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Introduction

Some examples of singularities:

What are the Singular points ?



Introduction

Roman Steiner Surface

Find the 3 axis of singular points. Do you see the Whitney
umbrella’s (D∞-points) ? How many ?



Introduction

Roman Steiner Surface



Goals

The main goal of this lecture is to determine topologial
invariants of the singular hypersurface, which come from the
Milnor fibre of its smoothing.
The lecture is recordered in several parts. In the first part we
study the local case and focus on Milnor fibres and its
interaction with the Milnor fibres and monodromies of
transversal sections.
A main reference is the paper Dirk Siersma The vanishing
topology of non-isolated singularities, in: New Developments in
Singularity Theory (Cambridge 2000), pp. 447-472; NATO Sci.
Ser. II Math. Phys. Chem. 21, Dordrecht, Kluwer Aca. Publ.,
2001. CLICK!

https://webspace.science.uu.nl/~siers101/noniso.pdf
https://webspace.science.uu.nl/~siers101/noniso.pdf
https://webspace.science.uu.nl/~siers101/noniso.pdf
https://webspace.science.uu.nl/~siers101/noniso.pdf
https://webspace.science.uu.nl/~siers101/noniso.pdf


Isolated singularities

We recall first some well known
facts:
f : (Cn+1,0)→ (C,0) holomorphic
has a Milnor fibration.
with Milnor neigborhood:
E = f−1(∆) ∩ B(O, r)
and Milnor fibre:
F = f−1(t) ∩ B(O, r)
F ∼= Sn ∨ · · · ∨ Sn

Milnor number µ = bn(F )



Complex Morse Singularity

Complex polynomial:

f = z2
0 + · · ·+ z2

n

also called A1. The Milnor fibre F is the intersection of a ball
with

z2
0 + · · ·+ z2

n = δ

It contains the real n-sphere:

x2
0 + · · ·+ x2

n = δ

In fact
F ∼= Sn

By adding a n + 1 cell F becomes contractible.



Milnor’s Bouquet theorem via deformation



Non-isolated Singularities

Kato-Matsumoto result for s-dimensional singular set Σ:

Proposition
H̃k (F ) = 0 ouside the range: n − s ≤ k ≤ n
In case dim Σ = 1, the only non vanishing homology groups
are:
I Hn(F ) (always free),
I Hn−1(F ), which can have torsion.



1-dimensional singular set

Let Σ = Σ1 ∪ . . . ∪ Σr
Fti is the Milnor fiber of the restriction of f to the transversal
hyperplane at some x ∈ Σi \ {0}, which is an isolated
singularity, H̃∗(Fti ) is concentrated in dimension n − 1.

This defines a local system on Σi \ {0} with fibre
H̃n−1(Fti ) = Zµti . On this group there acts the local system
monodromy (also called vertical monodromy):

Ai : H̃n−1(Fti )→ H̃n−1(Fti ).

∂F = ∂1F ∪ ∂2F ,
vanishing zone (near to Σ):

∂2F =
r
t

i=1
∂2Fi .



Examples

Vertical monodromies:

A∞ : I D∞ : −I Q∞,∞ : −I T∞,∞,∞ : I, I, I



Wang Sequence

Each ∂2Fi is fibered over the link of Σi with fiber Fti . The Wang
sequence of this fibration:

0→ Hn(∂2Fi)→ Hn−1(Fti )
Ai−I→ Hn−1(Fti )→ Hn−1(∂2Fi)→ 0

So Hn(∂2F ) =
r
⊕

i=1
Ker(Ai − I) (free group)

and Hn−1(∂2F ) ∼=
r
⊕

i=1
Coker (Ai − I).



Local 6-term sequence

Exact sequence of (F , ∂2F ) reduces to:

0→ Hn+1(F , ∂2F )→ Hn(∂2F )→ Hn(F )→

→ Hn(F , ∂2F )→ Hn−1(∂2F )→ Hn−1(F )→ 0

Moreover by variation-isomorphisms and duality:

Hn+1(F , ∂2F ) ∼= Hn−1(F )free and Hn(F , ∂2F ) ∼= Hn(F )⊕Hn−1(F )torsion.

Note Hn(∂2F ) =
r
⊕

i=1
Ker(Ai − I)

and Hn−1(∂2F ) ∼=
r
⊕

i=1
Coker (Ai − I) play a crucial role.



Local 6-term sequence

Exact sequence of (F , ∂2F ) reduces to:

0→ Hn+1(F , ∂2F )→ Hn(∂2F )→ Hn(F )→

→ Hn(F , ∂2F )→ Hn−1(∂2F )→ Hn−1(F )→ 0

Moreover by variation-isomorphisms and duality:

Hn+1(F , ∂2F ) ∼= Hn−1(F )free and Hn(F , ∂2F ) ∼= Hn(F )⊕Hn−1(F )torsion.

Note Hn(∂2F ) =
r
⊕

i=1
Ker(Ai − I)

and Hn−1(∂2F ) ∼=
r
⊕

i=1
Coker (Ai − I) play a crucial role.

Corollary: bn−1(F ) ≤
∑
µti

This is an important inequality !



Topological consequences

When is ∂F or K a topological sphere ?

NB. This generalizes Milnor’s result for isolated singularities:
1.⇐⇒ 3.(b)

Randell showed: K is a homotopy (homology) sphere↔ Tq is
an isomorhism for q = n,n − 1.
From this: ∂F is a topological sphere iff K is a homotopy sphere
and det(Ai − I) = ±1



start part 2 of the lecture B2
Homology via deformation

The goal of this lecture is to determine how admissible
deformations will be helpfull to determine the toplogy of the
Milnor fibre. A toy example is

f (x , y) = y2(x2 − (y − s)2)

The main reference for this section is:
Dirk Siersma, Mihai Tibar: Milnor Fibre Homology via
Deformation, CLICK ArXiv Math.AG 1512.02840, December
2015. In W.Decker et al. (eds), Singularities and Computer
Algebra, Springer 2017, 305-322;

https://arxiv.org/pdf/1512.02840.pdf


Vanishing Homology via deformation

H(E ,F ) = ⊕r∈RH(Er ,Fr )⊕ H(E0,F0)



Let f : (Cn+1,0)→ (C,0) with singular locus Σ of dimension 1.
f has Milnor pair (E ,F ), Σ = Σ1 ∪ . . . ∪ Σr , etc.

Admissible Deformation fa : (Cn+1,0)→ (C,0) with f0 = f .
I Fibres of fa intersect the boundary of the Milnor sphere B

transversally (stratified sence),
I Σ ∩ ∂B ∼= Σ ∩ ∂B, including transversal types and

transversal monodromies.
I for all a small enough the fibration over the boundary of ∆

is equivalent to the Milnor fibration of f ,
I E ∼= E (contractible).

Note that Σ =
⋃

i∈I Σ and Σ =
⋃

i∈I Σi can have a different
number of irreducible components.



Additivity of Vanishing Homology

H(E ,F ) = ⊕r∈RH(Er ,Fr )⊕ H(E0,F0)
We call this splitting: additivity of vanishing homology. It is done
by excision and deformation retraction.
As a second step we can concentrate each contribution to a
small neighborhood of the singular set.



‘Fibration’ over the singular set

Remind: surjectivity
Hn−1(Fti ) � Hn+1(∂2Aq) = ⊕ coker(As − I) � Hn−1(Aq)



Homology of Milnor fibre

Theorem
I H∗(F ) is concentrated in dimensions n − 1 and n,
I χ(E ,F ) =∑

q∈Q χ(Xq,Aq) +
∑ρ

i=1 χ(Σ∗i )µti + (−1)n+1 ∑
r∈R µr .

I There is an surjection ⊕ρi=1Hn−1(Fti )→ Hn−1(F ) and
Hn−1(F ) has a description as cokernel.

I bn−1(F ) ≤
∑

i minq∈Σ∗
i

bn−1(Aq)

Corrolary
I bn−1(F ) ≤

∑ρ
i=1 µ

t
i ; (ρ = number after deformation!)

I (irred. case) If there is at least one q such that
Hn−1(Aq) = 0 then Hn−1(F ) = 0 ;
concentration in dimension n only!



About the proof

Use (relative) CW-decompositions of Σ∗i := Σi \ B and the
transversal and local Milnor fibres. These are related to cells in
only 2 dimensions. We concentrate on the vanishing homology
near the 1-dimensonial part. Its vanishing homology
corresponds to the union terms in the Mayer-Vietoris sequence:

0→ Hn+1(Z, C)→ Hn+1(X ,A)⊕ Hn+1(Y,B)→ Hn+1(X ∪ Y,A ∪ B)→
→ Hn(Z, C)

j→Hn(X ,A)⊕ Hn(Y,B) → Hn(X ∪ Y,A ∪ B)→ 0.

The χ(F )-formula follows easily. Moreover: Hn−1(F ) = coker j

Hn(Z, C) = ⊕q∈Q ⊕s∈Sq Hn(Zs, Cs),

Hn(X ,A) = ⊕q∈QHn(Xq,Aq).

Hn(Y,B) = ⊕ Zµti
ImAj−I (j over Σ∗

i loops)

First component is direct sum of local 6-term sequences. Both
component of j are surjective!



About the Betti numbers

Next construct the vanishing homology, starting from (Eti ,F
t
i ).

Extend over Σ∗i by adding extra cells for loops.
I Adding relations for genus and outside loops : Im(Aj − I) ,
I Adding relations for Q-point loops: Im(As − I), s ∈ Sq

At this moment we have covered Σ∗i and as a consequence

bn−1(F ) ≤
ρ∑

i=1

min
s,j

dim coker(A∗ − I) ≤
ρ∑

i=1

µti .



About the Betti numbers
Extend over Σ∗i by adding extra cells for loops.

I Adding relations for genus and outside loops : Im(Aj − I) ,
I Adding relations for Q-point loops: Im(As − I), s ∈ Sq
I We finally ‘plug in’ a contribution Hn−1(Aq) for each point

q ∈ Q and get: bn−1(F ) ≤
∑

i minq∈Σ∗
i

bn−1(Aq)

Remind: surjectivity
Hn−1(Fti ) � Hn+1(∂2Aq) = ⊕ coker(As − I) � Hn−1(Aq)



Transversal A1 singularities

Let Σ be a 1-dimensional icis with transversal type A1 . fa a
deformation with Σa smooth (equal to the Milnor fibre of the
singular curve Σ) having only A∞ and D∞ and A1 -singularites.

Theorem
The homotopy type of the Milnor fibre, F is a bouquet of
spheres:

if #D∞ > 0, then F w Sn ∨ . . . ∨ Sn;
if #D∞ = 0, then F w Sn−1 ∨ Sn ∨ . . . ∨ Sn.
Moreover, b̃n(F )− b̃n−1(F ) = µ(Σ)− 1 + 2#D∞ + #A1

The same statement on the homotopy type of F is true in all
cases where f allows a deformation with only A∞,D∞, and A1
-singularities.
Classical case: Σ is a smooth line with transversal type A1. All
these isolated line singularities (except A∞) have Sn- bouquets.



Theo de Jong’s list of singularities

Σ is a smooth line, with generic transversal types

S ∈ {A1,A2,A3,D4,E6,E7(n = 2),E8(n = 2)}.

There is a list of building block singularities, FiS of type S.
Deformations with only FiS points and A1 points exist.

The Milnor fibre has the homotopy type of a bouquet:

F w
∨
ε

Sn−1 ∨
∨
µ+ε

Sn

with
µ = bn(F )− bn−1(F ) =

∑
αihi + #A1 − µt,

where hi is the number of FiS points and αi and ε can be
computed explicitly. Only in exceptional cases is ε 6= 0 and in
these cases ε is small; in fact 0, 1 or µt.



Transversal type A3. Can be deformed into

F1A3 : f = xz2 + y2z ; F
ht' S1

F2A3 : f = xy4 + z2 ; F
ht' S2



Transversal type A3. Can be deformed into

F1A3 : f = xz2 + y2z ; F
ht' S1

F2A3 : f = xy4 + z2 ; F
ht' S2

(a) F
ht' Sn−1 ∨ Sn · · · ∨ Sn if #F2A3 = 0,

(b) F
ht' Sn ∨ · · · ∨ Sn else.

Deformation of type (a) fs = (xk − s)z2 + yz2 + y2z.



Σ = 3 axis with transversal A1

T∞,∞,∞ : f = xyz,
has F ∼= S1 × S1 and no admissible deformations.

f = x2y2 + y2z2 + z2x2.
There exist two totally different deformations of f0.
• fs = x2y2 + y2z2 + z2x2 + sxyz, . in which Σs consists
of the three coordinate axes:

#A1 = 4 #D∞ = 6 #T∞∞∞ = 1

On each Σi we have #D∞ = 2. Consequence b1 = 0.
• fa = (xy − a2x − a1y)2 + (yz + a3y − a2z)2 + (xz + a3x − a1z)2,

Here, Σa is a Milnor fibre of Σ, and µ(Σ) = 2.

#A1 = 6 #D∞ = 4 #T∞∞∞ = 0 χ(Σs) = −1.

Since the deformation has only A∞,D∞, and A1 -points, we
conclude that F w S2 ∨ . . . ∨ S2, exactly 15 spheres.



Start 3rd part of the lecture B
Projective hypersurfaces

In this 3rd part we will study the global topology of
hypersurfaces with a 1 dimensional singular set.

The main reference for this part is the publication:
D. Siersma, M. Tibăr: Projective hypersurfaces with
1-dimensional singularities, Europ. J. Math. 3 (2017), 565-586
CLICK; arXiv: 11411.2640 Math.AG, november 2014.

There exists also another video related to this part of the
lecture made during the School and Workshop on Singularities
in geometry, topology, foliations and dynamics (Merida 2014). If
you want to watch it you can CLICK HERE.

https://link.springer.com/article/10.1007/s40879-017-0151-7
https://link.springer.com/article/10.1007/s40879-017-0151-7
https://www.youtube.com/watch?v=-dE8BAXdb08


Projective hypersurfaces

What is the homology of a complex projective hypersurface
V ⊂ Pn+1 of degree d ?

Proposition
If V is smooth:
I Hk (V ,Z) ∼= Hk (Pn,Z) if k 6= n,
I Hn(V ,Z) = Zm,
I χ(V ) = m + 1 = n + 2− 1

d [1 + (−1)n+1(d − 1)n+2].

The follows from the Lefschetz Hyperplane Theorem and the
Poincare duality for smooth manifolds and direct computation of
the Euler characteristic.
More details: See Course C of Laurentio Maxim, lecture 1b.



Projective hypersurfaces

What happens of V has singularities ?

The classical Lefschetz Hyperplane Theorem (LHT) implies:
Hk (V ,Z)

'→ Hk (Pn+1,Z) for j < n and an epimorphism for j = n,
for any singular locus Sing V .

V is a CW-complex of dimension 2n. What are the remaining
homology groups Hk (V ,Z) for n ≤ j ≤ 2n ?

We will compare the homology of V with a smoothing Vε and
use the concept of vanishing homology.

In this course (B) we restrict to hypersurfaces with isolated
singularities or with a1-dimensional singular set.
Course C contains the general case.



Vanishing Homology

Definition
Let f be a homogeneous polynomial of degree d , which defines
V and let hd general of degree d . Consider the pencil:

π : V∆ = {(x , ε) ∈ Pn+1 ×∆ | f + εhd = 0} −→ ∆

with generic fibre Vε nonsingular for all ε ∈ ∆∗, a small disk
around 0 ∈ C . V∆ retracts to V = V0.
We define:

Hg∗ (V ) := H∗(V∆,Vε;Z)

and call it the vanishing homology of V .
I The vanishing homology compares V to the smooth

hypersurface Vε of the same degree.
I It does not depend on the particular smoothing of degree

d , thus is an invariant of V .
I It is also intermediate step towards computing the

homology of singular hypersurfaces.



Vanishing Homology for hypersurfaces with isolated
singularities

Additivity of vanishing homology:
H∗(V∆,Vε) ' ⊕r∈RH∗(Br ,Br ∩ Vε) concentrated !
Hn+1(Br ,Br ∩ Vε) ∼= Lr = Zµ(V ,r).

Lemma
Hgk (V ) = 0 if k 6= n + 1, Hgn+1(V ) =

⊕
r∈R Lr .



From VH to homology for isolated singularities

The homology sequence of the pair (V∆,Vε) gives 5-terms
exact sequence:

0→ Hn+1(Vε)→ Hn+1(V )→
⊕
r∈R

Lr
Φn−→ L→ Hn(V )→ 0

where L := Hn(Vε) is the intersection lattice and the map Φn is
identified to the boundary map Hn+1(V∆,Vε)→ Hn(Vε).

Proposition
I Hk (V ) ' Hk (Pn) for k 6= n,n + 1,
I Hn+1(V ) ' Hn+1(Pn)⊕ ker Φn,
I Hn(V ) ' coker Φn.

What about Φn ?



Additivity of Vanishing Homology: non isolated

0 and 1 dimensional singularities



‘Fibration’ over the singular set

Mayer-Vietoris decomposition (V∆ ∩ N,Vε ∩ N)

Remind:
Hn+1(Aq, ∂2Aq) ⊂ Hn+1(∂2Aq) = ⊕ ker(As − I) ⊂ Hn(Eti ,F

t
i )



Concentration of VH and Betti numbers

Theorem
I Hg∗ (V ) is concentrated in dimensions n + 1 and n + 2,
I There is an embedding Hgn+2(V ) ⊂ ⊕ρi=1Hn(Eti Fti )

I χg(V ) =
(−1)n+1 ∑ρ

i=1 χ(Σ∗)µti −
∑

q∈Q χ̃(Aq) + (−1)n+1 ∑
r∈R µr .

I (stated in the irreducible case)
Hgn+2(V ) =

⋂
q∈Q Hn+1(Aq, ∂2Aq) ∩

⋂
j∈G ker(Aj − I).

Corrolary
I bgn+2(V ) ≤

∑ρ
i=1 µ

t
i

I (irred. case) If there is at least one q such that
Hn+1(Aq, ∂2Aq) = 0 then bgn+2(V ) = 0 ;
concentration in dimension n + 1 only!

Remind: Hn+1(Aq, ∂2Aq) ∼= Hn−2(Aq)free



About the proof

Use (relative) CW-decompositions of Σ∗i and the transversal and
local Milnor fibres. These are related to cells in only 2
dimensions.
A Mayer-Vietoris sequence-argument can be used to show
concentration and the vanishing homology-6-term-sequence

0→ Hn+2(X ∪ Y,A ∪ B)→ Hn+1(Z, C)→ Hn+1(X ,A)⊕ Hn+1(Y,B)

→ Hn+1(X ∪ Y,A ∪ B) → Hn(Z, C)
j→ Hn(X ,A) ⊕ Hn(Y,B)→ 0

The χg(V )-formula follows easily.



About the Betti numbers

Next construct the vanishing homology, starting from (Eti ,F
t
i ).

Extend over Σ∗i by adding extra cells for loops.
I Adding relations for genus loops, restrict to:

ker(Aj − I), j ∈ G
I Adding relations for Q-point loops, restrict to:

ker(As − I), s ∈ Sq
I Adding NO relations for axis point loops, since Ap = I

At this moment we have covered Σ∗i and as a consequence

bgn+2(V ) ≤
ρ∑

i=1

min
s,j

dim ker(A∗ − I) ≤
ρ∑

i=1

µti .



About the Betti numbers
Extend over Σ∗i by adding extra cells for loops.

I Adding relations for genus loops, restrict to:
ker(Aj − I), j ∈ G

I Adding relations for Q-point loops, restrict to:
ker(As − I), s ∈ Sq

I Adding NO relations for axis point loops, since Ap = I
I We finally ‘plug in’ a contribution Hn+1(Aq, ∂2Aq) for each

point q ∈ Q and get:
Hgn+2(V ) =

⋂
q∈Q Hn+1(Aq, ∂2Aq) ∩

⋂
j∈G ker(Aj − I).

Hn+1(Aq, ∂2Aq) ⊂ Hn+1(∂2Aq) = ⊕ ker(As − I) ⊂ Hn(Eti ,F
t
i )



No eigenvalue 1 implies vanishing homology 0

Corollary
If, for every i ∈ {1, . . . , ρ}, at least one of the transversal
monodromies along the loops Γi ⊂ Σi has no eigenvalue 1,
then Hgn+2(V ) = 0. �

Example
V := {x2z + y2w = 0} ⊂ P3 has
I Sing V = P1 generic transversal type is A1,
I three axis points,
I two special points q of type D∞. The germ D∞ is an

isolated line singularity.
Its Milnor fiber F is homotopy equivalent to the sphere S2,
the transversal monodromy is −id.

I Hg4 (V ) ' H1(F ) = 0 and rank Hg3 = 5.



No Special points and · · ·

In case Σ is irreducible:

Hgn+2(V ) =
⋂

q∈Q

Hn+1(Aq, ∂2Aq) ∩
⋂
j∈G

ker(Aj − I).

Corollary
If there are no special points on Σ and the monodromy along
every the genus loop is the identity, then Hgn+2(V ) ' Hn−1(Ft).

Example
This situation can be seen in V := {xy = 0} ⊂ P3 for which
Hg4 (V ) ' Z and rank Hg3 (V ) = 1.



Computing Hgn+1(V ) and not only its rank ?

Sometimes possible!

Example
V := {x2z + y3 + xyw = 0} ⊂ P3. Then
I Sing V = P1, transversal type A1,
I 3 axis points,
I a single point q of type J2,∞ with Milnor fiber a bouquet of

4 spheres S2, and transversal monodromy the identity.
We get Hg4 (V ) ' H1(F ) = 0 and rank Hg3 (V ) = 6.

In this case Hg3 (V ) ' Z6.
(no torsion)



Surface case

In case of surfaces V ⊂ P3 we have:

H4(V ) ' Zr and Hg4 (V ) ' Zr−1,

where r is the number of irreducible components of V .

Corollary

r − 1 ≤
∑ρ

i=1 µ
t
i .



Absolute homology

Proposition
If dim Sing V ≤ 1

Hk (V ) ' Hk (Vε) = Hk (Pn) for k 6= n,n + 1,n + 2.

Proof.
Long exact sequence of the pair (V∆,Vε) and concentration of
vanishing homology in 2 dimensions.

Question: What about the remaining 8-terms of the sequence ?



Absolute homology

Proposition

(a) bn+2(V ) ≤ 1 +
∑ρ

i=1 µ
t
i

(b) bn(V ) ≤ dimL,
where L := Hn(Vε) is the intersection lattice of the smooth
hypersurface Vε of degree d. In case n is even, this moreover
yields:
(c) Hn+2(V ) ' Z⊕ Hgn+2(V ),
(d) Hn+1(V ) ' ker Φn,
(e) Hn(V ) ' coker Φn.

Special interest in cases, where Hgn+2(V ) = 0, or when V is a
Z-homology manifold.



Final Message

This is the end of course B2

The next course is B3 about
Polar Degree
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D. Siersma, M. Tibăr: Projective hypersurfaces with
1-dimensional singularities, Europ. J. Math. 3 (2017), 565-586
CLICK; arXiv: 11411.2640 Math.AG, november 2014.
.

https://webspace.science.uu.nl/~siers101/noniso.pdf
https://arxiv.org/pdf/1512.02840.pdf
https://link.springer.com/article/10.1007/s40879-017-0151-7
https://link.springer.com/article/10.1007/s40879-017-0151-7


List of Theo de Jong

.



Pictures



Roman Steiner Surface


	Introduction
	Local theory of singularties
	Milnor fibration
	1-dimensional singular set
	Homology via deformation
	Betti numbers
	Examples

	Global case: Projective hypersurfaces
	Vanishing Homology
	Concentration of VH and Betti numbers
	Examples


