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Consider the set JN of real (or complex) polynomials in n variables

of degree < N. (N a large natural number ). The polynomials with
critical point QO are cailed singularities. They form a linear sub-
space S of JN. A polynomial g 1is called Right-equivalent with £ 1if

it can be derived from f Dby applying a smooth coordinatetransformation
of RP. The Right-equivalenceclasses are immersed submanifolds in JN.
One can consider the following two problems:

Classificationproblem: Give a 1ist of Right-egquivalenceclasses for

increasing codimension in S.

Adjacencyproblem: Give a description of the Right-equivalenceclasses,

that can occur for arbitrarily small perturbations of a given polyno-
mial. Or more general: Describe the topology of the set of Right-

equivalenceclasses.

In part I of this thesis the classificationproblem is treated in the
context of germs of real functions. It depends heavily on the work
of MATHER [19] and uses also WASSERMANN [27], who gave in his thesis
a generalization of Mather's work to the Rightleft-case.

In §1 I recall definitions and theorems concerning Right-equivalence.
In §3 a list of equivalenceclasses with codimension < 9 is presented.
The full proof is given in sk. One of the reasons for treating the
problem of equivalence in k-parameter families of germs (in §2) is
the existence of 1-parameter families in my list. 85 contains &
counterexample to & conjecture of Zeeman, concerning an algebraic
condition for a polynomial to be k-determined (for the definition
see §1). Moreover I discuss in §5 the classification under Right-left-

equivalence.
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Professor R. Thom began the theory and classified the singularities
in codimension smaller than or equal to four. He used the theory for
a study of morphogenesis (to be applied in various sciences), intro-
duced the notion of universal unfolding and posed a large number of
important and hard mathematical problems.

In 1968-1970 J. Mather solved a number of these in his fundamental
papers on Right-equivalence of functions. A preliminary manuscript
was informally distributed. He did not conclude this work in the form
of a paper however. Many mathematicians showed interest in the manus-
eript, which contained interesting new definitions and theorems on
universal unfoldings.

In 1970-T71 the manuscript was studied in a seminar of Professor

N.H. Kuyper at the University of Amsterdam. During the next year
(1971-1972) I started my research on the classification of singulari-
ties of real smooth functions and improved the classification for
codimension < 5 by Mather to the classification in codimension < 8.
See [23], in which the results are formulated with some indications

of the proof.

After the publication of my list for codimension < 8, independent
ARNOLD [1] published end 1972 a paper, in which he gave among others
a iist of the so-called simple singularities. This was & subset

of my list, but complete with respect to the interesting simpli-

city problem. Very recently there appeayed two papers of ARNOLD [2]
and [3], in which he gave a very extensive list, namely of all fami-"
lies with O and 1 parameter. It refers also to my paper and contains
gll singularities of codimension < 12. I believe that my presentation
is still of some independent interest, since Arnold omits the proofs
and only treat Right-equivalence in the complex case, and my presen-

tation includes the real case and Right~left-equivalence.

The adjacencyproblem is treated in part II of this thesis. I study
there the complex analytic case, in which the Milnorfibration gives
some topological invariants. We refer to p. 62 for the introduction

of part II. The results are illustrated in list 3 at the end.
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§1 EQUIVALENCE AND FINITE DETERMINACY OF GERMS

In this § we recall some definitions and theorems. As general

references we give MATHER[19] and WASSERMANN[2T].

(1.1) Let X and Y be topological spaces and let x € X. Two c”-mappings

f:U~>Yand g : V> Y where U and V are neighborhoods of x in X

are called germ—equivalent at x if there is a neighborhood W CU NV

of x in X such that g|W = h]W. The equivalenceclasses are called
mapgerms at x € X from X into Y. We denote by f:X>Y the
equivalenceclass, containing £ : U + Y. Composition of mapgerms is
defined by composition of the representatives.
We denote by 8 the set of germs at 0 € R of C¥-functions

R > R 8 has a natural R—algebra structure induced from R As

a ring &n has a unique maximal ideal mn’ m is the set of germs
f: R? >~ R at 0 such that £(0) = O.
L, is the set of germs at 0 € Rn of ¢"-diffeomorphisms
(ang) N (Rnlg). Every ¢ € L has the properties ¢(0) = 0 and
d4(0) has maximal rank. We can make Ln into a group by taking as the

group operation the composition of mapgerms.

(1.2) Let X and Y be C -menifolds and let x € X and k € | U {0}. Two
Cm-mappings f:U>Yandg:V-~>Y where U and V are neighborhoods

of x in X are called k-jet-equivalent at x if and only if £(x) = g(x)

and all their partial derivatives of order < k at x agree (in some,
and hence in any system of local coordinates). The equivalence-

classes are called k-jets. The equivalenceclass at x, contalning




£ : U~ Y is denoted by J (f)
Jk(n,T) is the set of kgets at 0€ R of C —mappings f: RP -> R
Jk(n,1) has a natural vectorspace ctructure and is isomorphic with
the vectorspace of all polynomlals in xl,...,x of degree < k.
J (n 1) contains the subspace = (n 1) = {z =3 (f)E J¥ (n,1)|£(0)=01.
By f, e denote the Taylorseries of f at 0°€ R* up to the kP gegree
terms. Two mappings f and g are clearly k-jet—-equivalent iff fk = Byt
Lk(n) is the set of k-jets at 0€ Rn of C -diffeomorphisms

(RF 0) - (RP,O). pk(n) is a group with the composition (take
representatlves) as product . This action 1is well-defined, since

(g. f) depends only on &, and

For 51mp11c1ty, we shall often 1nd1cate germs and jets by giving the

name of a representative.

(1.3) There exist canonical projections:
K+ 1
K+ 1 i K k-1 1 i
(n,1) 'k 5 3 (n,1) 59 (n,1) o ore »J (051) q 3%(n,1)

)

and & g_J K(n,1) defined in an obvious way -
For the maximal 1deal m. = Ker [Tl : Sn + 3°(n,1)] we have
= Ker[nm, : & +~J (n 1)]. An element f e mi is called a singular
germ or & 51ngular1tx This condition is equivalent tQ £(0) =0
and af(0) = 0, or to Ty = 0.

(1.4) Two germs £ g S m  are celled (Right)- equlvalent if there

exists a % €L, such that f = g¢. Notation: Fuog (or ffﬁ g). Two

germs %,é e m, are called Right- leftequlvalent if there exist ¢ c L
and w € L such that yf = g¢. Notatlon T RL
Two k-Jets j (f) and jk(g) € J (n 1) are called (nght)—equlvalent

if there ex1sts a jk(¢) S Lk(n) such that T, = (g¢) . Notation:
(f)bﬂ-J (g) or fJE g or fk%-c Two k-jets J (f) and J (g) € Jk(n 1)
sre called Right-left- —equivalent if there exist J (¢) EL (n) and

jk(q,) S Lk(1) such that (q;f) (g¢) . Notation: f\ﬁ g. The group
Ln acts on m by comp051tlon on the right; the R—equivalence—classes
are the orblté of this groupactlon The group L1 X L acts on m, by

composition on the right with elements of Ln and on the left with
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.elements of'L1. The RL-equivalenceclasses are the orbits of this

groupaction. Notations: Orb(f) and OrbR(%) for the Right-equivalence-
classes and OrbRL(f) for the Right-left-equivalenceclasses. The
ideals m k are invariant under the two groupactions

In a 31m11ar way there are groupactions of L (n) on J (n 1) and of

L (1) x L (n) on J (n 1). The orbits are denoted by Orbk(f) or

Orby (f) in the R-case and by Orb;L( f) in the RL-case.

It is very important that the last two actions are algebraic.

(1.5) Definitions:

A germ T e m is called Right-k-determined (or jk(f) is Right-k-

sufficient) 1f for any g € m

= v g,

x 8k R
A germ T e m is called Right-left-k-determined (or jk(f) is Right-

left-k-sufficient) if for any g € m:

= = V\A
T = 8 £ RL &

The property -of being k-determined is invariant under RL-equivalence.

Lemma: Let f be s—determined and A g then

1 £ g

2° é is s-determined
proof: f A g, so there is ¢ € Ln such that fs = (g¢)s go fv~ g and
this implies fv g.

 Since s—determinacy is a property of the orbit, also g is s-determined.

Other related questions are ® —sufficiency and v-sufficiency of jets

(ef KUO[15]).

Examples:
1°© 1f £ is regular in 0 € Rn there exist codrdinates such that
f ce = .
(xysenenxy) = %, .
if g, = f1 then also g is regular in 0 € R" and we can choose

codrdinates such that g(x1,...,xn) = x.. Clearly g~ f; so-f 1is

1°



1-determined.

o . . c s . .
2 1f 0 1s non-degenerate critical polint of f, then the classical

Morsse-lemma says:

fen f_wve x 2 +,..* e X 2 with e. = + 1.
2 171 nn 1 b

If g, = f_ then also O is a nondegenerate critical point of g and

2

g‘/‘gz'
So gne, = f2uﬁ~f; so f is 2-determined.

(1.6) Nakayama's lemma:

Let R be a commutative ring with 1; m an tdeal, L an R-module and
M and N submodules of L. Suppose:

a) (1 + x)_1 exists in R for every x €m

b) M Zs finitely generated

c) MCN + mMd

Then: M CN.

Proof':
Let e1,...,en generate M. By ¢) there are fi € N and uij € m such i
that: n
e. = f. + .L, d..e..
1 1 J=1Y 139
Hence (1 - A)Z =7 (matrixequation with A = (uij) and e = (e1,...,en)T

end ¥ = (fl,...,fn)T).
Since det(1 — A) = 1 + a with a €m and 1 + & is invertible in R,
also (1 - A)—1 exists and

- -1

e=(1-4) T~

s0 e; €EN(i=1,...,n). Hence M CN.

(1.7) For f : Rn + P the ideal, generated by the partial derivatives
a1f,...,anf is denoted by A(f).

- +
Theorem: If £ € m_ obeys m k1 ¢ m 2’A(f) + m k+2
_— n n n n

then f 18 k—deter—
mined.
Proof: Take any g € 8n with g = f . We define F : Pm x R > R vy

F(x,t) = £(x) + t[g(x) - f(x)]. Denote Ft(x) = F(x,t), hence FO = f

i

and F1 g.
We try to find a map h : (R® x R, {0} x R) ~ (2%,0) such that the map




ap

ht’ defined by ht(x) = h(x,t) is a diffeomorphism and moreover

Ft(ht(X)) =F_(x),

that is F(h(x,t),t) = F(x,0). (1)

Differentiating (1) with respect to t gives:

i
n 3F 9h oF _
181 axi (h(X,t),t) Y (X,t) + 3t (h(X,t),'t) = 0
dh
VF(h(x,t),t) o 57 (x,8) + g(nlx,t)) - £(h(x,t)) = 0 (2)
1 n
_ ,OF 3F 8n _ ,3h 3h
where VF = (5;;-,..., 3;; ) and v (EE— seees S ).
. +1 oh
Define £ : R -+ R by £(h(x,t),t) = 3t (Kat). (3)
Substitution in (2) gives

(
VF( n(x,t),t) . Z(h(x,t),t) + a(h(x,t)) - £(h(x,t)) = 0.

Since (x,t) is arbitrary and ht is a diffeomorphism this is equi-
valent to: VF(x,t) . £(x,t) + g(x) - £f(x) = 0. (4)
We next try to solve the differentialequations (3) + (4). We need

therefore two lemma's.

k+1 k+2

Lemma 1: Let m E}mngA(f) +m . Then there exists for all

t € R a mapgerm £ RF+1 -> Rn defined on a neighborhood U of
(0,8.) € Rn+1, which satisfies:

(i) Z(0,t) = 0 for all (0,t) €U

(i1) VF(x,t) « E(x,t) + g(x) - £(x) = 0 for all (x,t) € U.
Proof: Let & ., be the ring of germs at (O,to) of ¢ ~functions

Rn+1 +~ R and m the maximal ideal of & . Let
' n+1 n+1

* = . .
A*(F) = & (3 F,...,anF). We have inclusions &n C 8n+

d -
n+1 1 an mn mn
k+1

)

1

C A*(F)(8h+1mn

+1
(subrings). To satisfy (i) and (ii) we need: m,

) +
or equivalently mnk 1_§ ./_\.*(F)mn (every element of A*(F)(&n+1mn) has

—>
the form VF(x,t) o £(x,t) and g; € &h+1mn, SO gi(o,to) = 0).



10

oF of 3 of o F 3
.= <+ — —— R — ——( .
Now ™ Yy t aX'(g f) hence o . t ax.(g f)
1 i i K i 1 i
C .
So A(f) C ax(F) + 8h+1mn
. +
Since m kl m 2A(f) +m k+2 we have:
n —''n n
k+1 2 k+2 2 k+2
C * +
n+1n - 8n+‘|mn A(f) + 8n+1mn E':mn ax(F) 81n+1mn S
2 k+1
- *
=My b (F) + mn+1g'n+1mn )
k+1 2 k+1

C *
So &n+1mn Cm A*(F) + mn+18h+1mn

We apply Nakayama's lemma with

_ kel 2., ,
(Rym,L,M,N) = (&n+1,mn+1,&h+1,8h+1mn m A F) and get:
+ +
n ¥ ca  m 5 com Cas(E)
n — n+tln —''n
k+1 2 .
Hence m C m Ax(F) C mnA*(F) as required.

Lemma 2: For each T € R there e ¢ > 0 such that Ftbﬁ Fo for all

o
t with |t-tol < e

Proof: It follows from the fundamental existénce theorem for
solutions of ordinary differential equations that there exists a

+ . . . . .
smooth mepgerm h : Rn T RF satisfying the differential equation:

a) %%'(x,t) = E(n(x,t),t)
and the initiel condition: '
) n(x,t ) = x.
Since hy is the identity, there exist ¢ > O such that ht a

diffeomorphism is for all t with |t—t0] < e.

If x = 0 the differential equation has unigque solution h(0,t) = 0, for

» _g_i_l_ (O,t) = g(h(O,t),t) = E(O,t) =0 (lemma 1(1))
n(0,t ) = 0

(F(h(x,t),t) =

e

d -
Moreover Z= (Ftht(x>) =

= VF(h(x,t),t) . 2—2 (x,t) + g(n(x,t)) - £(h(x,t)) =

= vF(h(x,t),t) o £(h(x,t),t) + g(h{x,t)) - F(h(x,t),t) = 0

according to lemma 1(i).
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So F = F. h_ for all t with |t—t0| < g; sOF, ~F

= F .
t t ht t 't t t
[e] (o] (o] [e]
The theorem follows now by 'continuous induction" over the interval

[0,1].

., +
Remarks: By the Nakayama-lemma the condition mnk

+ ..
k+1 E;mngA(f). Moreover k-sufficiency of f

+ -
m K+ or m k=1 ¢ A(f) +m k.
n n - n

ig equivalent to m

follows also from mnk E;mnA(f) +

+ +
i S;mnA(f)+ m 572,

(1.8) Theorem: If £ € m 18 k-determined then m N

k+1

= f +
k} mn

c — 1 =
{g &h| g— 1} orbit of f an.

Proof: We define U = {g € 8nlgk = f

and V

We consider the natural projection: : 8h > Jk+1(n,1).

k+1

The sets U =7 (U) and Vk+1 =7 (V) are submanifolds of

k+1 k+1
k+1
J (n,1). Let (U

k+1

) and T(Vk+1) be the tangentspaces to U resp.

k+1

: k
Vg in fepq €9 (n,1).

k+1

By the assumption U CV; so also U cv and t(U

C
K+1 k+1 ) € (v

).

k+1 k+1

In order to prove the theorem, it is sufficient to show:

k+2
)

) = m K+ (mod. m
n

a) (U, n

b) (v

~
i

o+ 1 = mnA(f) (mod. m

Condition a) follows immediate from the definition of U.

Now we prove condition b): The elements of T(Vk+1) can be described

as follows: Let for t € [0,¢) h, (Rn,O) > (RP,O) be a germ of

diffeomorphism with h = 1. An element of T(VE+1) is equal to
d
d d t
. = = .« — €& (3 3
“k+1(dt fht t=O) We have dt(fht) =0 VE e o £=0 n( 1> R nf)
oh oh (0)
T .t r ___ & - . -
Let £ = 5t then £(0) = 3T ‘t=0 = 0 since ht(O) = 0.

So Ei € m, (1 T,0..,0).
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d .
- € C
Thet means ;o (fht) £=0 mnA(f), which proves T(Vk+1) mnA(f)
k+ .
(Modulo mn 2). Moreover every element o of mnA defines an element

N
= . i . €
of T(Vk+1). For let a(x) = vf(x) « £(x) with E; €m s and

>
n. (x) = x + tE(x); then h_ € Ln for small t and we have:

t t
dh
4. = _t - T _
dt fht t=0 Vf [ dt t=0 Vf ) E o
which proves t(V,_ _.)Dm A(f) (modulo mk+2)
k+1 n '

Remark 1: According to Nakayama's lemma the condition

k+1

k+1 k+ . .
m Cm A(f) +m 2 is equivalent to m Cm A(F).
—'n n n — 'n

n

Remark 2: In the proof of theorem 2 we showed that for every f € mn

the tangentspace of the orbit of f in Jk(n,1) is equal to

nk(mnA(f)). Sometimes we will refer to mnA(f) also as the tangent-

space to the orbit of f in 8n'

(1.9) We shall now discuss the Right-left-case.
This is treated thoroughly by WASSERMANN [27]. He states (pag. 39):

Theorem:

. . + +
If t is RL-determined then mnk 'c mnA(f) + f*(m1) + mnk 2,

Remark 1: f*(m1) is the image of m, under the P-algebra homomorphism |

k+2

£ & > & . Modulo m £%(m.) is spanned as R-algebra by

1

2 .3 £

i A RPN PP According to the Malgrange preparationtheorem

v, . + k+
the condition m B oy AE) + £x(m.) + m 2
n - n 1 n

).

is equivalent to

k+1
C + f*
m, __mnA(f) £*(m,
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Remark 2: The tangentspace of the RL-orbit of f in Jk(n,1) is equal

to m [m () + £*(m )].

(1.10) Definition : codimension: For f € mnelwe define:
m

a) codim (f) = dimR ZT%T m
b) codim, . (£) = dimR A(T) + ?*(m )

1
The definition depends only on the RL-equivalenceclass of T.

Lemma: For T € mn2 we have:

a) codim (f) = dlmR ;{A—(ﬂ
n 2
b) codinmy, (f) = dlmR mnA(f) " f*(m1)

Proof: WASSERMANN [27], proposition 2.19.

Remark: According to remarks (1.8) and (1.9) we can identify mnA(f)

(resp. mnA(f) + f*(m1)) with the tangentspace to the R-orbit (resp.

RL-orbit) of f in mne. This justifies the use of the term codimension;
80 the condition of f is equal to the codimension of the R-orbit of
f in mn2; and the RL-codimension of f is equal to the codimension of

the RL-orbit of f in mne.

Proposition: Equivalent are:

-~

a) codim (f) < o

b) codimRL (f) < w

c) f is k-determined- for some k € N

d) f <Zs RL-k-determined for some k € |\

k+1

k
e) For some k €N : m_~ Cm A(f) +m
n —'n n

Proof: of WASSERMANN [27];
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(1.11) Examples: For n=2 it is possible to compute the codimension

and to discover k-determinacy using a diagram, containing the

canonital generators of the vectorspace of formalpower series in X

and y:
_ .2 L _ — )3
1) £f=x"+y 3 9f=2x and 82f = Ly
X y m
2 2
x_ X Y A mn
Xy Xy Yy m

a) codim (f) = 2
b) As m3‘g A(f) + m* then m* Cma(f) + m? and so f is b-determined

by (1.7).

L L 3

2) f=x +y 3 B1f = Lx> and 3,f = Ly

a) codim (f) = 8
b) As m5 E?ﬂgA(f) + m6, £ is lL-determined by (1.7).

3) £ =x7y 3 alf = 2xy and 3, = x°

n

3 3 3 3 3

o W1 W

a) codim (f)

- 3

b) f is not finitely determined.
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br=x> xSy 8.8 = 3" +y0

3 £ = 3xy°
1 and 2f 3xy

Remark that x81f

y232f = 3x2y2 +y =y Modulo mA(f)

= 3x° + xy~ = 3x3 Modulo mA(f)

Relations that are not in the picture:
3x2 + y3 =
3x2y + yh =0

a) codim (f) = 8 - 2 =6

b) As mS.E mA + m6; so £ is S5-determined by (1.7).

5) £ = x3 + y3 + 23; 31f = 3x2 and 82f = 3y2 and 33f = 322

a) codim (f) =7

b) As mLL E;mz + m5; so T is 3-determined by (1.7).
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§2, Fquivalence and non-equivalence in k-parameter families of germs.

(2.1) Introduction: In (1.7) and (1.8) we found:

s+2

s+1 < s+2

} ) +
m m 2A(f) +m = f is s-determined = m ° ' ¢ m A(T) +m
n n n n n n
Let o(f) be the smallest integer s such, that f is s-determined. If
no such integer exists we write o(f) = ». o(f) is called the degree

of determinacy.

In most cases (1.7) and (1.8) do not determine o(f), but only up to
a choice between two consecutive numbers. Further computations are

needed to determine o(f) completely.

Let us consider a polynomial f of degree s, which satisfies

s+1 s+2
m

CmA(f) +m
n n

m s+2 - 2 s+3

hence A(T) +m
n n n

So T is (s+1)-determined and o(f) = s+1 or s. Let p be a homogeneous
polynomial of degree s+1, with say k variable coefficients. Then

f + p can be considered as a k—parameter'family of germs. In order
to prove, that f is s-determined, it is sufficient to show that

f + pw £ for all p. For this reason we study k-parameter families
of germs. We start with l1-parameter families and try to eliminate

the parameter.

(2.2) Proposition: Let £,o=f + %9 be defined for t € I (a connected

interval of R). If ¢ € mnA(f + t¢) for all +t € I then T
t,to € I.

e fto for

Proof: It is sufficient to satisfy the differentialequation of (1.7)

lemma 1:
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(i)  E(0,t) = 0
(1) F(x,t) + E(x,t) + ¢ = O
where F(x,t) = ft(x) = f(x) + t¢(x). The conditions (i) and (ii) are
equivalent to ¢ € mnA(f + t¢). Next we apply (1.7) lemma 2 and our

proposition follows.

Corollary: Let ft = f + t¢ be defined for t € I (connected interval

of R). If for all t € I:1° mnk+1_E m A(E + t9) + mnk+2

o) k+1
IS
2 ¢ mnA(f + to) + m

: S
then: T fto for tat, I.

k+1

Proof: Nakayama's lemma gives: m C mnA(f + td) so ¢ € mnA(f-+t¢).

Apply the proposition (2.2).

(2.3) Proposition: Let £, = f + t¢ be defined for t € I (connected

interval of R). If ¢ € mnA(f + tp) + (£ + t¢)*m1 for all t € I then
.

Ty 3 fto for byt € I.

Proof: The proof is similar to the prcof of theorem (1.7) and propo-

sition (2,2). We try to find maps:
n: (R" x 1, (¢} <R~ (R%,0)
k: (R x1, {t )} xR~ (R ,0)

such that h(-,t) and k(-,t) are diffeomorphisms and moreover:

-1
(0w (n, (x)) = 7, ()

Differentiating (0) with respect to t gives the following three

conditions:
31{;1 > oF
(1) 52FG8) .+ [TF(8) + Ex,e) + 2o(x,8) + n(F(x,t),t)] = 0

)
(2) %%(X,t) £

(h(x,t),t)

(3) 2Xy,t) = -n(x(y,s),t)
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together with some initial conditions.

Compare WASSERMANN[2T7] pag. 22-30.

If it is possible to solve (1) we can solve the equations (2) and
(3) locally and in the same way as in theorem (1.7) we find the
RL-equivalence of F, and FO for all t € I.

t
The condition (1) is implied by

(4) 2L Em ax(r) + Fx(m,)

In our case F(x,t) = f£(x) + to(x).

Since %% ¢ the condition (L) is a conseguence of

(5) ¢ € mnA(f + t¢) + (f + t¢)*m1 for all t € I.

(2.4) In the case of k-parameter families we have:
Theorem: Let f =T+ 1.9, T ¢ with 1 = (T1,...,T S R .
o € R and D a subset of Rk, such that for every t € D also the

linesegment ot 18 contained in D, then:

a) 2f Ro, +...+ Ro, Cm A(f ) VT €D then £~ f_ Y1 €D

) if Rey *+vot Roy Cm (e ) + (£ )*m, V© €D then £ g3 £Vt € D.

Proof: Let T € RF be given and let o = (01,...,0 ). Define
o= (1, = 006y +ouut (1 = 0 )4, .
[0,1] €R.

In case a): g, and I satisfy the conditions of proposition (2.2); 505;

k
= +
Let gt f0 t¢ and let

g\ &, and fTbﬁ fc'

In case b): g, and I satisfy the conditions of proposition (2.3); soj

e N
g1 %7 g and T < RL f .

(2.5) Example 1: Let ft = x13 + 1:}(2)4 t # 0.
We have A(ft) = (3x12, htx23)

4 . Lo_ 1
x, € mA(ft) Yt # 0 since Xy = 1p 95T

We can apply proposition (2.2):
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So if t € (0,») all ft are mutually equivalent, for example

ftk/\f1 = x13 + xeu. Also if t € (-®,0) all ft are mutually equi-~

valent, for example ftua f_1 = x13 - xgu. Remark, that explicit
1
formula's for the diffeomorphisms are obtained from ft = x13 + (t*
ift »>0and f = x 3. (It[%x )h ift <0
t 1 2 )
3 6 9

Example 2: Let £ = x° + xy~ + ay” + by1o with b # 0.

We shall show f %% x3 + ky6 + ay9 + Y1O

We have: 81f = 3x2 + y6

32f = 6xy5 + 9ay8 + 1Oby9
Moreover yagf = 6xy6 + 9ay9 + 10by1o

6 10

-9f = -oxy° - 9ay® - ooy ' - 9x°
_ +3xa1f = +3xy6 9x3
+ 15 +
yagf—9f+3xa1f = by

So y1o € ma(f) + £%(m.) for all a, and all b # 0. We now apply

1
.. . 3 6 9 10
proposition (2.3) and obtain f E% X" +xy +ay’  +y  forb # 0.

After replacing x by -x; y by -y and £ by -f we can get

f‘E% x3 + xy6 + ay9 + y1o

In this example also it is possible to give explicit formula's for

the diffeomorphisms, since

b9X3 + ngy6 + abgyg + b1oy10:

( 3

oA 1.9
T 7 b’ f

10 R 3 6 9

b x)3 + (b3x)(by)6 + a(by)9 + (by) "~ x” + xy° + ay’ + y

10

On the other hand, as we show in (2.12) it is impossible to eliminate

the parameter a.

_ 2 3 3 4 L 5 .
Example 3: Let g = x1x3 + X, +'Ax1 X, + Bx1 + Cx1 X, + Dx1 with

B # 0. We show that g is l-determined, and so
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2 3 3 L
g uﬂx1x3 + x2 + Ax1 x2 + Bx1 .
We shall use this in (L.11).
WehaVe:8g=x2+3Ax2x +lLBx3+LLCx3x +5th
1 3 1 72 1 172 1
- 3 4
9,8 = 3x," + Ax T + Cx,
83g = 2x1x3
So modulo mA(g) + m6 we have: m381g = x32m3 =0
3, _ .. 23 _
m 32g = 3x2 m- = 0
and x1x3m =0
Moreover:
- _ 2 3.2 4
a) 0 = X, X938 = XX X"+ 3% 7x," + th1 X,
s0: th1 X, 2 0, hence x1hx2 = 0 (since B # 0)
2 2. 2 4 5
= = +
b) 0 X,78,8 = x,"%g 3Ax, %, + th1
so: LBx. 2 = 0, hence x > = ¢ (since B # 0)

1
Now it follows that

m’ C ma(g) + m6 for all values of C and D.

So g is 5-determined for all C and D.

> C ma(g) for all C and D theorem (2.4)

. 2 3 3 4
gives that g x1x3 + x2 + Ax1 x2 + Bx,|

and so g is L-determined.

Because Rx1hx2 + RX15 Cm

(2.6) Sometimes the elimination of a parameter can be shown to be

4
3
é

impossible. First we treat the case of a l-parameterfamily.

Definition: Let {ft}

L e be a family of germs, continuously depen-

ding on t, and let I be an open interval of R. We call t a local

invariant of the family {ft} if Vto € I de > 0 such that the

t €1
germs {ft |t-tol < e} are all in different orbits. A similar

definition exists for RL-equivalence.
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(2.7) Let A be a subset in Rm. We denote by A* the closure of A in
the Zariski-topology. That is:
A* = {x € Rn|(P(A) = 0) implies (P(x) = 0) for all real polynomials P}.

Since A* is closed in the ordinary topology it contains Z&.

Definition: A closed set F in Rm is a real algebraic set iff F* = F.

Proposition: Orb(z) Zs open in [Orb(z)]*.
Proof: cf THOM-LEVINE[25] p. 18-19 propositions 1 and 2.

(2.8) Proposition: Let & be a 1-dimensional affine subspace of Jk(n,1)

and let z € Jk(n,1). Then there are two possibilities for & 0 Orb(z):
1° ¢ 0 Orb(z) consists of a finite number of points.

2° 32 N Orb(z) consists of a collection of open intervals of %.

Proof: Since [Orb(z)]* is real algebraic, we have either & M [Orb(z)]*
is a finite number of points, or & N [Orb(z)]* = 2.

Since 2NOrb(z) is open in & N [Orb(z)]* the proposition follows.

(2.9) Theorem: Let £, = f + t¢ be a 1-parameter family of germs
defined for t in a comnected interval I of R.
If 1° f, s k~determined for all t € I,

2° tE€EI: ¢ €& mnA(f + to) + mnk+1.

Then t Zs a local Znvariant.

Proof: Because f, is k-determined for all t € I, we can work entirely

t
in 7%(n,1). Let 2 = jk(fto) + Re.

According to proposition (2.8) there are only 2 possibilities:

a) & N Orb (ft ) consists of a finite number of points.

o
b) 2 N Orb (ft ) consists of a collection of open intervals of 2.

o
A necessary condition of b) is that there exists a neighborhood U of
to in I such that the direction of the line % is contained in the
tangentspace of Orb(fto) in jk(fto).

So ¢ €m (£ + to) +m " for all t € U.
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Since this is not the case we can conclude, that £ N Orb (ft )

consists only of a finite number of points. °

Remark: If we have the condition ¢ & mnA(f + t¢) + mnk+1 + (f + t¢)*m1

in theorem (2.9), we get the conclusion also for RL-equivalence.

+
! C mneA(f) + mnk+2 and ¢ € m s then there

k+1

(2.10) Proposition: If mnk
) 2 K42
exists a T > 0 such that m = Cm “A(f + t¢) + m = = for all [t] < 1.
Proof:
m m K+
We consider the cenonical projection V¥: 345 k+2 >~ "'n m k+2 .
n n ;
W(anA(f + t¢)) is spanned by vectors {31(t) seens EN(t)} continuously
depending on t.

k+1
+
If R§1(t) ot RaN(t) = mn/n k+2 for t = 0, then the same holds
’ n

small t since a determinant (continuously depending on t) has to be

unequal to zero.

k+1
So \P(mneA(f +te)) = M /m k+2 which is egquivalent to
n
+ +
m 5 Emn2A(f + t¢) + mnk 2.

o}

k+1 2
. C
Corollary: If 1 mn mn

+
A(E) + m 5F°
o

o) k+1

and 27 ¢ & mnA(f) +om

then there exist t1' > 0 such that f 1s not equivalent to f + t¢ for
all |t| < t'.

Proof':

1° implies that f + t¢ is k-determined for all t close to O.

k

2° implies that j (f) + R¢ N Orv (jkf) consists only of a finite

number of points.
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(2.11) Theorem: If 1° mnk+1 E;mnA(f) + mnk+2

o) k+1
27 ¢ & mnA(f) + m

30

then there exists T!

of [t] < 11,

Prcof:

codim (f + t¢) <8 constant for all t with |t]<q

< T such that t 4s g Local imvariant of £ + t4

It is sufficient to prove ¢ & m (f + t) + mnk+1 for small t, rLet

n

> > .
b1(t) seens bm(t) be the generators of

k+1 m
mnA(f tEe) 4 mh///// k+1 1in ﬁ/é/k+1
m n

and let 5 be the representative of ¢ in My - k+1

n
e >
Let B(t) be the matrix with columnvectors bi(t) seees bm(t) and
T . . > - -> .
B" (t) be the matrix with columnvectors b1(t) senns bm(t),p. Since

rank B(t) = x = constant for small t ang rank Br(t) =k + 1 for

t = 0 (vecauyse E & Rg1(0) oo+ Rgm(o)), we have:

>

> —>
rank B (t) > k + 1 rop small t; so p & Ro (t) +...+ Rb_(4) for small t,

m

(2.12) Example 1: Let ft = xh + yh + tx2y2 (t2 # L),

One can show that codim (ft) = 8 for all t° # L,

Moreover m” E;mQA(ft) + m6 if t =0

and xy° & mgA(ft) +m’ if t = o,

So according to theorem (2.11) ¢t is & local invariant of ft in a

neighborhood of t

Remark that thig invariant has also g geometrical meaning. Since f

0.

t

1s l-determineg we can work entirely in Jh(2,1). Because £, is homo-

. ) L - . .
geneous of degree L4 the orbit of ft under L (2) ¢oincides with the

orbit of f under L1(2) = GL(2).

B e L
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Our local invariant t depends on the cross ratio of the four (complex)
lines with equation £ =0 since every element of ¢ € gL(2) induces

a projective transformation in the pencil of lines through the origin
in the (complex) x-y —plane, sending ft = 0 onto ft¢ = 0. Cross ratio

is an invariant under complex transformations.

¢
//N
ft(x,y) = xl“ + yl“ + tx2y2 = Q ft(¢(an)) =0
Example 2: Let f = x> + xy6 + ay” + 410

(compare also 2.5, example 2).
In this case y9 & mp(£) + £*(m) ¥a € R.

One can deduce this from:

dim, 77F) +mf*(m y = 1k
R 1

. m .
d.lmR A(f) + f*(m1> + .y.9

So a is a local RL-invariant.

= 13.

(2.13) Definition: Let D be an open connected subset of Rk.

T = (11 ye oo Tk) is called a (k-dimensional) local invariant of the
family {fT}T €D if for every o € D there exist ¢ > O such that the
germs {leﬂo-f" < ¢} are all in different orbits. We also say, that

(11 yeees rk) is a set of local invariants of the family.

Example: The family £, o= xy (x+y ) (x+ty)(x+sy) has the set of local
]

invariants (s,t).
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They are related to two cross ratio's in the set of 5 lines, defined

by ft,s = 0.

(2.14) Theorem: Let £fo=f+ ¢y * oo+ 18, be a k-parameterfamily
of germs, defined in an open connected subset D of Rk and let:

1° fT be p-determined for all 1 € D

c P+l _
A A N mals ) +m 277] = {0}

then t 1s ¢ (k=dimensional) loeal invariant.

Proof:

Because fT is p-determined for all 1 € D, we can work entirely in
IP(n,1). Let 0 € D and 1let v = jp(fg) + ij(¢1) o+ ij(qbk).
We consider V N Orb (jp(fo)). There are two possibilities:
a) fG is isolated in V N Orb (jp(fc)).
b) fG is not isolated in V N Orb (jp(fc)).
In case b) the curveselectionlemms, (ef MILNCR[20], pag. 25) implies
that there is a real analytic curve:

P : [0,e) >V
with p(0Q) = fo and p(t) € V N orb (jp(fo)). In that case the inter-
section of the tangentspaces onto V and Orb (jp(fg)) is at least
1-dimensional, so: [R¢1 + ... +VR¢k] F\mnA(fc) # {0}. This gives a
contradiction; so we are in case a). Now £ is isolated in
V. N Crb (jp(fo)) and so there is a neighbcrhood of jp(fc) in V such
that no fT in this neighborhood is equivalent to fg. Since o was

arbitrary in D, we are done.

(2.15) Theorem: Let £_=f + Tyby oo+ T b be a k-parameter-

family of germs, defined in an open connected subset of D of Rk and let

tinlv el -

A L
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1© f_ be p-determined for all ©t €D

p+1

2° [Re; +.oot Royp 1 N [moale ) + (£)%(m) + m®"'] = (0}

then T 18 a local RL-invariant.

Proof: similar to (2.1L).

(2.16) Remark: Proposition (2.10) and theorem (2.11) remain valid in

the case of k-parameterfamilies.

(2.17) Example: Let f = x° + y5

From the picture we conclude
19wl CmPa(e) + m° so, % y
f is 6-determined x Xy y

o° codim(f)=15 x3 2 2 3

= X5 + y5 + ux3y2 + vx2y3 + wx3y3.

Consider now T
(u,v,w)

Since 15 is the minimal codimension for a germ f € m,. with fh = 0,

2

we have codim f( ) > 15 for (u,v,w) small. Moreover

U,v,w
Rx3y2 + Rx2y3 + Rx3y3 & ma(x” + ys) + m|. Theorem (2.11) implies:

(u,v,w) is a set of local invariants for (u,v,w) small.

Remark, that w is not a local RL-invariant.
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§3 Splittinglemma and classificationtheoren

(3.1) We consider f € mne. Since f1 = 0 the polynomial f2 is homo-

geneous of degree 2:

r_o= ). . ..X.X. L. =
5 Zl’J=1 aleli where alJ

The rank of the matrix is invariant under RL-equi-

0X.9X.
i°%5 (o)
- valence.

Definition: The corank of f is n minus the rank of the matrix
2

(=2
9X.9X. ‘
1775 (0) 5
Notation: corank (f) = n - rank( o L )

axiaxj (Q)

(3.2) Splittinglemma: Let f € mng, codim (f) < « gnd corank (f) = r.

2 2
. +

Then.: f(x1,...,xn)uﬂ g(x1,...,xr) + CpprXppy F oo e X, where

€t T X Thuiny e, =+ 1 and g, = 0.

Proof:

There exists a linear isomorphism such that f .« e x © +...0%e X 2
2 r+1 r+1 n'n

where €py = e, e, = *1 and r = corank (f).

So fug‘e b'4 24 v e x 2.

r+1 r+1 nn

We continue now by induction on k.

k 2 2 .
Let £ A gk(x1,...,xr) S NP S coe * e x " with k > 2 and
c 3
g Em ~.
. k+1 2 2 . 3
: =
Assertion: £~ gk+1(x1,...,xr) R S e x,° with By S M,
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2 + ... +ex e

k+1
W . o e
e have £ ¢~ gk(XT’ ,xr) + p(x1, ,xn) * e ¥ X

where p is homogeneous of degree k+1.
We write p in the following form:

p(x1,...,xn) =xh (x1,...,x ) + (x

+ ... +
nn n xn-1hn—1 X 1>

gor ¥

+ X (x

r+1hr+1 veoX

) + P(X1,...,xr)

1°° r+1

where hn""’hr+1 are homogeneous of degree k and p is homogeneous

of degree k+1.

Define ¢ : (Rn,g) - (RF,Q) by
o' (x1,---,xn) = X,

T
() o (x ,...,xn) = x,
r+1
¢ (x1,...,xn) T Tr T Optq
‘n
oo = +
¢ (x1 9 !xn) xn Gn
where ¢1,...,¢n are the components of ¢ and o0 s--+s0, € mnk (to be

fixed later).

The Jacobiammatrix of ¢ in 0 € R* is the identitymatrix. The inverse-
functiontheorem implies that ¢ is a germ of diffeomorphism.

In stead of (%) we shall use the short-hand-notation:

X, =X
= x
(%) r r
+
Fr+1 r+1  Fr+1
x =X _+0
n n n
. . k+2
By substitution we get (Modulo m. ):
k+1 \ 2 '
ey ]
f gk(x1,...,xr) + p(xl,...,xn) + er+1(xr+1+dr+1) ot en(xn I
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= gk(x1,...,xr) + P(X1""’xr) + xr+1hr+1(x1""’xr+1) + ...+
, 2 .2
+ xnhn(x1,...,xn) + Dt S 2er+1xr+10r+1 + ...+ e X, + Benxnon
- 2 , 2
= gk(x1,...,xr) + p(xj,...,xr) + i1 ¥pry oo * e x ~ +

Xr+1[hr+1(x1""’xr+1) + 2er+1or+1] +o..0+ X [h XyseoasX, )+ 2e 0,1

2 2
= +...+ B
gk+1<x1""’xr) * er+1xr+1 ®n*n
. -1 k
1if Op41 = 2e [ r+1(x1""’x +1)] € mn
. r+1
. -1 k
= .o €
“n 2e [hn(x1’ ’Xn)] mn
n
and gk+1(x1,...,xr) = gk(x1,...,xr) + p(x1,.,,,xr).

Now the assertion is proved for all k > 2.
Since codim (f) < » there exists a s such that f is s-determined.

With (1.5)lemma there follows:

2 2
X ) e x + ...+t e x

f . .
(x 1? r r+17r+1 n'n

1,...xn)m g(x

(3.3) Remark:
The above proof of the splittinglemma is due to MATHER[19]. Other

proofs, not requiring that codim (f) <  are given by WASSERMANN[27]
and GROMOLL-MEYER[13]. In the last case the splittinglemma is given
in a Hilberlspace context. They mention also an observation of
MATHER, that given any two splittings of the form fuw g + Q with

82 20 and Q a non-degenerate quadratic form, then the corresponding

non-degenerate parts and degenerate parts are Right-equivalent.

(3.4) Lemma: ILet f(x1,...,xn) = g(x1,...,xr) + L S +.‘..+enxn
with g, = 0; then:
1% codim (g) = codim (f)

o g is k-determined = f is k-determined.
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(o] -
1 A(f)_(a.lgs'--:arg: xr_i_-]s--"xn)emn

Alg) = (a1g,---,arg) € m,.

2° Let %k = fy. From the proof of the splittinglemma it follows, that:

; N o 2 . .
f‘(x1,...,xn)v\ g(x1,...,xr) + gt Xppy Feeot e, X,  with g, = &

X
S . . . . I » ~ -
© there is a diffeomorphism ¢.(R,_Q) > (Rr,_g), with g¢ = g and

this implies that fon 7. (extending ¢ by the identity).

Corollarx: The classification of f &€ mn2 follows from the classifi-

cation of g € mr3.

@_).LE_@EQ: Let f(X1,---,Xn) = g(XT’“"XI‘) + er+1xr+12 +.. 0+ enxn2
with g, = 0.

r=0 = codim (f) = ¢

r=1 = codim (f) > 1

r=2 = codim (f) >3

r=3 = codim (f) > 7

r>L = codim (f) > 1k

The proof is direct computation, concerning the ideal (a1g,...,arg)

o

for g a function of lowest degree 3.

(3.6) CLASSIFICATIONTHEOREM:

For r € m with codim (f) < w and £y = 0 we have,

either: fu~ Q + g where g s a germ of one of the polynomials in the
2 2

list on the next page, and Q = e + ... +ex

X
r+1 r+1 nn

or: codim (f) > 9,
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o g Q
2 e :>§€=
w S 9 o
o O o 9o
0 | § jogdly
g o S a
. < o g 9 >
o o |0 &gl =«
o 0 o 14 o 9-A
AR T KN
r g S VSR S R S H
r
r=1|g=+ x5 (1, 3) k-2|k-2 |k |0 |0
rx (k » A
r=2 g =x %% + x5 (x> L) : D k| kx [k|o]o
g 1 2___X2 paily sz_mple J k+1
g = x13'i.x2u singularities E6 5 5 Llolo
_ 3
g =x,7 + X %, ET 616 | 4lo]o
_ 3 5
g =x° + x, Eg | 7|7 |5]0]o0
3 L4 6 %
= v B =
g = x4+ Ax1x2 + Bx2 J10 919 [6]1]1
2 2 2 2 =~
= - E, =
g (x1 *ox, ) (x, "+ ox,”) Xg 818 |4 |1]1
L 2 2 5
g—x1ix1x +0Lx2 X10 9 8 511]0
r=3| g = x_x 2 + x 3 + g.x.x + g .x E . =|p 7 T 31111
372 1 17173 273 6 8
2 Y
= + +
g = x,7 +x, X3+ x. Xq Bx3 P9 817 (41]o0
_ .3 2 2 5
g =x," + X, Xg i_x1 X3 + Bx3 P1O 9 8 51110
g = Xx 34k X 2+x x 2 4 Alx u+6x 2 +x h]
1 =172 ="173 2 — 72 3
3 R1o 918 | ki1]o0
3 2 2
g8 = x, 131X2 iﬁ1x3 + B[hx2 xBiﬁx2x3
_ 2 3 3 Y
g—x1x3 +}{2+0Lx1x2;l~_x1 Q1O 918 [ L|1]o0

uA3 + 2732 # 0; X9:

[Conditions: I

L. 3
Tyt be,

2 - . . . .
+ 2Tg,” # 05 P9. B # 03 Pioi B# 03 R

10°

o #F 0,-1,1; X1O: a # 03

: A # 0 and B # 0].
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The proof follows increasing corank r of f. In corank r=0 and r=1
the list is complete. In the sections on r=2 and r=3 we add remarks

about some germs of codimension > 9. The proof will be given in 5bk.

(3.7) Remark: Two germs of different type are not equivalent. Within

one type, we may have equivalent ones. An example is Ak 1 with k odd,
The parameters in the families X9 10°

cal invariants. The families J10 and P8 have a 1-dimensional local

invariant, depending on the two parameters. The equivalence in these

s X P9, P1O, QTO and R'IO are 1lo-

families is discussed in (4.5) for J1O; in (L4.10) for P8 and in
(4.13) for RTO' In 54 we also treat the difference belween the

R-classification and the RL-classification.

(3.8) Remark: We can consider the classificationproblem also in other

cases: R-analytic, R-formal powerseries and also the C-analytic case
and (-formal powerseries. In all these cases we have the same results!
as here in the C“LR—case, because it turns out that classification ;
of germs of finite codimension can be done with polynomialfunctions.
In the (-case we can replace all *-signs by +-signs and sometimes it
is possible to give nicer normalforms for the orbits.(See the list I

at the end).




Je

33

§4 Proof of the classificationtheorem

If no confusion is possible, we use the abbrevation A for Alg) and

m for m .
n

<

]corank = OI

(4.1) Theorem: If r = 0 then f(x1,...,xn)un e x.° t..tex? (A1).

171 nn
Proof':
; 2 2 2
Since r = 0 we have F(X,,...,X ) ae.x. +...+ e x .
1 11 nn

So A(f,) = m and m3gm2A(f2) + m’ which implies that f, is

2-determined; so fl/\fg.

Remark: We may take e. > e, > ... > e . There are n+i equivalence-
—_— 11— 2 = ~ n
classes, corresponding to +++..+++, tH+ e, L e ete.

|corénk = 1[

(4.2) Theorem: If r = 1 then
k+1 2 2

either: f(x1,...,xn)vﬂ_i X, e, Lt e X, (Ak) (k > 2)
or: codim (f) = w,
Proof:
. 2 2
Let codim (f) < «, then f(XT""’xn)LA g(x1) e X, .t e X,
. k-1 k+1 2 k+2
Let g, = ax1k with a # 0, then A(gk) =m ; som Cm A(gk) +m

and so g, is k-determined, which gives gw &, -

If k is even and a > 0: g(x1)on x k; and if a < 0: g(x

]
If k¥ is odd g(x1)on x1k for all a # O.

Remark: We may take &, 2 €32 ... 2 e .
If kX is even we have 2n equivalenceclasses.
If X is odd we have n equivalenceclasses.

In the sequel we shall no longer mention the various quadratic cases.
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]corank = 2

(4.3) Proposition: If r = 2 then

3 2
| f(x1,...,xn)um g(x1,x ) + e.x. T +...+ e x %>

2 3 3
where gg 18 in exactly one of the following four cases:
o _ . 2 3
1 g3(x1,x2) = x."x, ¥ %,
e _ 2
2 g3(x1,x2) = x,%,
3

o =

I
o

o =
N g3(x1,x2)
Proof:

Because g, = 0 it follows that g3(x1,x ) is a homogeneous polynomi

2
We may factor g3 into linear forms over C. The four cases correspo

to 3, 2, 1 or O linear factors. By a linear map we can arrange, th

g3 gets the given form.

(4.4) Theorem: If r = 2 and g = % 2x + X 3 or g5 = X 2x2, we hav

172 —="2 1
. 2 k=1 2 2
: ce + + T
either f(xq, ,xn)vﬂ X "%, X X, e Xy +ex (Dk) (k >
with codim (f) =
or: codim (f) =
Proof: Let codim (f) < o, .
o 2 3
= +
In case 1~ we have g3(x1,x2) x, 7%, 2 X7,
_ 2 2
A(g3) = (2x1x2, x,© 3x2 )
3 _ -3
X X19,85 + 5 Xp0485
X.5%_ =~ x 3 g
! 2 ? 173 So m3 C mA(gs) + mh
XXy T Xp083
1
=+ 4 1
%5 —3x2323+6"313
So g., is 3 determined and gw~ g
3 > 3 2 .
In case 2° is g3( 1,x2) = x, %, and A(g3) = (2x1x2,x1 ), so g4 is

finitely determined. So we have to consider higher jets than 3-je
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Lemma. 1: Let k > 4 then

2 k k-1 k k 2 k 2
+ + +.. .+ +
Xy Xp Tagky Fagx, X, UKo N Ky Ky T X, N XXy F Xy
Proof':
We define an element of L2 by:
. % 1 k-2 k-2 k-2
T = + = e E
X, X, 04 with Py 2[on1x1 + + 4 4%, ] m
Lo . * k-2 k-2
X5t = X, + Py with Py = e X, Em
S0 we have:
2 k k=1 k k
+ +...
x1 x2 aox1 + 0L1x1 x2 + ukX2 AN
k 2 k k-1 k-1
+ +.. .+ )
oy byl Fog) Fagky T agx T e e - B
k 2 k-1 k-1
+ cet
NEy Xy THy P T BXKG0 G T OK o X T Xy by XX, HopX,
k 2 2 k-2 k-2 k-2
+...
Xy Foxg Lot gxy T ]+ xR0 e, T T by X TT] 4y x
* 2 k 2
= + + .
X1 X2 OLkX2 V\X1 X2 ___X2
Lemmg 2: g = x 2x + x K 18 k—determined.
— k 12— "2
Proof:
2 k-1
A =
(gk) (2x1x2, X" X kx, )
We have mk CmA + mk-‘-1 since
k-2 _ k-2
m x1x2 =m a1gk
Koy ®2 Tk k1 k-2
1 1 ¥ T X X 948y
k _ Tl
Xp T L X8, *op X098
We apply Lemma 1 for k = 4,5,...,% we get
2 ly 2= 2
+... +
By Xy Xy + BX, tBi%s Be¥o

Let X be the smallest integer such that B, # 0.

In that case is gk k-determined and consequently

K ().

Dk+1

gmgkv\x 2X j-_x2

12
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(4.5) Theorem: If r = 2 and we are in the case gy = x13 of propositior

(4.3) then, either: f(x1,...,xn)o~ g(x1,x2) + e X 2 +o..4+ enxnz, where

373
-, 3 4 \
glx;x,) = x.7 + x, (B
= . 3 3 ,
g(x1,x2) =%+ XX, (EY'
_ .3 5 \
g(x;5x,) = x.7 + x, (Eg.
_ .3 L4 6 3 2
g(x1,x2) =x," + Ax1x2 + Bx, (LA°+27B #O)(J1(
or: codim (f) > 9.
3
In J10 the number k = ,_E_é;__qg i8 an invariant. Two germs of the
LA® + 27B

family J10 are equivalent if and only If they have equal k and equal
sign of B. If B = 0 they are equivalent iff the sign of A is the same.

Proof: Follows from Lemma 1-=5.

Remark first, that g3(x1,x2) = x, is not finitely determined.
Lemma 1:
3 n 3
+ +...+ + + oot +
* Y “n-1 Th 7 % Ty “n-1 %n
= p-1 P
where 0, = A X X, Bpx2 und T homogeneous of degree n.
Proof:
. . n-2
: = + e
Define an element of L2 by X, X Proo with Php €M
Xyt = x2
3 n 3 2
+... =
x1 + o), +...t 01 + Ty W X, + 3x.| Pro + o), + O + T
3 2
= +...+ + =
X * oy -1 * [3x1 Pn-o Tn:I
3
= + +...+ +
% Y -1 %
if hoo ch that 3 2 + = XX n-1 + g x M=
we choose pn_2 su g x1 Pro Tn o 1%5 Bn 5 o,

[Remark that the coéfficients of x1x2n—1 and x2n have not changed].

Corollary: (Normalform):

If gt;x]B then g&\x

3 + 0, +...+ 0 where o_ = o XX
1 I n e P



37

Lemma 2: Let k > L,

k . .
] o (uk # 0) s k-determined.

_ 3 k-1 , _ :
b) g = X, o XX, (ak_1 # 0) 28 (2k=-3)-determined and not

(2k-5)-determined.

a) g, =x, *to

Proof':
a) 9.(g, ) = 3x 2 and 3.(g. ) = k o, x k-1 and this leads directly to:
1"k 1 27k k2
+
mk,g ma + et
= 2 k-1
b) 81(gk) =3x." +a X,
k-2
= - X .
3,(g ) = (k=1)a, . x.%p
We shall show: mzk-3 Cmh + m2k—2. We compute now modulo mA + m2k—2:
o . _ _ k-2
170 = maz(gk) =xx, m
_ 2k-5 _ 2 2k-5 k-1 2k-5 _ _ 2 2k-5
2 0=m 81(gk) =x,m o X, m = x,m
k-2 2. k-2 2k-3 2k-3
= = + =
3002 %, "3, (g ) = 3 x =172 “k-1%2 0
2k=3 _ .
50 X, = 0 since o _, # 0.
- -3. 2k-2
We have now all generators of m2k 3, S0 m2k 3¢ mA + m k and
g, is (2k-3)-determined.

Since x 2k-h & mp + m2k-3

5 we have that g is not (2k-5)-determined.

—_— Q) —~—
We apply Lemma 1 for n=L; so let:

_ .3 3 I
g), = X FoxX, * Bx,

If B), # 0 define an element of L, by: X, 1= Xy
. x k4
¢ = - = — &
X, i = X,-px, with p hBh R

So we have:

L L
gh“"x13 +.“ux1(x2'Px1)3 + By (xpmpy ) =

- . 3 Y -3 2 2 3 N

= X7 vgxg YR TRy ygx TR+ (e mheBy Jx X B X)

= 3 L 3 2 2 L

+ + + +
X, Y%y YoXq X5 T Y3Xy X, B Xo
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Next apply again Lemma 1. Since the coefficients of x1x23 and x2h

don't change we get:

3 Ly 3 i
By Xy T BXy s x Tt xg

g), is L-determined (lemma 2), so

gux,” +x (E6)

- _ .3 34 3 3 )
It su-o and ah#o then g, = x.~ + o)X X, A x,” + X%, Then g), is

5-determined (Lemma 2 ), so we have to consider

3 3 5 5
5 7 %4 1%5 0¥ et ovgXy

3 3 > 55,3
= + + o +
a) g b's X, X S YsXp WA X, X %,

3

b) g, = x,° + x1x23 18 L-determined.
Proof: we shall give an outline of the computation:

. . 1
step 1: Using |x =X, +p with p = —*(Y X 3 +...+ Y3X23) € m3

1° 1 3 Vo1
*ob T X%
5 3 L 5
+ + .
we get g5\_,\x1 + x1x2 yux1x2 y5x2
step 2: Using X=X,
. 1 2 2
s = = - &
Xyt X5 + o with o 3 yuxz m
53 >
y + +
we get gs\,\x1 x1x2 Y5%2
The coéfficient of x25 is still the same as in step 1!
step 3: Using Xt = X,
: o= + i = €
%, pX, + X, with p Ys R
5 3 3 5
+ + +
we get g5‘/\x1 + X1(px,| x2) BS(px1 x2) .
step U: Using X, = x, +op
. 1, 3 2 2 2 o
= = - + + <
%, x, with o 3(p X, 3p XX, 3px2 ) Em
5.3 3 3 5
B2 . +
we get Bg S X, T b x x4 X, [degree L] ox,” + Y5%,

The coéfficient of x25 is equal to -p + YS = 0.
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step 5: Apply again the system of step 1 and 2. The co&fficient of
5 > . 3 3.

x2 does not change, so we get: g5 V\X1 + x1x2

step 6: Since g), is 5-determined and g bi g), for all Y2t eaYg Ve

>
get g is 5-determined and so also g5 gy, Let hu = g), then

5

5
= + +...+ f . e .
h5 g, Yo X Y5X2 or some values of Yo? ,y5
Since the righthandside is 5-determined we have
hvg + v X > ...+ Y X Su« g, .
b o1 572 L

So g), is L-determined.

Remark 1:

e mA(x 3 + x1x23 + B x 5) + m6 for

It i1s also possible to prove x 1 5%

2

all B_ and then to use proposition

(
3 3 > 5
x1 + x1x2 + 85x2 A X

2.2) to prove

3 3
1 172

>

‘Remark 2:

If fk is (k+1)-determined; it is not always true that

; k+1 k k+1
: N
: f + B x + 61x X, +. Bk+1X2

K : 1 %5 is also (k+1)-determined.
: o)

k k+ . .
If m E;mA(fk) + mk ! this guarentees only (k+1)-determinacy for

small values of B - B (compare proposition (2.10)).

k+1

We return to the case that 8, = 0 and o) # 0.

From the Lemma 3 it follows that guLi x13 + x1x23 is L-determined.
3 3
So gvx, T XX, (ET)
If o) = 0 and Bh = 0 we have gLL = x13 and we consider
3 L >
= + +
g5 x1 a5x1x2 85x2

It 85 # 0 then we can derive in the same way as 1in the case E6 that
> . 3 5 3

> . . .
+ - 3
g5un X, + 85x2 A x1 x2 , which 1s 5-determined; so
3 >

g X, + X5 (E8)
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It 85 = 0 then g5 is 7T-determined and we have to study higher jets.

First we derive a normalform in a more general case.

Lemma L: For u # 0 and k > 5 we have:

3 k-1 k+1 n-1 n-1 nn
+ +... +
T EYy o B%, T e Pagxx, P¥Xo
n 3 k-1 k+1 n
+ + e .
X X, BeiXp  Feeet BX,
Proof':
Define an element of"L2 by: Xp: = x,
-Q
- e ,n-k+1, - - _n-k-1
x2 + p with p m ) *E—xg .
The left-hand side is n-equivalent to:
3 k-1 k-2 k+1 n-1 n-1 n
+ +...
T WXy P uXX, T e B X, FhaXy toxx,T 48 x,
3 k-1 k+1 n-1 n k-2 n-k+1
= + +...4+ + + +
BT BB WL Pamr¥e Byt xxy  Tuptax, M)
3 k-1 k+1 n-1 n
= +
X, HX, X, + Bk+1x2 +o.ot 6n—1x2 + an2
Corollary: (normalform): Zet u # O and n >k >5,
k 3 k-1 n 3 k-1 k+1 n
+ N +o. .+ .
If guea X, uX, X, then g X7t uxx, + Bk+1x2 B %5
Let us return to g_ = x 3 + o X xX_ .,
5 1 512
Since g5 1s not 5-determined we study higher jets of g:
3 Y 6 i 3 2 '
: = + + + .
Lemma 5: Let &, = X7 + aX, X, BeX, 87x2 and (ha5 278, ) # 0.4

1° g7 18 T-determined

2° g 18 1in fact 6—determined.

Proof:
a) If ag = 0 and B, # 0 we can apply Lemma 2.
b) Let us suppose o # 0. We shall show that m' Cma + m8.

_ 2 Y
31g7 = 3x1 + a5x2

_ 3
a2g7 = ha5x1x2 + 6B6x2

5 6
+ 787x2 .
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Modulo mA + m8 we have: 0= 3x1 x23 + a5x2T
_ 5
x12mLL =0 and 0 = ha5x1x2 + 6B6x27
2
x1x23m3 =0 0= ha5x1 x2J + 686x1x2 .
2.3
o 636 0 X, x,m =0
Since |3 0 lho.| = -U[a 3y 278 2] # 0 are 4x.x > =z
> 5 6 172
T _
0 u’as 686 X2 =0

Now 10 follows:

Because x2T € mh + m8 for all BT we have that g, is €-determirned.

T
. 3 L 6 . 3 2
= + + + .
So if 35 0 we have g« X, Ax1x2 BX,, (J1O) if LA 2TB™ # 0
Remark 3:
Consider the question: When are two germs f = X 3 + Ax_ x b + Bx 6
q : & (A,B) 1 172 2

of type J equivalent? It turns out that the action of L2 on the

10

i . . .
subset x13 + Rx1x2 + Rx26 of J6(2,1) coincides with the action of
GL(2). In fact the only possibility is a multiplication in the

X, -direction:

2
X,: =X
1 1
(*)
X, = sz X #0
A geometrical invariant of x13 + Ax1x2 + Bx26 is constructed as
follows:
3 6 2 2 2
+ + = + + + k
X, Ax1x2 Bx2 (x] k1x2 )(x1 k2x2 )(x1 3%5 )

and defines (over C) 3 parabolas in the x —xg-plane.

1
o
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The line x, = 1 intersects the 3 parabolas in 3 points A(k,,1),

1’
B(k_,1) and C(k_,1). Let D” be the point at infinity of x_ = 1, then

2 k -k, 3 2
(ABCD) = k3—k1 is an invariant of the L2—action.
Let now T e f th *) 1 ies:
) (A?Bg (Ag’Bg) en (*) implies
W - ) 3,12 _ 3 212 _ _ 2
A1 A2,B1A 32, SO A1 A= A2 » B, A" =B,
1
Hence A 2(uA 3, 27B 2) = La 3 + 27TB 2.
1 1 2 2
(4,B) 2’
Define k(4,B) = ——— . Then k(A,,B,) = k(A,,B.).
hA3 + 2732 1 2?2
On the other hand, if k(Al,B1) = k(AE,Bg) then f(A1,B1) v~f(A2,32)

over (. In the real case we need the additional condition:
\V2 =
(3132 > 0) (B1B2 0O A AA, > 0)
For each k € R there are two different real germs of type J1O' More-
over there are two different topological types; corresponding to 3
real parabolas with k € (-=,1] and 1 real parabola with k € [1,2).

The equivalenceclasses form a system of curves in the A-B-plane.

D10
= ]
s ]

A parametrization of the family can be given by a closed curve arounc

the origin, for example: C: h|A|3 + 2T|B[2 = 1,
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The two intersectionpoints of C with hA3 + 2TB2 = 0 correspond to
more degenerate germs. The other points of the curve are in
1-1-correspondence to the equivalenceclasses of germs of type J1O'

(4.6) Proposition: If r = 2 and we are in the case gy = 0 of propo-

. in 2 2
sition (4.3) then f(x1,...,xn)\«~g(x1,x2) + egXy toote x %, where
g), 18 in exactly one of the following cases:

o] _ 2 2 2 2
17 g, = (x1 *x, )(x1 + ax, ) a # 0,-1,1
0 2 2 2

= +
2 g), = X, (x1 *x, ).
3° g), = (x12_i x22)2 with codim (f) > 10
4° g), = x13x2 with codim (f) > 10
o L . .
5 g, = x, with codim (f) > 11
6° g, =0 with codim (f) > 15

Proof: Because g3 = 0, gh(x1,x2) is a homogeneous polynomial of degree
4, We may factor g, into linear forms over {. The six cases corres-
pond to 4, 3, 2, 2, 1 or O factors; indicated in the following pic-
tures of the sets g, = 0.

By linear transformation one can obtain one of the given expressions
for g), In each case one constructs first a normalform of the 5-jet

of f. Then straight-forward computations show:

o 2 2,2 N : .

3 g), = (x1 * %, ) codim (f) > 10
o _ 3 N .

I g), = XX, codim (f) > 10
o

5 g), = x1u = codim (f) > 11
o

6 g, =0 = codim (f) > 15.
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(4.7) Theorem: If r = 2 and we are in case 1° of proposition (4.6)

2 i_xee)(x12 + ungl where o # 0,-1 or 1.

then f(x1,...,xn)\r-(xj
The number o is an invariant under R-and RL—-equivalence .
Proof':

. . 5 2 6
A straight-forwardcomputation shows, that m” Cm A(f) + m for all
a # 0, =1 or 1.

The invariance of a is related to the crossratio of the four (complex)

lines with equation: (x12 + x22)(x12 + axeg) = 0.
Two germs of the family are equivalent if and only if their cross-

ratios are equal (modulo permutation of the lines, which gives a

1-d, —— 4 and Q:l)

permutation of the six possible answers: d 11d’ a1

1
’E’
(Compare also (2.12) example 1).

(4.8) Theorem: If r = 2 and we are in case g, = x12(x12 i_xzz) of
proposition (4.6) then:
. . oy b 2_ 2 p 2 2
etther: f(XT""’Xn) X R XXy baxyT +oegX kot e x)
X
(p > 5) ( p+5)

or: codim (f) = «
If codim (f) < « then a is a local R-invariant;

for RL—equivalence we can arrange that o = + 1.

Proof': xh:ix12x22 has infinite codimension. The theorem is a

consequence of the following Lemmas:

2
Lemma 1: (normalform): If g~£x11L i_x1 x22 then
kL 2 2 5 k
- + +...% .
g Xy I Xy X, FogX, %*o

Proof: For k = 4 the statement is true; we proceed by introduction

k+1 b 2 2 5 k
- + +...+ +
on k. Let g X, + X, X, a5x2 o Xy Tyt where

K+ 1 K K K+ 1
= I +
Tee1 = A% T M X MEFe T Aen®o
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Define an element of J by

2
. £ 1 k-2 1
R Tt S SR - W R

ta]
]
»

g &t x1h + hx1301 * X12X22 j-_,2x1x2201 + a5x25 +o.+ ukxek a1 T
= x1LL i.X12X22 + a5x25 oo+ o X"+ x13[ho1 + on1k'2] +
+ x1X22[i 20, + Akxgk—e] + A1x1kx2 ot )\k_,lx12x2k—1 + Ak+1x2k
: X1h * x12x22 * 0‘5"‘25 Toent “kxek T X Pt “k-1x12}‘2k—1
+ Ak+1x2 .
Next define an element of L2 by :
X0 = x,
Xyt = X, + 9, with 9, 25 %[H1x1k_2 +o..+ Uk_1x2k_2] S mk-e
So we have:
g x1h i-x12x22 ¥ 0L5X25 Foeet “kxek ¥
+ X, xe.[i'ZU + H x1k;2'+...+ uk_1x2k_2] + Xk+1x2k+1
. VX1LL i*x12x22 * a5X25 Tooet akxek * Ak+1xek+1
Lemma 2: x1h_i x12x22 + axgk 1s k-determined if o # 0; (k > 5).

. . +1 2 k+2
Proof: A straightforward computation shows: mk E;m A(E) +m

for all o # 0.

2

. . . L 2 k
Lemma 3: o i a local R~invariant of x,  *x."x," + ax, 3 for

172
Rl~equivalence we can arrange, that o = + 1.

Proof':
(i) x2k & ma(f) + et for all o # 0; apply (2.9).

(ii) x2k € ma(f) + f*(m1) for all o # 0; apply (2.3).

Now theorem (4.8) is proved.
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| corank = 3]

(4.9) Proposition: If r = 3 then

f(x1,...xn)~§\g3(x1,x2,x3) + euxh2 +o..+ enxn2
where g4 has one of the following expressions:
a) g3(x1,x2,x3) = x3x22 + x13 + g1x1x32 + g2x33 with hg13 + 27g22 70
b) g3(x1,x2,x3) = x1x32 + x23
c) g3(x1,x2,x3) =x,7 4 X, x3_i X, x
a) g3(x1,x2,x3) = x1(x12 i_x22 + x32)
e) g3(x1,x2,x3) = x2(x1x2 - x32) with codim (f) > 10
f) 83(x1,x2,x3) = x1(x22 i_x32) with codim (f) > 10
g) g3(x s %) = xi(x12_i x22) with codim (f) > 11
h) g3(x1,x2,x3) = x12x2 with codim (f) > 11
k) gs(x1,x2,x3) = x13 | with codim (f) > 15

Since g3 = O is the equation of a cubic curve in the projective
plane, we can use the projective classification of real cubic curves
(cf. BURAU[8] or V.D. WAERDEN[26]).

In case a), b) and c¢) the curves are irreducible, in the other cases
the curves are reducible. Case a) is the elliptic curve (= without
multiple points). Case b) is a curve with cusp-point. Case c) is the
curve with double point.

By linear transformation we can arrange that g), gets into one of the
given expressions.

Next one constructs in the cases e-f a normalform of the h-~jet of f.

Then straight-forward computations show the assertions concerning the@

codimension in e)-k).



b7

or

case a) case b)

or .

case C)

case 4) case e) //case £) \\\

case g) case h)
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(4.10) Theorem: If r = 3 and we are in case a) of proposition (4.9)

then f(X1,-~-,Xn)"‘x X 2 + x 3 + 81x X 2‘+ g2x33 + e 2 + + e x 2

372 1 13 By Tt oex
(Pg), with hg13 + 27g22 # 0 and codim (f) = 7.
hg13
The number j = — 18 an iwvariant of f.

hg13 + 27g2‘
Two elements of this family are equivalent 1ff their ge's have the

same sign and their j's are equal. If g, = 0 two elements are equi-

valent iff their g,'s have the same sign.

froof: A straight-forward computation shows that f is 3-determined.
On the homogeneous polynomials of degree 3 in x1,x2,x3 the action
of L3 coincides with GL(3). So j is the classical J=invariant of
elliptic curves. In.the complex case J € C classifies the elliptic
curves completely. In the real case we have for every j € R two
different real elliptic curves. Moreover there are 2 different topo-

logical types: unipartite with J € (-=,1] and bipartite with j € [1,%),

=

f— - —— —— - —>

[}
-

T ————— = — = =

|
o1
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A parametrization of the family can be given by a circular curve C

around the origin, for example

3 2
C: h|g1[ +27[g2| =

The two intersection points of C with hg13 + 27g22 = (O correspond

to the two types of curves with double point. The other points of
the curve are in 1-l-correspondence to the equivalenceclasses of real

elliptic curves.

(4.11) Theorem: If r = 3-and we are in case c¢) of proposition (4.9)

o .32 2 kK, 2 P
then either: f(x1,...,xn) x, 74X, Xo+x, x3+6kx3 te)x) .. .te x (Pk+5)

(with B, # 0and k > k)
or: codim (f) = o,
If codim (f) < « then each Bl 18 invariant under R-equivalence only;

for RL-equivalence we can arrange B = 1.

x13 + X22x3 + X 2x3 has infinite codimension. The theorem

1s a consequence of the following Lemmas:

Proof': g3 =

Lemma 1: Let Tj be a homogeneous polynomial of degree j; then

3 2 2 J 3 2 2 J
X + + T. + + +

1 x2 x3 + x1 x3 TJ v~x1 x2 x3 x1 x3 Ax3
Proof:

. . j =2
Let an element of L. be defined by X = xi + o, with oy € n? then

3
g, = x5 + x 2x *ox ’%. + T. ;Ag + 0,3,(g,) + 0.0, (g ) +0.,9,(8,) + T.
3 1 2 73— 3 J 3 191183 272 3°3'83 J
A direct computation shows that:
2 2
+ -
X, m X m mA(gB)
80 also xm U xm! C mJ_1A(g ).
1 2 3
. . . =1

This means that we can choose 01,02 and 03 in such a way 1n mJ that
the terms of T (x 1,x2,x3), that are divisible by x, or X, vanish
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J
) + 0o 83(g3). So g5 ¥ 5 g + Ax.°.

against 0181(g3) + 0232(83 3

Corollary: We have the following normalform for the k-jet of f(k 3_&)

EAx 34 x 2x + x 2x + o x e xE
&% 2 T3 T Fp A3 T YTy T YXgo
3 2 2 k- . .
Lemma 2: g = x,” + X, %, * x, Xg ¥ Axg (A # 0) Zs k-determined (k > |
Proof:
3 = 3x 2 + 2x_X%
18 (I R
825 = 2x2x3
2 2 k-1
= +
33g X, *xy kix
+
We shall show: m'' E;mgA(g) * mere,
. +2 2 + .
Since mBA(g) + mk =m A(g3) + mk 2, we find already all generators
+
of m5, except x35. So we have only to show, that X3k+1 € mr + mk 2.
2 2 2 2 2 k+1
= + +
X3 33g X3 X, kX, X3 kkx3
k+1 2 2 2 2 2 k+2 .
= 4+ == = .
So kkx3 * XA 3 X Xp¥g 0 (mod, m“A + m “). Since A # 0
+
we have x3k le m2A + mk+2.
3 2 2 k . . .
Lemma 3: In X, + X, X3.i X, x3 + Ax3 A # 0 Zs a loeal invariant
under R-equivalence.
Proof':
Since dim ——t——— > dim “ we have x k & mhA + mk+1
k+1 k+1 k 3
mh + m mh + m + x3
and this implies the lemma.
3 2 2 k o~ _ 3 2 2 k
: + + +
Lemma L4 X7 X, Xy X Xy ¥ AXg© 2T X, Xp Xy X X Txg * Xg

Proof:

+ . . .
x3k € mp + f*(m1) + mk 1 for all A # 0; so x3k is contained in the
tangentspace to the RL-orbit; so (2.3) applies and we are done.

It is possible to give explicit formulas for the diffeomorphisms:




i
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Let x.:!= px. then
1 1

3 2 2 k 3.3 3.2 3.2 .k k
+ -
X, + x2 x3 x1 x3 + XXB % p X, + p x2 x3 + p x1 x3 + Ap x3
3 2 2 k-3. k 3 2 2 k

(P = +

R X1 + x2 x3 + x1 x3 + Ap x3 X, + x2 x3 + X, x3 x3
P - k- 1

i p R

(L.12) Theorem: If r = 3 and we are in case b) of proposition (L4.9)

then either:

1,...,xn) v~x1x32 + x23 + ax13x2 + X by e x, ° +... 2

with codim (f) = 9

fx

or: codim (f) > 9
If codim (f) = 9 then a is local-imvariant under R—equivalence only;

for Rl-equivalence we can arrange that o = -1, 0 or 1.

Proof':

The proof is a consequence of the following lemma 1-2.

Lemma 1: If g~§~x x 24 X 3 we have the following normalform for the

173 2
n-jet: g Ex x 2 4 X2+ gy, *v..+t 0 (n > L) where
173 2 b n -
O = o X p—lx + B X p_

P pi 2 o1

Proof:

By introduction on n; for n = 3 is the statement true.

Let Tn be a homogeneous polynomial of degree n and let

n 2 3
— + + 0, t...t + o,
g x1x3 X, a), O T
. . -2
Define an element of L3 by X=X, + a, with o, € n"
. n-2
= + Em
x2 x2 02 with 62
X,: = X, + o with o, € mn-2

3 3 3 3
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Then: 3\3{;{ + x +x20' + 2X_ X_.0 +3x20 + o0, +...+ g + 1T =
eh: g 1 17393 2% 79

3
2 2
= +
= XX, +x.7 4+ 0) Feeut o1 ¥ [2x1x303 + X370, 3x2 o, * 1
2 3

= + + +o..4 +
X %g X, 9, o._1 * o,

by & proper choise of gJ, 02 and 03.

Lemma 2: x1x32 + x23 + Ax13x2 + Bx1h ts b-determined for all B # 0.

Proof: cf (2.5) example 3.

Now we start the classification in case 3b):

Lemma 1 implies, that
2 3 3 _ L
g v~x1x3 + x," + aux1 x, + th1 .
Ir Bh # 0 g is 4b-determined (Lemme, 2) and we can arrange that:
2 3 3 L
+
oo AR, 2 x(Q)

8 X Xy 2
Since x13x2 & mA + m5 for all A; A is a loecal R-invariant. Moreover

A is not a loecal RL-invariant, since

x13x2 € mA + f*(m1) + m5 for all A # 0.

With Rl-action we can arrange that o = 0, +1 or -1,

Next we have to consider the cases Bh = 0 and o), # 0; but this gives
already codim (g) > 9. A classification in higher codimension is

possible, using Lemms 1, but becomes more and more complicated.

(4.13) Theorem: If r = 3 and we are in case d) of proposition (L4.9)

then codim (f) > 9. If codim (f) = 9 then

’ 2 2 .
f(x1,...,xn) V~g(x1,x2,x3) toeyx) Tt e Xy with h
_ _ 3 2 2 Lo 2.2
g =x"+ e X X, + exX, X" + A[x2 6e2e3x2 X3~ * X3 1(A%#0)
_ .3 2 2 3, _ 3 B40
or g = x.,7 + e X X, + X X3" + B[LLX2 Xg he2e3x2x3 ] (B#0)

A and B are locql R-invariants.
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3 2 2 e e . . .
: = + + .
Proof g3 x1 e2x1x2 e3x1x3 has infinite codimension The

theorem is a consequence of the following lemmas:

We use the abbrevations:

_ 4 2 2 Y
p(xz,XS) =x, - 66263X2 X"+ X

T 3
q(xg,x3) = hx2 Xq he2e3x2x3
Lemma 1: g ﬁxg + Af(x X,) + Ba(x_,x_).
—_— 3 2°73 2’73

Proof: Define an element of L3 by X1 = x4 s with o, S m
(i =1,2,3). Let g), = g3 + )5 where T), i1s a homogeneous polynomial
L4
£ . A + + + + .
of degree 4. Then g g3 o1a1g 0232g 0333g T), |
A straight-forward computation of m2A + m5 shows, that we can choose

. L
0,,0, and O3 in such a way that g e, + Ap(xg,xS) + Bq(xg,x ).

3

Lemma 2: If e2A2 + e3B2 # 0 then gy * Ap(x ) + Ba(x ) is

2*%3 2°%3
b-determined and codim (f) = 9. IF e2A2 + e332 = 0 then codim (f) > 9,

Proof:

mS ClﬂgA + m6 for all values of A and B with e2A2 + e3B2 # 0.

2,x3) (A" # 0)

and g ey B'q(xg,x3) (B'" # 0)

Lemma 3: If e, = e, then g Rl A'p(x

3

Procf:
The substitution {.XE: = x,cos¢ + x3sin¢
x3: = —x251n¢ + x3cos$

implies that

3 2 2 .
& x,” + e X X, + e X X" + [Acosky - B51nh¢]p(x2,x3) +

+ [Asink¢ - Bcosh¢]q(x2,x3).
If ¢ = arctg % then the co&fficient of P(Xg’x3) vanishes.
If ¢ = arctg %-then the coéfficient of q(xz,x3) vanishes.
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We remark that orbits intersect A-B-plane in circles:

.» A=B
. 1 —_—
Lemma 4: If e, # eq then ggy * A p(X2,X3) if g ° 0

. » A=B
1 —
and g \~g; + B q(xe,x3) f 33 > O
Proof:
. . 1 1
The substitution -ixé: = 3(x + I)x2 + (A = X0x3
1 1 1 1
T = 5 - + 5 + =
X 2 (A 7%, *+o2(A k)x3
. . 2 2
implies that g v~x1 + e2x1x2 - e2x1x3
Y 1 I 1 L 1 L 1
1 - _ 1 L 4
s[(A7 + AM)A + (X Ah)B]p(xg,x3) + 3[ (A AM)A + (A7 + >\L*)B]q(xg,x]}
a) Let (xh + %E)A + (xh - %E)B = 0 then x8A + A+ xBB -B=0
8 _ 8 _ B-A
» (A +B)=B-Aand A = et
If ini < 0 there are real solutions, so the coéfficients of
p(xg,x3) can vanish.
Lo o1
- — + + —)B =
b) Let (A MIL)A (x Ah)B 0
ABA ~ A+ ABB + B=20
8 _ 8 _ A-B
A (A+B) = A - B and ) = et
If Q;B > 0 there are real solutions, so the coéfficient of

q(x2,x3) cgn vanish.

We remark, that orbits intersects the A-B-plane in hyperbolas:

\/
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Remark:

In the case e2 # e3 we can also use the normalform x13 + x1x2x3 for

the 3-jet of g. This form is easier for the computations.

If codim (f) = 9 then one can show:

3 L hoo,
+ + + .
g ~x, X XXy + Ox, Dx3 with C.D # 0

which can be transformed such that C' = 1 and D' # 0 or such that

C'# 0and D=1,
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§5 Remarks

A. A conjecture of Zeeman and‘strong equivalence.

(5.1) In (2.1) 1 already mentioned, that the theorems (1.7) and (1.8)
~don't determine the degree of determinacy completely. Zeeman conjec—
tured in a lecture at the IHES (Blres~sur-Yvette) that:

k+1 k+2

f is k-determined ¢ nm
n n

Cm 2A(f) +m
n

In the following example I show that this conjecture is not true.

(5.2) Counterexample: f = x13 + x1x23 (ET)'

This example is also treated in (1.11).

f has the following properties:

o 5

C
1 m, mEA(f)
Q

5 2
2 m T m, A(F)

3° £ is h-determined.
. o} .
In (1.11) I showed 1° and in (k.5) lemma 3 I showed 3 . Since
2 3 2 ., . . . 5 2
= = e .
3,f 3x1 + x,” and 8,f 3x1x2 it is impossible #hat X, m, A(T)

5 2
So m, A m, A(F).

(5.3) Although the conjecture is not true, the algebraic condition

k+1 k+2
m

N of theorem (1.7) can still be translated in

Cm 2a(f) +m
n n
terms of determinacy. This is the reason for the following two

definitions.
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(5.4) Definition: Two germs f and g are called strong-(right)-equivalent

if there is a ¢ € Ln such that g = f¢ and the derivative d¢(0) is the

identity. Notation g ?ﬁf‘or g =T,

The germs ¢ € Ln with d¢(0) = 1 form a subgroup of Ln’ which acts on

8n and induces an algebraic action on Jk(n,1).

(5.5) Definition: A germ f € &(n,1) is called strong-k-determined if

for all g € &n with g, = fk we have g is strong-equivalent with f.

k+1 k+2

Cm “A (f) +m

Cm, 0 © f s strong-k-determined.

(5.6) Theorem: m

Proof:
1®) The part = of the proof is similar to that of theorem (1.7) and
folliows from two lemma's:

k+1

+
Lemma 1: Let m Cm 2A (f) +m k+e
_ n - n n

. Then there exists for all
t € R a mapgerm %: Rn+1 > B* defined in a neighborhood U of
(O,to) S Rn+1 which satisfies:

(i) £(0,t) = 0 for all (o,t) €EU

(i1)  (a€)(0,t) = 0 for all (o,t) € U

D) (80 Blet) + g(x) - £(x) = 0 for all (x,t) € U.

Proof: to satisfy (i), (ii) and (iii) we need only to show that

C A*(F)m 2
n - n

and this follows direct from the proof of (1.7) lemma 1.

Lemma 2: For each t, € R there <s ¢ > 0 such that P F, for all
o

twith [t-t | < e.
o}

Proof: We consider as in (1.7) lemma 2 the differentialequation

a) 5% (x,%) = E(n(x,t),t)

ot

with the initial condition:

b) h(x,to) = x

9 (ﬁﬁi)

. 2
5 . €
ince gJ mn we have Bxl Nt

=0 for all t and j = 1,...,n.




8 dh , _ 5h .
So y: (Bxi) = 0, hence 3x. = constant and dht 1s constant.
So: dht = dhto = 1

which proves that ht is a strong-equivalence,

The rest of the proof is the same as in (1.7) lemms 2.

2e) The part < of the proof is similar to that of theorem (1.8),.
Replace in the proof of theorem (1.8) the set Vv by W= {g € 3nfg:¥?f},

In order to prove the theorem is sufficient to show that:

b) t(w ) = mn2A(f) (Mogd., mnk+2).

k+1
Let h, : (Rn,g) - (Rnag) a germ of diffeomorphism with h =1 and
dh (o) = 1. Then we have:
d dht
—_— = o e & Ce .
dt (fht) t=o0 vf'dt t=0 n(BTf’ ,an)
dh dh 0
2z _ _t > _ t(4) _ . _
Let ¢ = st then £(0) = ot~ 2 since h (0) = 0 and
. 1
3E. 2.1 3h, " (0)
1 _ 9 h - S o - . -
and ij(g) = ax,at) = 5% ox; ot 015 = O since dn (0) = 1
2
so £. € m (i=1,...,n)

. d . k+2
o = W C .
This means dt(fht) =0 mnA(f) which proves t( ) mnA(f) mod, m

k+1
2 > . 2
Moreover let o € m A(£)5 alx) = vf(x)et(x) with g, € m ", and

h (x) = x + tE(x); then h, €I end ah (0) = 1 anda L sy o

dt g lt=0 =
which proves t(W ) D m A(f) mod. mk+2
k+1 n )

. =+ 3 3 5
(5.7) Example: fk(x1,x2) =x, + X4X," * Ax,” has the property

m’ Cmh + m6 but it is not true that m’ C men + m6.

We found already: fx(x1,x2) is (ordinary) h-determineq. Since

m6 E§m2A + mT, fA is strong-5-determined for every ) € R (but not
strong-lL-determined!).

Since x25 & mgA(f) + m6 for all A € R we can conclude that A is a local

invariant under strong-~equivalence. [using an extended version of

theorem (2.9)].
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(5.8) Remark: The classification of germs under strong-equivalence

1s not so interesting since there are already a lot of invariants
in the case of a non-degenerate critical point.
Although an arbitrary f with Rank (dgf) is maximal is strong 2-deter-
mined, it is not possible to bring the germ to the normalform
e1x12 oot enxn2 with e, = & 1.

B. Left-multiplication

(5.9) In the list of singularities with codimension < 9 are some

families with one local R-invariant, which is not a local RL-invariant:

X0 ¢ x1u + x12x22 + ax25 o #0
P9 : x13 + x22x3 + x12x3 + Bx3h B # 0
P1O x13 + x22x + x12x3 + Bx 2 B# 0
Rig ° x13 F XXXy i,xgh + Bx3h B# 0
Q1O : x1x32 *ox,T 4 x13x2 ix1h a# 0

In most of the cases we used theorem (2.3) for the proof of the
RL-equivalence of the germs in the family.
Sometimes it is also possible to see this in the following way.

We treat as example X, :

10
! _ 4 2 2 5
&= X, *xx" + ax, a#0
o g = ochx,lh i_ahx12x 2 + asx >
- 5
ag = (ax1) + (ax1) (axg) + (uxg) .
Y L 2 2 5
SO ~
EpL *BR X X x, +x,

The only left-action we used in this computation is scalarmulti-
Plication with ah and this is an element of GL(1).
It is possible to treat the other cases of the list in the same

way,

This raises a more general question: In which cases does the action

of Ln><GL(1) coincide with the action of Ln x L2




60

(5.10) Theorem: Let n = 2 and let £, =1+ to.

If £, 57 £, for all t in a conmected interval I of R, then f, and
o]

ft are also equivalent under the action of L2 x GL(1) for all

t €I,
Proof':

Since ft =f + t¢ for t € I are all in the same RL-orbit, ¢ has to
lie in the tangentspace to the RIL-orbit; so:

6 €Em.Alf,) + ft*(m ) Yt € 1.

27Vt 1
This implies ¢ = 0. 3.f + 0.9, + Za.(t)f J with o o. Em_,
1917 ¢ 2727t T 33 t 1272 2
BRIANCON ([5] and [6]) proved that:
af af
2 t t
S —= —L) ¢ )
£ €8x 8x, %2ax2) mob(fy )

S50 we can find Tis7, & m, such that

¢ = 7,9,f + a8, + a1(t)ft (*).

We now return to the situation described in theorem (2.3), where
l-parameterfamilies of diffeomorphisms of sourcespace and target-
space were constructed,

Our equation (*) implies that the diffeomorphism k of the targetspace

has to satisfy the differentialequation:

%%(y,t) = _a1(t).k(y,t5

k(y:to) X

The solution goes as follows:

In k (y,t) = 8(t) + C(y)
k(y,t) = St)+ely) _ eC(y)_Y(t)
The initial condition gives: y = k(y,to) = W .Y(to)
: = o x(t)
SO k(y,t) = y.Y(to) .

So k is a scalarmultiplication, so we are done.

]
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(5.11) Remark: The proof of theorem (5.10) shows that the condition

I ft2 € mA is enough to get the result.

A similar theorem for n > 3 doesn't exist, since BRIANCON gives an

. n-1
example with f & &n(x1a1f,...,xnanf), namely

)3 3n-1 x oo +oo0+ X 3r1_1].

2 n

f= (x1.x X +

2 ¥3)” * ¥y
In the cases P9, P1O’ R1O and Q1O we proceed as follows. Since those
germs are l-determined or S5-determined; we have "’ C mA.

Because f, = 0 we have e m6 and this implies e mA. So we can

apply the proof of theorem (5.10), which shows that the RL-equivalence

of the family can already be done by Ln x GL(1)-action.
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e e A R

Introduction:

After the classificationproblem in part I, I treat in part II the
adjacency problem and study approximations of a functiongerm in.its
universal deformation.

In §6 and §T I introduce some known topological invariants of a
singularity, namely Milnor number, the intersectionform and the
monodromygroup, and investigate the relation between the invariants
of the germ and its approximations.

In §8 I use this in order to explain and prove in a new way some
results on adjacency which were partly known already.

In 8§89 I treat the new notion of p-adjacency, which describes a
relation between families of germs with constant Milnor number.

In §10 I introduce a topology in the orbitspace and study it for
the set of germs with Milnor number < 10. In their relative topology
we get copies of ( or (-{0} for the l-parameter families in the
orbitspace. We illustrate the relations adjacency and u-adjacency
in the list III at the end. §

This research while in progress was in a later stage to a large
extend covered and then influenced by published and unpublished
work of Arnold, Lamotke, Saito and Gabrielov. We indicate those
references, but we believe that our presentation and survey and

some of the proofs still have an independent interest.
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§6 Milnorfibration and vanishing cycles.

(6.1) We consider a holomorphic mapping © : (U,0) +~ (C,0), where U
is an open subset of Cn+1 and 0 is the only critical point of f. This
situation is studied by MILNOR [20] and others.

There exist ¢ > 0 and § > 0 such that S€ is transversal to f_1(t) for

all |t| < &. Notation: se?ﬁ £ (t) for all |t] < e.

We write B = BE2n+1 and D = D62 and define:

E, = f_1(BD) N B

Ef is a compact oriented manifold with boundary and f : E. > 3D is the

projection of a fibrebundle with typical fibre X, = f_1(5) N B. (see

also (6.2)). It is well-known that Xf has the homotopytype of

s V...V s™; hence Hn(Xf) & ZU(f) for some u(f) € N. u(f) is called

Milnor's number. The intersectionform <-,=> on Hn(Xf) is a bilinear

form, which is symmetric if n is even and antisymmetric if n is ocdd.

(6.2) Lemma: As before let U C Cn+1 and let g : (U,0) - ((,0) be a

holomorphic mapping such that:

a) g has no eritical points on 3B

b) g has no eritical values on 3D

c) SEFR g_1(t) for all + €D

and let T be the set of critical values of g,

then:




o TR

6k

The map g : g-1(D \z) "B>Dp\ 3 18 the projection of a (loecally
trivial) fibrebundle.

The map g : g-1(D) N 3B > D 78 the projection of a trivial fibre-
bundle.

3" Bvery path v : [0,1] > D - %, connecting points a and b, induces for

any connectzon in the bundle g a diffeomorphism
. (a) NB-> £ 1(b) N B. The isotopyclass of this diffeomor-

phzsm 1s unique, that is independent of the connection.

v

4° This connection can be chosen such tkat for every closed path

the restriction v, : (a) N 3B + £ ( ) N 3B Zs the identity.

Proof: We use Ehresmann's fibrationtheorem [11]:

Let E and B be smooth manifolds, B connected ang D : E-> B a smooth
surjective mapping, with the property that for all x € B the rank of
the differential of p in x equals the dimension of B and p-1(x) is
compact and connected. Then P : E~> B is a smooth fibrebundle and so
all fibres p—1(x) are diffeomorphic

Our g has maximal rank on g (D \ £) N B and by the transversality-
condition also on g~ (D) M 3B; so we can apply this theorem to obtain
1° ana 2°.

As moreover every fibrebundle over & contractible space, like a disc
is trivial, we have 2°.

Using a suitable connection, we find the required dlffeomorphlsm V,
and as we have a product structure on the boundary f~ (D) N 3B, we

can arrange that v, is the identity on the boundary of the fibre

(a)

Remark: From the above 1lemms it follows also that Ef - 3D 1is g

fibrebundleprojection.

(6.3) Definitions: In the following we shall use deformations and

approximations of f. A deformatlon of £ is a holomorphlc mapping
F:UXW+Cw1thO€UCC and_gewe(j and the property
F(x,0) = £(x).
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A deformation F of f is called infinitesimally versal if

€ 1= (O Faeesd T) + Cloys.nnne, ],

. + .
denotes the ring of germs at 0 € Cn 1 of holomorphic

Here 8n+ ;

1

. + : . .
functions from Cn to C; (aof,...,anf) the 1deal 1n 8n+1’ spanned.
by the partial derivatives of f and C[¢1""’¢k] the (-vectorspace,

35;» (i=1,...,k)

spanned by ¢1""’¢k’ where ¢i is defined by ¢, = (By y=o
i

and Yyseees¥, are coBrdinates in Ck.
If £ has an isolated critical point in Q then inf. versal deformations
exist and can be written in the form F(x,w) = f(x) + Zi£1wi¢i'
A deformation F : U x W+ ( of f is called versal if for any other
deformation G : U x W' » ( there exist analytic maps:

¢ : Ux W » U with ¢(x,0) = x

Yo W > W with ¢(0) = 0
such that G(x,u) = F(¢(x,u),v(u)).

An important theorem of MATHER [19] says that the properties versal

(for W small enough)and inf. versal are equivalent.

(6.4) Let F : U x W~ ( be a deformation of f. For w € W the mapping

e

F, iU~ , defined by Fw(x) = F{x,w) is called approximation of f.

As in (6.1) we can consider the corresponding fibrebundle projection:

-1
. = M
FW EFw Fw (9D) B > 3D,

(6.5) Lemma: There exists n > 0 so that we have for lwll < n:

all eritical points of F_ are inside B.

-1
SE ﬁiFW (t) for all t € D.

r > 8D and E. > 3D are diffeomorphic.
W
Proof: If we use the continuity of f and Vf, transversalityarguments

a)
b) all eritical values of F are inside D.
c)
d)

the fibrations E

and an extended version of Ehresmann's fibrationtheorem, we can in
each of the cases a)-d) define an open neighborhood in which the

assertion is fulfilled.
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(6.6) Lemma: Let F be a versal deformation of f. There exist w € W

arbitrarily close to any w € W such that:

e) all eritical points of F  are non—degenerate.

f) all critical values of Fare different.

Proof: The points w € W such that FW has not p(f) (= Milnor's number)
distinet eritical values from an algebraic variety, the so-called

bifurcationvariety Bif(f) (cf. LOOIJENGA [18]).

If ¥ has u(f) distinct critical values, then all its critical points

are non-degenerate (cf. MILNOR [20], appendix B).

Since f is a versal deformation, w & Bif(f) for generic w € W. So

W\ Bif(f) is dense in W.

(6.7) Let now w € W be chosen in such a way that the approximation

satisfies properties a),...,f) of lemma (6.5) and (6.6). In that case

FW is called a generic approximation of f. We next recall the con-
struction of the vanishing cycles as given by BRIESKORN [T7] or
LAMOTKE [16]. Call F_ = k.

Let a1,...,aq be the critical points of k, and s

..,¢ _the corres-
qa

ponding critical values. Let B1""’Bq be disjoint (2n+1)-balls around

a .,aq and inside B. Let D ,...,Dq be disjoint 2-dises around

120 1
c1,...,cq end inside D, chosen in such a way that we get local

fibrations:
k : Bi - {ai} > D, (i=1,...,q9)

satisfying the usual transversality-conditions:

aBi7R k" (t) if t € D, \ {e;} (i=1,...,q)
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Take points d1,...,dq on 8D1,-...,8Dq and let d € 3D. We next consider

paths v, in D \i§1Di from 4 to d.. These paths induce the following

meps (i=1,...,q):
Q =k"1(d)ﬂBC——>k'7(d)ﬂB ﬁiﬁ k@) Np = x
i i i i T?
which give in the homology
(Vi)**
Yi ¢ Hn(Qi) - Hn(Xf)

Since s" is & deformationretract of Qi we have Hn(Qi) £ 7, Let
s; € Hn(Qi) be the cycle represented by st

i = . ) =2
Define Evi gn(Xf) by Yl(Sl) Vi

We set L. = .U {2 |v path from d to 4. in D \.0 D.}.
T 1=1" v 1 1 1

=1

The elements of Lf are called the vanishing cycles of f.

(6.8) Let u~1,...,uq and u be closed paths along D1,...,Dq and D.

An arbitrary path v from d to d; in D _i@1Di induces a map

= (v .
o, = (v UV, H (X)) H (X.).

T
v
The Picard-Lefschetzformula [21] implies
n(n+1)
ogv(x) =x - (-1) 2 <2V,x>2v,
Fromknow on we only consider the case, that n is even, in that case

the intersectionform is symmetric. The selfintersectionnumber for
% +2 n=0 (mod k)
S Lf is given by <a,0> = 2(-1)°= (ef. [21])
< x> -2 n =2 (mod 4)
S0 0 (x) = x — o S@,X> o and we see that o 1is Jjust a reflection in
o <a,a> o

X . _ 2
the direction of the Vanishing cycle o. Note that Ua = 1 and that %
Preserves the intersectionform. In the sequel we shall restrict the

treatment to the case'n = 2 (mod 4); the case n = 0 (mod 4) is similar.
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(6.9) Consider the mapping VY : ﬂ1(D \i§1Di,d) - Aut[Hn(Xf;Z)] that

assigns to every closed path v the induced map View & Hn(Xf) > Hn(Xf)'

Definition: The image of V¥ is called the monodromygroup Wf of f.
Clearly Wf contains also the reflections in the direction of a
vanishing cycle. Also o : = u,, : Hn(Xf) > Hn(Xf) is an element of

Wf. g is called the monodromy-operator.

(6.10) Now we choose v ¥y in such a way that:

12"

1° they intersect only in d and have no selfintersections.

o -1 -1 -1 h
2 (v1 u1v1) . (v2 u2v2) C eee (vq uqvq) — u.
In this case the set of vanishing cycles 2v ,...,lv and the set of
' 1 q
the reflections cv ,...,ov are called fundamental; and we use the
L q

notations 21,...,2q and d1’f"’°q'

With these notations we state:

Theorem: (LAMOTKE [16])

a) {21,...,Zq} 18 a basis of Hn(xf)

b) Wo(Lg) = Lg ,
c) W 18 generated by {01,...,oq}

a) Wf{21,...,2q} = L,

e) Oy * Ogmq * *++ + O = 0.

(6.11) Remarks on the basis.

A basis of vanishing cycles {21,...,2q} € Hn(Xf) induced by paths

v1,...,vq from 4 to d .,dq, having the property:

12

(P1) The paths v1,,...,vq intersect only in 4 and have no selfinter-

sections
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is called a weak distinguished basis (LAZZERI[17] calls it s geometric

basis). In fact every set of vanishing cycles, having property (P1) is
a basis. If moreover the property

(P2) (v1-1u v.) . (v _1u V2% R G -1 ) 8y

11 2 22 q uqvq

is satisfied, then the basis is called distinguished. The basis

{21,...,£q} in theorem (6.10) can always be chosen in such a way,

that the basis is distinguished.
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57 Topological properties of an approximation.

(7.1) We now return to the situation, that w € W is chosen in such

a way, that approximation FW satisfies the Properties of lemma (6.5),
but not necessarily those of (6.6).

Let {a1,...,ap} be the critical points of g, not neceséarily non-
degenerate. For every critical point &, Wwe can consider the mappings
g; : (Ui,g) + (C,0) with U, - Cn+1, locally defined by:

gi(z) = g(Z-ai) - g(ai) (i=1,...,p),

each g: having an isolated critical point in Q.
For each €; We can repeat the construction of the vanishing cycles

L , the monodromy ¢ and the groups W_ . We will compare them with
&3 &; &
the corresponding notions of f.

(7.2) As in (6.7) let B1,...,Bp be disjoint (2n+1)-balls around

a1,...,ap and inside B, Let D1,...,Dp be small disjoint 2-discs

around g(b1),...,g(bp) and inside D, chosen in such a way, that the
transversality condition 3B, a{g-1(t) for all t € D, \ {g(bi)}

1s satisfied and such that we have local fibrations

-1
: = .) N B, ..
e Egi g (3D;) NB, > p,

We consider again the points d, d1,...,dp and the paths Ujsenn,u
and v1,...,vp. If g(bi) = g(bj) we choose D, = Dj; d; = dj’ u, = U

and v. = v..
1 J
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(7.3) We next define a generic approximation h of f, near to g, which
can also be used to obtain generic approximations for the mappings
g. (i=1,...,p). We consider also the corresponding fibrations

1

-1
: = .) N B. .
h Ehi h (aDl) B, > 3D,

(1.4) Lemma: For all g = F_ with Il < n (where n <s defined as in
lemma (6.5))we can find s € W with sl < q arbitrarily close to w,
such that h = F satisfies:

a) all critical points ;f h are inside B u...u Bp.

b) all critical values of h are inside D, u,..J Dy

¢) 9B, Nu”'(%) for all & € ab,.

. 1 h.
1 1
e) all eritical points of h are non-degenerate.

d) the fibrations Eg + 3D. and E_ - oD, are diffeomorphic.

f) all eritical values of h are different.

The proof is a specialization of (6.5) and (6.6) and will be ommitted.

ad C
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enlargement:

RN
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(7.5) We now repeat the construction of the vanishing cycles with an
approximation h, satisfying a)-f) of lemma (7..4). We use a notation
with double-indices. Let {ai1""’air } be the critical points of n
i
inside B..
i
The following is defined in the obvious way:
balls B.. with a.. € B.. CB. CB
1] 1] 1) 1
disecs D.. with D.. €D. €D
i ij i
points d.. with d.. € 3D..
ij ij iJ
paths v.. from d. to d.. inside D,
iJ 1 iy i

paths u.. around D..
1J 1]

Consider the following diagram:

o
i
o

I
D
o
'_J
I
v
jay
I
[y
D
w
i
b
®

ny
.
w
Ik
o]

L. .
13

Let s.. be & generator of H _(Q..). Define Lg as the set
ij n' i

i n Si)

of vanishing cycles with respect to g; and Lf - Hn(Xf) as the set of

vanishing cycles with respect to f.
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Choosing paths v, and vij in such a way that

1° The paths don't intersect each other and are not-selfintersecting

e} -1 -1
27 (v, u,v,) . (v2 u2V2) C e (vP o'p
o) -1 -1 -1 h

37 (v. Ve Ve ) o (vi2 ui2vi2) . e (viri uiriviri < u,
. 1. el C (i=1,...,p)
the fundamental vanishing cycles zij Lgi Hn(Xgi) and

.. € C i DR, = D IR T
213 L Hn(Xf) are defined by 213 (vlJ)**slJ and

lij = (vivij)**sij'

(7.6) Theorem:

. H(e;)
a) {4, 5058, } 48 a basis of H (Xg;) = 7

b) {211,...,21r . &

(i=1,...p)

. . L f
p1""’2prp} 18 a basis of Hn(Xf) = Zu( )
¢) The bases in a) and b) are distinguished.

The proof is a consequence of (6.10).

(7.7) Corollary:

The map (Vi)** : Hn(Xgi) - Hn(Xf) 18 injective and so we can

identify Hn(Xgi) with a subspace of Hn(X ) (i=1,...,p) and

T

Hn(Xf) = Hn(Xg1) 8.,..9 Hn(xgp) over /.

(7.8) The mappings g1,...,gp and f define monodromy-groups Wg1,...,ng

and W, in resp. Aut[Hn(Xg1)],...,Aut[Hn(Xgp)] and Aut[Hn(Xf)]. We

-~

shall "extend" the above injections, and also identify Wg1,...,ng

with subgroups of Wf.
r. r.

Set 3. = Int .U, D,. and £ = Int .U .U D...
i J=1 713 1=1 J=1 13

Let Wg. be the image of the composed map:

b4
WT(Di—Ziﬂi)-+ ﬂ1(D—Z,d) > Aut[Hn(Xf)]

. -1 -1
given by [w]+ [v. wvi]ya-(vi in)**

§
.
b
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Proposition: wg and Wg. are isomorphic.
1

-1 -1 P
H X. = . = . N - = . N ' = .
Proof: Set X, = Xg, =h (4;) NB;; X =h (d;) MBand X' =X\ X;.

We have the following situation:
y.
: ~
=Z.,4.) —m—mMM—> .)] O W.
7r1(Dl zf,dl) Aut[Hn(Xl)] W
m.(D - z,d.) ————E—————>Aut[H (x)] - W,
1 1 n 1
= L‘v.
i

7D - 2,d ) ——i——ﬂut[nn(xf)] oW

Define: W, W.[n (D.—Z.,di)]= W

=
I

¥ [ﬂ ( ,d. H

1

W ¥ ['1T1(D - Z,di)]
First we shall show ﬁi = ﬁi.

Let in general h : Y -~ Y be a map with n|A = 1 then the variationmap

var, Hn(Y,A) > Hn(Y) is defined by varh[x] = [x - h(x)]. Considering

the composed map i var

* h
Hn(Y> —>Hn(Y,A) ———ﬁHn(Y)

we see that h, = 1 + i*varh. Moreover var 1s & natural transformation
(cf. [16]).

Let [w] & w1(Di—Zi,di). We consider the following commutative diagram:

var
Hq(X 3X%) —————>H (x)

I ll

H (X,X'") —>
(exc), var' T
H (X.,0X.) ———>H (X.)
P q 1

The definitions of var var% and var; are justified, because it is
possible to choose w such that w*]X' = 1. From the above diagram

follows:

Lemma 1: If w € 7,(D.~Z.,d,) then var! = 0 = var = 0.
—_— iTMid W W

1
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Lemma 2: W. and Wi are isomorphic.

Proof: Let Aut[Hn(X); Hn(Xi)] be the subset of Aut[Hn(X)] consisting

of the automorphisms that map Hn(Xi) into itself. Then
W, C .
; Aut[Hn(X), Hn(Xi)].

The natural map: Aut[Hn(X); H (Xi)] - Aut[Hn(Xi)] defines a surjective

-~

. o> W, .
1 1

B

morphism:
We next show the injectivity:

For [w] € (Di—Zi,di) we have

1

¥ [w] 1 + (i1)*var%

¥w] 1+ (i )*varW

2

= 1 ' = ' =
Let ¥.[w] = 1 on Hn(Xi). Then (11)*Va,rW 0 and so var! = 0. Lemma 1

implies var = 0 and so Plw] = 1.

Lemma 3: There is an isomorphism & : W - W mapping Wi onto Wg. .

Proof: The path \ from 4 to di induces a diffeomorphism (vi)

. - Xf—ﬂ(,i

i

By conjugation with (Vi)** we get an isomorphism

Aut[Hn(X)] - Aut[Hn(Xf)]. Clearly the following diagram is commutative:

n1(D-z,di)—J£».Aut[Hn(x)]

T

w1(D—Z,d)-——E—aAut[Hn(Xf)]

and this proves the lemma.

We have now proved our proposition.

(7.9) We denote by Gij the reflections in the direction of the funda-

mental vanishing cycles Rij; by o = u : H (X ) the

. n f) +Hn(X

f



T

moncdromy operator of f and by < = (V._1u.v.)

1 1 17%%* )~ H (X

B (Xp o (Xg)

the transported monodromy operators of gi (i=1,...,p).

From the above statements follow:

Theorem:
a) H (X,) = Hn(Xg1) 6...9 Hn(xgp)

b) W, Zs generated by wg1,...,wg

t p

C) 0= 0_ o ... o 0, and 0. = 0. 6 +et o O-
1 . 1 1ri 11

u,.. .U =
a) Wo(Lg, Y... Lgp) L,

(7.10) Corollary: With respect to the chosen basis of fundamental

vanishing cycles, the matrix M, of the intersection form on Hn(Xf)

18 given by

Mg, Ay ceeeennn A
- Aoy Mgy eeennn. A
£ : : :

Ay Agp e Mg,

where Mg, are the matrices of the intersectionforms on Hn(Xgi) and

AijT = Aji' By a proper choise of the basis all the matrices

Mg1,...,Mgp-and M, are simultaneously given with respect to a

i)

distinguished basis.

Examples will be given in §8.
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§8 Adjacency of singularities

(8.1) In this paragraph we apply the theory of intersectionforms of
§6 and §7 on adjacency of germs. In this way we explain some results,
which were in a different way obtained by ARNOLD and SAITO. In the
first part of this paragraph we give definitions and report on their
results.

In this paragraph we assume n = 2 (mod. 4).

(8.2) Definition: A germ fEmis called simple if there exists an

open neighborhood U of f in m such that U intersects only a finite
number of orbits (under the action of biholomorphic mapgerms).

The orbit of a simple f is also called simple.

We remark that f being simple implies that codim (f) is finite and

that this definition is equivalent to the definition of ARNOLD rj.

(8.3) Definition: A germ f € m is called simple elliptic (or mildly

non-simple) if codim (f) < « and there exists an open neighborhood
Uof € m, intersecting only a finite number of orbits with codi-
mension smaller than codim (F).

The orbit of a simple elliptic f is also called simple elliptic.

SAITO [22] proved that the exceptional curve of the resolution of the
hypersurface £ = 0 is an elliptic curve without singularities if and

only if f is a simple elliptic germ. This explains the chosen name.

The following two classificationtheorems (8.4) and (8.5) were
essentially obtained by ARNOLD [1]. In our list [23] we had already
all simple singularities and among other non-simple singularities we
had two of the three simple elliptic families. For simple elliptic
singularities see also DUISTERMAAT [10].



(8.4) Theorem: f is stmple <if and only Zf £ is of type A D, B,

where:
Ak zok+1 + 212 + 222 + ...+ Zn2 (k > 1); codim Ak = k-1
D, : 20221 + z1k_1 + z22 + o Zn2 (k > 4); codim D, = k-1
E6 : 203 + z1h + z22 + ...+ zn2 codim E6 =5
E7 : zo3 + zoz13 + 222 + ...+ zn2 codim E7 =6
E8 : zo3 + z1LL + 222 + ..+ zn2 codim E8 =7

(8.5) Theorem: f is simple elliptic if and only if £ 1 of type Pg,

X9CH°J1O (or in Saito's notation E6’ E_ or EB), where:

7
E6 = P8: Zo3 + 213 + 223 + uzoz,lz2 + 232 + .., + an
By = Xy ZolL " Z1h *uz e a) Z32 TR
E8 =J1O Zo6 * Z13 * Z22 * uzohz1 * 222 * Z32 * * an
codim P8 = 73 codim X9 = 8; codim J1O = 9,

(8.6) Remark on intersectionmatrices.

PHAM [21] and recently GABRIELOV [12] computed intersectionmatrices
for singularities of the form:
a, a4 a

Z + 2z + ...+ 2 .

o} 1 n
We refer for the general form for these intersectionmatrices to their
papers, and also to HIRZEBRUCH-MAYER [14] p.88 and give here only a
few examples for n = 2.
An easy way to describe intersectionmatrices is by a diagram. The

correspondance between matrix and diagram is as follows:

o
1 . = =
?lway? all 2
1 d
20' .@a._=a._=0
. . 1] Ji . .
1 J o 1 J o 1
— o aij = aji = 1 ?——-7f aij = aji = -
1 J 1 J
—p T a = a =2 gz=m=-= < a = a = =2

ij ji T ij Ji




80

Examples: (taken from GABRIELOV):

A2 3
(i) 2 4 + z 2 4 z 2 (A,) has diagram —
o) 1 2 3
A2 3y
(ii) =z ? 4 z13 + z22 (E8) has diagram A7
BN
PR Y i 2 . H’; "/(,
+ + <
(1ii) Z z, Z, (X9) has diagram 1
anadl
‘%_1 -~
I e ’ ,/ /
(iv) z %o + z "1 + 3 ° has diagram ~ -+
o 1 2 R R [ P e
-’ ’ s 7|
) s 1. R e
(v) zo3 + 213 + 223 has diagram

With the given ordering each basis is distinguished.

HIRZEBRUCH-MAYER [14] showed that
a a a2

the intersectionform of z ° + g 1 + z in case a > a, > a,_ is:
o} 1 2 c— 1—"72
negative definite ® L + - 1%
o % %

ﬁ-(ao,a1,32)=(n,2,2),(3,3,2),(&,3,2) or (5,3,2);(n>2).

negative semi-definite ¢’gf-+ é~
1 2

532) =

+—1—-=‘|¢>
a

(6.3332):(1*314:2) or (3:393)-

ﬁ'(ao,a1
In the case of simple singularities one can also apply the following:
There is a 1-1-correspondence between simple germs f and algebraic
varieties X, given by f = 0, having in 0 a rational doublepoint. In
that case we can use the minimal resolution 7 : X - X of this singular
variety. TJURINA [24] and Brieskorn showed that if f is of type Ak’
D or E_ then n‘1(g) is diffeomorphic with the typical fibre X, of
the Milnorfibration. The corresponding intersectionforms have all
been computed; their matrices can be given with respect to a distin-
guished basis by diagrems as before, and these diagrams happen to be

the usual Dynkindiagrams for A Dk’ E, and their intersectionforms

k? k

are all negative definite.
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Recently ARNOLD [3] announced that GABRIELOV had also computed

intersectiommatrices in other cases. For the singularity

P r
+ + +
zZ, Z, z2 Azoz122
with — + l'+ l-< 1, the intersectionform with respect to a weak

q

distinguished basis is given by: M :

and uw = p +q+q- 1.

(8.7) Change of basis.

The intersectionmatrix can change if we use another basis. The
question arises if there is a nice form for these matrices over Z.
One can ask this question with respect to:

o)
b) a weak distinguished basis in Hn(X

a) a basis of cycles in Hn(X

.
¢) a distinguished basis in Hn(xf)
Moreover one has to say, what one likes to call a "nice" matrix. In
the case of simple singularities one can arrange that with respect
to a distinguished basis, the diagram is just the corresponding
Dynkindiagram. This diagram has the form of a tree; and the matrix
has the properties a;; = 2 and 8 < 0if i # j.

So a definition of "nice'" could be: a;; =2 A 85 5 < 0if i # j.
But already in the case of the simple elliptic singularities it is

impossible to obtain this nice situation, even if we allow a basis

of type a).

Namely let (-qij) be the matrix of the intersectionform of a simple

elliptic singularity. Then:

1° the quadratic form Zqijxixj on Rn is positive with kernel-
dimension 2.

2° there is no partition of {1,...,n} into two non-empty sets I and J
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such that (i,J) € I x J implies 95 = 0 (ef. LAZZERI [17]; propo-
sition 2).
If now 2 5 < 0 for all i # j, then BOURBAKI [4] (p.78) implies that
the kerneldimension of the quadratic form is O or 1. This gives a

contradiction.

(8.8) Definition: A germ&is called adjacent to £ if in any neighbor-

hood of f there are germs of the orbit of E.
Notation: g < f.

If g i_f the orbit of g is also called adjacent to the orbit of 7.

Examples:
1© 8 7

ft(x) = x + tx' is for t = 0 of type A, and if t # 0 of type A

7
<]o) A6'i A7.

20 ft(x,y) = X2y + y8 + tx2 is for t = 0 of type D. and if t # 0 of

9

type AT S0 AT_g D9.
o}

3 ft(x,y) = ¢(x,y) + tx° + ty2 is for t # 0 of type A

A

1 This shows

< ¢ for all .

(8.9) Proposition: If g §.§ then there exists an injection

Hn(xg) - Hn(Xf) preserving the intersectionform <-,-> and mapping

a distinguished basis of Hn(Xg) into a distinguished basis of
vanishing cycles of Hn(Xf), such that the intersectionmatrix of &
can be identified with a diagonal submatrix of the intersectionmatrix
of T

Proof:

From the definition of adjacency follows that with respect to a
versal deformation F : U x W > ( of f there exist w € W arbitrarily
close to 0 € W such that g is equivalent to the approximation fw.
Then we can apply theorem (T7.6). So we can consider Hn(Xg) as a
subset of Hn(Xf) and there is a basis of vanishing cycles {21""’£q}
of Hn(xf) such that {£P+1,...,Zq} is a basis of vanishing cycles of

Hn(Xg).
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The following two theorems characterize simple and simple elliptic
singularities by properties of the intersectionform. They -were stated
in a letter of ARNOLD to the international mathematical conference

on manifolds and related topics in Tokyo (1973).

(8.10) Theorem: t 1is simple if and only if the intersectionform on

Hn(Xf) 18 negative definite.

Proof:

Remark (8.6) shows that a simple singularity has a negative definite
intersectionform.

If g is not simple, then some germ in at least one of the following

three families is adjacent to &. (cf. ARNOLD [31)

= 3 3 3 2 2
= : + + + + ...+

E6 P8 Zs 29 * Z5 uZoZ1ZE Z3 “n

~ h L 2 2 2 2 2
= : + + + + + ... +

ET X9 Zo Z1 2o UZo Z1 Z3 Zn

o 6 3 2 L 2 2
= : + + + + + ...+

ES J1O 25 2y 2y HZo 24 23 “n

In those families of germs with constant Milnornumber, the inter-
sectionform is also constant and can be computed from
3 3 3 L i 2 6 3
+ + + + +
ZO z1 Zs s Zo z1 + ?2 and Zo z1 22
These are negative semi-definite with a o-dimensional kernel. The
intersectionmatrix of & contains a negative semi-definite matrix

as diagonal submatrix and cannot be negative definite.

(8.11) Theorem: ? i{s simple elliptic if and only if the intersection—

from on Hn(Xf) is negative semi-definite.

Proof':

1f F is simple elliptic it follows from (8.5) and (8.6) that the
intersectionform is negative semi-definite.

Let £ be not simple elliptic. We already know from (8.10) that a
simple germ has & negative definite 1ntersectlonform So let us
assume, that & is not’ simple or simple elllptlc.

In the same way is 1n (8.10) one shows now that some germ in at least

one of the following three families is adjacent to &:
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3 3 i 2 2
: + e
P9 a.zoz1z2 + zo + z1 z2 + z3 + + zn
5 2 2 2
: + + + ...+
X1O azoz1z2 Zo z1 + z2 + z3 Zn
3 T 2 2 2
: + ...
J11 az 21z2 + zO + z1 + z2 + z3 + zn

ARNOLD announced in [3] (see also DEMAZURE [9]) that GABRIELOV had
computed the intersectionforms and that in all these cases there is

& vector with positive value. So § cannot have g negative semi-defi-

nite intersectionform.

(8.12) Theorem:

For simple singularities we have:
g < f‘ﬁ'Dynkindiagram () C Dynkindiagram (F)
where the Dynkindiagram of a germ of type Ak, Dk or Ek equals the

usual Dynkindiagram of Ak, Dy > E in the theory of semi-simple
Lie-algebra's:

Ak e e *r—o—9p (k points)
Dk . 0—.—.—_....--——'—--—h—< (k_ points)
E, : —r—o—b—o

6 !

B ———¢o o —o—

T !

E8 : o I ST

Proof: ARNOLD [1] proved the theorem by direct computations, using
the definitions of adjacency and by comparison of the results with
the possible subdiagrams of the corresponding Dynkindiagrams.

We next show, that it is possible to prove that the adjacency implies
the inclusion of Dynkindiagrams, using the theory developed in §7.

In this alternative proof the relation with the theory of the

intersectionforms becomes clearer.

Let § < f. In (8.9) we found that we can consider H (X ) as a subset
of H (X ) and that there exists a basis of vanlshlng cycles of H (X )
such that {2 D12t 5L } is a basis of vanishing cyecles of H (x )

If g is simple, then 1t is always possible to choose a distinguished

basis {lp+1,... zq} in such a way, that the intersectionmatrix of g
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is in the normalform, given by the Dynkindiagram. The intersection-
matrix of T contains this matrix as submatrix, but it is not
necessarily in the normalform.

Since T is simple, the intersectionform is negative definite and the
set Lf and the bilineair form -<-,-> satisfy the definition of
rootsystem. We shall apply now a customary argument in the classifi-
cationtheory of rootsystems (cf. BOURBAKI [L4]).

The ordered basis {2.,...,2 4 & % } defines an ordering of
1 P q

p+1:°--s

the roots of Lg and L,. Because the intersectionmatrix on Hn(Fg)

has Cartanform with respect to {2 ..,zq} these roots are funda-

p+1°°
mental (with respect to Lg). Using the ordering we can now select
fundamental roots {m1,...,mp} (with respect to Lf), such that:

m1 < vee < mp < Qp+1
Morerover we write m, = L. if p+1 < 1 < q.

eee < %
Q
We shall prove that {m1,...,mp, m.p ..,mq} is fundamental with
respect to Lf.
Lemma : <mi,mj> >0 for i #].
Proof:
(i) ifi<p» 5 j<p: then <mm.> 2 0 because m, and m, are
fundamental.
(i1) ifi>p A j > p : then <mi’mj> = <2i,2j>_1 0.
(iii) if i <p A j > p (or resp.1>pand j < p) : We have that
m.-m. is not a root, for otherwise m. = (m.-m.) + m. with
i) i i3 3
mi—mj > 0, so m. is not fundamental.
The m.-chain through m. : m, + sm.,...,m. + tm. starts with m.;
J i 1 J 1 J 1
so s = 0.

—-<m. ,m.>
173 s-t

The formula: = gives <m.,m.> > 0 since <m.,m.> = =2,
~<m.,mi> 2 1°] — 1771
i

So with respect to the basis {m1,...,mP,Amp+1,

{m1,...,mp} the intersectionmatrices of f and g are simultaneously

...,mq}, resp.

in Cartanform. So the Dynkindiagram of f is a subdiagram of the

Dynkindiagram of g.
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(8.13) Theorem:

a) If & 5_% and t is a simple elliptic singularity, then
g 18 equivalent to T
g 1s simple.

either:
or:
b) Moreover if & <s simple we have:
g < F e Dynkindiagram (g) C Dynkindiagram{(ﬁz)
6 2f £ has type Pg
T Zf f has type X9
8 2f £ has type JTO
and the Dynkindiagram of B, are the so-called extended Dynkin-

where:

2
%
%

diagrams for E, in the theory of semi-simple Liegroups (see
BOURBAKI [4], p.199):

E6 : (case P8)

ﬁ7 : l (case X9)
E, : I (case J

10)

Proof: Our proof and calculation that the inclusion implies the
adjacency was more complicated than that given in the paper of
SAITO [22], which appeared recently. Therefore we show only that
adjacency implies inclusion. SAITO proved that part by direct
computations, using the definition of adjacency. Our proof shall

use the intersectionform and the monodromy group.

The intersectionforms of the simple elliptic singularities can be
given by the following diagrams (with respect to a weak distinguished

basis; compare GABRIELOV):
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The kerneldimension is 2. If i and J are such that %:::3

(so <%.,%.>=-2), then <%.-2., £.-2.> = 0, s0 e.-e. is a kernelvector.
13 19 1 3 1 J

After dividing out by the subspace, spanned by ei—ej, the intersec-

tionform is given by the following diagrams:

P8 X9 J1O

E6 E E

These diagrams correspond with negative quadratic forms with a
1-dimensional kernel.

c . A e = C e
Let g ilf then Wg Yf and since Hn(Xg) R[el eJ] {0} this implies

Wg C W(Ez), where W(EZ) is the Weylgroup of Eg.

With the Weylgroups W(ER) there correspond a (infinite) set ¥ of

hyperplanes in a vectorspace V, which divides V into chambers. The

reflections in the hyperplanes generate W(E ). The reflections in

L
the walls of one Weylchamber already generate W(ER)'

A vertex P of a Weylchamber is called a special vertex if for every

hyperplane H € ¥ there is a parallel hyperplane in # through P. The
reflections in the hyperplanes through a special vertex P generate
the group W(E
W(E,).

Q). Any finite subgroup of W(EQ) is also a subgroup of

2

In general the subgroup of W(X) fixing a vertex Q has a Coxetergraph,
that can be derived from the Coxetergraph X by removing one of the

nodes:

E6 gives E6 and not A6 and D6.

E ives E_ and A_ and not D..
78 7 7 7

and A_.

E .
g 81lves ET’ D7 7
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So we know already that:

1° W(E ) has subgroup W(A,)
o 7 T

2 W(ES) has subgroups W(AS) and W(D,).

T

Assertion 1: W(A6) and W(D6) are not subgroups of W(E6).
Proof':

Order of W(E6) .Bh.S

Order of W(D6) = 25.6!

Order of W(A6) 7!

The assertion follows now from the Lagrange-theorem on the order of

|

= o7

a subgroup.

Assertion 2: W(D7) 18 not a subgroup of W(E,).

T

Proof:

Order W(DT) = 26.7! divides on order W(E 10

7) =2 .3h.5.7 So we cannot
apply the arguments of assertion 1. A.M. Cohen (Utrecht) pointed out
to me, that the (following) straightforward computation shows, that
it is impossible to find within R7 an extension of the rootsystenm
DT’ containing only vectors of length V2 and with innerproducts

-1, 0 or 1 with the vectors of D_:

T

We proceed as follows:
DT has a realization in R7 by the following combinations of basis-

vectors: + e. te. (1 <1< j<7)Also ET can be realized in R7.

J
LT
Extend the system with x = . 1 95es (with oy ai2 = 2) and such that

[
Il —

<X, * oe. ¥ ej> € {-1,0,1}.

Then we must have: + oy i_aj € {-1,0,1} 1<i<j<T.
This implies a; € {-1,-2,0,3,1}.
When‘oci2 = 1 then 3] # i with also ajz = 1 and a, = 0 if kx # 1,].

This gives just the elements of DT. 3
If x & D_ then a. € {-3,0,2} and consequently: }

Ixl? <

-3

< 2 and this is not possible since lxl® = 2.

=
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Lemma: Let § < f. If T 4s stmple elliptic and g is simple then
u(g) < u(f) - 2.

Proof:

Let K be the kernel of <-,-> on Hn(Xf;Q)
dim Hn(Xg;Q) + dim K = dim[K + Hn(Xg;Q)] + dim[K N Hn(Xg;Q)]
so : u(g) +2<u(f) +o0

and: u(g) < u(f) - 2

113

7]
=
H

We now consider various cases:
a) If £ is of type Pg, then u(g) < 6 and so g is of type Dk(k_g 6),
Ak(k.i 6) or Eg. Assertion 1 gives that g is not of type A6, D¢

so the only possibilities are the connected subgraphs of 6

b) If £ is of type X9, then u(g) < 7 and so g is of type Dk(k <7),
Ak(k <T), E6 or ET' Assertion 2 gives that g is not of type DT;

S0 the only possibilities are the connected subgraphs of ET.
c) If £ is of type Iy then u(g) < 8 and so g is of type Dk(k < 8),
Ak(k_i 8), Ek(k < 8) and they correspond just with the connected

subgraphs of E8.

Now we are done.

(8.14) Corollary: Adjacency diagram for simple and simple elliptic

germs.

[X «—Y means X < Y]
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(8.15) Definition: The germs g1,...,gp are called 51multaneously

adjacent to Firf there exists a (germ of) deformation of F such that
for every neighborhood U of 0 € Ck there is A € U such that fk has

exactly p critical points a ...,ap and the germs at Q0 € Cm of

1,
g(x—ai) - g(ai) are equivalent to the germs éi' A similar definition

holds for orbits.

Corollary: If §1,...,§P are simultaneously adjacent to t then the

conclustons of theorem (7.9) and remark (7.10) are valid.

(8.16) Problem: Let f be a simple germ and let g1,‘..,g be simul-

taneously adjacent to £, Can one construct the Dynkzndzagram of £
from the disjoint union of the Dynkzndzagramsexfgw,...,gp by adding

branches between differnt components?

The answer is no. We give the following counterexample:

Let ft = x13 + x2h + tx12
Then: a1ft = 3x12 + 2tx1 =0 — X, = 0 v x, = —%E
B2ft = hx23 =0 — X, =0
So we have critical points: (0,0) and (-%E,O).
In (0,0) we have for t # 0 a germ of type A3. In (—5—,0) we have for

t # 0 a singularity with Milnornumber equal 3. So the singularity

must be of type A

3
Ift=0 f =x 3 + x 4 is of type E
t 1 2 ype Fg-
So two germs of type A3 are simultaneously adjacent to a germ of
type E6.
A3 A3 77 £
— +— and = - . - “

Remark: In the following matrix for E6 it 1s possible to see two

submatrices, equivalent toAB:

A3 A3 E6

——— o and ——eo— L ’ ’
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§9 u~homotopic germs

Throughout this paragraph we study germs with isolated singularity
at 0.

(9.1) Definition: Two germs éa and éb are called p-homotopic, if

there exists a continuous l-parameter family g.» t € [a,0] C R con-

necting éa and éb and such that u(gt) is constant for all t € [a,b].

Examples:
_ .3 3 31 k7
a) g, = 2,7 + 2,7 + tz, Z,

t € (; this is not surprising as all g, are in one and the same

contains p-homotopic germs for all

orbit.
I L

b) g = 2, + Z, + t212222 contains u-homotopic germs for all t2 # b,

(9.2) Proposition: u-homotopy is an equivalencerelation.

The proof is a straightforward verification of the definition of

equivalence relation.

The equivalenceclasses are called y-homotopyclasses or u-classes.

(9.3) Proposition: If @a and gb are u—homotopic, then there exists

an isomorphism Hn(Xga) > Hn(ng) preserving the intersectionform

<= ,=>,
Proof:
Define G(t,x) = gt(X)-

3G d n+1
Py (to,x) = ... = o (t,x) = 0} C[a,p] x
o n
contains [a,b] x 0 as isolated component. This follows from the fact,

The set {(t,x) I

that for any g, with ¢ € [a,b] every small deformation g, of g, has

only one critical point inside a small ball B, with radius depending
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on ¢. It is possible to find € > 0 such that g, has an isolated
critical point at 0 € Cn+1 and no other critical points inside a
ball of radius e for all t € [a,b]. Next we can apply the proof of
theorem 1 of TJURINA [24] and our proposition follows .

(9.4) Definition:

z (p) = {f €& | u(f) > p}
r(p) = {f €& | u(f) = p}
2X(p) = (£ € I(n,1)| u(£) > p}
%(p) = (£ € F(n,1)| u(z) = p}

Remark: The sets Z(p), Z(p), Zk(p) and Ek(p) are invariant under the
right-action of biholomorphic mappings. Moreover they are unions of

u=classes.

(9.5) Proposition:

a) Zk(p) is an algebraic subset of Jk(n,i)
b) Zk(p) is a difference of two algebraic subsets in Jk(n,1)

c) Zk(p) and Zk(p) have only & finite number of topological components.

Proof':
a) Remember: p(f) = dim?—gL' where A(f).= (8.f,...,8_F).
A(f)s 1 ] ] n
Assertion: dim & > < dim & >
ssertion: Aty =P AMr) +mp =P

< is trivial
= (following MATHER [19]):
Let dim.—————EL——-< p; consider the following increasing sequence of
a(L) + m®
(p+1) ideals:

ACA+mC..CA+mC..Ca+nP

since dim A(f)-z 0 and dim —————§L—§ < p, there exists a k < p
A(E) +m
such that dim ——***ji~7;" = dim'————ji—jg:? .
A(E) +m A(f) +m
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k+1 k+1

and mk4§ A(T) + m .
k

So A(F) +mS = A(f) + m

From the Nakayamalemma it follows that: m C A(f).

So dim = dim — = dim ——————— < p,
A(f) +m
Now the assertion is proved.

&
A(T)

The condition dim ————— > p is clearly algebraic, since it is a
A(f) + mP
rank-condition on & subspace of the finite dimensional vectorspace
— and gives rise to determinants in the codrdina-es of Jk(n,1).
mP
k k k+1
b) follows from the fact that I (p) = 8%(p) \ 8% '(p).
¢) A theorem of Whitney says, that for any pair of algebraic sets,

the difference has at most a finite number of topological components

(ef. MILNOR [20]).

Corollary: Every topological component of Zk(p) coineides with a

u-class.

(9.6) List of u-classes with u < 10.

£ (1) : Al

£ (2) A,

z (3) Ag

z (&) Ay D),

z(5) : Ag Ds

L (6) Ag D¢ Eg

£ (7) A, D, E.

z (8) Ag Dg Eg Pg

z (9) : Ay Dy X, Pq

20 A Dy Yo %10 Fio Qo Ry

1

The symbols correspond to those in §3. The complex normalforms are

g€iven in list I at the end.
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(9.7) Proposition: The classes of the list are in different topolo-

gical components of EL(p).
Proof':
The intersectionforms are different, so by proposition (9.3) there is

no u-homotopy, joining any two different classes in the list.

(9.8) Definition: & is called p-adjacent to f if every neighborhood

of T contains an element, that is u-homotopic to &.

Since g and T have isolated singular point at O, we can work entirely
in Jk(n,1) for k large enough. The following lemma shows, that the

definition of u-adjacency depends only on the u-class of g and f.

(9.9) Lemma: Let Ak(p) be a topological component oOf Ek(p) and Bk(p)
be a topological component of Zk(q) (¢ < p).
Then either: Ak(p) Ne%q) = ¢
k k
or: A (p) CB (a).
Proof:
k k k k
Let C (q) be the top.component of S (q) such that A (q) €CCc(q).
The sets Zk(q) = Sk(q)\\ Sk(q+1) and Sk(q) have the same number of

topological components; so
either 1° Bk(q) C Ck(q)

or 2© Bk(q) N Ck(q) =
5

1° gives A¥(p) C ¢®(a) = B*(q)

2% gives B¥(q) N ¢®(q) # ¢ and so B%(q) N 2%(q) = 0.

(9.10) Theorem: If & 8 u-adjacent to T then there exists an injection

Hn(Xg) - Hn(Xf) preserving <-,-> and a distinguished basis of
vanishing cycles such that the intersectionmatriz of & is a diagonal
submatrix of the intersectionmatriz of f.

Proof:

gimilar to (8.9).
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(9.11) Theorem: If g is a simple singularity and f a 1-parameter

family with u constant.

If g < fto then also g < ..

Proof:

The u-homotopyclass of g is pu-adjacent to the u-class of fto (and so
also of ft).

So in every neighborhood of ft’ there are germs p-homotopic with g.

Since g,is simple u-homotopy implies eqivalence.

Corollary: If a simple singularity g is u-adjacent to f, then g 1is

(ordinary) adjacent to“f.

(9.12) Remark: (difference between adjacency and u- adjacency).

Arnold gave a complete graph of the adjacency relation between simple
singularities. Saito also considered P8, X9 and JTO (the simple ellip-
tic singularities E6’ E7 and E8). In these casges adjacency and

H-adjacency between the different classes coincide. This is in general

not the case. As an exXample we have the following result.

Let g be of type X9: g =z 4 + 2z 2z 24 az h (a # 0,1)

(b # 0)

d i =
and f of type XTO f z, + 220 2y bZ1

then g is not adjacent to f for no (fixed) values of the parameters
& and b. Also here the crossratio gives the obstruction. Indeed g is

H-adjacent to f. The following picture illustrates this situation:

Consider the 2-parameter family: zoh + 22022 2 + az 4 + bz 2

1 1 1

a === | orbits of type X
— ‘“} ype X,
FHFA orbits of type X1O
Crosg : e singulatity of
=g b infinite codimension
ratie TG o m——— ﬁ—"‘lo 7\
invari bhie :
(of x
9
vl 1
< . . —3

invariant of X1O
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(9.13) Remark: It is possible to extend the graph of the adjacency-

relation of simple and simple elliptic singularities (cf. (8.1L4))
with the other singularities of the list. Further computations are

then needed. We treat this in §10. As an example: consider the path

of germs:
f, = tzz 2z + z b + 22z 2z 2 + 2tz z 3 + 7 >
t o 1 o o 1 o 1 1

If t # 0 ft is of type DT and if t = 0 ft is of type X

(for all b # 0).

10°

So DT is adjacent to X1O
SAITO proved that DT is not adjacent to X,. So in the family conside-

9

red in (9.12) the polynomials of type X, . differ from those of type

10

X9 by the property, that X1O is in the closure of DT and X9 is not.
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§10 On the topology of the orbitspace.

(10.1) Let Gk be the set of germs of holomorphic mappings
(Cn,g) + (C,0) with codimension < k, having in 0 a critical point.

Remark, that all germs-in G_ are (k+2)-determined. We define in G

k
a topology in the following way: An open set is {g € Gk
k+2)

k

gk+2 lies

in an open set of CN( }, where N(k) is the number of coéfficients
of polynomials of degree k in n variables.
The natural injection Gk - Gk+1 is a continuous map with respect to

this topology. We define G = kQT Gk and derive the topology of G from

the topology of the spaces Gk'
(10.2) Let W be the set of orbits in G under the Rightaction of
biholomorphic mappings: We give W the guotient topology; the projection
T : G- W is then a continuous mapping. So a set U in W is open if and
only if ﬂ_1(U) is open in G. We use the symbol Y2 of an orbit to

denote also its projection in W. So in fact ﬂ(YR) is denoted by Y,.

Each simple singularity defines one point in W. The projections of

some non-simple singularities will be discussed in (10.6).

(10.3) Theorem: The topology of W is not Hausdorff, even not T,.

Proof':
Since the orbit of type A,| (non-degenerate quadratic form) is dense

in Gk for every k > 1, every open neighborhood of w € W contains the
point A1.
So there is no open neighborhood of w avoiding A1.
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(10.4) We now consider u-classes and denote by 0(w) the codimension
of the p-class, containing w € W. Since u-classes are topological
components of differences of algebraic sets and so a finite union
of manifolds, this number is well-defined.

Let U, be the union of the u-classes with 6(w) < k, so

k
U = wEW | o(w) < k}

List of u-classes in UB:

0 1
U, \ Uy ¢ A,
U, \ U, Ag
Uy \ U, A Dy,
U, \ U ¢ Ay Dg
Us \ U, ¢ Ag D¢ Eg
Ug \ Ug A, D, Z Py
U, \ Ug Ag Dg Eg X9 Py
Ug Y Up i Ay Dy Jig Xig Frg 49 Fyg

In the case of simple singularities there exist normal forms without

local invariants, so A (k > 1), D (k > L), Ec, ET and Eg are points

k k
in W. The orbitspaces for the fam111es"J1O, X9, X1O’ P8, P9, P1O’

Q1O and R10 will be described next.

(10.5) We gave normalforms for these families in the real case,
already in (3.6). These forms can also be used in the complex case,
but somtimes other normalforms are more practical. They are mentioned

in the proof of (10.6) and also in the list at the end.

We shall investigate in these eight cases those values of the para-
meters for which the germs are equivalent. Next we take the quotient-
space to this equivalence. We get a topological space (even a complex

space), which can be identified with the corresponding subset in W.
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In each of these 8 cases f is finitely determined, say by its k-jet.
So we can work entirely in Jk(n,1) and have only to consider k-jets

of mappings.

Let fJC be a k~-parameterfamily of germs. The condition ft(¢(z)) = fs(z)
gives restrictions on the coéfficients of jk(¢). It can be verified
in each case seperately that ¢ has to be an element of GL(n). This

is left to the reader. Even in most of the cases the only possible

action is multiplication by a scalar of each codrdinate:

z, ! = oz, (o # 0)
z, + = Bz, (B #0)
Zg 1 = yZg (y # 0)

We call this a diagonal isomorphism.

(10.6) Theorem:

a) The orbitspaces of Pg> X5 I10 and Q,, are complex isomorphic
with (.

b) The orbitspaces of P9, P
with (-{0}.

Proof:

10° Mo and X, are complex isomorphic

_ 3 2 P 3 . 3 >
case PB' f(A,B) =z." +z, 2 + Az1z3 + Bz3 with LA~ + 27B” # 0.

If f(A B)(¢(z)) = f " then ¢ must be a diagonal isomorphism
9

(A',B

and we get:

2 2 2
f(A' B') = a3z13 + B yz2 z3 + AaY2z1z3 + By3z33
2
So f(A B) and f(A' pr) are equivalent <
b L]

< Ja,8,y € (-{0} with ad = 1 A 82Y =1 a ay2A =A' A Y3B = B' ®
¢ Jda,8 € (-{0} with o> =1 a aB-uA =A' A B_6B = B' &
< 18 € (-{0} with g'a = a1 o g% = B
Hence: f w T j(A,B) = j(A',B'")

(A,B) (A‘iB') J( ) J( ]
where j(A,B) = —~§—é;———§ ; the so-called j-invariant.

LA® + 27B

The orbits are characterized by j € (;.so the orbitspace of Pg is C.
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. _ 3 b 6 . 3 2
case J10. f(A’B) =z, + Az122 + Bz, with LA® + 27B° # 0.

Ir f(A B)(¢(Z)) = f (z) then ¢ can only be a diagonal isomorphispy
H

< Ja,8 € C-{0} with a3 = 1 A aBuA = A'A 863 = R

(A',B")

.Fl
S0 Tip,B) Y Tar,nr)

This case is similar to Pg and the orbitspace is (.

3

The orbits can be characterized by k(A,B) = —*E;JL-——jg‘E C.
4a® + 27B

case X _: fd = 2122(21-22)(21—d22) with d # 0,1.

d is the cross ratio of the four complex lines fd = 0.

< 3 - = L=
fd unfd, crossratio of fd 0 and fd' 0 are equal
1 1 d d-1
< ' e — -
a' € {d, 7 1-dy T2, o7 g )

Define ¢ : (-{0,1} ~ (C vy:

_ 42, (12 2, (12, (4.2, 4=1)2
c(a) =a% + ()7 + (1-4)7 + (573)° + (F7)° + (F77)7, then
o(a) = 2a® - 6a° + oa" - 843 + 9a® - 6a + 2

(a-1)2a°

The map ¢ : (-{0,1} -~ ( is éurjective and for every q € ( there are

at most six solutions of c(d) = q. The definition of c implies, that

1 d d-1
1-d® 4-1°> 4

with any solution 4 also 13 1-4, are solutions.

This shows that the orbitspace of Xg is C.

. = 3 3 ho.
case P; : fA z1zgz3 + z + 2, + Az3 with A # O.

If fA(¢(z)) = fA,(z) then either ¢ is a diagonal isomorphism or ¢

is defined by: ¢(z,) = Bz,3 ¢(z,) = az; ¢(z3) = vz

In both cases:

£, T © Ja,8,y € C-{0} with o> 33 =qaBy =1 A yhA = A ®
3

< dy € (-{0} with y° =1 A yA = A',

We get the orbitspace of P9 if we divide (-{0} by the ZB—action of

multiplication by 3rd root of unity. This gives (-{0}.
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. - 3 3 5 .

case P1O' fA 72,2523 + oz, +z, + Az3 with A # 0.

This case 1s similar to P9, we get again 23—action on C-{0%.
cage Q. .+ £, = 2 3 + 2z 2z + Az ,7Z 3 + z h.

—10 A 1 2 3 13 3

This case is similar to P9, we get now Z1e—action on C.

3 h b,
o= + .
case R1O A= %q2p%3 + oz, Z, + Az3 with A # 0

This case is similar to P9, we get ZS—action on C-{0}.

__h 2 2 5 .
case X1O' fA =z, + 7,2, + A22 with A # O.

This case is similar to Py, Wwe get Zh-action on (-{0}.

(10.7) We define K(w) = {w' €W | w' € U for every open set U in W,
containing wl.
Lemma: W, adjacent to w, If and only ©f K(w1) C K(wz).

This is clear from the definitions of adjacency and of XK.

Examples:

K(AS)

il

A UA U,..UA
s s=1 1

k(D) = Dy Up__, Y...UDy UA'.S_1 UA_, UV A,
K(Eg) = Eg UD, UD, VA, Uay, V..U open
K(E,_{)=ETUE6UD6UD5UDMUA6UA5U...UA1 sets
K(Eg) = Eg VY E; UL, VD, U...UD) YA, U...U A,

K(Ps(jo)) = PB(jo) ) K(E6) (not open)

(10.8) We are interested in the orbits that occur, when we perturb a
given orbit w a M1ittle". This means that we have to study small open
neighborhoods of win W. Those open sets certainly contain K(w). In the

case of simple singularity K(w) is the smallest open set containing w.

In the sequel we try to describe some of the open neighborhoods of w
if w € Ug- We remark that U8 consists of a finite number of points and
s finite number of copies of C and (C-{o}, each in itself having induced

the usual Hausdorff topology. S0 if w is not-simple in U8 every
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neighborhood of w contains at least an open neighborhood of w in ( or
C-10}. C can ve embedded in 82 by adding one point (call it «)., Then

open neighborhoods of = in [ are defined in the usual way.

(10.9) Adjacency in corank 3.

i = U U U U i ]
We consider now V3 P8 P9 P10 Q1O RTO in the relative

topology (see figure).

case PB: A point jJ € P8 = ( corresponds with a3germ
3 2 2 3 &

z,” tz .z +g.z. 2" + g.z such that =3j.
1 2 171 2 3 2
3 3 3 hg,” + 27g

is an open neighborhood of J € Pg = C in the

An open set of j in V3

usual topology of (.

case P : Points w of P_ = C—{Q} can be given by:

—9 9
z 34 Z 2z + z 22 + Ag 4 with A # 0, or also by:
1 2 23 7 2 23 3 ’ v
3 2 2 3 |Ll'- 1
+ + + +
z, 2y %y * 842,24 8,75 A Z with A' # 0, where g, and g,

. 2
satisfy hg13 + 27g2 = 0 and (g1,g2) # (0,0).

= (-{0} in V_ consists of:

So an open neighborhood of w € P 3

9
1° an open neighborhood of w in P9 = C-{0}

2° an open neighborhood of = in C= P8'

P8 is pw-adjacent to P_., but not adjacent.

9!

case P In a similar way as in case P_ one concludes that an open

10° 9
neighborhood of w € P, = C-{0} in V3 consists of:
1° an open neighborhood of W in C-{0} = P10
2° an open neighborhood of 0 in (-{0} = P9

3° an open neighborhood of  in C= Pg-

P8 is p-adjacent to P_ , but not adjacent.

10

P, 1s u-adjacent to P but not adjacent.

9 10°
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. 1 S = 1 3 2 3 4
case Q1O' A point w & Q1O C can be given by z, + Z5 z3 + Az1z3 + 23 .
We consider its universal deformation and ommit terms of degree < 2:
3 2 2 3 3 L
+ + A + A + + A + .
10 T Pp my T MyEgEg P Agzgt F (A Az gzt 4 g

3

hk13 + 27)\22 = j has for every

Let hx13 + 27x22 # 0., The equation A1

j € C solutions (A1,A ) arbitrarily close to (0,0). So we get all the

2

members of the family P8 in the deformation.

% ‘ If hk13 + 27A22 = 0 and (A1,A2) # (0,0) we get germs of type P_.. We

9
‘ next change coordinates and transform the germ in the normalform
g Z 3 + z 2z + z 2z + uz b of P_. Then the coefficient of z 4 oes
| 1 2 %3 7 %q B3 T HEg 9° 3 B

to « if (A1,A2,A + (0,0,0).

)

So an open neighborhood of w € Q1O =( in V3 consists of:

1° an open neighborhood of w in ( = %,
2° an open neighborhood of ® in C-{o} = Py

30 the whole set P8

This discussion shows:

P8 is adjacent to every germ in the family QTO'

P, is u-adjacent to P but not adjacent.

9 10°
case R, .t A point w € R, can be given by z 34 Z. 2.7 + Az h.
—10 10 1 172 3 3
We consider its universal deformation and ommit terms of degree < 2:
3 3 3 L L
+ + + + (A+ .
z z1zzz3 122 A2z3 Z, (A A3)z3

The 3-jet is of type Pg if Aqds # 0. The j-invariant tends to « if

(K1=K2) + (0,0) since R

have a germ of type P9
3 3
+ +
z, 212223 Z, uz3

So an open neighborhood of w €R

10 has doublepoints. If AE =0 aA A1 # 0 we

. A coordinatechange to the normalform
4 shows that w + 0 if (A1,A2) -+ (0,0).

= C-{0} in Vv, consists of

10 3
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]
23}

1°  an open neighborhood of w in (-{0} 10

]
g

2°  an open neighborhood of 0 in (-{0}
3° an open neighborhood of = in ( = Pg

P8 is u-adjacent to R but not adjacent.

10°

P. is u-adjacent to R,| but not adjacent.

9 0’

10.10) Adj relations of X .
( ) Adjacencyrelations o ;

The adjacency of X9 to X, is already discussed in (9.12). Every open

neighborhood of w € X, = ( contains an open neighborhood of w in

9

C= X9. Every open neighborhood of w € X9 = C-{0} contains:

© an open neighborhood of w in (-{0} = X4

1

2°  an open neighborhood of « in ( = Xy

Next we study the adjacency of X9 with P1O’ Q1O and R1O'
Let ft(z1,22,23) be of type X9 if t # 0 and of type P.os Q,, or Rio
if t = 0. After change of coordinates we can arrange, that the 3-jet

of ft has the form:
2

g, = tzg * z3¢t(z1,z2,z3) + Ot(z1’22)'

For t # 0 holds: 5

6, (2. 92,92,) [6,(2,,2,,24)]
_ £ 212202237 0 121220223
g, = t(z3 + T )<+ ot(z1,z2) - T

Since f, is of type X, we have ct(z1,z2) = 0 for t # 0. The continuity
of f, implies ct(z1,22) = 0. Since g = 0 is a reducible curve in

2
P 1 .
(C), £ is not of type P1o OF Qg

Remark: The same reasoning shows that there are no adjacencyrelations

between:
by 2 2 k-5 2
: +
Xk z, + 2.2, A22 + z3 (k

. -5
and PQ. 212,23 + oz, + 2, + AZ3 (2 > 9)

9)

v

This is the first example of such a situation.
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The following curve shows that X9 is p-adjacent to R1O and that
every open neighborhood of w€ X10 = (-{0} contains a neighborhood

of » in C = Xg:
2 3 L L 2 I 1 %o l

= + + + t + - .
ft tz3 Z1Z223 + 23 Az1 Z2 w Z3 AZ1 s 5

This shows that X9 is u-adjacent to R10. Wether X9 is adjacent to

X1O is unknown to me.

(10.11) Theorem:

a) E7 ig adjacent to P9
b) Eg 18 adjacent to P,
c) Eg 18 adjacent to Q,,
a) E7 is adjacent to R, and Eg 18 not adjacent to R,
e) Eg 18 adjacent to X, .-
Proof:

_,e_ 2 2 2 3 L
a) £, = t Zy + z3(z1z2 + 2z, + Zg ) + Z +z,

_ 3 3 L

fo = Z122Z3 + Z4 + Z3 + Z5 has type P9

FTor t # 0 we can transform ft in the normalform of ET.

2 2, 2 3 3 3L 5
+ 23(z1z2+ 2t%z, + 23 ) + 2" * t2,2, +tTn, o2,

3
- 3 3 >
fo— z122z3 + 24 + z3 + 22 has type PJO

b) ft= tz

For t # 0 we can transform ft in the normalform of E8'

2 2 2 3 3 4 5
= + + .
c) f.=t 2 23(2t22 tz,z, * z223) + ozt 27, +z, + tz,

_ 2 3 3
= 21 + 2122

+ +
o] Z2 Z3

L
22 has type Q1O

For t # 0 we can transform ft in the normalform of E8'

i) We shall show in (10.12) that D7 is not adjacent to R1O' Since D7
is adjacent to E8, this shows that Eg is not adjacent to R1O'
Since P. is p-adjacent to R and E_ is adjacent to P also E

g 18 Wl 1o 2nd Bp 18 84 9 7

is adjacent to R10.
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0]
Hy
n
ct
N
+
N

1s of type XlO

If t # 0 we can transform f,_ in the normalform of EB'

t

(10.12) Theorem:
a) D7 18 not adjacent to P9
b) DT 18 not adjacent to R10
c) Dg 18 not adjacent to o
a) Dg 18 not adjacent to Po
e) Dg 8 not adjacent to X, .
Proof:
a) and b):
Let ¢( Z2%5s 3) be of type D7 if t # 0. After change of codrdinates
we can assume, that the L-jet of ¢, has the form:
£°2.% + z T(z,:2.,2.) + Z 2z + z g( z.) + o(z,,z,)
3 3 1272273 1 3 3 1*72
where:
f(z, ,2_,2.) = 2 24 Y anZ 2 4 Y anZ 24 YanZaZn F YyoZ 2ot Y5nZsZ
1°72°73 Y9124 2272 3373 12172 139173 23%2"3
L 3 2 2 3 l
= +
Oh( 13%5 ) Pz, + Pz, 7%, + D2, 2, P32, + D)2,

= %
g(z1’Z2=Z3) i<i<k 93 5k%1%5 %k

Assume that ¢O is of type P9 or R1O then the universal deformation
shows that it is sufficient to study only the h-jet of by

1

For t # O we apply the substitution z,: = zg5 - ;;5 f(z1,z2,z3).
s s I Yoo
Then the coéfficient of z becomes - /% + Dy .
2 Lt 2 L
Y1oYo0
The coéfficient of z.,z 3 becomes A = - 222 Do
192 2t2 3
2
Y53Y Y000
The coéfficient of 225 becomes B = 23 ig _ =22 222 .
4t 2t
Yop .
If - =5 4+ p, # 0 we can transform ¢, in the normalform of D..
w2 t 5
Let now y,, = 2t/5;, so the coefficient of z2h vanishes . Then ¢ can
be transformed in tz 2 + z 22 + Az .z 34 Bz S.and next in
3 1 72 172 2
2 2 G
+ - .
t23 z."z, + (B A )22
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2
If B - %— # 0 we have an orbit of type D6'
2
If B - %— = 0 then:
Y23P)+ @ 3 t = .1.(_ .Y_l.g._./ii-.—)i + )2
.2 T %222 T t P3
=1 2
YogPy = YB35 = Tl= i/, * pgt)”
When we take the limit for t - 0 we get:

1O

12
Yo3P), T LY12 Py-

If Yp3 = %-y1225 then the point (0:1:0) is a multiplepoint of the

cubic curve:

2 3 2 2 2
+ + + +
Y171 23 T Y33%3 0 T Vq2Pi%2%3 T Yooz T Yi3®i%3 T %
The tangents in this point satisfy:

2

2
21t YqpZqZ3 T Yp3Z3

So if y122 - hy23 = 0 the tangents coincide. Hence the point

(0:1:0) is no doublepoint and so ¢_ is not of type P9 or R,

2 4.
If %1m p), = 0 we proceed as follows. We can assume hy23 Y15 # 0.

3—space takes the 3-jet in the form:
3 3
+ .
2925 3 * 421 BZ3

Since P, is still the coefficient of zsh the singularity is not

A coordinatechange in the z1—z

of type P9 or R1O'

This shows part a) and b).

The proof of part c) and d) is similar, although longer and more

complicated. It will be omitted.

e)

we

Let ¢t(Z1’22) be of type D8 if t# 0; after change of codrdinates

can assume that 5-jet of ¢, has the form:

2
tz Z5 + Gh(z1,z2) + G (Z1,Z2)

1 >

u 3

2_ 2 3
: = +
where: Gh(z1,z2) P24 + p1z1 Z, + p221 Z + p3z1z2 phz2

L
G5(z1,z2) = qoz.l5 oot ez, q5z25.
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If ¢, is of type X,. then it is sufficient to study the U-jet.

10
If ph-# 0 then ¢t is of type D6 if t+ # 0. Suppose p), = O.

After change of codrdinates in the following way:

. = _1 2
{21' 21 = 2t P3%p

1 5 >
of T 2y = ylpgzy T+ pziz, + Rz, ]

N
|

the U-jet of ¢t(t # 0) is given by: tz1222.
The coéfficients of z 2 is now: g - D 2.
2 5 ht *3
The coéfficient of =z 6 1s now: 3 2 _ L
2 .2 TeP3 T oy WPse
If ¢t is of type DB then these two coéfficients must vanish.

(modifications of the 5-jet give no contributions on terms of degree 6).
So:
o

1 p32 = htqs. Hence llm Py = o.

Since p), = 0 this implies that %im q5 # 0, for otherwise ¢o is not

>0
of type X1O'
2° 3p2p32 = tth3. Now is Pq # 0 since otherwise a5 = 0.
So: 3p2 = tqup3 and %ig p2 #20 since otherwilse ¢O 1s not of type X1O
tq taq
So p3 = §~£ s hence q5 = 4 o
Po 36p2

There follows that %im q5 = 0 and this contradicts the fact that ¢O
0

1s of type X10

(10.13) Remark

I didn't succeed in computing the adjacency of A7 to P9 and A8 to P
o 10 See (19.15).
All the other (yu)-adjacency relations are given in the list at the

10°
and R1O' For the adjacency of AB to X

end. This list gives also information about the partial ordening of

open sets in the part U8 of the orbitspace W.
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The graph of simple and simple elliptic singularities is extended
to U8' If we add dimensionarguments, semi-continuity of corank, et

the proof is given in the sections (10.9) to (10.12).

(10.14) Remark

A comparison of list II of the diagrams of intersectionmatrices and
list III of the u-adjacency raises the question if the following
remains true: A

g is (u)-adjacent to £ if and only if the diasgram of g is contained
in the diagram of f. .

In list III there is no counterexample to this conjecture.

(10.15) Remark (added in proof):

A'caAMPO informed me that he has developed a new geomefric way of
computing the intersectionmatrix for singularities with corank O an

1. With this method he can also show that A8 is adjacent to X10.
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SAMENVATTING

We bestuderen de Rechts-equivalentie van kiemen van redle en complexe

functies.

In deel T geven we de volledige classificatie voor codimensie kleiner
dan of gelijk aan negen. Speciale aandacht wordt besteed aan de equi-
valentie in k-parameter families, het verschil tussen Rechts-equiva-
lentie en Rechts-links-equivalentie en aan de algebralsche conditie

voor k-bepaaldheid.

In deel IT beschouwen we in het complex-analytische geval benaderingen
van een functiekiem. We bestuderen de relatie tussen de intersectie-
vormen en de monodromiegroepen van een kiem en zijn benaderingen. Als
toepassing behandelen we stellingen over de nabijheidsrelatie van
simpele en simpele elliptische singulariteiten van Arnold en Saito.

We besluiten met een gedeeltelijke beschrijving van de topologie van

de ruimte van de Rechts-equivalentieklassen.

SUMMARY

We study the Right-equivalence of germs of real and complex functions.

In part I the complete classification for codimension smaller than or
equal to nine is given. Special attention is given to equivalence in
k-parameterfamilies, the difference between Right-equivalence and

Right-left-equivalence, and to the algebfaic condition for a germ to

be k-determined.

In part II we consider in the complex-analytic case approximations

of a functiongerm. We study the relation between intérsectionforms

and monodromygroups of a germ and its approximations. As an applica-
tion we cover theorems on the adjacencyrelation of simple and simple
elliptic singularities by Arnold and Saito. We conclude with a partial

description of the topology of the orbitspace.
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STELLINGEN

Laten f en g elementen van 8h zijn met de eigenschap, dat de
m m
algebra's A(?) en A(g) isomorf zijn. De vraag van Takens of dan

f er + g rechts-~equivalent zijn, moet in het algemeen ontkennend

beantwoord worden.

Takens, F.: Singularities of functions and
vectorfields.

Nieuw Archief voor Wiskunde (3), XX, (1972},
107-130.

Stel V een algebralsch opperviak in (3 met een geisoleerde
singulariteit in de oorsprong. Laat f de intersectiematrix zijn
van de locale naburige vezel en zij f' de intersectiematrix van
een goede resolutie van V.

De bewering van Durfee, dat f en f' stabiel equivalent zijn, is

onjuist.

Durfee, A.H.: Diffeomorphism classification
of isolated hypersurface singularities.

Thesis, Cornell University (1971).

Z1j G een eindige ondergroep van GL(n). Noteer door &(G)n, resp.

L(G)nbde elementen van gh’ resp. Ln’ die invariant zijn onder
alle elementen van G.

f e &(G)n heet k-G-bepalend als voor elke g € &(G)n geldt:

Als £, = g, dan is er een ¢ in L(G)n met f¢ = g.

Er geldt dan:

1) Als m§+1 F‘&(G)n C:mn(mnA(f) Fl&(G)n) dan is f k-G-bepalend.
k+1

2) Als f k-G-bepalend is, dan is m

N&(G) Cm (a(£) N &(c) ).
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2

Het tegenvoorbeeld (5.2) uit dit proefschrift toont tevens yoor
elke p > O de onjuistheid aan van de bewering:

. + + :
f is k-bepalend dan en slechts dan als mk P CimJ PA(f)_+ mk+P+1,

De Boardmansymbolen van.f en van zijn universele ontvouwing F
zijn gelijk.
Mather, J.: On Thom-Boardman singularities.

Proc. of Dyn. Systems Conference in

Salvador, Brazil.

De opgave ba van het herexamen Wiskunde I van het V.W.0. in 1972
(Gymnasium en Atheneum) luidde als volgt:

"Ben functie f is voor -6 < x < 3 gedefinieerd door

k) = 2x + 3 3/(x-2)2.

Onderzoek of de functie differentieerbaar is voor x = 2."

De commissie bedoeld in art. 27 1lid 5 van het Besluit eindexamens
V,W,0.-H.A.V.0.-M.A.V.0. maakt een essentiéle gedachtenfout als
zij in de bindende normen voor de beoordeling van het schriftelijk -
werk aangeeft, dat er 2 punten moeten worden afgetrokken indien

. , . . . ..
%%B f'(x) en %*g f'(x) niet apart onderzocht zijn.

Het door Hadeler gegeven bewijs van de stelling, dat elke continue

functie op [a,b] daar ook integreerbaar is, is onvolledig.

Hadeler, K.P.:"Mathematik fiir Biologen".
Heidelberger Taschenbiicher Band 129 (1974).

Het M.0.-A examen Wiskunde dient steeds te worden sangepast san
de ontwikkelingen in de wiskunde. Met name het vak projectieve en
beschrijvende meetkunde moet. vervangen worden; bijvoorbeeld door

topologie, statistiek en/of computerkunde.

Een verdere ontsluiting van het gebergte door wegen, kebelbanen.

en hotels in de hoogalpine regionen dient voorkomen.te worden.
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10. Gezien de hoogte van de prijzen van wiskundeboeken in Nederland
kan men deze beter uit het buitenland betrekken. Met name de
Universiteitsbibliotheek zou van deze mogelijkheid gebruik

moeten. kunnen maken.

11. Het is merkwaardig, dat in het verplichte wiskunde-programms
voor scheikunde-studenten aan de Universiteit van Amsterdam

geen lineaire algebra voorkomt. -

12. De periode van 3 Jaar, waarin een eervol ontslagen hooglersar

als promotor kan optreden, dient verlengd te kunnen worden.

Stellingen behorende bij het proefschrift "Classification and

deformation of singularities" van D. Siersma, Amsterdam, Juli 197k,



II List of dilagrams of intersectionmatrices.
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