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Abstract

We show that the homotopy type of certain special fibres in a perturbation of a holo-
morphic function is a wedge of spheres of middle dimension. We also define a basis of the
homology of the special fibre.

1 Introduction

In the case of an isolated singularity C**1 — C the vanishing cycles play an important role in
the description of the general non-singular fibre. This Milnor fibre F is homotopy equivalent to
a wedge of spheres:

FEgry...ygn

where the wedge is taken over y spheres in the middle dimension. Here 4 is Milnor’s number,
which can be identified with the number of Morse-points (or A;-points) in a generic perturbation.
The vanishing cycles correspond to the spheres in the wedge. We show in this note, that the same
conclusion is true for certain singular fibres which occur in the case of non-isolated singularities.
The proof is similar to the case of the Milnor fibre of an isolated singularity ([AGV-II], [Lo)).

We also define a basis of the homology of the special fibre. Each basis element corresponds
to an Aj-point. At the end we discuss monodromies of the special fibre, which occur in 1-
dimensional familjes.

This note was written after discussions with David Mond and Duco van Straten about Mond’s
Theorem, that the homotopy type of the generic fibre of a disentanglement is a wedge of spheres.

2 Homotopy type of the special fibres

2.1 We consider non-zero holomorphic function germs f : (C**1,0) — (C,0)and allow arbitrary
singularities (isolated or non-isolated ). We recall the definition of the Milnor fibration. For ¢ >0
small enough there exist an e-ball B, in C™*! and an 5-disc D, in C such that the restriction:

f:f—l(Dn)ﬂBc — Dn

is a locally trivial fibre bundle over D, \ {0}. The fibres are called Milnor fibres. The boundary
OB, is called the Milnor sphere.

2.2 We next consider a deformation F of f, ie. a holomorphic mapgerm:

F:(Cl xC,0)— (C x C,0)



of the form
F(z,a) = (fa(2), )
such that fo(z) = f(z).
The mapgerm f, is called a perturbation of f.
We require that the deformation be topologically trivial over the Milnor sphere 0B..
This means: For 7 and p small enough

F:0B.x D,nF Y (Dy,x Dy) = Dy x D,

must be a stratified submersion with strata {0} x D, and (D, \{0}) x D, on D, x D, and some
stratification on B, x D, N F~1(D, x D,).
This condition implies:

o f71(t) is (stratified) transversal to 3B, for all |t| < 7 and for all |a| < p.
e f71(D,) N 3B, is homeomorphic to f~Y(D,) N 8B, and therefore contractible.

e the Milnor fibres of f and f, are diffeomorphic.

9.3 Theorem Let F be a deformation of f, which is topologically trivial over the Milnor sphere
as defined in 2.2. Leta € D, and suppose that all fibres of fo are smooth or have isolated
singularities except for one special fibre X; = f71(t) N OB.. Then X is homotopy equivalent to
a wedge of spheres:

X, 2 S§h Vv 8

The number of spheres is equal to the sum of the Milnor numbers in the fibres different from X;.

Proof In the following we use the notation:
g: X —=D

for the perturbation:
fa: f_l(D,]) NnoB. — D,.

a
We denote: Xy = ¢~ 1(Y).

Let z1,...,Z, be the critical points outside X; and ¢1,...,c, be the critical values, different
from t. Take small disjoint discs Do, Dy, ..., D+ around t,¢y,...,¢, and join them with a point
s on @D, with the help of a system of non-intersecting paths T (in the usual way, cf. figure 1).
Call the endpoints s1,...,5r.

We mention the homotopy equivalence:

h
Xt ’ZXDO.

This equivalence is well known in the local case (i.e. in a small neighborhood of a singular
point),see proposition 2.A.3.(b) of [GM]. Since our map is proper one can patch together these
local equivalences to a global homotopy equivalence. One can also apply directly lemma 2.A.2.
of [GM].

Next we use homotopy lifting properties and have first:

h
Xp, = Xpyur



Figure 1: Perturbation g.

and second: i
Xp ~ Xp,ur U Xp, U---UXp,

Similar homotopy equivalences occur in [Lo] and [Si-1].

All X, contain only isolated singularities. Let y; be the sum of the Milnor numbers in the
fibre X.,. Each Xp, can be obtained (up to homotopy equivalence) from X,,; by attaching i
cells of dimension n 4 1 in order to kill the vanishing cycles.

After retraction of T to the point s, it follows that

Xp 9 Xp, U{L pi cells of dimension n + 1 }.

Since Xp is diffeomorphic to f~YD,) N dB,, which is contractible (as total space of the Milnor
fibration), we have that:
Te(X1) = m(Xp,) = 0 for all k < n.

Since X; has the homotopy type of a CW-complex of dimension 7, see [GM](p.152), it follows
that: i
XixSPv...vSn

the number of spheres being equal to v = 3w o

2.4 Remark In the case of an isolated singularity f : (C™*+1,0) — (C,0) the above theorem
shows that for any perturbation ¢ : X — D of f, all fibres X, (including the singular fibres)
have the homotopy type of a wedge of n-spheres. The same conclusion can be deduced from
corollary (5.10) on page 75 of Looijenga’s book [Lo], where the following is proved:

Let f: X — D be a proper good representative of a germ f : (C*k,2) — (C*,0) defining an
isolated complete intersection singularity of dimension n. Then every fibre X, has the homotopy
type of a wedge of n-spheres.

2.5 Remark If X is not smooth but if X \ X, is smooth the same theorem as 2.3 applies since
Xp is still contractible.



3 Homology of special fibres

3.1 We are especially interested in describing a basis for the homology of the special fibre in
such a way that this basis is related to the A;-points of the perturbation.

We have according to [Si-2] the following direct sum decomposition of the vanishing homo-
logy:

H.(E,X,) = Ho( X, X,) ® 0 Ho(Eiy F)

where
X, = special fibre

X: = Xp,,a neighbourhood of X;

X, = Milnor fibre

E = Milnor ball

E; = Milnor ball of the isolated singularity at z;
F; = Milnor fibre of the isolated singularity at z;

This direct sum decomposition can depend on the choice of the system of paths I'.
3.2 Since H.(E;, F}) is concentrated in dimension n + 1 it follows from 3.1 that:

Hoyi(E,Xs) = Hop(X, X,)®Z” wherev =370 pi
Hi(E,X,) Hi(X1, X5) ifk#n+1

All these isomorphisms are induced by inclusions. Therefore the exact sequence of the triple
(E, X, X,) splits into short pieces:

0 — Hn(Xy, X,) — Hu(E, Xs) — 0

and
0— Hn+l(Xt7Xs) = Hn+l(E$Xs) '_ﬁ"’ Hn+l(EvXt) —0

Remark that independently from theorem 2.3 this gives again Hi(X:) = 0 for k # n.

3.3 This above sequence extends to the diagram:

Ho(Xy)—P— Ha(X) 0
Al Al
0 ————-—Hn+1()2t,Xs)*g~Hn+1(E»Xs)—é*Hnﬂ(E,Xt) 0

@glen—kl(Ei» Fz) =2



Because of the direct sum splitting 3.1 it follows that the composition

O Hnt1(Biy F) 2 Hoa (E, X,) 2 Hopa(E, X))
is an isomorphism. Moreover also the induced map
Oy Ha(F) 2 Ho(X,) 2 (X))
is an isomorphism. We summarize:
3.4 Proposition
Ho(X1) = O, Ho(F).
3.5 From now on we assume that all critical points outside X; are of type 4,.
Definition
| L = j(%1 Ha(F)) C Ha(X,)

is called the A;-lattice in H,(X,). It has a natural basis (up to a sign), which depends via
the isomorphism 3.4 on the choice of the paths, which constitute I'. The A;-lattice L is via I3
isomorphic to H,(X;).

If necessary we write L and jr to distinguish between different systems of paths.

3.6 We next adapt the definition of vanishing cycle to our situation. Let again ¢ : X — D be
a perturbation with the properties of 2.3. Let 7Y be a continuous path in D\ {t,c1,...,¢,} from
s to some s; (cf. figure 2).

Figure 2: The path 7.

There are induced maps
Z = Hy(F) 25 Ho(X,) 2 Ho(X))
Definition Let 6 be a generator of H,(F}).

by = jy(6) € Hu(X,)
A'v 5(6’7) € Hn(Xt)

A, € Hp(X,) is called the cycle vanishing along Y.



The fundamental group m1(D \ {t,¢1,...,¢-}, ) acts on the homotopy classes from paths from
s to s;. The next lemma shows that loops around t do not affect a vanishing cycle.

3.7 Lemma The definition of the vanishing cycle A depends only on the homotopy class of v
in D\ {c1,..- ¢}

Proof A loop ug which goes from s around 8D induces a monodromy homomorphism:
ho : Hp(X,) — Hn(Xs)-

We claim that this monodromy is the identity modulo Ker (5 : Ho(X,) = Hn(X¢)). Thisis
intuitively clear for geometrical reasons, since one can choose a geometric monodromy, which is
the identity on a sufficient big part of X,. To be more precise:

Let Eg be a tubular neighbourhood of the critical locus of X;. We denote:

Y, = X,0kEko
A, = X.\Y,
8,Ey = 0FEo\0X ,the inner boundary of Eo
8,Y, = X,n0,Eo, the inner boundary of Y,

Since the restriction of g to f~1(Do) \ Eo has maximal rank over Dy there exists a geometric
monodromy

hO . (Xs’ As) — (Xs, Aa)

which is the identity on A,. We can also consider the restriction
h6 . (YsaalYS) I (Y.H aIYs)v

which is the identity on 01Y,.

We can use now the theory of the variation mapping. We refer to Lamotke [La] or [Si-3] and
especially to [Lo] p.35. The properties of the variation mapping, which we denote by VAR!
imply that ho — 1 is the following composition

exc VAR! Je
ho—1: Hn(Xs) - Hn(X37 As) — Hn(Ys7 alys) — Hn(Ya) —_ H'n(Xs)y

We claim that
Im j. C Ker 5.

Consider the diagram:

0 ——-———*Hn-H(EO, Ys)——"—”Hn(Ys) Hn(EO)
a J
0 Hps1(E, X)) —=—Hn(X,) 0

Since Hni1(Eo,Ys) = Hn.H(X't,Xg) the vertical map is indeed a. So one has:
Ker p=Ima DImj

This completes the proof. 0



3.8 Definition Let I be a system of non-intersecting paths. According to proposition 3.4 we
get in H,(X:) a basis of vanishing cycles Aq,...,A,. This basis is called distinguished if we
take into account a cyclic numbering condition as well. Compare ([AGV-II], p.14).

A distinguished basis only depends on the relative position of ' with respect to ¢cy,..., ¢,
and not with respect to t. But the A;-lattice L H,.(X,) shall in general also depend on the
relative position of t.

3.9 Theorem A system of paths T gives a well-defined (distinguished) basis of vanishing cycles
in H,(X:) depending only on the isotopy class in D \ {e1y-..,¢.}.

4 Concluding remarks and questions

4.1 Remarks about disentanglements

Mond [Mo] considered in his work finitely determined map germs F : C2 — C3. The image
F(C?) is a hypersurface f = 0 and has a I-dimensional singular locus ¥ with transversal
singularity type 4, on T\ {0}.

A stable perturbation G of F induces a disentanglement G(C?) of F(C?). A disentanglement
has only singularities of type Ay, Dy, or Too,00,00 (ordinary double curve, ordinary pinch point,
ordinary triple point). Let g = 0 be the equation of G(C?). According to [Mo] the function
g : C® — C has outside g~1(0) only isolated singularities.

The notion of disentanglement was introduced in a more general context by De Jong en
Van Straten [Jo-St]. Our theorem 2.3 implies that the surface G(C?) = ¢g~1(0) is homotopy
equivalent to a wedge of spheres:

g 02 Sy ...y 52

This was proved by Mond [Mo].
More general one can consider the versal unfolding:

G:C?xCl— C3xCd

Let G(z,a) = (Ga(z),a) and let the image G,(C?) be the hypersurface with equation g, = 0.
According to Mond the map g, : C3 — C has for all ¢ € C¢ only one fibre with non-isolated
singularities. According to theorem 2.3 all the surfaces G.(C?) = g71(0) have the homotopy
type of a wedge of spheres.

One can also consider the non-singular fibres of go. The general theory tells us, that they
must be connected, but not necessarily simply connected. But in Mond’s case one knows that
f(C?) is irreducible and so the Lé-Saito theorem implies that the fundamental group is trivial.
So also the general fibre is a wedge of spheres. The number of these spheres is equal to:

2# Do ~ 1+ 2#To0 0000 — X(£) + #A4,,

where T is the normalisation of £. This formula can be shown in the same way as the formulas
in [Si-2].

The only fibres we haven’t discussed are those with isolated singularities. One can obtain
such a fibre X, from nearby smooth fibres by attaching 3-cells in order to kill the vanishing
homology. Since the general smooth fibre is simply connected this implies that X is also simply
connected.



Conclusion In the case of disentanglements all fibres of ga are wedges of 2-spheres.

4.2 Remarks about monodromies of the special fibre
Let G, : C**1 — C be a 1-dimensional family of functions such that the map

G.-CxCl - CxC,

defined by G(a,z) = (Ga(z), a) satisfies the conditions of theorem 2.3. We can suppose that for
a # 0 small enough the singularity types of the isolated critical points z1,...,T, are constant.

Consider in C \ {0} a small loop w around a = 0. If we follow the loop, the critical values of
the corresponding functions g, will behave like braids (cf. figure 3).

Figure 3: The moving critical values.

We can follow this by an isotopy of the disc D. At the end we get a permutation of the
critical values. This permutation has to respect the “type” of the singularities in the singular
fibre.

We now consider the case of one special fibre X, with non-isolated singularities and/or
several isolated singularities. Moreover we assume that all other singular fibres have only one
singularity, which must be of type A;. The above loop w defines a monodromy map X; — Xt ,

which induces:
hw . Hn(Xt) — Hn(Xt)

During this special fibre monodromy not only X is moving, but also the A;-points move! Let a
system of paths I' be given and suppose that during the isotopy of the disc the system I' move
to a system I (cf. figure 4).

Using the isomorphisms 3.5 of H,(X,) with the A;-lattices L and Lp+,we see that the map
hy, : Ha(X:) — H,(X,) is just given by the base change from Ly to L.

It could be interesting to study the special fibre monodromies in more detail.

4.3 Remarks about Picard-Lefschetz transformations
Let 7; be a path joining s with s;, defining vanishing cycles §; € Ho(X,) and A € H,(X:). The
simple loop u; around the critical value ¢; which corresponds to 7; defines a Picard-Lefschetz

transformation:
hy, : Ho(Xs) — H.(X,)

for which the Picard-Lefschetz formula holds:

hy(z)=z+ (z - 6;)d;,



Figure 4: T and I".

where ( - ) denotes the intersection product. This Picard-Lefschetz transformation is independent
of the system of paths I' in which 4; can be embedded.

For the special fibre X; the situation is different. Given a system of paths I', containing 7;
it follows e.g. from the Picard-Lefschetz formula, that we have the following restriction:

hy, : Lp — Lr.
Given an other system I, containing v;, we get the restriction:
h:“. : LI‘/ e Lr‘l.

Warning: The induced mappings hy, and hl, : Hy(X;) — Hn(X¢) can in general be different.
This phenomenon already occurs in simple examples, such as isolated plane curve singulari-
ties with several A;-points in the special fibre.
We conclude that there do not exist Picard-Lefschetz transformations of the above type on
H,(Xy).

4.4 Remarks about special fibre monodromy groups
We consider next a d-parameter deformation:

Cctl x ¢! — Cx CY,
which satifies the conditions of theorem 2.3. We have two special examples in mind:
¢ The universal unfolding of isolated singularities.

e The universal disentanglement unfolding in the Mond examples.

One should stratify the parameter space C% such that a stratum corresponds to a partition of
the singular set into types. The fundamental groups of the strata act now on the homology of
the corresponding special fibres, like in 4.2. In this way we get several special fibre monodromy
groups related to our family.

Already in the case of isolated singularities it could be interesting to study these groups.
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