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On gradient curves of an analytic function
near a critical pointl.

Nicolaas H. Kuiper

Summary. René Thom [T] conjectured that a gradient curve x(t)
of an analytic function on R™ , which descends to the critical point
x(e2) =0e R",called a path, has there a tangent. We prove this in case

n =3 for "standard” paths and "standard” functions.

For the remaining rare paths and rare functions we reduce the
conjecture for irreducible X  to an "evident" conjecture and give some
arguments in favour of CRT for reducible X . We did not succeed in

elaborating these arguments to a complete proof that covers all cases.

1 Notes for four lectures 1990/1991 at the Ecole Normale Supérieure, Paris, with a
survey as guide.






Survey and guide

Let f(x)=Z2,, H,x) , xe R" , k22, H, homogeneous
of degree £ in x = (x{5...,X;) , be an analytic function near the

critical point 0 € R™ . A descending gradient curve x(t) with limit
Xx(e0) = 0, called a path, is a solution for 0 < t< = , of the equation

dx/dt = x = - grad f with x(e) =0 .R. Thom proposed the conjecture
(CRT) that every path has a tangent at the limitpoint x(e) = O . For two
"polar coordinates”, r = Ixl 2 0 a real number, and ® = x/Ix| a point in
the unit sphere Sn'1 , we call the curve (1) = o(x(t)) the celestial trace

in S"! of the path x(t). Clearly the tangent at x(e) = O exists if and
only if the limitset Q = lim__ o(t) of the celestial trace is one point.

In order to prepare for Thom's conjecture we study paths and
celestial traces near the critical point, and in particular for n < 3 . The

local theory of traces has interest in its own right.

From the fundamental differential equations in polar coordinates
in section 1 we conclude that the limitset Q is a compact connected set
in a topological component £ of the algebraic set of critical points,
crit H , in S2-1 | The function H, on $t-1 s by definition the
restriction FIk\S“'1 . Thom's conjecture is then proved (in section 2) in
the known cases, namely if n = 2, and for any n if H, is constant and
if f=H, is homogeneous. This is Theorem 1.

In section 3 we consider the case n = 3 and paths with
H, (Q2) = H (Z) (= constant) > 0 . Let the algebraic set X C $2  have

dimension one. It can be suitably stratified as a graph with edges and

vertices. Then it is shown, for large t, and m(to) near to a one-stratum

of X ,that @(t) hardly moves for t > t, in the direction parallel to the

stratum, and more precisely that «(t) converges to one point () on
X, near to o(t) . We conclude to



Theorem 2. CRT holds for paths for which H,(Q) > 0 . There remains for

n = 3 the case, which we will assume from now on,
H, (Q) = H(Z) = 0.

Any one-stratum of I , lies on an irreducible algebraic curve R, =0 on

S? . We introduce near a one-stratum on S® one real local coordinate o
(for example equal to R, ) and an orthogonal coordinate A , which

parametrizes on the one-stratum the curve R, = 0, and could be its arc-

length. Useful tools defined in section 5.1 are the Newton polygon P(f)

of f and the Newton polygons of r,c and A . They are defined
with respect to r and ¢ and concern the powerseries in 1 and
o , with analytic functions of A as coefficients. For example
f=2Z.1 riHi =X Aij(k)ri ol . See (5.4) in section 5 and examples in figures

6,7, 8.
The Newton polygon P(f) for f and R can have two kinds of

declining sides. A side is called a special side if it ends on the horizontal
axis of the Newton i-j-plane. Other declining sides are called general
sides of P(f) .
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The example in section 4 illustrates the common situation for a
special N(f) polygon side. N(f) is here very simple and has only one
declining side. What we find is that for arbitrarily small 1 >0 and ¢ >0,
but as a pair , (r,6) , restricted to be in a wedge bundle, the A-coordinate
of the path can even so essentially change. The trace (t) follows then
for large t the decrease of some potential function on S2 restricted to
the stratum, and ends eventually in the example at the minimum of that
potential in a point Q = w(«~) e Z . In general, for a special polygon side,
the potential is Hy for some y >k, and y = y(u) depends on the
algebraic curve R . There may be more than one wedge for a given

u
one-stratum and given R . If so then we use the expression "wedges-

bundle". But in the case of a special Newton polygon side there is one

common potential H, to guide. Given the essential change in A(t) we

say that the stratum carries Essential Trace Speed (ETS) (For the



definition of ETS see lemma 8 in section 5). This ETS is in our example
guided by one potential. Essential trace speed is clearly necessary if €

is not a point. Hence ETS is crucial for Thom's conjecture.

Also the next example (I in section 5.2) has only one declining
polygon side and it is special. The example is exceptional because the

Newton polygon of y has one point which lies outside (under) the

Newton polygon of o . Then paths that have obvious ETS are abundant.

They are not even restricted to be in a wedges bundle. Each is guided by
one potential Hy as before. And CRT holds for the example. A path

which after some time t =t  isonly involved in special polygon sides

with or without ETS is called a standard path. In section 7 we prove
Theorem 3: CRT holds for standard paths and for standard functions.
In fact we show that special side ETS in different one-strata of X (with
different curves R =0) cannot cooperate to give a spiraling result. We
call these paths standard because the other paths, that involve general
side ETS are very rare. Functions which do have only standard paths are
also called standard functions.

neral side ETS (r hs, rar nction _germ

Essential trace speed can exist for a general Newton polygon
side. This is seen in example II of section 5, where X is a great circle
(z=0) on S% . Necessary conditions for existence of ETS are strong as
seen in section (6.4) and we call functions that have such ETS for that
reason rare? . The first necessary condition restricts the pair (r,0) as
before to be in a sharp wedges-bundle. The tangents at the cusps of the
wedges are represented in the algebraic cusp curve Tc xR with
equation F (u) =0 . But now the ETS is represented by vectors along Z
that depend on the wedge that is on ii e ¥ ,and different wedges at

A € I can have opposite essential trace speeds at ) when the path is in
different wedges, near points A, and X, € £ both covering A e T . The

ETS-vector F at ii is a "weighted mean" of several gradients along X

2 Question: Is the algebraic curve R, = 0 on which a general Newton polygon side
has ETS, necessarily a great circle (like z =0) ?



of potentials H_ , H etc. This makes analysis harder. In section 8 we

y1° Y2
prove CRT for the function in example II, and for similar functions. In
section 8.1 Theorem 4 we reduce CRT for irreducible X to an "evident"

conjecture for the remaining rare paths and rare functions. For reducible
£ we present some arguments in section 8.2 in favour of CRT, but do not

obtain a complete proof.



Notes for four lectures at the Ecole Normale Supérieure, Paris

1.Preparations.
1.1. Formulation of the conjecture of R, Thom, polar coordinates,

The oriented curves of steepest descent of a real analytic function f{(x) ,
X = (X{,...,X,) , on the space  R"™ or some neighborhood U of O with

euclidean metric dx? = Ein=1 dxi2 , are defined by the differential
equation

- _dx f =
(1.1) x=7;=-grad f = - «df ,

or in real coordinates
(1.1) Xi= 3= 'Ex_’l=1""’n .

We often call these curves paths (for short). Let 0 € R"™ be critical
point of f with value f(0)=0.

Lemma 1. If a solution x(t) through x = x(0) , has points x(t),i=

1,2,.. that converge for t,— = to the critical point 0 e R | then the
same holds for any such sequence t,.The solution x(t) has a unique

point as limit

x() = lim_,_ x(t)=0« R".

This follows from the theorem of Lojaciewicz [Loj] and [BCR], saying that
¢>0 and 0<b <1 exist such that near 0 e R"

| grad f | > cf1®> 0.

Proof: By (1.1) the arc length s = s(t) along the curve x(t) obeys



2

d 1
o= L0g ) = lgradfl.
Then
df _ df ,ds £ 9% —i2
-E=-—t/d—=-zlsx—ﬁllgradﬂ—2( / lgrad fl = lgrad fl
Hence : df S ¢cfl-b d £>bc
ence : i »and -3¢ .

By integration between f =f, >0and f=0, we get bes; < fll) . The
steepest descent curve is then as short as we please by choice of f, .The
lemma follows, as "descending to two different points" is then

impossible.

We compactify the path x(t) with the endpoint x(«) =0 to a
compact embedded arc which is analytic for 0 St<e .

Now we can formulate the conjecture of René Thom [T]:

CRT :The steepest descent curve x(t) has a tangent at its critical
endpoint Xx(eo) .

Definitions. Let 0 e UC R™ , U open convex, be critical point of the
analytic function f : U — R . The set of points x € U for which the
steepest descent curve has x(=) = 0 as endpoint is called the catch-set
(or in-set) of 0 € R™ . The complement in U is the escape domain .

Example 1. In figure la we indicate for the function
f=x(x;+3%):R25 R,
with

- grad £ = (33 + %), - 6X,X,) ,

the flow, the catch set and the escape domain. There are three endpoint
tangents at 0 e R2 . The tangent on x, = 0 applies for the whole

interior of the catch-set, which is foliated by paths. The same expression



f:R3IS R , but considered as function on R3 in variables Xqs Xgy X3
has the same catch set with the same tangents in the plane Xq = 0. See

figure 1b . The escape domain now contains points that descent to other
critical points on the line x; =x, =0 for which x; = Oatlevel f=0.

We will be only concerned with points in the catch-set.
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figure 1

- grad f = (-3(x%+x§). - 6x,x,)

Example 2. f = xl]’lp +a xglq ,Pp2q22,0 >0, We only consider
integers p and ""q both even. The solutions of (1.1),

*l-': -X‘p'l ’ i2='a xzq-lv

are as follows.



a) For p=q =2 some solutions of (1.1) parametrized by c € R are:
XZ =C xla

with endpoint tangents x, =cx,;for @ =1,x, =0 for a > 1. If we add

the point 0 e R2 the curves are analytic for integral o > 1, of class
CK for 1<k<a<k+l at 0.

b) For q = 2 < p some solutions are:

x, = cexpl-(a(p2) 1] = coexp (B/xf D

with common endpoint tangent x, = 0 . The curves are of class Cc*=

without being analytic for ¢ =0 at 0.

c)For 2<q<p , we find

L = : +cl
o 2 ’
al@-2)x3 ~  (p-2) x§

.L2
Xy =B x, 92 [1+cxP? (1+0(x,))]

with common endpoint tangent x, = 0 . The curves are of class ck for

1£k<-(:%< k+1 , analytic for 22k=£—_’-§- at 0.

The line x; = 0 covers endpoint tangents for isolated solutions in
cases b) and c). In all these examples the path is of differentiability class
C! at 0 . But in general we cannot hope for higher differentiability than
cl.

1.2. The fundamental differential ions and the limitse
gcxzc sl

Write the given real analytic function as a convergent powerseries
in homogeneous polynomials H, (x) = H, (x,....x;) of degree £ :



(1.3) f=z,5 H,® , H  0#0,k22.

2
Introduce in R™\{0} the polar coordinates r = Ixl = ¥ ijj >0,
and o = (v,...,v,) in the unit-sphere sn-1 by x = 1o ,x,=rv;,i=

1,.n , X "i2 = 1 . The first coordinate r is a real number. The second

"coordinate” o is a point in so-1 If the path (r(t), o(t)) is a steepest
descent curve then o(t) C s"-1 i called its celestial trace (from the
"view point” 0 e R™) . If the path converges to the critical point O ,
then it has a tangent at 0 if and only if the trace converges to a point,
by definition of that tangent ().

Denote the restriction of H g to sl py
(1.4) H, =H,is™!.
Then in polar coordinates
(1.5) f=2,, * Hy®), H(0)£0 .

Lemma 2. The fundamental differential equations for steepest descent
curves are given in polar coordinates by :

i=-Z,, 2t 1H,(0)
(1.6)
@=-Z,, 42 grad H (o) .

Here the gradient grad = «d 1is with respect to the Riemannian metric in

SM-1 | These formulas are well known for R?2 with the usual polar
coordinates r and © defined by x, =rcos6,x, =rsin 6, and grad 6 =

1 . Intuitively they follow from this case n = 2 . We give a formal proof
for any dimension below. By definition of @,(r,0) and the vector
V, (r,0) we write (1.6) as:

(1.7) = - ki1 (H (0) + 1 @, (1,0))

10



& = - ¥"%(grad H (o) + 1 V, (,0)) .

After a suitable scalar coordinate multiplication r or, ®' = o for some
o >0, we can assume the convergence of (1.6) for r < 1 . We can even

assume the inequalities

(1.8) D (o) <1,IV, o)<l,for rsl,0eS™1,
Proof. By 2mr = Ej2xjij , (1,1) and (1,3), we have :
.1 -
r= r 22 Zj -(I'Vj)ajH"(l'Vl,...,rVn)) .
As H 2 is homogeneous of degree 2
. 1 7 1
r=--Z, 2 Hz(rvl,...,rvn) =-TZ, £rt Hy(vipesvy)

i=-%,, 2t Hy(0).

Next we have with vj = xj/r , (LD, (1,3):

X. - TV,
. i 1 = -
v, = _rl= T2, [—aiHJ(rvl,...,rvn) + v, Ejvjasz(rvl,...,rvn)] =

1 = =
-- ;-E‘ [ai Hx(l'vl,...,l'vn) = Vi Ej Vj aj Hz(er,...,rVn)] .

As these terms are homogeneous of degree 2-1 in (xy,....x ) =
(Tvy,e.0Tv,) we get

3 1 - T
Vi = - r-zj rz l [ain(VI,...,Vn) - Vi ZJVjH'z(Vl,...Vn)] .
Then

b = (Vj,oVy ) =- I r4-2 [grad H,(0)-<o, grad I_{x(a)) >.0]

®=-Z,5k 22 grad H y(w) .

11



This ends the proof.

For a solution x(t) with x(=) =0 we put

(1.9) x(t) = ((x(1), a(x(t)) = (x(t),w(t))
The endpoint property is expressed by
(1.10) lim_,_r(t)=0.

Define the limitset Q = a(s) = lim,__o(t) € S of the trace o(t) of

x(t) , for x(0) = p, in the catch set, by

(1.11) @=Q(@p) = {o e S"h3at,i = 1,2,... lim,

isti= = and @ =lim,__o(t)}.

If r(t) attains a value r > O then it attains by (1.10) also all smaller

values. For any such value r, there is a maximal value of t , denoted

t,(1,) , for which 1, is attained :
(1.12) r(t,(ry)) =1, and r(t) <1, for t>1t ().

Clearly:

Lemma 3a. The limitset Q 1is compact and connected. The curve x(t)
has a tangent at x(=) =0 if and only if Q consists of one point.

Lemma 3b. The limitset Q € S"™! is contained in one critical level L
of H(w):S™ ' R.

Proof. For any non critical value u of H (@) let € >0 be the minimal

value of

| grad H(@)| for o e Lu) = (H) (v).

The vector @ in (1.7) is H, (o) - descending by (1.8) for H (®w)=u and
1 .

I<r, =5€. Therefore if H, (o(t)) < v forany t, 2 to(ro) then H, («(t))

<u forall t>t, , asthe level L (u) € sP-1 js a barrier against

increasing H, (a(t)) .

12



As the same holds for every non critical level L(u) , the lemma
follows. We can now define H,(Q) = H (o) forany o e Q) . We_

conclude from lemmas 3a and 3b:

Lemma 3. The compact connected limitset Q = Q(p) is contained in one
topological component X =ZX(p) of the real algebraic critical set of
H .

k .

(1.13) TCertH = {weS"!:gradH(w)=0} ,

and

H (Q) = H(2)2 0.

Note that £ covers a topological component of a real algebraic variety
in the real projective space of dimension n - 1 .

Proof: If H,(Q) <0 then take r, =- ;—Hk(ﬂ) >0 and by (1.7) and (1.8)

one has >0 for t2>t (r)) . Then x(t) "escapes”.

13



2, Some special cases where CRT holds.

Here we first prove Theorem 1. (I understand that in recent
years independent unpublished proofs have been given; recently Xing
Lin HU wrote a proof of la, b and ¢.)

CRT holds for n = 2, it holds for any n incase H; =c¢;> 0 is
constant, and in case f = fik is homogeneous.

2.1 Theorem 1la. CRT holds if the leading term H, = ¢, is constant .

Proof. If c; < 0 then all points near x = (o,w) “escape”. As H £0, we

can assume ¢; > 0. Choose r<r < %cl ,t> to(‘to) . Then by (1.7), (1.8) :
i<0,1il>2c, kil 1o 1<,

do

dr

. . 2
=|w/rl<kc1=cz.

As 1(t) is monotone decreasing, then w(t) describes a path in 87!
with length

rO

do
fl drIdr<czro.
0

Let ©, # 0, be different points in the limitset € . Then
dist (0, 0(t (1) <c,r . i=0,1,
dist (0 ,0;) <2¢, 1, .

Choose 1, such that 2c,r < 15 dist (0, ,®,),to get a contradiction.

Theorem la is proved.

Example 3. f = x% +x§+xg .Here = =8!.

14



Then, by (1.6), f=-2r - 32v3, & =r grad vj .

figure 2

do T 1 3
[ 2] < 1@/ 1 = $1 grad V31 + o)

Theorem 1b. Corollary. CRT holds for n=2.

Proof. Either H,(®) is constant (see theorem la) or not, and then Q,

a connected set, is contained in a proper algebraic subset of S! . This is
a finite set. Hence Q = Q(p) is one point for every point p in the catch

set.

2.2 Theorem 1lc. CRT holds for a function (2.3) if it is homogeneous :
f= I-Ik,k 22.
Proof. The equations (1.7) are now
(2.1) i=-ki! H(0),d=-12 grad H (0).
The integrals of the second equation are the same as those of
dw

(2.2) T grad H, (o) .

They have a unique endpoint in a critical point of Hy on sl py

lemma 1 , generalised to the Riemannian manifold S™-1 instead of R™.

15



3. Study of the case H,(Q)> 0 . In particular for n =3 .

In this section we prove

Theorem 2./f H (£)>0,and o 3e Q C Z lies in a n-2-

stratum of a suitable stratification of Z C S™1 then Q is one point. For
n =3 therefore Q is one point whenever H (Q)>0.

3.1 An irreducible polynomial equation R(x) =0 for an n-2-stratum A
in case H,(Q,)20.

Let @ e X C S*™! be a critical point of H, (@) . We can assume that
H, is not a constant. Such points correspond, one to one, to critical

halflines {x = r@ ,r>0} in R™ of the real function on R™([o} defined
by

(3.1) H, (x/r) = H ()% .
The critical points of this function on R™{o} are given by

r2a.H, -kx. H
K k
3,(H, (x)/1¥) = — rk+2l =0

(3.2) 29, H, -kxH,_=0 .

As we have H, (Q) = H (E£)=c2 0, then T C gn-1 obeys the

homogeneous polynomial equation

(33even) @ =H(x)-c X =0 for k even, as well as for ¢ =0,

or
(3.3 odd) ©=H(x) - %% =0 for k odd.

Let A be an open n-2-stratum of a stratification of X C so-1 | of
codimension one in S™! . Let R(x) be an irmreducible factor of & that

vanishes on A , and denote by p the highest integer for which near a
point ® of A

16



(3.4) &=RP.V .
We consider the case k even , and the case ¢ = 0 . As R is
irreducible then dR = (aIR,...,anR) vanishes at most in a proper

algebraic subset of A . We include that set as well as any point for
which V = 0 in a lower dimensional stratum of our stratification of X .

Then if p = 1 the equations (3.2) and (3.3 even) concerning points X =
re , cannot be satisfied for all ®w e A . By contradiction therefore

(3.5) p=22.
For odd k the same conclusion can be deduced.
We summarize our observations in

Lemma 4. Let £ be the component of crit H (@) € S"-1  that contains

Q ,and A a n-2-stratum of a suitable stratification of X . Then there is
a homogeneous irreducible polynomial R, a maximal integer p 2 2, and
a homogeneous polynomial V , such that near any A e A

(3.6) H, (o) - ¢ = ¢ RP(@)IV(w)l
where Hy () = H (xk) = H(x)/r*
R(o) = R(x/r) = R(x)/r™ , m the degree of R
V(o) is analytic and V(w)= 0 for o € A
e = V(@)/IV(o)l = +1 or -1
For w € A one has
(3.6) d H(0)=0, R®)=0, dR@®)#0.

The restrictions on our stratification were made to assure that the
function H; behaves near any A e A like a p-th power of a good

coordinate. The danger is illustrated in

Example 4. Let f=22(x2 +22) y +y0 + 2" = Ho(x,y,2) + y® + 2/ « R? . With

respect to the critical point 0 e R3 , the function Hs(x,y,z) on S? is

17



positive for z # 0, y > 0, negative for z= 0, y <0, zero for yz=0.
The function Hc(w) has levels which are near the points y = 0 , and

near the points x = 0, not “"parallel” to the critical curve z =0 in S2 . All
levelcurves different from 2z = 0 have near the latter points a bump or
they move away. The stratification of X will be chosen so that all such
exceptional points, and some more to come, are in the O-strata. See
figure 3.

A

Hee) =0

box: w =(o,A) € {-8,8] x D
figure 3

3.2 Orthogonal analytic coordinates on Sn-1 pear o, € A .

Near a point o, e QN A we introduce the following analytic
"coordinates" (o(w),AM(w))e RxD,

() (3.7) o(®) = R(@) " VI V@)1, lolP = IH, ()| .

18



This real function ¢ has the same level hypersurfaces in sh-l as
H, (w). But o(w) is nonsingular near ®_, alsoon A ! Note that V(w) 20
near @, .

(ii) To define the second "coordinate” of « , the point A(w) , we consider
the orthogonal trajectory (gradient curve) of the function o (or H),

and denote the intersection with A by A = A(w) . See figure 4.

figure 4

Note that the coordinate A takes values in the (n-2)-stratum A .
For n = 3 this is a curve, which can be parametrised by arc length s
with a choice of orientation, that is of increasing s .

We next see the three orthogonal “"coordinates” in R" ina
coordinate box

(3.8) B = B@,D) = {(r,0,0)} :0sr<8, lol<§, Ae D}

D is a small compact (n-2) disc in A , around o, =Mw,),d>0.

19



Now and later again we will define conditions on w, and & >0

for given D .

I. We choose 8 > 0 so small that ¢ is the only critical value of H, (®) in
the interval {[c-8P,c+8P] .

II. The map and coordinate A sends each level o =& in box B (3.8),

into A that is onto level o =0.For € > 0 this converges C* to the
isometry that is the identity map in A

Consider the orthogonal decomposition

o _ do() do(t) i da(t)
Todt T dt JA dt o

in a component tangent to the “constant" o-level and the orthogonal
component respectively. Then for small & > 0 we have for lol <8 :

lgt) Aa(t d(o(t)) dr(e(t
3.9) IR 1=y e o S8 oo e
Note that
(3.10) do(n) _ 4ol0() orad o (a(t)) -

Now we go back to our steepest descent curve x(t) = (r(t),o(t),A(t)).
Let t; be so large that the distance in S* 1 petween () and I _ is
smaller than half the distance between (§x D) U (8 x D) and z, for
all t2t, .Let =r(t})=r, andtake t; so large that moreover r(t) 2

I, = & implies t= t, .50 t; = to(ro) in the sense of (1.12).

If x =x(t;) lies in the coordinate box , then the curve x(t) will for
t>t, not meet the fop ¢ =38, or the bottom o =-8 ,orthe side r=3,

nor the "side r = 0" except for t = = . We call the union of these four
parts of the boundary of the box, the "barrier" after time t; of Box B .

Ifn=3 and H,(0) is not constant, then X is a component of an
algebraic variety of dimension < 1 . Its suitable stratification consists of

20



open l-strata and points. If whenever w_ e Q n A for a one-stratum

implies Q =, , then we are done !

3.3_Proof of theorem 2.
The equations (1.6), (1.7), (3.7), (3.9) yield for our case H,(w)=¢c>0.

d
ﬁ= - k! [(c+e oP) + 1 D, (r,0)]
(3.13)
do -2 gP-1 orad *lv
dg--per o’ grado - ke (50)
and
dw
-(ﬁ A = = l'k-l Vk(r,m) A
(3.14)
do| %2 gP-1 | grad g | - 1%l
dtle = " P° G grad ot - Vi(r.0)|g

For a suitable box B(3,D) at ©, we have in view of (1.7) with constants

Cl, 02, C3 y

dr dr 1 q o do k-1
30 <0 . Ig >3 ek ,|34A|<qr .

dA
and 1=—1<c,t¥"! by (3.11), and we have a cone inequality
dt 2

(3.15) Iﬂ%;nr(ﬁl<c3.

Then if (r(tl),m(tl) e B(3,D) is near the center of 0 x D , r(tl) goes
monotonically to 0 for t, going to e and lo(t)l < 3. By (3.15) we have a
nested family of "wedges" with parameter t,,
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lol <&, A-A((t))l < cylr-r(t)l,

whose intersection with A (r=0=0) in B(5,D) converges to one point
Q = o , the limit of the trace. This ends the proof of theorem 2,

If £ has 0 e R3 as an isolated critical point at a minimum of f , then
we know that some neighborhood of 0 e R3 belongs completely to the
catch-set. Then starting on a point sufficiently near to the A-axis inside
some B(3,D) , its path remaining in the wedge must end on Z , hence on
the A-axis. Then the points of X (of dimension one) reached by celestial
traces of paths are everywhere dense on I as well as locally open, so

we have
Theorem 2A. If n=3 ,H (£)>0,and f has O as an isolated minimal

critical point, then every point of X is limit of some trace, and the

corresponding unit vector at 0 in R3 s tangent vector at Xx(e=) of
some path x(t) .
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4. An example of standard essential trace speed (ETS) with
potential H|Z .

Essential trace speed (ETS) will be defined before lemma 8 of
section 5. In the examples we will use the expression in a loose way.

The function
(4.1) f = (4221 + @xP+e2)r = *H, +1®Hg 2 0

has one critical point 0 € R3 where f(0) = 0 is minimal. All steepest
descent paths converge therefore to 0 e R3 and the catch-set is R3 .

.. , . 1
Near the critical component I , with equation z =51 on SZ | we

introduce the coordinate ¢ = (4z2-r2)/1r2 . See figure 5a). Then
(4.1) f = r*o? + 1°H ,
and the fundamental equations (1.6) for (r,w) are
~r=4%2 +6°H, >0,
(4.2)

o= 226 grad ¢ +1r* grad Hy .

We introduce as second orthogonal (polar) coordinate in 2 , the
angle © by the equations

x=é—rcos6.1/(§-_a,y=%'r sine.ﬂﬂj .

Then we calculate with 12 — 2 = (3—0)r214 s

(43) Hg = 8x%/t2 +1=2(3-0) cos? 8 + 1 = (3 cos 20+4) - o(cos 20+1).
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In figures 5b) and 5c) we suggest on the disc ¢ > -¢ of S , and for
small ¢ > 0 the vector fields —grad ¢ and -grad Hg orthogonal to the

levels of the functions o and Hg . We now discuss points for which
0<0<n/2.For 6 =0 a trace point transverses £ with ¢ increasing,
but small to begin with, and then moves away from I as long as o/r? is
small. For large o/r2 > 0 however the first term of m dominates and
the trace point moves straight in the direction of I . These two “forces”
compensate near values of o/r? for which —<.s vanishes, and only then
~ 0 can dominate strongly over - Er . The formulas are obtained by

differentiation of H, with respect to the orthogonal coordinates ¢ and

® . This gives

grad H, =9 H¢.grad ¢ + dgHg-grad 6 =
= —(cos 20+1) grad o + 6 sin 26 grad 0 + neglect .

We obtain as components of - @

{ -0 = [2r20—r4(cos 20+1)]lgrad ol
-0 = 6r4sin 26.lgrad 6!

As lgrad ol and lgrad 6! are const.(140(lcl)) near I , we can neglect
these factors for small ¢ . The trace will have essential trace speed for

small 6 >0 and r > O inside an attracting wedge bundle over X , which

) cos 20+1
is locally |p- -

<g, p= clrz, e > 0 . See figure 5e) for a part of a

wedge bundle.

The ETS is guided by the component of -grad Hg in the 0-

direction. It is guided by (decreasing value of) HIZ . This continues
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until the minimal value of H, is approached for 6 ==/2 . For 6 =n/2

the path descends to 0 € R3 in the plane x =0 .

For ¢ <0, Iolsmall, the two "forces" cooperate and the trace point
moves to X , transverses it at finite time t; <e and enters the domain

just discussed.

The plane y = 0 is invariant. It presents a standard 2-dimensional

case.

In figure 5d) we suggest several traces with their ETS part marked

by —— . Traces in s2 may intersect each other at points where one of

them has not yet reached the ETS part. Note that we have exaggerated

the scale of o in order to see more details of the traces.

Conclusion: In the example ETS exists and is guided by a potential H(IZ
in . QC X cannot be different from one point. The only points we
find on X are 6 =+ n/2 where almost all traces end, and 0 =0 or =«

in the invariant plane y = 0 . Those points represent the tangent at the

corresponding paths to 0 e R3.

Exercise. Describe the flow of steepest descent completely, with all

celestial traces. In particular those in the invariant plane z = 0 .
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5. Study of the case H,(X)=0 for f: R3 5 R . Two nice
examples with essential trace speed.

5.1. Introduction. Newton sets and Newton polygons.

Let (r(t),o(t)) be a steepest descent path converging to the
critical point O , for an analytic function f : R3-SR,

(5.1) f=H +%,, Hy =%, H=2ZrH,.

Let the limitset Q of the celestial trace ®(t) be contained in the
topological critical component I O Q of the algebraic critical set

crit H, = {0 e §? : grad H(0)=0) and H(Q)=0 .

A path of steepest descent for a function g , is a curve orthogonal
to the levels of g hence it is also orthogonal to the levels of f = g2 . Any
steepest descent curve of g appears therefore as steepest descent curve
of f= g2 . This proves part 3) of the following

Lemma 5. Given X there is no restriction in the arguments in favour of
CRT, if the following (convenient) restrictions are made.

1) H, =R P RPYW  is an algebraic factorisation of H with
k 1 v k

1_21, .. R, itreducible, and p;, .. Py maximal exponents.

2) Rl,... R, are exactly the irreducible factors of H, that vanish on

at least one of the one-strata of the connected real algebraic variety
component X C s,

Hf= g2 is a square of an analytic function. In particular k,p,,...p, are
even, W isa square, H and H, 2 0 are squares and not identically
zero. If v =1 then I is called simple (not composite), otherwise it is

called composite .

Proof. 1) and 2) are clear. Taking into account lemma 6, the change of
parameter (t) does not hurt the conclusions for CRT.
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As (r(t),o(t)) in the catch-set converges to (0,Z) there exists for

any 8 >0, and any neighborhood U with boundary oU of £ in S2 ,a
“time" t, , such that for t 2 t, we have

(5.2) O<rt)<d,0()e U, n() ¢ oU .
f need not be a square for this conclusion.

Therefore:

Lemma 6. For any (5,U) it suffices to study the fundamental
differential equations (1.6) of lemma 2 for 0 <r<8,0 € U, for any
open tubular neighborthood U with boundary oU of X .

For a one-stratum A in X on one of the irreducible curves R =
R, of lemma 5, local orthogonal coordinates o and A are again defined,

but there is now no need to follow the old definition. For local analysis
on X , the choice o = R is often the best. See however the example

"variant” in section 7.1.

In this paragraph we will concentrate our attention on one stratum
of the critical component X , and for one factor R = R, . We will use a

coordinate box B for the fundamental differential equations (1.6),

B =B(8,F)=B(8,7,?LO)= {(r,oA) :0<r<d,lol<6,rAe T},
F={A:A, -y s ASA +7]),

and also a "positive box" Bt .
(5.3) Bt =B*S,N = {ior)e B:c20} CB.

2

The box B* is in particular useful in case f = g° is a square as we will

sce.

The faces defined by A =24, +y and L =4, -y are called the ends
of the box B* (resp. B ). The function f is then expressed as follows:

(5.4) f=%2,H =2, rH =X Aijr'crJ ,
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where Aij = Aij(l) is analytic and X = ziak,jao . By differentiation with

respect to r we get

(5.5) -r=ZiAyrlel .

As ¢ and A are orthogonal coordinates on SZ the tangent vector - ®
decomposes in two orthogonal component vectors, multiples of the
vectors grad ¢ and grad A with norms Igrad ol and lIgrad Al.If A is
arclength on I then for points on ¢ =0 one has Igrad Al =1 . Both ¢
and A are close to constant on a small box B . We find in B by
differentiation with respect to o and A :

(5.6) -0 = [Eizk,jzl injri'2 oI} lgrad ol

as grad o points in the direction of increasing ¢, and

(5.7 -A={Z

izk,j=o0

3, Ay r'20l} Igrad Al

as grad A points in the direction of increasing A .

Definition. The Newton set N(f) = N(fR) of the powerseries f in (5.4)
is the union of the set {(i,j) : Aij is not identically zero } € R x R , and

the points (+e,0) and (0,+=) . The Newton polygon P(f) is the
boundary 9% N(f) of the convex hull 3 N(f) of the Newton set N(f) .
Each declining side of P(f) represents a quasi-homogeneous polynomial
of f (see below).

Lemma 7.If f= g2 then the terms of the powerseries development
of f that correspond to the yertices respectively the sides of P(f) are
squares (but not identically zero) respectively squares of quasi
homogeneous polynomials.

Proof. As f = g2 , P(f) is obtained from P(g) by a (geometrical)
multiplication with factor two of R2 from the origin. This multiplication
corresponds to a squaring of vertex terms and quasi homogeneous
polynomials respectively.
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From the equations (5.4-7) we read the following relations
between Newton sets and polygons:

NG 1) =Nrlp , P-1) =Pl

N(-1) € N@%H) , P(-1)C %Nr(f).

Therefore P(-r) , which equals of course P(r) , is obtained from

P(f) by a translation over one unit to the left, N(-A) is obtained from

N(f) by a translation over two units to the left, and then deleting those
points for which Aij(?.) = constant # O, that is alAij = 0 . For examples

of Newton sets and polygons see figures 5 f), 6, 7 and 8.

N(o) is obtained from NG 2f) by a translation one unit down, but
for the fact that we must delete points which fall then into R x (-1) ., A
declining side of P(f) which has a vertex on R x 0 is called special.
Also the vertex of such a side on R x 0 is called special. Other declining
sides of P(f) are called general. If f has a homogeneous factor R4
with 22 1 then all sides of P(f) are general . If f has no factor R .
then one side of P(f) is special . The definitions are slightly modified in
section 7.

We now make some further remarks concerning a general side. A
general side of P(f) with slope m/n of P(f) = 9% N(f) is suggested in
figure 6. Also P(sr), P((6 ) and P(-1) are indicated. The terms in the
powerseries (5.3) for f can be ordered in different ways. One way is by
the degree of r . A different way is as follows. For ¢ 2 0 , we restrict to
B* and order terms by the total degree in o =o¢ and 1 = /™M |
corresponding to the declining side with slope o =m/n of P(f) , and
for o20,r20.That is we substitute r=1r™" o5 =g and then

order. The leading terms of f are as follows.

- s )
(5.8) f=2H,=ZrH, =, A,fNtén Mdm
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Ay=A,0).

Here we write "f =" short for "the leading terms of f are”.

The leading terms form a so-called quasi-homogeneous polynomial
in r and o . The constant weighted degree in 1 and o is the rational

number, (N+£n)m/n + (M-2m) = Nm/n + M . Every line parallel to the
side of P(f) contains points of constant weighted degree. We see in
figures 6, 7, 8 the parallel sides for P(x), P(-6) and P(-1) (the lowest
possible position of points in N(-A) is supposed to be realized here).
Many points of P(-G) are under the line of the side for P(-\) . They
represent terms which from the point of view of the coordinates ¢ and

r may dominate (-A) . From this viewpoint there seems to be little
chance that A  during descent will be able to move essentially with
respect to ¢ and r . This is what we will examine. Independent of P(f)
we can introduce another view by a slope a > 0 (like m/n) of any
declining line. Then we order terms by total degree in o =¢ and
r = r{1/®) obtained by substitution 6 =06 and r=1% in the

powerseries for f, -1, -6, k.
In figure 6 we show the Newton set N(f) and Newton polygons
P(f) , P(—f), P(-6), P(-1) for a nice function f . It is nice because there

are only few terms in -G in competition with -A , for general sides of
P(f) . This follows from the fact that here o = z/r , thatis X 1is a great
circle (geodesic) on S2 . In fact essential trace speed (defined below)
will be realised in example II. In figure 7 we show N(f) , P(f) , etc. for a
"usual function” . The reader may have in mind a function f for which

H K= 40 540 , O = (4z2— r2)/r2 .

We only show the part of the diagram near to one general side.

Many more terms of -o are in overwhelming competition with -X

in fig. 7.
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We now concentrate our attention on a general side of P(f), f = g2 ,

and rewrite the leading terms in (4.9) as follows:

f=x Aer"'s“ GM—sm . (o(s-.!)m/r(s-z)n)
(5.9) = N+sp M-sm Ei=o Azus-.l

where p =v™ =6™/® is a new variable and so is v =pl/™ - g/7.

In the same view we find the leading terms for - r,
(5.10) -1 =l gMeSm (NG gn) A, pS A
If f = g2 then N, M and s are even numbers.)
As M -sm 21 for a general side of P(f) , we also have
(5.11) - 6 = (2480 gM-1sm 5(M. #m) A u¥2} Igrad ol
(5.12) - X = (240 gMesm 55, A ) pS4) Igrad Al .

We can divide by a common factor rN-2+sm gM-1-sm 4y choice of a
different parameter t . We can also neglect the factors Igrad ol and
lgrad Al which are uniformly bounded away from 0 in box B*t.

Then we find for ¢ >0

f =12 Eizo A zus"’ = 2o F;

‘1 =r10. ZLO(N+£n) A, pst o = ro F_,
(5.13) -6 = Z(M-2m) A, p54 = F, ,

A =0.ZhA, st = 6F,
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figure 7

Too much competition for - A
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where the polynomials F_ ,F_ and F, are defined by the equal signs.

In the scales (new variables) o, 1, A the equations are

-t = (n/m) 75 F,

(5.14) o= F,
A = o F

These formulas confirm our above observations concerning the

competition between leading terms of -r,-G and -k respectively.

Definition. The point (0,0 ) = (0,0,A,) € Bt is said to have essential
trace speed (ETS) in B* (resp. B ), if for any € > 0 there is an arc of a
descent path to 0 e R3 (r(t), o(t), A(t)) with o<1(t))<e,o<o()<e,
A(t;) =%, , which meets the boundary of B* for the first time, after t,,
in one of the ends A=A +7y or A =4, -y of box B* (resp. B ). Such

arcs are then "realisations of the essential trace speed"”.
Lemma 8.If the limitset Q@ € X is not one point and o, € Interior Q C X,

then o, has essential trace speed.

Proof. This is obvious because the point (t) on the trace has to come
as near as we please to every point of Q (like o ) after any time t, ,

with both o(t) and r(t) tending to zero.

MAIN ARGUMENT

Consequently essential trace speeds are necessary for the
existence of a (counter) example where Q is not one point. We will

describe in the next paragraphs all possible essential trace speeds.

In the following sections of this paragraph we describe essential
trace speed in two examples. To keep the examples simple we did not
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insist that f be a square. In both examples I is a great circle z =0 .
The second example is "very singular”. It shows unexpected "dramatic”
behaviour of a gradient flow.

The examples are: I) A nice function f: = H 6t H g With a very

dominant essential trace speed for a special side of P(f) , and II) A nice
function with essential trace motion concerning a general side of P(f) .

In example I it will be seen that the essential motion is guided by one
obvious global algebraic potential X (it is Hg) along the critical

component I of H(f) . In example II it is seen that essential trace

speed can only happen within one of two “sharp wedge bundles” and in
each it is guided (in general) by a different vector-field on X . The two

vector-fields can be combined in one vector-field F on a graph z
which in the example is a double covering of Z . See section 6.

5.2. Example I. A nice example with primitive essential trace speed.
(See figure 8)

The example is the function
— 6 2y _ ©
f = 20+ 193x%+y?) = H6+H = °H, + r°H, .

In this example all paths with minimal value at the (isolated) critical
point O e R3 descentto 0 e R3 . The catch-set is R3 . The equator

z=0 on S2 is the critical one-dimensional component X of H on sZ,
Put ¢ =z/r, x2 + y =12.2z2 =1%(1-62), and let A , arclength on the
equator, be defined by

2
X=T1 (1-<52)1'l2 CoOsA, y=rT (1-02)” sin A .

The coordinates o and A  are orthogonal. See figure 8a). By the

symmetry f(x,y,z) = f(x,y,-z) , it suffices to consider o2 0. We find

f =109 + r8H8 =% + r8(1-02) (2+cos 2A0),

and the fundamental differential equations (5.5,6,7) :
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-r=600%+ 8r7(1-62) (2+cos 2.) > O
(5.15) -6 = (6rc7 - 215 6(2+cos 21)} x Igrad ol

“A = - 215 sin 24 x lgrad Al .

Let us fix a value A_,0<Ai <=n/2. As lIgrad 6l -1 =0(s) and

lgrad Al - 1 = O(c) , we can approximate (5.15) without hurting the

qualitative properties of the solutions, after dividing by r* , in a small

positive coordinate box B* around A, by

- 1= 6% + 8r32+cos 21 ) > 0
(5.16) -6 = 60° - 2r2 6(2+cos 21)
-X= -2 sin2a

Now see the Newton sets and polygons in figure 8 b). The Newton
polygons P(c) and P (L) have a common supporting line (a common
tangent) with slope o = 5/2 . Any view defined by a slope a , can be
used to introduce a scaling namely o =0 and T =r!/® . Define p = o/f =
o/itl/® or 6 = ur”"l . Consider a part of the path where p remains
bounded away from O and from e . Then leading terms with this

scaling give for very small r> 0 and ¢ > 0 , the estimate

ds| |do| |o| 65 | 6pSiSlor2
dr| T ldAad T i B 2;2 sin 21,0 ~ 2 sin 23..0
do 5 ((2/0).(5/2-a

(5.17) T LoE ) , ¢ a constant .
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For o > 5/2, A can be neglected with respect to ¢ , and
certainly there is no essential trace speed in box B* . However ¢ will
decrease until in a different view A will strongly dominate. Note that if
p goesto O orto = , we do need a different view and slope to see the
next part of the trace. For 0 < a < 5/2,0 can be neglected and there is
essential trace speed. In particular the derivative A of the coordinate A
is guided by (decreasing value of) the potential function  HglZ .
Therefore Q cannot be different from one point. It is a point. In figure

8 d) traces are suggested and essential trace speeds are indicated. The

point on the trace will move, after ETS is attained, "parallel" to X until

the potential HglX approaches its minimal value.

We call the trace speed primitive because the potential involves

only one homogeneous part of f namely Hg . For the minimum at
value A = n/2 , the differential equations (4.15) reduce to two

equations for o =0,r2 0 with p= o*/r?

-1 =665 + 87 (1-02)

- 6 = 6r%(p-1/3) .

Such equations are well understood. Here o increases for p < 1/3,
decreases for p > 1/3, and (o,r) converges to (0,0) with asymptotic
direction at (0,0) given by o =1/3 in the scales ¢ =o and r =124 as
suggested in figure 8c). The corresponding Puisseux-branch in the plane
x = 0 1is given by

L= st =173, 6 = zfr = crl/? | z=cr/?, c=314

As = y2 +22 ,for x =0 , we find the Puisseux-branch expressed in
coordinates y and z by

(5.18) z=cy3/2,y20,intheplane x=0.
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We mention that all paths outside the invariant planes x =0, y = 0,
z=0 andiny >0,z >0 approach 0 e R 2 with this Puisseux-branch
asymptote. They have a common tangent x =z =0 at 0, and each is in
R3 of differentiality class Cl . See figure 8d) for a qualitative picture in
the coordinates o, r and A . The paths in the invariant plane y =0,
z>0 (Ae 0 and A == ) end with the asymptote p = of/r =1, with

Puisseux-branch z = x? in the plane y =0.

Exercise. Describe the flow of descent completely, with all celestial
traces, in particular in the invariant plane z = 0 .

5.3 Example II. A nice example of steepest descent with essential trace
speeds that ar ided b weigh mean of gradien f ntials !

The example is the function

) .
f=2"+%, @, (xy) **24 -4 = Hy +Hy +H o +Hy,y,

®, is homogeneous of degree 4in x and y.

We apply the same substitutions as in example I,

o=zfr ,X = 1'(1—(52)1’2 COSA,y= r(1—02)1/2 sin A ,
and find
f=r'c’ +ro ((p00'2 + @01 + (p2r2) (1-62)2,
with @, = ,(&) =®, (cos A, sin A).
The relevant critical component Z of H, on S%2  is again the

equator z=0 (o=0) .
The fundamental differential equations in a box B (or B¥), are

—r = 787 + (99,1867 + 10 9,762 + 11 ¢,r'%) (1-02)?

-6 = {7r5¢:s6 + [3<p0r-"cs2 + 2<p1r80 + q>2r9 + h.o]} (1—1:52)2 x |grad ol
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—?.L = {al(por703 + (:);,Lq;lrsc2 + a,chzr%} (1—(52)2 Igrad Al

where some higher order terms have been neglected. The complete
Newton set N(f) , and the Newton polygons P(f), P(-1), P(- 6) and
P(- 7.L) are seen in figure 9a). Note that points on the 45°-declining side
of P(-c) are the only points of N(-o) that are not above the parallel
side of P(—i) . Therefore _ A has not very much competition from
terms of —¢ . Put p =o/r, (c =ur) . Then leading terms in the
differential equations, keeping p bounded by an upper bound i, are,

for 0 < 6 <g, 0 <t <Eg, e small depending on p, given by (5.14) :

- = rs(9 q>0|.12 + 10 ¢ + 11¢,) =10F
(5.19) =g = Boh?+20u+9,)=F,
=4, = 6(0,9 H +d,¢n +0,0,)=0F .

We also replaced Igrad ol and Igrad Al by 1 as we did in example I.

A very simple set of equations is obtained with a choice of ®, such

that ¢, ¢, and ¢, are constants:
(5.20) Fo=Qu-1Xp-1)=2p-3p+1, 3¢,=2,20;=-3,9,=1.

But in this case there is no trace speed at all, A =0 .

Then F =0, and Fr is positive definite, whereas
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-6 =0 forroots p; =1/2 and p, =1

-0<0 for 12<p<1

-6>0 for p>1 and for p<1/2.

Moreover, —r as well as f are negative for o < 0, so that points with

6 < 0 "escape". The function f and the gradient vectorfield are

symmetric around the z-axis and the problem is essentially two-
dimensional. In the (r,6)-plane with r > 0 we find a well understood
vectorfield (see figure 9b). The line o = 1/2 r 1is asymptotic to a
separatrix that separates the escape domain from an open set of paths
that have the line o = r as asymptotic tangent. By rotation about the z-
axis we get a separatrix surface that is asymptotic to a cone o = 1/2r

in the coordinates. It separates a 3-dimensional escape domain from a
domain of paths that are asymptotic at (o,r,A) = (0,0,A) to the cone

o =r . In (x,y,2) coordinates this invariant asymptote cone has equation

z = 1/2 12 . The vector field is repulsive near this separatrix surface. The

vector field is asymptotically attracting to the cone o =71 (thatisto z =
t2) for paths in the remaining open domain, except for the invariant z-

axis.

We next choose ¢, ¢, ¢, not constant but near to the values 2/3,

-3/2 and 1 in (5.20). Under such a perturbation some qualitative

properties remain invariant, others like essential trace speed change.
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1) F; =0 has two roots p;(2), 0 < p (A) < py(A), near to 1/2 and 1
respectively. The values p.(A) form a graph ¥ — X , a double covering
over the critical component X .

2) From (4.19) we see that — o dominates over A and 1 as long as

F, is bounded away from the roots u, and u, .

3) There is a separatrix surface, asymptotic to the cone ¢ =pu,;(A).r, and

an attracting asymptotic cone asymptotic to the cone ¢ =p,(A) .r.

Later we prove that for essential trace speed in our case it is
necessary that F_(p) = 0(c®) for some o > 0 . This means that for

essential trace speed, p must be very close to one of the roots u.(A) of
Fs (1) = 0 . The essential trace speed is (if it exists) given by

3B A,00 1 (A i=12

that is by potentials A,(A) , whose gradients along X are weighted by

. . 2-2
coefficients u; (A).

That the essential trace speed in fact is realised was seen for a
special case with a computer program of Ben Hinkle from Cornell

University and with his help as follows. But in this computed example
there is only one effective potential namely ¢, , so chosen because the

computer-time became already very long.

With the choice

39,=2 , 2¢;=-3 , ¢,=1+004cos 22 ,

the equations can be reduced to
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-r =1 c.p2
—6 = 262%-30r +2(1+0.04 cos 21)

—i = -2:-:r2 sin 2A .

Some computed paths are seen in figures 9 and 10. Essential trace
speeds are indicated by a double arrow. The numbers mean the
following.

- - , the path moves with decreasing or increasing o , and — c
dominating, to a situation 2 ; E] essential trace speed, with increasing
A as seen in figure 10. The path goes to the asymptotic Puisseux-
branch o =r, for A =xn/2; E escape; --, path in the separatrix
surface with again essential trace speed and converging to the Puisseux
branch ¢ =l§r ,for A =x/2 . This (unstable!) path was approximately
computed by following reversed time starting at a suitable point. The
computed picture did show a slight increase of A , that means essential

trace speed.

5.4. A more general example (again) with the equator z =0 of S? as

(critical) component £ of Crit Hk.

In figure 6 Newton-sets and Newton-polygons are shown for a
case where H, = oP ,6 = z/r , p large. The views defined by slopes

o < (M-sm)/(y-N-sn) , smaller than the slope of the special side of P(f) ,
can reproduce for suitable Hy, ., and Hy the qualitative behaviour,

and essential trace speeds guided by H_ , as in example L

y

The views defined by slopes of general sides of P(f) can
reproduce behaviour of paths and essential trace speeds as in example
II. These trace speeds realize in disjoint wedge-bundles, some attractive,
some repulsive, in directions that can be parallel or opposite to each
other mear any non-exceptional point © of T . Some slopes may give no
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ETS at all. So there can be different behaviour of the trace in different
wedge bundles at ® .

The curve X can be a finite covering of X for suitable coefficients,
and for each general P(f)-side. This was the case in the special example
II. We prove CRT for this case and similar cases in section 8.
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6. Local theory along £* for f = g2 , Hg(2) = 0.
6.1. One way traffic (down) on_the two boundary surfaces of certain

local wedge bundles W(u,ji,I'l,m/n) for a general Newton polygon side.

We introduce, also for the case that £ is composite, some new
notations, apart from those already given in lemma 5. The intersection
of the connected critical graph XL C S2 with the algebraic curve R,
given by R =0,isdenoted £ =N R, . Some (any) open component

1.5 of SI\T s selected, and one of its boundary components, a
topological circle, is denoted X* € Z . It has a one-sided tubular

neighborhood U* inside D . See figure 11. Denote 2‘.:: =X*n I, . The

factors Ru in Hk = Rr;l Rf" W are chosen such that R, >0 for

weD.

We reserve the indices u = 1,...v for those irreducible factors Ru

that involve sides of X%t , and absorb the other factors in W . Recall
lemmas 5 and 7 for consequences of the assumption f = gz. We

. } +
concentrate our attention on one side X, = Zu A Tt of ¥ and use as a

. . . + .
first coordinate near a point © e X, the function ¢ =0, = R, and as a

second orthogonal coordinate A . These coordinates are used in a

coordinate box

B*=B*@ ), = (AA ~Y<A<A +7},

0<r<d, 0<o<8,A arc length.
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Intermezzo on special Newton polygon sides. If a declining side of P(-0)

concerning R, is not parallel to a corresponding side of P(f) , then P(f)

contains at the lower end of that special side a point (i,j) = (y,0) with
minimal y and Hy is a square but different from the constant zero. The

local ETS-theory for such a special side of P(f) is easy (see section 7).
Simple cases are as follows.

a) The function (Hylz) on I is not constant, thatis (y-2,0) e
P(-}), and also (y-2,0) € P(-0) (the standard case; compare the
example in section 4).

Then ETS for points on R may exist, and if so the trace is guided
by (decrease of) the potential Hy . The ETS is realised by paths moving

in a wedge bundle.

b) (y-2,0) € P(-1), but (y-2,0) ¢ P(-o0) (the nice case: compare
example I in § 5). Then ETS for points on R exists, and it is guided by

the potential HyIRu .

c) If HyIZ is constant, then the only case that needs attention is
(y+1,0) e N(f) with (y-1,0) e P A) . But as (y-1,0) € P(-r) as well, then
~A cannot dominate -r , and ETS is excluded.

End of Intermezzo.

We now concentrate on the view defined by the slope o = m/n of
one general side P(f) . That means M-sm 2 1 in (6.2) below. To
simplify the notation we discuss only the case of one simple closed curve

v=1,22"=}.“.';=)3.,c5=<51 =R =R, , as the local properties on a one-

stratum of a composite X are the same. Leading terms concerning the
view o = m/n are again expressed by (5.9-12) and shorter by (5.13)
and (5.14). Convenient orthonormal scales for a coordinate box BT are
S=c6=R,T=r"" ). We call the 6-coordinate axis vertical.
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The restrictions of the real functions A, = A,(A) to Z are

algebraic functions.

They are :
(6.1) [(Hy, pn/6™ 4™ 1 Z].

Note that the arc length A is not algebraic on X , but if needed for
proofs we can replace it by an algebraic coordinate on X . A function on
S2 is algebraic if it is induced from the double covering of S2 over the
projective plane P(R,2) with homogeneous coordinates x,y,z, from an
algebraic function on that projective plane.

~

Definition: The cusp curve X is the algebraic curve with equation
F, =0 in the open annulus X x R*Y*C I x P, See (6.2).

The projective line P = P(R,1) is a one-point-compactification of
R with its non homogeneous coordinate W . This coordinate p
determines the projective and algebraic structure on P . The differential

equation -0 = F_ in (5.13) determines the polynomial equation of even

ag
degree s in j:

(6.2) F_ =X, (M-2m) A, pst=0 ,A,=A,A),AeZ,pn>0.

The positive roots i of this equation form a real part

T cxR*Y , which can be viewed as a subset of real points in the
complex algebraic extension, an algebraic curve Z(@C)c ()= P(C,]).
The set T is empty if there are no positive roots. The projection £ — X

can be a double covering as we saw in example II. A point of Z can
cover a point of X multiple, but not more than s-tuple, as the degree in
p of (6.2) is s . The real algebraic curve X can be union of more than

one irreducible components, some of which can have multiplicity greater
than one over their projection in X .

By lemma 7 we know that the algebraic functions A, and A, on

I are squares and not identically zero. Therefore as F_ =0 has a root
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p = 0 if and only if A, takes the value zero, that value p =0 is

attained only for a finite number of exceptional points on the algebraic
curve I . The equation F, =0 hasaroot p =e onlyif A, takes

the value zero. This again happens only for a finite number of
exceptional points on I . Other exceptional points on Z are those at
which dR =do = 0 (see §3 where we discussed bad behaviour of a

coordinate ¢ ). These points are singularities of the curve Z cS2 , like

double points and cusps, and they are also finite in number. The
multiplicities of the roots of (6.2) are also functions of A € X . They are
locally constant except for changes at a finite number of points in X .

Those of these points at which X is smooth but tangent to a line A =
constant, have not yet been included in the above set of exceptional

points. They are now also added to the exceptional points. The
complement in X of all exceptional points is a 1-manifold with a finite

number of open components. We add the other points of X and £ and

obtain stratified spaces. Topologically they are graphs. See figure 12 a)
and 12 b) for a survey of exceptional points on X with respect to the

slope o = m/n .

Let T! € = be the compact submanifold of points at arclength
distance at least 1 from any exceptional points in Z and r'c X the
covering of I'l under projection. With every component I of o

covered by FC Fl , there is a coordinate box B*(3,I') . All of these have

the same Newton Polygon P(f) with one general side of slope o = m/n.
We denote their union with a common & by B*(5,I'l). As A, and A

are uniformly bounded away from 0 and o on r'! , the positive roots

of the equation (5.2) F;, = 0 on the compact curve r'!l are bounded

away from O and e . So there exist positive constants W and p from
which positive roots p;(2), A € I'! are uniformly bounded away as

follows :

(6.3) O<u<2u<pM) <y f<f<es.
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Then we see from (5.14) that given any £ > O there exists & > 0 such

thatif 0<o<e,0<r<e, p=Q or p=pn then
| MG 1<E,11/0 I<E.

In the scales 6 =0 ,1r=r"™,A , the tangent vector (-1, - G, — i) of a
path is as near as we please to vertical ("as vertical as we please"). The
tangent vector of a path at a point of 6™/t =p =p or p = p points
almost vertically in the indicated scales. In particular the path is
transversal, and pointing down, at the two boundary surfaces of the
wedge W(u,p,I'ly defined by w<p<p. Weconclude that, for & small,
the boundary surfaces of W(u,ﬁ,l"l) allow only one-way-traffic (down)
inside B*(5,I'!) as announced in the title of this section 6.1. Note that
1 > 0 could be chosen as small as we please. So every non-exceptional
point on I can be included for some 1>0.

6.2. Essential trace speed in W(w, i, T'!) is excluded outside sharp
wedges bundles W(x oP, ) € W(u, i, T) € B*3,I).

We consider the product bundle I — I' for a component I’ of
r'c = .Take 0 < s T, and t > 0 so small that the tubular

neighborhoods  Iu(A)-p,(A) S ¢, inT x R* are disjoint. The "wedges
bundle" consisting of several wedges for each Ae I' , T € T'! in B*(5,T) .

WD) = {(noA) : u-pist, usps<p) € W(gpl) c B*@T),

has compact boundary surfaces in

9, W(t,I') defined by p=p, +1,andin d W(t,[') definedby pn= Hi-T.

See figure 12 b) for intersections of extensions of wedges with r=1.
There p=oc/r=c6=¢0.

As A, #0,A;#0 for AC T, the polynomial F_(n) of degree s
in p is uniformly bounded away from the polynomial zero. The set of

the first s derivatives of F_ with respect to p at points of Z  (that is
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for p-= #; ) is therefore uniformly bounded away from (0,0,..0) . We
conclude that ¢, > 0 exists such that

(6.4) F, (1+0i >3 ¢; 1, and  IFy (o)l >3 ¢, 5,

for small © > 0. Thus IF;l has a lower bound %-cl 1% on the boundary

surfaces of W(t,[) . Then —'¢ dominates over —A and —r by (5.14)

at these boundary surfaces. The vector (-1,~6,- 7.&.) is there almost
vertical for 0<o6 <8, O0<r<8,8>0small, inthescaless 6 =0,r =
r®/® 3 for B*(5,') . Any path meeting a boundary surface meets it

transversally.

Stronger, ¢; and t, can be chosen so that (6.4) holds for all points

not inside the wedges bundle
W(t,I) N B¥(3,IN)

for some & >0 and 0 < 1< t, . Therefore essential trace speed in

W(w,p,I) € B¥(S,I) is excluded unless (necessary!) the (moving point on
the) path is inside the wedges bundle W(t,') € W(y,u,I'). The same holds
for every component I of I

We next replace the wedges bundle W(t,I') as follows by a sharp
wedges bundle W(t oB,F) for some small B2 0. By (6.4) we know

(6.5)  F (urroPi>tc 5o and IF, (-t o)l >5c, 1 ofS.

We substitute this in (5.13) and (5.14). Then for small Bs > O the leading
terms for the view defined by the slope o = m/n , given by (5.14),

determine again dominance of o©  over r and A, but now for all
points outside the sharp wedges bundle over T ,

W(toP, T) = {(6.TA) e B¥@GI) :u<p<p,6=0, -l < oP) .

The same holds for every component I of r'! . We conclude as follows.
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Lemma 9. Essential trace speed inside the wedge bundle W(u,p,I'l) ©
B*(5,T'!) is excluded unless (necessary) the (moving point on the) path is
inside the sharp wedges bundle W(tO'B,l") for some component TI' of TI'! .

Remark 1. Any component of the sharp wedges bundle W(TO'B,F) is
either an attractive wedge bundle over T or a repulsive wedge bundle
or a half attractive wedge bundle. This depends on the direction in
which the paths transverse the two boundary surfaces of the wedge
bundle under consideration. See figure 12 b). (Compare the steepest

descent near O for the functions of one variable x : f = x2 . = x2 and

x3 respectively, where an interval around x = 0 is attractive, repulsive,
or half-attractive respectively). The corresponding parts of F C E will
also be called attractive, repulsive and half-attractive respectively. If a
path of a point in an attractive wedge bundle realizes ETS , then so does
every path of points in some small neighborhood of the first point. ETS

is a stable property for such points (and for such paths) in B*(3,I') .

The two curves bounding a wedge at a point o e ¥ , have a

common tangent at their common endpoint. They form the cusp whose
tangent in a (o ,) plane is represented by roots of F; = 0 . For that

reason we called X C Zx R* the cusp curve.

Remark 2. The introduced notions can be combined for all general sides
(with slopes o; =mi/n; >a; , = m, /m, ; >0) of P(f), concerning a

simple closed curve X =ZX%* (resp. E: C £ for a non simple irreducible

curve X , or a composite curve I ). We get a pile, namely the union
U(Z), of cusp curves £ < Ex R* each as in figure 12 a). The case i is

placed above the case i+ 1 ). We also get a pile of wedges bundles over
compact intervals I' C X,

Observe that the arrows in figure 12 b) imply that for small p a
path point in B(8 ,I') conceming case i will move "vertically", and with
decreasing p , and decreasing o , to the underlying case i + 1, that is
the view defined by a;, , = m, +1/My,1 - Also for large value p a path in

B(8,I') will have decreasing p and o , until it approaches and enters the
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highest (and therefore attracting or half-attracting) sharp wedge bundle
in Wu,pT).

Going down by views defined by decreasing slopes o; = m/n; itis

only at the slope of a special side of P(f) that p =0 and ¢ =0 can be
attained at a finite time t < o , and the path goes to the other Box
B7(3,I') with o < 0. Moving up from the view a, ; to the view o; could
at most happen near exceptional points "A  =0" and "A;, =0".

Problem 1: Could it happen an infinite number of times (for t — < )on a

path that returns again and again in the course of time? This is
interesting for existence of paths with Q different from a point. See

section 8.

6.3. The vector-ficld F along T — I concerning o = m/n , for a_simple
closed curve T =2* on $2.

We start from the formula (5.13), - JL =¢ F, where F is a sum of
derivatives 9,A , of potential functions A, with coefficients ps=% >0

as weights. The potentials restricted to X C S2  are algebraic functions.
The coefficients us"' need to be represented, for essential trace speed
(ETS), in sharp wedges bundles. Asymptotically these coefficients are
(ui(l))s'g where p, is root of the equation (6.2) : F =0 .

We lift the arclength (and metric) A on I , to an arclength (and

metric) A on X by the projection I — X . Then we extend the

vector-field F = 7.L/c ,for 0 >0 and 6 = 0 to a vector-field on the

metric graph I above I . It is the limit:

—~

(6.6) F=Z,0A)n on L 5.

F is well defined at all points of X that are not exceptional. (Note that
some points A € I covering a given exceptional point A € £ need not

be called exceptional on I . This is easily seen in figure 12 a)). If some

i~

non-exceptional point A has value F# 0 in (6.6) then so has every

non-exceptional point of I by analytic continuation, except for a finite
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number of new exceptional points where the vector F vanishes. For
example it may change sign like descent for a maximum or a minimum
of a real function.

We can now conclude to

Lemma 10.If ETS exists at 'i =upr)e £ C R*xZ a non

exceptional point of X ,then it is defined up to a positive factor by the
vector-field F on - X .

(6.7) F()=Z9,A,0) (M) = 3,A 0] "

Then ‘it also occurs at points near to any given initial non-exceptional

point A = A e I . At different points A covering one and the

same point A € X , the vector-field can project into different vector-
fields on X and for example with opposite directions.

Remark. The same local conclusions hold for all general sides of P(f)
concerning any side ETI of £* < 8% , as defined at the beginning of

§ 6.1.

6.4. Local ETS is very rare for a general side of P(f) . Necessary
conditions for ETS .

In figure 7 we see the common slope « = m/n of a general side of
polygon P(f) with equation

j-M=a@(-N),

and the side of polygon P(- o) on a line with equation
(6.8) j—- (M-1) = a(i-(N-2).

This line is called "the first line" in the i-j-plane. The “last line” is the
parallel line
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(6.9) (j~M) = a(i-(N-2)) .

It contains points of P(-4) (for example on a whole side of P(-1)) if

there is any hope for ETS . It may contain points of N(-c) and does so
in figure 7. If m # n then there are parallel lines between the first and

the last line for rational numbers q , 0 < q < 1 such that

(6.10) (-M-q) = a(i-(N-2)) ,

contains lattice points of 2 x 2 C R x R , some of which may be in
N(-c) as seen in figure 7.

The points of the first line give the known contribution and leading
term

0 =F =%, (M-4m) A u5%.

If A has any chance to dominate over o and yield ETS then p must
be (by lemma 9) near to a root pu, of the equation

(6.11) F (1) = Zoo(M-2m) A (W (A)* 2 =0.

For each in-between-line we can collect the terms of the powerseries in

p for —o , represented on that line (6.9) and obtain some function
Fg q(|.1) . It must identically vanish by substitution of W =p, , because

otherwise it would dominate over the leading part (6.6) of F , and no
ETS would be possible. So refering to a neighborhood of a point A =

(mpA)e T in I, we have the first set of necessary analytic conditions

for ETS :
(6.12) Fo'q(pi)so, O<qgx<l.
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The "last line" gives an analogous contribution in the powerseries of -o

which we denote F;, . If this contribution is not identically zero then

the quotient |- ?L /-o | is bounded at almost all values A for small § ,
0<r<6,0<0<8 and ETS is excluded even inside the concerned
wedge bundles! So we have the second necessary condition for ETS .

(6.13) Fo ()=0, (q=1).

It is the only necessary condition if m/n = 1 . It seems hard to find
examples where the necessary local conditions, in particular (6.13) are
fulfilled. The only examples I know are simple generalisations of
example II in section 5. They have the following properties: £ is a great
circle on S, say givenby z=0;A =0 is equivalent to an algebraic
function namely x/y = cotg 6 , not only on X but on $2 . So these
are two algebraic local orthogonal coordinates ¢ and cotg 8 . Moreover
if (i,j) e P(f) N N(f) then (i,j+1) ¢ N(f) . The last property implies
(roughly) the condition F;,=0.

Problem 2: Find other examples for which the necessary conditions for
ETS are fulfilled or prove that there are no other examples.

Remark on the choice of g .If (6,A), 0 = R, is chosen and we are
interested only in o 2= O , then good coordinate systems of orthogonal

coordinates different from (R,A) are (-R,A), (R2,7L) and (R3,7L) . It also
might happen (very unlikely!) that there exists a homogeneous
polynomial function T, so that the leading part of f = X A,(1) N*4m

RM-4m s expressed in new orthogonal coordinates R' = RT and A', with
RT a homogeneous polynomial, by f = EA'Je(JL')rN'""“(R')M‘'em It is
difficult to see what then happens with all the necessary conditions for

ETS. The first condition (cusp curve) does not change in quality as long
as T# O on the relevant stratum of X .

Note that it is easy to make many specific classes of functions f
for which the conditions are not fulfilled so that ETS does not exist for
general P(f) sides. Then only special sides can produce ETS .
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Definitions. A function f with critical point 0 e R3 is called rare or

very singular at A =(A,p)e X : with respect to a general side o =

m/n of P(f) , if the conditions (6.11, 12, 13) are fulfilled for some
choice of o . The function f is called nowhere very singular, if there are

no such very singular points 5[ (for any general slope o = m/n and

any £, CE* € LC critH ,with H(Z)=0).

ngg comments.

1. At some non-exceptional point A e £ and on a non-exceptional TI'e X,

Ae I' , we may find different coverings Fa . ;b and TI® such that
there is no ETS in case a), there is ETS defined by a vector-field F in

case b), and there is ETS defined by a vector-field F with opposite
direction in case c). All are "realised” in different wedge bundles over I

that can be attractive or repulsive. For example they can all be
attractive. Then in case a) a path in Box B*(3,I') will go straight to a
nearby point on TI' , in case b) it will escape from B*(§,I') in one end,
and in case c¢) it will escape from B*(§,I") in the other end. The projected
traces occur all together along I . They are observed by the celestial
observer at 0 € R3 with mixed feelings.

2. Problem 3 (jump of trace): A path in a repulsive wedge bundle may at
any moment leave this wedge bundle and "jump" to an attractive wedge
bundle. It seems unlikely that a path will do so at approximately one A-
value an infinite number of times for t — o in one global path. This
could have interesting consequences for Thom's conjecture. See
conjecture CNOS in section 8.
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7. Standard ETS.
A path is called standard if it has ETS at most and only at special
sides of polygons P(f,R ). A function is called standard, if all its paths

are standard. In this section we prove (not assuming that f is a square):

Theorem 3: Q is a point for every standard path. CRT holds for every
standard function.

For the proof we only need the technical

Lemma: Let x(t) be a path for the analytic function f with
w(e)=Q e Z,H(Z) =0, and suppose x(t) has for no general side of

any Newton polygon P(f) = P(f,R ) essential trace speed. Then Q is one

point.

Theorem 3 applies if f is "nowhere very singular". In § 7.1 we

illustrate the theorem in an_example with no general P(f) sides at all.
In § 7.2 we prove the theorem for X irreducible, in § 7.3 for Z

reducible,

7.1 An_example with reducible T .

We study the function
f= xzy2(z~x--y)2 + 0 Xy(x+y) + P4 x(x-y) + o (y-x) =

We concentrate our attention on one selected domain D defined
on $2 by x>0,y>0, z-x-y<0, with boundary the triangle E¥ . As
coordinates inside D we use o = - (z-X-y)/r near the side zx-y =0, 0 =
y/r near the side y =0 and o = x/r near the side x =0 of Xt C s,
The gradients of the function H in D but near x* are suggested in

figure 13 b). Those in points on X* of the functions Hes , Hge and Hg,

are suggested in figure 13 c). Very near each side of X% , we obtain a
balance (as seen before) in wedge bundles one for each side of Xt . We
observe essential trace speeds ETS insidle D along each side of X7,
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guided by (decrease of) different potential functions Hs,, Hgo and Hs,

on these sides, as seen in figure 13 d).

In figure 13 e), f) and g) we show the Poincaré polygons P(f) for
each of the sides of X* . Each Newton polygon P(f) = P(fR,) has only

one declining side, which is a special side. There are no "general sides" at
all. So our example is "nowhere very singular". Although the different
potentials that guide ETS for each side of X* seem rather independent,

they do not cooperate in this case to produce a spiraling effect. This is so
in particular because Hg, = xy(x+y) vanishes at the ends of the

corresponding side of Z* . In § 7.3 we prove that such cooperation is
never possible in case all ETS occur only on special P(f) sides. Note that
in this example the wedge bundles cannot be made to fit at any corner
of £* . No trace curve follows more than one side of D in this example.

Variant. This is different for the function f = x2y2(z-x—y)2 + 152(x+y) as
seen by taking o = - xy(z-x-y) as local coordinate on each of the edges.

Then Hg;lZ* guides ETS along each edge of I on one side of this edge.
See figure 13 h). But for some edges ETS is on the "outside" of XI* . We

see curves that follow first one edge, (z-x-y) = 0 , with ETS, and then
another edge, (x=0), with ETS.

7.2 Proof for irreducible Z .

Let y > k be the smallest integer i for which A,  in (5.4) is not

identically zero. The point (y,0) € R 2 is the endpoint of the last
declining side of P(f) , a special side with slope o, say. The algebraic
function Ayo on £ is a square, and either a non-negative function with
a finite number of zeros or a positive constant ¢ > 0 . Let o, be the
slope of the next (general) side of P(f) : o) > a, .

We study various slopes o > O and therefore various views on the
fundamental differential equations in Boxes B*(3,T).For a« > a, we
have the views related to general sides of P(f) . Also for a =a, we

have a situation like that with a general side. We include this case in our
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definition of very singular if the conditions (6.11) and (6.12) are
satisfied. Then we need not discuss them.

All remaining cases of ETS are as follows:

Case 1. The standard case Ayo not constant, Ayl not identically zero.

See the example of section 4 and figure 14 a) for Newton sets and
polygons. The point (i,j) = (y-2,0) is in N(-6) € R2 with powerseries
value Ayl - It is also in N(-A) with powerseries value 9, Ayo . Let aj

be the slope of the common "tangent" of P(-6) and P(-7.L) .

For o<a 3 ., there is no dominance of -A over -6 because

Ii/ ol = ialAyo/Ayll is bounded except near zeros of Ayl . So there is no

essential trace speed. For o = a; of the common tangentline of P(0)

and P(A) we can however have essential trace speed. As in section 6,

§ 1 and 2, we can define an algebraic curve TC I'x R* over I with
equation F_=0.If F_ is a polynomial of degree q 21 in p , then
there can be q wedge bundles in B*(3,I') , attractive, half-attractive or

repulsive. For each of them the essential trace speed is guided however

by the same pure potential Ay0 = HyIE . An example with q =2 is

given (without details) in figure 14 a). The relevant coefficients like

Ayo (positive), Ayl , Ay-l,2 and Ay_2.3 must be suitable to get indeed

wedge bundles and essential trace speeds on X =Xt

Case 2, Ayo not constant, Ayl = 0. Then (y-2,0) ¢ N(-0) . This is
the nice case. Compare example I in section 5 and figure 14 b). Let oy
be the slope of the common tangent of P(-0) and P(—i) , see figures 8
and 14 b). If a < «y ,then -A dominates over -0 and -+ . This

means that lo/ il and Ir/ il are as small as we please, for ¢ and r
small , in case 9,A; # 0. Then -A dominates and we do have essential

trace speed like in example I, but now guided by the potential Ayo .
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The common tangent with slope o = o, meets P(-A) in one point

and P(-0) in either one point or a whole side. In the latter case we
obtain for the view o =a; again possibly a real algebraic curve £ — X

~and wedges bundles. Then ETS may arise, but here it only realises in
certain wedge bundles, attractive, half-attractive or repulsive. In all
cases ETS is guided by (decrease of) Ayo = Hyl}l . In figure 14 b) Newton

polygons for this case are seen.

Case 3. Ay0 > 0 is constant. Suppose Ay_“,0 iS not constant,

then (y-1,0) e N(-r) with powerseries coefficient Ayo =¢>0 and

(y-1, 0) e N(-i) with powerseries coefficient 9, A o - Essential trace

y+1
speed is impossible as -A cannot dominate -r , by their Newton sets,

We conclude, that in all possible cases HyIE guides ETS in case Z

is on an irreducible curve. If there is ETS then near to X it follows

decrease of a unique potential, and the trace point converges to some
point on X where this potential on X has a minimum or critical value.

Then Q is one point and CRT holds.

7.3 Proof for_ reducible X .

Let £ C §2, H, (Z) = 0, be a topological component of crit Hy for
the analytic function f . Andlet R, =0, 1<u<v, , be the irreducible
algebraic curves in SZ  that cover the one-dimensional strata of X .
Suppose R =0 , 1Susv,sv, , are those components that do have
ETS either on one side or on the other side of the curve R, = 0. The ETS
is guided along R by one potential Hyu IR, , and a path with ETS is in

an attractive, repulsive or half-attractive wedge-bundle, or possibly not
in a wedge bundle as in the case of the nice examples. The path can

jump from a repulsive wedge to an attractive wedge, but if so then the

guiding potential remains the same along R, namely Hy . Now
u
suppose a not exceptional point A € X is contained in the interior of a

limitset Q of a trace. So Q is not one point. Then some path for small r
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>0 and small ¢ >0 moves in a box B(d,I') and comes back later there

again guided by the same Hy hence moving in the same direction along
u

Z . There is a corresponding closed immersed circle S in X .Let A C £
be the subarc of the path, which embeds near S € T € S2 . As § isan

immersed circle, it must be oriented by the local ETS that is guided by

potentials H, . Suppose (after reordering) exactly the factors R, ,1<u

SvySv, ,are involved in 2A .

We next consider the smallest value y of all y, 1<u<v;.
Clearly, for components Hj , j <y, that do not vanish, we conclude that
Hj has R, as a factor for 1 < u< v, . For example of course H, (the

leading part of the development of f ) has all these factors. By definition

H_ has at least one among R, , 1 <u<v;, not as a factor. Suppose
y u

1<v,<v; and I-Iy has exactly no factors R, for 1 <u<v,<v,; . Then

HyIRu will guide ETSon SN R, for u<v, and it will vanish on

SN Ru for vj <u< vy . The arcs S N R,,vy<usg \£ form maximal

connected oriented large arcs on S where Hy guides ETS, but Hy will

vanish on each end of these large arcs. Therefore Hy has a maximum

or minimum on each of these arcs and no trace can follow that arc from
its beginning to its end. (See the example in § 7.1). This contradicts the
needed orientation in S . Then Q is one point and every trace of a path
in the catch set with Q € X ends in one point. This completes the proof
of theorem 3. Note that we had no need to specify the wedges bundles
for special Newton polygon sides for our theorem 3.
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8. The remaining rare paths and rare functions.

We now know that CRT is at most false for rare paths and rare
functions.

8.1. Reduction of CRT to an "evident" conjecture (CNOS) in case I js
irreducible.

Let x(t) be a path with x(e) =0 e R3 for a function f=g220.
Suppose  Q = lim,__w(t) € L is not one point. Then by theorem 2,
M,(Q) = 0, and by theorem 3, x(t) 1is a rare path and must have ETS for
some value of u on some general side of N(f) = N(f,R ).

Let ¢ =R, be chosen positive near the polygon Izt c X on the

inside of X* as defined and seen in figure 11 section 6.1 p. 43. Let this
choice of o give ETS and contribute to Q . Then o(t) > 0 remains

positive in the view determined by the general side of N(f) with slope
say m/n . Suppose also X isirreducible and denote R, = R . The

leading terms with this view are given in (5.8) - (5.13) for any compact
arc ', in an open one-stratum of the subgraph T*C X and t

sufficiently large. These leading terms are:

£ = 12g Ei=o A, (N+4&n-2 SM-2m-1
“r = 10 T(N+4n) Ax MN+4n-2 M-Lm-1
(8.1) -0 = Z(M-2m) A, N+4n-2 M-2m-1

=9

N+4n-2 _M-2m-1
c z axAz T o .

Note that N, M, and S are even as f=g2;also Aozo and Aszo are

squares, and not identically zero by the definition of the Newton polygon
N(f) squares, and not identically zero F or large t we have an
asymptotic approximation the first necessary condition for ETS (see

section 6.4) : -0 = 0 . We write this in the forms
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(8.2) 0= Z(M-2m) A, p5% = X(M-£m) A, v&-D™; 5(M-£m) A yM-4m — o
2 y ] 2

for p =cM/M=v", v=o//m,

The solutions form the cusp curve & of points 2 =0Q.p)e T, as
illustrated in figure 12 p. 43. The path x(t) moves for large t during
ETS inside wedge bundles, and A() = (A(t),n(t)) is then near T+ , above
the arc T’y € Z , hence near an open stratum I'| of £*c £ . It follows

that the limit set Q has a lift © which contains, for ETS, parts of curves
immersed in ¥* . They must determine a unique orientation by the

vector - A , on each one-stratum segment of Q . It may (might) happen
that & has a point X, noton E* . This can occur, in principle, if 2 path

moves for a while inside a repulsive wedge bundle and then

leaves it and jumps to an attractive wedge bundle, passing near to 10 .

As 'io e O this is repeated for t — o an infinite number of times and

7.0 is contained in a limit curve in Q connecting a point on a repulsive

segment of ¥ to a point on an attractive segment of T* . This curve is
vertical as seen in (6.1) and figure 12 b).

Proof of a special case. We now first prove CRT for any path in a
case where the above complication does not occur, namely example II
and similar cases. More precisely, let X =ZX* be a smooth circle and
¥ - £ a 2q-fold covering of alternating attractive and repulsive circles
whose union is ¥ . If the path is in a repulsive wedge bundle and leaves
it, then it goes to an attractive wedge bundle which it will never leave
again. So then it will not return to the repulswe wedge bundle. So Q
must be one of the components say Q= 21 of £ . From the equations

(8.1) (8.2) we deduce for large 't  concerning the asymptotic
approximation of a path x(f) in ZX;:

(8.3) R sS_A, MM 0 (as £20).

Observe that A, = A,(A) , Fy is periodic in the arc length A , and
v = v(A) is by (8.2) a root of
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(8.4) F, %' s (M-4m) A, vM-2m1 -0,

Differentiation of F with respect to A gives for every one stratum on

%

12 . - pm-1 def
3,Ff = Zj_, (3,A ) VMM 4 0,v) T, M-tm) A wMAm-17Z F 40,

The second part is O by (8.4).

Here FT is proportional to -7'L , which must be of constant sign (>0 or
< 0 ) for all open strata of the graph on £, =Q by ETS, but could be zero

at vertices. Hence

alFfEO , not =0.

By integration F; cannot be periodic in A , a contradiction. Then Q is a

point and CRT holds for this path. (Acknowledgement: for this argument
I got essential help from Jean Bourgain).

We now return to the general situation. Suppose Q contains a
repulsive point A, © I with ETS. A path point (A(t,), u(t, )) near to
'7:0 must come from path points (A(t), p(t)) € I' x R* for some t, <t<t,
inside the repulsive wedge, as seen by inverting time. Q then contains
a A-interval Tc ¥, covering ' C Q<€ X, with ends in A(ty) and
A(t,) . The path segment between t, and t, is near to T and it must
return there, but after some time nearer to T, and again and again, an
infinite number of times for t — o . The wedge is then called

superrepulsive for the path x(t) and the path is called superselected at
T (called so because it should survive the infinitely repeated repulsive

sharp wedge influences). This seems to be impossible (no proof !). So we
now propose the

Conjecture (CNOS). No path can be superselected for any arc T
covering an arc T C Q in an open one-stratum of X .

Theorem 4. If the conjecture CNOS is true then CRT holds for
irreducible I .
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Proof. By CNOS for any general side of N(f) we find that Q contains no

repulsive parts of ¥ and therefore Q liesin £ the union of the

closures of the attractive one-strata of £ . In particular for some t, and

t>t, the path x(t) will not go down from the view on one general side

with slope m/n (necessarily through a repulsive wedge bundle !) to a
view for a side of N(f) with the next smaller slope m;/n;, < m/n . So

Q c I c I .Take any path x(t) which follows for t >t  large, one

round of a circle immersed in Q < I*. We only discuss the open one-
strata of £* and neglect in the argument what might happen at
vertices of the graph % . Then the arguments and calculation above for
the case of example II apply and can be repeated, and this leads to the
same contradiction. Then CRT holds for every path.

8.2 Discussion of the remaining rare paths, for reducible X .

As in section 8.1 we assume the conjecture CNOS. Let x(t) be a
path with Q = 1imt=wm(t) not one point. By theorem 4 Q must contain at

least two consecutive parts on two different irreducible curves R =0

and R, =0 of Z. Suppose R, and R, meet at a vertex of Q C =t ,
and ETS is due in both irreducible components to general sides of
Newton polygons N(f,R ) and N(f,R ). The path x(t) must eventually,
and repeating so an infinite number of times, appear and disappear
inside some piece of wedge bundle at the vertex.

This should imply that the Newton polygons have parallel general

sides, and that the cusp-curves for R, and R, connect for well chosen

coordinates S, and c, - Then one is led to believe that there must be a

common coordinate like

o _w _npPupPy
c-ou-cv-Ru R‘r

such that leading terms for f would be of the kind

_ 53 +4n . M-2m
f=%, A, g
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All necessary equations for ETS must be fulfilled along R =0 and along

R, = 0 . That seems too much for existence of ETS along each of the two

sides. And this existence would be needed before a counterexample to
Thom's conjecture has a chance to exist. I am confident that CRT also
holds for rare paths, but I did not succeed in elaborating the above
comments and others and obtain a proof for all cases.
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