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ISOLATED LINE SINGULARITIES
DIRK SIERSMA

Introduction. In this paper we study germs of functions f: (C"1,0) — C with a
smooth 1-dimensional critical set . After a change of coordinates we can
suppose

S=L= {(x,y)ECXC”Iy:O}.

We call those singularities line singularities.

Isolated line singularities are defined by the condition that for every x # 0 the
germ of f at (x,0) € C X C" is equivalent to y{ + --- 4. and so is a Morse
singularity in the transversal direction. In a certain sense isolated line singularities
are the first generalizations of isolated (point) singularities. For isolated line
singularities we prove that the Milnor fibre of f is homotopy equivalent to a
bouquet of spheres.

For the study of nonisolated singularities in general we refer to the work of L&
Diing Trang [Lé-1, 2] and Randell [Ra]. The special case of singularities with a
1-dimensional critical locus is especially studied by lomdin [lo-1-4], who gave
formulas for the Euler characteristic of the Milnor fibre; see also L& Diing Trang
[Lé-3]. Kato and Matsumoto [K-M] proved that in this case the Milnor fibre 1s
(n — 2)-connected. Moreover it is proved in [Lé-Sa] that the Milnor fibre is
simply connected when n = 2 and fis irreducible.

The paper is organized as follows.

In §1 we treat line singularities from the point of view of Thom-Mather theory.
Let () = (y.....»,) and m = (x, y,.....»,) be ideals in & = &, = the ring of
germs of holomorphic functions at 0 € C"* '. The action of germs of diffeomor-
phisms of C"**! preserving L define an orbit structure in &. For a singular germ
f € (y)* we define the codimension of f as dim(y)’/7( f) where 7( ) is the
tangent space to the orbit of fin (¥)°.
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Just as in the case of isolated singularities we define k- -determinacy and obtain
algebraic conditions for being finitely determined. There is also a list of singulari-
ties of low codimension. The beginning of this list is as follows:

codimension 0 (A_) vty
codimension 1 (D) B VR U R S
codimension 2 (J_) x'pl4yl+yi4+ - +y2.

In §2 we give some other characterizations of finite codimension. Among others
we show that equivalent are:

(a) cod( f) < o0,

(b) f has an isolated line singularity.

In §3 we study the topology of the Milnor fibre. We mimic a construction of Lé
(cf. [Br]) and construct a nice approximation of f having only a finite number of
A;-points and a finite number of D_-points. With use of hyperplane sections
X = ¢ we show

THEOREM. Let f be an isolated line singularity (not of type A,), then the Milnor
fibre of [ is homotopy equivalent to a bouquet of spheres S",
p=0+2r 1

where o is the number of A,-points and 7 is the number of D_-points in a generic
approximation of f.

§4 contains remarks and questions.
I thank Le for his remark, which simplified the proof of 2.5).

1. Line singularities.

(I.1) We consider the ring &, , of germs at 0 of holomorphic functions
f: C""'— C. We write (x, ») = (x, ¥p,-...,) for coordinates in C"*' and

= {(x,»)]|y=0}. Weset& = = &, 1 and define ideals:

m=6&(x, y.....5,) = {f€&]|£(0) = 0},
(») =&(y,..,) = {fE€E]/(x,0) = 0 for all x}.

The objects of our study are elements of ( y)2.
Let «) =) ,, be the group of germs at 0 of local diffeomorphisms of the
source space and let D, be the subgroup of 9, consisting of ¢ & & with
¢(L) = L. There is a rlght action of D, on &. The orbit of f in & under D,
denoted by Orb( f ).
(1.2) We nexl define the rangentspace v( f ) to Orb( f) at f. Let ¢, be a curve in
oD, with ¢, =
The chain rule gives:
dfe(p)|  _ 3f d¢] | ¢ Of d¢/
i T a P T E EQ‘JF(”)

= (=0 je= =0

= £(x. V)*(x y)+ E'n/ X ) 561(’6.,»‘)
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with

de)
dt

d¢;
dr

£(0,0) = —*(0,0) (.x,O)f,O = 0.

=0 and 7,(x,0)=

=0
So ¢ € mand 7, € (). For this reason we define
- él) (@l) - (_ai ﬁf_)
(f)=m o T (y)( 3y where A R vl

(1.3) DerINITION. For f € ( y)* we define the codimension

(y)
(f)

(1.4) DEFINITION. f € () is called k-determined if

c(f) = codim( /) = dim

f+m* T (y) Comb(f)
(so every g € (¥)? with the same k-jet as f is right-equivalent with f).

(1.5) PROPOSITION. Let f € ().
(a) If f is k-determined then ( y)*m* ' C r(f) + (¥)*m*.
(O If (p)Ym "t Cmr(f) + (p)*m” then fis k-determined.

PROOF. (a) We work modulo ( y)>m* in a finite dimensional subspace j* ' '(( y)*)
of J¥*(n, 1). Since j**'(f+ m* '(y)?) is an affine subspace of J*"'(n.1) its
tangent space at j**!fis j*7{(m* " '(y)?). The tangent space to j**'(Orb( f)) at
JE s jK e ( f ). Since fis k-determined, we have

(yVm* ' Cr(f) + () mk

(b) Let f & (y)* and suppose for g € (y)* we have j*f = j*g so g — f€

(y)tm*!

F(x, p,0) = f(x, y) + 1(glx, p) = f(x, ).
We consider F as an element of &, ,, the ring of germs at (0, r,). We denote its
maximal ideal by m, ;. -

We have inclusions: & = &, ., C &, and m =, Cm,,,. In the rest of

the proof the notations m1, (y), (), etc. are actually used for &, ;m. &, (V).
&, . 5(») ete. Let

: oF aF
*( Y — — 2: bl
(F) {5 dx , dy;

temandn € (y); C6,,,.

Remark that 7(f) C 7*(F) + (»)’m*7' So (y)m* ' Cmr(f) + (y)'mt C
mr*(F) + (y)y'm* Cmr*(F) + m,,(y)*m* "' By Nakayama’s lemma:

(yY’mE P Cmer(F) Cr*(F).
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So there exist time dependent vector fields (£, 9,....,7n,) defined in a neighbor-
hood U of (0,0, ¢,) such that

aF L 9F
PR EN N R 3y (v Dy + glx, y) = flx,y) =0
) =1

forall (x, y, ) € U.
Moreover £ € m and 7, € (y). So £0,0,7) =0 for all (0,0,7) € U and
7(x,0,7) = 0 forall (x,0, 1) € U. The differential equation

gE%(X, yot) =E(h(x, p 1) 1),

ah¥ _
—é—t‘(x‘ vot) =q(h(x, y. 1), 1),

h(x, v, t5) = (x, ),

has a unique solution, generating a family of local diffeomorphisms 4, (for all «
near t,) satisfying
{F = FEh,,

iy

|h €D,

By “continuous induction” over the interval [0, 1] we find that g = F, and f = F,
are right equivalent.

(1.6) COROLLARY. Let f € (y)*. Then codim( f) < oo <= f is k-determined for
some k & N,

PrROOF. f is k-determined for some k € N «
Ik (yYmE P Cr(f) e cod( f) < .

CLASSIFICATION OF LINE SINGULARITIES
The same computational methods as in the case of ordinary singularitics
can be applied. We find the following beginning of the hist:

Type Residual singularity codimy{ f) determined jet
A, 0 0 2

D, ay? 1 3

Jy otk =0 pE A xRyl k=2 k+2

T, a(h=4) Py k—1=3 k

Zth= apd bl k324 k4

W ., yraph? 5 S
T.,.(¢g=3r=3 xyz 4+ yd 4ot g+r—3=3 max(gq, r)
Qp, th=2) A+ Ay k+2=4 k+2

AR R e S 5 4

The st contains all simple singularities and all line-singularitics of
codimension < 6. All nonsimple line singularities are adjacent to one of the following
three families of one modular singularnitics.

p Ayt T 7 6 (A7 # 4)
e gt ey 7 3 (e = ¢)
pIzb w7t At 3y 7 5
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2. Isolated line singularities.
(2.1) We shall give some other characterizations for finite codimension. Let
fE ()2 Write f(x, p) = 3, g,(x, y)y,y, withg,, = g, eg. take

v 3 (x, sty)
gi,(x,y)*fof0 Sy s

We define the Hessian of f (relative x) by

h(x,y) = det(g, (x, ).

The 2-jet of fin (¢,0) is equal to 2 g,,(¢,0)y,y,. So we sce h;(c,0) # 0 « f has
type A, at (¢, 0).

(2.2) DEFINITION. f € (»)? has a line singularity if its singular locus is

(f)=L= {(x,y)ECXC”|y:0}.

The line singularity is called isolated if for ¢ # 0 the germ of [ at (¢,0) has only
A -singularities.

(2.3) EXAMPLES. (a) A1 f(x, y) = y?,

(b) D f(x, y) = %7,

(¢) f(x, y) = x*y?is not a line singularity,

(d) f(x, y) = y*is not an isolated line singularity.

(2.4) We consider the following ideals in &:

(f)= ma%f; + (y)(%) C (y)" (tangent space),

A f
0= (5855w

) C (y), (Jacobian ideal),

h(f):(h 8f 9f —Qf—) (Hessian ideal).

SF Il TRt

(2.5) THEOREM. Let f € (). Equivalent are:
(A)c(f) = dime(y)?/7(f) < o0,

(B)j(f) = dimc(y)/J(f) < oo,

(ONSf) = dimec &/h(f) < o0 and 2(f) = L.
(D) f has an isolated line singularity at 0.

PROOF. We take a representative f of the germ. Define sheafs of &, + -modules
as follows:

() - ()

2L and GH{U) = ==
Jf) (/)
where (), (v)?, J(f) and 7( /) are considered as modules over the holomorphic
functions on U. It is clear that 7' and % * are coherent. We intend to use the fact
that 5 ' is concentrated in a point = dim I'(4F") < oc.

(i) (D) = (A) and (B). For y # 0 fis regular at (x. y) and we have dim'i! =

(xp)
dim‘,“r(i"’.) =0 since (y) =b,, . () =6, (»)? =6, and J(f) =&, at

F(U) =
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(x,y). Iy = 0and x # 0 then f is of type 4_ at (x,0) and we have dim Fooy =
dim %’T(io) =0, since (y) = J(f) and (p)* = 7(f) at (x,0). So both %, and %, are
concentrated at 0 and this implies ¢( /) < oo and j( f) < 0.

(ii) (B) = (D). Since j( /) < o0 we have dim i} | = 0 for (x, y) # (0,0). Since
dim&/J(f) = 0 implies f is regular, and dim(y)/J( f) = 0 implies f is of type
A, we have (D).

(i1i) (A) = (D) is similar.

@iv) (C) = (D) is trivial.

3. The topology of the Milnor fibre.

(3.1) We recall that we consider an isolated line singularity, that is an analytic
germ f with singular locus the line L = {(x, y) € C X C” |y = 0} such that for
every x # 0 the germ of f at (x,0) is of type A4, i.e. equivalent to y7 + - -+ +y2,
Let B, be the closed e-ball in C"*' and D, be the closed I-disc in C. We select
e > 0 and 5 > 0 such that the restriction

1 Bfﬂf"‘(Dn) - D

7

satisfies the conditions for the Milnor construction, and so fis a C*®-locally trivial
fibre bundle above D, — 0.

(3.2) In the case of an ordinary isolated singularity it is useful to consider a
generic approximation g of f with only ordinary Morse points (cf. Brieskorn [Br}).
At every Morse point one can study its local Milnor fibration, with Milnor fibre
homotopy equivalent to one n-sphere $” (* the vanishing cycle”). The Milnor fibre
of the original f then has the homotopy type of the wedge of those u spheres.

We like to mimic the construction in the case of an isolated line singularity.
First we prove the existence of a nice approximation.

(3.3) LEMMA. Let [ have an isolated line singularity. There exist a deformation g
of [ such that g has:

(yonly D_ and A singularities on L,

(i) only A, (Morse ) singularities outside L.

[ Recall D, singularity is locally given by xyi + y3 + -+ +p2]

PrOOF. Define F: C X C" X § X T — Cby
F(x, y,(a,/),(bn)) =flx.y)+ 2 (a, + b, x) ¥ ;.

i
A computation shows that the 2-jet extension
JFCXC'XSXT-J(n+1,1)

is transversal to the A,-stratum outside L and transversal to the D stratum on I..
The assertion follows now as an application of Sard’s theorem.
EXAMPLE.
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(3.4) PROPOSITION. There exists an approximation g of f (as in Lemma (3.3)) with
the additional property: The Milnor fibrations of g and fabove the boundary dD, are
equivalent.

PROOF. Let ¢ > 0 such that (/ (O L) 1 S, for all 0 < & = ¢, Leg A(x. y) be
a l-parameter deformation of /, which satisfies (3.3) for A %= 0. We claim now,
that there exist § >0 and 7> 0 such that £ FﬁSf for all 0 <A <§ and
0 <{r]< . This follows from:

(D /70y N S, is compact,

(2) f| S, is a submersion in points of f~'(O)\ L,

(3)on L N S, we have only A_-points, so near points of L N S we can change
coordinates (y,,....y,), smoothly depending on (x, A) such that

WX oy) ~pltgy?
(parameter version of the Morse lemma).
For 1 + 0 the tangent space in (x, y) to f,"(1) contains L, since it is given by
§ v+ +&, = 0. So we find locally

NG S forr#0.
Let F(x, y, A\) = A(x, ¥), A). The proposition follows now from the fact that
F:F (3D, x [0,8]) N (B, > [0,8]) - 3D, x [0, 8] ~{0,6]

and the restriction to S, X [0, 8] are submersions.

(3.5) REMARK. The equivalence of / and an approximation g is generally
nonvalid for nonisolated singularities. Here we have the equivalence because of
special properties of isolated line singularities and of the approximation g.

(3.6) We now take a generic approximation g of f as in the above lemma and
Suppose moreover that the approximation is so close that the Milnor fibrations of
g and f above the boundary dD, are the same. We can also suppose that all critical
values of g are different (this is mostly for notational convenience). The critical
value 0 corresponds (o the nonisolated singularities on the line /..

E




492 DIRK SIERSMA

Letb,,. .., b, be the Morse points of g with critical values g(b,),...,g(b,). Define
B,.....B, disjoint (2n + 2) balls around bh,,...,b and inside B = B. Let
Dy,....D, be disjoint 2-discs around g(b,)....,8(b,) and inside D = D,, chosen
in such a way that we get local fibrations
gB nNng(D)-D  (i=1,..0)

satisfying the usual transversality condition

B, b g \(r) ifreD,.
We also define a small cylinder B, around L and a 2-disc D, around 0 such that

0B, Mg '(r) if1€ D,

Of course we can take all By,...,B, and D,,....D, to be disjoint. We first study
the fibres of

g: B, N g (Dy) — Dy.
We take hyperplane sections x = ¢. A fibre g~'(1) N B, is now fibered by the

projection = on L. This projection can have singularities. It is convenient to
consider the map

®,:g (D) N By~ CXC

defined by ®,(x, y) = (g(x, y), x). The singular locus of @, consists of the line L
and the so called polar curve I'. The projection

mg (1) N By~ L
1s smooth outside points of Fg (t # 0).

(3.7) LEMMA. The polar curve I, can cut L only in the D, poinis of g.

ProoF. We have to show, that if g is of type A
discriminant locus of @,
Solet g(x, y) = 2 g,,(x, y)y,y, with det(g, (0,0)) # 0

3 dg,
gAEajV+Egl,

then L 1is locally the

ekl

3y = 8 2 8n; Y
det(g,;(0,0)) # 0 now implies that we can modulo (y)? solve for y,....,v,. So

(¥) C(3g/3y) + ()

Ndkayama s lemma now gives (y) = (dg/dy). So the varnety defined by
dg/dy, = - = dg/dy, = O is just L and it is clear that this is the critical set of
D,.

Next we study the D_-points.
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(3.8) PROPOSITION. Let g be of type D and let D(x, ¥) = (g(x, y), x).

(a) The diffeomorphism type of the pair of Milnor fibres of ®, and g is independent
of the choice of g within the rype D,

(b) The pair of Milnor fibres of g and D, is homotopy equivalent to the pair of
standard spheres (S, §" ! ).

PrOOF. (a) Let g, and g, be of type D,,. Select representatives such that the
transversality conditions for the Milnor fibrations of £0> 8> ®, and ¢, are
satisfied for certain (s,, 1,) € L X C. Consider the complex family

¥(x, y.7) = (x,7g,(x, y)+ (1= 1)g,(x, ) = (x, ¥ (x, y, 7).

The variety ¥~'(s,, 1,) intersects

Lo

W aw
{(x’y")'o*ﬁ.‘ﬁ*' B By,,}

only in a finite number of points. Choose a path A(¢) from 0 to | in the T-plane
missing r-coordinates of those points. The real homotopy g, ,, between g, and g
induces a diffeomorphism between the pairs of Milnor fibres.

(b) It is sufficient to study g = xy? + 2 + - - - +y,. Take first n = 1, g(x, y)
=xp?=8,|x|-|yP =8 argx + 2arg y = Omod 2.

arg y A byl A

LY
7 ! 71y
arg x

In (torus) X R? it is clear that the Milnor fibre of g is homotopy equivalent (o
S!, the hyperplane section x = o Is homotopy equivalent to S°. In the general

case we have to take double suspensions of (S, S,

(3.9) LEMMA. Let f be not of 1ype Ay Let sy € 3(By (1 L). The fibre
X =g"'(1) N B,
is homotopy equivalent to 2t n-balls glued together along their common boundary
h
Sl Y= <I>g’l(t, 50) N By. So X, is homotopy equivalent to a bouquet of (21 — 1)
n-spheres, where = is the number of D -points in a generic approximation g.

PROOF. Set § = B, N L. Let S S, be small disjoint discs inside S around
the D, points ¢,,....c,. Choose By so small that above S\ U7_, S, the projection

mig (1) N By — L (t50)

is locally trivial.
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e

N

Choose a system of paths y,,...,y, from s, to S,,...,S, (in the usual way; see
the diagram). Set Z=§, U --- US, Uy, U --- Uy, W=y U---Uy,.Zisa
deformation retract of S; {s,} is a deformation retract of W. Since 7 is locally
trivial over the complement of S, U - -- US, it follows from the homotopy lifting
property that 7 '(Z) is a deformation retract of X; and Y/ is a deformation
retract of =~ '(W'). Moreover Y/ is the Milnor fibre of the hyperplane section of
an A_ -singularity and so homotopy equivalent to an $"~ ! (since the hyperplane
section has an A,-singularity). It follows that (7 '(Z), 7 '(W)) is relatively
homotopy equivalent to

(m(W)Ue Ue U---UeS Ue, .77 (W)),

where for each D point two n-cells e and e are attached to the vanishing cycle
S 1in the standard way. So

h
(X, Y)=(S""'U efUef U= U, ef U e 85"").
So
h
X =8"V .- V8" (27— 1 copies).
(3.10) THEOREM. Let [ be an isolated line singularity (not of type A ), then
the Milnor fibre of f is homotopy equivalent to a bouquet of p spheres S”,

¢ = o0+ 27— |, where o is the number A,-points and v is the number D_ -points in
a generic approximation of f.

Proor. Take D, D,, D,,....D, and B, By, B,,..., B, as before. Let r € 0D,
. For TCD set

h n
(Xp. X,)=(Xp Uy el U - U ert X)),

Moreover,
h .
(XD(,' X,) :(XD,, N B,U X, X).
Let ¢ ...y, 2 S" = X, = X (B, represent the 2r — 1 generators of
7 (X, N By). Use ¢,.....¢5, _, to attach (n + D-cells /"7 .. 27} o0 X, N B,
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The inclusion mapping
X, 0 By= X, 0 B,

extends to a homotopy equivalence

n+i n+ i
X, U¢>,f| U U¢3, -1 T ‘YD” M By,

since both spaces are contractible. So we get a homotopy equivalence

! + nt
(Ko ) = (X Uy S 0 Uy ).

T— 1

X 1s obtained from X, by attaching o + 27 — | (n + I)-cells. So X, is (n — 1)-
connected, since X, is contractible. Since X, has the homotopy type of an
n-dimensional finite CW-complex it follows that X, has the homotopy type of a
bouquet of p = ¢ + 27 — 1 n-spheres.

4. Remarks and questions.
(4.1) In the case of isolated (point) singularities, there is the algebraic descrip-
tion of the Milnor number

. 0 0
,LL—dlmév,,H/(‘ji _Ji)

dx, 77 Ax,,
For isolated line singularities we have
T =%(D, points) = dim &,/ (h/(x,())).
A question to prove is
c(f)=%(A4,points) + 1 = ¢ + 1,
J(f) =%(A4, points) +#(D_ points) = ¢ + 7,
which is true in all known examples.
(4.2) Find the intersection forms for isolated line singularities. For n = 2 one
can use the method of A’Campo and Guzein-Zade. Here follows an example:
Sl y) =672 4yt

Nice approximation: g(x, y) = y*(x* — (y — r)?). Level curves:

# -

Doo = 7

#

Y = 2

Ay

po= 5

olf)y = 3 = ”Al + 1
# #

I(fY = 4 = AL+ D
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In the diagram you can easily find the 5 cycles.
There is some freedom in choice.
A diagram for the intersection matrix is:

(¢) Find the relation between isolated line singularities and certain series of
isolated singularities, especially relate the topology of their Milnor fibres. From
lomdin [lo-4] it already follows that for k sufficiently large y(F) = x(F)y—k
where x is the Euler characteristic, F is the Milnor fibre of f(x, y)and F} is the
Milnor fibre of f(x, y) + x*.

(d) Study line singularities which have other transversal singularities than A,
{outside 0).

(e) Study in general singularities with I-dimensional critical locus, which have
transversally 4, -singularities (outside 0).
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