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Abstract. Let f : C* — C be a polynomial function. We define global polar invariants associated
to fibres of f and we describe a CW-complex model of a fibre. We show how to use affine polar curves
in order to study the monodromy around atypical values of f, including the value infinity. We give a

zeta-function formula for such a monodromy.

Topologie des fonctions polynomiales et dynamique mono-
dromique

Résumé. Soit f : 7 — C une fonction polynomiale. On définit des invariants polaires globaux
associés aux fibres de f a ’aide desquels on décrit un modéle d’une fibre de f comme CW-complexe.
On montre comment utiliser les courbes polaires affines pour étudier la monodromie autour d’une
valeur atypique, y compris la valeur infini. On donne une formule pour la fonction zéta d’une telle

monodromie.

Version frangaise abrégée

On étudie une fonction polynomiale f : C* — C, n > 2, ayant comme but de decrire
la variation dans la topologie de la fibre de f due a la présence des fibres atypiques.
Une valeur tg € C est typique pour f si’application f est une C*-fibration triviale en
to. L’ensemble des valeurs atypiques est fini (cf. [8], [12]) et il inclut 'ensemble des
valeurs critiques de f. Les valeurs atypiques non critiques sont dues au comportement
asymptotique “mauvais” d’un nombre de fibres.

On définit d’abord des invariants polaires globaux 4* (introduits en [11] pour le but
de construire une théorie d’équisingularité globale des familles d’hypersurfaces affines)
et on montre comment v* entrent dans la description d’'un modele CW-complexe d'une

fibre de f (Théoreme 1.3).

On considere ensuite le probleme de définir une monodromie géométrique globale,
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c’est a dire une représentation p : 7y (P*\ A) — Diff (F'), ot A est 'ensemble des valeurs
atypiques, F est la fibre générale de f et Diff(F') est le groupe de C**-difféomorphismes
de F. Dans le cas d’'une monodromie autour une valeur atypique (y compris la valeur
oo 1) on définit un champs de vecteurs controlé a l'infini et tangent a la courbe po-
laire T'(1, f) := adhérence{Sing ([, f) \ Sing f}, pour une forme linéaire suffisamment
générale. La construction est basée sur une décomposition en régions de la fibre F,
chaque région ayant une dynamique spéciale. La méthode du carrousel de Lé D.T. [3],
[4] joue un role important dans le tableau. On prouve une formule pour la fonction
zéta de la monodromie autour d’une valeur atypique d’un polynome quelconque et on
finit par deux exemples qui montrent que la monodromie globale a un comportement
bien différent d’une monodromie locale.

We study a polynomial function f : C* — C aiming to describe the variation of
topology in the fibration induced by f, at atypical fibres (i.e. fibres with special as-
ymptotic behavior at infinity). First we define numerical invariants which enter as data
in a CW-complex model of any fibre of f. These are global polar invariants introduced
and used by the second author for constructing a theory of global equisingularity of
families of affine hypersurfaces [11].

Let us define the space X = {[zg : a1 : ---2,] € P%[s: 1] € PV | sf —tal = 0} C
P™ x P!, where f is the homogenized of the polynomial f which is of degree d. Denote
by p : X — P! the second projection and by X the part at infinity X N {zo = 0}
of X. There is a finite set A C P! such that both p : X\ p7*(A) — P'\ A and
its restriction p; : X'\ (p7'(A) UX>) — P'\ A are locally trivial C**-fibrations [8],
[12]. We take by definition [0 : 1] = co € A. We consider the polar locus I'(l, f) :=
closure{Sing (1, f) \ Sing f} of f with respect to a general linear form [ : C* — C and
denote by I the linear form associated to a projective hyperplane H € P,

We first need the following global result, an improved version of the Polar Curve
Theorem, see [10, Lemma 2.4]. We denote by A := A(l, f) the discriminant in C* of
the map (I, f).

1.1 Lemma There is a Zariski-open set Q C P! such that, for any H € Q, the polar
locus U'(lg,t) is a reduced curve or it is empty, that the map (I, f): C" - Cx Cis a

C*-trivial fibration over (C x (C\ A'))\ A, where A’ is a finite set in C and that no
component of I'(Ig,1) is contained into a fibre of f. o

This can be proved by the methods of [10, §5.]; we shall not do this here. However, it
will be important, for later use, to mention that the excluded set Cx A’ is a one-to-one
projection by (/, f) of the polar locus within X* of the projective compactification

(L,.f) of (1, f).
1.2 Definition [11] For any ¢ € C, the set of generic polar intersection multiplicities

vee= )

is defined as follows. The number v~ = 4"~ (f~'(¢)) = int(T' (g, f), f~'(c)), is the
sum of the local intersection multiplicities at each point of the finite set I'(1x, f)Nf~*(c),
for a generic H € (.
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Next, v77% is the generic polar intersection multiplicity of fl;ll(c) with T'(ly, fix),
for a general hyperplane H identified with C*~! and general linear form /; : C*~! — C.
We define in this way, by induction, v*~*, for 1 < i <n — 1. We put 4 := deg f, by
definition.

By a standard connectivity argument, the set of polar intersection multiplicities is
well defined, i.e. it does not depend on the choices of generic hyperplanes, and it is
constant on the complement of a finite set in C. The “jump” of 4’ is due to the loss of
intersection points to infinity.

The invariants 47 enter in the description of a fibre F. := f~!(c) as CW-complex.
For simplicity, we assume that F, has isolated singularities. Let p(F.) denote the sum
of the Milnor numbers of the isolated singularities of F..

1.3 Theorem [11] Let ¢ € C such that F. has isolated singularities. Then F, is
homotopy equivalent to a generic hyperplane section F. O 'H to which one attaches
vt — u(F.) cells of dimension n — 1. Furthermore, I, is homotopy equivalent to the
CW-complex obtained by attaching to deg [ points a number of v! cells of dimension
1, then attaching to this ~* cells of dimension 2, ..., ¥""% cells of dimension n —2 and
Jinally 4"~ — u(F.) cells of dimension n — 1. In particular,

X = (~1)0(F) + X (-1
and o
X(Fgen) - X(Fc) = (_1)n_1ﬂ(Fc) + 2(_1)2'(7;611 - 72)7

where Fyen is a general fibre of [ and vy, is ils generic polar intersection mulliplicities.
<&

It follows that the invariants 4* are more refined than the number A. defined as the
total jump at infinity in case of a polynomial with isolated W-singularities at infinity
[5, Corollary 3.5]. Further results on v* are contained in [11].

1.4 Corollary Let [ € 1.
(a) If F, has an isolated singularity at o € F, then o € T'(1, f).

(b) If (1, f) =0 then Hj(Fyen, Z) =0, for j > n — 1. o

Monodromy

We show how to use affine polar curves, as defined in [10], in order to study the mon-
odromy around an atypical value or oo. The polar curve I'(/, f) is needed for defining
a controlled vector field lifting the unitary tangent vector field of a path within P!\ A.
In this way one defines a global geometric monodromy along any simple loop within
P!\ A, thus getting a geometric monodromy representation

p:mi(PY\ A) — Diff(F),
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where F'is a general fibre of f and Diff(#) is the group of C*-diffeomorphisms of F,

which induces an algebraic monodromy representation
patg : TP\ A) — H.(F,Z).

We keep control over the vector field “at infinity” by stratifying the space X (as in
[5], [10]) and by imposing tangency conditions along the strata at infinity.

We describe in the following a geometric monodromy of a general fibre of f along
a small circle in the base space P!\ A, where A is a finite set including A’, the critical
values of f and the values a € C such that I'(, f) tends asymptotically to f~*(a).

Take a small closed disc D, at a € A such that AN D, = {a}. By Lemma 1.1 and
the argument following it, one can lift the unitary vector field u on the circle 9D, to
a vector field w in the tube f~1(9D,) such that w is tangent to p~*(9D,) N X in a
stratified sense and tangent to T'({, f) N f~1(dD,), for some general linear I. Note that
the set I'(1, f) N f~1(9D,) is a finite union of circles.

Moreover, one can construct a vector field w by lifting u in two steps:

@) YU e xap, 2= ap,.

This idea was used in the local case by Lé D.T. [3], [4]. In the global setting, we
may decompose the monodromy flow in regions where the local carrousel construction
of Lé can be used. There is a carrousel construction associated to each point ¢ €

L'(l, f) N p~'(a), including the case where ¢ € X** N p~!(a). Namely, there is a small
closed disc § at each point I(q) of P1, ¢ € T'(, f) N p~(a), such that v is the carrousel
vector field on 6 x dD,, for a small enough D,. In particular, the lift v of u to Cx 9D,
is tangent to the discriminant A(/, f) and the vector field v is the identical lift by the
projection pry : {b} x 9D, — dD,, for any point b € d6. Moreover, this is the case
for any point b € P!\ UX_ ¢, where §&; is a small enough disc centered at d; and the
set {dy,...,d,} € P!is the image by [ of the set I'(/, f) N p~*(a). By convention, d,
denotes the point oo € PL.

This special vector field v is now lifted to f~'(9D,) giving rise, by integration, to
a geometric monodromy, denoted by h,. Note that, for some point b € P\ U¥_ ;. this
monodromy restricts to a monodromy of the slice fibration:

FHOD,) N I7Y(b) — AD,.

Using this construction, one can prove the following result for the zeta function of the
monodromy h,.

1.5 Theorem (p,(t) = Chypp (1) - Graa(?),

where ' is a general fibre of the map (I, ) and Ga(t) = e, veli(1). By Creri(t) we
denote the zeta-function of the relative monodromy of the pair (F.NI=1(6;), F.Nl"(s;)),
forec € 0D, and s; some fixed point on the circle 06;. We denote 5 = 0, for 1> 2 and
5 =6 \ a1, where aq is the radius from dy to a point on the circle 961 different from
51,
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Proof Note first that &; x {¢} contains by definition all the points of A;({, f)NP!x {¢},
where ¢ € 9D, and A;(I, f) denotes the germ of A(l, f) at (d;,a) € P! x C. By the
above description, the relative homology H.(F., ') is concentrated in dimension n— 1.
From the exact sequence of the pair (F., F') we get the 4-term exact sequence:

0 - Hn—l(Fc) - n—l(FcaF/) - n—Z(F/) - n—Z(Fc) - 0
and, for j > 3, the isomorphisms:
0— H,—;(F'")— H,_;(F.) — 0.

The geometric monodromy constructed above acts on the exact sequence of the pair
(F., F'). Now, the relative homology splits into a direct sum and the same holds for
the action of the monodromy:

Hy (Fo Y = @ Hy  (F. 0 N8, Fon 7 (s)).
<

Moreover, the relative homology H,—1(F. N l_l(Si),Fc N {7'(s;)) is localizable at the
points T'(l, f) N F. N I7*(s;). This can be seen in the next examples. For further
developments, see [7]. The second author used polar curves to find a local zeta function
result in [9].

1.6 Corollary (a) If f has isolated W-singularities at infinity and isolated singu-
larities in C* then hy g is the identity.

(b) Let ¢; € C. If I7'(¢;) N Sing F, = 0 then the relative monodromy of the pair
(F.NI7Y&), FonI7t(s;)) is the identity.

Proof (a) follows from [5, Cor. 3.6] and the constructions in [10, §5].
(b) follows from the fact that f is a stratified submersion in the neighborhood of
q € F, N7 (¢;), relative to the stratification {C* \ T'({, f),T'(I, f)}. o

Finally, we consider two examples in case n = 2.

1.7 Example f : C* — C, f(x,y) = v + 2%y. This was brought into attention by
Broughton [1] as the simplest polynomial with a noncritical atypical fibre, see also [5],
[10] for further comments on it. The point [0 : 1] € P! is critical at infinity for the fibre
Fpy, in the sense of [5]. The jump at this point, as defined by Lé D.T. and Ha H.V. [2],
is A= 1.

For a general [, say [ = = 4 y, the polar curve I'({, f) intersects a general fibre Fy.,
in 3 points and the fibre I in 2 points. This gives 74, = 3, Vgen = 70 = 3 and 75 = 2,
therefore \(Fyen) = 0, x(Fo) = 1. However, it is easy to see by direct computations
that Fien hzt St and Fy g CII S*. The zeta-function of the monodromy kg around the
value 0 is equal, by Corollary 1.6 (a) and Theorem 1.5, to (ri(t) - [Ty Greri(t). The
pair (F, N 17Y(81), Fy N 17 (s1)), where & is a small disc around oo € P!, is homotopy
equivalent to (I,91) (since I'(1, f) N F; N I7'(61) is just one point) and it appears that
the monodromy acts on the two points 91 as the identity (I denotes the interval [0, 1]).
By Corollary 1.6 (b), Grer2(t) = Gers(t) = (1—1)~! and by the above, G 1 (t) = (1—¢)7"
also. We get (p, (1) = 1, since Cho (1) = (1 —t)°
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1.8 Example f: C* — C, f(z,y) = 2%y? + vy + x. This is contained in the classifi-
cation list of polynomials of small degrees, with respect to their singularities including
those at infinity, of the first author with Smeltink [6]. There is a Morse singularity
at (0,—1), on the fibre Fy and a singularity at infinity at [0 : 1] € P! for the fibre
F_%. Hence the total Milnor number is ¢ = 1 and the total jump is A = 1. The

general fibre is homotopy equivalent to S' Vv S1. We may take as general linear form
| =a2+4y. Then I'(], f) = {22y + y + 1 — 22’y — 2 = 0} and its intersection with
Fiis 4 points, if t = Q0 or t = —i and 5 points for the other values of ¢. The fibre
F' = Fyen N {x +y = s} is 4 points, for generic s. We get ’yéen = 74 =5, by Theorem
1.5 and ’yii_ = 4. We compute the zeta-function of the monodromy h—i" We have
4 points {¢2,¢3,q4,95} = I'(l, f) N F_%
monodromy on the relative homology Hy([,d1) which is the identity. The monodromy

corresponding to the point ¢1 = I'(l, f) N F_1 is not the identity, since it switches the
4
points d1. This relative monodromy cannot occur as monodromy of an ordinary Morse

and to each such point there corresponds a

point, therefore the singularities at infinity represent a new type of singularities. Their
behavior, from the point of view of monodromy, is investigated in [7].
By Theorem 1.5, we get:

G, ) =1=-*1—-t)"*1+t)=1+¢

_1
4
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