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Abstract. In case of one-dimensional singular locus, we use deformations in order to
get refined information about the Betti numbers of the Milnor fibre.

1. Introduction and results

We study the topology of Milnor fibres F of function germs on Cn+1 with a 1-dimensional
singular set. Well known is that F is a (n − 2) connected n-dimensional CW-complex.
What can be said about Hn−1(F ) and Hn(F )? In this paper we use deformations in order
to get information about these groups. It turns out that the constraints on F yield only
small numbers bn−1(F ), for which we give upper bounds which are in general sharper than
the known ones from [Si4]. The upper Betti number bn(F ) can be determined from an
Euler characteristic formula. We pay special attention to classes of singularities where
Hn−1(F ) = 0, where the homology is concentrated in the middle dimension.

The admissible deformations of the function have a singular locus Σ consisting of a
finite set R of isolated points and finitely many curve branches. Each branch Σi of Σ has
a generic transversal type (of transversal Milnor fibre F ti and Milnor number denoted by
µti ) and also contains a finite set Qi of points with non-generic transversal type, which we
call special points. In the neighbourhood of each such special point q with Milnor fibre
denoted by Aq, there are two monodromies which act on F ti : the Milnor monodromy of
the local Milnor fibration of F ti , and the vertical monodromy of the local system defined
on the germ of Σi \ {q} at q.

In our topological study we work with homology over Z (and therefore we systematically
omit Z from the notation of the homology groups). We provide a detailed expression for
Hn−1(F ) through a topological model of F from which we derive the following results.

a. If for every component Σi there exist one vertical monodromy As, which has
no eigenvalues 1, then bn−1(F ) = 0. More generally: bn−1(F ) is bounded by
the sum (taken over the components) of the minimum (over that component) of
dim ker(As − I) (Theorem 4.4).

b. Assume that for each irreducible component Σi there is a special singularity at q
such that Hn−1(Aq) = 0. Then Hn−1(F ) = 0.
More generally: Let Q′ := {q1, . . . , qm} ⊂ Q be a subset of special points such that
each branch Σi contains at least one of its points. Then (Theorem 4.6b):

bn−1(F ) ≤ dimHn−1(Aq1) + · · ·+ dimHn−1(Aqm).
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2 DIRK SIERSMA AND MIHAI TIBĂR

Note that in both cases already some (small) subset of the special points may have a
strong effect and that we may choose the best bound.

In [ST2] we have studied the vanishing homology of projective hypersurfaces with a
1-dimensional singular set. The same type of methods work in the local case. We keep
the notations close to those in [ST2] and refer to it for the proof of certain results. In the
proof of the main theorems we use the Mayer-Vietoris theorem to study local and (semi)
global contributions separately. We construct a CW-complex model of two bundles of
transversal Milnor fibres (in §3.4 and §3.5) and their inclusion map (§4). Moreover we
use the full strength of the results on local 1-dimensional singularities [Si1], [Si3], [Si4],
[Si5], cf also [NS], [Ra], [Ti], [Yo].

We discuss known results such as De Jong’s [dJ] and compute several examples in §5.

Acknowledgment. Most of the research of this paper took place during a Research in Pairs
of the authors at the Mathematisches Forschungsinstitut Oberwolfach in November 2015.
The authors thank the institute for the support and excellent atmosphere.

2. Local theory of 1-dimensional singular locus

We work with local data of function germs with 1-dimensional singular locus and we
will apply results from the well-known theory which we extract from [Si4], [Si5], and [ST2].

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with singular locus Σ
of dimension 1 and let Σ = Σ1 ∪ . . . ∪ Σm be its decomposition into irreducible curve
components. Let E := Bε ∩ f−1(Dδ) be the Milnor neighbourhood and F be the local
Milnor fibre of f , for small enough ε and δ. The homology H̃∗(F ) is concentrated in
dimensions n − 1 and n. The non-trivial groups are Hn(F ) = Zµn , which is free, and
Hn−1(F ) which can have torsion.

There is a well-defined local system on Σi \ {0} having as fibre the homology of the
transversal Milnor fibre H̃n−1(F ti ), where F ti is the Milnor fibre of the restriction of f to
a transversal hyperplane section at some x ∈ Σi \ {0}. This restriction has an isolated
singularity whose equisingularity class is independent of the point x and of the transversal
section, in particular H̃∗(F

t
i ) is concentrated in dimension n− 1. It is on this group that

acts the local system monodromy (also called vertical monodromy):

Ai : H̃n−1(F ti )→ H̃n−1(F ti ).

After [Si4], one considers a tubular neighbourhood N := tmi=Ni of the link of Σ and
decomposes the boundary ∂F := F ∩ ∂Bε of the Milnor fibre as ∂F = ∂1F ∪ ∂2F , where

∂2F := ∂F ∩N . Then ∂2F =
m
t
i=1
∂2Fi, where ∂2Fi := ∂2F ∩Ni.

Each boundary component ∂2Fi is fibred over the link of Σi with fibre F ti . Let then
Eti denote the transversal Milnor neighbourhood containing the transversal fibre F ti and
let ∂2Ei denote the total space of its fibration above the link of Σi. Therefore Eti is
contractible and ∂2Ei retracts to the link of Σi. The pair (∂2Ei, ∂2Fi) is related to Ai− I
via the following exact relative Wang sequence [ST2] ( n ≥ 2):

(2.1) 0→ Hn+1(∂2Ei, ∂2Fi)→ Hn(Eti , F
t
i )

Ai−I→ Hn(Eti , F
t
i )→ Hn−1(∂2Ei, ∂2Fi)→ 0.
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3. Deformation and vanishing homology

Consider now a 1-parameter family fs : (Cn+1, 0)→ (C, 0) where f0 = f̂ : (Cn+1, 0)→
(C, 0) is a given germ with singular locus Σ̂ of dimension 1, with Milnor data (Ê, F̂ ) and

Σ̂ = Σ̂1 ∪ . . . ∪ Σ̂m and all the other objects defined like in §2. We use the notation with
“hat” since we reserve the notation without “hat” for the deformation fs.

We fix a ball B := Bε ⊂ Cn+1 centered at 0 and a disk ∆ := ∆δ ⊂ C at 0 such that, for
small enough radii ε and δ the restriction to the punctured disc f̂| : B ∩ f−1(∆∗)→ ∆∗ is

the Milnor fibration of f̂ .
We say that the deformation fs is admissible if it has good behavior at the boundary,

i.e., if for small enough s the family fs| : ∂B ∩ f−1(∆) → ∆ is stratified topologically

trivial.1

We choose a value of s which satisfies the above conditions and write from now on
f := fs. It then follows that the pair (E,F ) := (B ∩ f−1(∆), f−1(b)), where b ∈ ∂∆, is

topologically equivalent to the Milnor data (Ê, F̂ ) of f̂ . Note that for f we consider the
semi-local singular fibration inside B and not just its Milnor fibration at the origin.

Let Σ ⊂ B be the 1-dimensional singular part of the singular set Sing (f) ⊂ B. Note

that Σ̂ =
⋃
i∈Î Σ̂ and Σ =

⋃
i∈I Σi can have a different number of irreducible components.

It follows that the circle boundaries ∂B ∩ Σ̂ of Σ̂ identify to the circle boundaries ∂B ∩Σ
of Σ and that the corresponding vertical monodromies are the same.

3.1. Notations. We use notations similar to [ST2] (cf also figure 1).
A point q on Σ is called special if the transversal Milnor fibration is not a local product
in a neighbourhood of that point.
Qi := the set of special points on Σi; Q := ∪i∈IQi,
R := the set of isolated singular points; R = R0 ∪R1, where R0 are the critical points on
f−1(0) and R1 the critical points outside f−1(0),
Bq, Br = small enough disjoint Milnor balls within E at the points q ∈ Q, r ∈ R resp.
BQ := tqBq and BR := trBr, and similar notation for BR0 and BR1 ,
Σ∗i := Σi \BQ; Σ∗ = ∪i∈IΣ∗i ,
Ui := small enough tubular neighbourhood of Σ∗i ; U = ∪iUi,
πΣ : U → Σ∗ is the projection of the tubular neighbourhood.
T = {f(r)|r ∈ R} ∪ {f(Σ)} is the set of critical values of f and we assume without loss
of generality that f(Σ) = 0.

Let{∆t}t∈T be a system of non-intersecting small discs ∆t around each t ∈ T . For any
t ∈ T , choose t′ ∈ ∂∆t. If t = f(r) then we denote by t′(r) the point t′ ∈ ∆f(r). For t = 0
we use the notations t0 and t′0 respectively.

Let Er = Br ∩ f−1(∆f(r)) and Fr = Br ∩ f−1(t′(r)) be the Milnor data of the isolated
singularity of f at r ∈ R. We use next the additivity of vanishing homology with respect
to the different critical values and the connected components of Sing f . By homotopy
retraction and by excision we have:

(3.1) H∗(E,F ) ' ⊕t∈TH∗((f−1(∆t), f
−1(t′)) =

1 Such a situation occurs e.g.in the case of an “equi-transversal deformation” considered in [MS].
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Figure 1. Admissible deformation

(3.2) = ⊕r∈R0H∗(Er, Fr)⊕H∗(E0, F0)⊕⊕r∈R1H∗(Er, Fr),

where (E0, F0) = (f−1(∆0) ∩ (U ∪ BQ), f−1(t′0) ∩ (U ∪ BQ) We introduce the following
shorter notations:

(Xq,Aq) := (f−1(∆0) ∩Bq, f
−1(t′0) ∩Bq)

X = tQXq , A = tQAq

Y = U ∩ f−1(∆0) , B := f−1(t′0) ∩ Y

Z := X ∩ Y , C := A ∩ B
In these new notations we have:

(3.3) H∗(E,F ) ' H∗(X ∪ Y ,A ∪ B)⊕⊕r∈RH∗(Er, Fr).

Note that each direct summand H∗(Er, Fr) is concentrated in dimension n + 1 since it
identifies to the Milnor lattice Zµr of the isolated singularities germs of f−f(r) at r, where
µr denotes its Milnor number. We deal from now on with the term H∗(X ∪ Y ,A ∪ B) in

the direct sum of (3.3).
We consider the relative Mayer-Vietoris long exact sequence:

(3.4) · · · → H∗(Z, C)→ H∗(X ,A)⊕H∗(Y ,B)→ H∗(X ∪ Y ,A ∪ B)
∂s→ · · ·

of the pair (X ∪Y ,A∪B) and we compute each term of it in the following. The description
follows closely [ST2] where we have treated deformations of projective hypersurfaces.
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3.2. The homology of (X ,A). One has the direct sum decomposition H∗(X ,A) '
⊕q∈QH∗(Xq,Aq) since X is a disjoint union. The pairs (Xq,Aq) are local Milnor data of
the hypersurface germs (f−1(t0), q) with 1-dimensional singular locus and therefore the
relative homology H∗(Xq,Aq) is concentrated in dimensions n and n+ 1.

3.3. The homology of (Z, C). The pair (Z, C) is a disjoint union of pairs localized at
points q ∈ Q. For such points we have one contribution for each locally irreducible branch
of the germ (Σ, q). Let Sq be the index set of all these branches at q ∈ Q. By abuse of
notation we will also write s ∈ Sq for the corresponding small loops around q in Σi. For
some q ∈ Σi1 ∩Σi2 , the set of indices Sq runs over all the local irreducible components of
the curve germ (Σ, q). Nevertheless, when we are counting the local irreducible branches
at some point q ∈ Qi on a specified component Σi then the set Sq will tacitly mean only
those local branches of Σi at q. We get the following decomposition:

(3.5) H∗(Z, C) ' ⊕q∈Q ⊕s∈Sq H∗(Zs, Cs).
More precisely, one such local pair (Zs, Cs) is the bundle over the corresponding com-

ponent of the link of the curve germ Σ at q having as fibre the local transversal Milnor
data (Ets , F

t
s ), with transversal Milnor numbers denoted by µts . These data depend only

on the branch Σi containing s, and therefore if s ⊂ Σi we sometimes write (Eti , F
t
i ) and

µti . In the notations of §2, we have: ∂2Aq = ts∈Sq Cs.
The relative homology groups in the above direct sum decomposition (3.5) depend on

the local system monodromy As via the following Wang sequence which is a relative version
of (2.1) and has been proved in [ST2, Lemma 3.1]:

(3.6) 0→ Hn+1(Zs, Cs))→ Hn(Ets , F
t
s )

As−I→ Hn(Ets , F
t
s )→ Hn(Zs, Cs)→ 0.

From this we get:

Lemma 3.1. At q ∈ Q, for each s ∈ Sq one has:

Hk(Zs, Cs) = 0 k 6= n, n+ 1,

Hn+1(Zs, Cs) ∼= ker (As − I), Hn(Zs, Cs) ∼= coker (As − I).

�

We conclude that H∗(Z, C) is concentrated in dimensions n and n+ 1 only.

3.4. The CW-complex structure of (Z, C). The pair (Zs, Cs) has the following struc-
ture of a relative CW-complex, up to homotopy. Each bundle over some circle link can
be obtained from a trivial bundle over an interval by identifying the fibres above the end
points via the geometric monodromy As. In order to obtain Zs from Cs one can start
by first attaching n-cells c1, . . . , cµts to the fibre F ts in order to kill the µts generators of

Hn−1(F ts ) at the identified ends, and next by attaching (n + 1)-cells e1, . . . , eµts to the
preceding n-skeleton. The attaching of some (n + 1)-cell goes as follows: consider some
n-cell a of the n-skeleton and take the cylinder I×a as an (n+ 1)-cell. Fix an orientation
of the circle link, attach the base {0}× a over a, then follow the circle bundle in the fixed
orientation by the monodromy As and attach the end {1} × a over As(a). At the level of

the cell complex, the boundary map of this attaching identifies to As − I : Zµts → Zµts .
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Figure 2. Critical set and the cell models for (Z, C) and (Y ,B).

3.5. The CW-complex structure of (Y ,B). The curve Σ has as boundary components
the intersection ∂B ∩Σ with the Milnor ball. They are all topological circles. We denote
them with u ∈ Ui, U := ∪iUi and call them outside loops. Note that over any such loop
u ∈ Ui we have a local system monodromy Au : Zµti → Zµti . In fact this monodromy did
not change in the admissible deformation from f̂ to f .

For technical reasons we introduce one more puncture yi on Σi and next redefine Σ∗i :=
Σ \ (Q∪ {yi}) Moreover we use notations (Xy,Ay) and (Zy, Cy). We choose the following
sets of loops2 in Σi:

Gi the 2gi loops (called genus loops in the following) which are generators of π1 of the
normalization Σ̃i of Σi, where gi denotes the genus of this normalization (which is
a Riemann surface with boundary),

Si the loops s around the special points q ∈ Qi,
Ui the outside loops,

and define Wi = Gi t Si t Ui and W = tWi. By enlarging “the hole” defined by the
puncture yi, we retract Σ∗i to some configuration of loops connected by non-intersecting
paths to some point zi, denoted by Γi (see Figure 2). The number of loops is #Wi =
2gi + τi + γi, where τi := #Ui and γi :=

∑
q∈Qi

#Sq. Note that τi > 0 since there must be
at least one outside loop.

Each pair (Yi,Bi) is then homotopy equivalent (by retraction) to the pair (π−1
Σ (Γi),B∩

π−1
Σ (Γi)). We endow the latter with the structure of a relative CW-complex as we did with

(Z, C) at §3.4, namely for each loop the similar CW-complex structure as we have defined
above for some pair (Zs, Cs). The difference is that the pairs (Zs, Cs) are disjoint whereas
in Σ∗i the loops meet at a single point zi. We thus take as reference the transversal fibre
F ti = B ∩ π−1

Σ (zi) above this point, namely we attach the n-cells (thimbles) only once to
this single fibre in order to kill the µti generators of Hn−1(F ti ). The (n+1)-cells of (Yi,Bi)
correspond to the fibre bundles over the loops in the bouquet model of Σ∗i . Over each

2We identify the loops with their index sets.
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loop, one attaches a number of µti (n + 1)-cells to the fixed n-skeleton described before,
more precisely one (n+ 1)-cell over one n-cell generator of the n-skeleton. We extend for
w ∈ W the notation (Zg, Cg) to genus loops and (Zu, Cu) to outside loops, although they
are not contained in (Z, C) but in (Y ,B).

Here the attaching map of the (n + 1)-cells corresponding to the bundle over a genus

loop, or over an outer loop, can be identified with Ag − I : Zµti → Zµti , or with Au − I :

Zµti → Zµti , respectively. We have seen that the monodromy Au over some outer loop
indexed by u ∈ Ui is necessarily one of the vertical monodromies of the original function
f̂ .

From this CW-complex structure we get the following precise description in terms of
the monodromies of the transversal local system, the proof of which is similar to that of
[ST2, Lemma 4.4]:

Lemma 3.2.

(a) Hk(Y ,B) = ⊕i∈IHk(Yi,Bi) and this is = 0 for k 6= n, n+ 1.

(b) Hn(Yi,Bi) ' Zµti /〈Im(Aw − I) | w ∈ Wi〉,
(c) χ(Yi,Bi) = (−1)n−1(2gi + τi + γi − 1)µti .

�

If we apply χ to (3.3) and (3.4) and take into account that χ(Z, C) = 0, we get:
χ(E,F ) = χ(X ,A)+χ(Y ,B)+

∑
r χ(Er, Fr). From this we derive the Euler characteristic3

of the Milnor fibre F :

Proposition 3.3.

χ(F ) = 1 +
∑
q∈Q

(χ(Aq)− 1) + (−1)n
∑
i∈I

(2gi + τi + γi − 2)µti + (−1)n
∑
r∈R

µr.

�

Proposition 3.4. The relative Mayer-Vietoris sequence (3.4) is trivial except of the fol-
lowing 6-terms sequence:

(3.7)
0→ Hn+1(Z, C)→ Hn+1(X ,A)⊕Hn+1(Y ,B)→ Hn+1(X ∪ Y ,A ∪ B)→
→ Hn(Z, C) j→ Hn(X ,A)⊕Hn(Y ,B)→ Hn(X ∪ Y ,A ∪ B)→ 0.

�

Proof. Lemma 3.1, §3.2 and Lemma 3.2 show that the terms H∗(X ,A), H∗(Y ,B) and
H∗(Z, C) of the Mayer-Vietoris sequence (3.4) are concentrated only in dimensions n and
n + 1. Following (3.3) and since H̃∗(F ) is concentrated in levels n − 1 and n, we obtain
that Hn+2(X ∪ Y ,A ∪ B) = 0. �

The first 3 terms of (3.7) are free. By the decomposition (3.3), in order to find the
homology of F we thus need to compute Hk(X ∪Y ,A∪B) for k = n, n+1, since the others
are zero. In the remainder of this paper we find information only about Hn(X ∪Y ,A∪B).
The knowledge of its dimension is then enough for determining Hn(F ), by only using the
Euler characteristic formula (Prop. 3.3).

3already computed in [MS]
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4. The homology group Hn−1(F )

We concentrate on the term Hn(X ∪Y ,A∪B) ' H̃n−1(F ). We need the relative version
of the “variation-ladder”, an exact sequence found in [Si4, Theorem 5.2, p. 456-457]. This
sequence has an important overlap with our relative Mayer-Vietoris sequence (3.7).

Proposition 4.1. [ST2, Proposition 5.2] For any point q ∈ Q, the sequence

0→ Hn+1(Aq, ∂2Aq)→ ⊕s∈Sq Hn+1(Zs, Cs)→ Hn+1(Xq,Aq)→
→ Hn(Aq, ∂2Aq)→ ⊕s∈Sq Hn(Zs, Cs) → Hn(Xq,Aq) → 0

is exact for n ≥ 2. �

4.1. The image of j. We focus on the map j = j1⊕ j2 which occurs in the 6-term exact
sequence (3.7), more precisely on the following exact sequence:

(4.1) Hn(Z, C) j→ Hn(X ,A)⊕Hn(Y ,B)→ Hn(F )→ 0.

since we have the isomorphism:

(4.2) Hn−1(F ) ' coker j.

Therefore full information about j makes is possible to compute Hn−1(F ). But although
j is of geometric nature, this information is not always easy to obtain. Below we treat
its two components in separately. After that we will make two statements (Theorems 4.4
and 4.6) of a more general type.

4.1.1. The first component j1 : Hn(Z, C)→ Hn(X ,A).
Note that, as shown above, we have the following direct sum decompositions of the source
and the target:

Hn(Z, C) = ⊕q∈Q ⊕s∈Sq Hn(Zs, Cs)⊕⊕i∈IHn(Zyi , Cyi),
Hn(X ,A) = ⊕q∈QHn(Xq,Aq)⊕⊕i∈IHn(Xyi ,Ayi).

As shown in Proposition 4.1, at the special points q ∈ Q we have surjections: ⊕s∈Sq Hn(Zs, Cs)→
Hn(Xq,Aq) and moreover Hn(Zy, Cy) → Hn(Xy,Ay) is an isomorphism. We conclude to
the surjectivity of the morphism j1 and to the cancellation of the contribution of the
points yi for coker j.

4.1.2. The second component j2 : Hn(Z, C)→ Hn(Y ,B).
Both sides are described with a relative CW-complex as explained in §3.5. At the level of
n-cells there are µts n-cell generators of Hn(Zs, Cs) for each s ∈ Sq and any q ∈ Q. Each of
these generators is mapped bijectively to the single cluster of n-cell generators attached
to the reference fibre F ti (which is the fibre above the common point zi of the loops). The
restriction j2| : Hn(Zs, Cs) → Hn(Yi,Bi) is a projection for any loop s in Σi and q ∈ Qi,

or if instead of s we have yi, since we add extra relations to Zµt/〈As − I〉 in order to get

Zµti /〈Im(Aw−I) | w ∈ Wi〉 = Hn(Yi,Bi). We summarize the above surjections as follows:

Lemma 4.2. (“Strong surjectivity”)

(a) Both j1 and j2 are surjective.
(b) The restriction j2| : Hn(Zs, Cs)→ Hn(Yi,Ai) is surjective for any s ∈ Sq such that

q ∈ Q ∩ Σi.
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(c) The restriction j1| ⊕s∈Sq Hn(Zs, Cs)→ Hn(Xq,Aq) is surjective, for any q ∈ Q.

�

Corollary 4.3. (a) If the restriction j2| ker j1 is surjective, then j is surjective.
(b) If for each i ∈ I there exists qi ∈ Q ∩ Σi and some s ∈ Sqi such that Hn(Zs, Cs) ⊂

ker j1 then j is surjective.
�

Proof. (a). More generally, let j1 : M → M1 and j2 : M → M2 be morphisms of Z-
modules such that j1 is surjective and consider the direct sum of them j := j1 ⊕ j2. We
assume that the restriction j2| ker j1 is surjective onto M2 and want to prove that j is
surjective.

Let then (a, b) ∈M1⊕M2. There exists x ∈M such that j1(x) = a, by the surjectivity
of j1. Let b′ := j2(x). By our surjectivity assumption there exists y ∈ ker j1 such that
j2(y) = b− b′. Then j(x+ y) = a+ b, which proves the surjectivity of j.
(b). follows immediately from Lemma 4.2(b) and from the above (a). �

4.2. Effect of local system monodromies on Hn(F ). Recall that w ∈ Wi stands for
some loop s, g, u in Σ∗i .

Theorem 4.4.

(a) If there is w ∈ Wi such that det(Aw − I) 6= 0 then dimHn(Yi,Bi) = 0.
If such w ∈ Wi exists for any i ∈ I, then bn−1(F ) = 0.

(b) If there is w ∈ Wi such that det(Aw − I) = ±1 then Hn(Yi,Bi) = 0.
If such w ∈ Wi exists for any i ∈ I, then Hn−1(F ) = 0.

(c) The following upper bound holds:

bn−1(F ) ≤
∑
i∈I

min
w∈Wi

dim coker(Aw − I) ≤
∑
i∈I

µti .

Proof. By Lemma 3.2(b). we have Hn(Yi,Bi) ' Zµti /〈Im(Aw−I) | w ∈ Wi〉, thus the first
parts of (a) and (b) follow. For the second part of (a), we have that dimHn(Y ,B) = 0,
hence corank j = corank j1 = 0. For the second part of (b), we have that Hn(Y ,B) = 0
and the surjectivity of the map j of (4.1) is equivalent to the fact that j1 is surjective.
To prove (c), we consider homology groups with coefficients in Q. Since j1 is surjective, the
image of j contains all the generators of Hn(X ,A;Q). Hence dim coker j ≤ dimHn(Y ,B).

�

Remark 4.5. Notice the effect of the strongest bound in the above theorem. On each Σi

one could take an optimal loop, e.g. one with det(Aw − I) = ±1. Since in the deformed
case there may be less branches Σi, and more special points and hence more vertical
monodromies, these bounds may become much stronger than those in [Si4].
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4.3. Effect of the local fibres Aq.

Theorem 4.6. Let n ≥ 2.

(a) Assume that for each irreducible 1-dimensional component Σi of Σ there is a special
singularity q ∈ Qi such that the (n − 1)th homology group of its Milnor fibre is
trivial, i.e. Hn−1(Aq) = 0. Then Hn−1(F ) = 0.
If in the above assumption we replace Hn−1(Aq) = 0 by bn−1(Aq) = 0, then we get
bn−1(F ) = 0.

(b) Let Q′ := {q1, . . . , qm} ⊂ Q be some (minimal) subset of special points such that
each branch Σi contains at least one of its points. Then:

bn−1(F ) ≤ dimHn(Xq1 ,Aq1) + · · ·+ dimHn(Xqm ,Aqm).

Proof. (a). We use (4.1) in order to estimate the dimension of the image of j = j1⊕ j2. If
there is a q ∈ Q such that Hn(Xq,Aq) = 0 then ker j1 contains ⊕s∈SqHn(Zs, Cs). Since Q′

meets all components Σi, statement (a) follows from Corollary 4.3(b). The second claim
of (a) follows by considering homology over Q.
(b). We work again with homology over Q. We consider the projection on a direct
summand π : Hn(X ,A) → ⊕q 6∈Q′Hn(Xq,Aq) and the composed map J1 := π ◦ j1. Then
the restriction j2| ker J1 is surjective, which by Corollary 4.3(a), means that J1 ◦ j2 is
surjective. Then the result follows from the obvious inequality dim(ImJ1 ◦ j2) ≤ dim Imj
by counting dimensions. �

Remark 4.7. Also here we have the effect of the strongest bound. This works at best
if one chooses an optimal or minimal Q′ (see e.g. Figure 3). In the irreducible case,
Hn−1(Aq) = 0 for at least one q ∈ Q already implies the triviality Hn−1(F ) = 0.

Figure 3. A choice of Q-points

Corollary 4.8. (Bouquet Theorem) If n ≥ 3 and

(a) If for any i ∈ I there is w ∈ Wi such that det(Aw − I) = ±1, or
(b) If for every Σi there is a special singularity q ∈ Qi such that Hn−1(Aq) = 0

then

F
ht' Sn ∨ · · · ∨ Sn.

Proof. From Theorems (4.4b) or (4.6a) follows Hn−1(F ) = 0. Since F is a simply con-
nected n-dimensional CW-complex the statement follows from Milnor’s argument ([Mi],
theorem 6.5) and Whitehead’s theorem. �
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5. Examples

5.1. Singularities with transversal type A1. The case when Σ is a smooth line was
considered in [Si1] and later generalized to Σ a 1-dimensional complete intersection (icis)
[Si2]. It uses an admissible deformation with only D∞-points. The main statement is:

(a) F
ht' Sn−1 if #D∞ = 0,

(b) F
ht' Sn ∨ · · · ∨ Sn else.

Since D∞-points have Hn−1(Aq) = 0, our Theorem 4.6 provides a proof of this statement
on the level of homology. If Σ is not an icis, more complicated situations occur. For

details about the following example, cf [Si2].

(i) f = xyz, called T∞,∞,∞ : Σ is the union of 3 coordinate axis. F ∼= S1 × S1, so
b1(F ) = 2, b2(F ) = 1 and all Au = I.

(ii) f = x2y2 + y2z2 + x2z2 has F ∼= S2 ∨ · · · ∨ S2. The admissible deformation
fs = f + sxyz has the same Σ as f = xyz, but now with 3 D∞-points on each
component of Σ and one T∞,∞,∞-point in the origin. Our Theorem 4.6 therefore
states H1(F ) = 0. A real picture of fs = 0 contains the Steiner surface, for s 6= 0
small enough (Figure 4a). That H2(F ) = Z15 follows from χ(F ) = 16 computed
via Proposition 3.3.

(a) Steiner Surface (b) Singularity F1A3 (c) Singularity F2A3

Figure 4. Several Singularites (produced with Surfer software)

5.2. Transversal type A2, A3, D4, E6, E7, E8, De Jong List. In [dJ] there is a de-
tailed description of singularities with singular set a smooth line and transversal type
A2, A3, D4, E6, E7, E8. His list illustrates and confirms our statements at the level of
homology.

We will treat below in more detail the case f : C3 → C with transversal type A3. (By
adding squares, this also illustrates f : Cn+1 → C.) Any singularity of this type can be
deformed into

F1A3 : f = xz2 + y2z ; F
ht' S1 (figure 4b)

F2A3 : f = xy4 + z2 ; F
ht' S2 (figure 4c)

De Jong’s observation is that for any line singularity of transversal type A3we have:

(a) F
ht' Sn−1 ∨ Sn · · · ∨ Sn if #F2A3 = 0,



12 DIRK SIERSMA AND MIHAI TIBĂR

(b) F
ht' Sn ∨ · · · ∨ Sn else.

In homology, (b) follows directly from our concentration result 4.6. The homology version
of (a) takes more efforts. We demonstrate this in the following example only. First we
mention that for F1A3 the vertical monodromy A is equal to the Milnor monodromy
h. This follows from the fact that f = xz2 + y2z is homogeneous of degree d = 3 and
Steenbrink’s remark [St] that Ahd = I and that h4 = I. The matrix of h is: 1 1 1

−1 0 0
0 −1 0


It follows: ker(h− I) = Z ; Im (h− I) = Z2 and coker(h− I) = Z.

Next consider as example the deformation f := fs = (xk−s)z2+yz2+y2z for some fixed
small enough s 6= 0, which has transversal type A3. This deformation has #F1A3 = k
and #F2A3 = 0 and moreover one isolated critical point of type Ak. We compare now
the fundamental sequence for j in case F1A3 and f respectively4:

(5.1) j = j1 ⊕ j2 : Z→ Z⊕ Z→ Hn−1(FF1A3) = Z→ 0

(5.2) j = j1 ⊕ j2 : Zk → Zk ⊕ Z→ Hn−1(Ff ) = Z→ 0

The map j2 for f is as follows:
⊕sHn(Zs, Cs) = Zk = ⊕sZ3/〈h − I〉 → Z3/〈h − I, Au − I〉 = Hn(Y ,B). It is the sum

of components which are isomorphism on each factor Z. Note that for the outside loop u
we have Au − I = (h− 1)(hk−1 + · · ·+ h+ I) since Au = As1 ◦ · · · ◦ Ask = hk (all As are
equal to h).
We conclude H1(Ff ) = Z. Next H2(Ff ) = Z3k−1 follows from χ(Ff ) = 3k − 1 computed
via Proposition 3.3.

We illustrate this example with Figures 5a and 5b.

(a) Original surface (b) Deformed surface

Figure 5. Deformation fs = (xk − s)z2 + yz2 + y2z, (produced with Surfer software)

4We distinguish the Milnor fibres by a subscript.
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5.3. More general types. We show next that the above method is not restricted to the
De Jong classes. Consider f = z2xm− zm+2 + zym+1. It has the properties: F ' S1 ; Σ is
smooth; transversal type is A2m+1; A = hm, where h is the Milnor monodromy of A2m+1.

Note that dim ker(A− I) ≥ 1, and = 1 in many cases, e.g. m = 2, 3, 4, 5. This function
f appears as ‘building block’ in the following deformation:
gs = z2(x2 − s)m − zm+2 + zym+1.
This deformation contains two special points of the type f (and no others, except isolated
singularities). If one applies the same procedure as above one gets b1(G) = 1 where G is
the Milnor fibre of g0. Details are left to the reader.

Remark 5.1. The fact that the first Betti number of the Milnor fibre is non-zero can also
be deduced from Van Straten’s [vS, Theorem 4.4.12]: Let f : (C3, 0)→ (C, 0) be a germ
of a function without multiple factors, let F be the Milnor fibre of f . Then

b1(F ) ≥ #{irreducible components of f = 0}.
5.4. Deformation with triple points. Let fs = xyz(x + y + z − s). This defines a
deformation of a central arrangement with 4 hyperplanes. We get Σi = P1 (6 copies).
There are 4 triple points T∞,∞,∞ and one A1-point. The maps j1,q : Z3 → Z2 can be
described by j1,q(a, b, c) = (a + c, b + c). The map j2 restricts to an isomorphism Z→ Z
on each component. We have all information of the resulting map j : Z12 → Z14 up to
the signs of the isomorphisms. From this we get H1(F ;Z2) = Z3

2. Compare with the
dissertation [Wi], where Williams showed in particular that H1(F ;Z) = Z3.

5.5. The class of singularities with bn = 0. Most of the singularities above have
bn−1 = 0 or small. What happens if bn = 0 ? Examples are the product of an isolated
singularity with a smooth line (such as A∞) and some of the functions mentioned above
(e.g. F2A3). Very few is known about this class. We can show the following “non-splitting
property” w.r.t. isolated singularities:

Proposition 5.2. If f̂ has the property, that bn(F̂ ) = 0, then any admissible deformation
has no isolated critical points.

Proof. Note that in 3.3 we have H∗(E,F ) = 0. It follows, that H∗(X ∪Y ,A∪B) = 0 and
⊕r∈RH∗(Er, Fr) = 0. Therefore the set R is empty. �
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