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Notes for the 6 lectures

Abstract. The aim of these lectures is to review the basics on Milnor fibrations and
discuss the topology of general fibres of polynomial functions. Following the new paper
[ST5], we explain how to initiate a classification of polynomials f : Cn → C of degree
d having the top Betti number of the general fibre close to the maximum, namely we
find a range in which the polynomial must have isolated singularities and another range
where it may have at most one line singularity of Morse transversal type. Our method
uses deformations into particular pencils with non-isolated singularities.
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1. Lecture 1

1.1. Introduction. We want to study a polynomial function f : Cn → C from the local
and from the global point of view. We consider its fibres Xt = f−1(t). These fibres do not
depend on t, except for finitely many special values of t. In order to study this failuire of
local triviality, let us recall some definitions and results.

1.2. Local triviality. Important ingredients are the submersion theorem and Ehres-
mann’s theorem:

- If f is a submersion in z then f is locally trivial around z,
- If f is proper and a submersion for all z ∈ f−1(f(t)) then f is a locally trivial

fibration, which means that there is a neighborhood U of t, such that f−1(U) is
diffeomorphic to the product f−1(t) × U .

Several examples show that there are two types of obstructions to having locally trivial
fibrations:

- global aspects related to non-properness at infinity,
- local aspects related to the singular points of f .

Definition 1.1. z is a singular point of f iff grad f(z) = 0.
Notation: Σf = {z ∈ Cn | z is a singular point of f}.
A singular point z is called isolated if it is an isolated point of Σf .
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1.3. Milnor fibration. We consider in the local case non-constant holomorphic function
germs f : (Cn, 0) → (C, 0) and allow arbitrary singularities (isolated or non-isolated). We
recall the definition of the Milnor fibration. Let B := Bε ⊂ Cn+1 be an ε-ball and let
D = Dη ⊂ C be an η-disk. For any ε≫ η > 0 small enough there exist an ε-ball B := Bε

in Cn+1 and an η-disc D := Dη in C such that the restriction:

f : f−1(D) ∩ B −→ D

is a locally trivial fibre bundle over D \ {0}. The fibres are called Milnor fibres. The
boundary ∂B is called the Milnor sphere.

Some properties of the Milnor fibration are:

1. The Milnor fibres have the homotopy type of a CW complex of real dimension
n− 1,

2. there exist a monodromy operator which maps the Milnor fibre to itself. This
operator has a representative without fixed points; its eigenvalues on the homolgy
groups of the fibres are roots of unity. Some aspects of the monodromy are dis-
cussed in the series of lectures by Sabir Guzein-Zade.

The simplest example of a singularity is a Morse singularity: f = z2
1+· · · z2

n, also denoted
by A1 (in Arnold’s notation). It is known that its Milnor fibre is diffeomorphic to the unit
ball bundle of the tangentbundle to Sn−1. It follows that the Milnor fibre is homotopy
equivalent to the sphere Sn−1 (which may be seen as the real part of f = z2

1 + · · · z2
n = 1).

1.4. Morsification of an isolated singularity. Let z be critical point of f ; consider
the deformation: fa = f − (a1z1 + · · · + anzn), where a ∈ Cn is a regular value of
the gradient mapping grad f : (Cn, z) → (Cn, z). This is a finite holomorhic mapping
(a branched covering). Its covering degree is called the (deformation) Milnor number;
notation µdef(f). Let On be the ring of holomorphic functions at the origin. There is the
following algebraic formula:

µdef(f) = dim
On

(δ1f, · · · , δnf)

where δi denotes partial derivitive with respect to zi.
The critical points of fa satisfy grad fa = 0 and so grad f = a. So for generic a there

are exactly µdef(f) critical points. The computation of the Hessian determinant shows
that all these critical points are Morse.

Example 1.2. f = xa + yb + zc. By direct computation of the covering degree, or by the
above formula, one gets: µdef(f) = (a− 1)(b− 1)(c− 1)

1.5. Bouquet theorem for isolated singularities.

Theorem 1.3 (Milnor). Let f : (Cn, 0) → C be a non-constant holomorphic germ with
isolated singulariy, then its Milnor fibre is homotopy equivalent to a bouquet of µ(f)
spheres of dimension n− 1:

Sn−1 ∨ · · · ∨ Sn−1.

The proof given during the school uses the paradigma of additivity of the vanishing
homology: Let XD = f−1

a (D)∩B and for t ∈ ∂D denote Xt = f−1
a (t)∩B. The homology
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groups Hk(XD, Xt) are called the vanishing homology groups. Milnor’s theorem implies
that the only non-zero vanishing homology groups are in dimension n (since XD is a
contractible space). Small deformations of f within a fixed ball B preserve the general
fibres (up to diffeomorphisms). The vanishing homology is additive over the critical points.
This is valid in particular for a Morsification of an isolated singulariry. Each Morse point
has vanishing homology concentrated in dimension n and contributes with Z. Summing
up the µdef(f) contributions, we get: Hk(XD, Xt) = 0 if k 6= n and Z

µdef (f) if k = n.
This shows Milnor’s theorem on the level of homology. It also shows that µ(f) = µdef(f).
An application of Whitehead’s theorem (as in Milnor’s book) can be used to get the
conclusion of the theorem at the level of homotopy. In the lectures we also gave a direct
homotopical proof which is generalized in the theorem below.

1.6. Special Fibre Theorem. We next consider a deformation F of f , i.e. a holomor-
phic map germ:

F : (Cn × C
r, 0) → (C × C

r, 0)

of the form

F (x, a) = (fa(x), a)

such that f0(x) = f(x). The map germ fa is called a perturbation of f .
We require that the deformation be topologically trivial over the Milnor sphere ∂B.

This condition implies:

- f−1
a (t) is (stratified) transversal to ∂B for all |t| < η and for all |a| < ρ.

- f−1
a (D) ∩ ∂B is homeomorphic to f−1(D) ∩ ∂B and therefore contractible.

- the Milnor fibre of f and the general fibre of fa are diffeomorphic.

Theorem 1.4 (Siersma,[Si4]). Let F be a deformation of f, which is topologically trivial
over the Milnor sphere. Let a ∈ Dρ and suppose that all fibres of fa are smooth or have
isolated singularities except for one special fibre Xt = f−1

a (t) ∩ B. Then Xt is homotopy
equivalent to a wedge of spheres:

Xt

h
≃ Sn−1 ∨ · · · ∨ Sn−1

The number of spheres is equal to the sum of the Milnor numbers in the fibres different
from Xt.

Proof. In the following we use the notation:

g : X → D for the perturbation fa : f−1
a (D) ∩ ∂B → D.

We denote: XY = g−1(Y ).
Let x1, . . . , xσ be the critical points outside Xt and c1, . . . , cτ be the critical values,

different from t. Take small disjoint discs D0, D1, . . . , Dτ around t, c1, . . . , cτ and join
them with a point s on ∂D0 with the help of a system of non-intersecting paths Γ (in the
usual way, cf. Figure 1). Call the endpoints s1, . . . , sτ .

Figure 1. The image of the deformation
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We mention the homotopy equivalence:

Xt

h
≃ XD0

.

This equivalence is well known in the local case (i.e. in a small neighborhood of a singular
point), see proposition 2.A.3.(b) of [GM]. Since our map is proper one can patch together
these local equivalences to a global homotopy equivalence. One can also apply directly
lemma 2.A.2. of [GM].

Next we use homotopy lifting properties and have firstly:

XD0

h
≃ XD0∪Γ

and secondly:

XD

h
≃ XD0∪Γ ∪XD1

∪ · · · ∪XDτ

Similar homotopy equivalences occur in [Lo] and [Si1].
All Xci contain only isolated singularities. Let µi be the sum of the Milnor numbers

in the fibre Xci. Each XDi
can be obtained (up to homotopy equivalence) from Xsi

by
attaching µi cells of dimension n in order to kill the vanishing cycles.

After retraction of Γ to the point s, it follows that

XD

h
≃ XD0

∪ ∪τi=1 cells of dimension n .

Since XD is diffeomorphic to f−1(D) ∩ B, which is contractible (as total space of the
Milnor fibration), we have that:

πk(Xt) = πk(XD0
) = 1, for all k < n− 1.

Since Xt has the homotopy type of a CW-complex of dimension n−1, see [GM, p.152],
it follows that:

Xt

h
≃ Sn−1 ∨ · · · ∨ Sn−1,

the number of spheres being equal to ν =
∑

i µi. �

Remark 1.5. In the case of an isolated singularity f : (Cn+1, 0) → (C, 0) the above
theorem shows that for any perturbation g : X → D of f , all fibres Xs (including the
singular fibres) have the homotopy type of a wedge of n-spheres.

Remark 1.6. If X is not smooth but if X \Xt is smooth, the local special fibre theorem
applies since XD is still contractible.

2. Lecture 2: Topology of the fibres of a polynomial

2.1. Singularities at infinity. Let f : C
n → C be a polynomial of degree d and let

f̃(x, x0) be the homogenized of f by the new variable x0. One replaces f : Cn → C by
a proper mapping τ : X → C which depends on the chosen system of coordinates on
Cn, as follows (see [Br1]). Consider the closure in Pn × C of the graph of f , that is the
hypersurface

X := {((x; x0), t) ∈ P
n × C | F := f̃(x, x0) − txd0 = 0},
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which fits into the commuting diagram

C
n i

−→ X

f ց ւτ

C

,

where i denotes the inclusion x 7→ (x, f(x)) and τ is the projection on the second factor.
The fibres of τ are denoted by Xt.

Let H∞ denote the hyperplane at infinity {x0 = 0} ⊂ P
n. The intersection Xt ∩H

∞ is
independent of t.

The singularities of X are contained in the part “at infinity” X∞ := X ∩ (H∞ × C),
namely:

Xsing := S × C, where S := {
∂fd

∂x1
= · · · =

∂fd

∂xn
= 0, fd−1 = 0} ⊂ H∞.

The singular set of X∞ is:

X
∞
sing := Σ∞

f × C, where Σ∞
f := {

∂fd

∂x1
= · · · =

∂fd

∂xn
= 0} ⊂ H∞.

We have S ⊂ Σ∞
f .

The singularities of f , i.e. the affine set Sing f := Z( ∂f
∂x1

, · · · , ∂f

∂xn
), can be identified,

by the above diagram, with the singularities of τ on X \ X∞. One can prove, by an easy
computation, that Sing f ∩H∞ ⊂ S, where Sing f denotes the closure of Sing f in P

n. In
particular we get dim Sing f ≤ 1 + dimS.

2.2. A global bouquet theorem. The next result may be viewed as a global version
of the local bouquet theorems of J. Milnor [Mi, Theorem 6.5] and Lê D.T. [Lê, Theorem
5.1].

Theorem 2.1. [ST1] Let f : C
n → C be a polynomial with isolated W-singularities1 at

infinity. Then the general fibre of f is homotopy equivalent to a bouquet of spheres of real
dimension n− 1.

For the proof we refer to [ST1] and the notes from the Trieste Singularities School [ST4].
In this Kiev summer school lectures we mentioned the following sketchy arguments:

(a). Consider first the compactified situation. The function F defines a deformation
Ft(x, xo) = F (x, xo, t). Consider the polar curve of F with respect to t, Γ(t, F ),
near points p ∈ H∞. We will discuss polar curves later in these lectures. Its
intersection points Γ∩H∞ are important, they are obstructions for local triviality
of the family of compactified fibres. From the Special Fibre Theorem it follows

that locally at (p, t0) : Xt∩B
h
≃ Sn−1∨· · ·∨Sn−1, where B is a small ball of ’Milnor

type’ around (p, t0), and t 6= t0. In fact this is the Milnor fibre for a function germ,
defined on a hypersurface, namely τ : X → C. Denote the number of spheres by
λt0(p).

1defined in [ST1], but interpreted here in terms of the polar curve condition
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(b). Next use the additivitity of the vanishing homology of the function τ : X → C in a
global way (both using the contributions of affine critical points of f with Milnor
number µi and the λ-numbers λj at the points Γ ∩H∞).

Hk(P
n, Xt) = ⊕H̃k−1(S

n−1 ∨ · · · ∨ Sn−1) = Z
µ+λ for k = n and 0 elsewhere.

Here µ =
∑

ui and λ =
∑

λj. Next do homology excision (see [ST1] for details):

Hk(C
n, Xt) = ⊕H̃k−1(S

n−1 ∨ · · · ∨ Sn−1) = Z
µ+λ for k = n and 0 elsewhere.

(c). Do homotopy excision (see [ST1] for details) to obtain the homotopy equivalence.
(d). In case Xt has isolated singularities at P ∈ Γ∩H∞ and no affine singularities, one

can conclude, by perturbing the special fibre, that λt0 = µ(Xt0) − µ(Xt).

2.3. Lê attaching principle. Let f : (C, 0) → C be a holomorphic function (with no
assumptions about Sing f). Consider a general linear function l : Cn → C. Together they
define a mapping:

Φ = (l, f) : (Cn, 0) → C
2

Let Sing Φ be the set of points wher dΦ has not the maximal rank. Note that Sing f ⊂
Sing Φ. The polar curve of f with respect to l is defined as the closure:

Γf = Sing(Φ) \ Sing f.

Its image under Φ is called the Cerf Diagram.

Figure 2. Cerf Diagram

Theorem 2.2 ([Lê]). The difference between the Euler characteristic of the Milnor fibre
Xt and its generic hyperplane section Xt ∩ {l = 0} is:

χ(Xt) − χ(Xt ∩ {l = 0}) = (−1)n−1pf

where pf := (Γf , {l = 0}) (intersection number).
Moreover if both f and f |{l = 0} have isolated singularities then:

µ(f) + µ(f |{l = 0}) = pf

Proof. Xt can be obtained (up to homotopy) from Xt ∩ {l = 0} by attaching pf cells of
dimension n− 1. �

3. Lecture 3: Non isolated singularities

3.1. One dimensional singular locus. In this section we consider singularities with a
1-dimensional critical locus (for short: 1-isolated singularities) and study the vanishing
homology in a full neighbourhood of the origin. In this case the vanishing homology is
concentrated on the 1-dimensional set Σ := Sing f . As general reference we mention the
summary paper [Si7]. We can write

Σ = Σ1 ∪ . . . ∪ Σr

where each Σi is an irreducible curve.
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At the origin we consider the Milnor fibre F of f and on each Σi − {0} a local system
of transversal singularities, as follows: take at any x ∈ Σi − {0} the germ of a generic
transversal section. This gives an isolated singularity whose µ-class is well-defined. We
denote a typical Milnor fibre of this transversal singularity by F ′

i .

More precisely we consider in the 1-isolated case the following data:

The Milnor fibre F. The homology is concentrated in dimensions n− 1 and n− 2 (see
the Proposition below):

{

Hn−1(F ) = Z
µn−1 , which is free.

Hn−2(F ), which can have torsion.

The transversal Milnor fibres F ′
i . The homology is concentrated in dimension n− 2:

H̃n−2(F
′
i ) = Z

µ′i ,which is free.

We don’t discuss here the monodromies, which act on these space, we refer to [Si7].

Example 3.1. D∞-singularity: f = xy2 + z2.
Σ is given by y = z = 0 and is a smooth line. The transversal type is A1.

It is known that F is homotopy equivalent to S2 (cf. [Si1]).

Example 3.2. T∞,∞,∞-singularity: f = xyz

Σ = Σ1 ∪ Σ2 ∪ Σ3 and consists of the three coordinate axes in C3.

The transversal type is again A1.

It is known that F is homotopy equivalent to the 2-torus S1 × S1 (cf. [Si3])

Proposition 3.3. If f has a 1-dimensional singular set then its Milnor fibre is n − 3
connected2 and therefore H̃k(F ) has only non-zero contributions for k = n− 1 and n− 2.

Proof. The Milnor fibre Xt is constructed (up to homotopy) by adding cells of dimension
n − 1 (Lê attaching) to the hyperplane section Xt ∩ {l = 0}. Because f |{l = 0} has an

isolated singularity we have Xt∩{l = 0}
h
≃ Sn−2∨· · ·∨Sn−2. Attaching cells of dimension

n− 1 does not influences homotopy and homology groups of dimension ≤ n− 3. �

Using such a proof by induction, one finds the known result:

Proposition 3.4. (Kato-Matsumoto)
If dim Σf = s then its Milnor fibre is n− s− 2 connected.

3.2. Series of singularities. Let again f : (Cn, 0) → (C, 0) be a germ of a holomorphic
function. Let f have a 1-dimensional critical locus Σ = Sing f . One considers for each
N ∈ N the series of functions:

fN = f + ǫlN

where l is an admissible linear form, which means that the hyperplane section f−1(0) ∩ {l = 0}
has an isolated singularity. One calls this series of function germs a Yomdin series of the

2this means all homotopy groups up to n − 3 are trivial
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hypersurface singularity f . Under the above condition all members of the Yomdin series
have isolated singularities. Moreover their Milnor numbers can be computed using the
so-called Lê-Yomdin formula:

Theorem 3.5. Let f : (Cn+1, 0) → (C, 0) have 1-dimensional critical locus Σ = Σ1∪· · ·∪
Σr (irreducible components). Let l be an admissible linear form.

µ(f + ǫlN ) = bn−1(f) − bn−2(f) +Ne0(Σ).

Here bn−1, resp bn−2 are the corresponding Betti-numbers of the Milnor fibre F of the
non-isolated singularity f and e0(Σ) is the intersection multiplicity of Σ and l = 0. The
formula holds for all N sufficiently large. Moreover e0(Σ) =

∑

diµ
′
i, where di is the

intersection multiplicity of Σi (with reduced structure) and l.

Proof. The idea behind the proof is to use polar methods and to consider the map germ

Φ = (f, l) : C
n+1 → C × C.

The Milnor fibres F of f , resp FN of fN occur as inverse images under Φ of the sets
{f = t}, resp {f + ǫlN = t}. Next one constructs via a (stratified) isotopy an embedding
F ⊂ FN .

Figure 3. Both Cerf diagrams in one picture

From the corresponding homology sequence one gets the following 4-term exact se-
quence

0 → Hn(F ) → Hn(F
N) → Hn(F

N , F ) → Hn−1(F ) → 0.

The difference FN \ F is (by excision and homotopy equivalence) related to the part of
FN located near the di intersection points of Σi and FN . One obtains:

Hq(F
N , F ) = ⊕r

i=1 ⊕
Ndi

k=1 H̃n−1(Fi,k),

Figure 4. Situation in the l-plane

where each Fi,k is a copy of the Milnor fibre of the transversal singularity F ′
i . From this

one gets

bn(F ) − bn−1(F ) = bn(F
N) −N

∑

diµ
′
i.

�

Remark 3.6. In [Si5] there is a formula that relates the characteristic polynomials of the
monodromies of f and fN . Other ingredients are the horizontal and vertical monodromies.
The eigenvalues of the monodromy satisfy Steenbrink’s spectrum conjecture, cf [Stb]. This
conjecture was later proved by M. Saito [Sa], using his theory of Mixed Hodge Modules.
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3.3. Euler characteristic of a projective hypersurface with isolated singulari-

ties. We consider first smooth hypersurfaces V of degree d in the projective space Pn. It
is well-known, that they have all the same topological type, in particular the same Euler
characteristic χn,d. A typical example is given by xd0 + · · ·+ xdn = 0.

Proposition 3.7. Let V be a smooth hypersurface of degree d in Pn. Then

χ(V ) = χn,d = (n+ 1) −
1 + (−1)n(d− 1)n+1

d
.

Proof. Consider the projection map π : Cn+1 → Pn and restrict π to {xd0 + · · ·+ xdn = 1}.
This restriction defines a d-fold cover onto P

n \ V . The source space can be identified
with the Milnor fibre of xd0 + · · ·+ xdn, which has Milnor number (d− 1)n+1. It follows:

dχ(Pn \ V ) = 1 + (−1)n(d− 1)n+1.

�

Proposition 3.8. Let V be a smooth hypersurface of degree d in Pn, which has only
isolated singularities. Then

χ(V ) = χn,d + (−1)n
∑

p

µ(V, p).

where µ(V, p) is the Milnor number of the isolated singularity at p, and p runs over all
singular points.

Proof. Consider the family of projective hypersurfaces:

Vs = {fd + shd = 0},

where fd = 0 defines V and hd defines a hypersurface of generic type.
Note that Vs is a smoothing of V = V0. Outside neigborhoods of the singular points we
have local diffeomorphisms of pieces of V and Vs.

Figure 5. Deformation to generic hypersurface

In neigbourhouds B of the singular points p we have that Vs ∩B is equal to the Milnor
fibre of the singularity (V, p). The difference in Euler characteristic between Vs ∩ B and
V ∩B is just (up to sign) its Milnor number. �

We will treat in Lecture 4 the more complicated situation of hypersurfaces with a
1-dimensional singular set.

3.4. Top Betti Defect. Let f : Cn → C be a polynomial function of degree d ≥ 2,
where n ≥ 2. It is well-known that f is a locally trivial fibration over C outside a finite
number of atypical values, [Th, Br1]. It’s general fibre G is a Stein manifold and therefore
homotopy equivalent to a CW-complex of dimension n − 1, by [Ka, Ha]. We shall call
top Betti number of f and denote bn−1(f) := bn−1(G) the (n − 1)th Betti number of the
general fibre. While this number is clearly bounded in terms of n and d, our aim is to find
what are the special properties of f which make bn−1(f) approach the maximum (d−1)n.
Let us call top Betti defect of f the difference ∆n−1(f) := (d− 1)n − bn−1(f).
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We shall show in the next lectures that if ∆n−1(f) is small enough, then the polynomial
has special types of singularities.

While considering the Betti numbers of a fibre Xt of a polynomial mapping f , it is
usefull to compare Xt and Xt ∩H∞. A natural concept is the following:

Definition 3.9. Let (Y, p) be a germ of hypersurface in Cn and H a hyperplane. The
pair (Y, Y ∩ H) has an isolated boundary singularity at p if both (Y, p) and (Y ∩ H, p)
have isolated singularity. Its boundary Milnor number is defined by:

µp(Y ) + µp(Y ∩H)

The local theory of boundary singularities has been studie by V. Arnol’d [Ar1] and his
school.

Returning to our global situation we have the equivalence: the boundary pair (Xt, Xt∩
H∞) has isolated singularities if and only if Xt has isolated singularities and dim Σ∞

f ≤ 0.

Then S = Σ∞
f ∩ {fd−1 = 0} is the subset of points of H∞ where Xt is singular, and this

does not depend on the value t ∈ C.

Proposition 3.10 ([ST5]). Let f be a polynomial of degree d with isolated singularities,
having general fibre X0 and satisfying dim Σ∞

f ∩ {fd−1 = 0} ≤ 0. Then:

(1) ∆n−1(f) =
∑

p∈Σ∞

f
∩{fd−1=0}

µp(X0) + (−1)n∆χ∞

where ∆χ∞ := χn−1,d−χ({fd = 0}) and χn−1,d = n− 1
d
{1+ (−1)n−1(d− 1)n} denotes the

Euler characteristic of the smooth hypersurface V n−1,d
gen of degree d in Pn−1.

In particular, if dim Σ∞
f ≤ 0 then:

(2) ∆n−1(f) =
∑

p∈Σ∞

f

[µp(X0) + µp(X0 ∩H
∞)].

Proof. One uses the fact that X0 is the difference of two projective varieties. Consequently
χ(X0) = χ(X0)−χ(X0 ∩H∞). We treat these terms separately and compare them to the
corresponding terms for a general hypersurface. Then applying Proposition 3.8 in case of
isolated singularities yields (1) and (2). Note that in (2) the contributions are exactly the
boundary Milnor numbers defined above. �

3.5. Isolated Line Singularities: local case. The fundamental paper on this is [Si1].
We consider the germ f : (Cn, 0) → C where the singular set is a straight line L. Choose
coordinates (x, y1, · · · , yn−1); for short (x, y). The line L is given by y1 = · · · = yn−1 = 0.

Lemma 3.11. f is singular on L iff there exist hij(x, y) such that f =
∑

hijyiyj. �

An important ingredient is the transversal Hessian: hf (x) = det(hij(x, 0). Note that
hf (x) 6= 0 in x implies that the transversal singularity (given by f(x, y) as function of y)
is of type A1.

Definition 3.12. Let Sing f = L and hf(x) 6= 0 whenever x 6= 0. We call f an isolated
line singularity.
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Isolated line singularities are classified in low codimension (including all simple line
singularities). The beginning of the list is:

codim type normal form hessian
0 A∞ y2

1 + · · · y2
n−1 hf (x) = 1

1 D∞ xy2
1 + y2

2 + · · · y2
n−1 hf (x) = x

2 J∞ x2y2
1 + y2

2 + · · · y2
n−1 hf (x) = x2

For isolated line singularities one can perform a generic deformation by perturbing the
hij in a generic way. The resulting deformed function has generically only A∞-,D∞- and
A1-singularities.

Theorem 3.13. If f has an isolated line singularity then its Milnor fibre is a bouquet of
spheres:

1. Sn−2 if f is of type A∞,
2. Sn−1 ∨ · · · ∨ Sn−1 else.

In the second case the number of spheres is equal to A1 + 2D∞ − 1, where A1 and D∞

denote the number of A1-points and D∞- points in the generic deformation.

Proof. The main idea is to use the generic deformation mentioned above. Start with a
transversal Milnor fibre Sn−2, each D∞-point kills this sphere with 2 balls of dimension
n− 1. Next attach (n− 1)-spheres for each A1 singularity. For details cf [Si1]. �

Figure 6. Generic deformation of an isolated line singularity

3.6. Isolated Line Singularities: projective case. We intend to use the theory of
isolated line singularities in the projective space Pn−1. Assume now we have a hypersurface
V = {f = 0}, where f is homogeneous of degree d. Let its singular set be a projective
line L. One may assume:

f =
∑

hij(x, y)yiyj

where we use homogeneous coordinates (x0, x1, y2, · · · , yn−1), for short (x, y). Assume now
that the transversal type at general points of L is A1. Note that the Hessian determinant
hf (x0, x1) has homogeneous degree (d− 2)(n− 2). A generic deformation will produce a
hypersurface with singular set a projective line and (d− 2)(n− 2) D∞-points and of type
A∞ elsewhere along the line. We will use this in Lecture 5.

4. Lecture 4

The references for the statements in this lecture are [ST2] and [ST5], unless otherwise
stated.

By one-parameter deformation of f we mean a holomorphic map P : Cn × C → C,
where Ps := P (·, s) is a polynomial of degree d for any s ∈ C, and such that P0 = f . We
shall work with germs at s = 0 of such families of polynomials. Let Gs denote the general
fibre of Ps. We start from the following key result.
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Proposition 4.1. [ST3] For s 6= 0 close enough to 0, the general fibre G0 of P0 can be
naturally embedded in the general fibre Gs of Ps such that the embedding G0 ⊂ Gs induces
an injective map Hn−1(G0) →֒ Hn−1(Gs).

In particular, we have the following semi-continuity principle for the top Betti number:

(3) ∆n−1(Ps) ≤ ∆n−1(P0), for s 6= 0 close enough to 0.

�

An affine hypersurface in Cn will be called general-at-infinity if its projective closure
is non-singular in the neighbourhood of the hyperplane at infinity H∞ and intersects
it transversely. The polynomial f will be called general-at-infinity (or of G-type) iff all
its fibres are general-at-infinity. Since this is equivalent to Σ∞

f = ∅, it means that f is
general-at-infinity iff some fibre of f is so.
Another key fact is that any polynomial is deformable into a general-at-infinity polyno-
mial.

Proposition 4.2. Any polynomial can be deformed into a general-at-infinity polynomial
of the same degree. More precisely, let hd be some general-at-infinity polynomial of degree
d. Then the deformation fε := f + εhd transforms any given polynomial f of degree d
into a general-at-infinity polynomial fε, for any ε 6= 0 close enough to 0. �

Using such a deformation and the additivity of the Euler characteristic, we may prove
Proposition 3.10, cf [ST5].

4.1. Euler characteristic of projective hypersurfaces with one-dimensional sin-

gularities. Let V := {fd = 0} denote a hypersurface in Pn−1 = H∞ of degree d with

singular locus Σ̂ of dimension one, more precisely Σ̂ consists of a union Σ of irreducible
curves and eventually a finite number of points {R1, . . . , Rδ}. Let hd be a general-at-
infinity homogeneous polynomial of degree d and consider the deformation fε = f + εhd.
This is general-at-infinity for ε 6= 0 in some small enough disk centered at 0, by Propo-
sition 4.2. For any ε ∈ C, let Vε := {fε,d := fd + εhd = 0} be a pencil of projective
hypersurfaces.

The genericity of hd ensures that Vε is nonsingular for all ε 6= 0 in a small enough disk
∆ ⊂ C centered at the origin. Let us consider the total space of the pencil:

V∆ := {fd + εhd = 0} ⊂ P
n−1 × ∆

as germ at V0 and the projection π : V∆ → ∆. We denote by A = {fd = hd = 0} the axis
of the pencil. One considers the polar locus of the map (hd, fd) : Cn → C2 and since this
is a homogeneous set one takes its image in Pn−1 which will be denoted by Γ(hd, fd).

We have:

Lemma 4.3. The space V∆ has isolated singularities: Sing V∆ = (A ∩ Σ) × {0}, and

π : V∆ → ∆ is a map with 1-dimensional singular locus: Sing (π) = Σ̂ × {0}. �

We shall use the following notations: A ∩ Σ = {P1, . . . , Pν}, Σ∗ := Σ \ ({Pi}νi=1 ∪
({Qj}

γ
j=1), N := small enough tubular neighbourhood of Σ∗, and Bi, Bj, Bk are small

enough Milnor balls within V∆ ⊂ Pn−1 × ∆ at the points Pi, Qj, Rk, respectively.
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Figure 7. Point-strata of V and the intersection H ∩ Σ

Since the Euler characteristic χ is a constructible functor, we have the following de-
composition into a sum:

(4) χ(V∆, Vε) = χ(N ,N∩Vε)+
ν

∑

i=1

χ(Bi, Bi∩Vε)+

γ
∑

j=1

χ(Bj , Bj∩Vε)+
δ

∑

k=1

χ(Bk, Bk∩Vε)

The pair (B,B ∩ Vε) in all of the above three sums represents the local Milnor data
of a hypersurface germ of dimension n − 2 in a space of dimension n − 1. The last one
(Bk, Bk ∩ Vε) corresponds to the isolated hypersurface singularity of V at Rk with Milnor
number µk ≥ 1, of which π is a smoothing, and therefore we have:

χ(Bk, Bk ∩ Vε) = (−1)n−1µk

For the first term, since the map π : V∆ → ∆ has a trivial transversal structure along
Σ∗
r , where Σr is some irreducible component in the decomposition of Σ, we have the

equality:

χ(N ,N ∩ Vε) =
∑

r

χ(Σ∗
r)χ(Br, F

⋔

r ).

where (Br, F
⋔
r ) is the transversal Milnor data at some point of Σ∗

r , namely Br is a Milnor
ball of the transversal singularity and F⋔

r is the corresponding transversal Milnor fibre.
Note that this is the Milnor data of an isolated hypersurface singularity of dimension
n − 3; its Milnor number will be denoted by µ⋔

r and this does not depend on the choice
of the point on Σ∗

r . We therefore have: χ(Br, F
⋔
r ) = (−1)n−2µ⋔

r .
We also have χ(Σ∗

r) = 2 − 2gr − νr − γr where gr is the genus of Σr, and where νr and
γr are the numbers of points Pi and Qj on Σr, respectively. Then:

(5) χ(N ,N ∩ Vε) = (−1)n−1
∑

r

(νr + γr + 2gr − 2)µ⋔

r .

The contribution of the axis in the formula (4) is null, since one shows:

Lemma 4.4. χ(Bi, Bi ∩ Vε) = 0. �
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This follows since the germ of the polar locus Γp(hd, fd) ⊂ Pn−1 is empty at any point
p ∈ A× {0}.

Let us finally remark that χ(V∆, Vε) = χ(V )−χn−1,d since Vε is a general hypersurface
of degree d in Pn−1 and since V∆ retracts to its central fibre V = {fd = 0}. Then the
preceding considerations prove the following:

Theorem 4.5. Let V := {fd = 0} ⊂ P
n−1 be a hypersurface of degree d where Sing V is

a union of curves and isolated points. Then, in the above notations:

(6) χ(V ) = χn−1,d+(−1)n−1
∑

r

(νr+γr+2gr−2)µ⋔

r +

γ
∑

j=1

χ(Bj , Bj∩Vε)+(−1)n−1

δ
∑

k=1

µk.

�

5. Lecture 5. Polynomials with line singularities at infinity

Our aim is to compute, via formula (1), the top Betti defect of polynomials f with
dim Sing f ≤ 0 and Σ∞

f is a union of curves and isolated points, such that dim Σ∞
f ∩{fd−1 =

0} ≤ 0. We are considering the deformation fε = f + εhd, where hd is a general-at-
infinity homogeneous polynomial of degree d. By Proposition 4.2, fε is a general-at-
infinity polynomial for ε 6= 0. In the notations of Proposition 3.10, ∆χ∞ = χ(V∆, Vε).
Then Theorem 4.5 reads:

Corollary 5.1. Let f : Cn → C be a polynomial of degree d with dim Sing f ≤ 0 and Σ∞
f

is a union of curves and isolated points. Then:

(7) ∆χ∞ = (−1)n
∑

r

(νr + γr + 2gr − 2)µ⋔

r −

γ
∑

j=1

χ(Bj , Bj ∩ Vε) + (−1)n
δ

∑

k=1

µk

�

The only part of the formula (7) which is not explicitly computed is the sum of
χ(Bj , Bj ∩ Vε) which runs over the Whitney point-strata Qj of the hypersurface V . One
may compute it in particular cases, like in the natural class of polynomials where Σ∞

f is

a reduced line with Morse generic transversal type.3 We then prove:

Theorem 5.2. If f has at most isolated affine singularities and Σ∞
f is a reduced projective

line with generic Morse transversal type, then

∆n−1(f) ≥ 2(n− 1)(d− 2) + 1.

The existence of such singularities implies n ≥ 3. For n = 3 our formula reads:
∆n−1(f) ≥ 4d − 7 which shows that our result specialises to the estimation proved in
[ALM] for a particular class of polynomials in 3 variables, with dim Sing f ≤ 0 and
dim Σ∞

f = 1, and with no singularities at infinity in the sense of [ST1].

3We shall see in the proof of Proposition 6.4 that, if the top Betti defect of f is between d and 2d− 3,
then f might have such type of singularities.
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Proof of Theorem 5.2. By eventually deforming the d − 1 homogeneous part of f we
get that the intersection Σ ∩ {fd−1 = 0} is of dimension ≤ 0. Using the definitions in
§4.1 in our particular setting, we have by assumption δ = 0, r = 1, g1 = 0, µ⋔

1 = 1, and
ν1 = ν = mult(Σ, {hd = 0}) = deg hd = d. We apply formula (1) and Corollary 5.1 and
we get:

(8) ∆n−1(f) =
∑

p∈Σ∞

f
∩{fd−1=0}

µp(X0) + (d+ γ − 2) + (−1)n−1

γ
∑

j=1

χ(Bj , Bj ∩ Vε).

Let us first evaluate the sum of Milnor numbers of the general fibre X0 of f . For a general
d− 1 homogeneous part of f we get that the intersection Σ∩ {fd−1 = 0} consists of d− 1
simple points, each of which being an A1 singularity of X0. This implies that the above
first sum is bounded from below by d− 1.

The number γ counts the special points Qj on the singular line Σ := Σ∞
f . Then

the last sum has γ terms and we need to determine for each of them the contribution
χ(Bj , Bj ∩ Vε). For this we need the deformation theory of line singularities, founded by
Siersma [Si1] and subsequently developed by several authors. Let us assume without loss
of generality that the line Σ ⊂ Pn−1 is the zero locus of the ideal I = (x1, . . . , xn−2). We
remark first that the ideal of homogeneous polynomials g : (Cn, 0) → (C, 0) such that
Sing g ⊃ Σ is spanned by the polynomials of the form g(x) =

∑n−2
i,j=1 hij(x)xixj where

hij(x) are polynomials depending on all variables x1, . . . , xn. This was established in [Si1]
and [Pe1] in the germ case; our situation is slightly different but the same proof applies.

In our setting the functions hij(x) are of degree ≤ d − 2. Following the deformation
theory in [Si1] (see also Lecture 3), by deforming hij(x) we get a generic transversal
Hessian H(x) := det(hij)i,j(x) and this implies that g has generic singularity type A∞

along Σ. Then the point-strata Qj are precisely the type D∞ singularities. Following
Siersma’s theory [Si1], the number of D∞ points is equal to the degree of the Hessian
H(0, . . . , 0, xn−1, xn). In the generic case this degree turns out to be equal to (d−2)(n−2).
We may then take this value of γ in the formula (8) as a minimum. We also get from
[Si1] that the Milnor fibre of a D∞-singularity is homotopy equivalent to a (n−2)-sphere,
therefore χ(Bj , Bj ∩ Vε) = (−1)n−1.

Finally, putting together the lower bounds we get:

∆n−1(f) ≥ d− 1 + d+ 2(d− 2)(n− 2) − 2 = 2(n− 1)(d− 2) + 1.

�

Example 5.3. The proof actually shows that whenever hij and fd−1 are generic we have
the equality ∆n−1(f) = 2(n− 1)(d− 2) + 1, which means that the bound of Theorem 5.2
is sharp for any n ≥ 3. An explicit example for n = 3 is the following.

Let f = zd + z2xd−2 + z2yd−2 + xy(xd−3 − yd−3), where n = 3 and d ≥ 3. Then f has
isolated affine singularities and Σ∞

f is a reduced projective line with generic transversal
type A1. Let us compute ∆2(f) using Proposition 3.10 and its notations.
Let Xt denote a general fibre. Then H∞ ∩ SingXt = {z = 0, xy(xd−3 − yd−3) = 0}. By
computing in coordinate charts it follows that the set SingXt consists of d − 1 Morse
singularities. According to formula (1), this contributes with d−1 to the top Betti defect.
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Next we compute ∆χ∞ from the same formula. We have fd = z2(zd−2 + xd−2 + yd−2) and
the reduced hypersurface {fd = 0} ⊂ P2 has degree d − 1 and precisely d − 2 singular
points which are Morse. This implies the equality χ({fd = 0}) = χ2,d−1 + d − 2. Since
χ2,d−1 = −(d − 1)2 + 3(d− 1), we get χ({fd = 0}) = −d2 + 6d− 6, which yields ∆χ∞ =
χ2,d−χ({fd = 0}) = −3d+6. By formula (1) we then get ∆2(f) = d−1+3d−6 = 4d−7.
This corresponds to the equality in Theorem 5.2, showing that the bound is sharp for
n = 3.

6. Lecture 6. Polynomials with non-isolated singularities

Let f : Cn → C be a polynomial of degree d ≥ 2 with singular loci of dimension ≥ 2,
more precisely dim Sing f ≥ 2 or dim Σ∞

f ≥ 2. If one deforms f directly to general-at-
infinity polynomials, then it appears that comparing the general fibres becomes a difficult
task. A better strategy would be to deform f in two steps and use the semi-continuity
principle (3) according to the following program: (a). deform such that the dimension
of the singularity locus decreases to one, and then (b). compare the new polynomial to
another deformation of it into a polynomial satisfying the hypothesis of Proposition 3.10
or directly use results from the theory of one-dimensional singularities. The reason is that
one-dimensional singularities and their deformations are quite well understood, due to the
work of Lê [Lê], Yomdin [Yo] and the detailed study by Siersma [Si1] and his school, see
e.g. the survey [Si7].

Let l : Cn → C be a linear function. We denote by:

Γ(l, f) := closure[Sing (l, f) \ Sing f ] ⊂ C
n

the polar locus of f with respect to l. One has the following Bertini type result, proved in
[Ti1, Ti2], [Ti3, Thm. 7.1.2]:

Lemma 6.1. There is a Zariski-open subset Ωf of the dual projective space P̌n−1 such
that, for any l ∈ Ωf , the polar locus Γ(l, f) is a reduced curve or it is empty. �

We may and shall also assume (by eventually restricting Ωf to some open Zariski subset
of it) that if dim Sing f ≥ 1 then dim Sing f ∩ {l = 0} = dim Sing f − 1 for any l ∈ Ωf .
We then say that l is general with respect to f whenever l ∈ Ωf . With these settings we
may start our program.

Lemma 6.2. Let l be general with respect to f and to fd. If dim Sing f ≥ 1, or if
dim Σ∞

f ≥ 1, then the deformation fε = f + εld reduces by one the dimension of the
respective singular locus. If f has the property that dim Sing f ≤ 0 or dim Σ∞ ≤ 0 then
fε preserves this property. �

Lemma 6.3. Let l be general with respect to f and consider the deformation fε = f + εl.
If dim Sing f ≥ 1 then there exists a small disk centered at the origin D ⊂ C such that
dim Sing fε ≤ 0 and Σ∞

fε
= Σ∞

f , for any ε ∈ D∗. �

With these preparations we may consider in the next statements the two cases of
dimension one singular locus.
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Proposition 6.4. If f is a polynomial of degree d with dim Σ∞
f = 1 and dim Sing f ≤ 0

then

∆n−1(f) ≥ d− 1.

Proof. We consider the deformation fε = f + εld for general l as in Lemma 6.2. It then
follows that dim Sing fε ≤ 0 and that Sing fε,d ⊂ Pn−1 is the union of Σ∞

f ∩ {l = 0} and
eventually some finite set of points. We may assume that the hyperplane {l = 0} slices
Σ∞
f at regular points only; this property is generic too. Let then Σ∞

f = ∪rΣr be the
decomposition into irreducible components and let p ∈ Σr ∩ {l = 0} for some r. In order
to compute the top Betti defect ∆n−1(fε) = (d− 1)n− bn−1(Xε) for some general fibre Xε

of fε, we may use formula (2) in which one of the ingredients is µp(Xε∩H∞) and observe
that this is equal to µp(fε,d).

We denote by µ⋔
r the Milnor number of the transverse singularity of Σr. By the local

Lê attaching formula, see [Lê], [Yo] and [Si5], we have:

(9) µp(fε,d) + µp((fε,d)|l=0) = multp(Γ̂p(l, fε,d), {fε,d = 0}) + multp(Σr, {fε,d = 0})µ⋔

r

where Γ̂p(l, fε,d) denotes the union of the components of the germ at p of the polar curve
of the map ψ := (l, fε,d) : (Cn, 0) → (C2, 0) other than the singular locus Σr.

0

∆

l

ε,d

η

f

 u=

v=

Figure 8. Polar multiplicities

By the regularity of p, it follows that µp((fε,d)|l=0) = µ⋔
r . In local coordinates at the

regular point p the germ of the singular locus Σr is a line and the restriction to Σr of
the map ψ is one-to-one. The germ at ψ(p) of the image ∆ := ψ(Σr) is parametrised
by (l, εld) since fε,d = fd + εld and Σr ⊂ {fd = 0}. This multiplicity is represented in
Figure 8 by the number of intersection points of {fε,d = η} with the curve ∆. Therefore
multp(Σr, {fε,d = 0}) = multψ(p)(∆, {v = 0}) = d, where (u, v) are the coordinates of the
target (C2, 0). Then formula (9) becomes:

(10) µp(fε,d) = (d− 1)µ⋔

r + multp(Γ̂p(l, fε,d), {fε,d = 0}).

We next need to sum up over all the points p ∈ Σ∞
f ∩ {l = 0}. The number of points of

Σr ∩ {l = 0} is equal to the degree dr := deg Σr and we get:

(11)
∑

p∈Σ∞

f
∩{l=0}

µp(fε,d) = (d− 1)
∑

r

drµ
⋔

r +
∑

r

∑

p∈Σr∩{l=0}

multp(Γ̂p(l, fε,d), {fε,d = 0}),
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hence

(12)
∑

p∈Σ∞

f
∩{l=0}

µp(fε,d) ≥ (d− 1)
∑

r

drµ
⋔

r

with equality if and only if Γ̂p(l, fε,d) = ∅ for all p ∈ Σ∞
f ∩ {l = 0}. We finally get from

formulas (2) and (12):

(13) ∆n−1(fε) = (d−1)n−bn−1(fε,d) ≥
∑

p∈Σ∞

f
∩{l=0}

µp(Xε∩H
∞) ≥ (d−1)

∑

r

drµ
⋔

r ≥ d−1,

where Xε denotes the general fibre of fε. The first inequality becomes an equality if and
only if Xε has no singularities in the neighbourhood of H∞. The last one becomes an
equality if and only if r = 1 and d1 = 1.

Our claim follows since we have ∆n−1(f) ≥ ∆n−1(fε) by the semi-continuity principle
(3). �

Proposition 6.5. If f is a polynomial of degree d with dim Sing f = 1 and dim Σ∞
f = 0

then
∆n−1(f) ≥ d− 1.

�

These preparations lead to the following principal result:

Theorem 6.6. Let f : Cn → C be some polynomial of degree d ≥ 2. Then:

(a) ∆n−1(f) ≥ 0 and the equality holds if and only if f is general-at-infinity.
(b) If 0 < ∆n−1(f) ≤ d− 1 then dim Sing f ≤ 0 and dim Σ∞

f ≤ 0.
(c) If d ≤ ∆n−1(f) < 2d − 2 for d ≥ 3, then dim Σ∞

f ≤ 0 and either dim Sing f ≤ 0
or Sing f is one line with generic Morse transversal type and transverse to the
hyperplane at infinity.

�

Example 6.7. f = x + x2y. We have n = 2, d = 3, Sing f = ∅ and Σ∞
f = [0; 1] ∈ P

1.
The computation yields b1(f) = 1 and therefore ∆1(f) = 4− 1 = 3 which corresponds to
the situation in Theorem 6.6(c).

Example 6.8. f = x2y. Here n = 2, d = 3, Sing f = {x = 0} is a line with transversal
type A1 and Σ∞

f = [0; 1] ∈ P1. By computation we have b1(f) = 1 and so ∆1(f) =
4 − 1 = 3. This corresponds to the situation in Theorem 6.6(c) and also shows that the
estimation is sharp. In full generality, for any n ≥ 2 and d > 2, let f = (a1z

2
1 + · · · +

an−1z
2
n−1)x

d−2 + c1z
d
1 + · · ·+ cn−1z

d
n−1. This is a homogeneous polynomial and has a line

singularity L = {z1 = . . . = zn−1 = 0}. For general coefficients ai, ci, this polynomial
has no other singular point and the line L is transversal to H∞ and has Morse generic
transversal singularity type. The projective hypersurface {fd = 0} has a single singular
point at p := [1; 0; · · · ; 0]. By a local computation, the singularity type of Xt at p is Ad−1

for t 6= 0. Then we may apply formula (2) of Proposition 3.10 since this works in our
situation too. Indeed, the fibre Xt of f has reduced homology concentrated in dimension
n− 1 since it is diffeomorphic to the Milnor fibre of f at the origin (by the homogeneity)
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and since by [Si1] this line singularity Milnor fibre is homotopy equivalent to a bouquet
of spheres of dimension n − 1. So by (2) we get ∆n−1(f) = d − 1 + 1 = d, which also
shows that the lower bound in Theorem 6.6(c) is sharp.
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[ST3] D. Siersma, M. Tibăr, Singularity Exchange at the Frontier of the Space, Real and Complex
Singularities (São Carlos Workshop 2004). Trends in Mathematics, pp. 327-342, Birkhäuser
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[Ti2] M. Tibăr, Asymptotic equisingularity and topology of complex hypersurfaces, Internat. Math.

Res. Notices 1998, no. 18, 979–990.
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