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EXTREMAL CONFIGURATIONS OF POLYGONAL
LINKAGES

G.KHIMSHIASHVILI*, G.PANINA†, D.SIERSMA‡, A.ZHUKOVAX

1. Introduction

The present paper is concerned with certain special configurations of polyg-
onal linkages arising as solutions to various extremal problems on the moduli
spaces of linkages in the spirit of [14], [16], [17]. Our approach is also naturally
related to constrained optimization problems. Namely, we consider a geomet-
rically significant target function on the moduli space of a polygonal linkage
and aim at investigating its critical points. Some of the target functions we
deal with can be interpreted as energies of the linkage endowed with some ad-
ditional physically motivated structure, a typical example being the Coulomb
energy of the equal charges placed at the vertices of linkage. However, we do
not treat the Coulomb energy in the paper.

An important part of our study is concerned with the cyclic configurations
of planar polygonal linkages considered as the critical points of oriented area
[16]. Our approach yields, in particular, various enumerative and topological
results about cyclic polygons (i.e., polygons which can be inscribed in a circle),
which seems remarkable because cyclic polygons gained considerable attention
in the last decade partially due to the results and conjectures of D.Robbins
[20] (see also [3], [7], [21], [22]).

The aim of the present paper is to describe the state-of-the-art of these topics
and present a number of essentially new results. We begin by describing the
setting and recalling necessary results from [15], [16]. Throughout the paper
we freely use basic results about moduli spaces of polygonal linkages, which
can be found in [4], [12], and a few standard paradigms of differential topology
and singularity theory for which we refer to [9], [1]. We also need several results
from [15] which are reproduced below for the sake of the reader’s convenience.

Specifically, we consider the oriented area as a function A on the planar
moduli space M2(L) of a polygonal linkage L and embark on studying the
critical points of A. As was revealed in [14] and proven in full generality in [16],
for a generic polygonal linkage L with non-singular configuration space M2(L),
the critical points of A on M2(L) are given by the cyclic configurations of
linkage L. This fact is central for our exposition so we discuss its generalization

Key words and phrases. Mechanical linkage, polygonal linkage, robot arm, configuration
space, moduli space, oriented area, oriented volume, Morse function, Morse index, cyclic
polygon, Robbins formula.
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applicable to arbitrary polygonal linkages and a version for open polygonal
chains (or planar multiple penduli) (Theorem 2.2) obtained in [17].

Motivated by these results and conjectures of D.Robbins, in Sections 2, 3,
and 9 we present a few remarks on the geometry of cyclic configurations which,
to our mind, clarify a number of results of I.Sabitov, I.Pak and V.Varfolomeev
concerned with conjectures of D.Robbins on computation of areas of cyclic
polygons [20]. Our previous research witnesses that generically A is a Morse
function on M2(L) and its Morse indices can be effectively calculated using
the results of [19]. In the sequel we present an explicit formula for the Morse
index which arises as a simplification and explication of [19]. We also present
a version of this result in the case of spherical polygonal linkage.

An essentially new feature as compared with [16], [19], is that we also con-
sider the case of an open polygonal chain or robot arm (Section 4). The main
results include a formula for the Morse index of a critical configurations of
polygon and robot arm in the plane (Sections 3 and 4), and a geometric de-
scription of the critical configurations in the case of oriented volume in 3D
(Sections 6, 7, 8).

In addition to the aforementioned main topics we also present a number of
by-product results. In particular, we give an algebraic proof of the main result
of [16] (Theorem 11.4) and a self-contained proof of the stabilization theorem
for moduli spaces of polygonal linkages (Theorem 10.3). When the report was
completed, we learned that the stabilization theorem has already been proven
in an even more general setting [18]. However, we keep our proof since in our
case it comes as a simplification.

Acknowledgements. This research was supported through the programme
”Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in
2010. It’s our special pleasure to acknowledge the excellent working conditions
and warm hospitality of the whole staff of the institute during our visit in
November 2010.

2. Preliminaries and notation

An n-linkage is a sequence of positive numbers l1, . . . , ln. It should be
interpreted as a collection of rigid bars of lengths li joined consecutively by
revolving joints in a chain, either open or closed. Open linkages are sometimes
called robot arms. We study the flexes of the both types of chain with allowed
self-intersections. This is formalized in the following definitions.

Definition 2.1. (1) For an open linkage L, a configuration in the Eu-
clidean space Rd is a sequence of points R = (p1, . . . , pn+1), pi ∈ Rd

with li = |pi, pi+1| modulo the action of orientation preserving isome-
tries.
We also call R an open chain.
The set M◦

d (L) of all such configurations is the moduli space, or the
configuration space of the robot arm L.



EXTREMAL CONFIGURATIONS OF POLYGONAL LINKAGES 3

(2) For a closed polygonal linkage, we claim in addition that the last point
coincides with the first point: a configuration of the linkage L in the
Euclidean space Rd is a sequence of points P = (p1, . . . , pn), pi ∈ Rd

with li = |pi, pi+1| for i = 1, .., n − 1 and ln = |pn, p1|. As above, the
action of orientation preserving isometries is factored out.
We also call P a closed chain or a polygon.
The set Md(L) of all such configurations is the moduli space, or the

configuration space of the polygonal linkage L.

In Sections 3–5 we deal with d = 2, that is, with planar configurations. It is
convenient to use the following (equivalent) definition: the sequence of points
P = (p1, . . . , pn), pi ∈ R2 is called a configuration of the linkage L, if

(1) li = |pi, pi+1|, i.e. the lengths of the edges are fixed, and
(2) p1 = (0, 0), and p2 = (0, l1). That is, a pair of consecutive vertices is

pinned down.

A configuration carries a natural orientation which we indicate in figures by
an arrow.

In the paper we treat the signed area function as the Morse function on the
configuration space.

Definition 2.2. (1) The signed area of a polygon P with the vertices
pi = (xi, yi) is defined by

2A(P ) = (x1y2 − x2y1) + . . .+ (xny1 − x1yn).

(2) The signed area of an open chain with the vertices pi = (xi, yi) is
defined by

2A(P ) = (x1y2 − x2y1) + . . .+ (xnyn+1 − xn+1yn) + (xn+1y1 − x1yn+1).

In other words, we add one more edge that turns an open chain to a
closed polygon and take the signed area of the polygon.

Definition 2.3. (1) A polygon P is called cyclic if all its vertices pi lie on
a circle.

(2) A robot arm R is called diacyclic if all its vertices pi lie on a circle, and
p1pn+1 is the diameter of the circle.

Cyclic polygons and cyclic open chains arise in the framework of the paper
as critical points of the signed area. They are also related to the critical points
of the signed volume function (to be defined in Section 7).

Theorem 2.4. [16], [17].
(1) Generically, a polygon P is a critical point of the signed area function

A iff P is a cyclic configuration.
(2) Generically, an open robot arm R is a critical point of the signed area

function A iff R is a diacyclic configuration.
�
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Figure 1. Basic notation for a pentagonal cyclic configuration
with E = (−1,−1,−1, 1,−1)

The following notation (see Fig.1) is used throughout the paper for closed
cyclic configurations:

r is the radius of the circumscribed circle.
αi is the half of the angle between the vectors

−→
Opi and

−−−→
Opi+1. The angle is

defined to be positive, orientation is not involved.
ωP is the winding number of P with respect to the center O.
HessP (A) is the Hessian matrix of the function A at the point P .
HP = ±1 is the sign of the determinant of HessP (A).
µP = µP (A) is the Morse index of the function A in the point P. That is,

µP (A) is the number of negative eigenvalues of the Hessian matrix HessP (A).
A cyclic configuration is called central if one of its edges contains O.
For a non-central configuration, let εi be the orientation of the edge pipi+1,

that is,

εi =

{

1, if the center O lies to the left of pipi+1;
−1, if the center O lies to the right of pipi+1.

E(P ) = (ε1, . . . , εn) is the string of orientations of all the edges.
e(P ) is the number of positive entries in E(P ).

Definition 2.5. For a non-central cyclic configuration P , we define

δP =

n
∑

i=1

εi tanαi;

d(P ) = sign(δP ).

Most of the above notation we will also use for open chains.
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Figure 2. Subconfigurations P3, ..., Pn

3. Morse index of a planar cyclic polygon

Lemma 3.1. [19] Let two linkages L1 and L2 differ on a permutation, that is,
L1 = σL2 for σ ∈ Sn.

Then the Morse critical points of the signed area A for L1 and L2 are in a
natural bijection ϕ which preserves the Morse index, the value of A, the radius
r, and the number of positively oriented edges e. �

Theorem 3.2. [19] Let P be a cyclic configuration with a non-degenerate
HessP (A). Then

HP = −d(P )(−1)e(P )
�

Theorem 3.3. [19] Let P = (p1, ..., pn) be a generic cyclic configuration. In-
troduce its subconfigurations P3, ..., Pn (see Fig. 2) as

Pi = (p1, ..., pi), i = 3, ..., n.

Put HP3
= 1 for the trigonal configuration P3.

Then the Morse index µP (A) equals the number of the sign changes in the
sequence

HP3
,HP4

,HP5
, ...,HPn

,

where the values HPi
can be computed via Theorem 3.2.

�

Lemma 3.4. For a generic cyclic n-gonal configuration P with e(P ) = n, we
have µP (A) = n− 1− 2ωP .

Proof. We will use induction by ωP . Since all edges are positively oriented, ωP

is a positive number. If ωP = 1, then P is a convex configuration, which is
known to be the maximum of A. Therefore, µP = n− 3.

For the inductive step, assume that ωP > 1. Let k be the smallest number
such that the open chain (p1, p2...., pk+1) intersects itself (Fig. 3). The chain
P splits into a homological sum of two closed chains:
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Figure 3. Configuration P ′

P ′ = (p1, p2, ...pk+1), and P ′′ = (pk+1, pk+2, .., pn, p1)

(see Fig. 4).
The chains P ′ and P ′′ generate linkages L′ and L′′. Note that P ′′ is positively

oriented and ωP” = ωP − 1, so µP ′′(A) = n− k − 2ωP + 2.
The chain P ′ has exactly one negatively oriented edge (pk, p1), so e(P ′) = k.

Besides, δ(P ′) > 0 since |pk, p1| < |pk, pk+1|. By Theorem 3.2,

HP ′ = (−1)k.

Theorem 3.2 applied to the polygon P ′ gives µP ′(A) = k − 3.
A neighborhood of the point P ′ × P ′′ on the manifold M2(L

′) × M2(L
′′)

admits a natural embedding on a neighborhood of P on the moduli space
M2(L) as a codimension one submanifold. Indeed, given a configuration P ′

1 of
the linkage L′ and a configuration P1” of the linkage L”, we get a configuration
P1 by patching them by the edge (p1, pk+1). So, we have either

µP = µP ′ + µP” = n− 1− 2ωP ,

or
µP ′ + µP” + 1 = n− 2ωP .

Besides, by Lemma 3.2, HP = d(P )(−1)e(P )+1 = (−1)n−1. Therefore, µP (A) =
n− 1− 2ωP . �

By symmetry reasons, we have the following lemma:

Lemma 3.5. For a generic cyclic n-gonal configuration P with e(P ) = 0, we
have µP (A) = −2ωP + 2.

�

Theorem 3.6. For a generic cyclic configuration P of a linkage L,

µP (A) =

{

e(P )− 1− 2ωP if δ(P ) > 0;
e(P )− 2− 2ωP otherwise.
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Figure 4. Splitting P into P+ and P−

Proof. By Lemmata 3.4 and 3.5, the statement is true for configurations with
e(P ) = 0 or e(P ) = n.

Consider the configuration P that has both negative and positive entries in
E(P ). We rearrange edges of linkage so that εi > 0 for i ≤ e(P ) and εi < 0
for i > e(P ). By Lemma 3.1, this does not change µP . Add a new point q
on circumscribed circle, such that vectors (pe(P )+1, q) and (q, p1) are positively
oriented with respect to O. Then P splits into the homological sum of a
configuration P+ = (p1, p2, .., pe(P )+1, q) of a linkage L+ and a configuration
P− = (pe(P )+1, ...pn, p1, q) of a linkage L−. The configuration P+ fits the
condition of Lemma 3.4, and P− fits the condition of Lemma 3.5. Therefore,

µP+ = e(P+)− 1− 2ω(P+) = e(P ) + 1− 2ω(P+)

and

µP− = −2ω(P−)− 2.

A neighborhood of P in the manifold M2(L) admits a natural embedding in a
neighborhood of P+ × P− in the manifold M2(L

+)×M2(L
−) of codimension

1. Therefore, either

µP = µP+ + µP− = e(P )− 1− 2ωP ,

or

µP = µP+ + µP− − 1 = e(P )− 2− 2ωP .

There are two possible cases:

(1) δ(P ) > 0. Then by Theorem 3.2, µP ≡ e(P ) + 1(mod 2). Therefore,
µP = e(P )− 1− 2ωP .

(2) δ(P ) < 0. Then by Theorem 3.2, µP ≡ e(P )(mod 2). Therefore,
µP = e(P )− 2− 2ωP .

�
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Figure 5. An open chain, its symmetry image, duplication and closure
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Figure 6. The mapping φ splits a closed chain into two open chains

4. Morse index of a planar robot arm

Let R = (p1, . . . , pn+1) be a critical configuration of a robot arm (l1, l2, .., ln).
By Theorem 2.4, R is a diacyclic chain. Define its closure RCl as a closed cyclic
polygon obtained from R by adding two positively oriented edges (see Fig. 5)
and denote by ωR the winding number of the polygon RCl with respect to the
center O.

Theorem 4.1. Let L = (l1, . . . , ln) be a generic open linkage, and let R be
one of its critical configuration. For the Morse index µR(A) of the signed area
function A at the point R, we have

µR(A) =

{

e(R)− 2ωR + 1 if δ(R) > 0,
e(R)− 2ωR otherwise.

Proof. Consider the manifold M◦

2 (L)×M◦

2 (L) = {R1×R2 : R1, R2 ∈ M◦

2 (L)}.
Generically, the function A(R1 ×R2) = A(R1) +A(R2) is a Morse function on
M◦

2 (L)×M◦

2 (L).
Next, define the duplication of L as the closed linkage LD = (l1, l2, .., ln, l1, l2, .., ln).
Consider a mapping φ which splits a polygon P ∈ LD into two open chains,

R1 and R2. The mapping φ embeds M2(L
D) as a codimension one submanifold

of M◦

2 (L)×M◦

2 (L).
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For a cyclic open chain R, define RS as the symmetric image of R with
respect to the center O. Define also RD ∈ M2(L

D) as a closed polygon obtained
by patching together R and RS. The polygon RD is cyclic. By Theorem 2.4,
RD is a critical point of the signed area.

On the one hand, the Morse index of its image φ(RD) = R × RS on the
manifold M◦

2 (L)×M◦

2 (L) equals 2µR. On the other hand, the Morse index of
RD on the manifold M2(L

D) is known by Theorem 3.6.
Since M2(L

D) embeds as a codimension one submanifold of M◦

2 (L)×M◦

2 (L),
the Morse indices differ at most by one. More precisely, we have the following
lemma:

Lemma 4.2. Either µRD = 2µR, or µRD = 2µR − 1. �

By Theorem 3.6,

µRD =

{

e(RD)− 2ω(RD)− 1 if δ(RD) > 0,
e(RD)− 2ω(RD)− 2 otherwise.

Clearly, we have e(RD) = 2e(R), δ(RD) = 2δ(R), and ω(RD) = 2ω(R)− 1.
This gives us

µRD =

{

2e(R)− 4ω(R)) + 1 if δ(R) > 0,
2e(R)− 4ω(R) otherwise.

Assume that δ(R) > 0. Then µRD = 2e(R) − 4ω(R)) + 1 which is an odd
number. The only possible choice in Lemma 4.2 is 2µR = 2e(R)− 4ω(R)) + 2.

Analogously, if δ(R) < 0 we conclude that 2µR = 2e(R)− 4ω(R)). �

5. Critical points of spherical polygons

In the section we consider closed chains on the unit sphere S2 ⊂ R3. We
assume that the perimeter of a chain is less than 2π.

It is proven in [11] that the moduli space of a closed polygon on the sphere
is diffeomorphic to the moduli space of a polygon with the same edge lengths
in R

2.

Theorem 5.1. A spherical polygon P is a critical point of the signed area
function A iff P is cyclic.

Proof. The theorem is valid for 4-linkages by standard reasons. The proof for
n-linkages repeats the inductive proof for Euclidean linkages, see [16]. �

Observe that all vertices of a cyclic spherical polygon P lie in some plane
a(P ).

Theorem 5.2. Generically, a critical point P of a spherical n-linkage is a
Morse point of the spherical signed area function. Its Morse index equals the
Morse index of the planar Euclidean polygon with the same vertices as the
spherical polygon P .

Proof. The proof for n-linkages repeats literally the proof of the same theorem
for Euclidean linkages, see [19] and Section 3. �
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6. 3-arm in R3

Before we treat in the next section open linkages with n arms in R3, we
study here 3-arms in R3.
Let us fix some notation. The arm vectors are: a = (1, 0, 0), b and c of length
|a|, |b|, |c|.
A spatial arm is constructed as follows: we take the segments from O to the
end points A, B, C of a, a+ b, a+ b+ c. This yields a tetrahedron OABC.

Definition 6.1. We define the signed volume V of the 3-arm as the triple
vector product:

V = [a, a+ b, a + b+ c] = [a, b, c].

We intend to study V on several parameter spaces:

• On S2 × S2,
• On S1 × S2, where we fix the vector b to lie in the xy plane,
• On the moduli space Mo

3 (mod the SO(3) action).

In each of these cases critical points may be different. We intend to compare
the critical points and the Morse theory for the three cases.

6.1. On S2×S2. Before starting we define some special positions of the 3-arm:

• Special diameter position or tri-orthogonal : The sphere with diameter
OC contains also the points A and B. Equivalently : The vectors a,b,
c are tri-orthogonal,

• Degenerate: The arm lies in a two-dimensional subspace,
• Aligned : The arm is contained in a line.

Proposition 6.2. The signed area V : S2 × S2 → R has the following critical
points:

• Tri-orthogonal arms (maximum, resp minimum). These are Bott-Morse
critical points with transversal index 3 and critical value ±|a||b||c|.

• Isolated points, corresponding to the aligned configurations. Here V has
Morse index 2 and the critical value 0.

Proof. We use coordinate systems on the spheres; we take partial derivatives
with respect to all coordinates. We denote the partial derivatives of b by δ1b
and δ2b. Both are non-zero and orthogonal to b. We take partial derivatives
of V = [a, b, c] in the (δ1b, δ2b) directions: [a, δ1b, c] = 0 and [a, δ2b, c] = 0.

We will shorten this to [a, ḃ, c] = 0 meaning that the equation holds for all
vectors in the tangent space of b (which is orthogonal to b and spanned by δ1b
and δ2b). In this way we get:

[a, ḃ, c] = 0, [a, b, ċ] = 0.

For both equations we will consider two cases:
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equation ortho condition parallel condition
a× c 6= o a× c = o

[a, ḃ, c] = 0 equivalent to equivalent to
b ⊥ a and b ⊥ c a ‖ c
a× b 6= o a× b = o

[a, b, ċ] = 0 equivalent to equivalent to
c ⊥ a and c ⊥ b a ‖ b

The combination of the two ortho conditions gives the tri-orthogonal case
of the proposition; combining the two parallel conditions is the aligned case.
Combining one ortho condition with the other parallel condition gives a con-
tradiction. �

Next we describe the type of the critical points. For the positively oriented
tri-orthogonal case we get a maximum. Due to the remaining SO-action the
singular set is an S1, and its transversal Morse index is 3. The other orientation
gives a minimum on S1 with the transversal Morse index 0. The aligned
configurations (4 cases) occur in isolated points. In all these cases we have
index 2. We check the Bott-Morse formula:

∑

tλ(C)P (C)− P (M) = (1 + t)R(t)

where R(t) must have non-negative coefficients. In our case we have

t3(1+ t) + (1+ t) + (1+ t) + 4t2− (t4 +2t2 +1) = t3 +2t2 + t = (1+ t)(t2 + t),

so this is OK. �

6.2. On S1 × S2. After a rotation we can always assume that b lies in the
xy-plane. We consider SO-action, that fixes this plane.

Proposition 6.3. The signed volume V : S1 × S2 → R has the following
critical points:

• 4 points, corresponding to tri-orthogonal arms (2 maxima, respectively
2 minima).
At these points V has critical value 0.

• Two circles corresponding to degenerate configurations. where a and b
are aligned and c is free to move in the xy-plane. At these points V
has Bott-Morse critical points with transversal index 1.

Proof. We use circle coordinate β on S1 and spherical coordinates γ1, γ2 on S2.
The signed volume V is given by the determinant:

(1) V = |a||b||c|

∣

∣

∣

∣

∣

∣

1 cos β sin γ1 cos γ2
0 sin β sin γ1 sin γ2
0 0 cos γ1

∣

∣

∣

∣

∣

∣

= |a||b||c| sinβ cos γ1

Note that V does not depend on γ2. Condition for critical points are:
∂V/∂β = |a||b||c| cosβ cos γ1 = 0 ,
∂V/∂γ1 = −|a||b||c| sinβ sin γ1 = 0,
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∂V/∂γ2 = 0.
There are two cases to consider:
(i) cos β = 0, sin γ1 = 0.
The solution gives us four critical points; where we have the tri-orthogonal
situation: two maxima (index 3):
b = (0, 1, 0), c = (0, 0, 1), respectively b = (0,−1, 0), c = (0, 0,−1), and
two minima (index 0):
b = (0,−1, 0), c = (0, 0, 1), respectively b = (0, 1, 0), c = (0, 0,−1)
(ii) sin β = 0, cos γ1 = 0.
The solutions are β = 0, π and γ1 = π/2, which means that a and b are aligned,
but c is allowed to move in the xy-plane. This gives us two S1 (critical circles).
Further analysis tells us, that the transversal Morse index is 1. At these points
V has critical value 0. �

We check the result with Bott-Morse formula:
2t3 + 2 + 2t(1 + t)− (t3 + t2 + t + 1) = t3 + t2 + t+ 1 = (t + 1)(t2 + 1) .

Note the difference between the situation on S2 × S2 and on S1 × S2.

6.3. On the moduli space Mo
3 . This moduli space is homeomorphic to S3.

This is shown by [18]. We return to this later in this paper. An outline is as
follows: first construct the non oriented moduli space and shows that this is a
topological 3-ball. The sphere S3 appears as a gluing of two such balls along
their common boundary. This boundary consists of degenerate arms [those
who are not the maximal dimension].

The function V will be studied separately on the two hemispheres, each of
whom has exactly one Morse point. Near the common boundary one can show
that V glues to a topologically regular function. In Section 9 we give details
and prove the following:

Theorem 6.4. The oriented moduli space of 3-arms in R3 is a 3-sphere. V
is an exact topological Morse function on this space with precisely two Morse
critical points. �

Note that the critical points with V = 0, which we got before in the cases
with parametrization S2 × S2 or S1 × S2, disappear on the moduli space.

7. n-arms in R3

For a convex polyhedron there is a measure theoretic definition of its volume.
On the one hand, the notion of volume is well-defined for non-convex (and even
self-intersecting) polyhedra. On the other hand, it is unclear how to define the
volume for a polygonal chain.

Therefore we decide to take one special situation as starting point for our
definition of signed volume in case of a n-arm in R3. The following picture
where all simplices contain a = b1 illustrates the below definition.
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Definition 7.1. Let an n-arm be given by the vectors b1, · · · , bn. The vertices
are O,B1, · · · , Bn. We fix b1 = a (as before). We denote ck =

∑k
i=1 bi (the

endpoint of this vector is Bk). The signed volume function is defined as

V =

n−1
∑

k=1

[b1, ck, ck+1],

which can be rewritten as:

V = [b1, b2, b3] + [b1, b2 + b3, b4] + [b1, b2 + b3 + b4, b5] + · · · [b1, b2 + · · · bn−1, bn].

N.B. Note that this signed volume is essentially the signed area of the pro-
jection onto the plane orthogonal to b1.

Lemma 7.2. (Mirror lemma) Let two arms differ on a permutation of the
arms 2, . . . , n. Then there exits a bijection (by ’mirror-symmetry’) between
their ”moduli spaces” which preserves the signed volume function. Conse-
quently this bijection preserves critical points and their local (Morse) types.

Proof. As in the planar case. �

The condition for critical points are:

[b1, ḃ2, b3] + [b1, ḃ2, b4] + · · ·+ [b1, ḃ2, bn] = [b1, ḃ2, b3 + · · ·+ bn] = 0.

[b1, b2, ḃ3] + [b1, ḃ3, b4] + · · · [b1, ḃ3, bn] = [b1, b2 − (b4 + · · ·+ bn), ḃ3] = 0.

The rth -derivative gives the following:

[b1, b2 + · · ·+ br−1, ḃr] + [b1, ḃr, br+1] + · · ·+ [b1, ḃr, bn] =
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= [b1, b2 + · · ·+ br−1 − (br+1 + · · ·+ bn), ḃr] = 0.

There are two cases for any 2 ≤ r ≤ n: (which we call ortho and parallel)

• case Or:

b1 × ((b2 + · · ·+ br−1)− (br+1 + · · ·+ bn)) 6= 0.

Hence we have the following orthogonalities

br ⊥ b1 ∧ br ⊥ (b2 + · · ·+ br−1)− (br+1 + · · ·+ bn)

• case Pr:

b1 × ((b2 + · · ·+ br−1)− (br+1 + · · ·+ bn)) = 0,

which means that (b2 + · · ·+ br−1)− (br+1 + · · ·+ bn) ∈ Rb1

Next we decompose vectors into their Rb1-component and its orthogonal
complement:

br = b′r + b⊥r

Lemma 7.3. For all r = 2, · · · , n:

b⊥r ⊥ (b⊥2 + · · ·+ b⊥r−1)− (b⊥r+1 + · · ·+ b⊥n )

and also

(b⊥2 + · · ·+ b⊥r−1) ⊥ (b⊥r + · · · b⊥n ) (∗)

For any critical point of the signed volume function on n-arms in R3 one can
consider the projection of the arm onto the hyperplane orthogonal to b1.

Proposition 7.4. The vertices of this planar (n− 1)-arm b⊥2 , . . . , b
⊥

n lie on a
circle with diameter the interval B1B

⊥

n from the start point to the end point of
this arm. This configuration corresponds to a critical point of such arms (but
with fixed lengths) under the signed area function. �

Note that in general we don’t have fixed lengths of the projections and that
projections can be ”degenerate”.

We next treat several cases of the spatial situations and after that state the
general result in Theorem 7.4.

7.1. Full ortho case: Or for all r = 2, . . . , n
Now br = b⊥r . So we have:

Statement 1. The critical points of the signed volume function on n-arms in
R3 are exactly those configurations, where all vertices (including the first O
and the last Br) are on a sphere with diameter OBr; the first arm is perpen-
dicular to the all other arms. Delete the first arm: the vertices of this planar
(n − 1)-arm lie on a circle with B1Br as the diameter. This configuration
corresponds precisely to a critical point of such arms under the signed area
function. Moreover,

V = |b1| · sA.
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Full ortho Alligned                             Zigzag
(n is even)                         (n is odd)

Full parallel

Figure 7

7.2. Full parallel case: Pr for all r = 2, . . . , n.

If n is odd we find br ∈ Rb1 (r = 2, . . . , n).
If n is even we find br + br+1 ∈ Rb1 (r = 2, . . . , n− 1).

Statement 2. Critical points of V are aligned configurations if n is odd and
1-parameter families of zigzags if n is even. Zigzags are arms, which project
all to the same interval (see Fig. 7, right).

Zigzags also contain the aligned configuration. In a zigzag the lengths of the
projections can vary the from 0 to the minimum lengths of b2, . . . , br; in the
zero case the zigzag contains an orthogonal arm.
Both full cases (see Fig. 7) have the property that solutions exists for all length
vectors.

7.3. General case: n−k parallel conditions, and k−1 ortho conditions.
We can assume (due to the mirror lemma) that the last n − k conditions are
parallel. That is, we have

b2 + · · ·+ bk + b⊥k+1 + · · ·+ b⊥n−1 = 0

together with

bk+1 + bk+2 ∈ Rb1, · · · , bn−1 + bn ∈ Rb1.

So,

b⊥k+1 + b⊥k+2 = 0, · · · , b⊥n−1 + b⊥n = 0.

This has the following consequences:

• The b⊥k+1, · · · , b
⊥

n are diameters of the critical circle,
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Figure 8. Projected vertices are on a circle.

• If n− k is even, then b2 + · · ·+ bk + b⊥k+1 = 0.
The (k − 1)-arm b2, · · · , bk is an open planar diacyclic chain (diameter
condition).

• If n− k is odd, then b2 + · · ·+ bk = 0. The k-1 arm b2, · · · , bn−k−1 is a
closed planar cyclic polygon (closing condition).

In both cases (odd and even) the projections of the vertices lie on a circle (see
Fig. 8). There are only finite number of these circles possible. For a realization
it is necessary that |bi| ≥ R (radius of circle) if k + 1 ≤ i ≤ n.

The above discussion shows the following:

Theorem 7.5. The critical points of V up to ”mirror-symmetry” are as
follows (see Fig. 9):
There exits a division of the n-arm into a subarm b1, a subarm b2, . . . , bk and
a subarm bk+1, . . . , bn such that:

• b1 is orthogonal to each of b2, . . . , bk (which lie in a plane Rb⊥1 ).
• The vertices of the arm b2, . . . , bk lie on a circle, satisfying

– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the
diameter of the circle. �

8. n-arms in R3; projection on planes

We consider in 3-space, a vector p, which is the direction of the orthogonal
projection on a plane Rp⊥

Let the n-arm be given by the vectors b1, · · · , bn. The vertices areO,B1, · · · , Bn.
Define the signed Projected Area function as follows:

PA = [p, b1, b2] + [p, b1 + b2, b3] + [p, b1 + b2 + b3, b4]+

[p, b1 + b2 + b3 + b4, b5] + · · ·+ [p, b1 + · · ·+ bn−1, bn].
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Figure 9. Solutions in the general case.

We fix first both the positions of p and b1!.
We assume that p× b1 6= 0.

Lemma 8.1. (Mirror lemma) Let two open robot arms differ a permuta-
tion of the arms 2, . . . , n then there exits a bijection (by ’mirror-symmetry’)
between their moduli spaces which preserves the signed projected area function.
Consequently this bijection preserves critical points and their local (Morse)
types.

Proof. As in the planar case. �

The condition for critical points of PA is given by:

[p, b1 + b2 + · · ·+ br−1, ḃr] + [p, ḃr, br+1] + · · ·+ [p, ḃr, bn] =

= [p, b1 + · · ·+ br−1 − (br+1 + · · ·+ bn), ḃr] = 0 (r = 2, · · · , n).

There are two cases for any 2 ≤ r ≤ n: (which we call ortho and parallel)

• case Or:

p× ((b1 + · · ·+ br−1)− (br+1 + · · ·+ bn)) 6= 0.

Then it follows that: we have the following orthogonalities

p ⊥ b1 ∧ p ⊥ (b1 + · · ·+ br−1)− (br+1 + · · ·+ bn)

• case Pr:

p× ((b1 + · · ·+ br−1)− (br+1 + · · ·+ bn)) = 0,

which means that (b1 + · · ·+ br−1)− (br+1 + · · ·+ bn) ∈ Rp
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Next we decompose vectors into their Rp-component and its orthogonal
complement:

br = b′r + b⊥r

Lemma 8.2. For all r = 2, . . . , n:

b⊥r ⊥ (b⊥1 + · · ·+ b⊥r−1)− (b⊥r+1 + · · ·+ b⊥n )

and also
(b⊥1 + · · ·+ b⊥r−1) ⊥ (b⊥r + · · · b⊥n ). �

Proposition 8.3. The vertices of this planar n-arm b⊥1 , . . . , b
⊥

n lie on a circle
with diameter the interval OB⊥

n from the start point to the end point of this
arm. This configuration corresponds to a critical point of such arms (but with
fixed lengths) under the signed area function. �

Note that in general we don’t have fixed lengths of the projections and that
projections can be ”degenerate”.

Theorem 8.4. (Projection with fixed p and b1) The critical points of PA
up to ”mirror-symmetry” are as follows:
There exits a division of the n-arm into two subarms b1, . . . , bk and bk+1, . . . , bn,
such that:

• The vertices of the arm b⊥1 , b2, . . . , bk lie on a circle in the projection
plane, satisfying

– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the
diameter of the circle.

Proof. As in the signed volume case, see Theorem 7.3. �

Remark 1. The special case that p is orthogonal to b1 is included. In this
case we obviously have b⊥1 = b1.
If p is parallel to b1 we are in the case of signed volume studied before.

Remark 2. If we fix only p and not b1 the study of the signed projected
area of the n-arm b1, . . . , bn is equivalent to that of the signed volume of the
(n + 1)-arm p, b1, . . . , bn. We state this:

Theorem 8.5. (General projection on plane) The critical points of PA
up to ”mirror-symmetry” are as follows:
There exits a division of the n-arm into two subarms b1, . . . , bk and bk+1, . . . , bn,
such that:

• The vertices of the arm b1, b2, . . . , bk lie on a circle in the projection
plane, satisfying

– the closing condition if n− k = odd,
– the diameter condition if n− k = even.

• The arm bk+1, . . . , bn is a zigzag, which projects orthogonally to the
diameter of the circle. �
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9. Gram matrices and moduli space

One way to study the moduli space of n-arms in Rn is to use the Gram
matrix. This has an advantage that there is a direct relation with the volume.

Given a set of vectors, the Gram matrix G is the matrix of all possible inner
products. Let B be the matrix whose columns are the arm vectors b1, . . . , bn.
Then the Gram matrix is G = BtB. Its determinant is the square of the
volume of the simplex spanned by these vectors:

detG = (V )2.

The Gram matrix is always a positive semi definite symmetric matrix. If
G is positive definite it determines the vectors up to isometry. But not every
positive semi definite matrix S (with detS= 0) is a Gram matrix.

In case of n-arm in Rn the inner products (bi.bi) are the fixed numbers
b2i . The other entries of the Gram matrix we consider as variables xij . Its
determinant is:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b21 x12 x13 x1n

x12 b22 x23 x2n

x13 x23 b23 x3n

xij

xij

x1n b2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For a given n-arm, Gram matrix is contained in a subspace of dimension n(n−1)
2

.
Remark. Note that the equivalence is only up to isometry and not with

respect to orientation. On the set GRAM of all Gram matrices we will consider
|V |. In order to treat the oriented version we have to take two copies of GRAM and
to glue it on the common boundary. The set GRAM is contained in a product of
intervals −bibj ≤ xij ≤ bibj .

In [18] diagonals are used as coordinates of the moduli space. GRAM is related
to that description by the cosine rule:

dij = b2i + b2j − 2xij .

Note that G is differentiable on the entire space R
n(n−1)/2. In turn, |V | is defined

on GRAM, but is only differentiable on the interior {|V | > 0}. What happens on
the boundary?

We consider the 3 dimensional case:

detG =

∣

∣

∣

∣

∣

∣

a2 z y
z b2 x
y x c2

∣

∣

∣

∣

∣

∣

= 2xyz − a2x2 − b2y2 − c2z2 + a2b2c2 = 0

The compact component in the picture is contained in the cube. Its interior
realizes the non-planar configurations.

The critical points of detG are given by the conditions
∂ detG/∂x = 2(yz − a2x) = 0 ,
∂ detG/∂y = 2(xz − b2y) = 0 ,
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Figure 10. Zero locus of the determinant of G. The compact
region corresponds to the set of Gram matrices. (The figure is
produced by SINGULAR software.)

∂ detG/∂z = 2(xy − c2z) = 0.

We find the following critical points of detG:

• (x, y, z) = (0, 0, 0) : maximum a2b2c2 (index 3)
• (x, y, z) = (bc, ac, ab), (−bc, ac,−ab), (−bc,−ac, ab) or (bc,−ac,−ab)

The critical value is equal to 0. What are the types of these 4 critical
points? We compute the Hessian matrix and its determinant:

detH =

∣

∣

∣

∣

∣

∣

−a2 z y
z −b2 x
y x −c2

∣

∣

∣

∣

∣

∣

Note that detH(x, y, z) = − detG(−x,−y,−z).
Each of our 4 critical points is non-degenerate; since detH 6= 0. The Morse
index is 2. Note also that they are related to aligned situations.

The local behavior of the level surfaces near the critical level can be studied with
the local formula:

detG = −ζ21 − ζ22 + ζ23 .

Its zero level is a quadratic cone. We restrict ourselves by points inside the cube.
Near the singular points we have a homeomorphism:

(detG)−1[0, ǫ] = (detG)−1[ǫ]× [0, ǫ]

For the non-critical points this is is guaranteed by the regular interval theorem; so
the product structure is global. We have shown the following:
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Proposition 9.1. (Fig. 10) The closure of the component of G−1(0, a2b2c2),which
contains (0, 0, 0) is a topological 3-ball. Its boundary is a topological 2-sphere (dif-
ferentiable outside 4 critical points). �

This component is exactly the set GRAM. Moreover, in this 3-dimensional case
GRAM is equivalent (up to isometry) to the set of triples of arm vectors.

Since we have detG = |V |2, the both functions have the same level curves on the
domain of common definition. So the above proposition tell us that the (unoriented)
moduli space of 3-arm is a topological disc. By gluing two copies of GRAM along
the common boundary we get:

Theorem 9.2. The oriented moduli space of 3-arms in R
3 is a 3-sphere. V is

an exact topological Morse function on this space with precisely two Morse critical
points. �

10. Stabilization of moduli spaces

In this section we study moduli spaces of one and the same linkage and different
R
d. We prove that as d grows, the moduli space Md(L) stabilizes to a ball.

Definition 10.1. A configuration P ∈ Mn−1(L) of an n-linkage is called flat if it
fits in an (n− 2)-plane.

Lemma 10.2. The configuration spaces Md(L) and Mn(L) are homeomorphic for
all d ≥ n.

Proof. There is a natural homeomorphism Md(L) → Mn(L) which sends a configu-
ration P to its isometric image. �

Theorem 10.3. Let L = (l1, ...ln) be an closed n-linkage.

(1) The configuration space Mn(L) is homeomorphic to the n(n−3)
2 -dimensional

ball B.
(2) A configuration P ∈ Mn(L) is flat iff P ∈ ∂Mn(L).
(3) The configuration space Mn−1(L) is homeomorphic to the

n(n−3)
2 -dimensional sphere S.

Proof. We first prove (1) and (2) using induction by n. For n = 3 the moduli space
M3(l1, l2, l3) is a one point set, whereas M2(l1, l2, l3) consists of two points (these
are two triangles with different orientation).

Assume that the theorem is proven for n−1. Let L be an n-linkage. Assume that
l1, l2 are the shortest edges in L. Assume also that l1 ≤ l2. Given a configuration
P ∈ Mn(L) denote by d the length of the diagonal |p1, p3| (see Fig. 11). Denote by
P ′ the truncated polygon (p1, p3, .., pn). Denote also by L′(d) the induced linkage
(d, l3, .., ln).

We have a truncating mapping which sends a configuration
P = (p1, p2, p3...pn) ∈ Mn(L) with a diagonal d to the pair (P ′, d). Identifying by

inductive assumption the moduli space Mn(L
′(d)) with the (n−1)(n−4)

2 -dimensional
ball B, we get a mapping ϕ : Mn(L) → B × [l2 − l1; l1 + l2].

Let us compute the preimage of a point P ′ ∈ B × [l1 − l2; l1 + l2]. Two cases
should be treated:
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Figure 11. Truncation of a polygon P

(1) P ′ is an inner point, that is, P ′ ∈ Int(B × [l1 − l2; l1 + l2]). By inductive
assumption, the configuration P ′ is not flat. The vertex p2 of a configuration
P ∈ ϕ−1(P ′) lies on a closed hemisphere of dimension n− 3 which topologi-
cally is a ball. Besides, P is flat if and only if p2 lies on the boundary of the
hemisphere.

(2) P ′ is a boundary point, that is, P ′ ∈ ∂(B × [l2 − l1; l1 + l2]).
There are two subcases:

(a) Either P ′ ∈ B×(l1−l2) or P
′ ∈ B×(l2+l1). Then for any configuration

P ∈ ϕ−1(P ′) the points p1, p2 and p3 are collinear. Therefore, ϕ−1(P ′)
is a one-point set consisting of one flat configuration.

(b) P ′ ∈ ∂B× [l1 − l2, l1 + l2]. The points of ϕ
−1(P ′) are parameterized by

a hemisphere. Topologically, it is a disc, so (1) is proven. By inductive
assumption, P ′ is flat. Therefore, any P ∈ ϕ−1(P ′) is flat as well.

Now prove (3).
There is a natural mapping π : Mn−1(L) → Mn(L). Namely, given a configu-

ration in R
n−1, we embed it in R

n using some embedding R
n−1 → R

n. For two
different configurations P,P ′ ∈ Mn−1(L), we have π(P ) = π(P ′) iff they differ on
an isometry that does not preserve orientation in R

n−1. Consequently, the preimage
of a non-flat configuration from Mn(L) consists of two configurations. Besides, a
flat configuration has. a unique preimage. Together with (2) this directly gives the
desired statement. �

Theorem 10.4. Let L = (l1, ...ln) be an open n-linkage.

(1) For all d > n the moduli space M◦

d (L) is homeomorphic to the
n(n−1)

2 -dimensional ball B.
(2) The moduli space M◦

n(L) is homeomorphic to the
n(n−1)

2 -dimensional sphere S.

Proof. (1) Consider the function f : M◦

d → R defined as f(P ) = |p0, pn|. The
values of f vary from some l0 to l1 + l2 + ...+ ln. By Theorem 10.3, for each
value l such that l0 < l < l1 + l2 + ..+ ln, the preimage f−1(l) is a ball. For
l = l1 + l2 + ..+ ln, the preimage f−1(l) is a point. Analogously, for l = l0,
the preimage f−1(l) is either a ball or a point.

That is, M0
d is stratified into a family of balls (see Fig. 12).
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Figure 12. M◦

d (L) stratifies into family of balls

(2) The same arguments give us a stratification ofM◦
n(L) into a family of spheres

for l ∈ (l0, l1 + l2 + .. + ln), a point for l = l1 + l2 + .. + ln, and a ball for
l = l0.

�

11. Algebraic detection of critical points of a planar polygon

Let L = (l0, l1, l2, ..., ln+1) be a closed planar (n + 2)-linkage. As is already men-
tioned, it was proven in [16], that generically, critical points of the signed area
function are cyclic configurations. In the section we show that for each linkage (not
only for a generic one) critical points of the signed area function are cyclic and
aligned configurations. The proof goes as follows: we characterize the critical points
as common roots of a polynomial ideal I(L). Next, we characterize aligned and
cyclic configuration as common roots of another ideal J(L). Finally, we show that
the two ideals coincide.

We assume that two vertices of its configuration P are pinned down. That is,
pn+1 = (xn+1, yn+1) and p0 = (x0, y0), where xn+1, yn+1, x0, y0 are some fixed real
numbers.

Denote by gi ∈ C[x1, x2, y1, y2, ..., xn, yn] the polynomial that fixes the length li,
that is,

gi(x1, x2, y1, y2, ..., xn, yn) = (xi − xi−1)
2 + (yi − yi−1)

2 − l2i .

The set of real common zeroes of the polynomials {gi}
n+1
i=1 has a natural identifi-

cation with the moduli space M2(L). That is, each configuration is encoded by the
list of the coordinates (x1, x2, y1, y2, . . . , xn, yn).

Denote by A(x1, x2, y1, y2, . . . , xn, yn) ∈ C[x1, x2, y1, y2, . . . , xn, yn] the signed area
polynomial (see Definition 2.2).

Let Gn be a (n+ 2)× 2n matrix whose rows are the following gradient vectors:
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Gn =













∇g1
∇g2
. . .

∇gn+1

∇A













=













x1 − x0 y1 − y0 0 0 . . . 0
x1 − x2 y1 − y2 x2 − x1 y2 − y1 . . . 0

0 0 x2 − x3 y2 − y3 . . . 0
. . . . . . . . . . . . . . . . . .

y2 − y0 x0 − x2 y3 − y1 x1 − x3 . . . . . .













.

Example 11.1. For a 4-linkage, we have

G2 =









x1 − x0 y1 − y0 0 0
x1 − x2 y1 − y2 x2 − x1 y2 − y1

0 0 x2 − x3 y2 − y3
y2 − y0 x0 − x2 y3 − y1 x1 − x3









=

=









x1 − x0 y1 − y0 0 0
x1 − x2 y1 − y2 x2 − x1 y2 − y1

0 0 x2 y2
y2 − y0 x0 − x2 −y1 x1









.

Denote by m the determinant of G2:

m(x1, x2, y1, y2) = det G2 ∈ C[x1, x2, y1, y2].

For i = 1, . . . , n − 1 we define minor matrices Mini of the matrix Gn by the
following rule. We eliminate from the matrix Gn its 2(i − 1) first columns, (i − 1)
first rows, 2(n− i− 1) last columns and (n− i− 1) last rows (the very last row ∇A
is not taken into account), see Fig. 13.

Define polynomials

mi(x1, x2, y1, y2, . . . , xn, yn) = det Mini ∈ C[x1, x2, y1, y2, . . . , xn, yn].

Lemma 11.2. Each mi minor is a polynomial that equals the determinant of G2

for a quadrilateral linkage. Namely,

mi = m(xi, yi, xi+1, yi+1). �

Lemma 11.3.

rank Gn(x1, x2, y1, y2, . . . , xn, yn) ≤ n+ 1

if and only if

∀ i mi(x1, x2, y1, y2, . . . , xn, yn) = 0. �

Denote by I(L) ⊂ C[x1, x2, y1, y2, . . . , xn, yn] the ideal generated by polynomials
g1, ..., gn+1,m1, ...mn−1:

I(L) = 〈g1, ..., gn+1,m1, ...mn−1〉.

By the above lemma, the real common roots of the ideal correspond to critical
configurations of L. This is automatically the case for non-degenerated configuration
space. In the singular case the critical points are just by definition those that
correspond to the common roots of I.

For i = 1, . . . , n− 1 denote the matrix
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Figure 13. Minors Min1, Min2, and Min3

Ci =









x2i + y2i xi yi 1
x2i+1 + y2i+1 xi+1 yi+1 1
x2i+2 + y2i+2 xi+2 yi+2 1
x2i+3 + y2i+3 xi+3 yi+3 1









Denote also the polynomials

ci = det Ci ∈ C[x1, x2, y1, y2, . . . , xn, yn].

Denote by J(L) ⊂ C[x1, x2, y1, y2, . . . , xn, yn] the ideal

J(L) = 〈g1, . . . , gn+1, c1, . . . cn−1〉.

The real common roots of the ideal Jn correspond to aligned or cyclic con-
figurations of L. Indeed, ci = 0 is equivalent to the condition that the points
pi, pi+1, pi+2, pi+3 are either aligned or cyclic.

Theorem 11.4.

I(L) = J(L).

Proof. For n = 2, that is, for a quadrilateral linkage, there is just one polynomial
c1 and just one polynomial m1. An easy check shows that they coincide up to a
constant multiplier. By Lemma 11.2, we also have ci = mi up to a constant. �
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