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Abstract

For a polygonal linkage, we produce a fast navigation algorithm on its configuration space. The
basic idea is to approximate M(L) by the vertex-edge graph of the cell decomposition of the
configuration space discovered by the first author. The algorithm has three aspects: (1) the
number of navigation steps does not exceed 15 (independent of the linkage), (2) each step is a
disguised flex of a quadrilateral from one triangular configuration to another, which is a well
understood type of flexes, and (3) each step can be performed in a mechanical way.
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1. Introduction

In the paper we work with a polygonal linkage (equivalently, with a flexible polygon),
that is, with a collection of rigid bars connected consecutively in a closed chain. We allow
any number of edges and any lengths assignments, (under a necessary assumption of the
triangle inequality, which guarantees the closing possibility). The flexible polygon lives in
the plane and admits different shapes, with allowed self-intersections. Taken together, all the
shapes form the moduli space of the linkage. In the paper, we produce a motion planning
algorithm (equivalently, a navigation algorithm) which explicitly reconfigures one shape to
another via some continuous motion. In the language of the moduli space this means that
we present a path leading from one prescribed point to another. We not only indicate the
path, but also present a way of forcing the linkage to follow the path.
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Although the problem does not seem very complicated (since the more edges we have,
the more degrees of freedom we have), the navigation is not an easy issue because of the
(possible) topological complexity of the moduli space.

There exists (see (5)) an O(n) algorithm, where each step is a line-tracking motion. That
is, during each step, the entire polygon except for some pentagonal subchain is frozen, only
the subchain flexes in such a way that one of its vertices moves along a straight line.

Our reconfiguring algorithm is based on a stratification of the moduli space into a cell
complex, introduced in (7). More precisely, we treat the one-skeleton of the complex as
an appropriate approximation of the moduli space. In other words, we have an embedded
graph, and we mostly navigate along the graph. The navigation goes as follows: from a given
configuration of the linkage, we first reach an appropriate vertex of the graph, then navigate
along the graph until we are close to the target configuration, and next, we pass to the target
configuration. There are three important aspects about the algorithm:
(1) The number of steps (i.e., the number of edges of the connecting path) never exceeds

15. That is, we have a finite time algorithm (rather than n or even log n complexity).
(2) However, to find each of the 15 designated configurations needs linear time complexity

algorithm.
(3) Each of the steps (that is, going along an edge of the graph) is a disguised flex of a

quadrilateral polygonal linkage, which is both simple and well-understood.
(4) Each of the steps can be performed in a mechanical way, see Section 4.
The paper is organized as follows. Section 2 gives precise definitions and explains the

cell structure on the configuration space. We also present introductory examples and give a
formula for the number of vertices of the vertex-edge graph of the complex Γ. The navigation
on the graph is in Section 3. We show that a vertex-to-vertex navigation requires at most
15 steps.

Our next goal is to control the prescribed motions. We work under assumption that we
have a full control of convex configurations. There are different approaches how to do this:
by using Coulomb potential, as in (12), by mechanically controlling the angles, in the way
described in (1), or in some other way, not to be discussed in the paper. However we stress
that for navigating over edges of the graph, it suffices to control just quadrilaterals, which
is a much easier task, and which is well understood in all respects.

Navigation from an arbitrary point of the moduli space to a vertex requires one more
step: we need to connect the starting point to the graph. Two different ways to initiate the
algorithm in a mechanical way are described in Section 4.

The results presented in this paper arose as a natural continuation of the research on
Morse functions on moduli spaces of polygonal linkages started in (10), (11), (12). Several
approaches to navigation and control of mechanical linkages have previously been discussed,
in particular, in (8), (9), (10) and (12).
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2. Moduli spaces of planar polygonal linkages

We start by a short review of some results on polygonal linkages and their moduli spaces.
A polygonal n-linkage is a sequence of positive numbers L = (l1, . . . , ln). It should be

interpreted as a collection of rigid bars of lengths li joined consecutively in a chain by
revolving joints. In the literature, it is sometimes called a closed chain.

We assume that the closing condition holds: the length of each bar is less than the total
length of the rest.

A configuration of L in the Euclidean plane R2 is a sequence of pointsR = (p1, . . . , pn), pi ∈
R

2 with li = |pi, pi+1|, and ln = |pn, p1|.

Definition 1. The set M(L) of all configurations modulo orientation preserving isometries
of R2 is the moduli space, or the configuration space of the linkage L.

Definition 2. Equivalently, M(L) can be defined as the quotient space

M(L) = {(u1, ..., un) ∈ (S1)n :

n
∑

i=1

liui = 0}/SO(3).

Now let us treat the lengths li as variables. Each n-tuple of positive numbers gives us a
polygonal linkage which comes together with its configuration space. The hyperplanes

∑

i∈J

li =
∑

i/∈J

li,

where J ranges over all subsets of [n], are called walls. (Here and in the sequel, [n] denotes
the set {1, ..., n}.) The walls decompose R

n
>0 into a collection of chambers.

Here is a (far from complete) summary of facts about M(L):
• If no configuration of L fits a straight line, or, equivalently, L does not lie on a wall, then
M(L) is a smooth (n− 3)-dimensional manifold. In this case, the linkage is called generic
(4). Throughout the paper we consider only generic linkages.

• The topological type of the moduli space M(L) depends only on the chamber containing
L (4).

• M(L) admits a structure of a regular cell complex (7). The combinatorics is very much
related (but not identical) to the combinatorics of the permutohedron. The construction
is explained later in this section.

• Definition 2 implies that the moduli space M(L), as well as the cell structure, does not
depend on the permutation of the edgelengths li. More precisely, for any permutation σ ∈
Sn, there exists a canonical isomorphism between M(L) and M(σ(L)), which maintains
the cell structures.

Definition 3. A set I ⊂ [n] is called long, if

|I| =
∑

i∈I

li >
∑

i/∈I

li.

Equivalently, for a long set I,

|I| >
|L|

2
.

Otherwise, I is called short.

Note that because of the genericity assumption, we never have |I| = |L|
2
.
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We stress that the manifold M(L) (considered either as a topological manifold, or as a
cell complex) is uniquely defined by the collection of short subsets of [n].

Example 1. Assume that for an n-linkage L, we have the following:

∀ i = 1, 2, ..., (n− 1), the set {n, i} is long.

Loosely speaking, we have ”one long edge”. Such a linkage we call an n-bow; its moduli
space is a sphere (see (2)).

Definition 4. A partition of the set {l1, . . . , ln} is called admissible if all the parts are
non-empty and short.

Instead of partitions of {l1, . . . , ln} we shall speak of partitions of the set [n], keeping in
mind the lengths li.

Description of the cell complex

Now we sketch the cell complex structure on the moduli space M(L), referring the reader
for even more details and all the proofs to (7).

The cell structure comes from the following labeling of configurations. Given a configura-
tion P of L without parallel edges, there exists a unique convex polygon Conv(P ) which
we call the convexification of P such that
(1) The edges of P are in one-to-one correspondence with the edges of Conv(P ) . The

bijection preserves the directions of the vectors.
(2) The edges of Conv(P ) are oriented in the counterclockwise direction with respect to

Conv(P ) .
In other words, the edges of Conv(P ) are the edges of P ordered by the slope (see Fig.

1). Obviously, Conv(P ) ∈ M(λL) for some permutation λ ∈ Sn. The permutation is defined
up to some power of the cyclic permutation (2, 3, 4, ..., n, 1), and hence can be considered as
a cyclic ordering on the set [n].

Our construction assigns to P the label λ, considered as a cyclic ordering on the set [n].
Equivalently, a label of a configuration without parallel edges is a cyclically ordered partition
of the set [n] into n singletons. Figure 1 gives an example.

If P has parallel edges, a permutation which makes P convex is not unique, since there
is no ordering on the set of parallel edges. The label assigned to P is a cyclically ordered
partition of the set [n], where parallel edges belong to the same subset in the partition. Fig.
2 gives an example.

An obvious observation is that all labels are admissible partitions.

A remark on notation. We write a cyclically ordered partition as a (linearly ordered)
string of sets, keeping in mind that the string is closed.

We stress once again that there is no ordering inside a set, that is, we identify two labels
whenever they differ on permutations of the elements inside the parts. For instance,

({1}{3}{4256}) 6= ({3}{1}{4256}) = ({3}{1}{2456}).
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Fig. 1. Labeling of a polygon with no parallel edges

1

2

3

4

5

1

2

3

4

5

1

23

4

5

( {1}{3}{5} )   =     ( {1}{3}{5}){42} {24}

Fig. 2. Labeling of a polygon with parallel edges

Definition 5. Two points from M(L) (that is, two configurations) are equivalent if they
have one and the same label. Equivalence classes of M(L) are the open cells. The closure
of an open cell in M(L) is called a closed cell. For a cell C, either closed or open, its label
λ(C) is defined as the label of (any) its interior point.
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With this labeling, the following theorem is valid.

Theorem 6. (7) The above described collection of open cells yields a structure of a regular
CW-complex K(L) on the (n − 3)-dimensional manifold M(L). Its complete combinatorial
description reads as follows:
(1) k-cells of the complex K(L) are labeled by cyclically ordered admissible partitions of

the set [n] into (k + 3) non-empty parts.
(2) In particular, the facets of the complex (that is, the cells of maximal dimension) are

labeled by cyclic orderings of the set [n].
(3) A closed cell C belongs to the boundary of some other closed cell C′ iff the partition

λ(C′) is finer than λ(C).
(4) The complex is regular, which means that each k-cell is attached to the (k−1)-skeleton

by an injective mapping. All closed cells are ball-homeomorphic. ✷

Example 2. The vertex labeled by

({1, 2, 5, 6}, {3, 4}, {7, 8})

and the vertex labeled by

({1, 2}, {3, 4, 5, 6}, {7, 8})

are connected by an edge labeled by

({1, 2}, {5, 6}, {3, 4}, {7, 8}).

Example 3. Let n = 4; l1 = l2 = l3 = 1, l4 = 1/2. The moduli space M(L) is known to
be a disjoint union of two circles (see (2)). The cell complex K(L) is depicted in Fig. 3.

Example 4. Assume that for a 4-linkage L, the sets {2, 3}, {4, 3}, and {2, 4} are short. An
example of such a length assignment is

l4 = l2 = l3 = 1, l1 = 2.5.

The moduli space M(L) is homeomorphic to a circle. The cell complex is combinatorially
a hexagon, that is, there are six vertices connected by six edges into a circle. The (cyclic)
order of the labels of the six vertices is:

({1}{2, 3}{4})

({1}{2}{4, 3})

({1}{2, 4}{3})

({1}{4}{2, 3})

({1}{4, 3}{2})

({1}{3}{4, 2}).

Example 5. For the equilateral pentagonal linkage L = (1, 1, 1, 1, 1), the complex K(L)
has 30 vertices, 60 edges, and 24 pentagonal 2-cells. Each vertex is incident to exactly four
edges.
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({1}{2}{4, 3})

{3}({1}{2}{4})({1}{2} {4}){3}

({2} ){3}{1, 4}

({ {2} )4} {3}{1}

( {1}{ 2})4,{3}

({1}{3}{4,2})

( {1}{3}{4}){2}({1}{3} {4}){2}

({3} ){2}{1, 4}

({ {3} )4} {2}{1}

( {1}{ 3})4,{2}

Fig. 3. K(L) for the 4-gonal linkage (1, 1, 1, 1/2)

In the paper we shall make use of the vertex-edge graph Γ of the cell complex, that is,
we take into account only zero- and one-dimensional cells. We treat it as a (combinatorial)
graph, keeping also in mind its embedding in the M(L). This allows us to view the graph Γ
as a discrete approximation of the moduli space.

Combinatorics of the vertex-edge graph

Assume that a linkage L is fixed. As a particular case of Theorem 6, vertices of Γ are
labeled by cyclically ordered partitions of [n] into three non-empty short sets, and the edges
are labeled by cyclically ordered partition of [n] into four non-empty short sets. Two vertices
labeled by λ and λ′ are joined by an edge whenever the label λ can be obtained from λ′ by
shifting some amount of entries from one set to another, as in Example 2.

Embedding of the vertex-edge graph

Now we describe a way of retrieving the vertex-edge graph Γ from the labels.

Algorithm 1. Retrieving a vertex (viewed as a polygon) by its label.
Given a label λ = (I, J,K), it corresponds to a unique point P ∈ M(L), that is, to some

configuration of L. The polygon P can be constructed as follows.
(1) Take a positively oriented triangle with edgelengths

∑

I

li,
∑

J

li, and
∑

K

li.
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(2) We assume that each edge is constituted of segments li. For instance, we decompose
the first edge into segments of lengths {li}i∈I . Their order does not matter.

(3) Now take all the edges apart, keeping their directions, and rearrange them according
to the ordering 1, 2, ..., n. We get a closed polygonal chain P , see Figure 4.

1
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3

4

5

6
1

2 3

45

6

{1,3,5}{2}{4,6}

Fig. 4. Retrieving a vertex from its label. Each vertex is a disguised triangle

Taken together, all labels give all configurations that have exactly 3 directions of the
edges. They form the vertex set of the embedded graph Γ(L).

Now let us explain how the edges are embedded.

Algorithm 2. Retrieving an edge by its label
Given a label λ = (I, J,K,N), it labels an embedded edge of Γ(L), that is, a one-

parametric family of configurations. They are retrieved as follows.
(1) Take a positively oriented convex quadrilateral with consecutive edgelengths

∑

I

li,
∑

J

li
∑

K

li, and
∑

N

li.

The set of such quadrilaterals forms a path in M(L) starting from one triangle to
another, see Figure 5.

(2) As in Algorithm 1, decompose each edge into (short) edges li.
(3) Exactly as in algorithm 1, take all the edges apart, keeping their directions, and rear-

range them according to the ordering 1, 2, ..., n. This gives a one-parametric family of
closed polygonal chains.

In other words, each embedded edge of the graph Γ(L) corresponds to a flex of some
quadrilateral, which connects two triangular configurations. Such a flex can be performed
by compressing one of the diagonals.

Lemma 1. (1) The number of vertices of Γ(L) equals

n
∑

k=1

Nk2
n−k − 2 · 3n−1 + 2n,

where Nk is the number of short k-sets.
(2) For the n-bow, Γ(L) has the minimal possible number of vertices among all n-linkages.

In this case, it equals 2n−1 − 2.
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Fig. 5. Retrieving an edge from the label ({5}{1, 3}{2}{4, 6}). Each edge is a disguised flex of a
convex quadrilateral from one convex triangular configuration to another

Proof. We start with the bow linkage (see Example 1), and then change L ∈ R
n contin-

uously. From the chamber that corresponds to the bow, we can reach any other chamber
by crossing walls. As follows from the construction of the cell complex, the graph Γ changes
only when L crosses a wall. ”Crossing a wall” means that exactly one short k-set I becomes
long, and exactly one long (n − k)-set I becomes short, where the number k depends on
the wall. Observe that any proper subset of I is short both before and after crossing a
wall. A vertex dies whenever its label contains I. A vertex arises whenever its label con-
tains I. This means that after crossing a wall, the number of vertices changes by adding
(2k − 2)− (2n−k − 2) = 2k − 2n−k.

Therefore,

|V ert(Γ)| =
n
∑

k=1

Nk2
n−k +Xn,

where Xn depends solely on n. Our second observation is that for a bow linkage, labels of
the vertices are as follows:

(I, [n− 1] \ I, {n}),

where I is any proper non-empty subset of [n− 1]. Therefore,

|V ert(Γ(n-bow))| = 2n−1 − 2.

This is a a base of induction.
For the n-bow,

Nk =































0 = C0
n−1 − 1, if k = 0;

n = C1
n−1 + 1, if k = 1;

0 = Cn−1

n−1 − 1, if k = n− 1

Ck
n−1, otherwise.
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2n−1 − 2 =
n
∑

k=0

Ck
n−12

n−k + 2n−1 − 2n − 2 +Xn

Xn = 2n − 2 · 3n−1,

which yields the final formula. ✷

As we see, the number of vertices of the graph Γ depends exponentially on n. However, the
valence of the vertices also depends on n exponentially, so one can expect a small diameter
(in the graph-theoretic sense, that is, the maximal length of the shortest path between two
vertices), and a fast navigating algorithm.

Lemma 2. A vertex of the graph Γ labeled by (I, J,K) has exactly

2i + 2j + 2k − 6

incident edges, where i, j, and k are the numbers of elements in I, J, and K respectively. ✷

3. Motion planning on the graph Γ(L)

Here we describe a finite-step algorithm of motion planning (or, equivalently, navigation)
from an arbitrary vertex of Γ(L) to any arbitrary prescribed vertex.

A path means a graph-theoretical path, that is, a consecutive collection of edges. By its
length, or the number of steps we mean just the number of edges in the path.

We start with an example demonstrating that the proposed navigation works fast.

Algorithm 3. (Navigation for the bow linkage) For an n-bow linkage with n > 3,
any two vertices of Γ(L) are connected by a path whose length is at most 3. The path is
explicitly described as follows.
(1) We start with a vertex labeled by

(I, J, {n}).

We may assume that the target vertex is labeled by

({1, 2, ..., k}, {k+ 1, k + 2, ..., n− 1}, {n}).

If this is not the case, we can renumber the edges of the linkage: we know that in view
of Definition 2, renumbering maintains the manifold M(L) and the cell structure.

(2) If |J | > 1,
(a) If 1 ∈ I, then go to the step (b). If not, shift the entry 1 to the set I and go to

step (b).
(b) Shift the set I \ {1} to the set J . We arrive at the vertex labeled by

({1}, {2, 3, ..., n− 1}, {n}).

(c) Shift the set {2, 3, ..., k} to the first set and get the target vertex. ✷

(3) If |J | = 1, then |I| > 1. We act similarly to the case (2), exchanging the roles of I and
J . Namely:
(a) If (k + 1) ∈ J , then go to the step (b). If not, shift the entry (k + 1) to the set J

and go to step (b).
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(b) Shift the set J \ {k + 1} to the set I. We arrive at the vertex labeled by

({1, 2, ..., k, k + 2, ...}, {k + 1}, {n}).

(c) Shift the set {k + 2, k + 3, ..., n− 1} to the second set. ✷

Now we pass from a bow to arbitrary linkages. We first produce an auxiliary algorithm
which turns polygons inside out, that is, connects a configuration with its mirror image by
a path.

Algorithm 4. (Turning a pentagon inside out) Assume that a 5-linkage L satisfies the
following conditions:
(1) The set {1, 2} is long.
(2) The set {1, 5} is long.
(3) ∀ i 6= 1, j 6= 1, the set {i, j} is short.

Then there exists a 4-steps path which turns the configuration ({4, 5}{1}{2, 3}) inside out.
Here it is:

({4, 5}{1}{2, 3})

({4, 5, 3}{1}{2})

({4, 3}{1}{2, 5})

({4, 3, 2}{1}{5})

({3, 2}{1}{4, 5})

Algorithm 5. (Turning an arbitrary polygon inside out) Assume that a linkage L is
fixed.
(1) If the configuration space M(L) is connected, then from each vertex V labeled by

(I, J,K) there are at most six steps to its mirror image (J, I,K).
(2) If the M(L) is disconnected, then the vertex (I, J,K) and its mirror image (J, I,K)

lie in different connected components, and no connecting path exists.
The idea is to imitate a pentagon which satisfies the three conditions of the Algorithm 4
by freezing some of the entries in L. Here and in the sequel, ”freezing” means putting the
entries into one separate set and after that, manipulating with the set as with a single entry.

Assume that l1 ≥ lk ≥ lm are the longest edges of L. It is known from (4) that M(L) is
connected if and only if

lk + lm <
|L|

2
.

Our starting point is a vertex labeled by (I, J,K), where 1 ∈ J . We can assume this,
since (I, J,K) = (J,K, I) = (K, I, J). Since we can apply renumbering of the edges, we also
can assume that the entries are as follows:

(I, J,K) = ({r + 1, r + 2, ..., p}{p+ 1, p+ 2, ..., n, 1, 2, ..., q}{q+ 1, q + 2, ..., r}).

Steps 1–2: necessary preparations before freezing: pushing entries to the cen-
tral set.

Maintaining the ordering, we shift to the middle set as many entries from the first and
the last sets as is possible. In more details, we first decide what entries should be shifted
from I, and what entries should be shifted from K. After the decision is done, we make two
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shifts, which means two steps. The choice is not uniquely defined; however, any choice is
good for us. The result we denote by

(I \ I ′, J ∪ I ′ ∪K ′,K \K ′),

for which we keep the same notation:

(I \ I ′, J ∪ I ′ ∪K ′,K \K ′) =

= ({r + 1, r + 2, ..., p}{p+ 1, p+ 2, ..., n, 1, 2, ..., q}{q+ 1, q + 2, ..., r}).

Steps 3–6: freeze the linkage either to a quadrilateral or to a pentagon, and
then turn it inside out. On this step we work under assumption that M(L) is connected.
A necessary observation is that now the set {p, q + 1} is short. Indeed,

lp + lq+1 ≤ lk + lm <
|L|

2
.

Therefore the set

A = {q + 2, q + 3, .., r, r + 1, ..., p− 2, p− 1}

is not empty.
Now the algorithm splits depending on the number of entries in A which equals (p− 1)−

(q + 2) + 1 = p− q − 2.
(1) Assume that p− q − 2 = 1, which means that A is a one-element set. Then we freeze

the set {p+ 1, p+ 2, ..., n, 1, 2, ..., q}. After renumbering

4 := {p}, 1 := {p+ 1, p+ 2, ..., n, 1, 2, ..., q},

2 := {q + 1}, and 3 := A,

we arrive at a quadrilateral from Example 4 which can be turned inside out in three
steps.

(2) Assume that p − q − 2 > 1. We divide the set A into two non-empty subsets and
freeze the two subsets. We also freeze the set {p+1, p+2, ..., n, 1, 2, ..., q}. That is, for
instance, we freeze the following three sets of entries:

{r + 1, r + 2, ..., p− 1}, {p+ 1, p+ 2, ..., n, 1, 2, ..., q}, and {q + 2, ..., r}.

After renumbering

4 := {r + 1, r + 2, ..., p− 1}, 5 := {p}, 1 := {p+ 1, p+ 2, ..., n, 1, 2, ..., q},

2 := {q + 1}, and 3 := {q + 2, ..., r},

we arrive at a pentagon which satisfies the properties from the Algorithm 4, and
therefore can be turned inside out in four steps.

Steps 7–8. Pushing entries from the central set.We have arrived at a vertex labeled
by

(K \K ′, J ∪ I ′ ∪K ′, I \ I ′).

In two steps we get to (K, J, I). These steps are reverse to steps 1–2.
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Algorithm 6. For any n-linkage L, and any two vertices V and V ′ of the graph Γ(L), the
vertex V is connected either to V ′ or to the mirror image of V ′ by a path whose length is at
most 7. The path is explicitly described as follows. Assume that l1 is the longest edge, and
that the target vertex V ′ is labeled by

({1, 2, ..., k}, {k+ 1, k + 2, ...,m}, {m+ 1,m+ 2, ..., n}).

(1) In two steps we get from V to a vertex labeled by

(I, {1}, J)

for some I and J . This is always possible:
(a) Assume that V is labeled by (A,B,C), and 1 ∈ B. Start shifting the entries from

B \ {1} to the set C. We shift as many entries as possible, that is, we think of
shifting them one by one until C is short, and stop if no other entry can be added
to C without making it long. The order in which we treat the entries does not
matter. However, we should shift all the entries by one step, that is, first decide
what entries are to be shifted, and next, shift them as a one subset.

(b) Shift the rest of B \ {1} to the set A.
(2) If one of the sets I or J contains two consecutive entries, we can freeze them. We

freeze all possible pairs of consecutive entries and renumber the edges (preserving the
ordering), which gives us a linkage with a smaller number of edges.
In any case we have a vertex labeled either by

({3, 5, 7, ...}, {1}, {2, 4, 6, 8, ...}),

or by the symmetric image

({2, 4, 6, 8, ...}, {1}, {3, 5, 7, ...}).

(3) Pull 2, 3, 4, ..., s and 3, 5, 7, ..., s±1 to the middle set for the largest s which is possible.
(This requires 2 steps more). Thus we arrive either at the vertex

({s+ 1, s+ 3, ...}, {1, 2, 3, 4, ..., s}, {s+ 2, s+ 4, ...}),

or at its symmetric image

({s+ 2, s+ 4, ...}, {1, 2, 3, 4, ..., s}, ({s+ 1, s+ 3, ...}).

So the first entry that we cannot shift to the middle set is s+ 1.
(4) Shift s+ 3, s+ 5, ... to the third set. It is possible because

{1, 2, 3, 4, ..., s, s+ 1} is long. We arrive either at

({s+ 1}, {1, 2, 3, ..., s}, {s+ 2, s+ 3, ...., n}) =

= ({s+ 1}, {s, s− 1, ..., 2, 1}, {n, n− 1, ..., s+ 2, s+ 3}),

or at the symmetric image. Now we have either clockwise or counterclockwise ordering
on the entries.

(5) There are two steps either to the target, or to the mirror image of the target vertex. ✷

Combining the two above algorithms, we immediately have the theorem:

Theorem 7. (1) For any n-linkage L with a connected moduli space, any two vertices V
and V ’ of the graph Γ(L) are connected by a path whose length is at most 15.
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(2) For any n-linkage L with a disconnected moduli space, and any two vertices V and V ’
of the graph Γ(L) lying in the same connected component, V and V ’ are connected by
a path whose length is at most 7.

The path is constructed explicitly basing on the above algorithms. That is we have the
following algorithm:

Algorithm A

(1) Starting with a vertex V , follow Algorithm 6. It may bring us to the target point, and
then we are done.

(2) If on the first step we get the mirror image of the target point, turn it inside out via
Algorithm 5. ✷

Now we exemplify the steps of the algorithm for one particular heptagonal configuration.

Example 6. Assume we have a heptagonal linkage with edge lengths

l1 = 10, l2 = 1, l3 = 9, l4 = 4, l5 = 9, l6 = 2, and l7 = 4.

Assume that our starting point is V1 = ({3, 6}{1, 4, 7}{2, 5}), and that the target vertex is
V ′ = ({5, 6, 7}{1, 2}{3, 4}). Then Algorithm A runs as is described below and as is depicted
in Figure 6.
(1) The starting point is the vertex of the graph

V1 = ({3, 6}{1, 4, 7}{2, 5}).

According to Algorithm 6, we go to the point

V2 = ({3, 6}{1, 4}{2, 5, 7}),

which is connected with V1 by an edge labeled by ({3, 6}{1, 4}{7}{2, 5}). Next come
the vertices

V3 = ({3, 4, 6}{1}{2, 5, 7})

and V4 = ({3, 4, 6}{1, 2}{5, 7}).

Then comes the vertex

V5 = ({3, 4}{1, 2}{5, 7, 6}) = ({4, 3}{2, 1}{7, 6, 5}),

which is the mirror image of the target point.
Now we start turning the configuration inside out, as is prescribed in Algorithm 5.

(2) The next point is
V6 = ({3, 4}{1, 2, 7, 6}{5}).

After freezing the middle set, we get a triangular configuration of a quadrilateral to
be turned inside out in three steps:

V7 = ({3}{1, 2, 7, 6}{5, 4}),

V8 = ({5, 3}{1, 2, 7, 6}{4}),

V9 = ({5}{1, 2, 7, 6}{3, 4}) = ({5}{6, 7, 1, 2}{3, 4}).

One more edge brings us to the target point

V10 = ({5, 6, 7}{1, 2}{3, 4}) = V ′.
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Fig. 6. The first part of Algorithm A applied to the heptagonal configuration. The second row
depicts the vertices of the path. The first row depicts the disguised flex.

4. Navigation and control on the moduli space

Here we describe a finite-step algorithm of navigation from an arbitrary (which is not
necessarily a vertex of Γ(L)) point of the moduli space M(L) to an arbitrary prescribed
point.

We work under assumption that we can somehow control the shape of a convex configu-
ration. As an example, we can use the result of (1), where it is shown that a convex polygon
can be moved into any other convex polygon with the same counterclockwise sequence of
edge lengths in such a way that each angle changes monotonically.

At the same time, we explain how to realize the flex mechanically. As in the previous
section, we assume that l1 is the biggest edgelength.

Algorithm B
(1) Given a starting configuration S and a target configuration T , we take the (n−3)-cells

of the complex K(L) containing S and T . The cells may be not unique, if this is the
case, choose S and T to be any of them. We choose VS = (I, {1}, J), and VT to be some
vertices of these two cells. Starting from now, we keep in mind Algorithm A applied
for the vertices VS and VT .

(2) We navigate from S to VS = (I, {1}, J). In particular, this means that we spare one
step in comparison with Algorithm 6.
We realize both P and the convexification Conv(P ) as two bar-and-joint mecha-

nisms. By construction, there is a natural bijection between edges of the two polygons,
and the corresponding edges are parallel. For each pair of parallel edges (one edge from
P , and the other one from Conv(P )), we plug in a pair of parallelograms as is shown
in Figure 7.

To prevent turning inside out, we add one extra edge inside each of the parallelo-
grams (here we follow (3)).
Each (convex) flex of Conv(P ) uniquely induces a flex of P in such a way that the

first polygon remains the convexification of the second one. Therefore, the task is to
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bring the convex polygon Conv(P ) to a triangular configuration. By assumption, we
can control Conv(P ), and therefore, we have a controlled way of bringing P to the
vertex (I, {1}, J).

(3) On this step, we navigate according to Algorithm A by prescribed edges from one
vertex V to some another vertex V ′.
We realize the motion mechanically almost in the same way as above: Take any

point P lying on the edge connecting V and V ′ and again realize both P and the
convexification Conv(P ) as bar-and-joint mechanisms. Now the polygon Conv(P ) is
a quadrilateral. Each of its edge we decompose into small edges of lengths li. Thus we
again have a natural bijection between edges of the two polygons, and the correspond-
ing edges are parallel. For each pair of parallel edges (one edge from P , and the other
one from Conv(P )), we plug in parallelograms in the same way as we did above.
We can assume that the edges of the quadrilateral are frozen, that is, the quadrilat-

eral can flex only at the four vertices.
Each (convex) flex of Conv(P ) uniquely induces a flex of P in such a way that

the first polygon remains the convexification of the second one. Therefore, the task
is to bring the convex polygon Conv(P ) from one triangular configuration to another
triangular configuration, see Figure 5. This can be controlled in many ways, since the
control of a quadrilateral is well-understood, see (12).
Important is that every next edge needs a separate collection of auxiliary parallelo-

grams.
(4) Once we arrive at the point VT , we go to the target point T as on the very first step.

In our second approach, we again add axillary bars to the polygonal linkage, but now we
have one and the same bar-and-joint mechanism which is not rearranged during the desired
flex.

The key observation is that the projection of the 1-skeleton of hypercube can serve as
a universal permuting machine: together with any configuration P , it contains all other
configurations obtained from P by permuting the order of edges, see Figure 8.

On the one hand, an obvious advantage of this approach is that we do not remove and
add bars at each step. On the other hand, a disadvantage is that we need much more extra
bars to be added. Therefore, the choice between the two ways of control depends on the
particular practical task.
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Algorithm C
(1) We assume that the starting and the target points are S, T ∈ M(L) . We find the

vertices VS and VT exactly as in Algorithm B.
(2) Interpret the edges of S numbered 1, 2, ..., (n− 1) as projections of edges of the hyper-

cube [0, 1]n−1. The edge numbered by n is then the projection of the diagonal of the
hypercube. Add extra bars to incorporate S to the entire projection of the hypercube,
which is now treated as a bar-and-joint mechanism, see Figure 8.

(3) The new mechanism includes also Conv(S). Now we can manipulate by Conv(P )
following Algorithm A. As in Algorithm B, we first bring Conv(S) to the configuration
labeled by VS = (I, {1}, J).

(4) Next, we follow the path on the graph Γ prescribed by Algorithm A. For each step,
we manipulate with the convex configuration Conv(P ) which degenerates to a convex
quadrilateral.

(5) The last step from VT to T is the same as the very first step.

Fig. 8. Projection of the hypercube includes both P (blue) and Conv(P ) (red).
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