Series of Singularities
and Their Topology

Rob Schrauwen




Series of Singularities
and Their Topology

Series van Singulariteiten
en Hun Topologie

(Met een samenvatting in het Nederlands)

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN
DE RIJKSUNIVERSITEIT TE UTRECHT OP GEZAG VAN DE
REcTOR MAGNIFICUS, PROF. DR. J.A. vAN GINKEL,
INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP MAAN-
DAG 11 FEBRUARI 1991 DES NAMIDDAGS TE 4:15 UUR

DOOR

ROBERT SCHRAUWEN

GEBOREN OP 20 MEI 1964 TE ROTTERDAM



PrROMOTOR: PROF. DR. D. SIERSMA

FACULTEIT DER WISKUNDE EN INFORMATICA



Contents

Introduction 1

1 An introduction to the topology of plane curve singularities 3

1.1 Fundamental preliminaries . . . . . ... ... ... .. ..... 3
1.2 The EN-diagram of a plane curve singularity . . . . . ... ... 6
1.3 Splicing . . . . . . e 10
2 Computations around the EN-diagram 14
2.1 Computing the linking number . . ... ... ... .. ..... 14
2.2 Multiplicities of dots and nodes . . . . .. .. ... 14
2.3 Characteristic polynomials . . . . . ... ... .......... 15
2.4 The zeta-function of the monodromy . . . ... ... ... ... 17
2.5 The multi-variable Alexander polynomial . . . . ... ... ... 17
2.6 Zariski’s numbers and the multiplicity sequence . . .. .. ... 18
2.7 The EN-diagram vs. the resolution graph . . . . . ... .. ... 20
2.8 The polar ratios of a plane curve singularity . . .. .. .. ... 21
3 Topological series of plane curve singularities 23
il Introduehion o i ¢ ¢ £ 2 8 ks b p e s 5 n o m n 23
3.2 The definition of topological series . . . . ... ... ....... 25
3.3 The case of a double component . . . . .. ... ......... 26
34 Higheramalipliciliel - v e s v sm@ees s pd@ BB o g & 29
3.5 The zeta-function within aseries . ... ... .......... 31
3.6 Topological series and the resolution . . . .. ... ... .... 34
3.7 Curvesin otherspaces . . ... .. ... ............. 35
4 Splicing spectra 38
4.1 Introduction . . . . .. .. ... ... .. 38

4.2 Spectral pairs . . . . . .. ..o 39



4.3 A formula for the spectral pairs . . . ... ...
4.4 Spectral pairs and the real Seifert form . . . . .
4.5 A splice formula for spectral pairs . . . .. ...
4.6 The counterexample to the Spectrum Conjecture
4.7 The spectral pairs within a topological series . .

5 Deformations of plane curves singularities

5.1 Introduction . . . . . . . . . . . e e
5.2 Invariants . . . . . . . . . i e e e e e e e e e e
5.3 Deformations . . . . . . . .. e e e e e

5.4 Dlp, q]-points and the Milnor number . . . . . .
5.5 Splicing of real morsifications . . . . ... ...

6 Series of hypersurface singularities
6.1 Introduction ., . ..+ v v v v nvwn a0
6.2 Polarseries .. ..................
6.3 The polar filtration and the zeta-function . . . .
6.4 Another formula for the zeta-function of f + A

A The EN-diagrams of the Arnol’d series
References

Index

Dankwoord

Samenvatting in het Nederlands

Curriculum Vitae

73
73
T4
32
84

92
98
103
104
105

107



Introduction

All functions are in the series of the zero function.
—Jan Stevens / Duco van Straten.

Series of singularities have always been a source of inspiration for research
in singularity theory. Although there is no definition of ‘series’, they “un-
doubtably exist” (writes Arnol’d). The subject of this thesis is to look at the
concept of series from a topological point of view.

We consider germs of holomorphic functions f : (C"*',0) — (C,0), i.e.
functions with f(0) = 0 which are considered to be equal if they coincide on
a small neighbourhood of the origin. The points where all partial derivatives
vanish are called the singular points. If f is singular only at the origin, then
f is said to have an isolated singularity.

In the largest part of this thesis we consider the case that n = 1, i.e.
plane curve singularities. The function f defines an analytic set X = f~1(0),
whose intersection with a small 3-sphere is a link. The components of this link
correspond to the factors in the prime decomposition of f. Its complement is
fibred (with the circle as base space) by the mapping f/|f]. This fibration,
which is called the Milnor fibration, is one of the most important invariants of
a singularity. In Chapter 1 we recall how to construct the link and we use EN-
diagrams (defined by Eisenbud and Neumann) to denote a link. In Chapter 2,
we show how to compute various topological invariants from the EN-diagram.

Except for some minor lemmas, these two Chapters contain known results.
The remainder of this thesis is devoted to the following subjects:

- Qur definition of topological series of plane curve singularities and the
behaviour of topological invariants within such a series (Chapter 3);

— A splice formula for spectra and the relationship between the spectrum,
the Seifert form and the signatures (Chapter 4);



2 ' Introduction

— Deformation theory of plane curve singularities (Chapter 5);
- Results about series of hypersurface singularities (Chapter 6).

The contents of Chapter 3 were first published in [44], Chapter 4 is part of
joint work with J. Steenbrink and J. Stevens [SSS) ([46]), and Chapter 5 is also
to appear [45].

A simple example of -a topological series consists of the functions zy? 4271,
called D, by Arnol’d. It is intuitively clear that they fit into a series, and that
the non-isolated singularity zy? is the ‘head’ of this series (it received the
name Do,). We show, that the Milnor fibration of a member of the series
results from the Milnor fibration of D, by removing a tubular neighbourhood
of the singular locus and to glue something back in such a way that the result
is the Milnor fibration of the isolated singularity. Using this idea, we define

- topological series. They satlsfy all the familiar topological properties that we
are used to from the Arnol’d examples, so the definition is very satisfactory.
We also compute several invariants and investigate how they behave within
the series. This may give in return information of the non-isolated singularity.

Many topological invariants arise from the monodromy on the Milnor fi-
bre. A step further is the spectrum, defined by Arnol’d and Steenbrink. In
Chapter 4 we study the spectrum within a series, but we need to prove some
general results about the spectrum first. Interestingly, these theorems can be
used to disprove former conjectures (as was done first in [46]).

A very beautiful paper in the theory of plane curve singularities is A’Cam-
po’s paper [1]. It gives a method to construct a Dynkin diagram of the inter-
section form on the Milnor fibre. Unfortunately, this method does not apply
to the case of non-isolated singularities. In order to generalize, we need in
any case deformation theory. In Chapter 5 the deformation theory of plane
curve singularities is completely dealt with, using theory developed by R. Pel-
likaan. At the end we indicate what we can do with it on the subject of Dynkin
diagrams.

Finally, in Chapter 6 we look at series of hypersurfaces (n > 1), the non-
isolated singularity still has to have a one-dimensional singular locus. A first
test case is the generalization of the formula for the zeta-function. We give
two methods. At present, the first results only in a formula on the level of the
Euler characteristic. The second gives a good formula for the zeta-function,
which is stronger than existing formulae. Still, we feel that if such a formula
were to be used as basis for a concept of series of hypersurface singularities,
even more functions should be part of the theory and the (uncompleted) first
formula might be a good approach.



CHAPTER 1 -
An introduction to the topology of plane
curve singularities

1.1 Fundamental preliminaries

(1.1.1) A plane curve singularity is for us a germ of an analytic space (X, 0)
in (C?%,0) defined by the vanishing of a non-zero analytic function germ f :
(C2%,0) — (C,0). In practice, we will not distinguish very carefully between
a curve and its equation, and a germ and a representative. It will be clear
from the context what is meant. We identify the ring O of germs of analytic .
functions with C{z,y}, the ring of convergent power series in the variables z
and y. This ring is factorial, so we can decompose f into irreducible factors:

f=f"--- fr«. We write
X=m1X1U---Um,X,,

where X; = f7(0). The curves X; are called the branches of X.

A singular point is a point where all partial derivatives of f vanish. The
germ f has an isolated singularity if the origin is its only singular point. Ob-
serve that it is the case if and only if f is reduced, i.e. my = --- =m, = 1.

Two singularities f, g are called analytically equivalent if the rings O/(f)
and O/(g) are isomorphic. If f is smooth (which means that it has no singular
points) then f is still called a singularity.

(1.1.2) From a topological viewpoint, the space X = f~1(0) is not very
interesting (it is contractable). But if we look at the pair (B.,X) where
B. = {z € C? | |z| < €} is a small ball, the situation is different and leads to
a connection with knot theory. One can show that the pair (B, X) is a cone
over (53, X N S32), where the 3-sphere S2 is the boundary of B.. Since X is real
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2-dimensional, the intersection K, = X' NS2? is 1-dimensional. Therefore it is a
link in S3. Milnor [31] showed, that there is an €5 > 0 such that for 0 < € < &9
the topological type of (S3, K.) is constant, and it is called the topological
type of f. Topological equivalence is really weaker than analytical equiva-
lence, see for instance the two remarkable examples in [8], pp. 590-591 (one of
a topological type admitting only two analytical types, and one admitting an
uncountable number of them).

If a link is the link of a plane curve singularity, it is called an algebraic link.

If f=f™ ... fm then K = K, has s connected components K; = f7!(0)N
S3. In particular, if f is irreducible, K is a knot. It is natural to assign to each
component K; the multiplicity m;. In this way, K becomes a multilink, and
we write: K = miK; 4+ --+ 4+ m,K,. These multiplicities become meaningful
when we look at the exterior of the link K, as we will see later on.

(1.1.3) We now consider the ezterior of a link, i.e. the complement of a small
tubular open neighbourhood N(L) of L in S2. Contrary to the complement
of the link, this is a compact 3-manifold with boundary. In knot theory, the
link exterior is always a rich source of invariants, in particular if it is fibred.
For algebraic links, this is always the case: in [31], Milnor showed that f/|f] :
S3 — St is a C>-fibration.

Often the following, equivalent, fibration is easier to work with. This time f
itself is used instead of f/|f|. Choose a Milnor radius ¢ for f. Then there exists
an 7o such that for all positive 5 < 5o the mapping f : B. N f~1(D,) — D,,
where D,, is the disc of radius 5, is a fibration above D, \ {0}, equivalent to
the previous fibration, see [31).

Both fibrations rejoice in the name of Milnor fibration, and a typical fibre
of either fibration is called the Milnor fibre. Let F be the Milnor fibre of f.
It is a surface consisting of d = ged(my,...,m,) connected components. The
rank of Hy(F) is p(f), the Milnor number of f.

Looping once around the circle S induces a diffeomorphism A : F' — F|
which is called the (geometric) monodromyof the Milnor fibration; the induced
action on the homology the algebraic monodromy.

If f is an isolated singularity, then the boundary of F' is isotopic to K
and F' can be regarded as a Seifert surface for K. If f is non-isolated, then
the boundary of F consists of cables around the components of K. It is
here that the multilink structure of K becomes visible, K; is approached from
m; directions. In order to be more precise, we first give the definition of
a (p,q)-cable around a knot S. Choose standard longitude L and meridian

M of dN(S), the boundary of a small tubular neighbourhood of S. This
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means that L and M are representatives of generators of H;(ON(S)) satisfying
Lk(L,M) =1, Lk(L,S) =0, L ~ S in H1(N(S)) and M ~ 0 in H,(N(S5)).
Here Lk denotes linking number in S®. Now a (p, ¢)-cable consists of gcd(p, q)
simply closed curves on dN(S) whose sum is homologous to pL + ¢M. These
definitions are up to isotopy. The following is proved in [14].

(1.1.4) Lemma Let ¢; (1 < ¢ < s) be the linking number of K; with the
other components (counted with their multiplicities) i.e. ¢; = ¥ ;4 m;K;. Then
FNAN(K;) C 9F is an (m;,—c;)-cable on K;. m]

(1.1.5) Remark

(a) It is useful to recall that the linking number of two different compo-
nents of K equals the algebraic intersection number of the corresponding

branches of f, i.e. Lk(K;, K;) = dimc O/(f;, f;)-

(b) In a multilink K = m; Ky + --- + m,K,, we allow the possibility that
one of the components, say K;, has multiplicity m; = 0. In that case,
the Milnor fibre F' is the Milnor fibre of myK3 + -+ - + m K, minus the
intersection points of K; with F' (K intersects F' transversally). Observe
that this is consistent with lemma 1.1.4.

(1.1.6) Suppose that f = f{"'--- f™« is non-isolated, and that the singular
locusis ¥ = Ly U---UX, r <s. Let1 <i<r. Inpointsof X;\ {0},
the intersection with a transversal plane gives a well-defined transversal (zero-
dimensional) singularity. It is clear that it can be described in local coordinates
by g(z) = 2™, a singularity of type Ap,—1. We can identify two monodromies,
which will play a role later on. The first is called the horizontal monodromy,
which is the Milnor monodromy of g. This is just a cyclic permutation of the m;
points that make up the transversal Milnor fibre F!. The second monodromy,
the vertical monodromy, results from the local system on X;\ {0}: Looping once
around 0 € X; induces another diffeomorphism of F?. The names horizontal
and vertical were first used by Steenbrink and will become more clear in 6.3.2.
Denote the actions of the horizontal and vertical monodromies on Hy(F?) by T;
and A;, respectively. Then we have the following result, familiar from the cases
of homogeneous singularities (cf. [56]) and quasi-homogeneous singularities

(cf. [29)):

(1.1.7) Lemma The horizontal and vertical monodromies A; and T; (1 <
i < 1) of a plane curve singularity X are related by A; = T, %, where ¢; =
Xi - (Ujgi mi X;).
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Proof. Regard F} as situated on F' N N(K;), the connected components of
the boundary of F' near K;. We can easily see that the complete trajectory
of F? which results from looping around 0 is isotopic to the complete link
F N AN(K;), which is an (m;, —c;)-cable by lemma 1.1.4. ]

1.2 The EN-diagram of a plane curve singularity

(1.2.1) If f € O = C{z,y} is irreducible, we can parametrize the curve
X = f~1(0) by means of the famous Puiseuz ezpansions:

2=t y=Y &t
i>n
with n = mult(f) and y(t) € C{t}, provided that z and y are chosen in such
a way that f is not tangent to the y-axis. Written in a more classical way:

y = Z C,‘-T‘./n,

expressing y as a fractional power series in z. This follows from Puiseux’s The-
orem, see [8] or [40]. These parametrizations can be found from the equation
of f using Newton diagrams, which is explained in [8]. But it is also possible
to resolve the singularities of f in order to find the parametrizations. We can
rewrite the last expression in the following way:

y= qulm(al + xqz/mpz(az +. ) - .)7

with ged(pi,q;) = 1. The characteristic pairs or Puiseuz pairs of f are the
couples (p;,q;) with p; # 1. It is well-known that only these characteristic
pairs are important for the topology, cf. [8]. Observe that there is only a finite
number g of p; unequal to 1.

For the moment, we suppose that the Puiseux expansion contains only
characteristic terms, hence p; > 1 for all : < g. Then pyp;---p;, = n, the
multiplicity of the curve at the origin. We can now describe the knot K of
the branch X. A more detailed treatment can be found in [14], Appendix
to Chapter I. For this purpose we can replace S? by a “square sphere” R =
{(z,y) € C? | (J]z] = € and |y| < €) or (|z] < € and |y| = €)}. By a suitable
coordinate change, we can arrange that X intersects R only where |z| = ¢ and
ly] < €. Let us consider the branch X with Puiseux pairs (p1,q1), ..., (P, 95),
i.e. with Puiseux expansion

y = z0/P (a1 + a:’”/p‘p’(az + oo 4 gl9-1/P1Pe1 (ag-1 + agwqg/m---pg) ee4)).



1.2 The EN-diagram of a plane curve singularity 7

Now |z| = ¢ is small, so y = a;2%/?1 is even smaller. In “zeroth” approximation
we can even think it vanishes completely (which results in the unknot K°),
but looking more closely we find that when z traverses the circle {z | |z| = &}
p; times, y circles ¢; times around the origin. So the first approximation K!
of K is a (p1,q1)-torus knot K. It is not hard to imagine that the next stage,
y = z%/P1(a; + a;z0/m72) is a cable K, around this (p;,q:) torus knot. In
general, K* is an (a;, ¢;)-cable around K*~!, where q; is defined by

01 = p1, Q41 = gi1 + PiPiv19y, (%)

see [14], p. 51. The auxiliary knots K?,... K971 used in this approximation
to find K = K9, are intrinsic parts of the topology of K. They are called the
virtual components of K. Incidently, if we had non-characteristic terms in our
original expansion, this would result in some extra “wobbling” of the knot, not
in extra entangling.

We put this information together in a weighted graph that we will call the
EN-diagram of K, after Eisenbud and Neumann who developed these graphs
in [14]. In such a diagram, an arrow indicates a component of the link. The
EN-diagram of the knot K above is:

o3 1 ozl < gl
P1 P2 [Pg

The following proposition ([14], Proposition 9.1) may help understanding the
EN-diagram.

(1.2.2) Proposition Let p, q be posilive integers with no common factor and
let d > 0. Let I' be the EN-diagram of a link L with distinguished component
S (the arrow in the first picture below):

Denote by dS(p,q) the union of d (p,q)-cables around S (a (p,q)-cable was
defined in 1.1.3). Then the links L U dS(p,q) and L UdS(p,q) \ S have EN-
diagrams as in the second and third picture, respectively. In the second picture,
the arrow pointing downwards now indicates the component S; in the third
picture, the dot signifies that S has been deleted and now belongs to the virtual
components. ]

Special cases are the unknot 0; (the link of a smooth function), which gets
EN-diagram e—, and the link with two unknotted components with linking
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number 1 (the link of an ordinary double point), which gets EN-diagram «—.
These definitions are consistent with Proposition 1.2.2.

(1.2.3) Until now, we have considered only the EN-diagram of an irreducible
plane curve singularity. Let X = m;X; U---Um,X, be the decomposition in
irreducible components. Puiseux’s Theorem asserts that we can parametrize

all branches:
t— (tms nl(t))! S rt = (tm= ﬂ,(t)),

where 7;(t) € C{t} are smooth functions (1 < ¢ < s). We can find parametriza-
tions from an equation of X by applying the same techniques as mentioned for
the irreducible case. The construction of the link of X follows the same proce-
dure as before. But now some non-characteristic terms (only a finite number)
could be important for the topology of f. For instance, consider an A, singu-
larity for n odd. One can take y* — z"*! as an equation. It has two smooth
branches, each of which has no Puiseux pairs. Its link is a (2, n + 1)-torus link,
consisting of two linked unknotted components.

The definition of the EN-diagram of an algebraic link can now be completed
(we refer again to [14], loc. cit., for details). Bearing in mind the result of
proposition 1.2.2, we see that once we have done that, we have also found a
method of construction of the link of X.

Suppose Y and Y’ have Puiseux expansions

y = xq’/pl(al + xqz/mm(az Aot i pr—1/p1Pr_1 (ar-—1 e arxwlm...pr) - )),

[y~ ! 1 fond ool 1 o B ol 7 ] L -
y = zU/Pi(a! + g%/PP(al 4 ..o 4 glPIPea (o] 4 gl g% /PP L),

where, for simplicity, r and s denote the respective numbers of relevant terms.
In general, one should use the complete expansion and delete the terms with
pi = 1 afterwards. In [14] it seems that only the characteristic terms of the
branches are meant, but that does not work, as we have just seen in our
example A, (n odd) above.

We look at the number of common terms: let n be such that p; = p!, ¢; = ¢}
and a; = @ for all z < n but not for : = n + 1. We define o; (1 <z < r) and
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of (1 €1 < s) by the recursive method (*). If gni1/Pns1 = @hy1/Phsr, We get
the diagram above.

On each edge near a node (an open circle), there should be positioned a
weight, but we usually omit weights equal to one. Otherwise we may assume
that 7 = 1 or guy1/Pnt1 < @hy1/Phse, and then the diagram is:

(<31 Snptl o
IP! Pntl ipr

’ ')
“nt1 25

Phi [19:

In order to treat the the case of more than 2 branches, we proceed inductively.
Furthermore, if X; carries the multiplicity m;, we put.‘(m;)’ in front of the
arrow of the corresponding link component.

Observe that there is something hidden in this construction that has still
to be proved, namely that the link of X can indeed be constructed using the
cabling operations described by the EN-diagram. Again, this is proved in [14],
loc. cit..

(1.2.4) Definition We use the following terminology: The nodes are the open
circles in the EN-diagram. From a node, at least 3 edges emerge, and to each
edge there is attached a weight. The closed circles are called dots; they only
have one incident edge.

Furthermore, if I' is an EN-diagram, we put A(I") for the set of arrow-heads
of I', and N(I") for the set of non-arrow-heads (dots and nodes).

A diagram is called minimal if there are no dots attached to a weight 1. Qur
construction will give minimal diagrams, since we only look at characteristic
terms.

(1.2.5) Example The EN-diagrams of f(z,y) = (y% — 2®)™ and g¢(z,y) =
(¥* = 2°)(y° — 2?) are:
3,1 1.3 3.1

e T

The next example is a curve X = X; U X, with:

Xy z=1100 y=1250 4 375 | 4390 4391,
Xo: o =110 g = 350 4 4375 4 4410 4 4417
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5.1 25,1 253 1 63261 X
e 1
2 5 Is

[ %]

257[1 6432 1
5 5

Many more examples can be found in Appendix A, where the EN-diagrams of
all Arnol’d series are presented.

(1.2.6) All constituents of an EN-diagram have a topological meaning, which
we have already indicated for some of them. The arrow-heads correspond to
the components of the link (and therefore the branches of the singularity).
The dots correspond to the virtual components, resulting from the successive
cabling operations.

The edges correspond to tori, separating S3. In our construction above, we
can think of a torus somewhat smaller but parallel to the torus on which the
cables are situated. In fact, the tori come from a more important structure,
the Waldhausen decomposition of the link exterior. This is a decomposition
of the link exterior into Seifert manifolds. Seifert manifolds are 3-dimensional
compact circle bundles, with boundaries consisting of tori; they are completely
classified. Results on these kinds of decompositions, obtained by Jaco, Shalen,
Johannson, Thurston and others, were important for modern 3-manifold the-
ory. Eisenbud and Neumann applied them to the theory of links [14]. Their
EN-diagrams can be used in wider context than we have presented so far.

Each Seifert piece of the decomposition corresponds-to a node with incident
edges; the node itself will correspond to a regular fibre of the Seifert fibration
on this piece. In section 2.8 we will find a relationship of the nodes with the
polar curve of f.

Furthermore, in 2.7 we will briefly discuss the relationship of the EN-
diagram and the dual graph of the resolution of f.

1.3 Splicing

(1.3.1) In this section we describe the notion of splicing, due to Siebenmann
and studied extensively in [14], to which we refer for a more detailed descrip-
tion. Splicing is a more general operation than cabling, that we have used
before, but it is easier to use — certainly in connection with EN-diagrams, for
which it is the basis. It will be of great use later on.

In the previous section, welooked at the construction of the knot K of a
branch with g Puiseux pairs. Let us look more closely at this construction for
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the singularity f(z,y) = (y* — 2%)? — 42%y — 27, which is of type Wi¥,. It has
Puiseux expansion ¢ = ¢4, y = t6+17, and therefore the following EN-diagram.
3.1 13_1

2 2

We argued that K° = {y = 0} N R (where R denoted the polydisc D? x D?)
was the zeroth approximation of K. Observe that this is not just the unknot,
but the unknot traversed 4 times. It is more natural to consider the multilink
4K?° as zeroth approximation. The same applies to the first approximation K?,
which is a (2, 3)-torus knot around K°, traversed twice. Let N' (z € {0,1,2})
be a tubular neighbourhood of K*. The pictures below show a cross-section of
Uj<iN? together with a typical fibre of the Milnor fibration of m;KJ.

This gives another reason why we should think of 4K° and 2K as the approx-
imating steps of K: The Milnor fibration on the exterior of K provides Milnor
fibrations of 4K° and 2K and not of K° and K*.

We can look at it in yet another way. Start with 4K°. This is a fibred multi-
unlink, whose fibres consist of 4 copies of a disc. We can obtain (S3,2K") by
removing a tubular neighbourhood of K° and pasting in something else. This
surgery approach will be the basis of the definition of splicing. For future use,
it will be placed in the general setting of links in (integral) homology 3-spheres.

(1.3.2) Definition Let X’ and X" be homology spheres, and let two links
(Z',L') and (Z",L") be given. Let S’ and S” be components of L' and L"
respectively and write L' = m’S’ + Ly and L” = m”S"” + L as multilinks (L
and Ly may be empty). Let N’ and N” be tubular neighbourhoods of S’ and
b

The splice of L’ and L” along S’ and S” is a link L in a certain homology
sphere X, satisfying:

2 . (ZI\NI)US(EH\NH)
boundary tori glued meridian to longitude and vice versa,
LoU L.

L
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If L', L" have EN-diagrams I, I'” then L has simply the EN-diagram I:

1 L

aN' aN™" aN

Observe that L has two components less than L’ and L” together.

(1.3.3) If L' and L” are algebraic links in S* (links of plane curve singulari-
ties), we would like that L is again an algebraic link. This will in general not
be the case unless we impose the following two conditions.

The first condition is a condition on the multiplicities m’ and m”. It de-
mands that the Milnor fibrations of L’ and L” approach the splice torus exactly
the same way, and links up well with our contemplations of 1.3.1.

Splice Condition
We can splice L' = m'S’" + Lj and L" = m"S" 4 L, if
m' = Lk(5", Ly), and m" = Lk(5', Ly).
This indeed demands that the fibres of the Milnor fibration approach the splice
torus from both sides in an (m’,m")-torus link, cf. lemma 1.1.4.

(1.8.4) The second condition is a condition on the weights in the EN-diagram.
Recall the construction of the EN-diagram of a single branch. There we saw
that we could not just use a Puiseux pair (p;, ¢;) as cabling direction but that
we had to compute @; = ¢; + pipi—1@i—1 in order to get the right (p;, «)-
cable. If 8 < ai, (pi, B)-cables of course also exist (even if 3 is negative), and
the resulting links may well be fibred. But apparently, those links are not
algebraic. This explains the

Algebraicity Condition
(a) The link is obtained by repeated cabling, and
(b) In each portion of the diagram of the following form, the inequality
CMUﬂO > al"'arﬂﬁ"'ﬁr
must hold.
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The condition (a) requires that there are sufficiently many 1’s around each
node in the EN-diagram. If we omit (a), the splice and algebraicity conditions
result in a link of a curve singularity, defined on a normal integral homology
manifold.

(1.3.5) We get a splice decomposition of an EN-diagram (or of the exterior
of the link) by performing the inverse operation of splicing. We say that
we break the separating edges of the EN-diagram into pairs of arrows with the
correct multiplicities of the splice condition. These multiplicities, being linking
numbers, can be obtained very easily from the EN-diagram, see 2.1.

(1.3.6) Example The splice decomposition of 1I/VI“f1 of the beginning of this
section is given by:

3.1 13_1 3.1 13,1

- S St
Observe that the rightmost link has a component with multiplicity 0. The
middle splice component is the link of the singularity wa, given by the
equation (y? — z®)?. This illustrates the way we will introduce topological
series of plane curve singularities in 3.2.3.

A’Campo’s singularity, g(z,y) = (y* — #3)(y* — z?), whose EN-diagram is
redrawn below, decomposes into two isomorphic splice components given by
the second EN-diagram. It is the EN-diagram of the non-isolated singularity
with equation z?(y? — z3).

1.3 3.1 .
) Iz Iz @ 2
Obviously, it is interesting to know how computational invariants behave

under splicing. Then it remains to compute such invariants for our basic
building blocks, the Seifert links (with only one node in their EN-diagram).




CHAPTER 2
Computations around the EN-diagram

2.1 Computing the linking number

The linking number of two link components can be computed easily by walking
from the first arrow to the second arrow and multiplying the edge weights
along, but not on the path, see [14], section 10.

Since linking numbers are encountered so often (disguised as intersection
numbers and various kinds of multiplicities), it is most useful to have such an
easy algorithm at our disposal.

(2.1.1) Example Consider the third example of (1.2.5). X; and X, have
intersection number X; - X3 = 5-253-5-5 = 31625 (compare the elaborate
computation in [8], p. 695).
5.1 251 3253 1 63261 .
I S
25701 6432 1
5 5

X2

It is an interesting exercise to verify that the topological type of a plane
curve singularity is determined by the Puiseux pairs of the branches together
with the intersection numbers of all pairs of branches.

2.2 Multiplicities of dots and nodes

The dots and nodes of an EN-diagram carry natural multiplicities, equal to the
total number of the corresponding virtual components with the (multi)link K,
see [14], section 10. In other words, let I" be an EN-diagram and j € N(I').
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Let K; be the corresponding virtual component. Then
mj; = m(K,) = Lk(K, KJ) = Z m; Lk(K,,KJ)
’ i€A(I)

The linking numbers can be computed exactly as in 2.1. In EN-diagrams, we
put these multiplicities in parentheses.

(2.2.1) Example In the examples of 1.2.5 (f(z,y) = (y?—=3)™ and g(z,y) =
(y? — 23)(y® — z?)), we obtain:

(6m) (10) (10)
3.1 1.3 3.1

e Y

(3m) (5) ()

(2.2.2) Remark In general, the multiplicities do not determine the edge
weights of an EN-diagram, as one can conclude from the following example:

(5n) (5n)
n-3 n.1

() *—Tl——' (2) (5) T (&)

where n is neither divisible by 2 nor by 3.

2.3 Characteristic polynomials

(2.3.1) Let h : F — F be the monodromy of the Milnor fibration. We can
compute the characteristic polynomial of the induced action of A on several
homology groups directly from the EN-diagram. We will always use integral
homology, unless stated otherwise. We denote by h. : H;(F) — H;(F) the
algebraic monodromy on H;(F') and h.o the algebraic monodromy on Ho(F).
Let N be a common multiple of the order of the eigenvalues of k. (which are
roots of unity). Define:

Ao(t) = det(t] — hao),

A(t) = det(tI — h.),

Alt) = M(t)/Ao(t) € Q(2),

Al(t) = det(tI — h.|Ker[I — hY)),

A'(t) = det(tI — hy|Im[H,(0F) — Hy(F))).

Let I" be the EN-diagram of the plane curve singularity f. For j € N(I") we
denote the number of incident edges by é;.
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(2.3.2) The polynomials Aq and A,
We have Ag = t¢ — 1, where d = ged{m; | i € A(I')}, the number of connected
components of F. The connected components are cyclically permuted by A.

For A, [14] gives us the following formula:

At)y=(@-1) I @™ -1%

JEN(I)

Notice that this formula also gives us pu(f), the Milnor number of f, which is
equal to the rank of H;(F') and hence to the degree of A;.

(2.3.3) The polynomials A! and A’

The polynomials A! and A’ are less known. Since we know that A, has only
Jordan blocks of sizes 1 and 2, we find that the roots of A! are precisely the
roots of Ay that occur in the 2 x 2 Jordan blocks. The monodromy can act
non-trivially on the boundary of F', which is signalled by A’. Define:

— d = the number of connected components of F' as before,

- dg = the gecd of the two multiplicities that arise when edge F is broken
as in 1.3.5 (E runs over the separating edges),

- d, = the ged of all link component multiplicities of the splice component
with single central node v (v runs over the nodes),

- d; = the number of components of F' N dN(K;), where N(K;) is the
boundary of a small tubular neighbourhood of component K; (i € A(I')).

Then, according to Neumann [35], we have:

II ¢=-1)
Alt) = (f-1). T

IT -1’

v node

S IGE

ieA(")

A'(t)

For the examples in 2.2 we obtain the following results:
- For f(z,y) = (y* — %)™

(= = 1)(E ~ 1)

AO(t) =t" -1, Al(t) = (tgm _ 1)(1’3'"' _ 1)1

Al(t) = A'(t) = L.
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— For A’Campo’s singularity g(z,y) = (y — %) (z® — y?):
A(t)=t—1, A(t)=(-1DE +1)?% AW =t+1, A't)=1.

The polynomials A! and A’ will become useful when we consider the Seifert
form and the spectrum in section 4.4.

2.4 The zeta-function of the monodromy

Let F' be the Milnor fibre of a singularity. In general, if a, € Aut(H*(F;Z)),
we define the zeta-function ((a.) of the operator a, by:

((a.)(t) = H det(I — taq){"l)q“,

920

see [2] or [6]. Note, however, that in the latter reference the inverse of the
usual zeta function is used. If A, is the algebraic monodromy of a singularity
f, we define {5 = ((h.), and call it the zeta-function of (the monodromy of) f.
In the case of plane curve singularities, the homology groups of dimensions
greater than 1 vanish. The zeta-function is related to A. = A;/A, by

1) = O 4,7,
The following formula holds:

H (]_ tmy 6;—-2

JEN([’)

so the zeta-function is also very easy to compute from the EN-diagram. This
formula is due to A’Campo [2].

An important property shared by the zeta-function and the A, is that they
are multiplicative under splicing, see [14], Theorem 4.3. This is the basis for
the proof of the corresponding formula for A. (from which the formula for A,
as in 2.3 is deduced).

2.5 The multi-variable Alexander polynomial

Another interesting invariant is the multi-variable Alezander polynomial of the
link K, which is denoted by Ax. The number of variables of this polynomial,
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8, is the same as the number of components of the link. The general definition
can be found in [41]. According to [14], Theorem 12.1, we have:

AK(tl, e ’ts) — H (t';“-]i —_— t:"u' —_ 1)5,‘—2,
JEN(T)

where m;; = Lk(m;K;, K;). For the behaviour of Ag under splicing we refer
to [14], Proposition 5.1. We can get A, from Ak by putting all variables equal
to t:

AL(t) = Ak(t,...,1).

It follows that the multi-variable Alexander polynomial of a multilink aL =
arLy + -+ + a, L, and the multi-variable Alexander polynomial of the reduced
link L = Ly +--- + L, satisfy the following relationship:

AaL(tl, S ,t,-) = AL(tTl, Sat ,t:r).

The multi-variable Alexander polynomial efficiently encodes linking and multi-
plicity information in such a way that the contribution of a certain arrow-head
to that multiplicity can be retrieved. In 2.2.2 we saw an example of two EN-
diagrams with the same sets of multiplicities. Their multi-variable Alexander
polynomials are
t3ngdn — 1 afidl e — 1'
23— 1 .|

It is well-known that the one-variable Alexander polynomial is a complete
invariant for the topological type of an irreducible isolated plane curve sin-
gularity. One can prove that the multi-variable Alexander polynomial is a
complete invariant of the topological type of an arbitrary isolated plane curve
singularity. This seems to be common knowledge, although we could not trace
down a proof in the literature.

2.6 Zariski’s numbers and the multiplicity sequence

For the sake of completeness, we show how to find Zariski’s numbers fy, . .., B,
and the multiplicity sequence directly from the EN-diagram. These results are
easily established.

(2.6.1) Let X be a plane curve with Puiseux pairs (p1,41),...,(pg,qy) and
hence with EN-diagram
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- S P | ag 1 ag 1

I‘Pl [Pz IPg
(with all p; > 2 and @y = ¢y, @; = ¢; + pjpj—10;-1). Let Ox = C{z,y}/(f) —
where f defines X — be the local ring of X. There exists a canonical valuation
v : Ox — N U {oo} (induced by a parametrization). It is well-known that

N = v(Ox) is a semi-group. An easy translation of Zariski’s result [64] to
the language of EN-diagrams gives us that a minimal set of generators of N is

{Bo,---, By}, where

BU = D1 Py, 7
Bi = ajpiy1-p (155 <g).
Consider the example of 1.2.5.
5_1 251 253 1 6326 _1 -
Iz [2 5 Is !
25701 6432 1
5 5

Xa

For X; we obtain (o, ..., ;) = (100,250, 625,1265, 6326).

(2.6.2) The multiplicity sequence (Multiplizitatensequenz, [8], p. 673), de-
scribes the multiplicities in the blowing up sequence of the curve X : f = 0.
This sequence is obtained by performing several Euclidean algorithms. The
multiplicity sequences of all branches of a plane curve singularity determine
together its topology.

We will describe how to find the multiplicity sequence of a branch from
the EN-diagram. The method is best described by an example. We use the
branch X, of the example above.

First algorithm: (g1,p1) = (5,2).

5 = 2241 gives2, 2
2 = 2-1 gives 1, 1

Second algorithm: (g2, p2) = (5,2).
This algorithm is the same as the first one. Therefore we get again 2, 2, 1, 1.

Third algorithm: (gs,ps) = (7,5).

7 = 1-542 givesd
5 = 2:241 gives2,2
2 = 2.1 gives 1, 1
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g*" algorithm: (gq,p,) = (7,5).
The last algorithm is the same as the third.

Now we multiply the results of the i*! algorithm by pi41---p,, to obtain
the multiplicity sequence: '

(100, 100, 50, 50, 50, 50, 25, 25, 25,10, 10, 5,5, 5, 2,2, 1, 1).

2.7 The EN-diagram vs. the resolution graph

Another well-known complete invariant of the topological type of a plane curve
singularity is the dual graph of a good embedded resolution 7 : Z — C? which
resolves the singularities of the plane curve singularity f. Let E = 7~1(0)
be the exceptional divisor and V the dual graph. 7= !f~1(0) = UkeauvFx
is a divisor with normal crossings on Z (the points of A are represented by
arrow-heads). We assume that the reader is familiar with the resolution graph.

There are conversion algorithms from EN-diagram to resolution graph and
back, see [14], Chapter V. We will not discuss these algorithms, but only
mention some properties that are useful to remember.

As a graph, the EN-diagram is equal to the resolution graph from which all
the vertices of valence 2 (i.e. with 2 incident edges) are removed. This leaves
us with the vertices of valence 1, and the vertices of valence greater than 2
which are called rupture points. So the rupture points correspond to the nodes
in the EN-diagram.

In a resolution graph, the vertices carry a multiplicity equal to the multi-
plicity of f on the corresponding branch of the total transform; i.e. for k € AUV
we define m, by div(f o 1) = T ecauv mxEx. It happens to be the case that
these multiplicities are equal to the multiplicities of the corresponding nodes
and dots (and of course the arrows) in the EN-diagram.

In section 4.3, we will make use of the multiplicities of the neighbour ver-
tices of a rupture point. It is possible to compute these multiplicities from the
EN-diagram without having to build the complete resolution graph — which
is not so easy.

(2.7.1) Lemma Consider a (very general) splice component:

(m1)

Q’]_

o

(m&)
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Putm; =0 forie {k+1,...,n}; som =Y 01+ a; - anm; is the multi-
plicity of the central node.

Then, in the corresponding plumbing graph (in our application this will
be a part of the resolution graph) the neighbour vertex on the edge marked
with ; has a multiplicity which is modulo m equal to sj, where s; can be
found as follows. Choose integers 8; (1 < j < n), with Bjoq---cj - a, =1
. (mod a;). Then s; = (m; — B;m)/a;. ]

See Neumann [35] for a proof. It should be possible to get this result in a
completely number-theoretic manner.

2.8 The polar ratios of a plane curve singularity

For details of this section, consult [62], {26], or [57].

Let f : (C%,0) — (C,0) be a plane curve singularity. Let [ : (C?,0) —
(C,0) be a sufficiently general linear form with equation I(z,y) = bz — ay.
We obtain a map germ @ = (I, f) : (C%,0) — (C%,0) whose critical locus is
defined by

The polar curve of f with respect to the direction [ is the union I' of all
irreducible components of the critical locus of @ that are not contained in
X = f71(0); in other words:

I = Sing(#)\ /-1(0).

The image A = @(I') is called the Cerf diagram. We use (u,v) as coordinates
in the target space. Its branches 4,,..., A; have Puiseux expansions

v = g;u” + higher order terms,

with a; # 0 and p; > 1. The rational numbers p; are called the polar ratiosof f.
The set p(f) = {p1,...,p:} is a topological invariant of f. Note, however, that
the number of times that a certain polar ratio occurs in the t-tuple (py,.. ., p:)
is not a topological invariant (but it is an analytical one). One sometimes
encounters the inverses of our polar ratios as polar ratios.

It is possible to view the set p(f) topologically. Let R,,...,R, be the
intrinsic companions of the link K of f, i.e. regular fibres of the Seifert pieces.
They are represented by the nodes in the EN-diagram, and can be visualized
by attaching an extra arrow with weight one to each node.
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Define the following subset of Q:

E(f) = {%{T(l{f—(%)) | R; is an intrinsic companion}.

Here, mult( R;) denotes the multiplicity of R;, i.e. the number n = p;---p, in
the EN-diagram of R;. (It is, by the way, equal to the braid index of R;, which
is the minimal number of strings needed to get R; as a closed braid.)

(2.8.1) Proposition We have:

(a) p(f) = E(f) U {mult(f)} if f has a tangent cone consisting of ezactly
two lines,

(b) p(f) = E(f) otherwise.

For the proof of this proposition, see [62] or [26]. O

It is not necessary for f to be reduced, as long as multiplicities are taken
into account correctly and one does not forget that the zero-locus of f is
subtracted from the critical space of &.

(2.8.2) Example Consider our standard examples f(z,y) = (y% — z°)™ and
9(z,y) = (y* — 2°)(y° — 2?):
R] R RZ

31 113 311
(m)

2 [2 [2
We have drawn the unions of the links of f and g with the intrinsic companions.
In the first example, there is one intrinsic companion R;. The polar ratio is
p = 6m/2 = 3m. In the second example, there are two intrinsic companions
R, and R, giving ratios p; = p2 = (6 + 4)/2 = 5. Moreover, the tangent cone
consists of two lines (its equation is z2y% = 0). Because mult(f) = 4, we get

p(9) = {4,5}.

R, R; Ry
ogll azll - agll
P P2 Pg

Our third example is the general branch X with ¢ Puiseux pairs. The
EN-diagram shows K + Ry + --- + R,. We obtain:

aio’-... ’
p(X)={p,-=—P§i—’ﬁ|1sesg},

a set of g rational numbers:



CHAPTER 3
Topological series of plane curve
singularities

3.1 Introduction

(3.1.1) As soon as one starts compiling lists of singularities of functions, one
comes across sertes of singularities. The members of such series share various
properties, but one finds that there are always some exceptions. Writing down
an all-embracing definition of a series inevitably gives problems.

The first one who made lists of series was V.I. Arnold in [3], see also [5].
Some of these had already been given names, such as A,, Dy, etc.. In hindsight
it is not clear who was the first to use these names for singularities of functions.
Hirzebruch [18] (1962/63) describes the dual graph of the resolution of the
simple singularities, and observes that these graphs are the well-known A-D-
E Dynkin diagrams. In Brieskorn [7] (1966) these names are used without
further introduction. Later it was also proved that the monodromy groups of
the A-D-FE singularities (with an odd number of variables) are isomorphic to
the Weyl groups of the Lie algebras with the same names.

In his lists, Arnol’d went further and introduced letters other than A, D
and F when he encountered new classes. His lists are (partly) reproduced
in Appendix A, where also the corresponding EN-diagrams are drawn. He
wrote: “Series undoubtedly exist, although it is not at all clear what a series
of singularities is” [5], p. 243. And another one of his statements — quoted by
my predecessors as well — is: “It is only clear that the series are associated
with singularities of infinite multiplicity [...], so that the hierarchy of series
reflects the hierarchy of non-isolated singularities” [5], p. 244.

A series depends on one or more integral parameters. The simplest series
is the A-series. An example of a function of type A, is y2 + z"*!. Clearly, the
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elements of A, have to be classes of an equivalence relation; depending on the
situation this could be right-equivalence, topological equivalence, etc.. It is
clear that y? is a non-isolated singularity which could be called the head of the
A-series. Siersma introduced the name A, for this singularity (and likewise
D, etc.) — obviously not modelled on the resolution graph or the Milnor
lattice.

Series were an inspiration to many authors. We mention the work of
Arnol’d (cited above), Wall (e.g. [61]) and Pellikaan [36].

(3.1.2) Remark We will not pursue the philosophical remarks behind series
further. Qur definition of topological series, presented in this Chapter, satisfies
all the required properties. Yet one should note that there is an abuse of
language: for example, below we will use Yomdin series to illustrate several
points, but a Yomdin series is in fact a mere séquence of functions. The same
applies to the ‘series’ in Chapter 6: perhaps it would be better to call them
‘sequences’, too, in order to stress the fact that we only consider very special
representatives of members of a series.

Mind the Gap

(3.1.3) Yomdin Series

Let f : (C"*1,0) — (C,0) be a germ of a non-zero holomorphic function
with a one-dimensional critical locus Y. Let z be a linear form satisfying
YN Z(z) = {0}, where Z(z) = {z = 0}. For integers k > 2 we consider the
functions

fi = f +eat,

where ¢ is a small non-zero complex parameter. We will call such a series a
Yomdin Series, after LN. Yomdin who first studied them, see [63] and Lé [25].

One of his results concerned the relationship between the Milnor numbers
of f and f. He proved that for £ > 1, f + ez* has an isolated singularity,
and that

p(f +ea®) = bu(f) = buca(f) + K(Z - Z()),

where X' - Z(z) is the intersection number of X' and z = 0 at the origin, and
b; denotes the 7** Betti number of the Milnor fibre of f. In fact, one can show
that the formula holds for k greater than or equal to the largest polar ratio of
f

Siersma [52] generalized this formula by giving a relationship between the
characteristic polynomials of f and f} (cf. sections 3.5 and 6.2). Steenbrink [56]
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conjectured a still stronger formula concerning the spectra of f and fi. This
conjecture was proved by M. Saito [42].

So a lot is known about Yomdin series, but the feeling remains that they
are a poor reflection of the ‘original’ series of Arnol’d. Generally speaking,
Yomdin series are extremely coarse. For example, a two parameter family
such as Y, , : 2%y% + 271 4+ y**1, obviously cannot be obtained. Furthermore,
if the multiplicity of X' at the origin is greater than one, we do not get the full
series. For instance, let f(z,y) = (y* — z%)?. Yomdin’s formula shows, that
the Milnor number within the series increases with steps of 2. However, if we
take

WI#,Qq-I : (PP—2?P +atty (¢21)
Wihet (12 — 23 + 2%+1y? (¢ > 1),

then we get the ‘full’ Arnol’d series W¥, leaving no gaps.

It becomes even worse if we consider f(z,y) = y°. Recalling Arnol’d’s
statement that the hierarchy of the non-isolated singularities reflects the hi-
erarchy of the series, we would like the non-isolated singularity with equation
y® + y%zF in its series. With Yomdin series this is of course impossible.

3.2 The definition of topological series

(8.2.1) In this section, we will give a definition of topological series of plane
curve singularities. This definition was first published in [43], which appeared
in revised form as [44]. The definition will be followed by the computation of
-various topological invariants and it will appear that they behave as expected
within a series.

The motivation to look at topological series is, that many properties that
hold a series together are of topological nature. We think of the Milnor num-
ber, the characteristic polynomial of the monodromy, the zeta-function — and
indeed the spectrum. For plane curve singularities, this is more tractable than
in a more general setting.

The definition will overcome many of the problems that we mentioned
earlier with the Yomdin series. Our series will contain topological types.

(3.2.2) The standard example of our topological series has always been W#.
Recall the splice decomposition of W# (Example 1.3.6):
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3.1 1142¢.1 : 3.1 1+2g.1
[2 [2 ’_T_’Q (2) (0) J;L“T_‘g
L

W f
3,1  6+q 1 31 @ (0) =5+
[2 Tl iz ) ) il
wl#.zq w]#oo

Also in the other Arnol’d series the phenomenon occurs that the non-
isolated ‘head’ of the series is a splice component of each of the elements
in the series. This means, that the Milnor fibration of a member of the series
can be obtained from the Milnor fibration of the non-isolated singularity by
removing tubular neighbourhoods of the multiple components and replacing
them by something fibred in such a way, that the result is the Milnor fibration
of a non-isolated singularity (or, more generally, a singularity with branches
of ‘lower’ transversal types).

Unsurprisingly, the best way to state the definition is using EN-diagrams.

(3.2.3) Definition [Topological Series] Let X = m;X; U--- U m,X, be
a non-isolated plane curve singularity with m; > 1 for ¢ < r and m; = 1
otherwise. Let I' be the EN-diagram of f, and denote by e,...,a, € A(I")
the arrow-heads belonging to m; X1, ..., m,X,. Then the topological series of f
consists of all topological types with EN-diagrams that arise from I' by splicing
something to each of the a; — taking the splice and algebraicity conditions
into consideration — in such a way that the multiplicities of the arrow-heads
of the splice components attached to the a; are smaller than m;.

(3.2.4) Remark Our definition works equally well for certain other curve
singularities (see section 3.7), but we think it is clearer to explain the situation
for plane curve singularities first.

Now that we have this definition, we will investigate which possibilities
there are to replace an arrow-head with an ‘(m)’ in front of it by something
with lower multiplicities. We start with the easiest case when we have an
arrow-head of multiplicity 2, a double component.

3.3 The case of a double component

(3.3.1) Recall the notation A(I") for the arrow-heads of an EN-diagram I
and N(I') for the other vertices (dots and nodes), introduced in 1.2.4.
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Let X be a plane curve singularity with defining equation f, link K and
EN-diagram I". Suppose there is a double component ¢ € A(I'), i.e. m, = 2.
Near the arrow-head o, the EN-diagram looks like this:

where the boxes may denote any sub-EN-diagram and the arrow is o € A(I").
The second picture is only defined when I' # e— (2) and I' # (m) «— (2),
since then there is no node.

Define the following numbers:

ND _ [2(1'1"‘(]]‘:] ’
«
c = Z m;j Lk(Ko,Kj),
JEA(D),j#e

where [.] denotes integral part. (In the two exceptional cases, Ny = 0). We
have encountered the number ¢ already in lemma 1.1.4 and, more importantly,
in the Splice Condition in 1.3.1.

We will now show which possibilities there are to replace the double com-
ponent with. Recall the definition of the zeta-function in section 2.4.

(3.3.2) Theorem The only two (classes of) possibilities to replace a double
component with, are:

N1 ____N/21
T T
with N > Ny edd, with N > Ny even.

Furthermore, let (. be the zeta-function of f and (N the zeta-function of a
singularity with the EN-diagram obtained by replacing the arrow-head ¢ by one
of the possibilities above. Then we have

Cv(t) = Geolt) - (1 = (=1)VEH).
In particular, the Milnor number p is linear in N with coefficient 1:
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where d = ged(my, . .., m;), the number of connected components of the Milnor

fibre of f.

Proof. The EN-diagrams of the theorem can be regarded as being the result
of splicing the links K and the one given by the EN-diagram I'y;, which is the
left diagram below if N is odd and the right diagram if NV is even.

N 1 Nf2_ 1
(c) ‘_TQ_’ (e) q—LTl—‘
with N > Np odd, with N > Ny even.

Splicing is done along the component K, of K and the component K with
multiplicity m. = ¢ (the arrow pointing leftwards), respectively. That the
multiplicity of * must be ¢ follows from one half of the Splice Condition. The
other half,

2= >, maLk(K], K}),
heA(T}),h#=
implies that these two diagrams are the only two essentially different EN-
diagrams with the required property, for we want that my = 1 for each h €
A(T}) \ {*}, end that no dots are attached to a node with weight 1. For the
first link (V odd) the splice condition reads ‘2 = 2 -1’ and for the second
‘2=1-1+41-1" there are no more of this kind of partitions of the number 2.

The algebraicity condition gives N > Nj.

The formu.a for the zeta-function follows from the formula in 2.4 and the
fact that the zeta-function is multiplicative under splicing. The statement
about the Milnor number is an easy consequence of this. o

(3.3.3) Definition We combine the two possibilities in one graph, where,
depending on whether N is odd or even, the first or the second graph of the
theorem must be substituted.

N_1

(3.3.4) Remark if « = 1 or a@ = 2 (see the figure at the beginning of this
section) then the case N = Ny is also allowed, although then the diagram
has to be minimized by applying Theorem 8.1 of [14]. The formula for the
zeta-function still holds. Yet, according to the definition of series, this element
does not belong to the series, although it shares many properties with the other
members. In section 4.6 we will meet a singularity whose spectrum behaves as
in the series, but its spectral pairs do not.
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(3.3.5) Example The singularity f(z,y) = y*(y + z*) is of type Jro. We
have ¢ = k and Ny = 2k. The series is Jip : y° + y?z* + 2%+, p > 0. We have
N = 2k + p. The case p = 0 is the special case with N = Ny.

k @ k k N

2
Ik, 00 Jk0 Jrp

We have u(Jxo0) = 3k — 2 and p(Jrp) =3k —2+p.

(3.3.6) Example If X has more than one branch with multiplicity two, we
can treat each branch separately. For each arrow-head a € A(I") with m, = 2,
we obtain a ¢, and an N,o. The simplest example is the series of f(z,y) = z%y?,
which is of type Yoo 00 (0r of type Too 0,2 if one wishes). Its EN-diagram is

(2) «— (2).

We obtain the series Y, : z2y? + 27t 4+ y"+* with r,s > 1, and r = 0, s = 0
give exceptional cases.

(8.8.7) The reader can verify in Appendix A that our topological series com-
prise of all Arnol’d’s series of plane curve singularities. The cases missed by
the Yomdin series, such as two-parameter families and series as W#, are part
of our theory. But what is more: the series do not consist of anything more
than they should. This is not obvious. For instance, Arnol’d [5], p. 243 gives
an example of the relation of adjacency that could tie a series together, but
then the A-series would belong to the D-series.

And we can do even better than this, as we will show in the next section.

3.4 Higher multiplicities

(3.4.1) When we have an arrow-head of multiplicity m > 2 in the EN-diagram
of a plane curve singularity, exactly the same method can be used. The splice
decomposition always gives us a finite number of essentially different graphs
that can be spliced to a component of multiplicity m, and we can decide exactly
which. '

We enumerate the possibilities when m = 3 and m = 4. The names refer
to the simplest case when f(z,y) = y™.

In the diagrams, the splice edges have variable weight N, N having no
common factor with the other weights. The other omitted edge weights are
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equal to 1. We only listed the diagrams with one node; some have an arrow of
multiplicity greater than 1, which could be treated again.
The four possibilities for m = 3:

I o 2
] P s !

Jk0 Eex,Egryi2 Egki1 Ik, 00

The nine possibilities for m = 4:

e

Wizkt1(5) Wisk(+e)

(2)
L (2) (@ - el el 2
| [ @

Xh,oo Wi 0 w#* Yk

k,00 09,00

1

2%

The following formula gives the number of essentially different diagrams
with one node and only multiplicities less than m, that can be spliced to a
component of multiplicity m.

(3.4.2) Proposition The number is:
> P(m/g) + X > P((m-p)/g) -1

glm 1<p<m~1 gf(m—-p),g>1
where P(n) is the number of integer partitions of n.

Proof. In such a diagram at most one dot appears, with at the node a weight
>-2. The number of edges emerging from the node must be at least 3. There is
at most one weight greater than 1. These are consequences of the algebraicity
condition. The splice condition demands that the total linking number of the
other components with the splice component equals m. The formula is now a
matter of counting. 0o
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For m < 15 we obtain:

m |1]|2]|3]|4|5]|6|7|8]910]11]12]13] 14
number | 0] 2 | 4| 9| 12|22 | 27 | 42| 54 | 76 | 01 | 134 ] 159 | 211
This can be regarded as an upper bound on the number of symbols (such as
A, W#  etc., with several parameters) needed to give names to all singularities

of corank m.

3.5 The zeta-function within a series

Let f = f2--- f2fr41-- - fs be a non-isolated plane curve singularity with dou-
ble components only. Denote the singular locus of f by X = S, u.-- U L.
According to Theorem 3.3.2, a typical element fy (with multi-index N) of the

series has EN-diagram
N, ‘N
o—= r O
'—IJ—-—‘I—'z Kl
7. 7

where N = (Ny,...,N;) > (Noi,...,Nor) (we define Ny; and ¢; as usual).
This diagram represents the EN-diagram I' of f, whose double components
are replaced in order to get an isolated singularity.

The following corollary is immediate from Theorem 3.3.2. It is valid in a
more general setting, see 3.7.

(3.5.1) Corollary We have:

r

Crn () = (1) - [IA = (-1)NeeMt=). =

=1

Recall from 1.1.6 the definitions of the vertical and horizontal monodromies
A; and T; (1 <¢ < r). We proved that A; = T;%. In the current application,
T; is equal to the 1 x 1-matrix (—1), since it describes the permutation of the
two points in a transversal section along J; on the reduced homology level.
Let d; be the multiplicity of X; at the origin. According to 2.8, each of the r
new nodes gives rise to a new polar ratio 8; (the other polar ratios of fy are
the same as those of f). Observe that d;6; = N; + ¢;. Rewriting the corollary,
we obtain:

Crelt) = Co(t) - T det(T — 1% AT3%),

f=1
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This generalises a formula of Siersma [52], who proved that for the Yomdin
series fx = f + ex*, the following formula holds:

() = Cs(0) - [ det(] — 14+ ATH),

i=1

Observe that k is the only new polar ratio in a Yomdin series, hence 6; = k
for allz <r.

(3.5.2) We will now investigate the case when f does not only have branches
of multiplicity two. The formula of 2.4 gives an easy way to compute the
zeta-function of each member of the series. But one has to consider all cases
separately as in section 3.4.

It is interesting to have also an expression involving A; and T;. We will now
give some results in that direction. We consider only one irreducible component
J; at the time, and suppose that the transversal type is A,,—;. We drop the
subscripts ¢ accordingly. The branch X; corresponds with an arrow with ‘(m)’
in front of it. Observe that, since we only look at splice components attached
to this arrow-head of multiplicity m, we may suppose that f(z,y) = z°y™. The
component z° stands for all the other components of our original singularity.
Observe also that, according to the method of 2.8 of calculating polar ratios,
the product df remains the same under the operation of changing f into z°y™
(although d becomes 1). We are only interested in the factor { of the formula
Ciw =€ - €.

We start with f(z,y) = z°y®. In the table given in section 3.4, we find 4
possibilities marked Jro Eek(42), Fer+1 and Ji,o. The first two are of Yomdin
type. A’Campo’s method (see 2.4) gives a factor

() =(1—-t%)?  for ‘Jig’,

and:
j t3d9

C(t) = W for ‘Eﬁk, and ‘Eﬁ]ﬂ.z,.

That Siersma’s formula gives the same answers, follows from the following
lemma, whose proof is easy:

(3.5.3) Lemma Let H,, be the reduced homology group of a discrete space
consisting of m points. Let T, : H,, — H, be the automorphism induced by
the cyclic permutation of these points. That is, T, is the (m — 1) x (m — 1)
matriz of order m, defined on the standard basis eq,...,en—y by Tre; = eipr
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fori <m—2and Tnem—y = —(e1+ - +em_1). Letk € N and a = ged(k, m).
Then the following holds:

(1 _tm/a)a
1-t °

det(I —tTE) = O
The case ‘Egg41’ is different. Here df = (6k + 3)/2 + ¢ is not an integer.
The method of 2.4 gives:
((t) =1—1*.

We have to modify Siersma’s result to obtain this answer. By reconstruction
we get:
C(t) = (det(l _ t2d9A2T2d5))1/2’

since A2T%% is the 2 x 2 identity matrix.

The case ‘Jy .’ is of course special, too. Unfortunately, it is impossible
to give a formula involving the horizontal and vertical monodromies this way.
This would, however, be possible if we would use the multi-variable Alexan-
der polynomial which shows clearly the contributions of each branch to the
multiplicities (cf. 2.5). In general, we can obtain the following result:

(3.5.4) Proposition Write df = q/p with ged(p,q) = 1. If we splice to
an arrow of multiplicity m something with exactly one node and arrows of
multiplicity 1 only, then p is a divisor of m — 1, and:

((t) = (det(I — P90 APTPE)/P,

If p > 1, APT?® s the (m — 1) x (m — 1) identity matriz (cf. 3.5.5 for the
reason of this notation).

Proof. [Our proof is a reconstruction from A’Campo’s method. This propo-
sition functions merely as an example of formula 6.3.3.] We consider the fol-
lowing two cases, which are the only ones satistiying the restrictions indicated

above.,
(© ~—“]< © -—“K

Let a be the number of arrows with edge weight 1 (pointing rightwards). In
the first case we have m = ap+1 and 6 = ¢(ap+1)/p+c. A’Campo’s method
gives:

() =01- tq(ap+1)+pc)a,
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and our claim follows since T' is now an ap x ap-matrix of order ap + 1.
In the second case we have m = ap and 6 = aq + ¢. This time A’Campo’s
method gives:
_ (1 — tapq+pC)a
C(t) - 1 _ taq+c I

and by applying the lemma we confirm the proposition in this case as well. O

(3.5.5) Remark In the statements above, we wanted to use the vertical and
horizontal monodromies only. That is why we had to use the p* root of a
polynomial. In fact we should consider (m —1)/p x (m — 1)/p-matrices, giving
a more natural formula. Please compare with 6.3.3.

3.6 Topological series and the resolution

In this section we give an outline of an alternative description of topological
series, used by Jan Stevens who wanted to avoid EN-diagrams and stay in
the familiar surroundings of the embedded resolution. From the relationship
between EN-diagrams and the resolution (cf. 2.7) it will be clear that the
resulting series are the same as with our definition.

Let X, be a non-isolated plane curve singularity, given by an equation of
the form f = f{™ --- f™s with m; > 1 and not all m; equal to one. Let Z — C
be the minimal good embedded resolution of Xu; so the total transform of f
is a divisor with normal crossings. Consider for each strict transform X; of a
non-reduced irreducible components of X, a deformation of X; into a (possibly
singular) curve Y;, which still intersects the reduced exceptional divisor with
multiplicity m;. These local deformations blow down to a deformation Y of
Xo. We define Y to be in the series of X.

Jan Stevens [58] proves that the series above depends only on the equisin-
gularity class of the non-isolated singularity X,. Furthermore, he proves that
the curves Y that come out of the construction are deformations of X,.

In the construction, Z becomes a partial resolution of Y. Because of the
special role of the exceptional divisor, one needs to describe the singularities
of Y; in terms of Arnol’d’s boundary singularities [4]. In particular, consider
the familiar case of a double line X;, which in local coordinates looks like
z™y?. We allow deformations into By with k¥ > 0, where Bj is given by
zF + y2. Observe in particular that we allow k = 0, giving two lines (in local
coordinates z™(1 + y?)). This corresponds to the exceptional case N = Ny in
definition 3.2.3 if such a case exists.
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3.7 Curves in other spaces

(3.7.1) In this section we discuss the application of our definition of topo-
logical series to curves defined on other spaces than (CZ%,0). Let (W,w) be a
germ of a normal surface with possibly a singularity at the point w. Suppose
(W,w) is an integral homology surface, i.e. it has the same integral homology
as a manifold. Then we can consider analytic functions f : (W,w) — (C,0).
Such functions define curve singularities on W.

The surface W can be embedded in C™ for some m. By intersecting f~1(0)
with a small 2m — 1-sphere S we get a link K in the homology 3-sphere
Y =W nNS. The EN-diagrams can also be used in this context, and they still
correspond to the dual graph of the resolution of f as in the plane curve case.
A more detailed account of such curve singularities is given in section 4.2.

If K has multiple components we use exactly the same methods to define
the topological series of f as in the plane curve case. But the members of this
series should all be defined on the same space (W, w). In the case of topological
series of plane curve singularities, this was enforced by the condition that the
link was obtained by repeated cabling (which ensures that there are enough
I’s around each node). An EN-diagram without arrow-heads represents a Z-
homology sphere (with an empty link, in fact). To see in which homology
sphere a certain link is situated, one can replace the arrow-heads by dots. The
resulting EN-diagram is in general highly non-minimal and all nodes attached
with weight one should be discarded using [14], Theorem 8.1. For a link of a
plane curve singularity, one ends up with nothing, since S® is represented by
the empty EN-diagram (and minimal EN-diagrams are unique).

If one has a link with multiple components in a homology sphere other than
53, then the links of the members of its series should be in the same homology
sphere. This means that the same operations as in the plane curve case are
allowed — and nothing else. Summing up:

(3.7.2) Theorem Let f: (W,w) — (C,0) be a curve singularity defined on
a normal Z-homology surface (W, w) which has at most an isolated singularity
at the point w. Suppose that f has some multiple components in its EN-
“diagram. Then these multiple components can be replaced by, and only by,
the same replacements as in the plane curve case. So for double components,
Theorem 3.3.2 is still valid, and so are the cases of section 3.4. Furthermore,
the formulae of the topological invariants we have seen, remain valid. O

(3.7.3) Example Let W be the Brieskorn singularity given by
W= {(z,y,2) € C*| 2* + y° + 2 = 0}
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Let P? be the intersection of W with a small 5-sphere. The homology sphere
P3? is known as the Poincar€ sphere. Its fundamental group is the binary
icosaeder group of order 120. The Poincaré sphere has EN-diagram:

5.2

is
Define f : W — C by f(z,y,z) = z%. Then f has EN-diagram as in the first
picture below. Its Milnor number is 16. Its series consists of the functions

with topological types indicated in the second EN-diagram, with 2N > 30.
5.2 5.2 N_1

T Pt

(8.7.4) Many examples of curve singularities are defined on rational normal
surfaces, that have only the rational homology of a manifold.

Some of the simplest examples are curves on the quadratic cone 22 = zy,
with links in the real projective space RP3. Dimca [11] gives an example of
a series of curve singularities defined on this surface. EN-diagrams do not
extend to the situation of rational homology spheres. Therefore we cannot
apply exactly the methods of our definition.

Since the method of 3.6 still works, so we can use resolution graphs. How-
ever, it is not so easy to describe splicing or the algebraicity and splice condi-
tions in these terms. This is because in the EN-diagrams all linear chains are
contracted and we cannot easily predict, how the two linear chains leading to
the splice arrows will survive the splice operation.

The members of the series should be defined on the same space as its non-
isolated ‘head’. This is checked in a way analogous to the one above: remove all
arrows from the resolution graph of the members as well as of the head of the
series. The resulting graph is the resolution graph of the underlying surface.
According to Neumann [33], there is a unique minimal resolution graph of this
surface, and it can be obtained by successively blowing down (—1)-curves. In
this way we get a kind of algebraicity condition.

In the case of a double component we had two possible EN-diagrams that
we could splice onto it. The cases correspond to the singularities z°(y% — V).
The resolution graph of such a singularity is the graph of Ay_; with an arrow
of multiplicity ¢ attached to the ‘long end’ of the diagram:

2

-2 -2 -3 -

()=
L.
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-2 -2 -2 =1

= -
I

Therefore we can use this to extend Theorem 3.3.2 to this situation, since
it is clear that these graphs are the only ones that satisfy the blowing down
property mentioned above. Only the start of the series is not easy to see in
advance.

(3.7.5) It would be nice to extend EN-diagrams to this more general situation
of curves on a rational normal surface. The following idea can be tried to
extend EN-diagrams to rational homology spheres. Eisenbud and Neumann
put in a node a sign ‘4’ or ‘—’. The minus sign denotes reversal of orientation.
In our context of algebraic links, the orientation is always +, and that is
why we have omitted these signs. When computing linking numbers using
the method of 2.1, one “officially” has to take these signs into consideration
(see [14], section 10). Our idea is, to allow for an optional 1/n within each
node, with n € N. For instance, in [46], Example 2.4, the curve singularity f
on the quadratic cone z? = zy in C3, given by

f(z,y,2) = 2*(z — z)°(2 + 9)*,
is considered. We suggest the EN-diagram
()

(utv) ‘%(;)- (utw)

(w)

for this singularity, where the edge weights are 1 and within the node should
be thought a 3. The resolution graph of f is exactly the same, and the central
node has multiplicity m = u 4+ v 4+ w. This nicely fits with our 1, because the
rules of EN-diagrams now describe a multiplicity of (v+w+(u+v)+(u+w))/2.

Without the 1 within the node, this would denote (as a set) a link in S*
whose components have mutual linking number 1. This projects to RP? under
the usual 2 : 1 covering map to the link of f. Observe that the linking number
of two of the components is always %

Neumann communicated to me that not all algebraic links in rational ho-
mology spheres could arise like this. A possibility is that one obtains the
Q-homology spheres that admit locally a Z-homology sphere as a finite cover.
It would be interesting to investigate this in the future.



CHAPTER 4
Splicing spectra

4.1 Introduction

The spectrum and the spectral pairs of a singularity f are very powerful invari-
ants. They were introduced by Arnol’d and Steenbrink, see [54] and also [6].
The spectrum is a strong topological invariant; it determines for instance the
characteristic polynomial. Also in other respects it is powerful: one can use it
in connection with adjacencies of singularities, and it distinguishes large classes
of singularities. For example, it distinguishes all isolated quasi-homogeneous
singularities, and also all the examples found by Grima [17].

The spectral pairs are even stronger than the spectrum (later on we will
give an example of two singularities with the same spectrum but different
spectral pairs). When we spoke about “the spectrum” in earlier chapters, we
usually meant the spectrum or the spectral pairs but in this chapter we will
distinguish more carefully between the two.

In this chapter, we discuss several results that were jointly obtained by
Steenbrink, Stevens and the author, published in [46] (better known as [SSS]).
We will enter into detail only for the subjects that are related directly to the
work of the earlier chapters. There used to be the following conjecture, raised
by Steenbrink.

Conjecture [The Spectrum Conjecture] The spectral pairs of a plane
curve singularity form e complete invariant of the topological type.

There also was another conjecture concerning the real Seifert form which
appears to be equivalent to the Spectrum Conjecture. Neumann mentions this
conjecture in [35], and he writes that the conjecture’s “originator now denies
responsibility and will remain unnamed.”
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Conjecture The real Seifert form of a plane curve singularity is a complete
invariant of the topological type.

The answer to both conjectures — a negative one — arose from an example
found by Steenbrink and Stevens in Hamburg. It is reproduced in section 4.6.
It can be explained very well in terms of topological series. Furthermore, it
comes with a splice formula for spectral pairs.

4.2 Spectral pairs

The setting will be as in [46]. There, the spectral pairs are introduced in a
more general situation than was done before, cf. [6], p. 380. Let (X,z) be an
isolated singularity of a complex space which is equidimensional of dimension
n+1>0. Let f: (X,z) = (C,0) be a germ of a holomorphic function
vanishing at z.

A good representative for f is obtained as follows. Take an arbitrary repre-
sentative X', embedded into C™ such that z corresponds to 0. Then choose
e,nwithd <np<«e<landlet X = {2z € X'| |z| <eand |f(z)] < n}.
Put A={te C||t|] <9}, &* = A\ {0} and X* = X \ f~!(A*). Then
f:X* = A* is a C* fibre bundle. Recall that a typical fibre is called the
Milnor fibre of f, denoted for the moment by Xy ..

Let h : X;, — Xy, be the geometric monodromy of the Milnor fibration.
The (algebraic, cohomological) monodromy of f is the induced action T = h*~?
on the cohomology ring H*( X ).

The spectral pairs reflect the interplay between the action of T' and the
mized Hodge structureon H*(X; ;). It consists of an increasing weight filtration
W. on H*(X;,;Q) and a decreasing Hodge filtration F" on H*¥(X; C), cf. [54],
[55]. If one writes T' = T,T, = T, T, with T, semi-simple and T,, unipotent, then
T, preserves the filtrations W, and F", whereas N = log T,, has N(W;) C W,_,
and N(FP) C FP~!. For each eigenvalue A of T on H*(X},; C) we define:

H}9(k) = Kex(T, — M; Gt} Grly H*(X;4;C)),
r39(k) = dime HY(k).

Here H* denotes reduced cohomology as usual, Grl¥ = W;/W,_; and G =
Fr/F?P+l Moreover, we let

3t =3 (=1)"*h}A(k).

k=0
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For a € Q and w € Z we define integers m,,, as follows. Writea =n—-p—- 4
with 0 < 8 < 1 and let A = exp(—2mia). If A # 1 then myq = AYY77, else
Mo = By 1P, The spectral pairs are collected in the invariant

Spp(f) = Y mau(a,w),

an element of the free abelian group on Q x Z. By omitting the weights from
the spectral pairs one obtains the spectrum Sp(f) of f (cf. [56]):

Sp(f) = Y ma(a), where my = Y ma .

o

4.3 A formula for the spectral pairs

(4.3.1) In this section we state a formula for Spp(f) where f is a holomorphic
germ on a Z-homology surface X. The proof can be found in [46].

Let # : Z — X be a good resolution with exceptional divisor £, and
dual graph V. The cohomology group H'(M;Q) of the link M of z in X
has a weight filtration 0 C Wy C W, = H'(M;Q), and dim W, = 4 (V),
dim Wy /Wy = ¥ 29(E;) (where g(E;) is the genus of the component E; of E).
Hence X is a rational homology surface if and only if V' is connected, b;(V) =0
— V is a tree — and g(E;) = 0 for all 1.

Let X be a normal integral homology surface and let z € X. Let f :
(X,z) — (C,0) be a holomorphic germ. We can choose a good resolution
7 : Z — X such that 7= f~1(0) = U,eauv E, is a divisor with normal crossings
on Z. Without loss of generality we assume V # (. Let I" be the corresponding
EN-diagram. In [46], the following is stated for rational homology surfaces; we
restrict ourselves to integral homology surfaces in order to stay in the realm
of EN-diagrams and splicing.

(4.3.2) Remark Let f be a curve singularity as above. Define Spp,(f) =
Spp(f)—(0,1). Suppose Spp,(f) = L a.w Maw(e, w). Then it follows from the
definition that:

Al(t) = T](t — exp(—2xia))™e=,

oW

and, equivalently:

Cr(t) = H(l — texp(—2mia))™av.

ow
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One should always remember that in the definition of the spectrum reduced
cohomology is used, whereas in the definition of the zeta-function we use non-
reduced cohomology. _

We see that the spectrum numbers a are logarithms of the eigenvalues A.
For A # 1, there are two such logarithms possible (in the range —~1 < a < 1),
and the Hodge filtration decides which branch of the logarithm to use.

(4.3.3) Recall that A(I") denotes the set of arrow-heads of I" and N(I") the set
of other vertices. We add the notations R(I") for the nodes (they correspond
to the rupture points in V) and E(I') for the separating edges, that is, the
edges between two nodes (or between two arrow-heads). If all such edges are
broken (cf. 1.3.5) then we obtain the splice decomposition of I". Recall that
breaking an edge gives two arrow-heads with multiplicities (one of which could
be 0).

Furthermore, denote by S,(I") the set of nearest neighbours of the node v €
R(I') when I' is embedded in the resolution graph V. For such a neighbour w €
Su(I"), we can compute its multiplicity m,, as the number s; of lemma 2.7.1.

We also use the following notations, some of which are from sections 2.2
and 2.3:

— m, = the multiplicity of the vertex v € N(I').

~ d, = the ged of the two multiplicities that arise when edge e is broken

(e € E(I)).
- d, = the gcd of all link component multiplicities of the splice component
with single central node v (v € R(I")),

- d, = the number of components of F N ON(K), where N(Kj) is the
boundary of a small tubular neighbourhood of component K, (x €
A(I))-

Finally, for a real number u we put {u} for the fractional part of u (satis-
fying 0 < {u} < 1).

Using these notations we get for v € R(I'), e € E(I') and £ € A(I'), the
following elements of the free abelian group on Q x Z:

&y = X 1+ X {smu/m)-

0<s<my,mytsdy weS, () )
(s/my = 1,1) + (1 — s/my, 1)),
by = 3 [(—s/di,2) +(s/dy,0)],

0<s<dy,
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Ce = . Zd [(_3/d8a2) + (S/de,())],
do= T (-s/dy2),

(4.3.4) Theorem Let f : (X,z) — (C,0) be a curve singularity, defined on
an integral homology normal surface. Then

Spp(f)= 3 a— X bt D et Y, it (#A)-1)(0,1).

veR(T) veR(I) e€E(T) x€A(T)

Proof. This is Theorem 2.1 of [46] written in terms of EN-diagrams instead of
resolution graphs. o

(4.3.5) Example We compute the spectral pairs of A’Campo’s singularity:

fz,y) = (y* — 2°)(y® — 2?).
(10) (10)
1.3 3.1

- [2 Iz -
(5 (3)
Call the left-hand node * and the right-hand node ¢. The resolution graph

has only one more vertex, in between the two nodes. That vertex has multi-
plicity 4. We obtain:

a.=a,=(—3,1)+(-%,1) + (L, 1)+ (3,1).
Since d, = d, = 1, we obtain b. = b, = 0; and because the only separating
edge e has d, = 2, we get
ce =(—3,2)+(3,0).
This is an isolated singularity, hence ¢’ = 0. Therefore
Spp(f) = (—3,2) +2(— 55, 1) + 2(—15, 1) + (0, 1) + 2(35, 1) + 2(55,1) + (3, 0)-

Now consider g(z,y) = z”y? (a D[p, ¢]-point). Its EN-diagram has no node
at all, only two arrow-heads (one of multiplicity p, the other of multiplicity ¢)
connected by an edge e. Let d = ged(p, ¢). Then:

d-1

Spp(g) = Z[(_S/d? 2) - (S/da 0)] + (01 1)'

s=1

Compare this with (,(t) = 1.
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4.4 Spectral pairs and the real Seifert form

(4.4.1) From now on, we will use the notation F' again for the Milnor fibre
X of the curve singularity f. This will cause no confusion, since the Hodge
filtration will no longer be used. Let L : H (F;R)x Hi(F;R) — R be the real
Seifert form (its definition will become clear in a minute). In this section we
will prove that the spectral pairs determine the Seifert form and vice versa. It
is sufficient to prove this for the sesquilinearized Seifert form L on Hy(F;C),
and that is what we will do.

Neumann [34], [35] computed a normal form for the monodromy and L. If
L is the Seifert form on H;(F; C), then S = L — L* is the skew hermitian inter-
section form on H,(F';C), so ¢S is an hermitian form. Let H,(F;C) = @, H)
be the splitting of Hy(F';C) according to the eigenvalues of the monodromy
h.. Define

oy = signature(:S | H)),

the equivariant signature for the eigenvalue A. It follows from [34] and [35]
that the signatures and the Jordan normal form of the monodromy determine
the Seifert form. We will show how to find the signatures from the weight 1
part of the spectral pairs. This enables us to prove that the Grima examples
of singularities with the same rational monodromy [17] are distinguished by
their signatures, as was conjectured by Neumann [35], §7.

In view of Theorem 4.3.4, we define the a-part of Spp(f) to be the spectral
pairs of the form (a,1) — the weight one spectral pairs — with o # 0.

(4.4.2) Proposition The a-part of Spp(f) determines the equivariant signa-
tures. In fact, if we write

a= Z a,,=Zno,(a,l),

veR(I)

then for A # 1:

Oy =MNg — Ng_1
where a satisfies exp(+27ia) =X and 0 < a < 1.

Observe that a — 1 is the other logarithm of A in the interval between —1
and 1. One has 0Z; = o7 =0, see [34].

Proof. Hi(F') has a weight filtration

W_z C W_1 C WO = HI(F)7
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dual to the weight filtration on H'(F):

W_Hy(F) = W,H'(F)*,
W H(F) = WoH'(F)*.

On H,(F) we have the monodromy operator T = h, and N = logT,. Fur-
thermore, W_, H,(F') = NH;(F) & Ker(j), where j : H;(F) — H'(F) induces
the intersection pairing. The factor Ker(j) clearly does not contribute to the
equivariant signatures.

The factor NH;(F) corresponds to the 2 x 2-Jordan blocks of T'. Consider
a 2 x 2-Jordan block for the eigenvalue A and choose a basis e;, e; such that
T and N are of the form

Al 01
T«-(O /\)a,ndN-(O 0).

Then W_, = Ce;. Because N is an infinitesimal isometry, we have
S(el, 61) - S(NEQ,NCQ) = —S(eg, NZEZ) =0.

Hence on Ce; & Ce;, the matrix of .5 is a 2 X 2-hermitian matrix with non-zero
determinant and top left entry equal to 0. So it has a positive and a negative
eigenvalue. It follows that the contributions of the 2 x 2-Jordan blocks are
equal to 0.

Consequently, the signature of iS | H) is equal to the signature of ¢S on
Gr¥, H,, which by Poincaré duality will be identified with GrY H!(F);. Let
w be a holomorphic 1-form. Locally we can write w = g(2)dz with z = = + 1y.
Then iw A @ = i|g(2)|?dz A dz = 2|g|*dz A dy. So

iS(w,w):z'ij/\rD>0.

Similarly one proves that anti-holomorphic 1-forms give a negative contribution
to the signature. Therefore:

oy = dim HY' — dim H}°,
which proves the proposition. =]

(4.4.3) Example We continue our previous example f(z,y) = (y% —2%)(y® —
z?). Clearly, if {( = exp(2#i/10), then o = 0ps = 2 and 07 = 0 = =2,

of. [35], §7.
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(4.4.4) Example Let n > 3 and let ¢y,...,a, be pairwise relatively prime
positive integers. Consider the EN-diagram

(1)

M
IN

We encountered this EN-diagram already in lemma 2.7.1. It represents the
function f(z1,...,2,) = [I%, 2™, defined on the homology manifold

(ms)

7

n
View,...,an) ={2 € C" | ) Ay2;? =0for 1 <i <n -2},
=

where A is a sufficiently general (n—2) xn-matrix. We can use Proposition 4.4.2
to compute the equivariant signatures of f. For a real number z, define

Let A = e¥* with 0 < « < 1. If @ is not of the form p/m with m the
multiplicity of the central node, then oy = 0. So write @ = p/m with m the
multiplicity of the central node. Using lemma 2.7.1, we obtain:

ety = 2L 3 ozl

i=1

ne = —1+3 {sj(m— p)/m}.

i=1

Observe that for 8 € ]0,1], we have {—8} — {8} = 1 — 28 = 2((8)). By

Proposition 4.4.2, we obtain:
n n k(]
oy = 3_{—psj/m} =3 {psj/m} =23 _((psi/m).
i=1 i=1 i=1
This gives an alternative proof of [35], Theorem 5.3.
We are now ready to state the main theorem of this section.

(4.4.5) Theorem Giving the real Seifert form of a curve singularity defined
on a homology manifold, is equivalent to giving the spectral pairs.
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Proof. In [35], Neumann showed how to compute the Seifert form from the
equivariant signatures and the polynomials A;, A! and A’ defined in sec-
tion 2.3. It is also possible to retrieve these polynomials from the Seifert form,
by analyzing the multiplicities of the eigenvalues.

We will show how to get the polynomials from the spectral pairs and con-
versely. Together with Neumann'’s result this proves the theorem. We use the
notation e(a) = exp(—2ria).

Let Spp(f) = Yaw Maw(a, w) be the spectral pairs of some curve singu-
larity f. The signatures have been computed in Proposition 4.4.2, so it suffices
to give formulae for the characteristic polynomials. Let Ay be the character-
istic polynomial of the monodromy on Ho(F). Consider the rational function

A. = AI/ZO. We have seen that
A1) = Tt — e(a))me.

o w

Observe that r = mg; + 1 is the number of branches of f. Write m/ =
Mea2 — M_go. Then ¢ =3 _1cqcomh(a,2) is the ¢-part as in Theorem 4.3.4.
Let P’ be the polynomial

Pty= TI (t—e(a)™.

—-1<a<0
There is a unique way to write P’ in the following form:

|
t—1"

P(t)=1I

KEA
Now if d = ged{d, | « € A(I')}, then

#—1
t—1°

Ao(t) =
and hence we obtain A; = A,Ag. Also, the ¢-part gives us A’; it is easy to
check that

Aty=@" -7~ [ (t—e(a)™.

-1<a<0

Since the roots of A! are precisely the eigenvalues of the monodromy that
occur in the 2 x 2-Jordan blocks, we have

A1) = Ao(t) T (¢~ e(a))mee.

0<a<l
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Conversely, let the equivariant signatures o} and the polynomials 4;, A and
A’ be given. We can obtain A, from A’ as we obtained it from P’ above. Let
by, b, b, and b be the multiplicities of X as a root of 4;, A1, A’ and A,
respectively. It follows by straightforward computations, that

Spp f) zmaw(a 'w

with
Ma2 — ble(c!) + be(a for -1 <a< 0,
Ma1 = (be(a) = byo) = 2b3() + 0oey)/2 for —1 < a <0,
Mo = b; =r-1
Ma1 = (be(a) - b:;(a} e 2bi(a) s O';ia))/,? for0<a< 1,
Mao = byo) — boe(a) for0<a<1,
Maw = 0 otherwise.

(A similar formula for the spectrum was derived in [44].) This proves the
theorem. o

4.5 A splice formula for spectral pairs

(4.5.1) In this section we derive the splice formula for spectral pairs as pre-
sented in [46]. A splice formula for spectra has been given in [44]. We outline
three of the sources of interest in this formula:

- It can be used to give a formula for the spectral pairs of a topological
series of curve singularities.

— The splice formula can be used to define spectral pairs for certain non-
algebraic links. This poses the question of how to interpret these spectral
pairs. For instance, Proposition 4.4.2 still applies to compute the signa-
tures.

- The counterexamples to the Spectrum and Seifert form Conjectures can
be explained by the splice formula.

Before we state the theorem, we will give an illustrative example.

(4.5.2) Example In example 4.3.5, we computed the spectrum of the plane
curve singularity f(z,y) = (y* — 23)(y® — z*):

Spp(f) = (—5,2) + 2(—5%5, 1) + 2(—35. 1) + (0, 1) + 2(55, 1) + 2($, 1) + (3, 0).
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In example 1.3.6, we saw that the splice decomposition of f consists of two
pieces, each of which is isomorphic to the Seifert piece of the non-isolated
singularity g(z,y) = ?(y? — z3). We have

SPP(9)=("%s2)+( mal)‘i'( 10?1)+(0 1)+(110?1)+(10’ )

Notice that Spp(g) contains the ¢-part (—%, 2). Splicing introduces a new edge,
and both contributions to ¢’ change into a contribution (—1,2)+ (3,0) to c (a
new 2 x 2 Jordan block). This motivates our idea that Spp, = Spp — (0,1) is
almost additive (i.e. additive except for one small part which changes sides).

(4.5.3) Theorem [Splice formula for spectral pairs] Let f : (X,z) —
(C,0) be a curve singularity defined on a homology manifold, whose link is
the result of splicing the links of the curve singularities fy : (X1,z,) — (C,0)
and f; : (X3,z2) — (C,0) along components of multilink multiplicities m, and
mg, in such a way that the splice and algebraicity conditions are respected. Let
& = ged(my, my). Then

§-1
Spp(f) = Spp(f1) + Spp(f2) — (0,1) + Y _[(s/6,0) — (—s/6,2)].

s=1

Proof. Consider the EN-diagrams of f, f; and f;. By Theorem 4.3.4, it is
clear that Spp(f) is almost equal to Spp(f1) + Spp(/fz2), except that we have
to take into account that the EN-diagram of f has two arrow-heads less than
the EN-diagrams of f; and f; together and one more edge instead.

Both arrow-heads £, and &, together give a total contribution of

Z (—s/6,2)

s=1

to Spp(fi) + Spp(/f2), whereas the new edge e contributes

§—1
Z[(—S/ﬁ, 2) + (5/5? 0)]

s=1

to Spp(f) — it follows directly from the definitions that d., = d., = d, =
ged(my, my) = 6.
This proves the splice formula. D
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4.6 The counterexample to the Spectrum Conjecture

(4.6.1) In this section we present the counterexample to the Spectrum Con-
jecture. According to Theorem 4.4.5 this is also a counterexample to the con-
jecture about the real Seifert form. The example was found by Steenbrink and
Stevens when the former visited the latter in Hamburg. In [46] it is presented
alongside several other examples, each with its own special property.

We will give the example in terms of topological series. Consider the plane
curve singularity with equation

f(z,y) = (y* — 2*)*(y* — %)%

) (2)
> 2 2 <

2 (2)

Its EN-diagram is

It has four double components. A typical element fn, n,.n5,N, Of its topological
series has an EN-diagram which can be obtained by replacing each of the four

arrows by
“-‘_.ig_'

with V; > 4 (1 <1 < 4). Recall that such an extension has two arrows if NV, is
even and one if NV; is odd; and that the multiplicity of the node is determined
by N; + ¢;. But ¢; = 8 for each 1 < ¢ < 4. From Theorem 4.3.4 or the splice
formula, it is clear that the spectral pairs are the same for all permutations of
{N1,..., N4}, but we can have more than one topological type. For instance,
fs,56,6 and f5¢5,6 have the same spectral pairs (and hence the same signatures)
but different topological types.

f5,5;6,6

(4.6.2) The same example also produces an example of functions with the
same spectrum, but different spectral pairs. Observe that above also the special
case V; = 4 1s allowed. This gives two arrows attached directly to one of the



50 Splicing spectra

nodes. The functions fy455 and fis5.45 clearly have the same spectrum but
different spectral pairs: the first has pairs (—1,2) and (3,0) and the second
has (—31,1) and (3,1) instead, cf. [46], Example 5.4.1.

(4.6.3) Other examples of functions with the same spectral pairs but different
topological type in [46] include functions with two branches and functions with
the same integral monodromy. On the other hand, it is proved that the Grima
examples [17] of plane curve singularities with the same rational monodromy
are distinguished by their spectral pairs — in fact even by their signatures as
was conjectured by Neumann [35].

Also the examples of Michel and Weber [30] of functions with the same
integral monodromy are distinguished by their spectral pairs, since they are
quasi-homogeneous (the spectrum of a quasi-homogeneous isolated singularity
determines the weights, not only for curves, cf. [46]).

4.7 The spectral pairs within a topological series

(4.7.1) The splice formula allows us to give a formula for the spectral pairs
within a topological series. We will do this in the case that we have only double
components, since then we can be more explicit. As we have seen, the special
case N = Ny which does not formally belong to the series, but is often counted
as such, causes trouble for the spectral pairs. The spectrum does not notice
the difficulties.

Let f be a non-isolated singularity with only double components. Recall
that according to Theorem 3.3.2, a typical element of its series has EN-diagram

I'Ff
IS

where N = (Ny,...,N,) > (No,...,No,) (we define Ny; and ¢; as usual,

cf. 3.5).

(4.7.2) Proposition Wrile fori < s: 7 =0 if ¢; is even and vy = 3 if ¢; is
Odd Let Vi = N,‘ + C. Then:

Se(f) = $p() + & 35 - 225D,

Proof. One can work out the various cases using the splice formula. It is also
possible to use the proof of [56], Theorem 4.5, which is valid in our situation.
a
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(4.7.3) Remark The proposition is a generalization of Corollary 3.5.1. One
can gencralize further to spectral pairs. Almost all spectrum numbers that
are added, have weight 1; only (—3) and (3), if present, have weight 2 and 0
respectively. The proposition as stated is also valid if N; = Ny; for some 3.



CHAPTER 5 |
Deformations of plane curves singularities

5.1 Introduction

We consider non-zero holomorphic function germs f : (C%,0) — (C,0) and
certain deformations. The programme follows the established path laid by
work of R. Pellikaan and T. de Jong. In his thesis [36], Pellikaan developed
the deformation theory for application in the case of singularities of arbitrary
dimensions with a one-dimensional singular locus and transversal type A;. De
Jong [19] considered the case that the singular locus is a smooth curve but
with more complicated transversal types. In later versions, Pellikaan stated
his results more generally ([37], [38]), and we can obtain our key results by an
easy and straightforward application of his theorems.

Our study is, however, in a sense transverse to that of Pellikaan, since we
consider arbitrary transversal types but only in the plane curve case.

We start by defining the Jacobi number ji(f) = dime 1/J; (where I is the
ideal defining the singular locus X' and J; the Jacobi ideal) and prove that finite
Jacobi number is equivalent to finite I-codimension and to f having prescribed
transversal singularities along the branches of the singular locus. For f with
finite Jacobi number we consider deformations and count the number of special
points in such a deformation. We prove that j;(f) in fact equals the Milnor
number of the associated reduced singularity fgr.

We carry on by following Siersma [49], in order to express the Milnor num-
ber u(f) in the number of special points. This generalizes results of Siersma
and De Jong (in the plane curve case). The answer is the following: Let X* be
the reduced curve whose branches are the branches of the singular locus of f
where f has transversal type Ax_;. Let #D[p, ¢] be the number of points in a
deformation f; of f which makes each X* smooth, where, in local coordinates,
the singularity of f; is 2Py?. Let d be the number of connected components of
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the Milnor fibre. Then:

w(f)=3(p+q—1) #Dlp,q) + #D[1,1] + 3 (k - 1)(s(Z*) — 1) +d — 1.

r<q

This work answers a question of Dirk Siersma, who asked how the Jacobi
and Milnor numbers of an arbitrary plane curve singularity could be expressed
in the number of “p,g-points”, in other words: to get the plane curve case over
and done with.

(5.1.1) Notation By Z(I) we denote the analytic space defined by the van-
ishing of the elements of the ideal I of O.

5.2 Invariants

(5.2.1) Recall the following notations: @ = C{z,y}, m is its maximal ideal.
We call the elements of O (plane) curve singularities.

We denote by Sing(f) the singular set of an analytic function germ f € O.
If C C Sing(f) is one-dimensional, then f is of transversal type Ay—1 along C
if for all ¢ € C' we can find local coordinates u, v in a neighbourhood of ¢ such
that f(u,v) = v™. The name comes from the fact that on a transversal slice
X the zero-dimensional singularity f: (X, ¢} — C is of type Ap-1.

(5.2.2) Definition Let p > 0,¢ > 1 be integers. A germ of an analytic
function f : (C?,0) — (C,0) is said to be of type Dip,q] if there are local
coordinates z, y such that f(z,y) = zPy9. A function germ of type D[p, p] is
also called of type A[p]. We will also use Siersma’s notations, such as A, =
DI[0,2] and D, = D[1,2]. Note that D[p,q] = Diq, p|.

(5.2.3) Let I C O = C{z,y} be an ideal. Then we define the primitive ideal
JI={feO|(f)+ Js C I}. Here J;s is the Jacobi ideal of f, generated by
the partial derivatives. This definition is due to Pellikaan.

Suppose I = (¢')O and let ¢’ = g™~ ... g™~ where m; > 2, be the
decomposition of ¢ in irreducible factors. Then it is easy to see that [I =
(g7 -+ g*), cf. [36] L.7.

Let D be the group of local analytic isomorphisms % : (C%,0) — (C%,0).
For an ideal I we define: Dy = {¢p € D | ¢~(I) = I}.

(5.2.4) In the sequel we will always have the following situation:

(a) I = (g7 - -gm~1)O with g; irreducible, m; > 2 (1 < < r), and g;
and g; having no common factor (z # j).
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(b) JI=90 = (" ---g7")O..

(¢c) Zi=2Z(¢), X =2,U---U L,
If f € fIthen ¥ C Sing(f). We are looking for conditions on f such that
Sing(f) = X and f has transversal type Ap,,—; along X; \ {0}. It will prove
useful to give (X, 0) the (possibly non-reduced) analytic structure of J. Observe
that in this case D = DfI'

We have a right action of Dy on fI and hence for all f € [T we have

Orbs(f) C f1. Consider the tangent space TD; of Dy at the identity. Observe
that TDy is a subset of TD, the tangent space of D at the identity. We identify

TD with m@, the germs of vector fields vanishing at the origin.
According to [36], p. 19 we have TDr = {{ e m6 | é(I) C I}.

(5.2.5) Definition Let f € fI. Then we define ¢;(f) = dime [I/TDi(f),
where TDi(f) = {€(f) | £ € TDr}. er(f) is called the I-codimension of f.

Suppose I = (y™~1). Then one easily sees that ¢;(f) = 0 if and only if
[T =(f),1e. f has transversal A,,_; singularities along Sing(f); and ¢f(f) = 1
if and only if f is of type D{1,m].

We now state some standard finite determinacy results (cf. [48]). If a is
an ideal in @ and k € N, then f € a is called k-determined in a if f + m*a C
Orba(f).

(5.2.6) Theorem Let f € [I. Then:
(a) If f is k-determined in [I then fI-m* C TDi(f) + [T -m*+L,
(b) If [I-mF C mTDy(f), then f is k-determined in [I.
The proof is standard (cf. [48], [37]). O

(5.2.7) Corollary ¢;(f) < oo if and only if f is k-determined for some k €
N. Furthermore, if ¢;(f) < oo then Sing(f) = X.

Proof. The first statement is obvious. Now suppose ¢;(f) < oo, so there is a
k such that [I-m* C TD(f). Because TDi(f) C mJ; N [1, it follows that
Z(Js)U X C L, hence Sing(f) = 2. o

(5.2.8) Definition Let I be as above. Then we define j;(f) = dimc I/J;.
We call j;(f) the Jacobt number of f.

The Jacobi number plays the same réle as the Milnor number in the case of
isolated singularities. Since dimg O/J; is infinite, we look at other quotients
and it appears that I/J; is the right choice.
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(5.2.9) Example If 7 = (y™1) and f(z,y) = y™ then ji(f) = 0. If f
is of type D[p,q], then choose coordinates for which f(z,y) = zPy?. Let
I = (z7"'y71). Then ji(f) = 1.

Later we will show that the Jacobi number equals the Milnor number of the
reduced singularity associated to f. This fact seems to have been unnoticed
before and it is definitely false in higher dimensions.

(5.2.10) Proposition Let f € [I and suppose j;(f) < oo and depth(O/I) >
0. Then:

(2) TDi(f) = mJs N [T (mJ; = TD(f)),
(b) c1(f) < oo.

Proof. This is Proposition 5.3 of [37]. The number ¢y o(f) = dime fI/(J;N[I)
is also considered by Pellikaan. It is clear that cr.(f) < ¢i(f). In Proposi-
tion 5.3 of [37] it is in fact proved that c;(f) < 7i(f). But ¢;(f) is finite if
cr(f) is finite, because the quotient M = (J; N fI)/(mJ; N 1) is a finitely
generated O-module and m(J; N [I) C TD;(f) = mJ;N fI, so mM = (0) and
dimec M < oo. a

This shows that ¢;(f) is an invariant of the right-equivalence class of f.
(5.2.11) Theorem Let f € [I. The following statements are equivalent:
(i) j1(f) < oo,
(ii) e1(f) < oo,

(iii) f is a singularity with singular locus ¥ = X, U--- U X, and transversal
type Apm,—1 along L;\ {0} (1 <:i<r).

Proof. (i) = (ii): Proposition 5.2.10.

(if) = (iii): In Corollary 5.2.7 it has been observed that Sing(f) = X. We
consider the sheaf O of analytic functions on a small neighbourhood V of the
origin (for a € V the stalk at a is O,). We have ideal sheaves Z, [T and J;
with the obvious meanings. Let F = [I/(J; N [I). Then F is a coherent
sheaf of O-modules. Now because ¢;( f) is finite and dime Fo = cr(f), we can
choose V such that dime¢ F, = 0 for ¢ € V' \ {0} (F is concentrated in a finite
set of points). Look at a point a € X;\ {0}. (X, a) is defined by (¢/~"!) and g;
can be used as one of the local coordinates near a. From the remark following
definition 5.2.5 it follows that f has only transversal A,,;,_; singularities along
Z\{o}(a<i<r).

(iii) = (i): According to example 5.2.9 the stalk of T/J; at a € V' \ {0} is
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(0) if we choose V sufficiently small. So Z/J; is concentrated in a finite set
of points and therefore we obtain that j;(f), the dimension of the stalk at the
origin, is finite. O

5.3 Deformations

(5.3.1) Deformations of isolated singularities are thoroughly studied. They
are used to split up the complicated isolated singularity into a number of
simple singularities which are better understood, and in this case it is well-
known that it splits up into A; or Morse singularities (in our notation: D[1,1]
singularities) and that their number is the Milnor number g of the singularity.

In this section we will consider deformations of a non-isolated plane curve
singularity f. In such a deformation, it is important to describe what happens
to the singular set of f, because we want to recover various properties of f
in the deformation (e.g. we would like that the Milnor fibrations of f and the
deformed f; are equivalent, cf. lemma 5.4.8). A theorem of Pellikaan is invoked
to show that j;(f) is invariant under deformations.

We will consider two kinds of deformations in more detail and compute
the number of special points (critical points) in such a deformation. In the
next section we will use these two types to obtain two formulae for the Mil-
nor number. The two special kinds are examples of deformations where the
singularities of f split up into D[p, ¢ singularities only. There are many other
possible deformations, giving similar formulae for the Milnor number.

Our reference for this section is [38].

(5.8.2) Definition Let I = (g ... g™ 1) define (X, 0) as before.
(a) We define Er = {m1,...,m,}.

(b) For p € Ey, let X? be the reduced curve defined by the product of all g;
such that m; = p. We call X? the p-part of X.

(c) Let f € [ with j;(f) < oco. By Theorem 5.2.11 we can write
f= H f(’;,)-

pEEU{1}

For p,q € E; U {1}, p # q, we define d,,(f) = dimc O/(f(), fig)), and
for other p, ¢ we put d,,(f) = 0.

It will appear in the next section that for p # ¢ the number d, ,; is the number
of D[p,ql]-points in a deformation. Notice that if p,q > 1, d,, = TP - X4
(intersection number).
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(5.3.3) The following definitions come from Pellikaan [38]. We think of X' and
I being as before, but for the definitions this is not important. Let (X, 0) be a
germ of an analytic space defined by the ideal I in O. A defermation of (X, 0)
consists of a germ of a flat map G : (X,0) — (S, 0) of analytic spaces, together
with an embedding i : (X,0) — (X,0) such that (:(X),0) = (G~1(0),0) as
analytic spaces. We can embed (S,0) in (C?,0) and (X,0) in (C? x C°,0)
such that the following diagram commutes:

£,0 4 (X0 S (50
! ! l
(C2,0) i (CtxC7,0) = (C7,0)

where j(z) = (z,0) and 7 is the projection on the second factor. Let O be the
local ring of germs of analytic functions on (C? x S,0). Let I be the ideal in
O defining the germ (X, 0) considered as a subspace of (C? x S, 0).

(5.3.4) Definition Let (X,0) be a germ of an analytic space in {C?, 0) defined
by I and G : X — S a deformation of X. Let f: (C?,0) — (C,0) be a germ
of an analytic function such that f € fI. Let F : (C? x §,0) — (C,0) be a
germ of an analytic map. Then (F,G) is called a deformation of (f, X,0) if
F(z,y,0) = f(z,y) and

(FYO+JrCli

(2E aF )(5 and z, y are local coordinates.

where JF = ErEET

For example one could consider deformations of (f, X',0) with X fixed, as
in [36] and [50]. We will not do this, because such a deformation only gives
information about the D[1, p|-points.

If the context is clear, then we say that F' is a deformation of (f, X,0), or
even that F is a deformation of f.

(5.8.5) Let I = (g™ -e.gm1), fI = (gl --g™) and f € [I as before.
From now on we assume j 1( f) < oo

The first kind of deformation we consider, will be one with as much cross-
ings as possible. It will be called a network map type of deformation?.

Such a deformation arises as follows: First look at the reduced singularity
fr. This singularity can be deformed in such a way that it has only normal
crossings and their number is &, the virtual number of double points. An

1We specifically think of the London Underground network map designed by Harry Beck
in 1933.



58 Deformalions of plane curves singularities

explicit construction, involving small translations of the branches in the reso-
lution, was first given by A’Campo [1] and by Gusein-Sade [6]. We now have a
network map deformation (fr); of fr, and get one for f by giving the branches
of (fr): the correct multiplicities of f.

Write f = g7" -+ - g™ h,y1-- - h,. Let the network map deformation of

fR=91 "'grhr+1"'hs
be Fg: (C? x C?,0) — (C x C7,0). We may assume that we can write
Fg(z,t) = (G1(z,t) - - G (2, t) Hr g1 (2, 1) - - - Hy(2,1),1),

where the G; and the H; describe what happens to the branches of fg (this
is possible in the construction of A’Campo and Gusein-Sade), and z = (z,y).
Now let

F(zrt) = Gl(zst)ml R Gr(z7t)mr ,.+1(Z,t) e 'H_,(Z, t)

and

G(z,t) = (Gi(z, )™ -+ - Gp(2, )™, 0).
Then (F,G) is a deformation of (f, X,0) and we say that (F,G) is a network
map type deformation of f.

(5.3.6) The second type of deformation will be a deformation of (f,X,0)
which makes each of the p-parts X of the singular locus ¥ smooth. Recall
that we consider (L?,0) (p € E = Ey) as areduced curve. There exists a versal
deformation G, : (C? x C°»,0) — (C x C%,0) of (X?,0) with G,(z,t,) =
(Gpi(z,tp),t,). Let 0 = ¥, cp0p. By t = (t,),ee we denote local coordinates

on C?. Let
G(z,t) = ( H Gpl(z,tp)p_lat)5

PEET

then (G defines a deformation of X. Furthermore, write f = ¢** --- g™ h and
define F : (C? x C° x C3,0) — (C,0) by

F(z,t,a,b,¢) = [] Gu(z,1)P(h(z) + a + bz + ey).

pEE]

Then (F,G) defines a deformation of (f, X,0), a deformation which makes the
p-parts smooth.

The next theorem is an important result due to Pellikaan. In [38] it is
proved as a part of a larger theorem.
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(5.3.7) Theorem Let I, f € [I, and X be as before and ji(f) < co. Let
G : (X,0) — (8,0) be a deformation of (X,0) with non-singular base (S,0)
and let (F,G) be a deformation of (f, X,0). Let 7 : (C? x S,0) — (5,0) be the

projection. Then there exist representatives for all considered germs such that

forallte S
alH)= 3 ilfea)
a€m—1(t)
So the Jacobi number is invariant under deformations. m]

The following theorems show that in our type of deformations, the number
of special points is finite. We omit their straightforward but somewhat tedious
proofs, which are analogous to the proofs of Propositions 7.18 and 7.20 of [36].

(5.3.8) Theorem Let I, f € [I, and X' be as before and j1(f) < oo. Suppose
F:(C?x8,0) — (C,0) is a network map type deformation of (f, X,0), where
S = C°. Then there is a dense subset V C S and an open neighbourhood U of
0 € C? such that for all t € V sufficiently small:

(a) f7'(0) has only normal crossings, and their number equals §(fg), the
virtual number of double points of the reduced germ fg,

(b) fi has only A, singularities in U \ X,
(c) for 0 < p < ¢q, fi has only D[p,q] singularities on L} N U, and their

number is dy, ,( ),
(d) fi has only D[0,q| and a finite number of D|q, q] singularities on the rest
of ZINU. o

(5.3.9) Corollary ji(f) = u(fr), i-e. the Jacobi number j;(f) equals the
Milnor number p(fr) of the reduced singularity fg.

Proof. A network map type deformation of f arises from a deformation of the
same kind. It is well-known that u(fr) equals 6 + #A;, where § is the number
of crossing points and # A, the number of A, is singularities outside the zero-
locus. By construction, the deformation of f has é§ D[p, q] crossing points. But
it is also not difficult to see that there are as many A;-points outside the zero
locus as there are outside the zero locus in the deformation of fg.

By Theorem 5.3.7 it now follows that j;(f) = u(fr), for we know that the
Jacobi number of all D[p, q] singularities is 1. O

(5.3.10) Remark The Jacobi number being equal to the Milnor number of
the reduced singularity gives interesting interpretations to several of the for-
mulae to be found in Pellikaan’s work. For instance, from [36], 5.14, it follows
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that for an isolated plane curve singularity, the difference of the Milnor and
Tjurina numbers pu(f) — 7(f) equals the extended codimension ¢ (f?).

(5.3.11) Theorem We use the same notations, ji(f) < co. Suppese F is a
deformation of (f, X,0) which makes the p-parts smooth. Then there exists a
dense subset V C S and an open neighbourhood U of 0 € C?, such that for all
t € V sufficiently small:

(a) E¥ is smooth for each p € Ej,
(b) fi has only A, singularities in U \ X,

(c) for 0 < p < q, fi has only D[p,q] singularities on L} N U and their
number is dp o(f),

(d) fi has only D|0,q] singularities on the rest of Z} NU. o

5.4 Dip,q]-points and the Milnor number

(5.4.1) From now on, we will write F' for the Milnor fibre of f, whereas f;
will denote a deformation of (f, X,0), with X' = Sing(f), which is a network
map deformation or a deformation which makes the p-parts smooth. The
decomposition of f into irreducible factors is

=0 fw £

wherer > 1,s>randm; 22 (1 <:i<r). Weput myyy =+ =my,=1. F
will denote the Milnor fibre of f.

A Dip, g]-point of f; is a point where f; has a local smguia.rlty of type
Dlp,q]. We ignore D[0, q]-points. Denote the number of Dip, ¢]-points of f;
by #D][p, q], the number of D[p, g]-points on f;"(0) by #D°[p, q]. We assume
that for (p,q) # (1,1) all D[p, g]-points are in fact situated on f;2(0).

We will express the Milnor number u, which is the dimension of H,(F; Z),
in the number of D|p,g]-points of f;. Put d = dim Hy(F;Z) (the number of
connected components); d equals gcd(my, . .., m,). In this section, the singular
locus has its reduced structure, i.e. it is defined by (f; - - - f.). This is important,
as u(X), the Milnor number of X', will come in.

(5.4.2) Our formulae will generalize various known formulae for the Milnor
number, which are, however, often valid for all dimensions. Some of them are
outlined below.
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(1) In the case of isolated singularities, where my = --- = m, =1, we have
the well-known

p=2—-3+1,

see [9]. The number § is the virtual number of double points and equals
the maximum of #D°[1,1] over all deformations of f. Another formula
is

w=#D Ilv 1]1
as used for instance in the method of A’Campo and Gusein-Sade [6].

(ii) In the case of transversal type A,, where m; = --- = m, = 2 we have the
formulae of Siersma:
b= 2D, 2]+ #D[,1] — w(5) +d -2,
if X is deformed in such a way that it becomes smooth, see [49]; and:
u = 24D[1,2) + #D[1,1] - 2u(2) — 1,

if #D[1,2] > 0 and X remains fired under the deformation ([50]).

(iii) In the case that X' is a non-singular curve and the transversal type is

Apa(eg. f=y1fz- fu):
p=q#D[l,q| + #D[1,1] — g +1,

see De Jong [19].

Below, we state two formulae for the Milnor number of f, one for each of
the special types of deformations that we consider. The first of them, which
is known, we give for the sake of completeness. Then we give some examples
of the computation of the Milnor number using our formulae. After that, we

give the proofs. Recall that d is the number of connected components of the
Milnor fibre F.

(5.4.3) Theorem (Formula 1) Let f; be a network type deformation of f.
Then:

p(f)=>(p+q) - #Dp,q) - S +d

where the sum runs over all D[p,q]-points on f7'(0) with p < ¢, and S =
Yi_ymy, the number of branches counted with multiplicities.
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(5.4.4) Theorem (Formula 2) Let f; be a deformation which makes the
p-parts P smooth. Then

u(f) = S(p+q—1)-#D[p,ql + #D[1,1] +

p<g

+ Y (k=1 (u(Z*) 1) +d -1,
k

the first summation over the D[p, q]-points with p < gq, the second summation
over all k € {my,...,m,}.

(5.4.5) Example We compute the Milnor number in four cases.

(i) f(z,y) = «?y*. Then d = ged(p, ), u(ZP) = u(Z") = 0, and #D[p, ¢} =
1. Both formulae give p = d.

(i) f(z,y) =2Py%(z +y) with1 < p < q. Thend =1, pu(X?) = p(X9) =0
and #Dlp,q] = #D[1,p] = #D[l,q] = #D[1,1] = 1. See figure 5.1.
Both formulae give p = p+ ¢ + 2.

q LN

~

Figure 5.1: (ii), (iii) deformation 1; and (iii) deformation 2.

(i) f(=,y) = «Py?(z + y) with p > 1. Then d = 1 and p(X) = 1. See figure
5.1. '
— Formula 1 only works with deformation 1 and gives: u = 2p+2 (see
(i1)).
— Formula 2 only works with deformation 2 and gives the same result:
p=p#D[,pl+ #A +(p—-1)(R(Z)-1)=2p+2.

(iv) f(z,y) = (y* — 2°)P(y> — 2%)?, with p < g. Then d = ged(p, q), u(Z?) =
u(X?) = 2 and #Dlp, q] = 4. See figure 5.2.
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— Formula 1 only works with deformation 1 and gives: p = 5p+5¢+d,

because #D|p,p| = #Dlg,q] = 1.

— Formula 2 only works with deformation 2 and gives: p = 5p+5¢+d,
because #D[1,1] = T.

Figure 5.2: (iv) deformations 1 and 2.

(5.4.6) Proof [of Theorem 5.4.3]. Near X; the Milnor fibre is a m;-sheeted
covering of the zero locus X = f;!(0), except in the multiple points. So start
with S copies of the disc D?, and cover the #** branch with m; copies. If for
each D[p, q]-point, we remove p + ¢ small discs and replace them by gcd(p, ¢)
small annuli (the local Milnor fibre of type D[p, ¢]), we obtain the Milnor fibre
F. So the Euler-Poincaré characteristic of F' is clearly

x(F)=58-3(p+4q) #D°p,q).

Since F' has d connected components, we obtain

w(f)=Y(p+q) #Dp,q) — S +d.

psq
This proves the theorem. O

(5.4.7) The proof of Theorem 5.4.4 (Formula 2) requires more work; we will
follow Siersma [49]. We have to start with some definitions and lemmas. In
the following, f; will be a deformation of (f, X,0) which makes the p-parts
smooth and the notations are as in the theorem.
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We write X = f;7'(0). Let g9 be an admissible radius for the Milnor
fibration, i.e. a positive number with the property that for all ¢ € [0,¢q],
X M OB, as stratified set. For each admissible € > 0 there exists a 6, > 0 such
that f~1(u) M 9B, for all |u| < é.. Fix € < gy and é < &, and let D be the
disc of radius §. Put Xp = f~!(D)N B, and Xp; = f;'(D) N B,. Consider
f:Xp—=Dand f,: Xp; — D.

(5.4.8) Lemma Fort and é sufficiently small, we have:
(a) f7'(u)M B, forallu € D.
(b) Over the boundary circle D the fibrations induced by f and f; are equi-
valent.

(¢c) Xp and Xp; are homeomorphic.
The proof is analogous to the one presented in [49). 0

(5.4.9) We assume that f; : Xp; — D satisfies the conditions of the preceding
lemma. Suppose Sing(f;) = X, U {e1,...,¢,}, where ¢1,...,c, are the A;-
points (that is, D[1, 1]-points) of f;, with critical values vy, ..., v,, respectively
(so ¢ = #D[1,1]). Let 0 be the critical value of all non-isolated singularities.
We may assume that all critical values are distinct.

Figure 5.3: f; : B, — D

Now choose, as indicated in figure 5.3:
(a) Small disjoint balls B; around ¢; (1 <i < 0);
(b) Small tubes B} around X (p € {mi,...,m,}), all of the form Bj =

X¥ x D(n), where D(5) is the disc of radius 5 > 0 (recall that L¥ is
smooth);



5.4 Dlp, q|-points and the Milnor number 65

(c) Small disjoint discs D; C D around v; (1 < ie), and Dy C D around
vo = 0, such that f~1(u) M 3B, for all u € D;;

(d) Points a; € dD; and a point a € dD.

Furthermore, (re)define:

By, = UpE{m;,...,mr}Bg

Zg = Stnt E{ﬂ = thnBo

E = Bnf (D) F = Bnf(a)

E; = Bnf(D;) F = Binf'a) (1€{0,...,0})
B = B0 Do) F = BIN[(0) (pe€{mu..,m})

E is called the Milnor ball, F is still called the Milnor fibre and (E, F) the
Milnor pair.

(5.4.10) Proposition H,_;(F)= H.(E,F) = éu H.(E, F)).

Proof. The first isomorphism follows from the homology sequence of the pair
(E, F), since E, being the Milnor ball, is contractible; for the second, see [49],
(2.8). a

Unlike F, the Milnor pair (E, F') has homology that splits into a direct sum,
hence (E, F') is easier to work with. We start by computing the homology of
the Milnor pair of our basic singularity, the D[p, q]-point in the following easy
lemma.

(5.4.11) Lemma The Milnor fibre of a D[p, q]-point is homeomorphic to e =
ged(p, ¢) annuli. Therefore, the Milnor pair of a D|p, q]-point has homology as

follows:
Ze—-l

Hi(Epipq), Foppa)) = 4 2° =
0 ifj#1,2

(5.4.12) Proposition

(a) Hi(E,F) = Hy(Eo, Fo) = 24!,

(b) Hy(E,F) = Hy(Eo, Fo)® 2Z° (o = #DI[1,1]), and

(c) Hi(E,F)=0ifj#1,2.
Proof. The homology sequence of the pair (E, F) gives H,(E, F) = Hy(F) =
' Z4-! (F has d connected components). For i < o, Hy(E;, F}) = 0, since at
¢; we have a D[1,1] singularity, see lemma 5.4.11. Hence the first statement

follows by Proposition 5.4.10. The proof of the second statement is analogous
to the first, the third is trivial. o
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(5.4.13) It remains to compute Hy(Ey, Fy). By the preceding lemma it is
sufficient to compute the Euler characteristic x(Eq, Fo) = dim Hy(Ey, Fp) —
dim H,(Fo, Fo) of the pair (Eo, Fo). Recall the following properties of the
FEuler characteristic:

(1) if (X, A) is a pair of topological spaces, then x(X,A) = x(X) — x(A)
(53], p. 205);

(i1) if {X,Y} is an excisive couple of spaces then x(XUY) = x(X)+x(Y) -
x(X NY) ([53], p. 205);

(iii) if = : (X, A) — B is a fibre bundle pair with fibre the pair (X, A), then
x(X, A) = x(X, A) - x(B) ([53], p. 481).

Recall Ef = Bf N f~1(D), where Bj = XF x D(n) is a small tube around
the smooth curve IF. Let m, be the projection onto the first factor. If n
is chosen sufficiently small, then =, : (E}, F§) — X7 is a fibre bundle pair,
locally trivial outside the D[p, q]-points, and with general fibre equivalent to
the Milnor pair (E?, F?) of the transversal A,_; singularity. Observe that F?
consists of p points.

(5.4.14) Definition For Y C Xf, define Ey = #;1(Y) N Ef, and Fy =

4

751 (Y) N F§. The definition is extended in the obvious way to subsets Y of
2 that are disjoint unions of real two dimensional manifolds with boundary,

each of which is lying entirely in a X7.

In each X} (p € {m4,...,m,}) choose small discs W, ,;, ¢ # p, 7 €
{1,...,#DIp,q]} around the D[p, q]-points that do not meet each other. We
may assume that Ew, . = Ew,; and Fw, . = Fw,,,. Let W, = U, ; W, .;
and M, = EF\ W,.

(5.4.15) Proposition 7, : (Eum,, Fu,) = M, is a trivial fibre bundle with
fibres equivalent to the Milnor pair (EP, F?) of the transversal A,_, singularity.

Proof. Use [49] (4.7) in a somewhat more general setting. m]

Let p € {my,...,m,}. We have defined W), as the (disjoint) union of all
discs W, ,; around the D[p, g]-pointsin L. The space X} is a Riemann surface
with holes and has a wedge of circles as deformation retract. Let B, be the
union of this wedge with #D|p, ¢] non-intersecting paths connecting the wedge
point with the discs W, 4, as in figure 5.4. Observe that W, N B, consists of
a finite set of points.
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Figure 5.4: XF

(5.4.16) Proposition Let W =U,W,, B = U,B,. Then:

x(Eo, Fo) = x(Ewus, Fwug) = x(Ew, Fw) + x(Es, F8) — X(Ewns, Fwnp)-

Proof. The first equality follows from the fact that (Ewup, Fwus) is homotopy
equivalent to (FEg, Fy). Indeed, for each p, W? U B? is homotopy equivalent to
XF (rel. Wy), and therefore by the homotopy lifting property of the map =, :
(Em,, Fa,) = M, (p € {m4,...,m;}), (Ewus, Fwup) is homotopy equivalent
to (E{), Fg)

The fact that (Fwup; Fw, FB) C (Ewus; Ew, EB) is an inclusion of excisive
triads (by the properties of the Euler characteristic 5.4.13) implies the second
equality. O

(5.4.17) Lemma

(a) Xx(Ew, Fw) = Yo #Dlp, q].

(b) x(Eg, Fg) = ¥ p(p — 1)(n(Z?) - 1).

(C} X(EWnB, FWnB) = = Ep<q(p +4q—2)-#Dlp,q].
Proof.

(a) W is the disjoint union of the W, ;, p < ¢, i € {1,...,#DI[p,q]}. So
x(Ew, Fw) is the sum of the x(Ew,,,, Fw,,;) which are all equal to 1
(see lemma 5.4.11).

(b) B is the disjoint union of the B,, so x(Ep, F8) = ¥, X(EB,, Fp,). B, is
a wedge of p(XP?) circles (L and X? have the same homotopy type), so
its Euler characteristic is 1 — u(X?). (Ep,, Fp,) is a trivial fibre bundle
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pair over B, with fibres (E?, F?). Since E? is a topological disc and F? a
set of p points, we have that x(E?, F?) = 1 —p. By 5.4.13 (iii) we obtain
x(Es,, FB,) = (p— 1)(u(2?) - 1).

(c) Wo N By is a set of 3., #D[p,q] points. Above each point the fi-
bre is equivalent to the Milnor pair of the transversal A,_; singular-
ity, which has Euler characteristic 1 — p as we have seen in (b). So
X(Ewynby, Fwyng,) = Tozp(1 — p)#D[p,q]. Hence x(Ewns, Fwns) =
Ep Eq#p(l =, P)#D[P, q] = Zp<q(p + q- 2)#1)[}), Q]'

O

(5.4.18) Proof [of Theorem 5.4.4]. By combining all previous computations,
we obtain the desired formula

p(f) =2 (p+q—1)-#D[p,ql + #D[1,1] + 3 (p— 1)((Z*) -~ 1) +d~1. O

r<q

5.5 Splicing of real morsifications

In this section we consider polynomials f = f{"*--- fr whose irreducible
factors are polynomials with real coefficients. A deformation or morsification
will be a real network map type deformation f; of a function germ f with real
coefficients, as in {1]. By considering parametrizations, one sees that such real
deformations exist. The necessary data are contained in the intersection of R?
and the level f;(0) (a ‘partage signé’), and we will even call this morsification
diagram a morsification.

(5.5.1) In the preceding section we proved a formula which expresses the
Milnor number of a plane curve singularity in the number of special points of
a deformation. It is not comparably easy to obtain from deformations more
topological details, in particular the Waldhausen decomposition of the exterior
of the link of the singularity. On the other hand, that decomposition may give
us some results on deformations.

One such result will now be described briefly, merely as an illustration: an
algorithmic way to obtain formally a morsification of an isolated plane curve
singularity. This can be used to obtain a Dynkin diagram of the intersection
form by the A’Campo—Gusein-Sade method ([1], [6]). Such algorithms are
not new, cf. Schulze-Rébbecke [47], who obtained a Dynkindiagramm fir jede
Stngularitit, where in that case “each singularity” meant “each irreducible
isolated plane curve singularity.”
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(5.5.2) Consider a plane curve singularity (X,0) with X = myX; U-.- U
m, X,, defined by a polynomial as above. Recall that the construction of
the Waldhausen decomposition is by glueing Seifert pieces together, using the
operation of splicing. If we follow the construction of the EN-diagram in
Chapter 1, we can even assume that the Seifert pieces, our basic building
blocks, are defined by functions z°y®(y? — z29)°, where a,b,c¢ > 0 and p,q > 1.
For such an uncomplicated singularity, it is not difficult to find a real network
map deformation (for example using the A’Campo-Gusein-Sade method).

If we can describe how to splice two morsification diagrams, we are able to
produce morsification diagrams for all plane curve singularities, and Dynkin
diagrams for all isolated plane curve singularities. Again, this should be seen
primarily as a way of manipulating morsification diagrams.

Consider also Y = n;Y; U--- U n,Y,, another plane curve singularity. It is
perhaps slightly unusual that we allow n; to be zero without having in mind
that we should ignore Y. It means, that as a plane curve singularity, Y is just
naYo U- - - n,Y,, but its link will contain the component K, of multiplicity zero,
defined by intersecting Y; with the Milnor sphere.

The splicing takes place “along” an m;-fold branch X; of the one part, X,
and an nj;-fold branch Y; of the other part, Y. By the splice condition, we
have the following relationship: n; = Xj - Ugtimi Xk, the intersection number
of X; with the other branches counted with their multiplicities, and also m; =
Y; - Ugjnii.

Figure 5.5: Doubling a morsification of (y* — z3)?

The first step consists of multiplying the branches X; and Y; by m; and n;,
respectively. This means that one takes m; resp. n; parallel copies very near to
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each other, which are deformed slightly to take care of intersections between
each of the copies. In figure 5.5 a doubled morsification of the cusp is depicted.
In the A’Campo—Gusein-Sade method, where the morsification is obtained by
small modifications of the strict transform in the partial resolutions, this is
accomplished as follows: In the resolution, the strict transform of m;X; can in
local coordinates (u,v) be written as v™i. Replace this by v™ —1, and perform
the usual steps to obtain a deformation.

We can take small common neighbourhoods M of the m; new branches in
the morsification diagram of X, and N of the n; new branches in the morsifi-
cation diagram of Y. Because of the splice condition we may assume that the
intersection of M with the other branches of X consists of n; segments, and the
intersection of N with the other branches of Y consists of m; segments. The
splice operation is just patching those segments on the multiplied branches of
the other.

This procedure works by inspection of the proof of the A’Campo-Gusein-
Sade method, bearing in mind that the splice components are related to partial
resolutions of the singularity. This was shown to me by Jan Stevens, who
communicated a proof of the case of “cabling” of morsifications.

(5.5.3) Example (See figure 5.6.) We apply our method in the simple case of
J32 (equation: f(z,y) = (y2—2%)(y —23)). It has two splice components. The
first is J3 (equation y® — z3y?). The second is isomorphic to z3(y? — 7).
In figure 5.6 there are morsification diagrams for both, and we can identify the
2 x 3 lines along which the splicing takes place.

In the picture, we can identify the 18 cycles which form a distinguished
basis for the homology of the Milnor fibre of J35. The top right morsification
is made up from the well-known morsification of A7. Analogously we obtain
the morsification diagrams of J5, (p > 0) by using A,s instead of A7. Inter-
estingly, the morsification diagram does not reveal a reason for the algebraicity
condition p > 0. :

(5.5.4) The multiplication of branches is in practice sometimes confusing, a
notation as in [47] is useful. As in [47] (for irreducible and isolated plane curve
singularities) we have a way to construct a morsification for each topological
type. For isolated singularities, we can use this to obtain a distinguished basis
of vanishing cycles for the homology and a Dynkin diagram for the intersection
form.

For non-isolated singularities, a basis and a Dynkin diagram could be con-
structed as well, but for distinguishedness (that we want for the relationship
with the monodromy) the theory lacks. Compare [51], where the curve case
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Figure 5.6: The splice decomposition of J3 2

must be excluded. A basis can be obtained from the morsification diagram in
the following way. We distinguish A-cycles, D-cycles and tube-cycles:

- A-cycles
For each A; point off the zero locus, we have a vanishing A-cycle defined
analogous to the @ and © cycles in A’Campo [1], which arise from the
maxima and minima.

— D-cycles
For each D|p, g] point on the zero locus we have gecd(p, ¢) vanishing D-
cycles. They are defined analogous to the e cycles in A’Campo [1], which
arise from the saddle points.

— Tube-cycles
Let p be one of the m;. Take the union of the p-fold branches in the
deformation, and take a tube around it. In this tube, the Milnor fibre
has a deformation retract consisting of the central circles of the annuli at
D|p, q]-points connected by p-tuples of segments. There is in general an
enormous choice of cycles that we can pick for a basis of the homology.
It would go too far to define these tube cycles in more detail.
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It is not so easy to describe the intersections between the cycles. In the case of a
line singularity (with singular set a smooth curve) this is still manageable, and
following unfinished work of C. Cox we obtained some unsatisfactory results
in this direction (unpublished). Goryunov [16] derived in a similar way the
intersection form of a plane line singularity.

Perhaps more can be expected from the description of the Waldhausen
decomposition in terms of the polar filtration and the Gabrielov-method for
finding a distinguished base, see {13], Chapter 2 or [6].

The following result follows immediately from the preceding discussion.

(5.5.5) Proposition Let fy be a member of a topological series of a plane
curve singularity f with only double components (i.e. only transversal A,-
singularities). If we choose a basis for the homology of the Milnor fibre as in
the A’Campo—Gusein-Sade method, departing from a deformation constructed
with our splice operation, then the Dynkin diagram of the interseclion form
contains v tails of the form

corresponding to each of the r branches of the singular locus. In terms of
Theorem 3.3.2, the length of such a chain will be N;.

Another application of deformations is the computation of intersection
numbers. For example, consider the number ¢; of lemma 1.1.7, which is used
for the computation of the vertical monodromy on a fibre of the transversal
singularity along %;\ {0}. Suppose that we have transversal A,_; singularities
along X'\ {0}, where X' is a branch of the singular set. The number ¢; can be
computed as the sum of all D[p, ¢g]-points with ¢ > 1 on X;, each counted with
multiplicity q.



CHAPTER 6
Series of hypersurface singularities

6.1 Introduction

In this chapter we discuss some possible ways to generalize the topological
series of plane curve singularities to higher dimensional hypersurface singular-
ities with a one-dimensional singular locus. We will not enter a full treatment
of series of hypersurface singularities. Apart from the question whether it
would be right or possible to give a ‘full’ treatment — series have always been
a source of inspiration because the concept was deliberately held vague — this
would embrace a vast area of topics that we do not yet understand in their
totality. Jan Stevens and the author hope to give a good description of Polar
Series in a future paper.

Instead, we consider some properties that we would like to have within
our series. Most importantly, we would like to go beyond the Yomdin series
barrier of one parameter series which go with large steps. At least in the
case where we have only transversal A; singularities along the branches of
the one-dimensional singular locus, we would like to have for instance Milnor
numbers increasing with steps of 1. Of course the results should be applicable
to the Arnol’d series still missing from the list of series that we have already
seen, such as @, S, T and U. Our main aim here will be a formula for the
zeta-function, in line with the formula for Yomdin series, cf. section 3.5.

We start with an analytic function germ f : (C**1,0) — (C,0) with a one-
dimensional singular locus X', whose decomposition in irreducible components
is HhyuU---U L. Let g: (C"*1,0) — (C,0) have an isolated singularity. We
think of g as ¢ = f + ¢, and assume that there is a one parameter family
f(-, A) such that f(-,0) = f, f(-,1) =g, f(-, A) has an isolated singularity for
all A # 0, and £ f(z,A) # 0. (We have in mind that f(-,A) = f + Ap, but it
might be useful to allow more general families).
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We will have to put constraints on the family f(-,A) in such a way that it
seems natural for g to ‘belong’ to the series of f. So we think of f as fixed,
whereas g runs through the ‘series’ of f.

We want to stress again that in this chapter, we will not enter a full discus-
sion of series. Otherwise, one would object to the last sentence in the previous
paragraph. Indeed, it will in general only be possible to let g be a representa-
tive of a member of the series of f which will ideally be indexed by a collection
of positive integers (each associated to a branch of the singular locus of f).
Such a member will therefore be an equivalence class of functions, but we are
not going to specify details here. So in the following we consider rather special
functions g.

Below, we present two ways to look at the relationship between f and g.
This is by no means a complete account of what is possible with these methods.

Similar results have been obtained by A. Némethi [32].

6.2 Polar series

(6.2.1) In this section, we use the polar filtrations on the Milnor fibrations
of f and g as our source of inspiration. Let {: (C"*!,0) — (C,0) be a linear
form such that

Lnz) = {0}

(recall that Z(h) = {z € C™' | h(z) = 0}). This condition was already
considered by Pellikaan. We consider & = (I, f) : (C"*,0) — (C?,0). Let
C; = Sing(®;) be the critical locus of @;, which consists of the points where
the matrix D&, of partial derivatives does not have maximal rank.

(6.2.2) Lemma Suppose | satisfies ¥ N Z(l) = {0}. Then C; is one-dimen-
sional.

Proof. This is proved by Pellikaan [39], Proposition 3.1. o

(6.2.3) Definition The polar curve of f with respect to the direction | is
defined by

I =Ci\ Z(f),

i.e., it consists of the components of C not contained in the zero locus of f.
The image A; = &(1}) is called the Cerf diagram. If no subscript [ is given,
we assume | = z, the first coordinate function on C"*1,
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(6.2.4) Remark Lé considers admissible linear functions /. This means that
f1Z(1) has an isolated singularity.  The condition we use, is weaker: take for
instance
flz,y,2) = z(y* + 2*) + y%2? and I(=z,y,2) = z.

Then ¥ = Z(y, z), so ¥ N Z(l) = {0} but f(0,y,z) = y?2% has a non-isolated
singularity. C consists of ', I' = Z(z + y%,z 4 2?) and 2 = Z(z,y) U Z(z, 2).
Observe that @(§2) = {(0,0)} and that I" is the polar curve of f. This example
is due to Pellikaan, see [36], Example (8.7).

(6.2.5) From now on we assume that I = z, the first coordinate function, and
we will omit the subscripts . Notice that in this case C is defined by %5 =0,

if (z,y) are the coordinates on C"t! = C x C".
The critical locus C of @ = (z, f), which is one-dimensional as we have
just seen, consists of three main parts:

C=X2urug.

Here X' is the critical locus of f, as usual, and I' the polar curve as defined
above. The third part, {2, consists of the branches of C' above the origin, i.e.
&(12) = {(0,0)}. If z is admissible, then 2 = §.

Let I' = INU- - -UT; be the decomposition of I" into irreducible components.
The discriminant locus A = A;U---UA,, with A; = ¢(I3), is the Cerf diagram.
We will use coordinates (u,v) in the target-C2.

(6.2.6) Lemma The tangent cone of A is the u-azis.
Proof. This is proved by Lé [21], Proposition (3.1). o

v

/2
W/

It follows from the lemma that each A; has a Puiseux expansion

v = q;u” + higher order terms,

with a; # 0 and p; > 1 a rational number. The number p; is called a polar ratio
of f. Observe that p; may well be a non-characteristic Puiseux exponent: we



76 Series of hypersurface singularities

are not allowed to change coordinates in (u, v)-space. Therefore the topological
type of A; does not determine p;. It is also possible to compute the polar ratios

upstairs:
_Li-Z())
"= T Z()’
where - denotes the intersection number at the origin. By p(f) we denote the
set of polar ratios of f.

(6.2.7) The assumptions

Let f be as above, and g : (C"*1,0) — (C,0) be an isolated singularity, such

that there is a family f(-,A) with f(-,0) = f and f(-,1) = g. Write fy = f(-,})

and @) = (z, f1). Let C) be the critical locus of &, and let D) = &,(C)).
We will now formulate a number of assumptions in order that g ‘belongs’

to f. Possibly some of the assumptions can be weakened or deduced from the

other assumptions. First of all, we assume that:

(a) ZnZ(z)=0,

(b) f» has an isolated singularity for all A # 0.
In this case, th: C) will form a family of curves. We have that Co = U U,
where I is the polar curve of f and (% is the union of the branches whose ®-

image is the origin only (see 6.2.5). For A # 0, we can view C), as a deformation
of X, I'y and % separately, so

Oy = Bl Py .12,

and as A — 0, each of the parts ends up as a part of the same name. The
images in (u,v)-space are: @\ = $\(X)), Ay = (). We also assume:

(c) For each A, 8, and A, are one-dimensional, whereas @,(f2,) = {(0,0)}.

Hence Y\ U I'y is the polar curve of f). Furthermore, we assume the following
facts of the topology of B, and A,:

(d) The topological type and the first Puiseux exponents of all branches of
©, are constant as A # 0 varies.

(e) The topological type and the first Puiseux exponents of all branches of
A, are constant as A varies, including A = 0.

In particular, the number of branches of the Cerf diagram of f, and the sets
p(f») are constant for A # 0. Furthermore, p(f) C p(f,); the ‘new’ polar ratios
come from the branches of @,. Recall X’ = X, U..-U J, is the decomposition
of ¥ into irreducible components. We need a final assumption on the polar
ratios arising from &,.
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(f) Suppose Z; deforms into the curve X) ;. Let 6, be its image under &,.
Then all branches of 8,; have the same first Puiseux exponent §;, and
3,‘ < 00.
Recall that if we replace condition (a) by the stronger condition
(a") z is admissible, i.e. f|Z(z) has an isolated singularity,
then the situation becomes easier since {2y is empty.

(6.2.8) Remark Observe that p(g) = p(f)U {64,...,6,}, but that we do not
assume that all 8; are larger or equal to the largest polar ratio in p(f). We
will return to this later.

(6.2.9) Remark If we assume that f has only transversal A; singularities,
then the behaviour of the curves C) is much less complicated than with arbi-
trary transversal singularities.

(6.2.10) Example Let p(f,g) be the set of first Puiseux exponents of @,(X;)
(1 <1 < r), i.e. the images of the branches of the singular locus of f under
the mapping @; = (z,g). Our idea is that

p(g) = p(f)UB(S,9), (*)

but also that that condition will imply a large part of the above. If that is the
case, we would like to build a definition of polar series around condition (*)
— or an improved version. In the following example, all assumptions (a) — (e)
are satisfied. The example (d) is studied in [25] and [52]. In the other cases,
note that the non-isolated singularity has only transversal A; singularities.

(a) The A-series

Consider f(z,y) = y? and gn(z,y) = y? + zV; then f is of type Ao
and gy of type Any_1. We have that p(f) is the empty set and p(gn) =
p(f.9n) = {N}.

Now we consider g(z,y) = y% + 2z*y + V. It is easy to see that the
function g is of type Aminar-1,8-13- b(9) = {N}, whereas p(f,g) =
{min{2k, N}}. This shows that for a definition of polar series, based on
the behaviour of the polar ratios, we have to be very careful with the
choice of equivalence relations and representatives thereof.

(b) The W#-series
Let f(z,y) = (y2 — 2%)2 (Wity), and let gay-1(2,y) = f(z,y) + z*+7%y
and gy(z,y) = f(z,y) + 2>*9%%. Then g, is of type Wf’fp. We have
() = {6, p(g5) = {6,6 + 3p} and §(f,g,) = {6+ 3p}.
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(c)

(d)

(e)

Series of hypersurface singularities

The T'-series

Let f(z,y,2) = zyz (type Teo 00,00, the ordinary triple point), and define
Gpar(Z,y,2) = zyz+a?P+y?+z" (type Tpq,) with p,g,r > 3. In this case
we take e.g. I(z,y,2) =  + y + z (or change coordinates accordingly).
The singular set of f consists of the three coordinate axes. We have
p(f) = {3}, p(9) = {3,p,¢,r} and p(f,9) = {p,q,7}. If one of p, ¢ and
r is less than 3, the condition is not satisfied, although, of course, one
can define Ty, whenever 1/p+1/¢+1/r < 1. This shows that we miss
some initial members of what one would call the series of Too 00,00 — 2
problem that arises as soon as one starts looking for a property that is
shared by all members.

The U-series

Let f(z,y,2) = y® + yz? — yz®+! (type Upo). Put gag-1(z,y,2) =
f(z,y,2) + 222 and gy,(z,y,2) = f(z,y,2) + za**+7+1, Now g, is of
type Uyp. Then ¥ = {(t2,0,i%+1) | t € C}. We get: p(f) = {(6k +
3)/2}, p(gp) = {(6k+3)/2,(6k+3+p)/2} and p(f, g) = {(6k+3+p)/2}.

Yomdin type series

For Yomdin type series f + 2, one computes for N not less than the
largest polar ratio of f, that p(f+z™) = p(f)U{N} and p(f, f+2V) =
{N}. So within a Yomdin series, condition (*) is satisfied, but we can
see the gaps: Firstly, if the singular locus of f consists of more than one
branch, we would expect a multi-parameter series as in (c). Secondly, if

a branch of X has a multiplicity greater than 1, we would expect a finer
series, cf. (b) and (d).

Another motivating example

In Yomdin series, one usually assumes that IV is at least as large as the
maximal polar ratio. Otherwise the zeta-function formula (cf. [52]) is not
valid. Here, we could demand that all §; be not less than the maximum
of the polar ratios in p(f). But take T1000,00,00- Almost nothing changes
from T 0,00, the polar ratios are now 3 and 1000. But it would be an
enormous drawback to let ¢ and r start from 1000 instead of 3.

(6.2.11) We recall the definition of the Milnor fibration and the polar decom-
position from Lé&’s viewpoint, cf. [21], [22], [24] and [26].

Let § be a Milnor radius, and Bs a (2n + 2)-ball in C"*!. There exists
1o > 0 such that for 0 < 5 <o, f: BsN f~'(D2) — D2 is a C* fibration over
D2\ {0}. Consider & = (z, f). It will be convenient to have our target space
coordinates (u,v) in a polydisc D? x D2 where € > 0 is appropriately chosen
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and n < e. Let B= BsN{(z,¥1,---,¥n) | [£] < €}. Then & : B — D? x D?
is also a fibration. Observe that ¢~1(D? x {n}) is the Milnor fibre of f.

A=0

v A
/ /
7
u
0<ikl
v /A,\ - 6,
7 > ~
-
_
-~
1 = U
A=1
v

//‘II / ,/f
ﬂ/’/
. -~
] -

We can choose §, ¢ and 5 such that they can be used for both f and g. Not for
all intermediate A we have that F\ = @;(D? x {n}) is the Milnor fibre of f.
However, it remains true that F, can be constructed from the Milnor fibre of
fr | Z(z) by attaching n-cells as in Lé’s work, e.g. [22] (using the real valued
function |z|? on F), which is singular in the intersection points with Cy). For
A #£ 0 very small, the curves 6, do not yet intersect the line v = n within the
polydisc. This is illustrated in the pictures above.

u

(6.2.12) Let p(f) = {po1,---,pPop} be the set of polar ratios of f and likewise
p(f1) = {p11,--., P14} be the set of polar ratios of f) (equal to the set of polar
ratios of g = f;), and assume that po; < ... < pop and py1 < ... < py5. The
sequence (po1, ..., pPop) 15 a subsequence of (p11,...,p14). This holds because
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of the conditions (a)—(f).
Recall the definition of 8; (1 <i <r). The §; are those p;; that arise from
branches of ©;. Those branches have Puiseux expansions of the form

v = ai{A\)u® + higher order terms.

But since those branches tend to the u-axis as A — 0, the coefficients a;(A) will
become extremely small — so small in fact that they dominate the picture. The
absolute value of the z-coordinates of the intersection points of these branches
with the line v = 5 will tend to infinity and therefore leave the ‘visible’ part
where |z| < ¢.

Recall, that on X;\ {0}, we have a local system of transversal singularities:
Take at any w € X; \ {0} the germ of a generic transversal section. This
gives an isolated n — 1 dimensional singularity, whose p-constant class is well-
defined. We denote a typical Milnor fibre of this transversal singularity by
F!. The Milnor number of this singularity (the rank of En_l(F}"), the reduced
homology group) is denoted by . '
(6.2.13) Lemma Let: € {1,...,r}. Define d; = Xr. Z(z). Then d;u’8; is
an integer.

Proof. Observe that d;p’ = X - Z(z). Choose a small A, then X); is a small
perturbation of X; and d;u} = X ; - Z(z).

Let X; be the curve into which X; is deformed. Write $(Xy;) = 6,; =
GriaU-+U Bk and let Iy;; = #71(6,;;). All branches of 65; (A # 0)
have first Puiseux exponent ;. Since X ; is small perturbation of X;, we have

ki
dig; = %i - Z(z) = Dy Z(z) = 3 (Drs - 2(2))-
i=1
So if gij = S,\,g_j . Z(m) then d;,ul,? = Zj Tij.
Write 0; = ¢;/p; with ged(pi, ¢;) = 1. By definition (and condition (f)) we

have that
_ B - Z(v)
B - Z(u)
for all j € {1,...k;}, and if we compute this upstairs we get

=D 2(f) _ m
Phii-Z(z) oy

0;

o;

It follows that g;o;; = p;7i;, and summation over j gives p; | g;d;ut. This proves
the statement, since p; and ¢; are relatively prime. ]
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(6.2.14) Proposition The Euler characteristics of Fy and Fy are related by

X(F2) = x(F) + (=1)(3 digits).

=1
Proof. We first establish that the Milnor fibres of the singularities
) = (.72, f)\) : (C“+110) = (szo)

are homeomorphic. Note that these singularities are often identical or isomor-
phic. We choose a small £ such that (£,5) is a regular value of all @, and
therefore @;'(¢,n) is the Milnor fibre of @,. This is possible since the map
(z, f) : C**! x C — C? which depends also on A has Jacobi matrix

gﬁ+/\%‘£ %54-,\%‘5 ®
1 0 0)’

(where we took fy = f+ Ap for simplicity). It follows that the vectorfield /9
can be lifted when started from &;'(£,7), and we conclude that all &;'(£,7)
are homeomorphic.

The Milnor fibre of f) arises from the Milnor fibre of (z, f)) by attaching
n-cells for each intersection point of F = @~(D? x {n}) with the polar curve,
counted with multiplicities. The number of intersection points depends on the
polar ratios.

For the Euler characteristic, it suffices to count cells for A =1 and A = 0.
The cells are attached in the preimages of the intersection points of the line
v = ) with the Cerf diagram. Since Ay and A, are connected by a topological
trivial family A, and Iy — A, is a branched covering, we see that x(F)) is
the sum of x(F) and a part which comes from the intersection points of the
©;. That this gives rise to a total number of ¥ d;ut8; n-cells to be attached,
can be seen by closer inspection of the proof of lemma 6.2.13. (]

(6.2,15) Example We give some applications of the preceding formula, which
show, that it is really stronger than existing formulae.

- Yomdin series
For Yomdin series f + Az™ we have that 8; = N for all ;. We obtain the
Lé attaching formula

x(F1) = x(F) + (-1)"(& - Z(x)).
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— The Wi¥-series
See Example 6.2.10 (b) for the definition of W; , and its polar ratios. We
have p* =1,d =2, § = 6+ 1p. Furthermore x(F) =2 —pu(F) =2—-4 =
—2 (see Appendix A). So

x(F)=-2-12—-p=14—p.

This can be confirmed in Appendix A.

— The singularities Egpyq
Let fa(z,y) = y*+ Ayz**+1. The singularity ¢ = f) is of type Egr41. The
polar curve of fy consists only of Xy = Z(3y® + Az?+1). It gives rise to
the polar ratio @ = (6k +3)/2. Observe that d =1 and that d is not an
integer. Of course p* = 2. We obtain

X(F) = 3 — (6k +3) = —6k,

hence p(g) = 6k+1. Note that other methods, such as the one presented
in section 6.4 do not include this example.

6.3 The polar filtration and the zeta-function

(6.3.1) We use the same notations as in the previous section. For A = 0 and
A = 1 we can do the following, which is familiar from Lé&’s work. Choose in D?
concentric discs of increasing radii

{O}ZDOOCDOIC"'CDOPzD?

such that the intersection of all branches of the Cerf diagram A with first
Puiseux exponent po; intersect D? x {5} precisely in (Do; \ Doi-1) x {n}-
Analogously, there are discs

{0} =Dy C Dy C---C Dy, = D?

for g instead of f. The reason that this is possible — after adjusting 5 if
necessary — is that the p;; are increasing. However, the pictures above show
that the level v = 5 is not good enough for smaller values of A. This is because
the coefficients a(A) will dominate the situation (of course for very small 7’ it
looks just as the level 5 in the case A = 1).

Lifting these filtrations to the Milnor fibres Fy and F gives filtrations

FOQCF(]]C“'CFOszO’
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with Fo; = ¢71(Do;), and, analogously
FooCcF,C---C F1q=F1,

which are called the polar filirations of f and g, respectively.

(6.3.2) The following definitions and notations are taken from [52]. Con-
sider H,_1(F}). In 1.1.6 we already encountered the vertical and horizontal
monodromies on H,_(F?):

(a) The vertical monodromy A; : H,_i(F?) — H,_1(F?), which is the char-
acteristic mapping of the local system over the punctured disc X; \ {0}.

(b) The horizontal monodromy T; : H,_y(F!) — H,_1(F}), which is the
monodromy of the Milnor fibration of the isolated singularity of f re-
stricted to the transversal slice.

The names horizontal and vertical arise from the Cerf diagram. Observe that
A; and T; commute, since they are defined on (Z;\ {0}) x 5}, which is homotopy
equivalent to a torus.

In Proposition 3.5.4, we encountered a formula for the zeta-function for
topological series of plane curve singularities in terms of polar ratios. QOur
idea is, that this formula is valid in a much wider context. This leads to the
following problem:

(6.3.3) Problem Determine conditions for f and g as in the previous sec-
tion (probably involving the conditions (a)-(f)), such that the following holds:
Suppose d;8; is an integer for all 1 < r, then

’ (-1
Co(t) = Cs(t) - (H det(] — $4ibi Ai’l":_diai)) '

(where d; = X4 . Z(z)).

There are three stages of increasing difficulty in giving a full answer to the
problem.

The first stage is to restrict ourselves to functions f with only transversal
A, singularities. That makes everything easier, since we can then assume that
the number of branches of 'y remains constant.

The second stage is to remove the restriction of transversal A;-singularities.
This immediately leads to various difficulties. For'example, at present it is not
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clear to us which conditions we have to impose in order that the curves C,
evolve with time in a reasonable fashion.

The third stage goes even beyond the statement of the problem: remove
the condition that the d;f; must be integers. For example, the Egry1 case
mentioned earlier is in this category, and we would like this case within our
theory. Examples show, that in this case the transversal singularities split
into singularities of lower Milnor number, and that powers of the local vertical
monodromies come in.

A strategy in attacking the problem is first to find out under which condi-
tions the following holds:

(6.3.4) There is an embedding e : Fo — Fy from the Milnor fibration of f
to the Milnor fibration of g, in such a way that e, is @ monomorphism which
maps each H,(Fo;, Foi-1) to the corresponding pair H,(Fy;, F1 ;1) belonging
to the same polar ratio. Furthermore, the monodromy of f on H,(Foi, Fp:i-1)
equals the monodromy of g on H,(Fij, F1;-1).

The polar filtrations and the embedding e will not ‘commute’; in general,
we will have only a relationship of the homology groups of consecutive pairs.

If we look closely at the definition of the topological series of 3.2.3 using the
alternative description of the Waldhausen decomposition of [26], which arises
from the polar filtration, one sees that 6.3.4 is true for n = 1.

If one finds the right context where 6.3.4 is true, then 6.3.3 will follow
without much effort. The conditions (a)-(f) are expected to fulfil a central
role. The interest in these problems lies entirely in the promising prospects for
a starting point for polar series. Indeed, as soon as 6.3.3 holds for a certain
class of functions, one will have the possibility of introducing a particularly
fine concept of series.

6.4 Another formula for the zeta-function of f + Ap

(6.4.1) The basic idea of the previous section started from the polar ratios
within the series (but they alone are not enough). For Yomdin series f + Az™
a central fact is that — in the notation of the last section — C, remains fixed
for all A, and the Cerf diagram of f can be mapped diffeomorphically onto the
Cerf diagram of f + Az using (u,v) — (u,v + M) (cf. [52]).

If we look at our case g = f + Ap, we can get the same two properties if
we look at the pair @ = (i, f). In this pair, f is regarded as a fixed function
with a one dimensional singular locus, whereas ¢ varies. Although this may be
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further away from the series concept, we can prove a strong formula, analogous
to 6.3.3.

Observe that @@ = (p, f) defines the same space as @) = (¢, f + Ap) and
also the same critical space C. The space C will in general not be a particularly
nice space. Of course we will have to put some constraints on .

We do not assume that @ is an isolated complete intersection singularity.
As always, the Yomdin series should be encorporated within our theory. For a
Yomdin series, @ = (zV, f) and the critical space C consists of the polar curve
and the singular locus of f, as well as of the space Z(z"V~!), a non-reduced
hyperplane.

The methods are closely related to work of Siersma [52] and Némethi [32].

(6.4.2) The map germ @ : (C"*1,0) — (CZ2,0) is assumed to be surjective.
In the target space we use (u,v) as coordinates. We denote by D = Q(C)
the discriminant space, which is one-dimensional with a possible 0-dimensional
embedded component at the origin. Let D = D;U---UD, be its decomposition
in irreducible components. It is always possible to stratify ¢} such that @
satisfies the Thom conditions on the strata. In particular, between the strata

upstairs and downstairs, @) is submersive. We may assume that we have chosen
a representative of @) such that the strata downstairs are {0}, Ui_,(D; \ {0})
and C?\ D, f. [23].

(6.4.3) Let ¥' = X; U---U X, be the (one-dimensional) singular locus of f.
In the sequel, we assume that ¢ : (C"*1,0) — (C,0) satisfies:

(a) TN Z(p) = {0}
(b) f + A has an isolated singularity for all A # 0;

(c) @ = (e, f) is surjective;
(d) the branches of D are either equal to the u-axis, the v-axis or tangent to
the v-axis.

It is possible that these conditions are too strong. In [52], the same conditions
appear with ¢ linear, although they are not presented in their utmost detail.
In the critical set C, one can distinguish four kinds of subspaces: Cy,=¢ =
CNQRYZ(w)), Co=CNEQ"0,0), Ct=0 = Q-1(Z(v)) \ Cy and I', the preim-
age of the branches of D tangent but unequal to the v-axis. The conditions
imply
C= Gf:QUCoUC(P;-_-()UF

(this is not the decomposition of C into irreducible components).



86 Series of hypersurface singularities

(6.4.4) Lemma @ maps each branch of X onto the u-azis, and no other parts
of C lie above it. I.e. Cy=o = X.

Proof. Observe that ¢ cannot be constant because of the first condition. A
straightforward computation shows, that a curve in ¢ with limit point in
F71(0)N¢~1(0) lying above the u-axis but not in X' must be contained in Cp.

0

In many examples (see the end of this section) I' is one-dimensional,
whereas Cy—¢ is high dimensional (e.g. codimension 1). However, we do not
demand anything of these dimensions (except of course of the dimension of
).

The general picture of the discriminant space is the following:

NN

U
N v=n—u
Observe that the preimage of v = n is the Milnor fibre of f. The preimage
of v = 5 — Au is the Milnor fibre of f + Ap: in fact, if we consider both @
and @y = (g, f + Ap), then their discriminant spaces are diffeomorphic by an
ambiant linear diffeomorphism

Ryt (u,v) = (u,v + du)

which satisfies @ = @)»; and therefore it is indeed possible to view the Milnor
fibre of f + Ay, the set Q7 ({v =n}), as @~ ({v = n — Au}).

Although, for instance, over the v-axis, @ is in general very singular, the
general idea of [52] can be applied: using “rotation” of v = 7 we can compare
the Milnor fibres of f and g by looking at the preimages of the intersection
points of v = 7 — Au with the u-axis (which lie on the singular locus of f, X).

(6.4.5) Lemma There is an embedding ¢ : Fy — F, from the Milnor fibre
F = Fy of f into the Milnor fibre Fy of g. We have the exact sequence

0 — Hy(e(F)) — Ho(F) — Hy(Fy,e(F)) — Hya(e(F)) — 0.

H,(e(F)) is isomorphic to H,(F) and, moreover, the geometric monodromy
hy: Hy(F) — H.(F) of f is equal to the restriction of the monodromy h, to
H,(e(F)).
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Proof. The proof of [52] extends to this case.

As usual, our (u,v) coordinates are in a polydisc D? x D3. Let A = Q(I')
be the irreducible components of the discriminant I} tangent but not equal to
the v-axis. Choose a disc W C {v = 0} such that the intersection point (0,7)
of v =7 — Au and the u-axis is outside W, but all the intersections of A with
v = 7 are within W x {n}. This is possible since the branches of A can be
written as v = au® + higer order terms, with a # 0 and a < 1 because of the
fourth condition. (The proofs work also if a = 1.)

With the help of the second isotopy lemma, we can lift the isotopy

{v='q}ﬂ(W><D3)—->{v=r]—Au}ﬂ(Wng)

where we regard A as a parameter, to obtain an embedding e : Fy — Fj.

The mapping @ is a stratified submersion. Therefore we need not be.con-
cerned about the behaviour of @ above the v-axis and the origin, and we can
use the isotopy to obtain a geometric monodromy on e(Fp). a

(6.4.6) We still have to cope with the remainder F; \ e(Fp). Let Wi be a
slightly larger disc (centred at the origin) than W. On D? \ W,, we may
assume that the monodromy of f we used in the proof above, has the identity
as u-component. Indeed, the intersections of the discriminant with v = n are
all inside W x {n}. We use W; \ W to glue them together.

This geometric monodromy extends from (D?\ W;) x S} to (DZ\ W;) x D32.
This gives a monodromy T of Q.

For g, however, we have to take care of the intersection of {v = 5} and
the extra line in the discriminant of @ = (¢, f + ¢); translated in terms of
Q: the u-axis has exactly one intersection point with the line {v = n — u},
which is the image of F; under ). So the u component of the monodromy of
g is induced by a full rotation around the origin. Let S be the diffeomorphism
F\ e(Fy) — F\ e(Fp) which integrates a lift of this rotation vector field.

Now we can proceed exactly as in [52], p. 190, where it is proved that T'S
is the monodromy of g on F\ e(Fp). Again just as in [52] (p. 191), one proves:

(6.4.7) Lemma Let a; be the topological covering degree of the branched cov-
ering @ : J; — {v =0}. Then

Hn(Fl,e(Fo)) == .é é Hn-—l(F.'b,j)v

=1 j3=1

where Frb.a are the Milnor fibres of the local singularities of @@ in the a; inter-
section potnts of 3; with the Milnor fibre of g = f+ . These Milnor fibres FfJ
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(1 < j < a;) can be identified with the typical Milnor fibre F? of the transversal
singularity along X; \ {0}. ' m]
Observe that a; = Z(p) - ZF*d.
Now consider the exact sequence of the pair (Fy,e(F)):

0 — H(e(F)) — Ha(F)) — Ho(Fi,e(F)) — Hoa(e(F)) — 0

As in Siersma [52] and Némethi [32], we establish that the characteristic poly-
nomial of k., the monodromy on H,(Fy,e(F)), is:

&
[I det(z>1 — AT,
i=1
where A; and T; are the vertical and horizontal monodromies, respectively. A
consequence of this is the following formula for the zeta-function:

(6.4.8) Theorem Suppose f and g = f + Ap salisfy the conditions of this
section, A; and T; are the vertical and horizontal monodromies of f along the

branch X; of the one-dimensional singular locus of f, and a; = Z(p) - Lred
Then

-1+
= 60 (TTeettr - #aze)

i=1
For the Euler characteristics of the Milnor fibres of f and g, this formula reads:

X(Fy) = x(Fy) + 1)”2%!&

(6.4.9) Remark We observed earlier that Yomdin series f 4 zV left gaps,
i.e. we could not always obtain Milnor numbers increasing with steps of 1.
When we now vary ¢ in the pair (¢, f), the steps are smaller, but can still be
‘large’. For instance, if f has only transversal A, singularities, Theorem 6.4.8
shows that the Milnor numbers of f + A@ can only increase by even numbers.
Therefore it is no surprise that the case Egr41, where f(z,y) = y® and ¢(z,y) =
z¥+ly is left out. Indeed, the pair (f,¢) does not satisfy the conditions. Yet
the number of functions satisfying the conditions is considerable.
(6.4.10) Example We finish by giving some examples.
— The Yomdin series again
We have ¢ = z. The critical space of @ = (zV, f) consists of Z(zV-1),
Y’ and the polar curve I" with respect to the direction z. The condition
that A be tangent to the v-axis implies that N > 6; for all i. We retrieve
the meanwhile very familiar formula.
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— The T-series
Let f(z,y,z) = zyz and ¢ = 2P /p+y?/q+ z"/r. Then the critical space
of @ = (p, f) consists of X' (the three coordinate axes) and I', a curve
which can be parametrized by

(z,9,2) = (17, #%,1%9),
So A has parametrization

= (/p+1fqg+1/r)ts?"

tpq+pr+qr

hence the formula for the zeta-function holds whenever 1/p+1/¢+1/r < =
1 (even < 1). Since A; is the identity and T' = (—1), we obtain

Ty (1) = (1 = )1 = 7)1 = 7)) 7,
since Tuo 0,00 has trivial {-function.

(6.4.11) Quasi-homogeneous singularities

Let f be quasi-homogeneous of type (wy,...,wy;d) with a one-dimensional
singular locus X' = X, U -.-U X,. Suppose that the weights are normalized
such that ged(wo,...,w,) = 1. For o € {1,...,r}, we define

I, = {i|z;=0o0n %},
1. {i|2z:#£0o0n L},
k, = ged{w;|j€ .}

H

The following proposition was proved by Dimca [12], Proposition 3.19(i).

(6.4.12) Proposition Suppose there exists a ¢ € Oyyy such that f + ep is
isolated for some € # 0 and which is quasi-homogeneous of the same quasi-
homogeneous type (w;d). Suppose that (f,p) satisfies the conditions of this
section, cf. 6.4.3. Then

n d—w; Ll I;
ba(f) = baa(f) = [I == —d 2

i=0 ¥ =1 "7

where b,(f) is the rank Ofﬁq(Ff).
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Proof. It is well-known that if there exists an isolated quasi-homogeneous sin-
gularity of type (w;d), it belongs to a unique p-class. Let g = fi'5 denote a
typical element of this class. According to 6.4.8, we have for g:

1a(9) = (1) + 3ttt

o=1

where a, = L. Z(p). Now ¢ consists of monomials a,z™ (written in multi-
index notation: m = (my,...,m,)). Not all of these monomials vanish entirely
on X,. Choose such a monomial a,,z™. Observe that for § € J, we have that

yred. z; = w;/k,. So
Gy = Z mj(E;"d - i) = {1/k- ) E mjw; = dfk,.

1Eds i€Jds
Since pa(fyg) = [Tieo(d — w;)/w; (cf. [5]), this proves the formula. 0

Theorem 6.4.8 also gives the zeta-function, so we can generalise the above
Proposition. It is known that the spectrum of g = fi% is

Spp(g) = 3 calar—1,m),
«€Q
where ¢, is found by writing out

e

H tw,/d -1 Z c‘*

see [46], Example 5.2. We can therefore compute the zeta-function of f5 as
in Remark 4.3.2. We know that e, = d/k,, and according to a personal note
by Dimca, we have

AT = Ts,,

where Is, is the isoiropy action, whose order is k,, which is the action on
H,_,(F?) induced by multiplication by exp(27i/k,). If this action is known,
then (;(t) can be computed explicitly. We have proved:

(6.4.13) Proposition

Cr(t) = yreg(t) - [T det(I — t°Ts,)=1" -
s o=1
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(6.4.14) Example Take f(z,y) = y* + y?2®. Then wy = 2, w; = 3 and
d = 12. We get that
(1 -y
Gl = T -y

Furthermore k = 2, u* = 1 (transversal type A;) and @ = 6. Therefore
det(I — t°Is) = 1 + t6. Hence

Cr(t) = (1= #)/(1 - tf).

This can be confirmed in Appendix A (W) ).



APPENDIX A
The EN-diagrams of the Arnol’d series

In this appendix the EN-diagrams of the series of plane curve singularities
listed in [5] are drawn.

The first part consists of the exceptional families E, W, and Z. We also
give the Milnor number and the set of polar ratios. These examples belong to
the topological series of %, zy® or y*. They are interesting, because some of
them are not part of other descriptions of ‘series’.

The second part contains the infinite series A, D, J, W, W#, X, Y and
Z. All variants are given. In the tables, we have that:

(a) p = the Milnor number;
(b) No and the graph constant ¢ are as in Theorem 3.3.2;

(¢) (s is the zeta-function of the non-isolated head; the zeta-function of a
member of the series can be obtained by multiplying with 1 —tN+e(~1)V,

(d) poo is the set of polar ratios of the non-isolated head; the polar ratios of
a member of the series can be computed using the formula in section 2.8,
each branch of the singular locus gives a new polar ratio.

In order to save space, we sometimes write ‘—’ in the equations. This means
that one has to prepend the equation with the equation of the corresponding
head of the series.
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Name | Formula [ EN-diagram | p(f)
3k41

Eex y? + 234 6k [a 3k+1
2k41

Eery1 | P + 2%ty 6k +1 2 3k 43
Sk+2

Eerqa | 17 + 2342 6k + 2 |3 3k +2
4k+1

Wine |yt + i+t 12k ’ P 4k +1
3k+1

Wik | y? + yz3kt+2 12k + 1 3 4k + %
3k+2

Wiskes | yt + yz3k+2 12k +5 I3 4k + 3
4k43

Wiskys | y* + yz3k+3 12k + 6 i4 4k + 3
3k+4

Zek+11 :!:(y3 + y.'l:2k+3 -+ $3k+4) 6k + 11 I3 4,3k+5
2k+3

Zsk+12 ..":(y3 + y£2k+3 + r3k+5) 6k + 12 2 4, 3k + ]—21
3k+5

Zsk+13 a":(ys + y$2k+4 + ::3"“'5) 6k + 13 i3 4, 3k+6

93
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Name | Formula B EN-diagram
1

Ase y? 0 —(2) Coo = T
Ay y 0 — p>22, N=p+1,
Ay y2+1:2 1 —+——t No=1l,¢c=0

N
M y? + 2P ¥l P 1: Poo = 0
Dco xyz 1 -~ (2) Coo =1

2 3 P 2 51 N = - 21

Dy 2yt 42 4 I M= B zoeif

N
Dp Zys + zp-1 P 2 P = {3]-

- @ 13
Teoo | ¥ +2Fy? 3k—2 A i

1-1¢8
k 3k _ k k>2,p>lc=k

Jr,0 P+aty+a 6k—2 + N = p+-2k, Ny = Sk

E N
Jop | P+ afy? + 2%4r | Gk~24p Poo = {3k}
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Name Formula H EN-diagram
2k+1_2 5 _ 48k44
Weoo | ot +12241 | 8k41 r " @ b= L
k>1,p>1,
We o0 — +zikt2 12k+3 2k+1 - N=p+2k+1;
Poo = {4k + 2}
2k41,.2 N =
Wi p — 4 gkt 12k+3+p | ]2 ivo—;kzii_ 1
2k 41 o _ jak+42
Wie |+ |k iz @ Coo = lli—t-«
2k+1 N
W1 | — +ystHite | 12k42¢42 _Tze—Tz— i
2k+1 N'f2 _
W’f% — + ottt | 12542943 Iz ] jNV’ ; g: i gz Ii
2
Xeo vt + 2%y? 3 —T—() os =114
> =p—-
Xo — 4zt 9 ——‘%— ?vn—zl.oé 1:: 2p £
N,
Xo — 4 ztr? P I Lz Poo = {4}

[

—” means: include equation of non-isolated head of the series.
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Name | Formula 7 EN-diagram
44 oh 2h,2 h (1 —h)?
Xnoo | Yt + PP + 22y | 8h—3 (@ el
h>2,p>1,
Xno | — +2%y 12h—3 h N=p+2h,
No =2h,c=2h
Xnp — 4 gihtr 12h—-3+p A N Poo = {4h}
2
2)——— - (2
Yoo,oo 1’2?}2 4 el el Coo,oo =1
Y, A+r + 2,2 ’.+5 ; 2 (2 rs 2 11
r,00 Y oy e1=ca=2
24r 245
Yoo |yt 422 42t | O4rts !2 iz Poo = {4}
2 2
Y2 o 4h—2 @ ra. N
12h —3 24r 243
¥, See [5], p. 248 g 2 [ |2 Poo = {4R}

“—" means: include equation of non-isolated head of the series.
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Name | Formula u EN-diagram
s @
Zroo | P+ 2F+2? | 3E45 Coo = 1 — 34+
k,p>l,e=k+2
Zyo |~ + 23t 6k+9 B4l N=p+2k+2,
No=2k+2
k41 N
Zrp | — +a%P | 6k+94p ’_LT——E_. Poo = {4,3k + 4}
b htk @ oo =
Zf,oo 8h+3k-3 i | (1—t4")(1—t4"‘+3")
1-1t4
[ h>2 kp>1,
N=p+2h+2k
h w b btk p )
Zk, | See 5], p. 249 | 12h+6k—3 [ [ No —h + 9k,
ce=2h+%k
_h btk N
zp, | See[5], p. 249 | 12h+6k—3+p [ 'E Iz " | Poo = {4k, 4k + 3p}

[[3

—” means: include equation of non-isolated head of the series.
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Samenvatting in het Nederlands

Series van singulariteiten zijn altijd een inspiratiebron geweest voor het on-
derzoek in de singulariteitentheorie. Niet dat er een definitie is van ‘series’,
maar ze bestaan ontegenzeggelijk (Arnol’d schrijft: ‘series undoubtably exist’).
In dit proefschrift verhelderen we het begrip serie door voornamelijk naar de
topologische aspecten te kijken. '

We beschouwen kiemen van holomorfe functies f : (C**!,0) — (C,0). Dat
wil zeggen: we bekijken holomorfe functies met f(0) = 0 en we beschouwen ze
gelijk als ze overeenstemmen op een kleine omgeving van 0. Waar de gradiént
van zo'n functie verdwijnt, zit een singulier punt. Als alleen de oorsprong
singulier is, dan spreken we over een geisoleerde singulariteit.

Om te beginnen bekijken we het geval n = 1. In dat geval definieert f een
vlakke kromme X = f~1(0). Als we X doorsnijden met een klein 3-sfeertje,
dan ontstaat er een schakel K, waarvan de samenhangscomponenten precies
overeenkomen met de priemfactoren van f. Het complement van de schakel
is gevezeld (met de cirkel als basisruimte) door de afbeelding f/|f|. Deze
vezeling heet de Milnorvezeling. Het is een van de belangrijkste invarianten
van een singulariteit. In Hoofdstuk 1 wordt gememoreerd hoe men de schakel
kan construeren en noteren door middel van een graaf, het zogenaamde EN-
diagram (uitgevonden door Eisenbud en Neumann [14]). In Hoofdstuk 2 laten
we zien hoe diverse topologische invarianten uit het EN-diagram zijn af te
leiden.

In Hoofdstuk 3 bekijken we series van vlakke krommen. FEen eenvoudig
voorbeeld hiervan bestaat uit de functies zy% + xP~1, door Arnol’d aangeduid
met D,. Intuitief is duidelijk dat deze singulariteiten bij elkaar horen, en
dat aan het ‘hoofd’ ervan de functie zy? staat (die de naam D, heeft gekre-
gen). Deze laatste functie heeft een niet-geisoleerde singulariteit. We kunnen
laten zien, dat de Milnorvezeling van een element van de serie ontstaat uit
die van D,, door een omgeving van de singuliere locus weg te snijden en iets
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terug te plakken op zo'n manier dat het resultaat de Milnorvezeling is van een
geisoleerde singulariteit. Met.dit idee kunnen we fopologische series definiéren.
Zij voldoen aan de eigenschappen die we van de topologie van Arnol’ds series
gewend zijn. Nadat we de definitie van topologische serie hebben gepresen-
teerd, laten we zien hoe verschillende bekende invarianten zich gedragen bin-
nen de serie. Dit geeft ook een verband tussen het niet-geisoleerde ‘hoofd’ van
de serie en de rest: in het algemeen zijn geisoleerde singulariteiten namelijk
goed beschreven en niet-geisoleerde niet.

Vele topologische invarianten hebben te maken met de monodromie van de
Milnorvezeling. In Hoofdstuk 3 wordt bijvoorbeeld de zéta-functie van de mo-
nodromie berekend. Een stap verder is het spectrum, gedefinieerd door Arnol’d
en Steenbrink. In Hoofdstuk 4 kijken we naar het spectrum binnen een serie,
maar hiervoor moeten we eerst enkele algemene resultaten afleiden. Interes-
sant is dat deze stellingen te maken hebben met voormalige vermoedens over
het spectrum en over signaturen en Seifertvormen. Dit was aanleiding deze re-
sultaten op te nemen in gezamenlijk werk met J. Steenbrink en J. Stevens [46].

Een van de mooiste artikelen over vlakke krommen is wel het artikel van
A’Campo [1], dat een methode geeft om het Dynkin-diagram van de inter-
sectievorm op de Milnorvezel uit te rekenen. Helaas is deze methode alleen
voor geisoleerde singularititeiten van toepassing. Om het voor niet-geisoleerde
singularititeiten en series geschikt te maken, is in ieder geval een goede de-
formatietheorie nodig. In Hoofdstuk 5 wordt de deformatietheorie van vlakke
krommen volledig beschreven. Dit bouwt voort op werk van Pellikaan. Aan
het eind wordt aangestipt wat men hiermee kan bereiken op het gebied van de
Dynkin-diagrammen.

In Hoofdstuk 6 tenslotte verlaten we het terrein van de vlakke krommen
en bestuderen series van hyperoppervlakken (n > 1). We nemen aan dat de
niet-geisoleerde singulariteit nog steeds een één-dimensionale singuliere locus
bezit. De zaak ligt hier direct veel ingewikkelder. Een resultaat om naar te
streven is een generalisatie van de formule voor de zéta-functie. We bieden
twee methoden aan. De eerste is vooralsnog alleen geldig op het niveau van de
Euler-karakteristick. De tweede werkt goed, maar voor ons gevoel voldoen niet
genoeg functies aan de voorwaarden. Het idee is, dat een preciese beschrijving
van de functies waarvoor de eerste methode werkt, de weg kan openen naar
een definitie van series van hyperoppervlakken.
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The cover shows front views of London Underground rolling stock. The front
cover features ‘tube-stock’, running on the deep tube lines. We chose from the large
number of such series the ones called 1938-stock and 1983-stock. The back cover
shows exampies of stock running on the ‘surface lines’, where series (like singularities)
are denoted by letters (in this case A-stock and D-stock). See also page 71.
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