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Abstract

We consider the signed area function A on the moduli space M(P ) of mechanical linkage P

representing a planar multiple pendulum. For generic lengths of the sides of P , it is proved that

A is a Morse function on M(P ) and its critical points are given by the cyclic configurations of P

satisfying an additional geometric condition. For triple penduli, the main result is complemented

by a rather comprehensive analysis of the structure of cyclic configurations. A number of related

results and open problems are also presented.
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Introduction

We deal with certain planar mechanical linkages [3] which we call planar multiple penduli.

Recall that a planar mechanical linkage is defined as a mechanism built up from rigid bars (sides)

consecutively joined at flexible links (vertices) in such a way that each bar may freely rotate

around any of its endpoints (pin-joints) and the whole system is confined to stay in a certain

plane (reference plane) [3]. A linkage can move and make various configurations so that lengths

of segments representing bars should remain unchanged but they may intersect and vertices may

coincide. If it is required that the last vertex coincides with the first one then we speak of a

polygonal linkage [3]. If there is no such requirement, in order to distinguish from the preceding

case, one usually speaks of a planar kinematic chain [3] but we prefer to think of it as a planar

multiple pendulum which seems more intuitive and adequate to the setting accepted in this paper.

Such linkages are also considered as useful models for a robot arm or mechanical manipulator

and therefore often called mechanical n-arms [4]. However, we will exclusively use the term planar

multiple pendulum (PMP) to avoid possible misleading interpretations and associations. Actually,

we will basically work with the moduli space of a PMP which appears as a particular case of the

general concept of moduli space of mechanical linkage [3].

Moduli spaces of mechanical linkages of various types were actively studied in the last few

decades (see, e.g., [8], [18], [11]). In particular, critical points of various functions on moduli

spaces have been discussed in [8], [11], [16]. Along these lines, we consider the signed (oriented)

area as a function A on moduli space of a PMP and show that its critical points are given

by the cyclic configurations satisfying some additional conditions of orthogonality and that, for

n = 3, A is a Morse function on a generic moduli space. As usual under a cyclic configuration

we understand a configuration of linkage such that all the vertices lie on the same circle. The

study of cyclic polygons has a long history starting with elementary classical results such as

the Ptolemy theorem and Brahmagupta formula (see, e.g., [5]). This topic continues to attract

considerable interest (see, e.g., [7], [19]), in particular, due to the results and conjectures of D.

Robbins concerned with computing the area of cyclic polygon [17]. The aim of this paper is to

show that cyclic configurations also arise in the study of planar multiple penduli in a quite natural

way.

We tried to make the exposition (reasonably) self-contained. To this end, in the first section

we present various auxiliary results and comments about the cyclic configurations of multiple

penduli as well as our main result (Theorem 1) which shows that cyclic configurations are the

critical points of the signed area function. This result suggests a number of natural questions

some of them are addressed in the sequel. Detailed results are only presented for triple penduli

despite most of the statements and arguments admit quite straightforward generalizations for

generic PnP’s with arbitrary n. However, proving all results in full generality would require much

more space and time. So only the key result (Theorem 1) is formulated and proved for multiple

n-penduli with arbitrary n, while all other considerations are performed for triple penduli. The
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results for triple penduli seem to be of interest by themselves and may also serve as a paradigm

for future research in this direction. With this in mind, in the last section we briefly discuss open

problems and arising research perspectives.

1. Cyclic configurations of planar penduli

We begin with giving a rigorous definition of moduli space of a planar multiple pendulum

(PMP). Let l = (l1, . . . , ln) ∈ R
n be a collection of positive real numbers. A planar n-pendulum

(PnP) Pn(l) is defined as a linkage consisting of n-sides and n−1 pin-joints. For i = 1, . . . , n, the

i-th side vi−1vi has length li and is pin-joint with the (i + 1)-th side at their common endpoint

vi which is the (i + 1)-th vertex vi of the linkage Pn(l). The last side has length ln and can

freely rotate about the vertex vn−1. Notice that the first vertex is denoted by v0. l is called the

sidelength vector of P .

The definition of the moduli space of a planar multiple pendulum P = P (l) runs as follows.

One first introduces the set C2(P ) defined as the collection of all n-tuples of points vi in the

Euclidean plane R
2 such that the distance between vi−1 and vi is equal to li, where i = 1, . . . , n.

Each such collection V of points, as well as the chain of line segments joining the consecutive

vertices, is called a configuration of P . We assume that the corresponding (piecewise linear) curve

is oriented by the given ordering of vertices. A configuration is called cyclic if all vertices lie on

a certain circle and aligned if all vertices lie on the same straight line. Obviously, the latter type

of configuration is a sort of limiting case of the former.

Factoring the configuration space C2(P ) by the natural diagonal action of the group of ori-

entation preserving isometries Iso+(2) of the plane R
2 one obtains the moduli space M(P ) of a

given PMP [11]. Moduli spaces are endowed with the natural topologies induced by Euclidean

metric. It is easy to see that the moduli space M(P ) can be naturally identified with the subset

of configurations such that v0 = (0, 0), v1 = (l1, 0). Thus M(P ) can be considered as embedded

in R
2n−2. This embedding endows it with a differentiable space structure so that one can speak

of smooth mappings and diffeomorphisms in this context [2].

After these preparations it is obvious that the moduli space of any planar n-pendulum is

diffeomorphic to (n − 1)-torus T n−1. In the sequel we will encounter certain subsets of the

moduli space. In order to describe these subsets we first make some comments about the cyclic

configurations of points in the Euclidean plane.

Lemma 1. If four points vi = (xi, yi) lie on the same circle then the following determinant

vanishes
∣
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Notice that condition (1) is necessary but not sufficient for four points to form a cyclic con-

figuration because this determinant also vanishes in the case when they lie on a straight line.
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For this reason we will say that a configuration of four points vi ∈ R
2 is quasicyclic if the above

determinant vanishes. Such configurations are relevant for our considerations and so it seems

natural to consider the set of all quasicyclic configurations QC(P ) of a given PMP P . In the

sequel we’ll describe its geometric structure for planar triple penduli. Let us add that many of

the results in the sequel are formulated for generic PMP or PMP having generic sidelength vector

l. As usual this means that the corresponding statements are true for all vectors l in a certain

(non-specified) open dense subset of the parameter space R
n
+ (cf. [9], [10]).

Since the moduli space of a PMP is a smooth manifold (the (n − 1)-dimensional torus) it is

natural to consider various geometrically meaningful functions on the moduli space and study

critical points of those functions. In particular, taking into account the aforementioned embedding

of M(P ) into R
2n−2 we can consider restrictions to M(P ) of polynomial functions on R

2n−2. If a

function f : M(P ) → R arises as a restriction to M(P ) of a certain smooth function F on R
2n−4

then the critical points of f can be found by the Lagrange method as the points V ∈ M(P ) such

that gradF is orthogonal to the tangent space TV (M(P )) [1]. The main aim of this paper is to

develop critical point theory for the signed (oriented) area ([5]) considered as a function on M(P ).

Alternatively, since the torus is smooth, we can use a parametrization by angle-coordinates.

To this end recall that, for any configuration V of P with vertices vi = (xi, yi), i = 0, . . . , n, its

(doubled) signed area A(V ) is defined by

A(V ) = (x0y1 − x1y0) + . . . + (xny0 − x0yn). (2)

In other words, we add the “connecting” side vnv0 turning a given configuration V in a (n+1)-

gon V and compute the oriented area of the latter. Obviously, formula (2) defines a smooth

function on R
2n−2 and also on the moduli space M(P ) of any PMP P . Thus we can consider its

critical points. Since the Lusternik-Schnirelmann category of an n-torus is equal to n + 1 [10],

from the Lusternik-Schnirelmann theory it follows that A certainly has critical points different

from maxima and minima. Thus one may wish to find their amount and describe the behaviour

of A near its critical points using standard paradigms of singularity theory [1].

Our main result (Theorem 1) states that critical points of A in M(P ) are given by certain cyclic

configurations of P . For triple penduli, we will also show that, in fact, A is a Morse function on

generic moduli space and so one may deal with it in the framework of Morse theory [10]. This

suggests a number of natural problems for PnPs with arbitrary n, some of which are investigated

in Section 3 for triple penduli. Analogous settings and results have earlier been discussed for

polygonal linkages [15], [16].

Before presenting the main result we add a few remarks about the signed area which will

appear useful in the sequel. With a given n-pendulum P we associate a 2n-gon linkage Φ with

the sidelength vector (l1, · · · , ln, l1, · · · , ln). Then each configuration V of P defines a “doubled”

configuration W of Φ by adding the result of reflection of V in the midpoint of the connecting

side v0vn. By additivity of the area function we get A(W ) = 2A(V ). By cutting W along
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other diagonals, connecting opposite points, we get several PMP’s with the same area as V . The

components of their sidelength vectors are any cyclic permutation of (l1, · · · , ln). The moduli

space is again the (n−1)-torus and the area function is the same. So it makes no difference which

of those PMP’s we study, e.g. we can (if we want) suppose that the first arm has the biggest

length, etc. Moreover, the “opposite” pendulum with sidelength (ln, · · · , l1) from vn to v0 with

vertices in the opposite order has area function −A(V ).

To formulate the main result we need one more definition. Let us say that a configuration V of a

planar n-pendulum P is diacyclic if it is cyclic and the “connecting side” vnv0 is a diameter of the

circumscribed circle (“diacyclic” is a sort of shorthand for “diametrally cyclic”). In other words,

the “connecting” side vnv0 passes through the center of the circumscribed circle or, equivalently,

each interval v0vk is orthogonal to the interval vkvn (whenever the last phrase is meaningful).

Theorem 1. For any sidelength vector l ∈ R
3
+, critical points of A on M2(P (l)) are given by the

diacyclic configurations of P (l).

Proof. As above, we assume that v0 = (0, 0), v1 = (l1, 0). For a configuration V = (v0, . . . , vn)

we put ei = vi − vi−1, i = 1, . . . , n. Obviously, vi = e1 + . . . + ei and ei = li(cos βi, sin βi). Denote

by a × b the signed area of the parallelogram spanned by vectors a and b (i.e., we take the third

coordinate of their vector product). The differentiation of vectors ei with respect to angular

coordinates βj will be denoted by upper dots (i.e. there will appear terms of the form ėi).

With these assumptions and notations we can write

A =
n

∑

j=1

vj−1 × vj =
n

∑

j=2

(e1 + · · · + ej−1) × ej =
∑

1≤i<j≤n

ei × ej.

Taking partial derivatives with respect to βk, k = 2, . . . , n we get

∂A/∂βk =

k−1
∑

i=1

ei × ėk +

n
∑

i=k+1

ek × ėi.

Notice now the identities:

ėi × ej = ei · ej = −ei × ėj .

Eventually we get:

∂A/∂βk = −

k−1
∑

i=1

ek · ei +
n

∑

i=k+1

ek · ei = (−
k−1
∑

i=1

ei +
n

∑

i=k+1

ei) · ek.

Consider now the equations ∂A/∂βk = 0, k = 2, . . . , n defining the critical set of A. By taking

appropriate linear combinations of equations, this system of n − 1 equations is easily seen to be

equivalent to the system of equations:

(

k−1
∑

i=1

ei) · (

n
∑

i=k

ej) = 0, k = 2, . . . , n.
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In geometric terms this means that the intervals v0vk−1 and vk−1vn are orthogonal for (k =

2, . . . , n). It remains to refer to Thales theorem ([5]) to conclude that the points v0, . . . , vn lie on

a circle with diameter v0vn. The proof is complete.

This theorem reveals the role of (dia)cyclic configurations and serves as a starting point for

our further considerations. Notice an analogy with the case of polygonal linkages considered in

[15], [6], [16].

2. Cyclic configurations of triple penduli

From now on we put n = 3 and deal exclusively with planar 3-penduli (P3P). We’ll comple-

ment Theorem 1 by obtaining a rather complete description of critical points and critical values

of the signed area function A on the moduli space of a P3P. It is again convenient to use the term

“generic sidelength vector” in the aforementioned sense. Namely, we say that a statement holds

for generic sidelength vector l if it holds for each collection l from an open dense subset of the

parameter space R
3
+. In the sequel we freely use a number of standard concepts of Morse theory

and singularity theory which can be found in [1] and [10].
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Level curves of A for generic sidelengths

For convenience, in the P3P case we modify the notation a bit. Vertices v0, v1, v2, v3 will be

denoted by O,A,B,C, respectively. The sidelength vector is written as (l1, l2, l3) = (a, b, c), while

side vectors are denoted by ~e1 = ~a, ~e2 = ~b, ~e3 = ~c. Thus we have ~a = (a, 0), ~b = b(cos β, sin β), ~c =

c(cos γ, sin γ). A certain number of our computations were done (and can be verified) using the

Mathematica package and for this reason in a few places below we (re)denote β = x, γ = y.

Now the signed area function (modulo a constant factor) can be written in the form

A = ~a × (~a +~b) + (~a +~b) × (~a +~b + ~c) =

= ~a ×~b + (~a +~b) × ~c = ab sin[x] + ac sin[y] + bc sin[y − x].

Below we make an essential use of a well-known paradigm of singularity theory which is referred

to as the “parametric transversality paradigm” (PTP). There are several different formulations of

parametric transversality paradigm (see, e.g., [9]). We cannot dwell upon the PTP here and just
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mention that for our purposes it is sufficient to use a rather elementary version of PTP described

in [1]. Now we are ready to formulate and prove the three results we aimed at.

Theorem 2. For a generic sidelength vector l ∈ R
3
+, the function A has only non-degenerate

critical points on M2(P (l)).

Proof of Theorem 2. The proof is achieved by merely applying the parametric transversality

paradigm to the gradient mapping ∇A of function A. In our notation ∇A depends on parameters

b and c and we want to show that for almost all (b, c) the mapping ∇A(b,c) is a submersion over

the origin. To this end we consider the Jacobi matrix of ∇A with respect to all of its variables

(x, y, b, c) which obviously has the form
(

Axx Axy Axb Axc

Ayx Ayy Ayb Ayc

)

. (3)

We call it the extended hessian matrix (EHM) of A. In order to apply the parametric transver-

sality paradigm to the gradient map ∇A we need to find out at which points (b, c) the rank of

the extended hessian matrix is equal to 2. Consider first the minor obtained by deleting the first

two columns:
(

Axx Axy cCos[y − x] − aCos[x] −cCos[y − x]
Ayx Ayy bCos[y − x] aCos[y] − bCos[y − x]

)

. (4)

It is easily seen that at the critical point the EHM takes the form
(

Axx Axy 0 −cCos[y − x]
Ayx Ayy bCos[y − x] 0

)

. (5)

So the rank is maximal if Cos[y − x] 6= 0. In case of equality it follows that

Cos[y − x] = Cos[x] = Cos[y] = 0,

which gives a contradiction. Thus we can apply PTP to conclude that for generic (a, b, c) the

area function is Morse. QED

Remark. For further use we notice that in our notation the Hessian (determinant of the

hessian matrix) of A has the form:

H(x, y) = a sin[x] sin[y] + b sin[x] sin[y − x] + c sin[y − x] sin[y].
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Zero locus of the signed area Hessian

Theorem 3. For a generic sidelengths vector l ∈ R
3
+, the set of quasicyclic configurations

QC(P (l)) of planar triple pendulum P (l) is a closed smooth one-dimensional submanifold of

M2(P (l)).

Proof of Theorem 3. Let us denote by g the determinant (1) written in the natural angular

coordinates on M2(P ) ∼= T 2. In our notation one has

g[x, y] = c sin[x] − b sin[y] − a sin[y − x] + 2b sin[x]cos[y − x].

So we need to analyze the equation

c sin[x] − b sin[y] − a sin[y − x] + 2b sin[x]cos[y − x] = 0.

We can again fix the length a of the first side and consider g as depending on parameters b

and c. To show that this g is submersion over the origin for almost all (b, c), we have to analyze

the system:

∂g/∂b = − sin[y] + 2 sin[x]cos[y − x] = 0,

∂g/∂c = c sin[x] = 0.

These equations are equivalent to sin[x] = sin[y] = 0. Substituting the solutions in the first

two componets of ∇g we get a system

∂g/∂x = ccos[x] + acos[y − x] + 2bcos[x]cos[y − x]2b sin[x] sin[y − x] = 0,

∂g/∂y = −bcos[y] − acos[y − x] + 2b sin[x] sin[y − x] = 0,

which can only happen if

±c ± b ± 2b = 0,

±b ± a = 0.

Hence the conditions of the parametric transversality theorem [1] are fulfilled for all (b, c) which

do not satisfy the above linear relations. Thus we can again apply PTP to finish the proof.

Theorem 4. For a generic sidelength vector l ∈ R
3
+, there exists a polynomial Pl with real

coefficients such that the critical values of A on M2(P (l)) are the roots of Pl. The coefficients of

Pl can be polynomially expressed via the lengths of the sides of P (l).
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Proof of Theorem 4. This follows from the results of [17] and [7]. To show this we introduce

a “double” of P defined as the hexagon linkage Φ with the sidelength vector (l1, l2, l3, l1, l2, l3).

Then each diacyclic configuration V of P gives a cyclic configuration W of Φ by adding the

result of reflection of V in midpoint of the connecting side (which coincides with the diameter

of circumscribed circle). By additivity of the signed area function we get A(W ) = 2A(V ). On

the other hand, from the results of [17] it follows that the signed area of each such W coincides

with a certain root of the real polynomial introduced in [17]. Thus the first statement follows

from an analogous result for inscribed hexagons established in [17]. The proof in [17] did not give

an effective way of constructing Pl but explicit algebraic formulae for the coefficients of Pl were

given in [7]. These observations complete the proof.

Our results give a sufficiently visual picture of the critical points of A for a triple pendulum.

In the next section we give a few comments and outline some possible generalizations for PnPs

with arbitrary n.

3. Concluding remarks

We wish to add several comments on how one could complement and extend the above results

about the critical configurations of a triple pendulum. One obvious perspective of further research

is to verify if straightforward analogues of our three theorems for PsPs hold for generic PnPs with

arbitrary n ≥ 4. This leads to a number of natural and pleasantly looking problems. In particular,

one could wish to find the maximal number of diacyclic configurations of a planar PnP. We point

out that certain estimates can be derived from the results of [17] and [7] but we could not prove

that they are exact for arbitrary n and so the problem remains largely open.

For completeness let us also say a few words about the case of double pendulum. It is obvious

that the moduli space of a P2P is homeomorphic to the circle and all configurations are quasicyclic.

Moreover, we can use all the above formula for hessian of A with c = 0. This immediately gives

that A has one maximum ab (for β = π/2) and one minimum −ab (for β = −π/2). Both these

critical points are Morse and there are no other critical points.

For a generic planar triple pendulum we can explicate the results of the previous section as

follows.

Proposition 1. Generically, A has exactly 4 critical points on M(P ): two extrema and two

saddles. Extrema are given by the convex diacyclic configurations. Each of these points is non-

degenerate.

Proof. Partial derivatives give the conditions for critical point:

∂A/∂x = abcos[x] − bccos[y − x] = 0, ∂A/∂y = accos[y] + bccos[y − x] = 0.

The orthogonality conditions are simply ~a⊥(~b + ~c), (~a +~b)⊥~c.
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The next step is to show that there are exactly 4 critical points. This can be done as follows.

One uses elementary geometry to obtain a cubic equation for the length d of the connecting edge

OC:

d3 = (a2 + b2 + c2)d ± 2abc.

One has to solve these equations in d, taking into account d ≥ a and d ≥ c. Elementary

calculations show that both the + equation and the - equation have one solution satisfying these

conditions. From cos β = ±c/d, cos(γ −β) = ±a/d it follows that there are exactly two solutions

in each case. They occur in pairs (β, γ), (−β,−γ), which gives the result.

Notice that this reasoning applies to all cases, except when a = b = c. Then there are 3 critical

points (one of which is a “monkey saddle” [1]). The proof of the next result is quite elementary

and therefore we omit it.

Proposition 2. Generically, the set of quasicyclic configurations QC(P (l)) has 2 connected

components. The extrema always belong to the same component and the two saddles belong to

another one.

We add a few words about the “double” of a PnP P as defined at the end of section 1. This

is a 2n-gon linkage Φ with the sidelength vector (l1, · · · , ln, l1, · · · , ln) and its moduli space has

dimension 2n − 3. It follows from [12] that this moduli space is smooth except at the aligned

configurations; and its singularities are isolated and all of Morse type.

The proof of theorem 4 tells us: each diacyclic configuration V of P gives a cyclic configuration

W of Φ. This links the critical points of the signed area function for a pendulum to critical points

of the signed area function for the corresponding “double” 2n-gon, since the cyclic configurations

of the latter are just critical points of A. Note that all these points belong to the smooth part of

the moduli space of Φ.

There are more critical points of A on this moduli space; there are even nonisolated singu-

larities. They occur as follows: start with a planar pendulum in cyclic configuration (but not

necessarily diacyclic). Consider its “pseudo-double” by reflecting the pendulum into the perpen-

dicular bisector of v0vn. We get a configuration of 2n-gon that starts with our pendulum and

returns with the same pendulum in opposite order. All vertices are still on the same circle. This

corresponds to a critical point of the signed area function with value 0 in the smooth part of the

moduli space of Φ. Since the radius of the cylic configuration is a free parameter in the construc-

tion, we get a 1-parameter family of critical points. Thus A has nonisolated critical points on the

moduli space of Φ.

Another wide perspective for further research is related to the calculation of the Morse indices of

diacyclic configurations. This topic is poorly understood also for polygon linkages (cf. [15]). Given

formulae for Morse indices considerable information about the topology of polygon spaces can be

derived from a variety of results on the geometry of cyclic configurations obtained in [17], [19], [7].
10



It would also be interesting to investigate what happens for an arbitrary (not necessarily generic)

sidelength vector. All this shows that the relation between cyclic and critical configurations

discussed in this paper has a number of interesting aspects and we intend to address them in a

forthcoming publication.
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