ISOLATED LINE SINGULARITIES

DIRK SIERSMA

Introduction. In this paper we study germs of functions $f: (\mathbb{C}^{n+1}, 0) \to \mathbb{C}$ with a smooth 1-dimensional critical set Σ . After a change of coordinates we can suppose

$$\Sigma = L = \{(x, y) \in \mathbb{C} \times \mathbb{C}^n \mid y = 0\}.$$

We call those singularities line singularities.

Isolated line singularities are defined by the condition that for every $x \neq 0$ the germ of f at $(x,0) \in \mathbb{C} \times \mathbb{C}^n$ is equivalent to $y_1^2 + \cdots + y_n^2$ and so is a Morse singularity in the transversal direction. In a certain sense isolated line singularities are the first generalizations of isolated (point) singularities. For isolated line singularities we prove that the Milnor fibre of f is homotopy equivalent to a bouquet of spheres.

For the study of nonisolated singularities in general we refer to the work of Lê Dũng Tráng [Lê-1, 2] and Randell [Ra]. The special case of singularities with a 1-dimensional critical locus is especially studied by Iomdin [Io-1-4], who gave formulas for the Euler characteristic of the Milnor fibre; see also Lê Dũng Tráng [Lê-3]. Kato and Matsumoto [K-M] proved that in this case the Milnor fibre is (n-2)-connected. Moreover it is proved in [Lê-Sa] that the Milnor fibre is simply connected when n=2 and f is irreducible.

The paper is organized as follows.

In §1 we treat line singularities from the point of view of Thom-Mather theory. Let $(y) = (y_1, \ldots, y_n)$ and $m = (x, y_1, \ldots, y_n)$ be ideals in $\mathfrak{S} = \mathfrak{S}_{n+1} =$ the ring of germs of holomorphic functions at $0 \in \mathbb{C}^{n+1}$. The action of germs of diffeomorphisms of \mathbb{C}^{n+1} preserving L define an orbit structure in \mathfrak{S} . For a singular germ $f \in (y)^2$ we define the codimension of f as $\dim_{\mathbb{C}}(y)^2/\tau(f)$ where $\tau(f)$ is the tangent space to the orbit of f in $(y)^2$.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32B30, 32C40, 58C27.

Just as in the case of isolated singularities we define k-determinacy and obtain algebraic conditions for being finitely determined. There is also a list of singularities of low codimension. The beginning of this list is as follows:

codimension 0
$$(A_{\infty})$$
 $y_1^2 + y_2^2 + \cdots + y_n^2$, codimension 1 (D_{∞}) $xy_1^2 + y_2^2 + \cdots + y_n^2$, codimension 2 (J_{∞}) $x^2y_1^2 + y_1^3 + y_2^2 + \cdots + y_n^2$.

In §2 we give some other characterizations of finite codimension. Among others we show that equivalent are:

- (a) $cod(f) < \infty$,
- (b) f has an isolated line singularity.

In §3 we study the topology of the Milnor fibre. We mimic a construction of Lê (cf. [Br]) and construct a nice approximation of f having only a finite number of A_1 -points and a finite number of D_{∞} -points. With use of hyperplane sections x = c we show

THEOREM. Let f be an isolated line singularity (not of type A_{∞}), then the Milnor fibre of f is homotopy equivalent to a bouquet of μ spheres S^n ,

$$\mu = \sigma + 2\tau - 1$$

where σ is the number of A_1 -points and τ is the number of D_{∞} -points in a generic approximation of f.

§4 contains remarks and questions.

I thank Lê for his remark, which simplified the proof of (2.5).

1. Line singularities.

(1.1) We consider the ring \mathfrak{E}_{n+1} of germs at 0 of holomorphic functions $f: \mathbb{C}^{n+1} \to \mathbb{C}$. We write $(x, y) = (x, y_1, \dots, y_n)$ for coordinates in \mathbb{C}^{n+1} and $L = \{(x, y) \mid y = 0\}$. We set $\mathfrak{E} = \mathfrak{E}_{n+1}$ and define ideals:

$$\mathfrak{m} = \mathcal{E}(x, y_1, \dots, y_n) = \{ f \in \mathcal{E} \mid f(0) = 0 \},$$

$$(y) = \mathcal{E}(y_1, \dots, y_n) = \{ f \in \mathcal{E} \mid f(x, 0) = 0 \text{ for all } x \}.$$

The objects of our study are elements of $(y)^2$.

Let \mathfrak{P}_{n+1} be the group of germs at 0 of local diffeomorphisms of the source space and let \mathfrak{P}_L be the subgroup of \mathfrak{P} , consisting of $\phi \in \mathfrak{P}$ with $\phi(L) = L$. There is a right action of \mathfrak{P}_L on \mathfrak{E} . The orbit of f in \mathfrak{E} under \mathfrak{P}_L is denoted by $\mathrm{Orb}(f)$.

(1.2) We next define the tangentspace $\tau(f)$ to Orb(f) at f. Let ϕ_t be a curve in Φ_L with $\phi_0 = Id$.

The chain rule gives:

$$\frac{df\phi_t(p)}{dt}\Big|_{t=0} = \frac{\partial f}{\partial x} \frac{d\phi_t^0}{dt}(p)\Big|_{t=0} + \sum_{j=1}^n \frac{\partial f}{\partial y_j} \frac{d\phi_t^j}{dt}(p)\Big|_{t=0}$$
$$= \xi(x, y) \frac{\partial f}{\partial x}(x, y) + \sum_{j=1}^n \eta_j(x, y) \frac{\partial f}{\partial y_j}(x, y)$$

with

$$\xi(0,0) = \frac{d\phi_t^0}{dt}(0,0)\Big|_{t=0} = 0$$
 and $\eta_j(x,0) = \frac{d\phi_t^j}{dt}(x,0)\Big|_{t=0} = 0.$

So $\xi \in \mathfrak{m}$ and $\eta_{i} \in (y)$. For this reason we define

$$\tau(f) = \mathfrak{m}\frac{\partial f}{\partial x} + (y)\left(\frac{\partial f}{\partial y}\right) \quad \text{where } \left(\frac{\partial f}{\partial y}\right) = \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n}\right).$$

(1.3) DEFINITION. For $f \in (y)^2$ we define the *codimension*

$$c(f) = \operatorname{codim}(f) = \dim \frac{(y)^2}{\tau(f)}.$$

(1.4) DEFINITION. $f \in (y)^2$ is called k-determined if

$$f + \mathfrak{m}^{k-1}(y)^2 \subset \operatorname{Orb}(f)$$

(so every $g \in (y)^2$ with the same k-jet as f is right-equivalent with f).

- (1.5) Proposition. Let $f \in (y)^2$.
- (a) If f is k-determined then $(y)^2 \mathfrak{m}^{k-1} \subset \tau(f) + (y)^2 \mathfrak{m}^k$.
- (b) If $(y)^2 m^{k-1} \subset m \tau(f) + (y)^2 m^k$ then f is k-determined.

PROOF. (a) We work modulo $(y)^2 \mathfrak{m}^k$ in a finite dimensional subspace $j^{k+1}((y)^2)$ of $J^{k+1}(n,1)$. Since $j^{k+1}(f+\mathfrak{m}^{k-1}(y)^2)$ is an affine subspace of $J^{k+1}(n,1)$ its tangent space at $j^{k+1}f$ is $j^{k+1}(\mathfrak{m}^{k-1}(y)^2)$. The tangent space to $j^{k+1}(\operatorname{Orb}(f))$ at $j^{k+1}f$ is $j^{k+1}(\tau(f))$. Since f is k-determined, we have

$$(y)^2 \mathfrak{m}^{k-1} \subset \tau(f) + (y)^2 \mathfrak{m}^k$$
.

(b) Let $f \in (y)^2$ and suppose for $g \in (y)^2$ we have $j^k f = j^k g$, so $g - f \in (y)^2 \mathfrak{m}^{k-1}$

$$F(x, y, t) = f(x, y) + t(g(x, y) - f(x, y)).$$

We consider F as an element of \mathcal{E}_{n+2} , the ring of germs at $(0, t_0)$. We denote its maximal ideal by \mathfrak{m}_{n+2} .

We have inclusions: $\mathfrak{S} = \mathfrak{S}_{n+1} \subset \mathfrak{S}_{n+2}$ and $\mathfrak{m} = \mathfrak{m}_{n+1} \subset \mathfrak{m}_{n+2}$. In the rest of the proof the notations \mathfrak{m} , (y), $(y)^2$, etc. are actually used for $\mathfrak{S}_{n+3}\mathfrak{m}$, $\mathfrak{S}_{n+2}(y)$, $\mathfrak{S}_{n+2}(y)^2$, etc. Let

$$\tau^*(F) = \left\{ \xi \frac{\partial F}{\partial x} + \sum \eta_j \frac{\partial F}{\partial y_j} \middle| \xi \in \mathfrak{m} \text{ and } \eta_j \in (y) \right\} \subset \mathcal{E}_{n+2}.$$

Remark that $\tau(f) \subset \tau^*(F) + (y)^2 \mathfrak{m}^{k-1}$. So $(y)^2 \mathfrak{m}^{k-1} \subset \mathfrak{m} \tau(f) + (y)^2 \mathfrak{m}^k \subset \mathfrak{m} \tau^*(F) + (y)^2 \mathfrak{m}^k \subset \mathfrak{m} \tau^*(F) + \mathfrak{m}_{n+2}(y)^2 \mathfrak{m}^{k-1}$. By Nakayama's lemma:

$$(y)^2 \mathfrak{m}^{k-1} \subset \mathfrak{m} \tau^*(F) \subset \tau^*(F).$$

So there exist time dependent vector fields $(\xi, \eta_1, \ldots, \eta_n)$ defined in a neighborhood U of $(0, 0, t_0)$ such that

$$\frac{\partial F}{\partial x}(x, y, t)\xi(x, y, t) + \sum_{j=1}^{n} \frac{\partial F}{\partial y_j}(x, y, t)\eta_j(x, y, t) + g(x, y) - f(x, y) = 0$$

for all $(x, y, t) \in U$.

Moreover $\xi \in \mathbb{R}$ and $\eta_j \in (y)$. So $\xi(0,0,t) = 0$ for all $(0,0,t) \in U$ and $\vec{\eta}(x,0,t) = 0$ for all $(x,0,t) \in U$. The differential equation

$$\begin{cases} \frac{\partial h^x}{\partial t}(x, y, t) = \xi(h(x, y, t), t), \\ \frac{\partial h^y}{\partial t}(x, y, t) = \vec{\eta}(h(x, y, t), t), \\ h(x, y, t_0) = (x, y), \end{cases}$$

has a unique solution, generating a family of local diffeomorphisms h_t (for all t near t_0) satisfying

$$\begin{cases} F_{t_0} = F_t h_t, \\ h_t \in \mathfrak{D}_L. \end{cases}$$

By "continuous induction" over the interval [0, 1] we find that $g = F_1$ and $f = F_0$ are right equivalent.

(1.6) COROLLARY. Let $f \in (y)^2$. Then $\operatorname{codim}(f) < \infty \Leftrightarrow f$ is k-determined for some $k \in \mathbb{N}$.

PROOF. f is k-determined for some $k \in \mathbb{N} \Leftrightarrow$

$$\exists k (y)^2 \mathfrak{m}^{k-1} \subseteq \tau(f) \Leftrightarrow \operatorname{cod}(f) < \infty.$$

CLASSIFICATION OF LINE SINGULARITIES

The same computational methods as in the case of ordinary singularities can be applied. We find the following beginning of the list:

Type	Residual singularity	codim(f)	determined jet
A_{∞}	0	0	2
D_{∞}	xy^2	1	3
$J_{k,\infty}$ $(k \ge 2)$	$y^3 + x^k y^2$	$k \ge 2$	k + 2
$T_{\infty,k,2}$ $(k \ge 4)$	$x^2y^2 + y^k$	$k-1 \ge 3$	k
$Z_{k,\infty}$ $(k \ge 1)$	$xy^3 + x^{k+2}y^2$	$k+3 \ge 4$	k + 4
$W_{1,\infty}$	$y^4 + y^2 x^3$	5	5
$T_{\infty,q,r}$ $(q \ge 3, r \ge 3)$	$xyz + y^q + z^r$	$q+r-3 \geqslant 3$	$\max(q, r)$
$Q_{k,\infty}$ $(k \ge 2)$	$-xz^2 + y^3 + x^ky^2$	$k+2 \ge 4$	k+2
$S_{1,\infty}$	$y^2z + xz^2 + x^2y^2$	5	4

The list contains all simple singularities and all line-singularities of codimension ≤ 6 . All nonsimple line singularities are adjacent to one of the following three families of one modular singularities.

$$y^{4} + Ay^{3}x^{2} + y^{2}x^{4}$$
 7 6 $(A^{2} \neq 4)$
 $x^{3}y^{2} + Axy^{4} + \epsilon y^{5}$ 7 5 $(\epsilon^{2} = \epsilon)$
 $y^{2}z + xz^{2} + Axy^{3} + x^{3}y^{2}$ 7 5

2. Isolated line singularities.

(2.1) We shall give some other characterizations for finite codimension. Let $f \in (y)^2$. Write $f(x, y) = \sum_{i,j=1}^n g_{ij}(x, y) y_i y_j$ with $g_{ij} = g_{ji}$ e.g. take

$$g_{ij}(x, y) = \int_0^1 \int_0^1 \frac{\partial^2 f(x, sty)}{\partial y_i \partial y_i} ds dt.$$

We define the Hessian of f (relative x) by

$$h_f(x, y) = \det(g_{ij}(x, y)).$$

The 2-jet of f in (c,0) is equal to $\sum g_{ij}(c,0)y_iy_j$. So we see $h_f(c,0) \neq 0 \Leftrightarrow f$ has type A_{∞} at (c,0).

(2.2) DEFINITION. $f \in (y)^2$ has a line singularity if its singular locus is

$$\Sigma(f) = L = \{(x, y) \in \mathbf{C} \times \mathbf{C}^n | y = 0\}.$$

The *line singularity* is called *isolated* if for $c \neq 0$ the germ of f at (c, 0) has only A_{∞} -singularities.

(2.3) Examples. (a) A_{∞} : $f(x, y) = y^2$,

(b) D_{∞} : $f(x, y) \equiv xy^2$,

(c) $f(x, y) = x^2y^2$ is not a line singularity,

(d) $f(x, y) = y^3$ is not an isolated line singularity.

(2.4) We consider the following ideals in δ :

$$\tau(f) = \operatorname{in} \frac{\partial f}{\partial x} + (y) \left(\frac{\partial f}{\partial y} \right) \subset (y)^2 \quad \text{(tangent space)},$$

$$J(f) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n} \right) \subset (y), \quad \text{(Jacobian ideal)},$$

$$h(f) = \left(h_f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_n} \right) \quad \text{(Hessian ideal)}.$$

(2.5) THEOREM. Let $f \in (y)^2$. Equivalent are:

(A) $c(f) := \dim_{\mathbb{C}}(y)^2 / \tau(f) < \infty$,

(B) $j(f) := \dim_{\mathbb{C}}(y)/J(f) \le \infty$,

(C) $\lambda(f) := \dim_{\mathbb{C}} \mathcal{E}/h(f) < \infty \text{ and } \Sigma(f) = L.$

(D) f has an isolated line singularity at 0.

PROOF. We take a representative f of the germ. Define sheafs of \mathfrak{S}_{n+1} -modules as follows:

$$\mathfrak{F}^1(U) = \frac{(y)}{J(f)}$$
 and $\mathfrak{F}^2(U) = \frac{(y)^2}{\tau(f)}$

where (y), $(y)^2$, J(f) and $\tau(f)$ are considered as modules over the holomorphic functions on U. It is clear that \mathfrak{F}^1 and \mathfrak{F}^2 are coherent. We intend to use the fact that \mathfrak{F}' is concentrated in a point \Leftrightarrow dim $\Gamma(\mathfrak{F}') < \infty$.

(i) (D) \Rightarrow (A) and (B). For $y \neq 0$ f is regular at (x, y) and we have $\dim \mathfrak{F}^1_{(x, y)} = \dim \mathfrak{F}^2_{(x, y)} = 0$ since $(y) \cong \mathfrak{S}_{n+1}$, $J(f) \cong \mathfrak{S}_{n+1}$, $(y)^2 \cong \mathfrak{S}_{n+1}$ and $J(f) \cong \mathfrak{S}_{n+1}$ at

(x, y). If y = 0 and $x \neq 0$ then f is of type A_{∞} at (x, 0) and we have dim $\mathfrak{F}^1_{(x, 0)} = \dim \mathfrak{F}^2_{(x, 0)} = 0$, since $(y) \cong J(f)$ and $(y)^2 \cong \tau(f)$ at (x, 0). So both \mathfrak{F}_1 and \mathfrak{F}_2 are concentrated at 0 and this implies $c(f) < \infty$ and $f(f) < \infty$.

- (ii) (B) \Rightarrow (D). Since $j(f) < \infty$ we have $\dim \widehat{\mathfrak{T}}_{(x,y)}^{1} = 0$ for $(x, y) \neq (0,0)$. Since $\dim \mathcal{E}/J(f) = 0$ implies f is regular, and $\dim(y)/J(f) = 0$ implies f is of type A_{∞} , we have (D).
 - (iii) (A) \Rightarrow (D) is similar.
 - (iv) (C) \Leftrightarrow (D) is trivial.

3. The topology of the Milnor fibre.

(3.1) We recall that we consider an *isolated line singularity*, that is an analytic germ f with singular locus the line $L = \{(x, y) \in \mathbb{C} \times \mathbb{C}^n \mid y = 0\}$ such that for every $x \neq 0$ the germ of f at (x, 0) is of type A_{∞} , i.e. equivalent to $y_1^2 + \cdots + y_n^2$. Let B_{ϵ} be the closed ϵ -ball in \mathbb{C}^{n+1} and D_{η} be the closed 1-disc in \mathbb{C} . We select $\epsilon > 0$ and $\eta > 0$ such that the restriction

$$f: B_{\varepsilon} \cap f^{-1}(D_n) \to D_n$$

satisfies the conditions for the Milnor construction, and so f is a C^{∞} -locally trivial fibre bundle above $D_{\eta} = 0$.

(3.2) In the case of an ordinary isolated singularity it is useful to consider a generic approximation g of f with only ordinary Morse points (cf. Brieskorn [**Br**]). At every Morse point one can study its local Milnor fibration, with Milnor fibre homotopy equivalent to one n-sphere S^n ("the vanishing cycle"). The Milnor fibre of the original f then has the homotopy type of the wedge of those μ spheres.

We like to mimic the construction in the case of an isolated line singularity. First we prove the existence of a nice approximation.

- (3.3) Lemma. Let f have an isolated line singularity. There exist a deformation g of f such that g has:
 - (i) only D_{∞} and A_{∞} singularities on L,
 - (ii) only A_1 (Morse) singularities outside L.

[Recall D_{∞} singularity is locally given by $xy_1^2 + y_2^2 + \cdots + y_n^2$.]

PROOF. Define $F: \mathbb{C} \times \mathbb{C}^n \times S \times T \to \mathbb{C}$ by

$$F(x, y, (a_{ij}), (b_{ij})) = f(x, y) + \sum_{i,j} (a_{ij} + b_{ij}x)y_i y_j.$$

A computation shows that the 2-jet extension

$$j^2F: \mathbb{C} \times \mathbb{C}^n \times S \times T \to J^2(n+1,1)$$

is transversal to the A_1 -stratum outside L and transversal to the D_{∞} stratum on L. The assertion follows now as an application of Sard's theorem.

EXAMPLE.

$$f(x, y) = y^{2}(x^{2} - y^{2}),$$

$$g(x, y) = y^{2}(x^{2} - (y - t)^{2}).$$

$$f^{-1}(0) g^{-1}(0)$$

(3.4) Proposition. There exists an approximation g of f (as in Lemma (3.3)) with the additional property: The Milnor fibrations of g and f above the boundary ∂D_{η} are equivalent.

PROOF. Let $\varepsilon > 0$ such that $(f^{-1}(0) \setminus L) \overrightarrow{\pitchfork} S_{\varepsilon'}$ for all $0 < \varepsilon' \le \varepsilon$. Let $f_{\lambda}(x, y)$ be a 1-parameter deformation of f, which satisfies (3.3) for $\lambda \ne 0$. We claim now, that there exist $\delta > 0$ and $\eta > 0$ such that $f_{\lambda}^{-1}(t) \overrightarrow{\pitchfork} S_{\varepsilon}$ for all $0 < \lambda \le \delta$ and $0 < |t| \le \eta$. This follows from:

- $(1) f^{-1}(0) \cap S_{\epsilon}$ is compact,
- (2) $f|S_{\varepsilon}$ is a submersion in points of $f^{-1}(0)\setminus L$,
- (3) on $L \cap S_{\epsilon}$ we have only A_{∞} -points, so near points of $L \cap S_{\epsilon}$ we can change coordinates (y_1, \ldots, y_n) , smoothly depending on (x, λ) such that

$$f_{\lambda}(x, y) \sim y_1^2 + \cdots + y_n^2$$

(parameter version of the Morse lemma).

For $t \neq 0$ the tangent space in (x, y) to $f_{\lambda}^{-1}(t)$ contains L, since it is given by $\xi_1 y_1 + \cdots + \xi_n y_n = 0$. So we find locally

$$f_{\lambda}^{-1}(t) \stackrel{\leftarrow}{\pitchfork} S_{\varepsilon} \quad \text{for } t \neq 0.$$

Let $F(x, y, \lambda) = f_{\lambda}(x, y)$, λ). The proposition follows now from the fact that

$$F: F^{-1}(\partial D_{\eta} \times [0, \delta]) \cap (B_{\epsilon} \times [0, \delta]) \to \partial D_{\eta} \times [0, \delta] \to [0, \delta]$$

and the restriction to $S_{\epsilon} \times [0, \delta]$ are submersions.

- (3.5) REMARK. The equivalence of f and an approximation g is generally nonvalid for nonisolated singularities. Here we have the equivalence because of special properties of isolated line singularities and of the approximation g.
- (3.6) We now take a generic approximation g of f as in the above lemma and suppose moreover that the approximation is so close that the Milnor fibrations of g and f above the boundary ∂D_{η} are the same. We can also suppose that all critical values of g are different (this is mostly for notational convenience). The critical value 0 corresponds to the nonisolated singularities on the line L.

Let b_1, \ldots, b_{σ} be the Morse points of g with critical values $g(b_1), \ldots, g(b_{\sigma})$. Define B_1, \ldots, B_{σ} disjoint (2n+2) balls around b_1, \ldots, b_{σ} and inside $B=B_{\epsilon}$. Let D_1, \ldots, D_{σ} be disjoint 2-discs around $g(b_1), \ldots, g(b_{\sigma})$ and inside $D=D_{\eta}$, chosen in such a way that we get local fibrations

$$g: B_i \cap g^{-1}(D_i) \to D_i \qquad (i = 1, \dots, \sigma)$$

satisfying the usual transversality condition

$$\partial B_i \stackrel{\frown}{\pitchfork} g^{-1}(t)$$
 if $t \in D_i$.

We also define a small cylinder B_0 around L and a 2-disc D_0 around 0 such that

$$\partial B_0 \stackrel{\text{Th}}{ \to} g^{-1}(t)$$
 if $t \in D_0$.

Of course we can take all B_0, \ldots, B_σ and D_0, \ldots, D_σ to be disjoint. We first study the fibres of

$$g: B_0 \cap g^{-1}(D_0) \to D_0.$$

We take hyperplane sections x = c. A fibre $g^{-1}(t) \cap B_0$ is now fibered by the projection π on L. This projection can have singularities. It is convenient to consider the map

$$\Phi_g: g^{-1}(D_0) \cap B_0 \to \mathbb{C} \times \mathbb{C}$$

defined by $\Phi_g(x, y) = (g(x, y), x)$. The singular locus of Φ_g consists of the line L and the so called *polar curve* Γ . The projection

$$\pi\colon g^{-1}(t)\cap B_0\to L$$

is smooth outside points of Γ_{σ} $(t \neq 0)$.

(3.7) Lemma. The polar curve Γ_e can cut L only in the D_{∞} points of g.

PROOF. We have to show, that if g is of type A_{∞} , then L is locally the discriminant locus of Φ_{g} .

So let $g(x, y) = \sum g_{ij}(x, y)y_iy_j$ with $det(g_{ij}(0, 0)) \neq 0$

$$\begin{cases} \frac{\partial g}{\partial y_1} = \sum \frac{\partial g_{ij}}{\partial y_1} y_i y_j + \sum g_{1j} y_j \\ \vdots \\ \frac{\partial g}{\partial y_n} = \sum \frac{\partial g_{ij}}{\partial y_n} y_i y_j + \sum g_{nj} y_j. \end{cases}$$

 $\det(g_{ij}(0,0)) \neq 0$ now implies that we can modulo $(y)^2$ solve for y_1, \dots, y_n . So $(y) \subset (\partial g/\partial y) + (y)^2$.

Nakayama's lemma now gives $(y) = (\partial g/\partial y)$. So the variety defined by $\partial g/\partial y_1 = \cdots = \partial g/\partial y_n = 0$ is just L and it is clear that this is the critical set of Φ_{σ} .

Next we study the D_{∞} -points.

- (3.8) Proposition. Let g be of type D_{∞} and let $\Phi_{g}(x, y) = (g(x, y), x)$.
- (a) The diffeomorphism type of the pair of Milnor fibres of Φ_g and g is independent of the choice of g within the type D_{∞} .
- (b) The pair of Milnor fibres of g and Φ_g is homotopy equivalent to the pair of standard spheres (S^n, S^{n-1}) .

PROOF. (a) Let g_0 and g_1 be of type D_{∞} . Select representatives such that the transversality conditions for the Milnor fibrations of g_0 , g_1 , Φ_{g_0} and Φ_{g_1} are satisfied for certain $(s_0, t_0) \in L \times \mathbb{C}$. Consider the complex family

$$\overline{\Psi}(x, y, \tau) = (x, \tau g_1(x, y) + (1 - \tau)g_0(x, y)) = (x, \Psi'(x, y, \tau)).$$

The variety $\Psi^{-1}(s_0, t_0)$ intersects

$$\left\{ (x, y, \tau) | 0 = \frac{\partial \Psi'}{\partial y_1} = \cdots = \frac{\partial \Psi'}{\partial y_n} \right\}$$

only in a finite number of points. Choose a path $\lambda(t)$ from 0 to 1 in the τ -plane missing τ -coordinates of those points. The real homotopy $g_{\lambda(t)}$ between g_0 and g_1 induces a diffeomorphism between the pairs of Milnor fibres.

(b) It is sufficient to study $g = xy_1^2 + y_2^2 + \cdots + y_n^2$. Take first n = 1, $g(x, y) = xy^2 = \delta$, $|x| \cdot |y|^2 = \delta$, arg x + 2 arg $y = 0 \mod 2\pi$.

In $(torus) \times \mathbb{R}^2$ it is clear that the Milnor fibre of g is homotopy equivalent to S^1 , the hyperplane section $x = s_0$ is homotopy equivalent to S^0 . In the general case we have to take double suspensions of (S^1, S^0) .

(3.9) Lemma. Let f be not of type
$$A_{\infty}$$
. Let $s_0 \in \partial(B_0 \cap L)$. The fibre

$$X_t' = g^{-1}(t) \cap B_0$$

is homotopy equivalent to 2τ n-balls glued together along their common boundary $S^{n-1} \stackrel{h}{\simeq} Y'_t = \Phi_g^{-1}(t,s_0) \cap B_0$. So X_t is homotopy equivalent to a bouquet of $(2\tau-1)$ n-spheres, where τ is the number of D_∞ -points in a generic approximation g.

PROOF. Set $S = B_0 \cap L$. Let S_1, \ldots, S_τ be small disjoint discs inside S around the D_∞ points c_1, \ldots, c_τ . Choose B_0 so small that above $S \setminus \bigcup_{i=1}^\tau S_i$ the projection

$$\pi \colon g^{-1}(t) \cap B_0 \to L \qquad (t \neq 0)$$

is locally trivial.

Choose a system of paths $\gamma_1, \ldots, \gamma_\tau$ from s_0 to S_1, \ldots, S_τ (in the usual way; see the diagram). Set $Z = S_1 \cup \cdots \cup S_\tau \cup \gamma_1 \cup \cdots \cup \gamma_\tau$, $W = \gamma_1 \cup \cdots \cup \gamma_\tau$. Z is a deformation retract of S; $\{s_0\}$ is a deformation retract of W. Since π is locally trivial over the complement of $S_1 \cup \cdots \cup S_\tau$ it follows from the homotopy lifting property that $\pi^{-1}(Z)$ is a deformation retract of X'_t and Y'_t is a deformation retract of $\pi^{-1}(W)$. Moreover Y'_t is the Milnor fibre of the hyperplane section of an A_∞ -singularity and so homotopy equivalent to an S^{n-1} (since the hyperplane section has an A_1 -singularity). It follows that $(\pi^{-1}(Z), \pi^{-1}(W))$ is relatively homotopy equivalent to

$$(\pi^{-1}(W) \cup e_1^+ \cup e_1^- \cup \cdots \cup e_{\tau}^+ \cup e_{\tau}^-, \pi^{-1}(W)),$$

where for each D_{∞} point two *n*-cells e^+ and e^- are attached to the vanishing cycle S^{n-1} in the standard way. So

$$(X'_t, Y'_t) \stackrel{h}{\approx} (S^{n-1} \cup_{\gamma_t} e_1^+ \cup e_1^- \cup \cdots \cup_{\gamma_t} e_{\gamma}^+ \cup_{\gamma_t} e_{\gamma}^-, S^{n-1}).$$

So

$$X_t' \stackrel{h}{=} S^n \vee \cdots \vee S^n \quad (2\tau - 1 \text{ copies}).$$

(3.10) Theorem. Let f be an isolated line singularity (not of type A_{∞}); then the Milnor fibre of f is homotopy equivalent to a bouquet of μ spheres S^n , $\mu = \sigma + 2\tau - 1$, where σ is the number A_1 -points and τ is the number D_{∞} -points in a generic approximation of f.

PROOF. Take $D, D_0, D_1, \ldots, D_{\sigma}$ and $B, B_0, B_1, \ldots, B_{\sigma}$ as before. Let $t \in \partial D_0$. Choose a system of paths $\psi_1, \ldots, \psi_{\sigma}$ from t to D_1, \ldots, D_{σ} . For $T \subset D$ set $X_T = g^{-1}(T) \cap B$. As in the preceding lemma there is a homotopy equivalence

$$(X_D, X_t) \stackrel{h}{\simeq} (X_{D_0} \cup_{\psi_t} e_1^{n+1} \cup \cdots \cup_{\psi_n} e_{\sigma}^{n+1}, X_t).$$

Moreover,

$$(X_{D_0}, X_t) \stackrel{h}{\simeq} (X_{D_0} \cap B_0 \cup X_t, X_t).$$

Let $\phi_1, \ldots, \phi_{2\tau-1}$: $S^n \to X'_t = X_t \cap B_0$ represent the $2\tau - 1$ generators of $\pi_n(X_t \cap B_0)$. Use $\phi_1, \ldots, \phi_{2\tau-1}$ to attach (n+1)-cells $f_1^{n+1}, \ldots, f_{2\tau-1}^{n+1}$ to $X_t \cap B_0$.

The inclusion mapping

$$X_t \cap B_0 \hookrightarrow X_{D_0} \cap B_0$$

extends to a homotopy equivalence

$$X_t \cup_{\phi_1} f_1^{n+1} \cup \cdots \cup_{\phi_{n-1}} f_{2n-1}^{n+1} \to X_{p_n} \cap B_0$$

since both spaces are contractible. So we get a homotopy equivalence

$$(X_{D_0}, X_t) \stackrel{h}{\simeq} (X_t \cup_{\phi_1} f_1^{n+1} \cup \cdots \cup_{\phi_{2\tau-1}} f_{2\tau-1}^{n+1}, X_t).$$

 X_D is obtained from X_t by attaching $\sigma + 2\tau - 1$ (n+1)-cells. So X_t is (n-1)-connected, since X_D is contractible. Since X_t has the homotopy type of an n-dimensional finite CW-complex it follows that X_t has the homotopy type of a bouquet of $\mu = \sigma + 2\tau - 1$ n-spheres.

4. Remarks and questions.

(4.1) In the case of isolated (point) singularities, there is the algebraic description of the Milnor number

$$\mu = \dim \mathfrak{S}_{n+1} / \left(\frac{\partial f}{\partial x_0}, \dots, \frac{\partial f}{\partial x_n} \right).$$

For isolated line singularities we have

$$\tau = \sharp (D_{\infty} \text{ points}) = \dim \mathfrak{S}_1 / (h_f(x,0)).$$

A question to prove is

$$c(f) = (A_1 \text{ points}) + 1 = \sigma + 1,$$

$$j(f) = \#(A_1 \text{ points}) + \#(D_{\infty} \text{ points}) = \sigma + \tau$$
,

which is true in all known examples.

(4.2) Find the intersection forms for isolated line singularities. For n = 2 one can use the method of A'Campo and Guzein-Zade. Here follows an example:

$$f(x, y) = x^2 y^2 + y^4.$$

Nice approximation: $g(x, y) = y^2(x^2 - (y - t)^2)$. Level curves:

$$e(f) = 3 = {}^{\#}A_1 + 1$$

$$j(f) = 4 = {}^{\#}A_1 + {}^{\#}D_{\infty}$$

In the diagram you can easily find the 5 cycles. There is some freedom in choice.

A diagram for the intersection matrix is:

- (c) Find the relation between isolated line singularities and certain series of isolated singularities, especially relate the topology of their Milnor fibres. From Iomdin [10-4] it already follows that for k sufficiently large $\chi(F) = \chi(F'_k) - k$ where χ is the Euler characteristic, F is the Milnor fibre of f(x, y) and F'_k is the Milnor fibre of $f(x, y) + x^k$.
- (d) Study line singularities which have other transversal singularities than A_1 (outside 0).
- (e) Study in general singularities with 1-dimensional critical locus, which have transversally A_1 -singularities (outside 0).

REFERENCES

[Br] E. Bricskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161.

[Io-1] I. N. Iomdin, Some properties of isolated mappings of real polynomial singularities, Mat. Zametki 13 (4), 565-572.

[10-2] _____, The Euler characteristic of the intersection of a complex surface with a disc, Sibirsk. Mat. Ž. 14 (2) (1973), 322-336. [lo-3]

___, Local topological properties of complex algebraic sets, Sibirsk. Mat. Ž. 15 (4) (1974), 784-805. [lo-4]

. Complex surfaces with a one dimensional set of singularities, Sibirsk. Mat. Ž. 15 (5) (1974), 1061-1082.

[K-M] M. Kato and Y. Matsumoto, On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifolds Conf., pp. 131-136. [Lê-1] Lê Dũng Tráng, Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann.

Inst. Fourier (Grenoble) 23 (1973), 261-270. [Lê-2]

_, La monodromie n'a pas de point fixes, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 409-427. [Lê-3]

_. Ensembles analytiques complexes avec lieu singulier de dimension un (d'après 1. N. Iomdin), Sem. sur les Singularities, Publ. Math. de l'Univ. Paris VII, pp. 87-95. [Lê-Sa] Lê Đũng Tráng and K. Saito, The local π_1 of the complement of a hypersurface with normal

crossings in codimension 1 is abelian, Preprint, RIMS-350, Kyoto, Japan.

[Mi] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, Princeton Univ. Press, Princeton, N.J., 1968.

[Ra] R. Randell, On the topology of non isolated singularities, Proc. 1977 Georgia Topology Conference, pp. 445-473.

RIJKSUNIVERSITEIT UTRECHT, THE NETHERLANDS