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Introduction 

All functions are in the series of the zero function. 
-Jan Stevens I Duco van Straten. 

Series of singularities have always been a source of inspiration for research 
in singularity theory. Although there is no definition of 'series', they "un­
doubtablyexist" (writes Arnol'd). The subject of this thesis is to look at the 
concept of series from a topological point of view. 

We consider germs of holomorphic functions I : (Cn+!, 0) -+ (C,O), i.e. 
functions with 1(0) = 0 which are considered to be equal if they coincide on 
a small neighbourhood of the origin. The points where all partial derivatives 
vanish are called the singular points. If I is singular only at the origin, then 
I is said to have an isolated singularity. 

In the largest part of this thesis we consider the case that n = 1, i.e. 
plane curve singularities. The function I defines an analytic set X = 1-1 (0), 
whose intersection with a small 3-sphere is a link. The components of this link 
correspond to the factors in the prime decomposition of I. Its complement is 
fibred (with the circle as base space) by the mapping 1/111. This fibration, 
which is called the Milnor fibration, is one of the most important invariants of 
a singularity. In Chapter 1 we recall how to construct the link and we use EN­
diagrams (defined by Eisenbud and Neumann) to denote a link. In Chapter 2, 
we show how to compute various topological invariants from the EN-diagram. 

Except for some minor lemmas, these two Chapters contain known results. 
The remainder of this thesis is devoted to the following subjects: 

- Our definition of topological series of plane curve singularities and the 
behaviour of topological invariants within such a series (Chapter 3); 

- A splice formula for spectra and the relationship between the spectrum, 
the Seifert form and the signatures (Chapter 4); 
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- Deformation theory of plane curve singularities (Chapter 5); 

- Results about series of hypersurface singularities (Chapter 6). 

The contents of Chapter 3 were first published in [44], Chapter 4 is part of 
joint work with J. Steen brink and J. Stevens [SSS] ([46]), and Chapter 5 is also 
to appear [45]. 

A simple example ora topological series consists of the functions xy2+Xp-l, 
called Dp by Arnol'd. It is intuitively clear that t.hey fit into a series, and that 
the non-isolated singularity xy2 is the 'head' of this series (it received the 
name Doc). We show, that the Milnor fibration of a member of the series 
results from the Milnor fibration of Doc by removing a tubular neighbourhood 
of yhe singular locus and to glue something back in such a way that the result 
is the Milnor fibration of the isolated singularity. Using this idea, we define 

. topological series. They satisfy all the familiar topological properties that we 
are used to from the Arnol'd examples, so the definition is very satisfactory. 
We also (wmpute several invariants and investigate how they behave within 
the series. This may give in return information of the non-isolated singularity. 

Many topological invariants arise from the monodromy on the Milnor fi­
bre. A step further is the spectrum, defined by Arnol'd and Steen brink. In 
Chapter 4 we study the spectrum within a series, but we need to prove some 
general results about the spectrum first. Interestingly, these theorems can be 
used to disprove former conjectures (as was done first in [46]). 

A very beautiful paper in the theory of plane curve singularities is A'Cam­
po's paper [1] . It gives a method to construct a Dynkin diagram of the inter­
section form on the Milnor fibre. Unfortunately, this method does not apply 
to the case of non-isolated singularities. In order to generalize, we need in 
any case deformation theory. In Chapter 5 the deformation theory of plane 
curve singularities is completely dealt with, using theory developed by R. Pel­
likaan. At the end we indicate what we can do with it on the subject of Dynkin 
diagrams. 

Finally, in Chapter 6 we look at series of hypersurfaces (n 2: 1), the non­
isolated singularity still has to have a one-dimensional singular locus. A first 
test case is the generalization of the formula for the zeta-function. We give 
two methods. At present, the first results only in a formula on the level of the 
Euler characteristic. The second gives a good formula for the zeta-function, 
which is stronger than existing formulae. Still, we feel that if such a formula 
were to be used as basis for a concept of series of hypersurface singularities, 
even more functions should be part of the theory and the (uncompleted) first 
formula might be a good approach. 



CHAPTER 1 

An introduction to the topology of plane 
curve singularities 

1.1 Fundamental preliminaries 
(1.1.1) A plane curve singularity is for us a germ of an analytic space (X, 0) 
in (C2, 0) defined by the vanishing of a non-zero analytic function germ 1 : 
(C2,0) --+ (C,O). In practice, we will not distinguish very carefully between 
a curve and its equation, and a germ and a representative. It will be clear 
from the context what is meant. We identify the ring 0 of germs of analytic 
functions with C { x, y}, the ring of convergent power series in the variables x 
and y. This ring is factorial, so we can decompose 1 into irreducible factors: 
1 = Ir'l ... l;ns. We write 

where Xi = 1;-1(0). The curves Xi are called the branches of X. 
A singular point is a point where all partial derivatives of 1 vanish. The 

germ 1 has an isolated singularity if the origin is its only singular point. Ob­
serve that it is the case if and only if 1 is reduced, i.e. rnl = ... = rna = l. 

Two singularities I, g are called analytically equivalent if the rings 0/(1) 
and O/(g) are isomorphic. If 1 is smooth (which means that it has no singular 
points) then 1 is still called a singularity. 

(1.1.2) From a topological viewpoint, the space X = 1-1(0) is not very 
interesting (it is contractable). But if we look at the pair (B", X) where 
B" = {z E C2 Ilzl ::; c} is a small ball, the situation is different and leads to 
a connection with knot theory. One can show that the pair (Be) X) is a cone 
over (S;, X n S;), where the 3-sphere S; is the boundary of B". Since X is real 
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2-dimensional, the intersection Ke = X n S; is I-dimensional. Therefore it is a 
link in S;. Milnor [31] showed, that there is an co > 0 such that for 0 < c < co 
the topological type of (S;,Ke ) is constant, and it is called the topological 
type of f. Topological equivalence is really weaker than analytical equiva­
lence, see for instance the two remarkable examples in [8], pp. 590-591 (one of 
a topological type admitting only two analytical types, and one admitting an 
uncountable number of them). 

If a link is the link of a plane curve singularity, it is called an algebraic link. 
If f = fr'l ... f-:-', then K = Ke has s connected components Ki = fi- 1 (O)n 

S;. In particular, if f is irreducible, K is a knot. It is natural to assign to each 
component Ki the multiplicity mi. In this way, K becomes a multilink, and 
we write: K = m1J{1 + ... + msKs. These multiplicities become meaningful 
when we look at the exterior of the link K, as we will see later on. 

(1.1.3) We now consider the exterior of a link, i.e. the complement of a small 
tubular open neighbourhood N(L) of L in S;. Contrary to the complement 
of the link, this is a compact 3-manifold with boundary. In knot theory, the 
link exterior is always a rich source of invariants, in particular if it is fibred. 
For algebraic links, this is always the case: in [31], Milnor showed that f Ilfl : 
S: -t Sl is a COO-fibration. 

Often the following, equivalent, fibration is easier to work with. This time f 
itself is used instead of f Ilfi. Choose a Milnor radius c for f. Thtm there exists 
an "'0 such that for all positive", < "'0 the mapping f : Be n f-1(DTJ) -t DTJ , 
where DTJ is the disc of radius "', is a fibration above DTJ \ {OJ, equivalent to 
the previous fibration, see [31]. 

Both fibrations rejoice in the name of Milnor fibration, and a typical fibre 
of either fibration is called the Milnor fibre. Let F be the Milnor fibre of f. 
It is a surface consisting of d = gcd(m1,"" ms) connected components. The 
rank of H1(F) is 11-(1), the Milnor number of f. 

Looping once around the circle Sl induces a diffeomorphism h : F -t F, 
which is called the (geometric) monodromyof the Milnor fibration; the induced 
action on the homology the algebraic monodromy. 

If f is an isolated singularity, then the boundary of F is isotopic to K 
and F can be regarded as a Seifert surface for K. If f is non-isolated, then 
the boundary of F consists of cables around the components of K. It is 
here that the multilink structure of K becomes visible, 1<; is approached from 
mi . directions. In order to be more precise, we first give the definition of 
a (p, q)-cable around a knot S. Choose standard longitude L and meridian 
M of 8N(S), the boundary of a small tubular neighbourhood of S. This 
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means that Land M are representatives of generators of HI(8N(S)) satisfying 
Lk(L, M) = 1, Lk(L, S) = 0, L '" S in HI(N(S)) and M '" 0 in HI(N(S)). 
Here Lk denotes linking number in S3. Now a (p, q)-cable consists of gcd(p, q) 
simply closed curves on 8N(S) whose sum is homologous to pL + qM. These 
definitions are up to isotopy. The following is proved in [14]. 

(1.1.4) Lemma Let ct (1 :s i :s s) be the linking number of Ki with the 
other components (counted with their multiplicities) i.e. Cj = L#i mjKj . Then 
F n 8N(Kj ) C 8F is an (mi' -ci)-cable on K j • 0 

(1.1.5) Remark 

(a) It is useful to recall that the linking number of two different compo­
nents of K equals the algebraic intersection number of the corresponding 
branches of f, i.e. Lk(Kj,Kj) = dimcO/(J;,Ji). 

(b) In a multilink K = mlK1 + ... + maKa, we allow the possibility that 
one of the components, say K1 , has multiplicity ml = O. In that case, 
the Milnor fibre F is the Milnor fibre of m2K2 + ... + maKa minus the 
intersection points of KI with F (Kl intersects F transversally). Observe 
that this is consistent with lemma 1.1.4. 

(1.1.6) Suppose that f = fil ... f:'s is non-isolated, and that the singular 
locus is E = EI U ... U E r , r :s s. Let 1 :s i :s r. In points of Ei \ {O}, 
the intersection with a transversal plane gives a well-defined transversal (zero­
dimensional) singularity. It is clear that it can be described in local coordinates 
by g( z) = zmi , a singularity of type Ami-I. We can identify two monodromies, 
which will playa role later on. The first is called the horizontal monodromy, 
which is the Milnor monodromy of g. This is just a cyclic permutation of the mj 
points that make up the transversal Milnor fibre F:. The second monodromy, 
the vertical monodromy, results from the local system on Ei \ {O}: Looping once 
around 0 E E j induces another diffeomorphism of F:. The names horizontal 
and vertical were first used by Steen brink and will become more clear in 6.3.2. 
Denote the actions of the horizontal and vertical monodromies on Ho(Fl) by Ti 
and A;, respectively. Then we have the following result, familiar from the cases 
of homogeneous singularities (d. [56]) and quasi-homogeneous singularities 
(d. [29]): 

(1.1.1) Lemma The horizontal and vertical monodromies A; and Tj (1 < 
i :s r) of a plane curve singularity X are related by Ai = Ti-Ci, where Ci = 
X; . (U#i mjXj ). 
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Proof. Regard F! as situated on F n 8N(Ki), the connected components of 
the boundary of F near K i . We can easily see that the complete trajectory 
of F! which results from looping around 0 is isotopic to the complete link 
F n 8N(Ki), which is an (mi' -ci)-cable by lemma 1.1.4. 0 

1.2 The EN-diagram of a plane curve singularity 

(1.2.1) If lEO = C{x,y} is irreducible, we can parametrize the curve 
X = I-I (0) by means of the famous Puiseux expansions: 

x = tn, y = E Citi, 
i>n 

with n = mult(J) and yet) E C{t}, provided that x and yare chosen in such 
a way that I is not tangent to the y-axis. Written in a more classical way: 

y = E Ci xi/n, 

expressing y as a fractional power series in x. This follows from Puiseux's The­
orem, see [8] or [40]. These parametrizations can be found from the equation 
of I using Newton diagrams, which is explained in [8]. But it is also possible 
to resolve the singularities of I in order to find the parametrizations. We can 
rewrite the last expression in the following way: 

with gcd(pi' qi) = 1. The characteristic pairs or Puiseux pairs of I are the 
couples (pi, qi) with Pi i= 1. It is well-known that only these characteristic 
pairs are important for the topology, d. [8]. Observe that there is only a finite 
number 9 of Pi unequal to 1. 

For the moment, we suppose that the Puiseux expansion contains only 
characteristic terms, hence Pi > 1 for all i ~ g. Then PIP2'" Pg = n, the 
multiplicity of the curve at the origin. We can now describe the knot K of 
the branch X. A more detailed treatment can be found in [14], Appendix 
to Chapter 1. For this purpose we can replace S: by a "square sphere" R = 
{(x, y) E C2 I (Ixl = e and Iyl ~ c) or (Ixl ~ e and Iyl = e)}. By a suitable 
coordinate change, we can arrange that X intersects R only where Ix I = e and 
Iyl < c. Let us consider the branch X with Puiseux pairs (Pt,ql)"",(Pg,qg), 
i.e. with Puiseux expansion 
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Now Ixl = c is small, so y = alxq1 /P1 is even smaller. In "zeroth" approximation 
we can even think it vanishes completely (which results in the unknot KO), 
but looking more closely we find that when x traverses the circle {x Ilxl = c} 
PI times, y circles ql times around the origin. So the first approximation Kl 
of K is a (Pb ql)-tOruS knot Kl. It is not hard to imagine that the next stage, 
y = xql/P1 (al + a2xq1/P1P2), is a cable K2 around this (PI, qd torus knot. In 
general, Ki is an (ai,qi)-cable around Ki-t, where ai is defined by 

see [14], p. 51. The auxiliary knots KO, ... "Kg-l used in this approximation 
to find K = Kg, are intrinsic parts of the topology of K. They are called the 
virtual components of K. Incidently, if we had non-characteristic terms in our 
original expansion, this would result in some extra "wobbling" of the knot, not 
in extra entangling. 

We put this information together in a weighted graph that we will call the 
EN-diagram of K, after Eisenbud and Neumann who developed these graphs 
in [14]. In such a diagram, an arrow indicates a component of the link. The 
EN-diagram of the knot K above is: 

~---~ (1 (2 (9 

The following proposition ([14], Proposition 9.1) may help understanding the 
EN -diagram. 

(1.2.2) Proposition Let p, q be positive integers with no common factor and 
let d > o. Let r be the EN-diagram of a link L with distinguished component 
S (the arrow in the first picture below): 

~ 
L...J r" ~ 

L...J r"" 
Denote by dS(p, q) the union of d (p, q)-cables around S (a (p, q)-cable was 
defined in 1.1.3). Then the links L U dS(p, q) and L U dS(p, q) \ Shave EN­
diagrams as in the second and third picture, respectively. In the second picture, 
the arrow pointing downwards now indicates the component S; in the third 
picture, the dot signifies that S has been deleted and now belongs to the virtual 
components. 0 

Special cases are the unknot 01 (the link of a smooth function), which gets 
EN-diagram ~, and the link with two un knotted components with linking 
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number 1 (the link of an ordinary double point), which gets EN-diagram ~. 

These definitions are consistent with Proposition 1.2.2. 

(1.2.3) Until now, we have considered only the EN-diagram of an irreducible 
plane curve singularity. Let X = mtXt U ... U maX. be the decomposition in 
irreducible components. Puiseux's Theorem asserts that we can parametrize 
all branches: 

t 1--+ (tnl, 7]t(t)), .•. , t 1--+ (tn., 7].(t)), 

where 7]i( t) E C{ t} are smooth functions (1 ~ i ~ s). We can find parametriza­
tions from an equation of X by applying the same techniques as mentioned for 
the irreducible case. The construction of the link of X follows the same proce­
dure as before. But now some non-characteristic terms (only a finite number) 
could be important for the topology of f. For instance, consider an An singu­
larity for n odd. One can take y2 - x n+1 as an equation. It has two smooth 
branches, each of which has no Puiseux pairs. Its link is a (2, n + I)-torus link, 
consisting of two linked unknotted components. 

The definition of the EN-diagram of an algebraidink can now be completed 
(we refer again to [14], loco cit., for details). Bearing in mind the result of 
proposition 1.2.2, we see that once we have done that, we have also found a 
method of construction of the link of X. 

Suppose Y and Y' have Puiseux expansions 

y = xql/P1(at + x q2/P1P2(a2 + ... + xqr-l/PI"'Pr-l(ar_l + arxqr/Pl"·Pr) .. . )), 

ql/pl(, ql/plpl(, q /p' pi (' , qi/pi pI) )) Y Xii at + x 2 1 2 a 2 + ... + X .-1 I'" .-1 a s - 1 + asx' I .. ·• ••• , 

where, for simplicity, rand s denote the respective numbers of relevant terms. 
In general, one should use the complete expansion and delete the terms with 
Pi = 1 afterwards. In [14J it seems that only the characteristic terms of the 
branches are meant, but that does not work, as we have just seen in our 
example An (n odd) above. 

~. PI --- a r· Pn+1 

-----r 
---~ 

We look at the number of common terms: let n be such that Pi = pi, qi = qi 
and ai = a: for all i ~ n but not for i = n + 1. We define fri (1 ~ i ~ r) and 
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a~ (1 ~ i ~ s) by the recursive method (*). If qn+I/Pn+1 = q~+I/P~+ll we get 
the diagram above. 

On each edge near a node (an open circle), there should be positioned a 
weight, but we usually omit weights equal to one. Otherwise we may assume 
that r = n or qn+I/Pn+I < q~+I/p~+u and then the diagram is: 

~--- 0/ Pn+l -----r-
---~ 

In order to treat the the case of more than 2 branches, we proceed inductively. 
Furthermore, if Xi carries the multiplicity mi, we put '(mi)' in front of the 
arrow of the corresponding link component. 

Observe that there is something hidden in this construction that has still 
to be proved, namely that the link of X can indeed be constructed using the 
cabling operations described by the EN-diagram. Again, this is proved in [14], 
loco cit .. 

(1.2.4) Definition We use the following terminology: The nodes are the open 
circles in the EN -diagram. From a node, at least 3 edges emerge, and to each 
edge there is attached a weight. The closed circles are called dots; they only 
have one incident edge. 

Furthermore, if r is an EN-diagram, we put A(r) for the set of arrow-heads 
of r, and N(r) for the set of non-arrow-heads (dots and nodes). 

A diagram is called minimal if there are no dots attached to a weight 1. Our 
construction will give minimal diagrams, since we only look at characteristic 
terms. 

(1.2.5) Example The EN-diagrams of f(x, y) = (y2 - x3)m and g(x, y) = 
(y2 _ X3)(y3 _ x 2) are: r(m) ~ 

i2 i2 

The next example is a curve X = Xl U X 2 , with: 

Xl: x = t1OO , Y = t250 + t375 + t390 + t391 ; 

X 2 : x = t1OO , Y = t250 + t375 + t410 + t417 • 
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_----"o.:...---=~'----=2"'53'<r_l--"6"'32"'601~_ Xl 
5 5 

257 1 6432 1 

5 5 

Many more examples can be found in Appendix A, where the EN-diagrams of 
all Arnol'd series are presented. 

(1.2.6) All constituents of an EN-diagram have a topological meaning, which 
we have already indicated for some of them. The arrow-heads correspond to 
the components of the link (and therefore the branches of the singularity). 
The dots correspond to the virtual components, resulting from the successive 
cabling operations. 

The edges correspond to tori, separating 8 3 . In our construction above, we 
can think of a torus somewhat smaller but parallel to the torus on which the 
cables are situated. In fact, the tori come from a more important structure, 
the Waldhausen decomposition of the link exterior. This is a decomposition 
of the link exterior into Seifert manifolds. Seifert manifolds are 3-dimensional 
compact circle bundles, with boundaries consisting of tori; they are completely 
classified. Results on these kinds of decompositions, obtained by Jaco, Shalen, 
Johannson, Thurston and others, were important for modern 3-manifold the­
ory. Eisenbud and Neumann applied them to the theory of links [14]. Their 
EN-diagrams can be used in wider context than we have presented so far. 

Each Seifert piece of the decomposition corresponds to a node with incident 
edges; the node itself will correspond to a regular fibre of the Seifert fibration 
on this piece. In section 2.8 we will find a relationship of the nodes with the 
polar curve of f. 

Furthermore, in 2.7 we will briefly discuss the relationship of the EN­
diagram and the dual graph of the resolution of f. 

1.3 Splicing 
(1.3.1) In this section we describe the notion of splicing, due to Siebenmann 
and studied extensively in [14], to which we refer for a more detailed descrip­
tion. Splicing is a more general operation than cabling, that we have used 
before, but it is easier to use - certainly in connection with EN-diagrams, for 
which it is the basis. It will be of great use later on. 

In the previous section, we looked at the construction of the knot ]{ of a 
branch with g Puiseux pairs. Let us look more closely at this construction for 
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the singularity f(x,y) = (y2 - X3)2 - 4x5y - x7, which is of type Wtl. It has 
Puiseux expansion x = t4, Y = t6 + tT, and therefore the following EN -diagram. 

~ 12 12 

We argued that KO = {y = O} n R (where R denoted the polydisc D; x D;) 
was the zeroth approximation of K. Observe that this is not just the unknot, 
but the unknot traversed 4 times. It is more natural to consider the multilink 
4Ko as zeroth approximation. The same applies to the first approximation Kl, 
which is a (2, 3)-torus knot around KO, traversed twice. Let Ni (i E {O, 1, 2}) 
be a tubular neighbourhood of Ki. The pictures below show a cross-section of 
Uj$.iNj together with a typical fibre of the Milnor fibration of mjKi. 

This gives another reason why we should think of 4Ko and 2Kl as the approx­
imating steps of K: The Milnor fibration on the exterior of K provides Milnor 
fibrations of 4Ko and 2J{1 and not of KO and Kl. 

We can look at it in yet another way. Start with 4Ko. This is a fibred multi­
unlink, whose fibres consist of 4 copies of a disc. We can obtain (S3, 2Kl) by 
removing a tubular neighbourhood of KO and pasting in something else. This 
surgery approach will be the basis of the definition of splicing. For future use, 
it will be placed in the general setting of links in (integral) homology 3-spheres. 

(1.3.2) Definition Let E' and E" be homology spheres, and let two links 
(E', L') and (E", L") be given. Let S' and S" be components of L' and L" 
respectively and write L' = m'S' + L~ and L" = m"S" + L~ as multilinks (L~ 

and L~ may be empty). Let N' and N" be tubular neighbourhoods of S' and 
S". 

The splice of L' and L" along S' and S" is a link L in a certain homology 
sphere E, satisfying: 

E (E' \ N') Ua (E" \ N") 

boundary tori glued meridian to longitude and vice versa, 

L = L~ U L~. 
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If L', L" have EN-diagrams F', F" then L has simply the EN-diagram F: 

~ tB 
aN' aN" 

Observe that L has two components less than L' and L" together. 

(1.3.3) If L' and L" are algebraic links in 8 3 (links of plane curve singulari­
ties), we would like that L is again an algebraic link. This will in general not 
be the case unless we impose the following two conditions. 

The first condition is a condition on the multiplicities m' and m". It de­
mands that the Milnor fibrations of L' and L" approach the splice torus exactly 
the same way, and links up well with our contemplations of 1.3.1. 

Splice Condition 
We can splice L' = m'S' + L~ and L" = m"S" + L~, if 

m' = Lk(S", L~), and m" = Lk(S', L~). 

This indeed demands that the fibres of the Milnor fibration approach the splice 
torus from both sides in an (m', m")-torus link, cf. lemma 1.1.4. 

(1.3.4) The second condition is a condition on the weights in the EN-diagram. 
Recall the construction of the EN-diagram of a single branch. There we saw 
that we could not just use a Puiseux pair (pi, qi) as cabling direction but that 
we had to compute ai = qi + PiPi-l ai-l in order to get the right (pi, ai)­
cable. If f3 < ai, (pi, (3)-cables of course also exist (even if f3 is negative), and 
the resulting links may well be fibred. But apparently, those links are not 
algebraic. This explains the 

Algebraicity Condition 

(a) The link is obtained by repeated cabling, and 

(b) In each portion of the diagram of the following form, the inequality 

aof3o > al ... arf30 ... f3r 

must hold. 
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The condition (a) requires that there are sufficiently many 1 's around each 
node in the EN-diagram. If we omit (a), the splice and algebraicity conditions 
result in a link of a curve singularity, defined on a normal integral homology 
manifold. 

(1.3.5) We get a splice decomposition of an EN-diagram (or of the exterior 
of the link) by performing the inverse operation of splicing. We say that 
we break the separating edges of the EN-diagram into pairs of arrows with the 
correct multiplicities of the splice condition. These multiplicities, being linking 
numbers, can be obtained very easily from the EN-diagram, see 2.1. 

(1.3.6) Example The splice decomposition of W1~ 1 of the beginning of this 
section is given by: 

~ r l2 

r(2) (O)r 
Observe that the rightmost link has a component with multiplicity 0. The 
middle Splice COmponent is the link Of the Singularity wt OOl given by the 
equation (y2 - x3 ) 2 • This illustrates the way we will intr~duce topological 
series of plane curve singularities in 3.2.3. 

A'Campo's singularity, g(x,y) = (y 2 - x3 )(y3 - x2 ), whose EN-diagram is 
redrawn below, decomposes into two isomorphic splice components given by 
the second EN-diagram. It is the EN-diagram of the non-isolated singularity 
with equation x2 (y2 - x3). 

~ r l2 

(2)---r--
Obviously, it is interesting to know how computational invariants behave 

under splicing. Then it remains to compute such invariants for our basic 
building blocks, the Seifert links (with only one node in their EN-diagram). 



CHAPTER 2 

Computations around the EN-diagram 

2.1 Computing the linking number 

The linking number of two link components can be computed easily by walking 
from the first arrow to the second arrow and multiplying the edge weights 
along, but not on the path, see [14], section 10. 

Since linking numbers are encountered so often (disguised as intersection 
numbers and various kinds of multiplicities), it is most useful to have such an 
easy algorithm at our disposal. 

(2.1.1) Example Consider the third example of (1.2.5). Xl and X 2 have 
intersection number Xl . X 2 = 5 . 253 . 5 . 5 = 31625 (compare the elaborate 
computation in [8], p. 695). 

257 I 6432 I 

5 5 

It is an interesting exercise to verify that the topological type of a plane 
curve singularity is determined by the Puiseux pairs of the branches together 
with the intersection numbers of all pairs of branches. 

2.2 Multiplicities of dots and nodes 

The dots and nodes of an EN-diagram carry natural multiplicities, equal to the 
total number of the corresponding virtual components with the (multi)link K, 
see [14], section 10. In other words, let r be an EN-diagram and j E N(r). 
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Let K j be the corresponding virtual component. Then 

mj = m(Kj ) = Lk(K,Kj ) = E m; Lk(K;, Kj). 
;€A(r) 

The linking numbers can be computed exactly as in 2.1. In EN-diagrams, we 
put these multiplicities in parentheses . 

.(2.2.1) Example In the examples of 1.2.5 (J(x,y) = (y2_ x3)m andg(x,y) = 
(y2 _ X3)(y3 _ x2)), we obtain: 

(6m) 

(2m)r(m) 

(3m) 

(10) (10) 

~ 12 12 
(5) (5) 

(2.2.2) Remark In general, the multiplicities do not determine the edge 
weights of an EN-diagram, as one can conclude from the following example: 

(5n) 

(S)r(2) 

where n is neither divisible by 2 nor by 3. 

2.3 Characteristic polynomials 

(5n) 

(5)r(2) 

(2.3.1) Let h : F --t F be the monodromy of the Milnor fibration. We can 
compute the characteristic polynomial of the induced action of h on several 
homology groups directly from the EN-diagram. We will always use integral 
homology, unless stated otherwise. We denote by h* : H1(F) --t Hl(F) the 
algebraic monodromy on H1 (F) and h.o the algebraic monodromy on Ho(F). 
Let N be a common multiple of the order of the eigenvalues of h. (which are 
roots of unity). Define: 

Llo(t) det(tI - h.o), 
Lll(t) = det(tI - h.), 

Ll.(t) = Ll1(t)/ Llo(t) E Q(t), 
Ll1(t) = det(tI - h.1 Ker[! - h;;]), 
Ll'(t) = det(tI - h*1 Im[Hl(oF) --t Hl(F))). 

Let r be the EN-diagram of the plane curve singularity f. For j E N(r) we 
denote the number of incident edges by bj. 
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(2.3.2) The polynomials .10 and .11 
We have.1o = t d -1, where d = gcd{m; liE A(r)}, the number of connected 
components of F. The connected components are cyclically permuted by h. 

For .11, [14] gives us the following formula: 

.11(t) = (td - 1) II (tmi _1)5i-2. 
ieN(r) 

Notice that this formula also gives us flU), the Milnor number of f, which is 
equal to the rank of H1(F) and hence to the degree of .11. 

(2.3.3) The polynomials .11 and .1' 
The polynomials .11 and .1' are less known. Since we know that .11 has only 
Jordan blocks of sizes 1 and 2, we find that the roots of .11 are precisely the 
roots of .11 that occur in the 2 x 2 Jordan blocks. The monodromy can act 
non-trivially on the boundary of F, which is signalled by .1'. Define: 

- d = the number of connected components of F as before, 

- dE = the gcd of the two multiplicities that arise when edge E is broken 
as in 1.3.5 (E runs over the separating edges), 

- du = the gcd of all link component multiplicities of the splice component 
with single central node v (v runs over the nodes), 

- d; = the number of components of F n 8N(Ki ), where N(K;) is the 
boundary of a small tubular neighbourhood of component K; (i E A(r». 

Then, according to Neumann [35], we have: 

u node 

.1'(t) = (t d _1)-1. II (td; - 1). 
ieA(r) 

For the examples in 2.2 we obtain the following results: 

- For f(x, y) = (y2 _ x3)m: 

(tm - 1)(t6m - 1) 
.1o(t) = tm - 1, .11(t) = (t2m _ 1)(t3m _ 1)' .11(t) = .1'(t) = 1. 
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- For A'Campo's singularity g(x, y) = (y2 _ X3)(X3 _ y2): 

The polynomials ..11 and ..1' will become useful when we consider the Seifert 
form and the spectrum in section 4.4. 

2.4 The zeta-function of the monodromy 

Let F be the Milnor fibre of a singularity. In general, if a. E Aut(H·(F; Z)), 
we define the zeta-function ((a.) of the operator a. by: 

((a.)(t) = II det(I - taq )(-l)Q+l, 

q~O 

see [2] or [6]. Note, however, that in the latter reference the inverse of the 
usual zeta function is used. If h. is the algebraic monodromy of a singularity 
f, we define (J = ((h.), and call it the zeta-function of (the monodromy of) f. 

In the case of plane curve singularities, the homology groups of dimensions 
greater than 1 vanish. The zeta-function is related to ..1. = ..11/..10 by 

The following formula holds: 

(J(t) = II (1 - tmj )6j -2, 
iEN(r) 

so the zeta-function is also very easy to compute from the EN-diagram. This 
formula is due to A'Campo [2]. 

An important property shared by the zeta-function and the ..1. is that they 
are multiplicative under splicing, see [14], Theorem 4.3. This is the basis for 
the proof of the corresponding formula for ..1. (from which the formula for ..11 
as in 2.3 is deduced). 

2.5 The multi-variable Alexander polynomial 

Another interesting invariant is the multi-variable Alexander polynomial of the 
link K, which is denoted by LlK. The number of variables of this polynomial, 
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s, is the same as the number of components of the link. The general definition 
can be found in [41]. According to [14], Theorem 12.1, we have: 

A (t t ) - II (tm1j ... tm•j 1)6j-2 '-lK 1, ••• , 8 - 1 JJ - , 

jeN(r) 

where mij = Lk( miKi , K j ). For the behaviour of .1K under splicing we refer 
to [14], Proposition 5.1. We can get .1. from .1K by putting all variables equal 
to t: 

.1.(t) = .1K(t, ... , t). 

It follows that the multi-variable Alexander polynomial of a multilink aL = 
alLl + ... + arLr and the multi-variable Alexander polynomial of the reduced 
link L = Ll + ... + Lr satisfy the following relationship: 

The multi-variable Alexander polynomial efficiently encodes linking and multi­
plicity information in such a way that the contribution of a certain arrow-head 
to that multiplicity can be retrieved. In 2.2.2 we saw an example of two EN­
diagrams with the same sets of multiplicities. Their multi-variable Alexander 
polynomials are 

t~nt~n - 1 

t~t~ - 1 
and 

ttn f 2 - 1 
ttt2 - 1 . 

It is well-known that the one-variable Alexander polynomial is a complete 
invariant for the topological type of an irreducible isolated plane curve sin­
gularity. One can prove that the multi-variable Alexander polynomial is a 
complete invariant of the topological type of an arbitrary isolated plane curve 
singularity. This seems to be common knowledge, although we could not trace 
down a proof in the literature. 

2.6 Zariski's numbers and the multiplicity sequence 
For the sake of completeness, we show how to find Zariski's numbers /30' ... ' /3g 
and the multiplicity sequence directly from the EN-diagram. These results are 
easily established. 

(2.6.1) Let X be a plane curve with Puiseux pairs (Pl,ql), ... ,(Pg,qg) and 
hence with EN-diagram 
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(with allp; ~ 2 and al = q}, aj = qj +pjpj-Iaj-d. Let Ox = C{x,y}/(J)­
where f defines X - be the local ring of X. There exists a canonical valuation 
v : Ox - N U {oo} (induced by a parametrization). It is well-known that 

. N = v( Ox) is a semi-group. An easy translation of Zariski's result [64J to 
the language of EN-diagrams gives us that a minimal set of generators of N is 
{.80, ... , .8g}, where 

.80 = PI··· Pg, 

.8j = ajpj+1··· Pg (1 '.5: j '.5: g). 

Consider the example of 1.2.5. 

e----"<;>=-_-=r_-=2",,53v I_..:::63::::2:.::,6r;r1,--_ X 1 

5 5 

257 I 6432 I 

5 5 

For Xl we obtain (.80, ... , .8g) = (100,250,625,1265,6326). 

(2.6.2) The multiplicity sequence (Multiplizitatensequenz, [8], p. 673), de­
scribes the multiplicities in the blowing up sequence of the curve X : f = 0. 
This sequence is obtained by performing several Euclidean algorithms. The 
multiplicity sequences of all branches of a plane curve singularity determine 
together its topology. 

We will describe how to find the multiplicity sequence of a branch from 
the EN-diagram. The method is best described by an example. We use the 
branch X 2 of the example above. 
First algorithm: (q}'PI) = (5,2). 

5 = 2·2+1 
2 = 2·1 

Second algorithm: (q2,P2) = (5,2). 

gives 2, 2 
gives 1, 1 

This algorithm is the same as the first one. Therefore we get again 2, 2, 1, 1. 

Third algorithm: (q3,P3) = (7,5). 

7 
5 
2 

1· 5 +2 
2·2+ 1 
2·1 

gives 5 
gives 2, 2 
gives 1, 1 
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gth algorithm: (qg,Pg) = (7,5). 
The last algorithm is the same as the third. 

Now we multiply the results of the ith algorithm by Pi+! ... pg, to obtain 
the multiplicity sequence: 

(100,100,50,50,50,50,25,25,25,10,10,5,5,5,2,2,1,1). 

2.7 The EN-diagram vs. the resolution graph 

Another well-known complete invariant of the topological type of a plane curve 
singularity is the dual graph of a good embedded resolution 7r : Z ~ C2 which 
resolves the singularities of the plane curve singularity I. Let E = 7r-1 (0) 
be the exceptional divisor and V the dual graph. 7r-1/-1 (0) = U"'EAuvE", 
is a divisor with normal crossings on Z (the points of A are represented by 
arrow-heads). We assume that the reader is familiar with the resolution graph. 

There are conversion algorithms from EN-diagram to resolution graph and 
back, see [14], Chapter V. We will not discuss these algorithms, but only 
mention some properties that are useful to remember. 

As a graph, the EN-diagram is equal to the resolution graph from which all 
the vertices of valence 2 (i.e. with 2 incident edges) are removed. This leaves 
us with the vertices of valence 1, and the vertices of valence greater than 2 
which are called rupture points. So the rupture points correspond to the nodes 
in the EN-diagram. 

In a resolution graph, the vertices carry a multiplicity equal to the multi­
plicity of 1 on the corresponding branch of the total transform; i.e. for K, E AuV 
we define m", by div(J 0 7r) = 2:"'EAuV m",E",. It happens to be the case that 
these multiplicities are equal to the multiplicities of the corresponding nodes 
and dots (and of course the arrows) in the EN -diagram. 

In section 4.3, we will make use of the multiplicities of the neighbour ver­
tices of a rupture point . It is possible to compute these multiplicities from the 
EN-diagram without having to build the complete resolution graph - which 
is not so easy. 

(2.7.1) Lemma Consider a (very general) splice component: 
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Put mi = 0 for i E {k + 1, ... , n}; so m = Lj a1 ... aj··· anmj is the multi­
plicity of the central node. 

Then, in the corresponding plumbing graph (in our application this will 
be a part of the resolution graph) the neighbour vertex on the edge marked 
with aj has a multiplicity which is modulo m equal to Sj, where Sj can be 
found as follows. Choose integers f3j (1 ~ j ~ n), with f3ja1 ... aj··· an == 1 
(mod aj). Then Sj = (mj - f3jm)/aj. 0 

See Neumann [35] for a proof. It should be possible to get this result in a 
completely number-theoretic manner. 

2.8 The polar ratios of a plane curve singularity 

For details of this section, consult [62], [26], or [57]. 
Let f : (C2, 0) --t (C, 0) be a plane curve singularity. Let I : (C2, 0) --t 

(C,O) be a sufficiently general linear form with equation I(x, y) = bx - ay. 
We obtain a map germ tP = (1,1) : (C2,0) --t (C2,0) whose critical locus is 
defined by 

8f 8f 
a 8x + b 8y = o. 

The polar curve of f with respect to the direction I is the union r of all 
irreducible components of the critical locus of tP that are not contained in 
X = f-1(0); in other words: 

r = Sing( tP) \ f-1(0). 

The image Ll = tP( r) is called the Cerf diagram. We use (u, v) as coordinates 
in the target space. Its branches Ll1 , ••• , Ll t have Puiseux expansions 

v = aiuPi + higher order terms, 

with ai =I- 0 and Pi > 1. The rational numbers Pi are called the polar ratios of f. 
The set p(J) = {PI, ... , Pt} is a topological invariant of f. Note, however, that 
the number of times that a certain polar ratio occurs in the t-tuple (PI, ... , Pt) 
is not a topological invariant (but it is an analytical one). One sometimes 
encounters the inverses of our polar ratios as polar ratios. 

It is possible to view the set p(J) topologically. Let RI, ... , Rp be the 
intrinsic companions of the link I< of f, i.e. regular fibres of the Seifert pieces. 
They are represented by the nodes in the EN-diagram, and can be visualized 
by attaching an extra arrow with weight one to each node. 
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Define the following subset of Q: 

E(f) { Lk(K, R;) I D. • ••• • } = 1 (R) .tLi IS an mtnnslc compamon . mu t i . 

Here, mult(R;) denotes the multiplicity of R;, i.e. the number n = PI ... Pg in 
the EN-diagram of R;. (It is, by the way, equal to the braid index of R;, which 
is the minimal number of strings needed to get Ri as a closed braid.) 

(2.8.1) Proposition We have: 

(aJ p(J) = E(J) u {mult(J)} if f has a tangent cone consisting of exactly 
two lines, 

(bJ p(J) = E(J) otherwise. 

For the proof of this proposition, see [62] or [26]. 0 

It is not necessary for f to be reduced, as long as multiplicities are taken 
into account correctly and one does not forget that the zero-locus of f is 
subtracted from the critical space of <P. 

(2.8.2) Example Consider our standard examples f(x, y) = (y2 - x3)m and 
g(x,y) = (y2 _ X 3)(y3 _ x2): 

~ ----y-p--
We have drawn the unions of the links of f and 9 with the intrinsic companions. 
In the first example, there is one intrinsic companion R I . The polar ratio is 
P = 6m/2 = 3m. In the second example, there are two intrinsic companions 
RI and R2 , giving ratios PI = P2 = (6 + 4)/2 = 5. Moreover, the tangent cone 
consists of two lines (its equation is x2y2 = 0). Because mult(J) = 4, we get 
p(g) = {4,5}. 

Our third example is the general branch X with 9 Puiseux pairs. The 
EN-diagram shows K + RI + ... + Rg • We obtain: 

p(X) = {pi = QiPi'" Pg 11 :::; i :::; g}, 
Pl'" Pi 

a set of 9 rational numbers, 



CHAPTER 3 

Topological series of plane curve 
singulari ties 

3.1 Introduction 

(3.1.1) As soon as one starts compiling lists of singularities of functions, one 
comes across series of singularities. The members of such series share various 
properties, but one finds that there are always some exceptions. Writing down 
an all-embracing definition of a series inevitably gives problems. 

The first one who made lists of series was V.1. Arnold in [3], see also [5]. 
Some of these had already been given names, such as An, Dn, etc .. In hindsight 
it is not clear who was the first to use these names for singularities of functions. 
Hirzebruch [18] (1962/63) describes the dual graph of the resolution of the 
simple singularities, and observes that these graphs are the well-known A-D­
E Dynkin diagrams. In Brieskorn [7] (1966) these names are used without 
further introduction. Later it was also proved that the monodromy groups of 
the A-D-E singularities (with an odd number of variables) are isomorphic to 
the Weyl groups of the Lie algebras with the same names. 

In his lists, Arnol'd went further and introduced letters other than A, D 
and E when he encountered new classes. His lists are (partly) reproduced 
in Appendix A, where also the corresponding EN-diagrams are drawn. He 
wrote: "Series undoubtedly exist, although it is not at all clear what a series 
of singularities is" [5], p. 243. And another one of his statements - quoted by 
my predecessors as well - is: "It is only clear that the series are associated 
with singularities of infinite multiplicity [ ... ], so that the hierarchy of series 
reflects the hierarchy of non-isolated singularities" [5], p. 244. 

A series depends on one or more integral parameters. The simplest series 
is the A-series. An example of a function of type An is y2 + xn+l. Clearly, the 
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elements of An have to be classes of an equivalence relation; depending on the 
situation this could be right-equivalence, topological equivalence, etc.. It is 
clear that y2 is a non-isolated singularity which could be called the head of the 
A-series. Siersma introduced the name Aoo for this singularity (and likewise 
Doo , etc.) - obviously not modelled on the resolution graph or the Milnor 
lattice. 

Series were an inspiration to many authors. We mention the work of 
Arnol'd (cited above), Wall (e.g. [61]) and Pellikaan [36]. 

(3.1.2) Remark We will not pursue the philosophical remarks behind series 
further. Our definition of topological series, presented in this Chapter, satisfies 
all the required properties. Yet one should note that there is an abuse of 
language: for example, below we will use Yomdin series to illustrate several 
points, but a Yomdin series is in fact a mere sequence of functions. The same 
applies to the 'series' in Chapter 6: perhaps it would be better to call them 
'sequences', too, in order to stress the fact that we only consider very special 
representatives of members of a series. 

Mind the Gap 

(3.1.3) Yomdin Series 
Let f : (Cn +!, 0) -+ (C,O) be a germ of a non-zero holomorphic function 
with a one-dimensional critical locus E. Let x be a linear form satisfying 
En Z(x) = {O}, where Z(x) = {x = O}. For integers k ~ 2 we consider the 
functions 

where c: is a small non-zero complex parameter. We will call such a series a 
Yomdin Series, after LN. Yomdin who first studied them, see [63J and Le [25J. 

One of his results concerned the relationship between the Milnor numbers 
of f and fk. He proved that for k ~ 1, f + c:xk has an isolated singularity, 
and that 

p,(J + c:xk ) = bn(J) - bn- 1(J) + k(E· Z(x)), 

where E· Z(x) is the intersection number of E and x = 0 at the origin, and 
bi denotes the ith Betti number of the Milnor fibre of f. In fact, one can show 
that the formula holds for k greater than or equal to the largest polar ratio of 

f· 
Siersma [52] generalized this formula by giving a relationship between the 

characteristic polynomials of f and fk (cf. sections 3.5 and 6.2). Steen brink [56] 
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conjectured a still stronger formula concerning the spectra of ! and !k. This 
conjecture was proved by M. Saito [42]. 

So a lot is known about Yomdin series, but the feeling remains that they 
are a poor reflection of the 'original' series of Arnol'd. Generally speaking, 
Yomdin series are extremely coarse. For example, a two parameter family 
such as Y,.,a : x2y2 + xrH + yaH, obviously cannot be obtained. Furthermore, 
if the multiplicity of E at the origin is greater than one, we do not get the full 
series. For instance, let !(x,y) = (y2 - x3)2. Yomdin's formula shows, that 
the Milnor number within the series increases with steps of 2. However, if we 
take 

Wt2q-l: (y2 - X3)2 + x4+qy (q ~ 1) 

Wt2q: (y2 - x3)2 + x3+qy2 (q ~ 1), 

then we get the 'full' Arnol'd series wt, leaving no gaps. 
It becomes even worse if we consider !(x,y) = y3. R~calling Arnol'd's 

statement that the hierarchy of the non-isolated singularities reflects the hi­
erarchy of the series, we would like the non-isolated singularity with equation 
y3 + y2x k in its series. With Yomdin series this is of course impossible. 

3.2 The definition of topological series 

(3.2.1) In this section, we will give a definition of topological series of plane 
curve singularities. This definition was first published in [43], which appeared 
in revised form as [44]. The definition will be followed by the computation of 
.various topological invariants and it will appear that they behave as expected 
within a series. 

The motivation to look at topological series is, that many properties that 
hold a series together are of topological nature. We think of the Milnor num­
ber, the characteristic polynomial of the monodromy, the zeta-function - and 
indeed the spectrum. For plane curve singularities, this is more tractable than 
in a more general setting. 

The definition will overcome many of the problems that we mentioned 
earlier with the Yomdin series. Our series will contain topological types. 

(3.2.2) The standard example of our topological series has always been W#. 
Recall the splice decomposition of W# (Example 1.3.6): 
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~ 12 12 
Wl~2q_l 

Topological series of plane curve singularities 

0-P-(2) 
wf:oo 

(0)[. 

(O)~ 

Also in the other Arnol'd series the phenomenon occurs that the non­
isolated 'head' of the series is a splice component of each of the elements 
in the series. This means, that the Milnor fibration of a member of the series 
can be obtained from the Milnor fibration of the non-isolated singularity by 
removing tubular neighbourhoods of the multiple components and replacing 
them by something fibred in such a way, that the result is the Milnor fibration 
of a non-isolated singularity (or, more generally, a singularity with branches 
of 'lower' transversal types). 

Unsurprisingly, the best way to state the definition is using EN-diagrams. 

(3.2.3) Definition [Topological Series] Let X = mtXt U ... U msXs be 
a non-isolated plane curve singularity with mi > 1 for i ~ rand mi = 1 
otherwise. Let r be the EN-diagram of f, and denote by at, ... , a r E A(r) 
the arrow-heads belonging to mtXt, ... , msXr. Then the topological series of f 
consists of all topological types with EN-diagrams that arise from r by splicing 
something to each of the ai - taking the splice and algebraicity conditions 
into consideration - in such a way that the multiplicities of the arrow-heads 
of the splice components attached to the ai are smaller than mi. 

(3.2.4) Remark Our definition works equally well for certain other curve 
singularities (see section 3.7), but we think it is clearer to explain the situation 
for plane curve singularities first. 

Now that we have this definition, we will investigate which possibilities 
there are to replace an arrow-head with an '(m)' in front of it by something 
with lower multiplicities. We start with the easiest case when we have an 
arrow-head of multiplicity 2, a double component. 

3.3 The case of a double component 

(3.3.1) Recall the notation A(r) for the arrow-heads of an EN-diagram r 
and N(r) for the other vertices (dots and nodes), introduced in 1.2.4. 
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Let X be a plane curve singularity with defining equation f, link K and 
EN-diagram r. Suppose there is a double component <> E A(r), i.e. m<> = 2. 
Near the arrow-head <>, the EN-diagram looks like this: 

0--- (2) (2) 

where the boxes may denote any sub-EN-diagram and the arrow is <> E A(r). 
The second picture is only defined when r =J ...-..+ (2) and r =J (m) +-----+ (2), 
since then there is no node. 

Define the following numbers: 

No = [2£¥1 ~ . £¥k] , 

C = :E mj Lk(K<>, K j ), 

jEA(r).#<> 

where [.j denotes integral part. (In the two exceptional cases, No = 0). We 
have encountered the number c already in lemma 1.1.4 and, more importantly, 
in the Splice Condition in 1.3.1. 

We will now show which possibilities there are to replace the double com­
ponent with. Recall the definition of the zeta-function in section 2.4. 

(3.3.2) Theorem The only two (classes of) possibilities to replace a double 
component with, are: -_Or -_Or 

with N > No odd, with N > No even. 

Furthermore, let (00 be the zeta-function of f and (N the zeta-function of a 
singularity with the EN-diagram obtained by replacing the arrow-head <> by one 
of the possibilities above. Then we have 

In particular, the Milnor number J1, is linear in N with coefficient 1: 

J1,N = J1,00 + N + c + d - 1 
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where d = gcd(ml, ... , m s ), the number of connected components of the Milnor 
fibre of f· 

Proof. The EN -diagrams of the theorem can be regarded as being the result 
of splicing the links K and the one given by the EN-diagram r;.., which is the 
left diagram below if N is odd and the right diagram if N is even. (C)r (C)r 

with N > No odd, with N > No even. 

Splicing is done along the component K<> of K and the component K; with 
multiplicity m. = c (the arrow pointing leftwards), respectively. That the 
multiplicity of * must be c follows from one half of the Splice Condition. The 
other half, 

2= mh Lk(K~, K~), 
hEA(rN),h¢* 

implies that these two diagrams are the only two essentially different EN­
diagrams with the required property, for we want that mh = 1 for each h E 
A( r;..,) \ {*}, imd that no dots are attached to a node with weight 1. For the 
first link (N odd) the splice condition reads '2 == 2 . l' and for the second 
'2 = 1 . 1 + 1 . 1 '; there are no more of this kind of partitions of the number 2. 

The algebra.icity condition gives N > No. 
The formu~a for the zeta-function follows from the formula in 2.4 and the 

fact that the zeta-function is multiplicative under splicing. The statement 
about the Milnor number is an easy consequence of this. 0 

(3.3.3) Definition We combine the two possibilities in one graph, where, 
depending on whether N is odd or even, the first or the second graph of the 
theorem must be substituted. 

----g 
(3.3.4) Remark if a = 1 or a = 2 (see the figure at the beginning of this 
section) then the case N = No is also allowed, although then the diagram 
has to be minimized by applying Theorem 8.1 of [14]. The formula for the 
zeta-function still holds. Yet, according to the definition of series, this element 
does not belong to the series, although it shares many properties with the other 
members. In section 4.6 we will meet a singularity whose spectrum behaves as 
in the series, but its spectral pairs do not. 
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(3.3.5) Example The singularity I(x, y) = y2(y + xk) is of type Jk,oo' We 
have C = k and No = 2k. The series is Jk,v : y3 + y2x k + x3k+v, p ~ O. We have 
N = 2k + p. The case p = 0 is the special case with N = No. 

k N 

~ 
We have J.L(Jk,oo) = 3k - 2 and J.L(Jk,v) = 3k - 2 + p. 

(3.3.6) Example If X has more than one branch with multiplicity two, we 
can treat each branch separately. For each arrow-head a E A(r) with mOl = 2, 
we obtain a COl and an NOlo. The simplest example is the series of I(x, y) = x2y2, 
which is of typeYoo,oo (or of type Too ,00 ,2 if one wishes). Its EN-diagram is 

(2) --.t (2). 

We obtain the series Y. : x2y2 + xr+4 + yrH with r s :> 1 and r = 0 s = 0 ~ , - , , 
give exceptional cases. 

(3.3.7) The reader can verify in Appendix A that our topological series com­
prise of all Arnol'd's series of plane curve singularities. The cases missed by 
the Yomdin series, such as two-parameter families and series as W#, are part 
of our theory. But what is more: the series do not consist of anything more 
than they should. This is not obvious. For instance, Arnol'd [5], p. 243 gives 
an example of the relation of adjacency that could tie a series together, but 
then the A-series would belong to the D-series. 

And we can do even better than this, as we will show in the next section. 

3.4 Higher multiplicities 
(3.4.1) When we have an arrow-head of multiplicity m > 2 in the EN-diagram 
of a plane curve singularity, exactly the same method can be used. The splice 
decomposition always gives us a finite number of essentially different graphs 
that can be spliced to a component of multiplicity m, and we can decide exactly 
which. 

We enumerate the possibilities when m = 3 and m = 4. The names refer 
to the simplest case when I(x,y) = ym. 

In the diagrams, the splice edges have variable weight N, N having no 
common factor with the other weights. The other omitted edge weights are 



30 Topological series of plane curve singularities 

equal to 1. We only listed the diagrams with one node; some have an arrow of 
multiplicity greater than 1, which could be treated again. 

The four possibilities for m = 3: 

---+ ----r 
Jk,o E6k,E6k+2 

The nine possibilities for m = 4: 

----1< ---+ 
Xh,o wk,o 

---+I'J -------r-- (2) 

Wk,oo 

----r(3) 

----r 
E6k+l 

-----y-
W12k+ 1(5) 

-------p--(2) 

w* k ,oo 

----r(2) 

Jk ,oo 

------y-
W12k(+6) 

___ -«2) 
(2) 

The following formula gives the number of essentially different diagrams 
with one node and only multiplicities less than m, that can be spliced to a 
component of multiplicity m_ 

(3.4.2) Proposition The number is: 

EP(m/q) + E P«m - p)/q) - 1 
qlm l$;V::;m-l ql(m-p),q>l 

where P( n) is the number of integer partitions of n. 

Proof. In such a diagram at most one dot appears, with at the node a weight 
2: 2. The number of edges emerging from the node must be at least 3. There is 
at most one weight greater than 1. These are consequences of the algebraicity 
condition. The splice condition derriands that the total linking number of the 
other components with the splice component equals m. The formula is now a 
matter of counting. 0 
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14 
211 

This can be regarded as an upper bound on the number of symbols (such as 
A, W#, etc., with several parameters) needed to give names to all singularities 
of corank m. 

3.5 The zeta-function within a series 
Let I = fl· .. f'; Ir+l ... la be a non-isolated plane curve singularity with dou­
ble components only. Denote the singular locus of I by E = El U ... U Er • 

According to Theorem 3.3.2, a typical element IN (with multi-index N) of the 
series has EN-diagram 

. . 
~ t - g 

where N = (N1 , ••• , Nr) > (NOl , ••• , Nor) (we define NOi and c; as usual). 
This diagram represents the EN-diagram r of I, whose double components 
are replaced in order to get an isolated singularity. 

The following corollary is immediate from Theorem 3.3.2. It is valid in a 
more general setting, see 3.7. 

(3.5.1) Corollary We have: 

r 

(fN(t) = (f(t)· II(1 - (_I)N;tN;+c;). o 
i=1 

Recall from 1.1.6 the definitions of the vertical and horizontal monodromies 
Ai and T; (1 ~ i ~ r). We proved that A; = Ti- c;. In the current application, 
T; is equal to the 1 x I-matrix (-1), since it describes the permutation of the 
two points in a transversal section along E; on the reduced homology level. 
Let d; be the multiplicity of E; at the origin. According to 2.8, each of the r 
new nodes gives rise to a new polar ratio (); (the other polar ratios of IN are 
the same as those of I). Observe that d;(}; = N; + Ci. Rewriting the corollary, 
we obtain: 

r 

(fN(t) = (f(t)· II det(I - t d;8; A;Tl;8;). 
i=1 
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This generalises a formula of Siersma [52], who proved that for the Yomdin 
series /k = f + €Xk, the following formula holds: 

r 

(fk(t) = (f(t) . n det(I - tdik A;Tlik ). 
;=1 

Observe that k is the only new polar ratio in a Yomdin series, hence Oi = k 
for all i :S r. 

(3.5.2) We will now investigate the case when f does not only have branches 
of multiplicity two. The formula of 2.4 gives an easy way to compute the 
zeta-function of each member of the series. But one has to consider all cases 
separately as in section 3.4. 

It is interesting to have also an expression involving A; and T;. We will now 
give some results in that direction. We consider only one irreducible component 
E; at the time, and suppose that the transversal type is Am-I. We drop the 
subscripts i accordingly. The branch E; corresponds with an arrow with '(m)' 
in front of it. Observe that, since we only look at splice components attached 
to this arrow-head of multiplicity m, we may suppose that f( x, y) = xCym. The 
component XC stands for all the other components of our original singularity. 
Observe also that, according to the method of 2.8 of calculating polar ratios, 
the product dO remains the same under the operation of changing f into xCym 
(although d becomes 1). We are only interested in the factor ( of the formula 
(fN = (f· (. 

We start with f(x,y) = xCy3. In the table given in section 3.4, we find 4 
possibilities marked Jk,O E 6k(+2), E 6k+l and Jk,oo. The first two are of Yomdin 
type. A'Campo's method (see 2.4) gives a factor 

and: 
1 - t 3dB 

((t) = 1 _ tdB for 'E6k' and 'E6k+2'. 

That Siersma's formula gives the same answers, follows from the following 
lemma, whose proof is easy: 

(3.5.3) Lemma Let Hm be the reduced homology group of a discrete space 
consisting of m points. Let Tm : Hm -t Hm be the automorphism induced by 
the cyclic permutation of these points. That is, T m is the (m - 1) x (m - 1) 
matrix of order m, defined on the standard basis el, ... , em-l by Tmei = ei+l 
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for i ~ m-2 and Tmem-l = -(el + ... +em-l)' Let kEN and a = gcd(k, m). 
Then the following holds: 

det(I _ tTk) = (1 - tm/a)a 
m I-t 

o 

The case 'E6kH' is different. Here dO = (6k + 3)/2 + c is not an integer. 
The method of 2.4 gives: 

We have to modify Siersma's result to obtain this answer. By reconstruction 
we get: 

((t) = (det(1 - t2dIJ A2T2dlJ»1/2, 

since A2T2dIJ is the 2 x 2 identity matrix. 
The case 'Jk,oo' is of course special, too. Unfortunately, it is impossible 

to give a formula involving the horizontal and vertical monodromies this way. 
This would, however, be possible if we would use the multi-variable Alexan­
der polynomial which shows clearly the contributions of each branch to the 
multiplicities (cf. 2.5). In general, we can obtain the following result: 

(3.5.4) Proposition Write dO = q/p with gcd(p, q) = 1. If we splice to 
an arrow of multiplicity m something with exactly one node and arrows of 
multiplicity 1 only, then p is a divisor of m - 1, and: 

If p > 1, APTpdlJ is the (m - 1) x (m - 1) identity matrix (cf. 3.5.5 for the 
reason of this notation). 

Proof. [Our proof is a reconstruction from A'Campo's method. This propo­
sition functions merely as an example of formula 6.3.3.] We consider the fol­
lowing two cases, which are the only ones satistiying the restrictions indicated 
above. 

(c)~ 
t'" 

(C)~ 

Let a be the number of arrows with edge weight 1 (pointing rightwards). In 
the first case we have m = ap+ 1 and 0 = q(ap+ 1)/p+ c. A'Campo's method 
gives: 
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and our claim follows since T is now an ap X ap-matrix of order ap + l. 
In the second case we have m = ap and () = aq + c. This time A 'Campo's 

method gives: 

and by applying the lemma we confirm the proposition in this case as well. 0 

(3.5.5) Remark In the statements above, we wanted to use the vertical and 
horizontal monodromies only. That is why we had to use the pth root of a 
polynomial. In fact we should consider (m -l)/p x (m -l)/p-matrices, giving 
a more natural formula. Please compare with 6.3.3. 

3.6 Topological series and the resolution 

In this section we give an outline of an alternative description of topological 
series, used by Jan Stevens who wanted to avoid EN-diagrams and stay in 
the familiar surroundings of the embedded resolution. From the relationship 
between EN-diagrams and the resolution (cf. 2.7) it will be clear that the 
resulting series are the same as with our definition. 

Let Xoo be a non-isolated plane curve singularity, given by an equation of 
the form f = [{"l ... f;ns with mi ~ 1 and not all mi equal to one. Let Z --+ C 
be the minimal good embedded resolution of Xoo; so the total transform of f 
is a divisor with normal crossings. Consider for each strict transform Xi of a 
non-reduced irreducible components of Xoo a deformation of Xi into a (possibly 
singular) curve Yi, which still intersects the reduced exceptional divisor with 
multiplicity mi. These local deformations blow down to a deformation Y of 
Xoo. We define Y to be in the series of Xoo. 

Jan Stevens [58] proves that the series above depends only on the equisin­
gularity class of the non-isolated singularity Xoo. Furthermore, he proves that 
the curves Y that come out of the construction are deformations of Xoo. 

In the construction, Z becomes a partial resolution of Y. Because of the 
special role of the exceptional divisor, one needs to describe the singularities 
of Yi in terms of Arnol'd's boundary singularities [4]. In particular, consider 
the familiar case of a double line Xi, which in local coordinates looks like 
xmy2. We allow deformations into Bk with k ~ 0, where Bk is given by 
xk + y2. Observe in particular that we allow k = 0, giving two lines (in local 
coordinates xm(l + y2)). This corresponds to the exceptional case N = No in 
definition 3.2.3 if such a case exists. 
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3.7 Curves in other spaces 

(3.7.1) In this section we discuss the application of our definition of topo­
logical series to curves defined on other spaces than (C2,O). Let (W,w) be a 
germ of a normal surface with possibly a singularity at the point w. Suppose 
(W, w) is an integral homology surface, i.e. it has the same integral homology 
as a manifold. Then we can consider analytic functions f : (W, w) ---+ (C, 0). 
Such functions define curve singularities on W. 

The surface W can be embedded in cm for some m. By intersecting f- 1(0) 
with a small 2m - I-sphere S we get a link K in the homology 3-sphere 
E = W n S. The EN-diagrams can also be used in this context, and they still 
correspond to the dual graph of the resolution of f as in the plane curve case. 
A more detailed account of such curve singularities is given in section 4.2. 

If K has multiple components we use exactly the same methods to define 
the topological series of f as in the plane curve case. But the members of this 
series should all be defined on the same space (W, w). In the case of topological 
series of plane curve singularities, this was enforced by the condition that the 
link was obtained by repeated cabling (which ensures that there are enough 
l's around each node). An EN-diagram without arrow-heads represents a Z­
homology sphere (with an empty link, in fact). To see in which homology 
sphere a certain link is situated, one can replace the arrow-heads by dots. The 
resulting EN-diagram is in general highly non-minimal and all nodes attached 
with weight one should be discarded using [14], Theorem 8.1. For a link of a 
plane curve singularity, one ends up with nothing, since S3 is represented by 
the empty EN-diagram (and minimal EN-diagrams are unique). 

If one has a link with multiple components in a homology sphere other than 
S3, then the links of the members of its series should be in the same homology 
sphere. This means that the same operations as in the plane curve case are 
allowed - and nothing else. Summing up: 

(3.7.2) Theorem Let f : (W,w) ---+ (C,O) be a curve singularity defined on 
a normar Z-homology surface (W, w) which has at most an isolated singularity 
at the point w. Suppose that f has some multiple components in its EN-

. diagram. Then these multiple components can be replaced by, and only by, 
the same replacements as in the plane curve case. So for double components, 
Theorem 3.3.2 is still valid, and so are the cases of section 3.4. Furthermore, 
the formulae of the topological invariants we have seen, remain valid. 0 

(3.7.3) Example Let W be the Brieskorn singularity given by 

W = {( x, y, z) E C3 I x2 + y3 + Z5 = O}. 
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Let p3 be the intersection of W with a small 5-sphere. The homology sphere 
p3 is known as the Poincare sphere. Its fundamental group is the binary 
icosaeder group of order 120. The Poincare sphere has EN-diagram: 

r 
Define f: W --+ C by f(x,y,z) = x 2 • Then f has EN-diagram as in the first 
picture below. Its Milnor number is 16. Its series consists of the functions 
with topological types indicated in the second EN-diagram, with 2N > 30. r(2) ~ 

13 ~ 

(3.7.4) Many examples of curve singularities are defined on rational normal 
surfaces, that have only the rational homology of a manifold. 

Some of the simplest examples are curves on the quadratic cone Z2 = xy, 
with links in the real projective space Rp3 • Dimca [11] gives an example of 
a series of curve singularities defined on this surface. EN-diagrams do not 
extend to the situation of rational homology spheres. Therefore we cannot 
apply exactly the methods of our definition. 

Since the method of 3.6 still works, so we can use resolution graphs. How­
ever, it is not so easy to describe splicing or the algebraicity and splice condi­
tions in these terms. This is because in the EN-diagrams all linear chains are 
contracted and we cannot easily predict, how the two linear chains leading to 
the splice arrows will survive the splice operation. 

The members of the series should be defined on the same space as its non­
isolated 'head'. This is checked in a way analogous to the one above: remove all 
arrows from the resolution graph of the members as well as of the head of the 
series. The resulting graph is the resolution graph of the underlying surface. 
According to Neumann [33], there is a unique minimal resolution graph of this 
surface, and it can be obtained by successively blowing down (-1 )-curves. In 
this way we get a kind of algebraicity condition. 

In the case of a double component we had two possible EN-diagrams that 
we could splice onto it. The cases correspond to the singularities x C (y2 - x N). 
The resolution graph of such a singularity is the graph of AN - 1 with an arrow 
of multiplicity c attached to the 'long end' of the diagram: 

(c) .... __ -... 2'----<-• .:-2_ -3 • 
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(c) •• __ -... 2,--<~;:..2...,... -2 • T 
Therefore we can use this to extend Theorem 3.3.2 to this situation, since 
it is clear that these graphs are the only ones that satisfy the blowing down 
property mentioned above. Only the start of the series is not easy to see in 
advance. 

(3.7.5) It would be nice to extend EN-diagrams to this more general situation 
of curves on a rational normal surface. The following idea can be tried to 
extend EN-diagrams to rational homology spheres. Eisenbud and Neumann 
put in a node a sign' +' or '-'. The min us sign denotes reversal of orientation. 
In our context of algebraic links, the orientation is always +, and that is 
why we have omitted these signs. When computing linking numbers using 
the method of 2.1, one "officially" has to take these signs into consideration 
(see [14], section 10). Our idea is, to allow for an optional lin within each 
node, with n E N. For instance, in [46], Example 2.4, the curve singularity f 
on the quadratic cone z2 = xy in C3 , given by 

is considered. We suggest the EN-diagram 

(v) 

(.+.) ~ (.+wI 

(w) 

for this singularity, where the edge weights are 1 and within the node should 
be thought a~. The resolution graph of f is exactly the same, and the central 
node has multiplicity m = u + v + w. This nicely fits with our ~, because the 
rules of EN -diagrams now describe a multiplicity of (v + w + ( u + v) + ( u + w)) 12. 

Without the ~ within the node, this would denote (as a set) a link in 8 3 

whose components have mutual linking number 1. This projects to Rp2 under 
the usual 2 : 1 covering map to the link of f. Observe that the linking number 
of two of the components is always ~. 

Neumann communicated to me that not all algebraic links in rational ho­
mology spheres could arise like this. A possibility is that one obtains the 
Q-homology spheres that admit locally a Z-homology sphere as a finite cover. 
It would be interesting to investigate this in the future. 



CHAPTER 4 

Splicing spectra 

4.1 Introduction 

The spectrum and the spectral pairs of a singularity f are very powerful invari­
ants. They were introduced by Arnol'd and Steenbrink, see [54] and also [6]. 
The spectrum is a strong topological invariant; it determines for instance the 
characteristic polynomial. Also in other respects it is powerful: one can use it 
in connection with adjacencies of singularities, and it distinguishes large classes 
of singularities. For example, it distinguishes all isolated quasi-homogeneous 
singularities, and also all the examples found by Grima [17]. 

The spectral pairs are even stronger than the spectrum (later on we will 
give an example of two singularities with the same spectrum but different 
spectral pairs) . When we spoke about "the spectrum" in earlier chapters, we 
usually meant the spectrum or the spectral pairs but in this chapter we will 
distinguish more carefully between the two. 

In this chapter, we discuss several results that were jointly obtained by 
Steenbrink, Stevens and the author, published in [46] (better known as [SSS]). 
We will enter into detail only for the subjects that are related directly to the 
work of the earlier chapters. There used to be the following conjecture, raised 
by Steenbrink. 

Conjecture [The Spectrum Conjecture] The spectral pairs of a plane 
curve singularity form a complete invariant of the topological type. 

There also was another conjecture concerning the real Seifert form which 
appears to be equivalent to the Spectrum Conjecture. Neumann ment ions this 
conjecture in [35], and he writes that the conjecture's "originator now denies 
responsibility and will remain unnamed." 
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Conjecture The real Seifert form of a plane curve singularity is a complete 
invariant of the topological type. 

The answer to both conjectures - a negative one - arose from an example 
found by Steen brink and Stevens in Hamburg. It is reproduced in section 4.6 . . 
It can be explained very well in terms of topological series. Furthermore, it 
comes with a splice formula for spectral pairs. 

4.2 Spectral pairs 
The setting will be as in [46J. There, the spectral pairs are introduced in a 
more general situation than was done before, cf. [6], p. 380. Let (X, x) be an 
isolated singularity of a complex space which is equidimensional of dimension 
n+l > o. Let f: (X,x) ~ (C,O) be a germ ofa holomorphic function 
vanishing at x. 

A good representative for f is obtained as follows. Take an arbitrary repre­
sentative X', embedded into cm such that x corresponds to O. Then choose 
c, Tf with 0 < Tf ~ c ~ 1 and let X = {z E X' I Izl < c and If(z)1 < Tf}. 
Put .1 = {t E C I It I < Tf}, .1* = .1 \ {O} and X* = X \ f-1(L1*). Then 
f : X* ~ .1* is a Coo fibre bundle. Recall that a typical fibre is called the 
Milnor fibre of f, denoted for the moment by X/,x. 

Let h : X/,x ~ X/,x be the geometric monodromy of the Milnor fibration. 
The (algebraic, cohomological) monodromy of f is the induced action T = h*-1 
on the cohomology ring H*(X/,x). 

The spectral pairs reflect the interplay between the action of T and the 
mixed Hodge structure on H*(X/,x). It consists of an increasing weight filtration 
W. on Hk(X/,x; Q) and a decreasing Hodge filtration F" on Hk(X; C), cf. [54J, 
[55J. If one writes T = TaTu = Tu{a with T .. semi-simple and Tu unipotent, then 
Ta preserves the filtrations W. and F", whereas N = log Tu has N(Wi ) C Wi - 2 

and N(FP) C FP-1. For each eigenvalue>. of T on Hk(X/,x; C) we define: 

Hf,q(k) = Ker(T .. - >.I; Gr~q Gr~ Hk(X/,x; C)), 
h~,q(k) = dime Hf,q(k). 

Here Hk denotes reduced cohomology as usual, Grr' = Wi/Wi-1 and Gr~ = 
FP / FP+1. Moreover, we let 

n 

h~,q = ZJ-lt-kh~,q(k). 
k=O 
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For a E Q and w E Z we define integers ma,w as follows. Write a = n - p - j3 
with 0 ::; j3 < 1 and let A = exp( -211"ia). If A =1= 1 then ma,w = h~'w-p, else 
ma,w = hi,w+1-p. The spectral pairs are collected in the invariant 

Spp(f) = L ma,w(a, w), 
a,w 

an element of the free abelian group on Q x Z. By omitting the weights from 
the spectral pairs one obtains the spectrum Sp(f) of f (cf. [56]): 

Sp(f) = Lma(a), where ma = Lma,w. 
a w 

4.3 A formula for the spectral pairs 

(4.3.1) In this section we state a formula for Spp(f) where f is a holomorphic 
germ on a Z-homology surface X. The proof can be found in [46]. 

Let 11" : Z ~ X be a good resolution with exceptional divisor E, and 
dual graph V. The cohomology group Hl(M; Q) of the link M of x in X 
has a weight filtration ° c Wo C WI = Hl(M; Q), and dim Wo = b1(V), 
dim Wt/Wo = E2g(E;) (where geE;) is the genus of the component E; of E). 
Hence X is a rational homology surface if and only if V is connected, b1 (V) = ° 
- V is a tree - and geE;) = ° for all i. 

Let X be a normal integral homology surface and let x EX. Let f : 
(X,x) ~ (C,O) be a holomorphic germ. We can choose a good resolution 
11" : Z ~ X such that 11"-1/-1 (0) = UIIEAUV Ell is a divisor with normal crossings 
on Z. Without loss of generality we assume V =1= 0. Let r be the corresponding 
EN-diagram. In [46], the following is stated for rational homology surfaces; we 
restrict ourselves to integral homology surfaces in order to stay in the realm 
of EN-diagrams and splicing. 

(4.3.2) Remark Let I be a curve singularity as above. Define SPP.(f) = 
Spp(f) - (0, 1). Suppose SPP.(f) = Ea,w ma,w(a, w). Then it follows from the 
definition that: 

Ll.(t) = II (t - exp( -211"ia))ma ,.." 

a,w 

and, equivalently: 

a,w 
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One should always remember that in the definition of the spectrum reduced 
cohomology is used, whereas in the definition of the zeta-function we use non­
reduced cohomology. 

We see that the spectrum numbers a are logarithms of the eigenvalues A. 
For A =J. 1, there are two such logarithms possible (in the range -1 < a < 1), 
and the Hodge filtration decides which branch of the logarithm to use. 

C 4.3.3) Recall that Acr) denotes the set of arrow-heads of rand N(r) the set 
of other vertices. We add the notations R(r) for the nodes (they correspond 
to the rupture points in V) and E(r) for the separating edges, that is, the 
edges between two nodes (or between two arrow-heads). If all such edges are 
broken (d. 1.3.5) then we obtain the splice decomposition of r. Recall that 
breaking an edge gives two arrow-heads with multiplicities (one of which could 
be 0). 

Furthermore, denote by Sv( r) the set of nearest neighbours of the node v E 

R( r) when r is embedded in the resolution graph V. For such a neighbour w E 
Sv(r), we can compute its multiplicity mw as the number Sj of lemma 2.7.1. 

We also use the following notations, some of which are from sections 2.2 
and 2.3: 

- mv = the multiplicity of the vertex v E N(r). 

- de = the gcd of the two multiplicities that arise when edge e is broken 
(e E E(r)). 

- dv = the gcd of all link component multiplicities of the splice component 
with single central node v (v E R( r)), 

- d", = the number of components of F () 8N(K",), where N(KK) is the 
boundary of a small tubular neighbourhood of component K", (II':E 
A(r)). 

Finally, for a real number u we put {u} for the fractional part of u (satis­
fying ° $ {u} < 1). 

Using these notations we get for v E R(r), e E E(r) and II': E A(r), the 
following elements of the free abelian group on Q x Z: 

av = L (-1 + L {smw/mv})· 
O<s<m.,m.-tsd. wEs.(r) 

. [(s/mv -1,1) + (1 - s/mv, 1)], 

bv L [(-s/dv,2) + (s/dv,O)], 
O<s<d. 
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Ce = E [(-s/de,2) + (s/de,O)], 
O<&<d. 

C: = E (-s/d",2). 
O<s<d" 

(4.3.4) Theorem Let f : (X,x) -+ (C,O) be a curve singularity, defined on 
an integral homology normal surface. Then 

Spp(J) = E av - E bv + E Ce + E c: + (#A(r) - 1)(0,1). 
veR(r) veR(r) eeE(r) "eA(r) 

Proof. This is Theorem 2.1 of [46] written in terms of EN-diagrams instead of 
resolution graphs. 0 

(4.3.5) Example We compute the spectral pairs of A'Campo's singularity: 
f(x,y) = (y2 - X 3)(y3 - x2). 

(10) (10) 

~ 12 12 
(5) (5) 

Call the left-hand node * and the right-hand node o. The resolution graph 
has only one more vertex, in between the two nodes. That vertex has multi­
plicity 4. We obtain: 

a. = a o = (- /0' 1) + ( - 110 , 1) + (110 , 1) + C30' 1). 

Since d. = do = 1, we obtain b. = bo = 0; and because the only separating 
edge e has de = 2, we get 

Ce = (-~,2) + 0,0). 

This is an isolated singularity, hence c = 0. Therefore 

Spp(J) = (-~, 2) + 2( -1~' 1) + 2( -110 ,1) + (0,1) + 2( lo, 1) + 2( 1~' 1) + (~, 0). 

Now consider g(x,y) = xPyq (a D(p,q]-point). Its EN-diagram has no node 
at all, only two arrow-heads (one of multiplicity p, the other of multiplicity q) 
connected by an edge e. Let d = gcd(p, q). Then: 

d-1 

Spp(g) = E[(-s/d,2) - (s/d,O)] + (0,1). 
8=1 

Compare this with (g(t) = 1. 
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4.4 Spectral pairs and the real Seifert form 

( 4.4.1) From now on, we will use the notation F again for the Milnor fibre 
Xj,x of the curve singularity f. This will cause no confusion, since the Hodge 
filtration will no longer be used. Let L : HI (F; R) X HI (F; R) -+ R be the real 
Seifert form (its definition will become clear in a minute). In this section we 
will prove that the spectral pairs determine the Seifert form and vice versa. It 
is sufficient to prove this for the sesquilinearized Seifert form L on H1 (F; C), 
and that is what we will do. 

Neumann [34], [35] computed a normal form for the monodromy and L. If 
L is the Seifert form on HI (F; C), then S = L - L* is the skew hermitian inter­
section form on HI(F;C), so is is an hermitian form. Let H1 (F; C) = (ih . .H>. 
be the splitting of H1 (F; C) according to the eigenvalues of the monodromy 
h*. Define 

0'; = signature( is I H>.), 

the equivariant signature for the eigenvalue A. It follows from [34] and [35] 
that the signatures and the Jordan normal form of the monodromy determine 
the Seifert form. We will show how to find the signatures from the weight 1 
part of the spectral pairs. This enables us to prove that the Grima examples 
of singularities with the same rational monodromy [17] are distinguished by 
their signatures, as was conjectured by Neumann [35], §7. 

In view of Theorem 4.3.4, we define the a-part of Spp(J) to be the spectral 
pairs of the form (a, 1) - the weight one spectral pairs - with a of. O. 

(4.4.2) Proposition The a-part of Spp(J) determines the equivariant signa­
tures. In fact, if we write 

then for A of. 1: 

a = L: av = L:n,,(a,l), 
vER(F) 

where a satisfies exp( +21ria) = A and 0 < a < 1. 

Observe that a-I is the other logarithm of A in the interval between -1 
and 1. One has 0':1 = 0'1 = 0, see [34]. 

Proof. Hl(F) has a weight filtration 
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dual to the weight filtration on HI(F): 

W_2HI(F) 

W_IHI(F) 

= WIHI(F).l, 
WOHI(F).l. 

Splicing spectra 

On HI(F) we have the monodromy operator T = h. and N = 10gTu. Fur­
thermore, W_2HI (F) = NHI(F) 9 Ker(j), where j : HI(F) -+ HI(F) induces 
the intersection pairing. The factor Ker(j) clearly does not contribute to the 
equivariant signatures. 

The factor N HI (F) corresponds to the 2 x 2-Jordan blocks of T. Consider 
a 2 x 2-Jordan block for the eigenvalue A and choose a basis ell e2 such that 
T and N are of the form 

T = (~ l) and N = (~ ~). 
Then W- 2 = Cel. Because N is an infinitesimal isometry, we have 

Hence on Ce19Ce2, the matrix of is is a 2 x 2-hermitian matrix with non-zero 
determinant and top left entry equal to o. So it has a positive and a negative 
eigenvalue. It follows that the contributions of the 2 x 2-Jordan blocks are 
equal to o. 

Consequently, the signature of is I H).. is equal to the signature of is on 
Gr~ H).., which by Poincare duality will be identified with Grf' HI(Fh. Let 
w be a holomorphic I-form. Locally we can write w = g(z)dz with z = x + iy. 
Then iw A w = ilg(z)l2dz A d:z = 21g12dx A dy. So 

is(w,w) = i k,w Aw > O. 

Similarly one proves that anti-holomorphic I-forms give a negative contribution 
to the signature. Therefore: 

which proves the proposition. o 

(4.4.3) Example We continue our previous example f(x, y) = (y2 - x3)(y3_ 
x 2 ). Clearly, if ( = exp(21ri/10), then 0"( = 0"0 = 2 and 0"(7 = O"~ = -2, 
cf. [35], §7. 
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( 4.4.4) Example Let n ~ 3 and let al, ... , an be pairwise relatively prime 
positive integers. Consider the EN-diagram 

We encountered this EN-diagram already in lemma 2.7.1. It represents the 
function f(zl, ... , zn) = n~=l Zii, defined on the homology manifold 

n 

V(at, ... ,an) = {z E en I EAijZ? = 0 for 1 ~ i ~ n - 2}, 
j=l 

where A is a sufficiently general (n-2) xn-matrix. We can use Proposition 4.4.2 
to compute the equivariant signatures of f. For a real number x, define 

« x)) = { ! -{x} if x ¢ Z, 
if x E Z. 

Let ,\ = e21fiOt with 0 < a < 1. If a is not of the form pjm with m the 
multiplicity of the central node, then u-; = o. So write a = pjm with m the 
multiplicity of the central node. Using lemma 2.7.1, we obtain: 

n 

nOt-l = -1 + E{sipjm}, 
i=l 

n 

nOt = -1 + E{sAm - p)jm}. 
i=l 

Observe that for 13 E jO,1[, we have {-f3} - {f3} = 1 - 213 = 2«13)). By 
Proposition 4.4.2, we obtain: 

n n n 
u-; = E{-psijm} - E{psijm} = 2E«psijm)). 

i=l i=l i=l 

This gives an alternative proof of [35], Theorem 5.3. 

We are now ready to state the main theorem of this section. 

(4.4.5) Theorem Giving the real Seifert form of a curve singularity defined 
on a homology manifold, is equivalent to giving the spectml pairs. 
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Proof. In [35], Neumann showed how to compute the Seifert form from the 
equivariant signatures and the polynomials ,11, ,11 and ,1' defined in sec­
tion 2.3. It is also possible to retrieve these polynomials from the Seifert form, 
by analyzing the multiplicities of the eigenvalues. 

We will show how to get the polynomials from the spectral pairs and con­
versely. Together with Neumann's result this proves the theorem. We use the 
notation e(a) = exp( -21ria). 

Let Spp(f) = La,w ma,w( a, w) be the spectral pairs of some curve singu­
larity f. The signatures have been computed in Proposition 4.4.2, so it suffices 
to give formulae for the characteristic polynomials. Let ..10 be the character­
istic polynomial of the monodromy on Ho(F). Consider the rational function 
..1* = ,11/..10, We have seen that 

a,w 

Observe that r = mO,l + 1 is the number of branches of f. Write m~ = 
m a ,2 - m_a,O. Then c' = L-1<a<0 m~(a, 2) is the c'-part as in Theorem 4.3.4. 
Let P' be the polynomial 

P'(t) = II (t - e(a))m~. 
-l<a<O 

There is a unique way to write P' in the following form: 

P' (t) = II td
" - 1 . 

"EA t - 1 

Now if d = gcd{d" II\, E A(r)}, then 

- t d -1 
,1o(t) = t=l' 

and hence we obtain ,11 = ..1*..10, Also, the c'-part gives us ,1'j it is easy to 
check that 

Since the roots of ,11 are precisely the eigenvalues of the monodromy that 
occur in the 2 x 2-Jordan blocks, we have 

,11(t) = ..1o(t) II (t - e(a)r"'o . 
O<a<l 
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Conversely, let the equivariant signatures O"A and the polynomials ..1b ..11 and 
..1' be given. We can obtain .10 from ..1' as we obtained it from P' above. Let 
b)., bl, b~ and bo,). be the multiplicities of A as a root of ..1b ..1\ ..1' and .10 
respectively. It follows by straightforward computations, that 

Spp(f) = Lma,w(a,w), 
a,w 

with 

m a,2 b~(a) + b!(a) for -1 < a < 0, 
m a,1 = (be(a) - b~(a) - 2b!(a) + 0"~a))/2 for -1 < a < 0, 

mO,1 = b' 1 = r-1 
m a,1 = (be(a) - b~(a) - 2b!(a) - 0"~a))/2 for 0 < a < 1, 
ma,o = b!(a) - bO,e(a) for 0 < a < 1, 
mOt,w 0 otherwise. 

(A similar formula for the spectrum was derived in [44].) This proves the 
theorem. 0 

4.5 A splice formula for spectral pairs 

(4.5.1) In this section we derive the splice formula for spectral pairs as pre­
sented in [46]. A splice formula for spectra has been given in [44]. We outline 
three of the sources of interest in this formula: 

- It can be used to give a formula for the spectral pairs of a topological 
series of curve singularities. 

- The splice formula can be used to define spectral pairs for certain non­
algebraic links. This poses the question of how to interpret these spectral 
pairs. For instance, Proposition 4.4.2 still applies to compute the signa­
tures. 

- The counterexamples to the Spectrum and Seifert form Conjectures can 
be explained by the splice formula. 

Before we state the theorem, we will give an illustrative example. 

(4.5.2) Example In example 4.3.5, we computed the spectrum of the plane 
curve singularity f(x,y) = (y2 - X3)(y3 - x2): 

Spp(f) = (-!, 2) + 2( -1~' 1) + 2( -lo' 1) + (0,1) + 2Uo, 1) + 2(1~' 1) + (!, 0). 



48 Splicing spectra 

In example 1.3.6, we saw that the splice decomposition of f consists of two 
pieces, each of which is isomorphic to the Seifert piece of the non-isolated 
singularity g(x,y) = x 2(y2 - x3 ). We have 

Spp(g) = (-~, 2) + (-130,1) + (-110,1) + (0,1) + Uo' 1) + Uo' 1). 

Notice that Spp(g) contains the c'-part (-~, 2). Splicing introduces a new edge, 
and both contributions to c' change into a contribution (-!, 2) + (!, 0) to c (a 
new 2 x 2 Jordan block). This motivates our idea that SpP. = Spp - (0,1) is 
almost additive (i.e. additive except for one small part which changes sides). 

(4.5.3) Theorem [Splice formula for spectral pairs] Let f : (X, x) --+ 

(C,O) be a curve singularity defined on a homology manifold, whose link is 
the result of splicing the links of the curve singularities II : (XI, Xl) --+ (C,O) 
and f2 : (X2' X2) --+ (C,O) along components of multilink multiplicities ml and 
m2, in such a way that the splice and algebraicity conditions are respected. Let 
8 = gcd(ml,m2)' Then 

5-1 

Spp(f) = Spp(fd + Spp(h) - (0, 1) + E[(s/8, 0) - (-s/8, 2)]. 
8=1 

Proof. Consider the EN-diagrams of f, fl and f2. By Theorem 4.3.4, it is 
clear that Spp(f) is almost equal to Spp(fd + Spp(h), except that we have 
to take into account that the EN-diagram of f has two arrow-heads less than 
the EN-diagrams of f1 and f2 together and one more edge instead. 

Both arrow-heads 11':1 and "-2 together give a total contribution of 

5-1 

2E(-s/8,2) 
8=1 

to Spp(fd + SPP(f2), whereas the new edge e contributes 

5-1 

E[(-s/8, 2) + (s/8,0)] 
8=1 

to Spp(f) - it follows directly from the definitions that d"l = d"2 = de = 
gcd(mI, m2) = 8. 

This proves the splice formula. 0 
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4.6 The counterexample to the Spectrum Conjecture 

(4.6.1) In this section we present the counterexample to the Spectrum Con­
jecture. According to Theorem 4.4.5 this is also a counterexample to the con­
jecture about the real Seifert form. The example was found by Steenbrink and 
Stevens when the former visited the latter in Hamburg. In [46] it is presented 
alongside several other examples, each with its own special property. 

We will give the example in terms of topological series. Consider the plane 
curve singularity with equation 

Its EN-diagram is 
(2)~(2) 

~ (2) . (2) 

It has four double components. A typical element /N1 ,N2 ;N3,N{ of its topological 
series has an EN-diagram which can be obtained by replacing each of the four 
arrows by 

.--~ 

with Ni > 4 (1 :::; i :::; 4). Recall that such an extension has two arrows if Ni is 
even and one if Ni is odd; and that the multiplicity of the node is determined 
by Ni + Ci. But Ci = 8 for each 1 :::; i :::; 4. From Theorem 4.3.4 or the splice 
formula, it is clear that the spectral pairs are the same for all permutations of 
{N!, ... , N4 }, but we can have more than one topological type. For instance, 
/5,5;6,6 and /5,6;5,6 have the same spectral pairs (and hence the same signatures) 
but different topological types. 

5 

2 
2 2 2 2 

5 3 5 5 

2 /5,5;6,6 2 /5 ,6;5,6 2 

(4.6.2) The same example also produces an example of functions with the 
same spectrum, but different spectral pairs. Observe that above also the special 
case Ni = 4 is allowed. This gives two arrows attached directly to one of the 
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nodes. The functions f4,4;5,5 and f4,5;4,5 clearly have the same spectrum but 
different spectral pairs: the first has pairs (-!, 2) and (!,O) and the second 
has (-!, 1) and G, 1) instead, cf. [46], Example 5.4.l. 

(4.6.3) Other examples of functions with the same spectral pairs but different 
topological type in [46] include functions with two branches and functions with 
the same integral monodromy. On the other hand, it is proved that the Grima 
examples [17] of plane curve singularities with the same rational monodromy 
are distinguished by their spectral pairs - in fact even by their signatures as 
was conjectured by Neumann [35]. 

Also the examples of Michel and Weber [30] of functions with the same 
integral monodromy are distinguished by their spectral pairs, since they are 
quasi-homogeneous (the spectrum of a quasi-homogeneous isolated singularity 
determines the weights, not only for curves, cf. [46]). 

4.7 The spectral pairs within a topological series 

( 4. 7.1) The splice formula allows us to give a formula for the spectral pairs 
within a topological series. We will do this in the case that we have only double 
components, since then we can be more explicit. As we have seen, the special 
case N = No which does not formally belong to the series, but is often counted 
as such, causes trouble for the spectral pairs. The spectrum does not notice 
the difficulties. 

Let f be a non-isolated singularity with only double components. Recall 
that according to Theorem 3.3.2, a typical element of its series has EN-diagram 

~ t - t 
where N = (N1, ... , Ns ) > (NOl , ••• , Nos) (we define NOi and Ci as usual, 
cf. 3.5). 

(4.7.2) Proposition Write for i ::; s: Ii = 0 if Ci is even and Ii = ! if Ci is 
odd. Let Vi = Ni + Ci. Then: 

s 11;-1 1 ,. + j 
Sp(fN) = Sp(f) + E E(- - -' -). 

i=1 ;=1 2 Vi 

Proof One can work out the various cases using the splice formula. It is also 
possible to use the proof of [56J, Theorem 4.5, which is valid in our situation. 

o 
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( 4. 7.3) Remark The proposition is a generalization of Corollary 3.5.1. One 
can generalize further to spectral pairs. Ahnost all spectrum numbers that 
are added, have weight 1; only (-!) and (!), if present, have weight 2 and 0 
respectively. The proposition as stated is also valid if Ni = NOi for some i. 



CHAPTER 5 

Deformations of plane curves singularities 

5.1 Introduction 

We consider non-zero holomorphic function germs I : (C2,O) --+ (C,O) and 
certain deformations. The programme follows the established path laid by 
work of R. Pellikaan and T. de Jong. In his thesis [36J, Pellikaan developed 
the deformation theory for application in the case of singularities of arbitrary 
dimensions with a one-dimensional singular locus and transversal type At. De 
Jong [19J considered the case that the singular locus is a smooth curve but 
with more complicated transversal types. In later versions, Pellikaan stated 
his results more generally ([37J, [38]), and we can obtain our key results by an 
easy and straightforward application of his theorems. 

Our study is, however, in a sense transverse to that of Pellikaan, since we 
consider arbitrary transversal types but only in the plane curve case. 

We start by defining the Jacobi number ir(J) = dime 1/ J j (where I is the 
ideal defining the singular locus E and Jj the Jacobi ideal) and prove that finite 
Jacobi number is equivalent to finite I-codimension and to I having prescribed 
transversal singularities along the branches of the singular locus. For I with 
finite Jacobi number we consider deformations and count the number of special 
points in such a deformation. We prove that j 1(J) in fact equals the Milnor 
number of the associated reduced singularity IR. 

We carryon by following Siersma [49], in order to express the Milnor num­
ber fL(J) in the number of special points. This generalizes results of Siersma 
and De Jong (in the plane curve case). The answer is the following: Let Ek be 
the reduced curve whose branches are the branches of the singular locus of I 
where I has transversal type Ak - t . Let #Dfp, qJ be the number of points in a 
deformation It of I which makes each Ek smooth, where, in local coordinates, 
the singularity of It is xPyq. Let d be the number of connected components of 
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the Milnor fibre. Then: 

J1.(f) = I)p + q - 1) . #D[p, q] + #D[1, 1] + L)k - 1)(J1.(Ek ) -1) + d - 1. 
p<q k 

This work answers a question of Dirk Siersma, who asked how the Jacobi 
and Milnor numbers of an arbitrary plane curve singularity could be expressed 
in the number of "p,q-points" , in other words: to get the plane curve case over 
and done with. 

(5.1.1) Notation By Z(I) we denote the analytic space defined by the van­
ishing of the elements of the ideal I of O. 

5.2 Invariants 
(5.2.1) Recall the following notations: 0 = C{x,y}, m is its maximal ideal. 
We call the elements of 0 (plane) .curve singularities. 

We denote by Sing(f) the singular set of an analytic function germ f EO. 
If C c Sing(f) is one-dimensional, then f is of transversal type Am - 1 along C 
if for all c E C we can find local coordinates u, v in a neighbourhood of c such 
that f( u, v) = vm . The name comes from the fact that on a transversal slice 
X the zero-dimensional singularity f: (X, c) --+ C is of type Am-I' 

(5.2.2) Definition Let p 2 0, q 2 1 be integers. A germ of an analytic 
function f : (C2,0) --+ (C,O) is said to be of type D[p,q] if there are local 
coordinates x, y such that f(x,y) = xPyq. A function germ of type D[P,p] is 
also called of type A[P]. We will also use Siersma's notations, such as Aoo = 
D[O, 2] and Doo = D[1, 2]. Note that D[p, q] = D[q,p]. 

(5.2.3) Let leO = C{x,y} be an ideal. Then we define the primitive ideal 
f 1= {f E 0 I (f) + If c I}. Here If is the Jacobi ideal of f, generated by 
the partial derivatives. This definition is due to Pellikaan. 

Suppose I = (g')O and let g' = g':I-1 ••• g;!'r-l, where mi2 2, be the 
decomposition of 9 in irreducible factors. Then it is easy to see that f I = 
(g':l ... g;!'r), cf. [36]1.7. 

Let V be the group of local analytic isomorphisms t/; : (C2, 0) --+ (C2, 0). 
For an ideal I we define: VI = {t/; E V I t/;*(I) = I}. 

(5.2.4) In the sequel we will always have the following situation: 

(a) I = (g':I- 1 ... g;!'r-l)O with gi irreducible, mi 2 2 (1 ::; i ::; r), and gi 
and gj having no common factor (i 1: j). 
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(b) I I = gO = (g'{'l ... g,:,r )0. 

( c) Ei = Z (gi), E = El U ... U Er. 

If f E I I then E C Sing(J). We are looking for conditions on f such that 
Sing(J) = E and f has transversal type Ami - 1 along Ei \ {o}. It will prove 
useful to give (E, 0) the (possibly non-reduced) analytic structure of I. Observe 
that in this case VI = VII' 

We have a right action of VI on I I and hence for all f E I I we have 
OrbI(J) c I I. Consider the tangent space TVI of VI at the identity. Observe 
that TVI is a subset of TV, the tangent space of Vat the identity. We identify 
TV with me, the germs of vector fields vanishing at the origin. 

According to [36], p. 19 we have TVI = {e E me I e(I) c I}. 

(5.2.5) Definition Let f E I I. Then we define q(J) = dime I I ITVr(J), 
where TVI(J) = {e(J) leE TVI}. CI(J) is called the I -codimension of f. 

Suppose I = (ym-l). Then one easily sees that CI(J) = 0 if and only if 
I 1= (J), i.e. f has transversal Am - 1 singularities along Sing(J); and q(J) = 1 
if and only if f is of type D[1, m]. 

We now state some standard finite determinacy results (d. [48]). If a is 
an ideal in 0 and kEN, then f E a is called k-determined in a if f + mk a C 
Orb l1 (J). 

(5.2.6) Theorem Let f E II. Then: 

(aJ If f is k-determined in I I then I I· m k C TVI(J) + I I· mk+l. 

(bJ If I I· mk C mTVI(J), then f is k-determined in I I. 

The proof is standard (d. [48], [37]). o 

(5.2.7) Corollary CI(J) < 00 if and only if f is k-determined for some k E 
N. Furthermore, if CI(J) < 00 then Sing(J) = E. 

Proof. The first statement is obvious. Now suppose CI(J) < 00, so there is a 
k such that I I . mk C TVI(J). Because TVI(J) C mJj nIl, it follows that 
Z(Jj ) U E c E, hence Sing(J) = E. 0 

(5.2.8) Definition Let I be as above. Then we define iI(J) = dimeIIJj. 
We call iI(J) the Jacobi number of f. 

The Jacobi number plays the same role as the Milnor number in the case of 
isolated singularities. Since dime 01 Jj is infinite, we look at other quotients 
and it appears that I I Jj is the right choice. 



5.2 Invariants 55 

(5.2.9) Example If I = (ym-l) and f(x,y) = ym then h(f) = o. If f 
is of type D(p,q], then choose coordinates for which f(x,y) = xPyq. Let 
1= (xp-1yq-l). Then h(f) = l. 

Later we will show that the Jacobi number equals the Milnor number of the 
reduced singularity associated to f. This fact seems to have been unnoticed 
before and it is definitely false in higher dimensions. 

(5.2.10) Proposition Let f E I I and suppose h(f) < 00 and depth(V I I) > 
O. Then: 

(a) T'D1(f) = mJj nIl (mJj = T'D(f»), 

(b) CI(f) < 00. 

Proof. This is Proposition 5.3 of [37]. The numberq,e(f) = dime III(JjnIl) 
is also considered by Pellikaan. It is clear that CI,e(f) ~ CI(f). In Proposi­
tion 5.3 of [37] it is in fact proved that CI,e(f) ~ jl(f). But CI(f) is finite if 
CI,e(f) is finite, because the quotient M = (Jj nIl) I (mJj nIl) is a finitely 
generated V-module and m(Jj nIl) c T'D1(f) = mJj nIl, so mM = (0) and 
dimeM < 00. 0 

This shows that q(f) is an invariant of the right-equivalence class of f. 

(5.2.11) Theorem Let f E I I. The following statements are equivalent: 

(i) jl(f) < 00, 

(ii) cI(f) < 00, 

(iii) f is a singularity with singular locus E = El U ... U Er and transversal 
type Am;-l along Ei \ {O} (1 ~ i ~ r). 

Proof. (i) ::::} (ii): Proposition 5.2.10. 
(ii) ::::} (iii): In Corollary 5.2.7 it has been observed that Sing(f) = E. We 
consider the sheaf V of analytic functions on a small neighbourhood V of the 
origin (for a E V the stalk at a is Va). We have ideal sheaves I, II and Jj 
with the obvious meanings. Let F = III(Jj n II). Then F is a coherent 
sheaf of V-modules. Now because CI(f) is finite and dime Fo = cI,e(f), we can 
choose V such that dime Fa = 0 for a E V \ {O} (F is concentrated in a finite 
set of points). Look at a point a E Ei\ {O}. (Ej , a) is defined by (gi;-l) and gj 
can be used as one of the local coordinates near a. From the remark following 
definition 5.2.5 it follows that f has only transversal Am;-l singularities along 
E j \ {O} (1 ~ i ~ r). 
(iii) ::::} (i): According to example 5.2.9 the stalk of IIJj at a E V \ {O} is 
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(0) if we choose V sufficiently small. So I j:/f is concentrated in a finite set 
of points and therefore we obtain that h(f), the dimension of the stalk at the 
origin, is finite. 0 

5.3 Deformations 
(5.3.1) Deformations of isolated singularities are thoroughly studied. They 
are used to split up the complicated isolated singularity into a number of 
simple singularities which are better understood, and in this case it is well­
known that it splits up into Al or Morse singularities (in our notation: D[l,l] 
singularities) and that their number is the Milnor number JL of the singularity. 

In this section we will consider deformations of a non-isolated plane curve 
singularity I. In such a deformation, it is important to describe what happens 
to the singular set of I, because we want to recover various properties of I 
in the deformation (e.g. we would like that the Milnor fibrations of I and the 
deformed It are equivalent, cf. lemma 5.4.8). A theorem of Pellikaan is invoked 
to show that h(f) is invariant under deformations. 

We will consider two kinds of deformations in more detail and compute 
the number of special points (critical points) in such a deformation. In the 
next section we will use these two types to obtain two formulae for the Mil­
nor number. The two special kinds are examples of deformations where the 
singularities of I split up into D[p, q] singularities only. There are many other 
possible deformations, giving similar formulae for the Milnor number. 

Our reference for this section is [38]. 

(5.3.2) Definition Let I = (g;"l-I ... g;."r-I) define (17,0) as before. 

(a) We define Er = {ml,"" m r }. 

(b) For pEEr, let 17P be the reduced curve defined by the product of all gi 
such that mi = p. We call 17P the p-part of 17. 

(c) Let I E II with jr(f) < 00. By Theorem 5.2.11 we can write 

I = II lTv)· 
pEE/u{l} 

For p,q E ErU {I}, p i- q, we define dp,q(f) = dimcOj(f(p),J(q)), and 
for other p, q we put dp,q(f) = o. 

It will appear in the next section that for p i- q the number dp,q is the number 
of D[p, q]-points in a deformation. Notice that if p, q > 1, dp,q = 17P . 17q 
(intersection number). 
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(5.3.3) The following definitions come from Pellikaan [38]. We think of E and 
I being as before, but for the definitions this is not important. Let (E, 0) be a 
germ of an analytic space defined by the ideal I in O. A deformation of (E, 0) 
consists of a germ of a flat map G : (X, 0) ~ (8,0) of analytic spaces, together 
with an embedding i : (17, 0) ~ (X,O) such that (i(E), 0) ~ (G-l(O),O) as 
analytic spaces. We can embed (8,0) in (C".,O) and (X,O) in (C2 x C".,O) 
such that the following diagram commutes: 

(E,O) 
1 

(C2,0) 

i 
~ 

j 
--r 

(X,O) 
1 

(C2 x c".,O) 

(8,0) 
1 

(C"., 0) 

where j(z) = (z,O) and 7r is the projection on the second factor. Let 0 be the 
local ring of germs of analytic functions on (C2 x 8,0) . Let j be the ideal in 
o defining the germ (X, 0) considered as a subspace of (C2 x 8,0). 

(5.3.4) Definition Let (E, 0) be a germ of an analytic space in (C2, 0) defined 
by I and G: X ~ 8 a deformation of E. Let f: (C2,0) ~ (C,O) be a germ 
of an analytic function such that f E I I. Let F : (C2 x 8, 0) ~ (C,O) be a 
germ of an analytic map. Then (F, G) is called a deformation of (J, E, 0) if 
F(x,y,O) = f(x,y) and 

(F)O+ JF C j 

where JF = (~~, ~~)O and x, yare local coordinates. 

For example one could consider deformations of (J, E, 0) with E fixed, as 
in [36] and [50]. We will not do this, because such a deformation only gives 
information about the D[l,p]-points. 

If the context is clear, then we say that F is a deformation of (J, 17,0), or 
even that F is a deformation of f. 

(5.3.5) Let 1= (gi"l-l ... g;."r-1 ), II = (gi"l ... g;."r) and f E II as before. 
From now on we assume iI(J) < 00. 

The first kind of deformation we consider, will be one with as much cross­
ings as possible. It will be called a network map type of deformation 1 . 

Such a deformation arises as follows: First look at the reduced singularity 
fR. This singularity can be deformed in such a way that it has only normal 
crossings and their number is 8, the virtual number of double points. An 

1 We specifically think of the London Underground network map designed by Harry Beck 
in 1933. 
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explicit construction, involving small translations of the branches in the reso­
lution, was first given by A'Campo [1] and by Gusein-Sade [6]. We now have a 
network map deformation (lR)t of /R, and get one for / by giving the branches 
of (lR)t the correct multiplicities of /. 

Write / = g'{'l ... g';'r hr+1 ... hs • Let the network map deformation of 

/R = g1 ... grhr+1 ... hs 

be FR : (C2 x CU, 0) -+ (C x CU, 0). We may assume that we can write 

where the Gi and the Hi describe what happens to the branches of /R (this 
is possible in the construction of A'Campo and Gusein-Sade), and z = (x,y). 
Now let 

and 
G(z,t) = (G1(z,t)ml-1···Gr(z,t)mr-1,t). 

Then (F, G) is a deformation of (I, E, 0) and we say that (F, G) is a network 
map type deformation of /. 

(5.3.6) The second type of deformation will be a deformation of (I, E, 0) 
which makes each of the p-parts EP of the singular locus E smooth. Recall 
that we consider (EP, 0) (p E E = E1 ) as a reduced curve. There exists a versal 
deformation Gp : (C2 x CUp, 0) -+ (C x CUp,O) of (EP,O) with Gp(z,tp) = 
(Gp1 (z,tp),tp). Let (J = EpEE(Jp. By t = (tp)PEE we denote local coordinates 
on cu. Let 

G(z, t) = ( II Gp1 (z, tp)P-t, t); 
pEEl 

then G defines a deformation of E. Furthermore, write / = g'{'l ... g';'rh and 
define F: (C2 x CU x C3,0) -+ (C,O) by 

F(z,t,a,b,c) = II Gp1 (z,t)P(h(z)+a+bx+cy). 
pEEl 

Then (F, G) defines a deformation of (I, E, 0), a de/ormation which makes the 
p-parts smooth. 

The next theorem is an important result due to Pellikaan. In [38] it is 
proved as a part of a larger theorem. 
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(5.3.7) Theorem Let I, f E II, and E be as before and jI(f) < 00. Let 
G : (X,O) ~ (S,O) be a deformation of (17,0) with non-singular base (S,O) 
and let (F, G) be a deformation of (f, E, 0). Let 7r : (C2 x S, 0) ~ (S,O) be the 
projection. Then there exist representatives for all considered germs such that 
for all t E S 

iI(f) = E j(ft, a). 
aE,..-l (t) 

So the Jacobi number is invariant under deformations. o 

The following theorems show that in our type of deformations, the number 
of special points is finite. We omit their straightforward but somewhat tedious 
proofs, which are analogous to the proofs of Propositions 7.18 and 7.20 of [36J. 

(5.3.8) Theorem Let I, f E II, and 17 be as before and iI(f) < 00. Suppose 
F: (C2 x S, 0) ~ (C,O) is a network map type deformation of (f, 17, 0), where 
S = CO". Then there is a dense subset V c S and an open neighbourhood U of 
o E C 2 such that for all t E V sufficiently small: 

(aJ ft-I(O) has only normal crossings, and their number equals 8(fR), the 
virtual number of double points of the reduced germ fR, 

(bJ ft has only Al singularities in U \ Et , 

(cJ for 0 < p < q, ft has only D[p, qJ singularities on 17tq n U, and their 
number is dp,q(f), 

(dJ ft has only D[O, qJ and a finite number of D[q, qJ singularities on the rest 
of 17? n u. 0 

. (5.3.9) Corollary iI(f) = J.l(fR), i.e. the Jacobi number jI(f) equals the 
Milnor number J.l(fR) of the reduced singularity fRo 

Proof. A network map type deformation of f arises from a deformation of the 
same kind. It is well-known that J.l(fR) equals 8 + #AI, where 8 is the number 
of crossing points and #AI the number of Al is singularities outside the zero­
locus. By construction, the deformation of f has 8 D[p, qJ crossing points. But 
it is also not difficult to see that there are as many AI-points outside the zero 
locus as there are outside the zero locus in the deformation of fRo 

By Theorem 5.3.7 it now follows that iI(f) = J.l(fR), for we know that the 
Jacobi number of all D[p, qJ singularities is 1. 0 

(5.3.10) Remark The Jacobi number being equal to the Milnor number of 
the reduced singularity gives interesting interpretations to several of the for­
mulae to be found in Pellikaan's work. For instance, from [36], 5.14, it follows 
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that for an isolated plane curve singularity, the difference of the Milnor and 
Tjurina numbers J.L(f) - r(f) equals the extended codimension CI,e(j2). 

(5.3.11) Theorem We use the same notations, h(f) < 00. Suppose F is a 
deformation of (f, E, 0) which makes the p-parts smooth. Then there exists a 
dense subset V c S and an open neighbourhood U of 0 E C2, such that for all 
t E V sufficiently small: 

(a) Ef is smooth for each pEEl, 

(b) ft has only Al singularities in U \ Et, 

(c) for 0 < p < q, ft has only D[p, q] singularities on E? n U and their 
number is dp,q(f), 

(d) ft has only D[O, q] singularities on the rest of E? n u. o 

5.4 D[p, q]-points and the Milnor number 

(5.4.1) From now on, we will write F for the Milnor fibre of f, whereas ft 
will denote a deformation of (f, E, 0), with E = Sing(f), which is a network 
map deformation or a deformation which makes the p-parts smooth. The 
decomposition of f into irreducible factors is 

where r ~ 1, s ~ rand mi ~ 2 (1 ~ i ~ r). We put m r +1 = ... = ms = 1. F 
will denote the Milnor fibre of f. 

A D[p, q]-point of ft is a point where ft has a local singularity of type 
D[p, q]. We ignore D[O, q]-points. Denote the number of D[p, q]-points of It 
by #D[p, q], the number of D[p, q]-points on ft-1(0) by #D°[p, q]. We assume 
that for (p,q) =I (1,1) all D[p,q]-points are in fact situated on ft-1(0). 

We will express the Milnor number Il, which is the dimension of H1(F; Z), 
in the number of D[p,q]-points of It. Put d = dimHo(F;Z) (the number of 
connected components); d equals gcd(ml, ... , ms). In this section, the singular 
locus has its reduced structure, i.e. it is defined by (fl ... fr). This is important, 
as Il(E), the Milnor number of E, will come in. 

(5.4.2) Our formulae will generalize various known formulae for the Milnor 
number, which are, however, often valid for all dimensions. Some of them are 
outlined below. 
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(i) In the case of isolated singularities, where m1 = ... = ms = 1, we have 
the well-known 

J.l= 28 - s + 1, 

see [9]. The number 8 is the virtual number of double points and equals 
the maximum of #DO[I, 1] over all deformations of f. Another formula 
1S 

J.l = #D[I, 1], 

as used for instance in the method of A'Campo and Gusein-Sade [6]. 

(ii) In the case of transversal type At, where m1 = ... = mr = 2 we have the 
formulae of Siersma: 

J.l = 2#D[I, 2] + #D[I, 1]- J.l(E) + d - 2, 

if E is deformed in such a way that it becomes smooth, see [49]; and: 

J.l = 2#D[I, 2] + #D[I, 1]- 2J.l(E) - 1, 

if #D[I, 2] > 0 and E remains fixed under the deformation ([50]). 

(iii) In the case that E is a non-singular curve and the transversal type is 
Aq- 1 (e.g. f = yqh'" fs): 

J.l = q#D[I, q] + #D[I, 1] - q + 1, 

see De Jong [19]. 

Below, we state two formulae for the Milnor number of f, one for each of 
the special types of deformations that we consider. The first of them, which 
is known, we give for the sake of completeness. Then we give some examples 
of the computation of the Milnor number using our formulae. After that, we 
give the proofs. Recall that d is the number of connected components of the 
Milnor fibre F. 

(5.4.3) Theorem (Formula 1) Let ft be a network type deformation of f. 
Then: 

J.l(J) = L)P + q). #D°[p,q]- S + d 

whe1'e the sum runs over all D[p, q]-points on ft- 1 (0) with p ::; q, and S = 
2:i=l mi, the number of branches cou'nted with multiplicities. 
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(5.4.4) Theorem (Formula 2) Let It be a deformation which makes the 
p-parts EP smooth. Then 

Jl(J) = ~]p+q-l).#D[P,q]+#D[I,I]+ 
p<q 

+ I)k - 1)(Jl(Ek ) - 1) + d -1, 
k 

the first summation over the D[p, q]-points with p < q, the second summation 
over all k E {ml' ... , m r }. 

(5.4.5) Example We compute the Milnor number in four cases. 

(i) I(x, y) = xPyq. Then d = gcd(p, q), Jl(EP) = Jl(Eq) = 0, and #D[p, q] = 
1. Both formulae give Jl = d. 

(ii) I(x, y) = xPyq(x + y) with 1 ~ p < q. Then d = 1, Jl(EP) = Jl(Eq) = 0 
and #D[p, q] = #D[I,p] = #D[I, q] = #D[I,I] = 1. See figure 5.1. 
Both formulae give Jl = p + q + 2. 

---------+--~-----q 

P 

Figure 5.1: (ii), (iii) deformation 1; and (iii) deformation 2. 

(iii) I(x,y) = xPyp(x + y) with p > 1. Then d = 1 and Jl(E) = 1. See figure 
5.1. 

- Formula 1 only works with deformation 1 and gives: Jl = 2p+2 (see 
(ii) ). 

- Formula 2 only works with deformation 2 and gives the same result: 
Jl = p#D[I,p] + #Al + (p - 1)(Jl(E) - 1) = 2p + 2. 

(iv) I(x,y) = (y2 - a:3)p(y3 - x2)q, with p < q. Then d = gcd(p,q), Jl(EP) = 
Jl(Eq) = 2 and #D[p, q] = 4. See figure 5.2. 
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- Formula 1 only works with deformation 1 and gives: J-l = 5p+5q+d, 
because #D[P,p] = #D[q,q] = 1. 

- Formula 2 only works with deformation 2 and gives: J-l = 5p+5q+d, 
because #D[l, 1] = 7. 

q q 

p p 

Figure 5.2: (iv) deformations 1 and 2. 

(5.4.6) Proof {of Theorem 5.4.3}. Near E j the Milnor fibre is a mj-sheeted 
covering of the zero locus X = It- 1(0), except in the multiple points. So start 
with S copies of the disc D2, and cover the ith branch with mj copies. If for 
each D[P, q]-point, we remove p + q small discs and replace them by gcd(p, q) 
small annuli (the local Milnor fibre of type D[P, q]), we obtain the Milnor fibre 
F. So the Euler-Poincare characteristic of F is clearly 

X(F) = S - ~)p + q) . #D°[p, q]. 
p,q 

Since F has d connected components, we obtain 

J-l(l) = ~)p + q) . #D°[p, q] - S + d. 
p,q 

This proves the theorem. o 

(5.4.7) The proof of Theorem 5.4.4 (Formula 2) requires more work; we will 
follow Siersma [49]. We have to start with some definitions and lemmas. In 
the following, It will be a deformation of (I, E, 0) which makes the p-parts 
smooth and the notations are as in the theorem. 
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We write X = It- 1(0). Let co be an admissible radius for the Milnor 
fibration, i.e. a positive number with the property that for all c E [0, co], 
X m aBe as stratified set. For each admissible c > 0 there exists a Se > 0 such 
that 1-1 (u) m aB/!: for all lui < S/!:. Fix c ~ co and S ~ S/!:, and let D be the 
disc of radius S. Put XD = 1-1 (D) n B/!: and XD,t = It-l (D) n B/!:. Consider 
I : XD ~ D and It : XD,t ~ D. 

(5.4.8) Lemma Fort and S sufficiently small, we have: 

(a) It-1(u) m B/!: lor all u E D. 

(b) Over the boundary circle aD the fib rations induced by I and It are equi­
valent. 

(c) XD and XD,t are homeomorphic. 

The proof is analogous to the one presented in [49]. o 

(5.4.9) We assume that It : XD,t ~ D satisfies the conditions of the preceding 
lemma. Suppose Sing(ft) = Et U {Cl' ••• ,cq }, where Cl, ••• , Cq are the A1-

points (that is, D[I, 1]-points) of It, with critical values Vt, ••• , Vq , respectively 
(so 0" = #D[I, 1]). Let 0 be the critical value of all non-isolated singularities. 
We may assume that all critical values are distinct . 

.. 

Figure 5.3: It : B/!: ~ D 

Now choose, as indicated in figure 5.3: 

(a) Small disjoint balls B; around Ci (1 ~ i ~ 0"); 

(b) Small tubes B8 around E[ (p E {ml, ... , mr } ), all of the form B8 = 
E[ x D(Tf), where D(Tf) is the disc of radius Tf > 0 (recall that E[ is 
smooth); 
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(c) Small disjoint discs Di C D around Vi (1 ~ iO"), and Do C D around 
Vo = 0, such that f-l(u) rt1 BBi for all u ED;; 

(d) Points a; E aD; and a point a E aD. 

Furthermore, (re ) define: 

Bo U BP pE{ml •...• mr} 0 

Et = EtnBo Ef = EfnBo 
E = B n f-l(D) F = B n f-l(a) 
E; = B; n f-l(D;) F: • = B; n f-l(a;) (iE{O, ... ,O"}) 
E~ = B~ n f-l(Do) F.P 

0 = B~ n f- 1 (0) (p E {~l, ... '~r}) 

E is called the Milnor ball, F is still called the Milnor fibre and (E, F) the 
Milnor pair. 

(5.4.10) Proposition H.- 1(F) ~ H.(E, F) ~ .EB H.(E j , Fi) . 
• =0 

Proof. The first isomorphism follows from the homology sequence of the pair 
(E, F), sinceE, being the Milnor ball, is contractible; for the second, see [49], 
(2.8). 0 

Unlike F, the Milnor pair (E, F) has homology that splits into a direct sum, 
hence (E, F) is easier to work with. We start by computing the homology of 
the Milnor pair of our basic singularity, the D[p, q]-point in the following easy 
lemma. 

(5.4.11) Lemma The Milnor fibre of a D[p, q]-point is homeomorphic to e = 
gcd(p, q) annuli. Therefore, the Milnor pair of a D[p, q]-point has homology as 
follows: 

{ 
ze-l 

HAED(P.qj, FD(P.qj) = ze 
o if j i= 1,2 

(5.4.12) Proposition 

(a) H1(E, F) = HI (Eo, Fo) = Zd-l, 

(b) H2(E, F) = H2 (Eo, Fo) ED Zt7 (0" = #D[l, 1]), and 

(c) HAE, F) = 0 if j i= 1,2. 

o 

Proof. The homology sequence of the pair (E, F) gives H1 (E, F) ~ Ho(F) = 
, Zd-l (F has d connected components). For i ~ 0", HI (E;, Fi ) = 0, since at 

Cj we have a D[l, 1J singularity, see lemma 5.4.11. Hence the first statement 
follows by Proposition 5.4.10. The proof of the second statement is analogous 
to the first, the third is- trivial. 0 
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(5.4.13) It remains to compute H2 (Eo, Fo). By the preceding lemma it is 
sufficient to compute the Euler characteristic X(Eo, Fo) = dim H 2(Eo, Fo) -
dim HI (Eo, Fo) of the pair (Eo, Fo). Recall the following properties of the 
Euler characteristic: 

(i) if (X, A) is a pair of topological spaces, then X(X, A) = X(X) - X(A) 
([53], p. 205); 

(ii) if {X, Y} is an excisive couple of spaces then X(XUY) = X(X) + X(Y)­
X(X n Y) ([53], p. 205); 

(iii) if ~ lX,..4) - B is a fibre bundle pair with fibre the pair (X, A), then 
X(X, A) = X(X, A) . X(B) ([53], p. 481). 

Recall Eg = Bg n f-I(D), where Bg = E[ x D(7]) is a small tube around 
the smooth curve Ef. Let 7rp be the projection onto the first factor. If 7] 

is chosen sufficiently small, then 7rp : (Eg, FC) - EP is a fibre bundle pair, 
locally trivial outside the D[P, q]-points, and with general fibre equivalent to 
the Milnor pair (EP, FP) of the transversal Ap - I singularity. Observe that FP 
consists of p points. 

(5.4.14) Definition For Y C E[, define Ey = 7r;I(y) nEg, and Fy = 
7r;I(y) n FC. The definition is extended in the obvious way to subsets Y of 
Et that are disjoint unions of real two dimensional manifolds with boundary, 
each of which is lying entirely in a Ef. 

In each E[ (p E {mI,"" m r }) choose small discs Wp,q,i, q =1= p, i E 
{1, ... ,#D[p, q]} around the D[p, q]-points that do not meet each other. We 
may assume that Ew . = Ew . and Fw . = Fw. Let W:p = Uq i W:p q i p,q,I q,p,t p,q,1 q,p,' , , , 

and Mp = E[ \ Wp. 

(5.4.15) Proposition 7rp : (EMp, FMp) - Mp is a trivial fibre bundle with 
fibres equivalent to the Milnor pair (EP, FP) of the transversal Ap - I singularity. 

Proof. Use [49] (4.7) in a somewhat more general setting. o 

Let p E {mI, ... , m r }. We have defined Wp as the (disjoint) union of all 
discs Wp,q,i around the D[p, q]-points in E[. The space E[ is a Riemann surface 
with holes and has a wedge of circles as deformation retract. Let Bp be the 
union of this wedge with #D[P, q] non-intersecting paths connecting the wedge 
point with the discs Wp,q,i, as in figure 5.4. Observe that Wp n Bp consists of 
a finite set of points. 
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Figure 5.4: Ei 

(5.4.16) Proposition Let W = Up Wp, B = UpBp. Then: 

Proof. The first equality follows from the fact that (EWUB , F WUB) is homotopy 
equivalent to (Eo, Fo). Indeed, for each p, WP U BP is homotopy equivalent to 
Ei (reI. Wp ), and therefore by the homotopy lifting property of the map 7rp : 

(EMp , FMp) --+ Mp (p E {mIl"" m r }), (EWUB, FWUB ) is homotopy equivalent 
to (Eo, Fo). 

The fact that (FWUB ; Fw , FB) C (EWUB; Ew , EB) is an inclusion of excisive 
triads (by the properties of the Euler characteristic 5.4.13) implies the second 
~~~ 0 

(5.4.17) Lemma 

(a) X(Ew , Fw) = Lp<q #D[p, qJ. 
(b) X(EB , FB ) = Lp(P - 1)(Jl(EP) - 1). 

(c) X(EwnB , FwnB ) = - Lp<q(P + q - 2) . #D[p, qJ. 
Proof. 

(a) W is the disjoint union of the Wp,q,;, P < q, i E {1, ... , #D[p, q]}. So 
X( Ew, Fw) is the sum of the X( EWp,q,;, FWp,q.J which are all equal to 1 
(see lemma 5.4.11). 

(b) B is the disjoint union of the Bp, so X(EB,FB) = Lp X(EBp' FBp). Bp is 
a wedge of Jl(EP) circles (Ei and EP have the same homotopy type), so 
its Euler characteristic is 1 - Jl(EP). (EBp, FBp) is a trivial fibre bundle 
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pair over Bp with fibres (EP, FP). Since EP is a topological disc and FP a 
set of p points, we have that X(EP, FP) = 1- p. By 5.4.13 (iii) we obtain 
X(EBp,FBp ) = (p -l)(Jl(EP) -1). 

(c) Wp n Bp is a set of Eq;ep #D(P, q] points. Above each point the fi­
bre is equivalent to the Milnor pair of the transversal Ap- 1 singular­
ity, which has Euler characteristic 1 - p as we have seen in (b). So 
X (EwpnBp , FwpnBp) = E q#p(l - p)#D(P, q]. Hence X(EwnB' FwnB ) = 
Ep Eq;ep(l - p)#D(P, q] = - Ep<q(p + q - 2)#D(P, q]. 

o 

(5.4.18) Proof [of Theorem 5.4.4]. By combining all previous computations, 
we obtain the desired formula 

Jl(f) = I)p+ q -1)· #D(P, q] + #D[l, 1] + ~]p -l)(Jl(EP) -1) + d -1. 0 
p<q 

5.5 Splicing of real morsifications 
In this section we consider polynomials I = 1~1 ... I::"r whose irreducible 
factors are polynomials with real coefficients. A deformation or morsification 
will be a real network map type deformation It of a function germ I with real 
coefficien ts, as in [1]. By considering parametrizations, one sees that such real 
deformations exist. The necessary data are contained in the intersection of R2 
and the level It-l (0) (a 'partage signe'), and we will even call this morsification 
diagram a morsification. 

(5.5.1) In the preceding section we proved a formula which expresses the 
Milnor number of a plane curve singularity in the number of special points of 
a deformation. It is not comparably easy to obtain from deformations more 
topological details, in particular the Waldhausen decomposition of the exterior 
of the link of the singularity. On the other hand, that decomposition may give 
us some results on deformations. 

One such result will now be described briefly, merely as an illustration: an 
algorithmic way to obtain formally a morsification of an isolated plane curve 
singularity. This can be used to obtain a Dynkin diagram of the intersection 
form by the A'Campo-Gusein-Sade method ([1], [6]). Such algorithms are 
not new, d. Schulze-RObbecke [47], who obtained a Dynkindiagramm lur jede 
Singularitiit, where in that case "each singularity" meant "each irreducible 
isolated plane curve singularity." 
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(5.5.2) Consider a plane curve singularity (X,O) with X = mlXI U ... U 
mrXr, defined by a polynomial as above. Recall that the construction of 
the Waldhausen decomposition is by glueing Seifert pieces together, using the 
operation of splicing. If we follow the construction of the EN-diagram in 
Chapter 1, we can even assume that the Seifert pieces, our basic building 
blocks, are defined by functions xayb(yp - xqy, where a, b, c ~ 0 and p, q ~ l. 
For such an uncomplicated singularity, it is not difficult to find a real network 
map deformation (for example using the A'Campo-Gusein-Sade method). 

If we can describe how to splice two morsification diagrams, we are able to 
produce morsification diagrams for all plane curve singularities, and Dynkin 
diagrams for all isolated plane curve singularities. Again, this should be seen 
primarily as a way of manipulating morsification diagrams. 

Consider also Y = nIYi U··· U naYs, another plane curve singularity. It is 
perhaps slightly unusual that we allow nl to be zero without having in mind 
that we should ignore Yi. It means, that as a plane curve singularity, Y is just 
n2Y2 U· .. naYs, but its link will contain the component KI of multiplicity zero, 
defined by intersecting Yi with the Milnor sphere. 

The splicing takes place "along" an mi-fold branch Xi of the one part, X, 
and an nrfold branch Yj of the other part, Y. By the splice condition, we 
have the following relationship: nj = Xi . UklimkXk, the intersection number 
of Xi with the other branches counted with their multiplicities, and also mi = 
Yj . Ulljnl Yi. 

Figure 5.5: Doubling a morsification of (y2 - X3)2 

The first step consists of multiplying the branches Xi and Yj by mi and nj, 
respectively. This means that one takes mi resp. nj parallel copies very near to 
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each other, which are deformed slightly to take care of intersections between 
each of the copies. In figure 5.5 a doubled morsification of the cusp is depicted. 
In the A 'Campo-Gusein-Sade method, where the morsification is obtained by 
small modifications of the strict transform in the partial resolutions, this is 
accomplished as follows: In the resolution, the strict transform of miXi can in 
local coordinates (u, v) be written as vm ;. Replace this by vm ; -1, and perform 
the usual steps to obtain a deformation. 

We can take small common neighbourhoods M of the mi new branches in 
the morsification diagram of X, and N of the nj new branches in the morsifi­
cation diagram of Y. Because of the splice condition we may assume that the 
intersection of M with the other branches of X consists of nj segments, and the 
intersection of N with the other branches of Y consists of mi segments. The 
splice operation is just patching those segments on the multiplied branches of 
the other. 

This procedure works by inspection of the proof of the A 'Campo-Gusein­
Sade method, bearing in mind that the splice components are related to partial 
resolutions of the singularity. This was shown to me by Jan Stevens, who 
communicated a proof of the case of "cabling" of morsifications. 

(5.5.3) Example (See figure 5.6.) We apply our method in the simple case of 
J3,2 (equation: f( x, y) = (y2 - x8)(y - x3)). It has two splice components. The 
first is J3,oo (equation y3 - x3y2). The second is isomorphic to X3(y2 - x6+p ). 

In figure 5.6 there are morsification diagrams for both, and we can identify the 
2 x 3 lines along which the splicing takes place. 

In the picture, we can identify the 18 cycles which form a distinguished 
basis for the homology of the Milnor fibre of J3 ,2. The top right morsification 
is made up from the well-known morsification of A7 . Analogously we obtain 
the morsification diagrams of J3,p (p ~ 0) by using Ap+5 instead of A 7 • Inter­
estingly, the morsification diagram does not reveal a reason for the algebraicity 
condition p ~ o. 
(5.5.4) The multiplication of branches is in practice sometimes confusing, a 
notation as in [47J is useful. As in [47J (for irreducible and isolated plane curve 
singularities) we have a way to construct a morsification for each topological 
type. For isolated singularities, we can use this to obtain a distinguished basis 
of vanishing cycles for the homology and a Dynkin diagram for the intersection 
form. 

For non-isolated singularities, a basis and a Dynkin diagram could be con­
structed as well, but for distinguishedness (that we want for the relationship 
with the monodromy) the theory lacks. Compare [51], where the curve case 
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Figure 5.6: The splice decomposition of J3,2 
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must be excluded. A basis can be obtained from the morsification diagram in 
the following way. We distinguish A-cycles, D-cycles and tube-cycles: 

- A-cycles 
For each At point off the zero locus, we have a vanishing A-cycle defined 
analogous to the EB and e cycles in A'Campo [1], which arise from the 
maxima and minima. 

- D-cycles 
For each D[p, q] point on the zero locus we have gcd(p, q) vanishing D­
cycles. They are defined analogous to the. cycles in A'Campo [1], which 
arise from the saddle points. 

- Tube-cycles 
Let p be one of the mi. Take the union of the p-fold branches in the 
deformation, and take a tube around it. In this tube, the Milnor fibre 
has a deformation retract consisting of the central circles of the annuli at 
D[p, q]-points connected by p-tuples of segments. There is in general an 
enormous choice of cycles that we can pick for a basis of the homology. 
It would go too far to define these tube cycles in more detail. 
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It is not so easy to describe the intersections between the cycles. In the case of a 
line singularity (with singular set a smooth curve) this is still manageable, and 
following unfinished work of C. Cox we obtained some unsatisfactory results 
in this direction (unpublished). Goryunov [16] derived in a similar way the 
intersection form of a plane line singularity. 

Perhaps more can be expected from the description of the Waldhausen 
decomposition in terms of the polar filtration and the Gabrielov-method for 
finding a distinguished base, see [13], Chapter 2 or [6]. 

The following result follows immediately from the preceding discussion. 

(5.5.5) Proposition Let fN be a member of a topological series of a plane 
curve singularity f with only double components (i. e. only transversal A 1 -

singularities). If we choose a basis for the homology of the Milnor fibre as in 
the A 'Campo-Gusein-Sade method, departing from a deformation constructed 
with our splice operation, then the Dynkin diagram of the intersection form 
contains r tails of the form 

-----------------~ 
corresponding to each of the r branches of the singular locus. In terms of 
Theorem 3.3.2, the length of such a chain will be N i . 

Another application of deformations is the computation of intersection 
numbers. For example, consider the number Ci of lemma 1.1.7, which is used 
for the computation of the vertical monodromy on a fibre of the transversal 
singularity along Ei \ {O}. Suppose that we have transversal Ap- 1 singularities 
along E \ {O}, where E is a branch of the singular set. The number Ci can be 
computed as the sum of all D[p, q]-points with q ~ 1 on Ei, each counted with 
multiplicity q. 



CHAPTER 6 

Series of hypersurface singularities 

6.1 Introduction 

In this chapter we discuss some possible ways to generalize the topological 
series of plane curve singularities to higher dimensional hypersurface singular­
ities with a one-dimensional singular locus. We will not enter a full treatment 
of series of hypersurface singularities. Apart from the question whether it 
would be right or possible to give a 'full' treatment - series have always been 
a source of inspiration because the concept was deliberately held vague - this 
would embrace a vast area of topics that we do not yet understand in their 
totality. Jan Stevens and the author hope to give a good description of Polar 
Series in a future paper. 

Instead, we consider some properties that we would like to have within 
our series. Most importantly, we would like to go beyond the Yomdin series 
barrier of one parameter series which go with large steps. At least in the 
case where we have only transversal At · singularities along the branches of 
the one-dimensional singular locus, we would like to have for instance Milnor 
numbers increasing with steps of 1. Of course the results should be applicable 
to the Arnol'd series still missing from the list of series that we have already 
seen, such as Q, S, T and U. Our main aim here will be a formula for the 
zeta-function, in line with the formula for Yomdin series, cf. section 3.5. 

We start with an analytic function germ f : (en+! , 0) -t (e,O) with a one­
dimensional singular locus h, whose decomposition in irreducible components 
is hI U ... U hr. Let 9 : (en+! , 0) -t (e,O) have an isolated singularity. We 
think of 9 as 9 = f + cp, and assume that there is a one parameter family 
f(·, A) such that f(·,O) = f, f(·, 1) = g, f(·, A) has an isolated singularity for 
all >. =f. 0, and ;>.}(z, A) =f. O. (We have in mind that fh >.) = f + ACP, but it 
might be useful to allow more general families). 
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We will have to put constraints on the family f(·, >.) in such a way that it 
seems natural for 9 to 'belong' to the series of f. So we think of f as fixed, 
whereas 9 runs through the 'series' of f. 

We want to stress again that in this chapter, we will not enter a full discus­
sion of series. Otherwise, one would object to the last sentence in the previous 
paragraph. Indeed, it will in general only be possible to let 9 be a representa­
tive of a member of the series of f which will ideally be indexed by a collection 
of positive integers (each associated to a branch of the singular locus of I). 
Such a member will therefore be an equivalence class of functions, but we are 
not going to specify details here. So in the following we consider rather special 
functions g. 

Below, we present two ways to look at the relationship between f and g. 
This is by no means a complete account of what is possible with these methods. 

Similar results have been obtained by A. Nemethi [32]. 

6.2 Polar series 

(6.2.1) In this section, we use the polar filtrations on the Milnor fibrations 
of f and 9 as our source of inspiration. Let i : (en+! , 0) -t (e,O) be a linear . 
form such that 

En Z(l) = {O} 

(recall that Z(h) = {z E en+! I h(z) = O}). This condition was already 
considered by Pellikaan. We consider IP/ = (I, I) : (en+! , 0) -t (e2 , 0). Let 
G/ = Sing( IP/) be the critical locus of IP/, which consists of the points where 
the matrix DIP/ of partial derivatives does not have maximal rank. 

(6.2.2) Lemma Suppose I satisfies En Z(l) = {O}. Then G/ is one-dimen­
sional. 

Proof. This is proved by Pellikaan [39], Proposition 3.1. o 

(6.2.3) Definition The polar curve of f with respect to the direction 1 is 
defined by 

i.e., it consists of the components of G not contained in the zero locus of f. 
The image Ll/ = IP/(r/) is called the Gerf diagram. If no subscript 1 is given, 
we assume I = x, the first coordinate function on en+!. 
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(6.2.4) Remark Le considers admissible linear functions I. This means that 
fIZ(/) has an isolated singularity. The condition we use, is weaker: take for 
instance 

f(X,y,Z)=X(y2+ Z2)+y2z2 and I(x,y,z)=x. 

Then E = Z(y,z), so En Z(l) = {oJ but f(O,y,z) = y2z2 has a non-isolated 
singularity. C consists of E, r = Z(x + y2, X + Z2) and {} = Z(x, y) u Z(x, z). 
Observe that ~({}) = {(O, O)} and that r is the polar curve of f. This example 
is due to Pellikaan, see [36], Example (8.7). 

(6.2.5) From now on we assume that I = x, the first coordinate function, and 
we will omit the subscripts I. Notice that in this case C is defined by * ~ 0, 
if (x, y) are the coordinates on Cn+! = C X cn. 

The critical locus C of ~ = (x, j), which is one-dimensional as we have 
just seen, consists of three main parts: 

C=Euru{}. 

Here E is the critical locus of f, as usual, and r the polar curve as defined 
above. The third part, {}, consists of the branches of C above the origin, i.e. 
~({}) = {(O,O)}. If x is admissible, then {} = 0. 

Let r = r l u· .. urs be the decomposition of r into irreducible components. 
The discriminant locus .1 = .1 l U·· ·U.1s , with.1 i = ~(ri)' is the Cerf diagram. 
We will use coordinates (u, v) in the target-C2. 

(6.2.6) Lemma The tangent cone of.1 is the u-axis. 

Proof. This is proved by Le [21], Proposition (3.1). o 

u 

It follows from the lemma that each .1 i has a Puiseux expansion 

v = aiuPi + higher order terms, 

with ai i= ° and Pi > 1 a rational number. The number Pi is called a polar ratio 
of f. Observe that Pi may well be a non-characteristic Puiseux exponent: we 



76 Series of hypersurface singularities 

are not allowed to change coordinates in (u, v)-space. Therefore the topological 
type of Ll i does not determine Pi. It is also possible to compute the polar ratios 
upstairs: 

ri· Z(f) 
Pi = r i . Z(x)' 

where · denotes the intersection number at the origin. By p(f) we denote the 
set of polar ratios of f. 
(6.2.7) The assumptions 
Let f be as above, and 9 : (en+!, 0) -+ (e, 0) be an isolated singularity, such 
that there is a family f(·,,\) with f(·, 0) = f and f(·, 1) = g. Write f>. = f(·,,\) 
and ~).. = (x,j)..). Let C).. be the critical locus of ~).. and let D).. = ~)..(C)..). 

We will now formulate a number of assumptions in order that 9 'belongs' 
to f. Possibly some of the assumptions can be weakened or deduced from the 
other assumptions. First of all, we assume that: 

(a) EnZ(x)=o, 

(b) f>. has an isolated singularity for all ,\ # o. 
In this case, th , ~ C).. will form a family of curves. We have that Co = EUroU.oo, 
where ro is the polar curve of f and .00 is the union of the branches whose ~­

image is the origin only (see 6.2.5). For,\ # 0, we can view C).. as a deformation 
of E, ro and .0,0 separately, so 

C).. = E).. u r).. U .0).., 

and as ,\ -+ 0, each of the parts ends up as a part of the same name. The 
images in (u, v)-space are: 8).. = ~)..(E)..), Ll).. = ~)..(r)..). We also assume: 

(c) For each'\, 8).. and Ll).. are one-dimensional, whereas ~)..(.o)..) = {(O,O)}. 

Hence E).. U r).. is the polar curve of f>.. Furthermore, we assume the following 
facts of the topology of 8).. and .:::h: 

(d) The topological type and the first Puiseux exponents of all branches of 
8).. are constant as ,\ # 0 varies. 

(e) The topological type and the first Puiseux exponents of all branches of 
Ll).. are constant as ,\ varies, including ,\ = O. 

In particular, the number of branches of the Cerf diagram of f>. and the sets 
p(f)..) are constant for ,\ # o. Furthermore, p(f) C p(f>.)j the 'new' polar ratios 
come from the branches of 8)... Recall E = EI U ... U Er is the decomposition 
.of E into irreducible components. We need a final assumption on the polar 
ratios arising from 8)... 
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(f) Suppose E; deforms into the curve E).,i. Let e).,; be its image under fJ>).. 
Then all branches of e).,; have the same first Puiseux exponent ();, and 
(); < 00. 

Recall that if we replace condition (a) by the stronger condition 

(a') x is admissible, i.e. liZ (x) has an isolated singularity, 

then the situation becomes easier since Q). is empty. 

(6.2.8) Remark Observe that p(g) = p(j)U {()t, ... ,()r}, but that we do not 
assume that all ()j are larger or equal to the largest polar ratio in p(j). We 
will return to this later. 

(6.2.9) Remark If we assume that I has only transversal Al singularities, 
then the behaviour of the curves C). is much less complicated than with arbi­
trary transversal singularities. 

(6.2.10) Example Let p(j,g) be the set of first Puiseux exponents of fJ>l(Ei) 
(1 ::; i ::; r), i.e. the images of the branches of the singular locus of I under 
the mapping fJ>l = (x, g). Our idea is that 

p(g) = p(j) U p(j,g), 

but also that that condition will imply a large part of the above. If that is the 
case, we would like to build a definition of polar series around condition (*) 
- or an improved version. In the following example, all assumptions (a) - (e) 
are satisfied. The example (d) is studied in [25J and [52J. In the other cases, 
note that the non-isolated singularity has only transversal Al singularities. 

(a) The A-series 
Consider I(x,y) = y2 and gN(X,y) = y2 + xN; then I is of type Ax> 
and gN of type AN- l . We have that p(j) is the empty set and P(gN) = 
P(j,gN) = {N}. 
Now we consider g(x, y) = y2 + 2xky + xN. It is easy to see that the 
function 9 is of type Amin{2k-l,N-l}. p(g) = {N}, whereas p(j,g) = 
{min{2k, N}}. This shows that for a definition of polar series, based on 
the behaviour of the polar ratios, we have to be very careful with the 
choice of equivalence relations and representatives thereof. 

(b) The W# -series 
Let I(x, y) = (y2 - x3)2 (wtoo) , and let g2q-l(X, y) = I(x, y) + x4+qy 
and g2q(X,y) = I(x,y) + X3+qy2. Then gp is of type wtp. We have 
p(j) = {6}, p(gp) = {6,6 + ~p} and p(j,gp) = {6 + ~p}. 
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(c) The T -series 
Let f(x, y, z) = xyz (type Too,oo,oo, the ordinary triple point), and define 
gp,q,,(x,y,z) = xyz+xP+yq+z' (type Tp,q,,) withp,q,r ~ 3. In this case 
we take e.g. l(x, y, z) = x + y + z (or change coordinates accordingly). 
The singular set of f consists of the three coordinate axes. We have 
p(J) = {3}, p(g) = {3,p,q,r} and ~(J,g) = {p,q,r}. If one of p, q and 
r is less than 3, the condition is not satisfied, although, of course, one 
can define Tp,q" whenever lip + l/q + llr < 1. This shows that we miss 
some initial members of what one would call the series of T 00,00,00 - a 
problem that arises as soon as one starts looking for a property that is 
shared by all members. 

( d) The U -series 
Let f(x,y,z) = y3 + yz2 - yx2k+! (type Uk,oo). Put g2,_1(X,y,Z} = 
f(x,y,z) + Z2Xk+q and g2q(X,y,z) = f(x,y,z) + zx2k+,+!. Now gpis of 
type Uk,p' Then E = {(t 2,0,t2k+!) It E C}. We get: p(J) = {(6k + 
3)/2}, p(gp) = {(6k+3)/2, (6k+3+p)/2} and ~(J,g) = {(6k+3+p)/2}. 

(e) Yomdin type series 
For Yomdin type series f + xN , one computes for N not less than the 
largest polar ratio of f, that p(J + xN ) = p(J) U {N} and ~(J, f + xN ) = 
{N}. So within a Yomdin series, condition (*) is satisfied, but we can 
see the gaps: Firstly, if the singular locus of f consists of more than one 
branch, we would expect a multi-parameter series as in (c). Secondly, if 
a branch of E has a multiplicity greater than 1, we would expect a finer 
series, cf. (b) and (d). 

(f) Another motivating example 
In Yomdin series, one usually assumes that N is at least as large as the 
maximal polar ratio. Otherwise the zeta-function formula (cf. [52]) is not 
valid. Here, we could demand that all ()i be not less than the maximum 
of the polar ratios in p(J). But take TuJJO,oo,oo' Almost nothing changes 
from Too,oo,oo, the polar ratios are now 3 and 1000. But it would be an 
enormous drawback to let q and r start from 1000 instead of 3. 

(6.2.11) We recall the definition of the Milnor fibration and the polar decom-
position from Le's viewpoint, cf. [21], [22], [24] and [26]. 

Let 6 be a Milnor radius, and Bo a (2n + 2)-ball in Cn+!. There exists 
'10> ° such that for ° < 'I < '10, f : Bo n f-l(D~) --+ D~ is a Coo fibration over 
D~ \ {O}. Consider q, = (x,J). It will be convenient to have our target space 
coordinates (u, v) in a polydisc D; x D~ where c > ° is appropriately chosen 
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and ", ~ c. Let B = Bo n {(X,Y1, ... ,Yn) Ilxl ~ c}. Then ~: B -+ D~ x D~ 
is also a fibration. Observe that ~-l(D~ x {",}) is the Milnor fibre of I . 
A=O 

v Ll 

~IP 
u 

O<A~l 

v 8>. 
,/ 

"' ,/ ", "' ,/ 

u 

A=l 
v 

~ 

", 

u 

We can choose 8, c and", such that they can be used for both I and g. Not for 
all intermediate A we have that F>. = ~A1(D; x {",}) is the Milnor fibre of J>.. 
However, it remains true that F>. can be constructed from the Milnor fibre of 
I>. I Z(x) by attaching n-cells as in Le's work, e.g. [22] (using the real valued 
function Ixl 2 on F>., which is singular in the intersection points with C>.). For 
A # 0 very small, the curves 8>. do not yet intersect the line v = ", within the 
polydisc. This is illustrated in the pictures above. 

(6.2.12) Let p(f) = {POl, ... , Pop} be the set of polar ratios of I and likewise 
p(J>.) = {Pn, .. . ,P1q} be the set of polar ratios of J>. (equal to the set of polar 
ratios of 9 = 11)' and assume that POl < ... < POp and Pn < .. . < P1s. The 
sequence (POl, ... , Pop) is a subsequence of (Pn, . .. , P1q). This holds because 
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of the conditions (a)-(f). 
Recall the definition of 0; (1 :::; i :::; r). The 0; are those P1j that arise from 

branches of 8;. Those branches have Puiseux expansions of the form 

v = a;('x)u9; + higher order terms. 

But since those branches tend to the u-axis as ,X -+ 0, the coefficients a;('x) will 
become extremely small- so small in fact that they dominaJe the picture. The 
absolute value of the x-coordinates of the intersection points of these branches 
with the line v = T'f will tend to infinity and therefore leave the 'visible' part 
where Ixl :::; c. 

Recall, that on E; \ {O}, we have a local system of transversal singularities: 
Take at any wEE; \ {O} the germ of a generic transversal section. This 
gives an isolated n - 1 dimensional singularity, whose Jl-constant class is well­
defined. We denote a typical Milnor fibre of this transversal singularity by 
Fr. The Milnor number of this singularity (the rank of Hn - 1(F[), the reduced 
homology group) is denoted by Jl~. 

(6.2.13) Lemma Let i E {I, ... , r}. Define d; = E[ed . Z(x). Then d;Jl~Oi is 
an integer. 

Proof. Observe that d;Jl~ = E; . Z(x). Choose a small ,x, then E>',i is a small 
perturbation of E; and d;Jl~ = E>.,; . Z(x). 

Let E>.,; be the curve into which E; is deformed. Write ct>(E>.,i) = 8>.,; = 
8>.,;,1 U··· U 8>.,;,k; and let E>.,;,j = ct>-1(8).,;,j)' All branches of 8>.,; (,x f:. 0) 
have first Puiseux exponent Oi. Since E>.,i is small perturbation of Ei, we have 

_k; 

diJl~ = Ei . Z(x) = E>.,; . Z(x) = E(E>.,;,j . Z(x)). 
j=1 

So if (1ij = E>.,;,j . Z(x) then d;Jl~ = Ej (1ij. 
Write Oi = q;fpi with gcd(pi' q;) = 1. By definition (and condition (f)) we 

have that 
8>. · " Z(v) O. - ,I,) 

1 - 8>. . " Z(u) 
,t,) 

for all j E {I, ... k;}, and if we compute this upstairs we get 

(). _ E>.,i,j· Z(f) _ Tij 
1 - E>. ... Z(x) - (1'" 

,I,) 'J 

It follows that qi(1;j = P;Tij, and summation over j gives Pi I q;diJl~. This proves 
the statement, since Pi and qi are relatively prime. 0 
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(6.2.14) Proposition The Euler characteristics of Fo and F1 are related by 

T 

x(Fd = X(F) + (-1t(Edil'~Oi). 
i=l 

Proof. We first establish that the Milnor fibres of the singularities 

are homeomorphic. Note that these singularities are often identical or isomor­
phic. We choose a small ~ such that (~, 17) is a regular value of all <P).. and 
therefore <PAl (~, 17) is the Milnor fibre of <P)... This is possible since the map 
(x,1>-.) : cn+1 X C -t C2 which depends also on A has Jacobi matrix 

( !ll + A£!e !ll + A£!e 'P) ax ax ay ay 
1 0 0' 

(where we took 1>-. = f + A'P for simplicity). It follows that the vectorfield 8/ 8A 
can be lifted when started from <Po1(~,17), and we conclude that all <PA1(~,17) 
are homeomorphic. 

The Milnor fibre of f).. arises from the Milnor fibre of (x, 1>-.) by attaching 
n-cells for each intersection point of F).. = 4>-1 (D~ x {17}) with the polar curve, 
counted with multiplicities. The number of intersection points depends on the 
polar ratios. 

For the Euler characteristic, it suffices to count cells for A = 1 and A = o. 
The cells are attached in the preimages of the intersection points of the line 
v = 17 with the Cerf diagram. Since ,10 and ,11 are connected by a topological 
trivial family ,1).. and r).. -t ,1).. is a branched covering, we see that X(F1 ) is 
the sum of X( F) and a part which comes from the intersection points of the 
8 i. That this gives rise to a total number of E dil'~Oi n-cells to be attached, 
can be seen by closer inspection of the proof of lemma 6.2.13. 0 

(6.2.15) Example We give some applications of the preceding formula, which 
show, that it is really stronger than existing formulae. 

- Yomdin series 
For Yomdin series f + hN we have that Oi = N for all i. We obtain the 
Le attaching formula 

X(F1 ) = X(F) + (-1t(E· Z(x)). 
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- The wt -series 
See Example 6.2.10 (b) for the definition of W1,p and its polar ratios. We 
have l = 1, d = 2, () = 6 + ~p. Furthermore X(F) = 2 - J.L(F) = 2 - 4 = 
-2 (see Appendix A). So 

X(F1) = -2 - 12 - P = 14 - p. 

This can be confirmed in Appendix A. 

- The singularities E6k+1 
Let J>.(x, y) = y3+ Ayx2k+1. The singularity 9 = 11 is oftype E6k+1. The 
polar curve of f>. consists only of E>. = Z(3y2 + Ax2k+1). It gives rise to 
the polar ratio () = (6k + 3)/2. Observe that d = 1 and that dO is not an 
integer. Of course J.L~ = 2. We obtain 

X(F1 ) = 3 - (6k + 3) = -6k, 

hence J.L(g) = 6k+1. Note that other methods, such as the one presented 
in section 6.4 do not include this example. 

6.3 The polar filtration and the zeta-function 
(6.3.1) We use the same notations as in the previous section. For A = 0 and 
A = 1 we can do the following, which is familiar from Li~'s work. Choose in D; 
concentric discs of increasing radii 

{O} = Doo C DOl C ... C Dol' = D; 

such that the intersection of all branches of the Cerf diagram Ll with first 
Puiseux exponent POi intersect D; x {7]} precisely in (DOi \ DO,i-1) x {7]}. 
Analogously, there are discs 

{O} = DlO C Dl1 C ... C D1q = D; 

for g instead of I. The reason that this is possible - after adjusting 7] if 
necessary - is that the Pij are increasing. However, the pictures above show 
that the level v = 7] is not good enough for smaller values of A. This is because 
the coefficients a( A) will dominate the situation (of course for very small 7]' it 
looks just as the level 7] in the case A = 1). 

Lifting these filtrations to the Milnor fibres Fo and F1 gives filtrations 

Foo C F01 C ... c Fop = Fo, 
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with FOi = q;-I(Doi ), and, analogously 

which are called the polar filtrations of f and g, respectively. 

(6.3.21 The following definitions and notations are taken from [52]. Con­
sider Hn-I(FJ). In 1.1.6 we already encountered the vertical and horizontal . - ~ monodromles on Hn-I(Fi ) : 

(a) The vertical monodromy A; : Hn-I(Fl) -t Hn-I(F!), which is the char­
acteristic mapping of the local system over the punctured disc Ei \ {o}. 

(b) The horizontal monodromy Ti : Hn-I(F!) -t Hn-I(FJ), which is the 
monodromy of the Milnor fibration of the isolated singularity of f re­
stricted to the transversal slice. 

The names horizontal and vertical arise from the Cerf diagram. Observe that 
A; and Ti commute, since they are defined on (Ei \ {o} ) x S~, which is homotopy 
equivalent to a torus. 

In Proposition 3.5.4, we encountered a formula for the zeta-function for 
topological series of plane curve singularities in terms of polar ratios. Our 
idea is, that this formula is valid in a much wider context. This leads to the 
following problem: 

(6.3.3) Problem Determine conditions for f and g as in the previous sec­
tion (probably involving the conditions (a}-(f}), such that the following holds: 
Suppose d/Ji is an integer for all i ~ r, then 

(g(t) = (j(t) . (g det(I _ td;8; AiTl;8;)) (_I)n+l 

(where di = Ered. Z(x)}. 

There are three stages of increasing difficulty in giving a full answer to the 
problem. 

The first stage is to restrict ourselves to functions f with only transversal 
Al singularities. That makes everything easier, since we can then assume that 
the number of branches of C),. remains constant. 

The second stage is to remove the restriction of transversal AI-singularities. 
This immediately leads to various difficulties. For example, at present it is not 
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clear to us which conditions we have to impose in order that the curves C).. 
evolve with time in a reasonable fashion. 

The third stage goes even beyond the statement of the problem: remove 
the condition that the diDi must be integers. For example, the E6k+1 case 
mentioned earlier is in this category, and we would like this case within our 
theory. Examples show, that in this case the transversal singularities split 
into singularities of lower Milnor number, and that powers of the local vertical 
monodromies come in. 

A strategy in attacking the problem is first to find out under which condi­
tions the following holds: 

(6.3.4) There is an embedding e : Fo --+ Fl from the Milnor fibration of f 
to the Milnor fibration of g, in such a way that e .. is a monomorphism which 
maps each Hn(Foi, FO,i-l) to the corresponding pair Hn(Flj, F1,j-d belonging 
to the same polar ratio. Furthermore, the monodromy of f on Hn(Foi, FO,i-l) 
equals the monodromy of 51 on Hn(Flj, F1,j-d. 

The polar filtrations and the embedding e will not 'commute'; in general, 
we will have only a relationship of the homology groups of consecutive pairs. 

If we look closely at the definition of the topological series of 3.2.3 using the 
alternative description of the Waldhausen decomposition of [26], which arises 
from the polar filtration, one sees that 6.3.4 is true for n = l. 

If one finds the right context where 6:3.4 is true, then 6.3.3 will follow 
without much effort. The conditions (a)-(f) are expected to fulfil a central 
role. The interest in these problems lies entirely in the promising prospects for 
a starting point for polar series. Indeed, as soon as 6.3.3 holds for a certain 
class of functions, one will have the possibility of introducing a particularly 
fine concept of series. 

6.4 Another formula for the zeta-function of f + A<P 

(6.4.1) The basic idea of the previous section started from the polar ratios 
within the series (but they alone are not enough). For Yomdin series f + AxN 
a central fact is that - in the notation of the last section - C).. remains fixed 
for all A, and the Cerf diagram of f can be mapped diffeomorphically onto the 
Cerf diagram of f + AxN using (u,v) t-+ (u,v + AUN) (d. [52]). 

If we look at our case g = f + ACP, we can get the same two properties if 
we look at the pair Q = (cp, J). In this pair, f is regarded as a fixed function 
with a one dimensional singular locus, whereas cp varies. Although this may be 
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further away from the series concept, we can prove a strong formula, analogous 
to 6.3.3. 

Observe that Q = (r,p,f) defines the same space as Q).. = (r,p,f + Ar,p) and 
also the same critical space C. The space C will in general not be a particularly 
nice space. Of course we will have to put some constraints on Q. 

We do not assume that Q is an isolated complete intersection singularity. 
As always, the Yomdin series should be encorporated within our theory. For a 
Yomdin series, Q = (xN , f) and the critical space C consists of the polar curve 
and the singular locus of f, as well as of the space Z(XN - 1), a non-reduced 
hyperplane. 

The methods are closely related to work of Siersma [52] and Nemethi [32]. 

(6.4.2) The map germ Q : (en+t,O) -t (e2 ,0) is assumed to be surjective. 
In the target space we use (u, v) as coordinates. We denote by D = Q( C) 
the discriminant space, which is one-dimensional with a possible O-dimensional 
embedded component at the origin. Let D = Dl U· .. U D 3 be its decomposition 
in irreducible components. It is always possible to stratify Q such that Q 
satisfies the Thorn conditions on the strata. In particular, between the strata 
upstairs and downstairs, Q is submersive. We may assume that we have chosen 
a representative of Q such that the strata downstairs are {O}, Ui=l(Di \ {O}) 
and e 2 \ D, cf. [23]. 

(6.4.3) Let E = El U ... U Er be the (one-dimensional) singular locus of f. 
In the sequel, we assume that r,p : (en+! , 0) -t (e,O) satisfies: 

(a) En Z(r,p) = {O}; 

(b) f + Ar,p has an isolated singularity for all A =1= 0; 

( c) Q = (r,p, f) is surjective; 

(d) the branches of D are either equal to the u-axis, the v-axis or tangent to 
the v-axis. 

It is possible that these conditions are too strong. In [52], the same conditions 
appear with r,p linear, although they are not presented in their utmost detail. 

In the critical set C, one can distinguish four kinds of subspaces: C"'=o = 
cnQ-l(Z(u)), Co = CnQ-l(O,O), CJ=o = Q-l(Z(V)) \ Co and r, the preim­
age of the branches of D tangent but unequal to the v-axis. The conditions 
imply 

C = CJ=o U Co U C"'=o U r 
(this is not the decomposition of C into irreducible components). 
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(6.4.4) Lemma Q maps each branch of E onto the u-axis, and no other parts 
ofG lie above it. I.e. Gf=o = E. 

Proof. Observe that r..p cannot be constant because of the first condition. A 
straightforward computation shows, that a curve in G with limit point in 
f-1(0) n r..p-1(0) lying above the u-axis but not in E must be contained in Go. 

o 

In many examples (see the end of this section) r is one-dimensional, 
whereas G<p=o is high dimensional (e.g. codimension 1). However, we do not 
demand anything of these dimensions (except of course of the dimension of 
E). 

The general picture of the discriminant space is the following: 

v Lh 

u 
V=TJ-U 

Observe that the preimage of v = TJ is the Milnor fibre of f. The preimage 
of v = TJ - AU is the Milnor fibre of f + Ar..p: in fact, if we consider both Q 
and Q>. = (r..p,J + Ar..p), then their discriminant spaces are diffeomorphic by an 
ambiant linear diffeomorphism 

h>.: (u,v) 1--+ (u,v + AU) 

which satisfies h>.Q = Q>.; and therefore it is indeed possible to view the Milnor 
fibre of f + Ar..p, the set Q~1({V = TJ}), as Q-1({v = TJ - AU}). 

Although, for instance, over the v-axis, Q is in general very singular, the 
general idea of [52J can be applied: using "rotation" of v = TJ we can compare 
the Milnor fibres of f and g by looking at the preimages of the intersection 
points of v = TJ - Au with the u-axis (which lie on the singular locus of f, E). 

(6.4.5) Lemma There is an embedding e : Fo -+ F1 from the Milnor fibre 
F = Fo of f into the Milnor fibre F1 of g. We have the exact sequence 

Hn(e(F)) is isomorphic to Hn(F) and, moreover, the geometric monodromy 
h f : Hn(F) -+ Hn(F) of f is equal to the restriction of the monodromy hg to 
Hn(e(F». 
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Proof. The proof of [52] extends to this case. 
As usual, our (u, v) coordinates are in a polydisc D~ X D~. Let Ll = Q(r) 

be the irreducible components of the discriminant D tangent but not equal to 
the v-axis. Choose a disc W c {v = O} such that the intersection point (0,77) 
of v = 77 - Au and the u-axis is outside W, but all the intersections of Ll with 
v = 77 are within W X {77}. This is possible since the branches of Ll can be 
written as v = au" + higer order terms, with a =1= 0 and a < 1 because of the 
fourth condition. (The proofs work also if a = 1.) 

With the help of the second isotopy lemma, we can lift the isotopy 

{v = 77} n (W X D~) ~ {v = 77 - AU} n (W X D~) 

where we regard A as a parameter, to obtain an embedding e : Fo ~ Fl. 
The mapping Q is a stratified submersion. Therefore we need not be.con­

cerned about the behaviour of Q above the v-axis and the origin, and we can 
use the isotopy to obtain a geometric monodromy on e(Fo). 0 

(6.4.6) We still have to cope with the remainder Fl \ e(Fo). Let Wl be a 
slightly larger disc (centred at the origin) than W. On D~ \ WI, we may 
assume that the monodromy of f we used in the proof above, has the identity 
as u-component. Indeed, the intersections of the discriminant with v = 77 are 
all inside W X {77}. We use W l \ W to glue them together. 

This geometric monodromy extends from (D~ \ WI) X S~ to (D~ \ Wl ) X D~. 

This gives a monodromy T of Q. 
For g, however, we have to take care of the intersection of {v = 77} and 

the extra line in the discriminant of Ql = (<p, f + <p); translated in terms of 
Q: the u-axis has exactly one intersection point with the line {v = 77 - u}, 
which is the image of Fl under Q. SO the u component of the monodromy of 
g is induced by a full rotation around the origin. Let S be the diffeomorphism 
F \ e(Fo) ~ F \ e(Fo) which integrates a lift of this rotation vector field. 

Now we can proceed exactly as in [52],p. 190, where it is proved that TS 
is the monodromy of Ii on Fl \ e(Fo). Again just as in [52] (p. 191), one proves: 

(6.4.7) Lemma Let ai be the topological covering degree of the branched cov­
ering Q : hi ~ {v = OJ. Then 

where Fl. j are the Milnor fibres of the local singularities of Q in the ai inter­

section points of Ei with the Milnor fibre of g = f + <po These Milnor fibres Ft.j 



88 Series of hypersurface singularities 

(1 ::; j ::; ai) can be identified with the typical Milnor fibre F[ of the transversal 
singularity along Ei \ {o}. . 0 

Observe that ai = Z('P) . Eted • 

Now consider the exact sequence of the pair (Ft, e(F)): 

0----+ Hn(e(F)) ----+ Hn(F1 ) ----+ Hn(Ft, e(F)) ----+ Hn_1 (e(F)) ----+ 0 

As in Siersma [52] and Nemethi [32], we establish that the characteristic poly­
nomial of hrel, the monodromy on Hn(Ft, e(F)), is: 

r 

II det(taiJ - AiTti ), 

;=1 

where A; and Ti are the vertical and horizontal monodromies, respectively. A 
consequence of this is the following formula for the zeta-function: 

(6.4.8) Theorem Suppose f and g = f + >''1' satisfy the conditions of this 
section, A; and Ti are the vertical and horizontal monodromies of f along the 
branch Ei of the one-dimensional singular locus of f, and a; = Z ('I') . Eired. 

Then 

For the Euler characteristics of the Milnor fibres of f and g, this formula reads: 
r 

X(Fg) = X(Ff ) + (-ltEaiJl~. 
;=1 

(6.4.9) Remark We observed earlier that Yomdin series f + x N left gaps, 
i.e. we could not always obtain Milnor numbers increasing with steps of 1. 
When we now vary 'I' in the pair ('1', J), the steps are smaller, but can still be 
'large'. For instance, if f has only transversal A2 singularities, Theorem 6.4.8 
shows that the Milnor numbers of f + >''1' can only increase by even numbers. 
Therefore it is no surprise that the case E6k+1 , where f(x, y) = y3 and 'P(x, y) = 
x 2k+1y is left out. Indeed, the pair (I, '1') does not satisfy the conditions. Yet 
the number of functions satisfying the conditions is considerable. 

(6.4.10) Example We finish by giving some examples. 

- The Yomdin series again 
We have 'I' = xN. The critical space of Q = (xN,J) consists of Z(XN- 1 ), 

E and the polar curve r with respect to the direction x. The condition 
that Ll be tangent to the v-axis implies that N > 0; for all i. We retrieve 
the meanwhile very familiar formula. 
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- The T-series 
Let f (x, y, x) = xy z and c.p = x p I p + yq I q + zr I r. Then the critical space 
of Q = (c.p, f) consists of E (the three coordinate axes) and r, a curve 
which can be parametrized by 

So Ll has parametrization 

u = (l/p + l/q + l/r)tpqr 

v = tpq+pr+qr 

hence the formula for the zeta-function holds whenever l/p+ 1/q+ 1/r < 
1 (even ::; 1). Since Ai is the identity and T = ( -1), we obtain 

since T 00,00,00 has trivial (-function. 

(6.4.11) Quasi-homogeneous singularities 
Let f be quasi-homogeneous of type (wo, ... , Wnj d) with a one-dimensional 
singular locus E = El U ... U Er • Suppose that the weights are normalized 
such that gcd( Wo, ... ,wn ) = 1. For a E {1, ... ,r}, we define 

In = {ilxi=OonEn }, 

In == {i I xd~ 0 on En}, 
kn = gcd{ Wj Ii E I n }. 

The following proposition was proved by Dimca [12], Proposition 3.19(i). 

(6.4.12) Proposition Suppose there exists a c.p E On+! such that f + c:c.p is 
isolated for some c: # 0 and which is quasi-homogeneous of the same quasi­
homogeneous type (Wj d). Suppose that (I, c.p) satisfies the conditions of this 
section, cf. 6 .. {3. Then 
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Proof It is well-known that if there exists an isolated quasi-homogeneous sin­
gularity of type (Wj d), it belongs to a unique Jl-class. Let 9 = f~~ denote a 
typical element of this class. According to 6.4.8, we have for 9: ' 

r 

Jl.(9) = Jl.(f) + E a"Jl~, 
,,=1 

where a" = E:OO· Z(cp) . Now cp consists of monomials amxm (written in multi­
index notation: m = (mo, ... , m n )). Not all of these monomials vanish entirely 
on E". Choose such a monomial amxm. Observe that for j E J" we have that 
E!ed. Xj = w;jk". So 

Since Jl.(f::'~) = TIi=o(d - Wi)/Wi (cf. [5]), this proves the formula. 0 

Theorem 6.4.8 also gives the zeta-function, so we can generalise the above 
Proposition. It is known that the spectrum of 9 = f~~~ is 

SPP(9) = E ca(a - 1, n), 
aEQ 

where Ca is found by writing out 

n t _ tw;fd 

II - " c t a 
. tWi/d _ 1 - L..t a , 
.=0 aEQ 

see [46], Example 5.2. We can therefore compute the zeta-function of f~e~ as 
in Remark 4.3.2. We know that a" = d/k", and according to a personal ~ote 
by Dimca, we have 

where Is" is the isotropy action, whose order is k", which is the action on 
Hn - 1 (F;) induced by multiplication by exp(27ri/k,,). If this action is known, 
then (j(t) can be computed explicitly. We have proved: 

(6.4.13) Proposition 

r 

(j(t) = (jreg(t) . II det(I - taaIs" )(_1)" 
WId 0'=1 

o 
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(6.4.14) Example Take f(x,y) = y4 + y2X3. Then Wo = 2, Wl = 3 and 
d = 12. We get that 

(1 - t l2 )2 

(f~(t) = (1 _ t6)(1 - t4)' 

Furthermore k = 2, I'~ = 1 (transversal type Ad and a = 6. Therefore 
det(I - taIs) = 1 + t6 • Hence 

This can be confirmed in Appendix A (Wl,co). 



APPENDIX A 

The EN-diagrams of the Arnol'd series 

In this appendix the EN-diagrams of the series of plane curve singularities 
listed in [5] are drawn. 

The first part consists of the exceptional families E., Wand Z .. We also 
give the Milnor number and the set of polar ratios. These examples belong to 
the topological series of y3, xy3 or y4. They are interesting, because some of 
them are not part of other descriptions of 'series'. 

The second part contains the infinite series A, D, J, W, W#, X, Yand 
Z. All variants are given. In the tables, we have that: 

(a) JL = the Milnor number; 

(b) No and the graph constant c are as in Theorem 3.3.2; 

( c) (00 is the zeta-function of the non-isolated head; the zeta-function of a 
member of the series can be obtained by multiplying with I_tN+c ( _l)N. 

(d) Poo is the set of polar ratios of the non-isolated head; the polar ratios of 
a member of the series can be computed using the formula in section 2.8, 
each branch of the singular locus gives a new polar ratio. 

In order to save space, we sometimes write '-' in the equations. This means 
that one has to prepend the equation with the equation of the corresponding 
head of the series. 
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Name Formula I' EN-diagram p(f) 

E61< y3 + z31:+1 6k r 3k+ 1 

E61o+! y3 + z21o+!y 6k+ 1 r 3k+ ~ 

E61o+2 y3 + Z31o+2 6k+2 r 3k+2 

W 1210 y4 + z41o+l 12k r 4k+ 1 

W I 21o+l y4 + yz31o+2 12k + 1 r 4k+ ~ 

WI21o+5 y4 + yz31:+2 12k+ 5 -r- 4k+ ~ 

WI21o+6 y4 + yz31o+3 12k+ 6 r 4k+3 

Z61o+!1 z(y3 + yz21:+3 + Z31o+4) 6k+ 11 r 4,3k+ 5 

Z61o+!2 z(ya + yz21:+3 + z31:+5) 6k+ 12 r 4,3k+ ¥ 

Z61o+13 z(y3 + yz21o+4 + z31o+5) 6k + 13 r 4,3k + 6 
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Name Formula J.l EN-diagram 

Aoo y2 1 
0 • • (2) (00 = 1- t2 

. 
Ao y 0 • • p~2,N=p+l, 

Al y2 + x2 1 • • No = 1, c = 0 

Ap y2 + xp+1 p f 1'00 = 0 

Doo xy2 1 • • (2) (00 = 1 

D4 xy2 + x3 4 --r p~ 5,N =p-2, 
No = 2,c= 1 

Dp xy3 + xp- I P f 1'00 = {3} 

Jk,oo y3 + xky2 3k-2 
1(2) 1 - t 3k 

(00 = 1- t3 

Jk,O y3 + xky+ x 3k 6k-2 + k~2,p~1,c=k 

N = p+2k, No = 2k 

Jk,p y3 + xky2 + x 3k+p 6k-2+p If 1'00 = {3k} 
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Name Formula I' EN-diagram 

Wk,oo y4 + y2x2H1 8k+l ~(2) (00 = 1 - t8k+4 

1- t4 

+ k~l,p~l, 

Wk,O - +x4k +2 12k+3 N =p+2k+ 1; 
))00 = {4k+2} 

Wk,p _ + x4k+2+p 12k+3+p ~ No = 2k + 1, 
c = 2k + 1 

W!.oo (y2 + x2H1)2 4k r(2) (00 = 1- t4H2 

1- t4 

rr k~l,q~l, 
W!.2Q_l _ + yx3k+1+Q 12k+2q+2 2 2 

c=o 

W!.2Q _ + y2x 2k+1+q 12k+2q+3 rl N = 8k + 2q + 3 
N' = 8k+2q+4 

Xoo y4 + x2y2 5 
-r(2) 

(00 = 1- t4 

X9 - +X4 9 + p~1O,N=p-7, 

No = 2,c = 2 

Xp _ +xHp - 9 P ~ ))00 = {4} 

" "- means: mclude equatIon of non-Isolated head of the serIes. 
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Name Formula I' EN-diagram 

Xh,oo y4 + xhy3 + x2hy2 8h-3 +", (1_t4h )2 
(00 = 1- t4 

--4< h? 2,p?1, 
Xh,O _ +x3h y 12h-3 N=p+2h, 

No = 2h,c = 2h 

Xh,p _ + x4h+p 12h-3+p +r Poo = {4h} 

Yoo,oo x2y2 4 
(2) • • (2) 

(00,00 = 1 

Yr,oo y4+r + x2y2 r+5 -r-(2) r,s? 1, 
Cl = C2 = 2 

Yr,. y4+r + x2y2 + x4+. 9+r+s 2 2 ff Poo = {4} 

Y!,oo 4h-2 (2)--Y-(2) 
h? 2; r,s?1 

12h - 3 
Yr~. See [5], p. 248 

+r+s --rrr-2 h 2 Poo = {4h} 

, 
" means: mclude equatIOn of non-ISolated head of the serIes. 
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Name Formula Jl EN-diagram 

Zk,oo zyS + zk+2y2 3k+5 
(2) 

(00 = 1 - t3 k+4 

+ k,p~ 1,e= k+2 
Zk,O _ + Z3kH 6k+9 N=p+2k+2, 

No = 2k +2 

Zk,p _ + z3kH+p 6k+9+p ~ Poo = {4,3k+4} 

11(2) (00 = 
Z;,oo Bh+3k-3 (1_t4h)(1_t4h+3k) 

1- t4 

I+-
h ~ 2, k,p~ 1, 

ZC,o See [5], p. 249 12h+6k-3 
N = p+2h+ 2k, 
No =2h+2k, 
e = 2h+k 

ZC,p See [5], p. 249 12h+6k-3+p ~ Poo = {4h,4h+3p} 

" -" means: include equation of non-isolated head of the series. 



References 

[1] N. A'Campo, Le groupe de monodromie du deploiement des singularites 
isolees de courbes planes I, Math. Annalen, 213 (1975), pp. 1-32. 

[2] N. A'Campo: La fonction zeta d'une monodromie, Comm. Math. Helv. 
50 (2) (1975), pp. 233-248. 

[3] V.1. Arnol'd: Local normal forms of functions, Invent. Math. 35 (1976), 
pp. 87-109. Also in Russian in Uspekhi Math. Nauk, tome XXX (5) (1975), 
pp.3-65. 

[4] V.1. Arnol'd: Critical Points of Functions on a Manifold with Boundary, 
the Simple Lie Groups B k , Ck , F4 and Singularities of Evolutes, Uspekhi 
Mat. Nauk 33 (5) (1978) pp. 91-105. 

[5] V.1. Arnol'd, S.M. Gusein-Sade, and A.N. Varchenko: Singularities of 
Differentiable Maps I, Birkhiiuser, 1985. 

[6] V.1. Arnol'd, S.M. Gusein-Sade, and A.N. Varchenko: Singularities of 
Differentiable Maps II, Birkhiiuser, 1988. 

[7] E. Brieskorn: Uber die A uflosung gewisser Singularitiiten von holomor­
phen Abbildungen, Math. Annalen 166 (1966), pp. 76-102. 

[8] E. Brieskorn and H. Knorrer: Ebene Algebraische /(urven, Birkhiiuser, 
1981. 

[9] R.-O. Buchweitz and G.-M. Greuel: The Milnor Number and Deforma­
tions of Complex Curve Singularities, Invent. Math., 58 (1980), pp. 241-
281. 

[10] P. Deligne: Le formalisme des cycles evanescents, SGA VIP, Springer 
LNM 340 (1973), pp. 82-115. 

[11] A. Dimca: Function germs defined on isolated hypersurface singularities, 
Compositio 53 (1984), pp. 245-258. 



References 99 

[12] A. Dimca: On the Milnor Fibration of Weighted Homogeneous Polyno­
mials, Compositio 76 (1990), pp. 19-47. 

[13] W. Ebeling: The Monodromy Groups of Isolated Singularities of Complete 
Intersections, Springer LNM 1293, 1987. 

[14] D. Eisenbud and W.D. Neumann: Three-Dimensional Link Theory and 
Invariants of Plane Curve Singularities, Annals of Mathematics Study 
110, Princeton U.P., 1985. 

[15] C.G. Gibson, K. Wirthmiiller, A.A. du Plessis and E.J.N. Looijenga: 
Topological Stability of Smooth Mappings, Springer LNM 552, 1976. 

[16] V.V. Goryunov: An Intersection Form of a Plane Isolated Line Singular­
ity, July 1989, to appear in the Proceedings of the Warwick Symposium 
on Singularities, 1989. 

[17] M.-C. Grima: La monodromie ne determine pas la topologie d'une hyper­
surface complexe, Fonctions de plusieurs variables complexes, Springer 
LNM 409, pp. 580-602, 1974. 

[18] F. Hirzebruch: The Topology of Normal Singularities of an Algebraic 
Surface, Seminaire Bourbaki, 15e annee 1962-1963, Fasc. 2, expose 250. 

[19] Th. de Jong: Some Classes of Line Singularities, Math. Zeit. 198 (1988), 
pp. 493-517. 

[20] Le D.T.: Sur un critere d'equisingularite, Comptes Rendus 272 (1971), 
pp. 138-140. 

[21] Le D.T.: Caleul du nombre de cycles evanouissants d'une hypersurface 
complexe, Ann. Inst. Fourier, Grenoble, 23 (4) (1973), pp. 261-270. 

[22] Le D.T.: La monodromie n'a pas de points fixes, J. Fac. Sci. Univ. Tokyo, 
Sec. lA, 22 (1975), pp. 409-427. 

[23] Le D.T.: Some Remarks on Relative Monodromy, Real and Complex Sin­
gularities ed. P. Holm, Sijthoff-Noordhoff, Alphen aan den Rijn, 1977, 
pp. 397-403 (,Oslo'). 

[24] Le D.T.: The geometry of the monodromy theorem, C.P. Ramanujam­
A Tribute, Studies in Mathematics 8, Tata Institute of Fundamental Re­
search, 1978, pp. 157-173. 

[25] Le D.T.: Ensembles analytiques complexes avec lieu singulier de dimen­
sion un (d'apres LN. Yomdin), Seminaire sur les singularitis, Publ. Math. 
Univ. Paris VII, 1980, pp. 87-95. 



100 References 

[26] Le D.T., F. Michel, C. Weber: Courbes polaires et topologie des courbes 
planes, Preprint July 1988; to appear in Ann. de l'Ec. Norm. Sup .. 

[27] Le Van Tanh and J.H.M. Steenbrink: Le spectre d'une singularite 
d'un germe de courbe plane, preprint Max Planck Institut, Bonn, 1988 
(MPI/88-3). 

[28] E.J.N. Looijenga: Isolated Singular Points on Complete Intersections, 
London Math. Soc. Led. Note Series 77, Cambridge, 1984. 

[29] D.B. Massey and D. Siersma: Deformation of Polar Methods, Preprint 
Utrecht no. 613, June 1990. 

[30] F. Michel and C. Weber: Sur Ie role de la monodromie enti(~re dans 
la topologie des singularites, Annales de l'Institut Fourier 36, 1(1986), 
pp. 183-218. 

[31] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Mathe­
matics Study 61, Princeton U.P., 1968. 

[32] A. Nemethi: The Milnor fiber and the zeta-function of the singularities 
of type f = P(h,g), Preprint INCREST, Bucharest, 1989, to appear in 
Compositio. 

[33] W.D. Neumann: A Calculus for Plumbing, Applied to the Topology of 
Complex Surface Singularities and Degenerating Complex Curves, Trans. 
A.M.S. 268 (1981), pp. 299-344. 

[34] W.D. Neumann: Invariants of Plane Curve Singularities, Noeuds, tresses 
et singularites, Monograph de l'Enseign. Math. no. 31, 1983, pp. 223-232. 

[35] W.D. Neumann: Splicing Algebraic Links, in Complex Analytic Singular­
ities, Advanced Studies in Pure Math. 8, 1986, pp. 349-36l. 

[36] R. Pellikaan: Hypersurface Singularities and Resolutions of Jacobi Mod­
ules, Thesis, Utrecht 1985. 

[37] R. Pellikaan: Finite Determinacy of Functions with Non-Isolated Singu­
larities, Proc. London Math. Soc. (3) 57 (1988) pp. 357-382. 

[38] R. Pellikaan: Deformations of Hypersurfaces with a One-Dimensional Sin­
gular Locus, preprint Vrije Universiteit Amsterdam 1987, to appear in 
Journal of Pure and Applied Algebra. 

[39] R. Pellikaan: Series of Isolated Singularities, Contemporary Mathematics 
90 (1989), Proceedings Iowa, ed. R. Randell. 



References 101 

[40] F. Pham: SingulariUs des courbes planes: Une introduction a la geometrie 
analytique complexe, Cours de 3e cycle, Faculte des Sciences de Paris, 
annee univ. 1969-1970. 

[41] D. Rolfsen: Knots and Links, Math. Lect. Series vol. 7, Publish or Perish, 
1976. 

[42] M. Saito: Vanishing Cycles and Mixed Hodge Modules, preprint IHES, 
August 1988. See also: On Steenbrink's Conjecture, preprint RIMS 710, 
Kyoto, August 1990. 

[43] R. Schrauwen: Topological Series of Isolated Plane Curve Singularities, 
preprint Utrecht no. 544, February 1989. 

[44] R. Schrauwen: Topological Series of Isolated Plane Curve Singularities, 
Enseignement Mathematique 36 (1990), pp. 115-141. 

[45] R. Schrauwen: Deformations and the Milnor Number of Non-Isolated 
Plane Curve Singularities, preprint Utrecht no. 574, July 1989, to appear 
in the Proceedings of the Warwick Symposium on Singularities, 1989. 

[46] R. Schrauwen, J.H.M. Steenbrink and J. Stevens: Spectml Pairs and the 
Topology of Curve Singularities, preprint Utrecht no. 596, October 1989. 
To appear in the Proceedings of the Symposium on Complex Geometry 
and Lie Theory, Sundance, 1989, ed. J. Carlson. 

[47] Th. Schulze-RObbecke: Algorithmen zur Aufliisung und Deformation von 
Singularitiiten ebener Kurven, Bonner Math. Schrift Nr. 96, Bonn 1977. 

[48] D. Siersma: Isolated Line Singularities Proc. Symp. Pure Maths 40 Vol. 2 
(1983), pp. 485-496. 

[49] D. Siersma: Singularities with Critical Locus a One-Dimensional Com­
plete Intersection and Transversal Type AI, Topology and its Applications 
27 (1987), pp. 51-73. 

[50] D. Siersma: Hypersurfaces with Singular Locus a Plane Curve and 
Transversal Type AI, Proc. Warsaw Semester on Singularities, Banach 
Center Publ. 20, PWN-Polish Scientific Publ., Warsaw 1988, pp. 397-
410. 

[51] D. Siersma: Variation Mappings on 1-Isolated Singularities, preprint 
Utrecht no. 582, September 1989, to appear in Topology. 

[52] D. Siersma: The Monodromy of a Series of Singularities, Comm. Math. 
He/v. 65 (1990), pp. 181-197. 

[53] E.H. Spanier: Algebmic Topology, New York etc., McGraw-Hill, 1966. 



102 References 

[54] J.H.M. Steenbrink: Mixed Hodge Structures on the Vanishing Cohomol­
ogy, Real and Complex Singularities, ed. P. Holm, Sijthoff-Noordhoff, 
Alphen aan den Rijn, 1977, pp. 525-563 (,Oslo'). 

[55] J.H.M. Steenbrink: Mixed Hodge Structures Associated With Isolated 
Singularities, Proc. Symp. Pure Math . 40 Vol. 2 (1983), pp. 513-536. 

[56] J.H.M. Steen brink: The Spectrum of Hypersurface Singularities, Thiorie 
de Hodge, Luminy Juin 1987, Asterisque, 179-180 (1989), pp. 163-184. 

[57] J.H.M. Steenbrink and S. Zucker: Polar curves, resolution of singularities, 
and the filtered mixed Hodge structure on the vanishing cohomology, in 
Singularities, Representations of Algebras, and Vector Bundels (Proceed­
ings Lambrecht 1985), Springer LNM 1273, pp. 178-202, 1987. 

[58] J. Stevens: Series, private communication. 

[59] B. Teissier: Introduction to equisingularity problems, Proc. Symp. Pure 
Maths 29 (1975). 

[60] B. Teissier: Varietes Polaires 1. Invariants polaires des singularites d'hy­
persurfaces, Invent. Math. 40 (1977), pp. 267-292. 

[61] C.T.C. Wall: Notes on the Classification of Singularities, Proc. L.M.S. 48 
(1984), pp. 461-513. 

[62] C. Weber: A Topological Interpretation for the Polar Quotients of an 
Algebraic Plane Curve Singularity, preprint Geneve, August 1987. 

[63] LN. Yomdin, Complex surfaces with a I-dimensional set of singularities, 
Sibirian Math. J. 15 (5) (1974), pp. 1061-1082. 

[64] O. Zariski: Le probleme des modules pour les branches planes, with an 
appendix by B. Teissier, Hermann, Paris, 1986. 



Index 

admissible .................... 75 polar 
algebraicity condition ......... 12 curve .................... 21, 74 
branches ....................... 3 ratio .................... 21, 75 
cable .......................... 4 Puiseux expansion ............. 6 
Cerf diagram .............. 21, 74 quasi-homogeneous ............ 89 
co dimension .................. 54 resolution graph .............. 20 
D[p 1 . ,q -pomt .................. 53 rupture point ................. 20 
deformation ............... 57, 58 Seifert form ............... 43,45 

making p-parts smooth ...... 58 series .................. 23, 26, 73 
network map ................ 57 spectrum within ............ 50 

dot ............................ 9 polar ....................... 77 

equivalence topological .................. 26 

analytical .................... 3 Yomdin .......... 24, 78, 82, 89 

topological ................... 4 zeta-function within ......... 31 

iI(J) ......................... 54 
link, algebraic .................. 4 
linking number ................ 14 
Milnor 

signature ..................... 43 
singularity, plane curve .........3 
spectral pairs ............. .. .. 40 
spectrum ..................... 40 

fibration ..................... 4 within series ................ 50 

number ...................... 4 formula ..................... 42 

monodromy .................... 4 
horizontal ................ 5, 83 
vertical ................... 5, 83 

morsifications ................. 68 
splicing of ................... 69 

multilink ....................... 4 
node ........................... 9 

splice formula ............... 48 
splice condition ............... 12 
splice decomposition .......... 13 
splicing ....................... 10 
zeta-function .............. 17, 88 

and polar ratios ............. 83 
within series ............. 31, 88 



Dankwoord 

Op deze plaats wil ik enkelen bedanken die direct of indirect van invloed zijn 
geweest op dit proefschrift. 

In de eerste plaats wil ik mijn promotor, Dirk Siersma, bedanken voor de 
bijzonder plezierige samenwerking en voor zijn ideeen en suggesties. 

De inbreng van Jan Stevens mag niet vergeten worden. Met zijn opmerkingen 
wist hij altijd precies de kern van de zaak eruit te lichten en indien nodig had 
hij een opbeurend woord paraat. Ook Jozef Steenbrink wil ik bedanken voor 
de leerzame samenwerking, in het bijzonder tijdens de preparatie van [SSS]. 

Ik heb altijd uitermate graag mijn onderwijstaken vervuld. Vaak werkte ik 
met dezelfde collega's samen. Ik denk in het bijzonder aan Piet Lemmens; het 
was een groot genoegen drie jaar lang met hem de Topologie te verzorgen. 

Met mijn voormalige kamergenoten van kamer 521, Arno Kuijlaars en Frans 
van Gool, had ik een aantal zeer gezellige jaren. Ret was altijd leuk om met 
hep. over diverse onderwerpen van gedachten te wisselen of samen iets uit te 
zoeken. De beschikbaarstelling van de hop door Andre de Meijer heb ik in 
hoge mate gewaardeerd. 

Tenslotte wil ik mijn ouders bedanken, die mij altijd - niet in de laatste plaats 
financieel - gesteund hebben. 



Samenvatting in het Nederlands 

Series van singulariteiten zijn altijd een inspiratiebron geweest voor het on­
derzoek in de singulariteitentheorie. Niet dat er een definitie is van 'series', 
maar ze bestaan ontegenzeggelijk (Arnol'd schrijft: 'series undoubtably exist'). 
In dit proefschrift verhelderen we het begrip serie door voornamelijk naar de 
topologische aspecten te kijken. 

We beschouwen kiemen van holomorfe functies J : (CnH , 0) --t (C, 0). Dat 
wil zeggen: we bekijken holomorfe functies met J(O) = 0 en we beschouwen ze 
gelijk als ze overeenstemmen op een kleine omgeving van o. Waar de gradient 
van zo'n functie verdwijnt, zit een singulier punt. Als aIleen de oorsprong 
singulier is, dan spreken we over een geisoleerde singulariteit. 

Om te beginnen bekijken we het geval n = 1. In dat geval definieert J een 
vlakke kromme X = J- 1 (0). Als we X doorsnijden met een klein 3-sfeertje, 
dan ontstaat er een schakel I<, waarvan de samenhangscomponenten precies 
overeenkomen met de priemfactoren van J. Ret complement van de schakel 
is gevezeld (met de cirkel als basisruimte) door de afbeelding J IIJI. Deze 
vezeling heet de Milnorvezeling. Ret is een van de belangrijkste invarianten 
van een singulariteit. In Roofdstuk 1 wordt gememoreerd hoe men de schakel 
kan construeren en noteren door middel van een graaf, het zogenaamde EN­
diagram (uitgevonden door Eisenbud en Neumann [14]). In Roofdstuk 2 laten 
we zien hoe diverse topologische invarianten uit het EN-diagram zijn af te 
leiden. 

In Roofdstuk 3 bekijken we series van vlakke krommen. Een eenvoudig 
voorbeeld hiervan bestaat uit de functies xy2 + x p- 1, door Arnol'd aangeduid 
met Dp. Intuilief is duidelijk dat deze singulariteiten bij elkaar horen, en 
dat aan het 'hoofd' ervan de functie xy2 staat (die de naam Doo heeft gekre­
gen). Deze laatste functie heeft een niet-geisoleerde singulariteit. We kunnen 
laten zien, dat de Milnorvezeling van een element van de serie ontstaat uit 
die van Doo door een omgeving van de singuliere locus weg te snijden en iets 
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terug te plakken op zo'n manier dat het resultaat de Milnorvezeling is van een 
geisoleerde singulariteit. Met. dit idee kunnen we topologische series definieren. 
Zij voldoen aan de eigenschappen die we van de topologie van Arnol'ds series 
gewend zijn. Nadat we de definitie van topologische serie hebben gepresen­
teerd, laten we zien hoe verschillende bekende invarianten zich gedragen bin­
nen de serie. Dit geeft ook een verband tussen het niet-geisoleerde 'hoofd' van 
de serie en de rest: in het algemeen zijn geisoleerde singulariteiten namelijk 
goed beschreven en niet-geisoleerde niet. 

Vele topologische invarianten hebben te maken met de monodromie van de 
Milnorvezeling. In Hoofdstuk 3 wordt bijvoorbeeld de zeta-functie van de mo­
nodromie berekend. Een stap verder is het spectrum, gedefinieerd door Arnol'd 
en Steenbrink. In Hoofdstuk 4 kijken we naar het spectrum binnen een serie, 
maar hiervoor moeten we eerst enkele algemene resultaten afieiden. Interes­
sant is dat deze stellingen te maken hebben met voormalige vermoedens over 
het spectrum en over signaturen en Seifertvormen. Dit was aanleiding deze re­
sultaten op te nemen in gezamenlijk werk met J. Steenbrink en J. Stevens [46]. 

Een van de mooiste artikelen over vlakke krommen is weI het artikel van 
A'Campo [1], dat een methode geeft om het Dynkin-diagram van de inter­
sectievorm op de Milnorvezel uit te rekenen. Helaas is deze methode alleen 
voor geisoleerde singularititeiten van toepassing. Om het voor niet-geisoleerde 
singularititeiten en series geschikt te maken, is in ieder geval een goede de­
formatietheorie nodig. In Hoofdstuk 5 wordt de deformatietheorie van vlakke 
krommen volledig beschreven. Dit bouwt voort op werk van Pellikaan. Aan 
het eind wordt aangestipt wat men hiermee kan bereiken op het gebied van de 
Dynkin-diagrammen. 

In Hoofdstuk 6 tenslotte verlaten we het terrein van de vlakke krommen 
en bestuderen series van hyperoppervlakken (n ~ 1). We nemen aan dat de 
niet-geisoleerde singulariteit nog steeds een een-dimensionale singuliere locus 
bezit. De zaak ligt hier direct veel ingewikkelder. Een resultaat om naar te 
streven is een generalisatie van de formule voor de zeta-functie. We bieden 
twee methoden aan. De eerste is vooralsnog alleen gel dig op het niveau van de 
Euler-karakteristiek. De tweede werkt goed, maar voor ons gevoel voldoen niet 
genoeg functies aan de voorwaarden. Het idee is, dat een preciese beschrijving 
van de functies waarvoor de eerste methode werkt, de weg kan openen naar 
een definitie van series van hyperoppervlakken. 
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The cover shows front views of London Underground rolling stock. The front 
cover features 'tube-stock', running on the deep tube lines. We chose from the large 
number of such series the ones called 1938-stock and 1983-stock. The back cover 
shows examples of stock running on the 'surface lines', where series (like singularities) 
are denoted by letters (in this case A-stock and D-stock). See also page 71. 
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