moreover the indices of
all critical points are < n. If the restriction of D, to f (S) is Morse
for p =0 then the function —D, has only Morse pomts of index > n on

F=f (S) N B . Otherwise take p near enough to the origin and such that
the restriction of D, to f (s) is Morse. Use the homotopy {Dtp}te[O u

tochangeBmtoB—{xeC | D,(x )<e} F into F'=f'(s)n B,

and similarly B, into BO, F into F0 , F, into F Since we do not
change the d1ffeomorph1sm types of the spaces, it is sufﬁc1ent to consider
as well —D, on F’, and to apply Morse theory. O

Since M,, M, and M are clearly homotopy equivalent, it follows that

for n>3 all arrows in the above diagrams correspond to isomorphisms.
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We conclude:
Proposition 3.3. The mappings

Dy :nl(F()) - nl(F*)a
Py (FyvS" V.- VS") —  (F)

are isomorphisms if n > 3.
Remark 3.4. If n >3 we have shown above that for any isolated sin-
gularity f: (X, x) — (C, 0) holds:

7,(K) 2 n,(F) 2 n,(M).

So these groups depend only on the link of X in x.

For n =2 this is no longer true. If (X, x) = (C3 ,0) isand f has an
isolated singularity, then according to Mumford [Mul]: n,(K) # 0. But
7, (M) =0 obviously and x,(F) =0 by Milnor [Mi-2].

It is possible to relate the fundamental groups of F and M directly.
This is Milnor’s “second argument” (cf. [Mi-2, p. 57]), generalized by
Hamm (cf. [Ha, p. 251, §(iv)]). Hamm shows that

n(F)=2n (M) if n>2.
As a corollary one knows that 7, (F,) and z,(F) are isomorphic groups

for n > 2. We did not succeed in proving that p, : x,(F,) — n,(F") is
an isomorphism for n =2.

Corollary 3.5. Let n > 2. In case X has a simply connected neigh-
bourhood boundary M we have

J— n ol
FEF*=Fvs"v...vs".

Proof. Apply Whitehead’s theorem for simply connected spaces. 0O

4. The general case

Next we want to prove the theorem in the general case. We know that
(X, 0) has a cone-structure over 8 B = M . So we have a homeomorphism
B =~ CM, the cone over M. M is smooth. Consider A, the universal
cover of M. M is smooth and simply connected. Let B = CM, the
cone over A . The map

n:B— B
is defined as being compatible with the cone structure. B is smooth out-
side the top * of the cone. The restriction of 7 to B\ {0} is a covering,
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which can be identified with (0, 1] x M — (0, 1] x M . Given a function
f:(X,0)— C this extends to

M c B
n] ETENY &
s

M ¢ B — C

Let

=f0)nM, K
F

‘(0>
=f'(s)nB, (s

-
Je)n

Lemma 4.1. Let n>3. Then F and K are simply connected. More-
over the maps

n:F>F and n:K—-K

are universal coverings.

Proof. Tt has been proved that the inclusions K — M and K — F
induce isomorphisms on fundamental groups. Hence also F — B\ {0}
induces an isomorphism for 7z, . The statement in the lemma is now a
consequence of the following fact on covering spaces: Let A be simply
connected and locally path connected, loéally simply connected, and let
n: A — A be the universal covering. Let B C 4 be connected and such
that B f—» A induces an isomorphism of the fundamental groups. Let
B=n" (B) Then B — B is the universal covering of B. 0O

Next we copy our earlier proof (§2) for the spaces B, M, F, K.
First we consider a deformation f, : B — C and its lift ft B—C. We
replace F and F, by their homotopy models as before, so we do with F
and F

Itis 1mportant that all our constructions avoid 0 € B and x € B, where
we have no covering projection. The thimbles e, of the vanishing cycles
downstairs give rise to 7 : &, — e, , where &, isa disjoint union of copies
of ¢ .

We have now

Lemma 4.2. F, and F* Ue are homotopy equivalent.
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Proof. The inclusions

E, — F'ue

L= L=

F, —> F'ue
induce isomorphism of the homology groups (compare the proof of 2.6).
Since Fo and F* Ué are simply connected, and F, — F induces iso-
morphisms on fundamental groups (3.3) we can apply Whitehead’s theo-
rem. O

In the last step of the proof of our main theorem we consider again the
map p as before and lift it to the universal cover

Fpvs'v...vS" — F*

L |

FyvS"v...vs" 5 F*

Proposition 4.3. The horizontal maps in the above diagram induce iso-
morphisms on the homology groups.

Proof. The proof uses the arguments from (2.8), together with (4.2). O

So we conclude:

Theorem 4.4. Let n > 3: F,V S"V...vS" and F are homotopy
equivalent.

Proof. Lemma (4.3) and Proposition 3.3 allow us to apply Whitehead’s
theorem. As mentioned before F* is homotopy equivalent to F. 0O

5. Special cases and remarks

Example 5.1. Quotient singularities. Let G be a finite group acting on
(C™*', 0), acting freely outside 0. Let X = C"*'/G and = : C™*' - X
the projection. Given a function germ f : (X, 0) — (C, 0) we consider
also the composition

g: (€™, 0% x,0 L (c, 0.

If f has an isolated singularity then so has g. In this case we can show
that p: F,vS"v..-vS" — F* induces an isomorphism of fundamental
groups if n > 2 by using the information that g is an isolated singularity
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on a smooth space. We follow in detail the constructions from §§1 and
2 for both f and g. Consider the approximation A (of Morse type)
of f and the induced approximation Ao zn of g. The Milnor fibres are
denoted by capitals, i.e. G is the Milnor fibre of g. The thimbles of f
are denoted by e/, those of g by e, . Remark that G, is the local Milnor
fibre of 4 ox, and this is in general not a complex link.

Since g: C"*! - C has an isolated singularity and therefore its Milnor
fibre is a bouquet of spheres of dimension 7, it follows that G, G, G*
and G*U e, are connected and simply connected if » > 2. Therefore the
mappings 7 in the diagram

G, — GUeg

7] | 1=
B, - F*Uef

are universal coverings and the horizontal mappings induce isomorphisms
on fundamental groups and homology groups. Continuing equivariantly
the same type of arguments show that also in

G,vS"V..-vs" 2 G

L= L

Fvs"v...vs" - F’
the vertical maps are universal coverings and the horizontal mappings in-
duce isomorphisms of fundamental groups.

Next we use also for g the “additivity of the vanishing homology”. The
same arguments as in Proposition 2.8 make it possible to show that the
horizontal mappings in the above diagram also induce isomorphisms of all
homology groups.

Next it follows from Whitehead’s theorem, that

ho . h
Fefr 2F'vs'v...vs"
for quotient singularities if n > 2.
Remark 5.2. Montaldi and Van Straten [Mo-St] studied C"-actions on
C""!' and pose similar questions about the quotient Milnor fibre.

Remark 5.3. Tibar studied in his dissertation [Ti-1] the Lefschetz num-
ber of the monodromy transformation of cyclic quotient singularities.
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Remark 5.4. A most general bouquet theorem? If this exists, then it
should be as follows:

Let X be a stratified space and f : (X, 0) — (C, 0) be an isolated
singularity, then

h
F2FVFV...VF,

where Fj is the complex link of (X, 0) and each F; 1s alocal Milnor fibre
of a “generic” singularity on a stratum, in fact a k-fold repeated suspension
of the compex link of a stratum ¢ (of dimension k) for each critical point
of a (generic) perturbation of f. In case (X, x) has “Milnor’s property”
this is exactly L&’s result in [L&-4]. Tibar [Ti-2] announced a proof of
the general bouquet theorem with the help of the carrousel method. He
also “counts” the numbers of “factors” in the bouquet. The same type of
splittings should also exist for nongeneric perturbations.
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