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Abstract. The total curvature of complex hypersurfaces in Cn+1 and its variation
in families appear to depend not only on singularities but also on the behaviour in the
neighbourhood of infinity. We find the asymptotic loss of total curvature towards infinity
and we express the total curvature and the Gauss-Bonnet defect in terms of singularities
and tangencies at infinity.

1. Introduction

Let Y ⊂ Cn+1 be a global algebraic hypersurface, the zero locus of a polynomial in n+1
complex variables. By curvature, denoted by K, we mean the Lipschitz-Killing curvature
of a real codimension two analytic space Y , with respect to the metric induced by the flat
Euclidean metric of C

n+1. Let dv denote the associated volume form. The integral of the
curvature

∫
Y

Kdv will be called “total curvature” of Y .
We study here the influence of the position of Y at infinity upon the total curvature of

Y . Computing the total curvature of the projectivised Ȳ wouldn’t help, since the metrics
on Pn+1 and Cn+1 are different. We shall therefore exploit two ways of computing the
total curvature of Y : (1). by comparing it with the Euler characteristic χ(Y ), and (2).
by comparing it to the total curvature of a general hypersurface, after embedding Y into
a family.

The first approach goes back to extrinsic proofs of the Gauss-Bonnet theorem. The
failure of this celebrated theorem in case of open surfaces is a theme which has been
under constant attention ever since Cohn-Vossen’s pioneering work [Co] in 1935. Since
our space Y is not compact, and possibly singular, we consider the Gauss-Bonnet defect:

GB(Y ) := ω−1
n

∫
Y

Kdv − χ(Y ),

where ωn is a universal constant, see §2.1.
The second approach is based on the work of Langevin [La1, La3] and Griffiths [Gr] in

the late 70’s on the influence of an isolated singularity upon the total curvature of the
local Milnor fibre in case of analytic hypersurface germs. Langevin found the “loss of total
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curvature” of the Milnor fibre at an isolated hypersurface singularity1 and expressed it in
terms of certain Milnor-Teissier numbers µ∗, see §4.

In our global case, we start from the interplay between the total curvature and the
affine class of Y , defined as the number of tangent hyperplanes to Yreg in a general global
affine pencil of hyperplanes in C

n+1. For such pencils one defines global polar loci which
are affine curves. We point out here that any global pencil of affine hypersurfaces, even
if general, has as a “limit” the hyperplane at infinity H∞, which may be not in general
position with respect to the projectivised hypersurface Ȳ .

We show in Theorem 4.1 that there is a second possible way of losing curvature when
specialising in some family of affine hypersurfaces: towards infinity. The formula for the
total curvature can be interpreted as a Plücker-type formula for the class of affine hyper-

surfaces, see §4.2. In order to get more grip on the meaning of the quantity of curvature
absorbed at infinity, we release generality: we consider Y with isolated singularities and
such that Ȳ ∩ H∞ has singularities of dimension ≤ 1. This includes the most studied
cases in the literature, see §5.1. We then express the total curvature, as well as the
Gauss-Bonnet defect, in terms of invariants associated to singularities of Ȳ and to the
non-generic section Ȳ ∩H∞ of Ȳ (Proposition 5.2). We discuss in §6 several examples of
deformations of affine hypersurfaces Y with isolated and also non-isolated singularities.

2. Background on the total curvature

2.1. Real submanifolds. For a real orientable hypersurface of RN one has a well-defined
Gauss map. One defines the Gauss-Kronecker curvature K(x) as the Jacobian of the Gauss
map at x. For a submanifold V in R

N Fenchel [Fe] computes the curvature as follows.
For a given point x on V one considers a unit normal vector n, projects V orthogonally
to the affine subspace W generated by the affine tangent space to V and this normal
vector. The projection of V to W is a hypersurface, which has a well defined Gauss-
Kronecker curvature K(x,n). The Lipschitz-Killing curvature K(x) of V in x is defined
(see e.g.[ChL, p. 246-247]) as the integral of these curvatures over all normal directions,
up to a universal constant u: K(x) = u

∫
NxV

K(x,n)dn.
The classical Gauss-Bonnet theorem says that if V is compact and of even dimension 2n

then the total curvature is equal, modulo an universal constant, to the Euler characteristic:

ω−1
n

∫
V

Kdv = χ(V ),

where dv denotes the restriction of the canonical volume form and where ωn = (2π)n

1·3···(2n−1)

is half the volume of the sphere S2n.

2.2. Complex hypersurfaces. Langevin [La1, La3] studied the integral of curvature of
complex hypersurfaces Y ⊂ Cn+1, using Milnor’s approach [Mi] to the computation of the
total curvature from the number of critical points of orthogonal projections on generic
lines. We recall here some results and fix our notations.

1More about this topic can be found in Griffiths’ paper [Gr].



CURVATURE AND GAUSS-BONNET DEFECT 3

The curvature K(x) of a smooth complex hypersurface is the Lipschitz-Killing curvature
of Yreg as a codimension 2 submanifold of R2n+2, where Yreg denotes the regular part of
Y . A computation due to Milnor allows one to express the Lipschitz-Killing curvature of
Y in terms of the complex Gauss map νC : Yreg → Pn

C
which sends a point x ∈ Yreg to the

complex tangent space of Yreg at x, cf [La1, pag. 11]:

(2.1) (−1)nK(x) = |K(x)| =
2 · 4 · · · 2n

1 · 3 · · · (2n − 1)
|Jac νC|

2.

In the complex case the curvature K is well-known to have the constant sign (−1)n. Using
(2.1) one can prove an exchange formula, as follows.2 Let H be a hyperplane in Pn, defined
by a linear form lH : C

n+1 → C. For almost all H ∈ P̌
n the restriction of lH to Yreg has

only complex Morse critical points. Let αY (lH) be the number of those critical points
(which is finite, since Y is algebraic). On the complement of the zero-set of its Jacobian,
the complex Gauss map is a local diffeomorphism with locally constant degree αY (lH). It
is shown in §3.2 that this number does not depend on H running in some Zariski open
set of P̌n, the dual projective space of all hyperplanes of Pn. So we may denote it by αY .
From the above discussion and from Langevin’s [La3, Theorem A.III.3], one may draw
the following result:

Lemma 2.1. (Langevin) Let Y ⊂ Cn+1 be any affine hypersurface. Then:
∫

Y

|K|dv =
2 · 4 · · · 2n

1 · 3 · · · (2n − 1)

∫
P̌n

αY (lH) dH = ωnαY .

�

Here the integral
∫

Y
|K|dv is by definition the integral over Yreg. This makes sense

since Y differs from Yreg by a set of measure zero. The above formula shows in particular
that, up to the constant ωn,

∫
Y
|K|dv is a non-negative integer. The real version of the

exchange principle can be used to give an extrinsic proof of the Gauss-Bonnet theorem
for compact even dimensional manifolds.

In order to measure the failure of the Gauss-Bonnet theorem in case of singular or
non-compact spaces, we use the Gauss-Bonnet defect of Y defined in the Introduction:
GB(Y ) := ω−1

n

∫
Y

Kdv − χ(Y ). By the above, the Gauss-Bonnet defect of a complex
affine hypersurface Y is an integer. It may be interpreted as the correction term due to
the “boundary at infinity” of Y , at least in case Y has isolated singularities, as follows.

Let BR ⊂ Cn+1 be a ball centered at the origin and denote YR := Y ∩ BR and ∂YR :=
Y ∩ ∂B̄R. Since Y has isolated singularities and is affine, the intersection Y ∩ ∂B̄R is
transversal and YR is diffeomorphic to Y , for large enough radius R. By applying the
Gauss-Bonnet formula for the manifold with boundary YR, see Griffith [Gr, p. 479], we

2The exchange principle was originally used in the framework of total absolute curvature of knots and
embedded real manifolds, by Milnor [Mi], Chern-Lashof [ChL], Kuiper [Ku].
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get:

ω−1
n

∫
Y

Kdv − c

∫
∂YR

kds = χ(YR),

where k is the generalised ‘geodesic curvature’ of ∂YR and c is a universal constant (which
will be not made precise here). It then follows:

GB(Y ) = lim
R→∞

c

∫
∂YR

kds.

This interpretation suggests that GB(Y ) should be related to singularities which occur
at infinity. We shall find such a relation in (5.1).

2.3. Plücker’s class formula. Let V ⊂ Pn+1 be a projective hypersurface of degree d.
The space of tangent hyperplanes to Vreg is a subset in the dual P̌n+1 and its closure V̌ is
called the dual of V . The degree of V̌ , denoted by d∗(V ), is the number of intersection
points of V̌ with a generic projective line in P̌n+1. This is the same as the class of V ,
the number of tangent hyperplanes to Vreg in a generic pencil on Pn+1. Plücker’s class
formula describe d∗ in terms of d and of certain invariants of the singularities of V . The
one proven by Plücker himself in 1834 considers curves with nodes and cusps. Teissier
generalized it in 1975 to the case of projective hypersurfaces with isolated singularities,
and Laumon [Lau] found the following equivalent formula, in terms of Milnor-Teissier
numbers of isolated singularities (see §4.3.1):

(2.2) d∗(V ) = d(d − 1)n −
∑

[µ〈n〉 + µ〈n−1〉].

Later Langevin [La2, La3] showed the connection with the complex Gauss map and pro-
vided the integral-geometric interpretation of (2.2). Further generalisations, for arbitrary
projective varieties with isolated singularities, and then without conditions on singulari-
ties, were found notably by Kleiman, Pohl and respectively Thorup, see e.g. [Th].

Turning now back to the affine case: the positive integer αY (lH) defined at §2.2 can be
interpreted as the degree of the dual variety Y̌ . We shall derive in §4.2 a formula for the
affine class of Y .

3. Polar invariants, singularities and Euler characteristic

The use of polar methods is naturally suggested by the exchange principle. On the
other hand, the affine polar invariants determine, via the Lefschetz slicing theory, a CW-
complex structure of the space, and therefore its Euler characteristic.

3.1. Polar curves in affine families, after [Ti1]. Let {Xs}s∈δ be a family of affine
hypersurfaces Xs ⊂ Cn+1, where δ is a small disk at the origin of C. We assume that the
family is polynomial, i.e. there is a polynomial F : C × C

n+1 → C such that Xs = {x ∈
Cn+1 | Fs(x) = F (s, x) = 0}. Let us denote by X = ∪s∈δXs the total space of the family,
which is itself a hypersurface in δ ×C

n+1. Let σ : X → δ ⊂ C denote the projection of X

to the first factor of C × Cn+1.
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Let our affine hypersurface X ⊂ C × Cn+1 be stratified by its canonical (minimal)
Whitney stratification S, cf. [Te3]. This is a finite stratification, having X \ Sing X as a
stratum. For instance, if Xs has no singularities and X0 has at most isolated ones, then S
has as lower dimensional strata only these singular points. We shall use the same notation
lH for the application C × C

n+1 → C, (s, x) 7→ lH(x), as well as for its restriction to X.
The polar locus of the map (lH , σ) : X → C2 with respect to S is the following analytic
set:

ΓS(lH , σ) := closure{SingS(lH , σ) \ (SingS lH ∪ SingS σ)},

where SingS σ :=
⋃

Si∈S
Sing σ|Si

is the singular locus of σ with respect to S. The singular
loci SingS lH and SingS(lH , σ) are similarly defined.

Lemma 3.1. [Ti1] There is a Zariski-open set Ωσ ⊂ P̌n such that, for any H ∈ Ωσ, the

polar locus ΓS(lH , σ) is a curve or it is empty. �

Let Ωσ be the Zariski-open set from Lemma 3.1. We denote by Ωσ,0 the Zariski-open
set of hyperplanes H ∈ Ωσ which are transversal to the canonical Whitney stratification
of the projective hypersurface X0 ⊂ Pn+1. This supplementary condition insures that
dim(ΓS(lH , σ) ∩ X0) ≤ 0, ∀H ∈ Ωσ,0.

3.2. The α∗ sequence and the Euler characteristic. Let {Xs}s∈δ be any family as
above. We have defined in [Ti2, §3] generic polar intersection multiplicities for such a
family. We shall paraphrase that definition by considering only the regular part (Xs)reg

of the hypersurfaces, as follows:

Definition 3.2. Let H ∈ Ωσ,0. The following global generic polar intersection multiplic-
ity:

(3.1) α
(n)
Xs

= mult(ΓS(lH , σ), (Xs)reg).

is well defined for any s ∈ δ and does not depend on the choice of H ∈ Ωσ,0.

The geometric interpretation of α
(n)
Xs

is the number of Morse points of a generic linear
function on (Xs)reg. We shall next define the lower global polar intersection multiplicities
α

(i)
Xs

by following [Ti2, §3]. The idea is to consider successively general hyperplane slices
of our family and apply Definition 3.2. This idea comes from Teissier’s construction of
polar multiplicities [Te1, Te2, Te3].

One takes a general hyperplane H ∈ Ωσ,0 and denotes by α
(n−1)
Xs

the global generic
polar intersection multiplicity at s ∈ δ of the family of affine hypersurfaces X ′ = X ∩H.
One pursues in this way and defines step-by-step α

(n−i)
Xs

, for 1 ≤ i ≤ n − 1. We set

α
(0)
Xs

:= deg Xs.

By a standard connectivity argument, the polar intersection multiplicities α
(i)
Xs

do not
depend on the choices of generic hyperplanes. They are also invariant up to linear changes
of coordinates but not invariant up to nonlinear changes of coordinates (e.g. deg Xs is not
invariant). The numbers α

(i)
Xs

are constant on δ \ {0}, provided that δ is small enough.
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The geometric interpretation of the sequence of global generic polar multiplicities α(i)

also follows, as we have shown above. For instance, if we apply this construction to a
single non-singular hypersurface Y ⊂ C

n+1, by the Lefschetz slicing principle we get that
Y has the structure of a CW-complex of dimension ≤ n, with α

(i)
Y cells in dimension i.

Consequently, one may expressed its Euler characteristic as follows:

(3.2) χ(Y ) =
n∑

i=0

(−1)iα
(i)
Y .

In case of a singular Y , the formula needs correction; we explain here the case of isolated
singularities, which we shall use in §5 (and send to §6.1 for non-isolated singularities and
several examples). By the stratified Morse theory [GM] and Lefschetz slicing principle,
the space Y is obtained from the generic slice Y ∩H by attaching cones over the complex
links of each Morse stratified singularity of the generic pencil on Y . The singularities
of the pencil on Yreg contribute by α

(n)
Y . In case Y has only isolated singularities, the

contribution at each such point-stratum is precisely the Milnor number of the generic
local hyperplane section (since our pencil is locally generic at those points), which, by a
standard argument, is equal to the sectional Milnor-Teissier number µ〈n−1〉 (see after (4.9)
for the notation). The slice Y ∩ H and the lower dimensional ones are non-singular. We
therefore get, in case Y has isolated singularities, the following formula:

(3.3) χ(Y ) =
n∑

i=0

(−1)iα
(i)
Y + (−1)n

∑
q∈Sing Y

µ〈n−1〉
q (Y ).

4. Vanishing curvature and an affine Plücker formula

4.1. The vanishing curvature. We show here that in case of a family of affine hyper-
surfaces, part of the “loss of total curvature” may occur at infinity. We shall denote by
{BR the complement in Cn+1 of the ball BR centered at the origin and of radius R. We
shall use the shorter notation α

(n)
s for α

(n)
Xs

in the rest of the paper.

Theorem 4.1. Let Y ⊂ Cn+1 be any hypersurface. Let {Xs}s∈δ be a one-parameter

deformation of X0 := Y such that Xs is non-singular for all s 6= 0. Then the following

limit exists:

(4.1) lim
s→0

ω−1
n

∫
Xs

|K|dv = ω−1
n

∫
X0

|K|dv + mult(ΓS(σ, lH), X0) + α
(n)
0 (∞),

where α
(n)
0 (∞) is a non-negative integer defined as:

(4.2) α
(n)
0 (∞) := ω−1

n lim
R→∞

lim
s→0

∫
Xs∩{BR

|K|dv.

Proof. We deduce from Lemma 2.1 the following general formula, by using Definition
(3.2):

(4.3) ω−1
n

∫
Xs

Kdv = (−1)nα(n)
s .
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It has been remarked in §3.2 that α
(n)
s is constant for s ∈ δ \ {0}, if the disk δ is small

enough. Therefore the limit lims→0 ω−1
n

∫
Xs

|K|dv is equal to α
(n)
s .

Let us take H ∈ Ωσ,0 as in §3. From the definition (3.1) of α
(n)
s we get the following

decomposition into a sum of intersection numbers:

(4.4) α(n)
s = α

(n)
0 + α

(n)
0 (crt,H) + α

(n)
0 (∞, H).

The first term is the intersection multiplicity mult(ΓS(lH , σ), (X0)reg) and we know that
it does not depend on the choice of H as above and that it is equal to ω−1

n

∫
X0

|K|dv,
which is the first term in our claimed formula (4.1). The second term of the sum (4.4)
counts the number of those intersection points of ΓS(σ, lH) with (Xs)reg which tend to
points q ∈ Sing X0. This multiplicity does not depend on the choice of generic H. It
then follows that the third term from (4.4), namely α

(n)
0 (∞, H), is also independent on

H ∈ Ωσ,0. It counts the asymptotic loss of intersection points of the polar curve ΓS(lH , σ)
with (Xs)reg, as s → 0. In other words, we have:

(4.5) α
(n)
0 (∞, H) = lim

R→∞
lim
s→0

mult(ΓS(σ, lH), (Xs)reg ∩ {BR).

Let us see that this is exactly the double limit defined by (4.2). By the exchange formula
(Lemma 2.1) we have that:∫

Xs∩{BR

|K|dv = u

∫
P̌n

αXs∩{BR
(lH) dH,

where u is a constant defined in Lemma 2.1. Since this integral is, by definition, bounded
from above by ωnα

(n)
s , we may apply Lebesgues’s theorem of dominated convergence (also

used by Langevin in his local proof [La1]). This allows us to interchange each of the limits
with the integral, thus we get:

lim
R→∞

lim
s→0

∫
Xs∩{BR

|K|dv = u lim
R→∞

lim
s→0

∫
P̌n

αXs∩{BR
(lH)dH = u

∫
P̌n

[ lim
R→∞

lim
s→0

αXs∩{BR
(lH)]dH.

Since αXs∩{BR
(lH) = mult(ΓS(σ, lH), (Xs)reg∩{BR), by using now (4.5) we get our claimed

equality. �

In case of a nonsingular X0, the non-negative integer α
(n)
0 (∞) is precisely the “polar

defect at infinity” which has been introduced in [Ti2] under the notation λn
0 . We shall

see in §5 how α
(n)
0 (∞) can be expressed in terms of singularities occurring at infinity, in

certain situations.

4.2. A general Plücker-type formula for the class of affine hypersurfaces. Let
Y ⊂ Cn+1 be a hypersurface of degree d. The degree deg(Y̌ ) of the affine dual Y̌ is equal to
the number of tangent hyperplanes to Yreg in a generic affine pencil of hyperplanes in C

n+1.
We shall call it the affine class of Y in analogy to the projective case (see §2.3), and we shall
denote it by d@(Y ). The affine pencils (see §3) differ from the projective pencils especially
in a neighbourhood of infinity, since after projectivising, the hyperplane at infinity H∞
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becomes a member of the pencil and our hypersurface Y may be asymptotically tangent
to H∞.

We say that an affine hypersurface of degree d is general when its projective closure
is non-singular and transverse to the hyperplane at infinity. Its Euler characteristic is
equal to 1+(−1)n(d−1)n+1. The polar intersection number α(n) (Definition (3.1)) is then
maximal; by Bézout theorem, it is equal to d(d − 1)n.

Next, let us remark that one may always deform Y := X0 in a constant degree family
such that Xs is general, for s 6= 0. For instance, for X0 := {f = 0}, define fs =
(1− s)f + s(gd − 1), where gd = xd

1 + · · · + xd
n+1. Then Xs := {fs = 0} has this property,

for small enough s 6= 0.
Considering some deformation of Y = X0 in a constant degree family of general hyper-

surfaces, we may derive from Theorem 4.1 the following formula for the affine class:

(4.6) d@(X0) = d(d − 1)n − mult(ΓS(σ, lH), X0) − α
(n)
0 (∞).

This can be made more explicit in case of isolated singularities, with help of the forth-
coming formulas (4.7) and (5.3).

4.3. Case of isolated affine singularities.

4.3.1. Polar multiplicity. In our global case, if X0 = Y has only isolated singularities,
then one may identify the intersection multiplicity in the formula (4.1) as follows:

(4.7) mult(ΓS(σ, lH), X0) =
∑

q∈Sing X0

[µ〈n−1〉
q (X0) + µ〈n〉

q (X0)].

This comes from the equality for the generic local polar multiplicity:

(4.8) multq(ΓS(σ, lH), X0) = µ〈n〉
q (X0) + µ〈n−1〉

q (X0)

proved by Teissier [Te2, Te3] when X0 is the germ of the zero locus of a holomorphic
function (Cn+1, 0) → C. It is actually well-known that the local equality (4.8) is valid
for any smoothing of X0. In our case the local smoothing is embedded in the global
smoothing σ : X → C.

In the local case, for a germ of a holomorphic function with isolated singularities g :
(Cn+1, 0) → (C, 0), Langevin’s formula [La1, Théorème 1] shows that the loss of total
curvature at an isolated singularity is measured by the sum of the first two Milnor numbers
of the sequence µ∗ defined by Teissier [Te2]:

(4.9) lim
ε→0

lim
t→0

∫
g−1(t)∩Bε

|K|dv = ωn(µ〈n〉 + µ〈n−1〉).

Here µ〈n〉 denotes the usual Milnor number and µ〈n−1〉 is the Milnor number of a generic
hyperplane section3. The sum µ〈n〉 + µ〈n−1〉 is precisely the local generic polar number of
g, i.e. the intersection number of the local polar curve Γ(g, lH) with g−1(0).

3Indices are shifted by -1 from the original Teissier notation.
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4.3.2. Gauss-Bonnet defect. For affine Y with isolated singularities (still without any
condition at infinity), the following formula follows from (3.3) and (4.3):

(4.10) GB(Y ) = (−1)n−1
∑

q∈Sing Y

µ〈n−1〉
q (Y ) −

n−1∑
i=0

(−1)iα
(i)
Y ,

where the sum
∑n−1

i=0 (−1)iα
(i)
Y is just χ(Y ∩H).

5. Total curvature and singularities at infinity

We focus in the remainder on explaining the loss at infinity of the total curvature and
the Gauss-Bonnet defect in some distinguished classes of hypersurfaces.

5.1. Some natural classes of hypersurfaces.

Definition 5.1. (i) Y is a F-type hypersurface if Ȳ and Ȳ ∩H∞ have at most isolated
singularities.

(ii) Y is a B0-type hypersurface if Ȳ has at most isolated singularities.4

(iii) Y is a B1-type hypersurface if Y has at most isolated singularities and Ȳ ∩H∞ has
at most isolated 1-dimensional singularities.

It is easy to see that F -type ⊂ B0-type ⊂ B1-type.
In order to introduce the main result of this section, we need to consider generic hy-

perplanes, in the following sense. Let W be some Whitney stratification of Ȳ such that
Ȳ ∩ H∞ is a union of strata. Let H ⊂ Cn+1 be a hyperplane such that H̄ is generic with
respect to the strata of W. There exists a Zariski-open subset of such hyperplanes, see
§3 for a similar discussion.

Proposition 5.2. (a) If Y is a B1-type hypersurface of degree d then:

(5.1) GB(Y ) = (−1)n(d − 1)n − 1 + (−1)n+1
∑

q∈Sing Y

µ〈n−1〉
q (Y )+

(−1)n+1[µp(Ȳ ∩ H̄) + µ(Ȳ ∩ H̄ ∩ H∞)].

(b) If Y is a B0-type hypersurface of degree d then:

(5.2) ω−1
n

∫
Y

Kdv = (−1)nd(d − 1)n + (−1)n+1
∑

q∈Sing Y

[µ〈n〉
q (Y ) + µ〈n−1〉

q (Y )]+

(−1)n+1
∑

p∈(Sing Ȳ )∩H∞

µp(Ȳ ) + (−1)n+1µ(Ȳ ∩ H̄ ∩ H∞) + χn,d − χ(Ȳ ∩ H∞),

4The topology of B0-type polynomials has been studied in several papers, see e.g. Broughton’s [Br]
and [ST].
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where χn,d denotes the Euler characteristic of the generic hypersurface of degree d

in Pn and where µ(Ȳ ∩H̄∩H∞) is a notation for
∑

p∈H̄∩Sing(Ȳ ∩H∞) µp(Ȳ ∩H̄∩H∞).

Proof. We have by (4.10): GB(Y ) = (−1)n−1
∑

q∈Sing Y µ
〈n−1〉
q (Y )−χ(Y ∩H). Now Y ∩H

is F -type and we may compute its Euler characteristic by taking a deformation of Y = X0

in a constant degree family such that Xs is general for s 6= 0, as follows:

χ(Xs∩H)−χ(X0∩H) = [χ(X̄s∩H̄)−χ(X̄0∩H̄)]+[−χ(X̄s∩H̄∩H∞)+χ(X̄0∩H̄∩H∞)]

= (−1)n−1
∑

p∈Sing(X̄0∩H̄)

µp(X̄0 ∩ H̄) + (−1)n−1
∑

p∈Sing(X̄0∩H̄∩H∞)

µp(X̄0 ∩ H̄ ∩ H∞).

We then get (5.1) since χ(Xs ∩H) = 1 + (−1)n−1(d− 1)n. Let us prove (b) now. For the
B0-type hypersurface Y = X0, the singularities of Ȳ are isolated but those of Ȳ ∩H∞ are
of dimension at most 1. We therefore have:

χ(X0) − χ(Xs) = χ(X̄0) − χ(X̄s) − χ(X̄0 ∩ H∞) + χ(X̄s ∩ H∞) =

(−1)n+1
∑

q∈Sing X0

µ〈n〉
q (X0) + (−1)n+1

∑
p∈(Sing X̄0)∩H∞

µp(X̄0) + χn,d − χ(X̄0 ∩ H∞).

We then get our result from the definition of GB, by using the equality (5.1). �

Comparing (5.2) to (4.1) and to (4.7) we get, for a deformation of Y = X0 in a constant
degree family such that Xs is general for s 6= 0:

(5.3) α
(n)
0 (∞) =

∑
p∈(Sing Ȳ )∩H∞

µp(Ȳ ) + µ(Ȳ ∩ H̄ ∩ H∞) + (−1)n+1[χn,d − χ(Ȳ ∩ H∞)].

Remark 5.3. As a particular case of (5.2), the following formula holds for an F -type
hypersurface:

(5.4) ω−1
n

∫
Y

|K|dv = d(d − 1)n −
∑

q∈Sing Y

[µ〈n〉
q (Y ) + µ〈n−1〉

q (Y )]

−
∑

p∈Sing(Ȳ ∩H∞)

[µp(Ȳ ) + µp(Ȳ ∩ H∞)].

The contribution from the affine singularities is contained in the first of the two sums:
one recognizes the Milnor-Teissier numbers of formula (2.2). The second sum is due to
the “singularities at infinity”: the number µp(Ȳ ) + µp(Ȳ ∩ H∞) is exactly the local polar
number λp = multp(Γ(σ, x0), X̄0) of the polar curve of the family {Xs}s with respect to
the local coordinate at infinity x0, which is not a locally generic coordinate5 (compare to
§4.3.1). Local polar numbers, introduced by Teissier in [Te1], are well defined as soon as
the polar locus is a curve.

5In this context, it was used in [Ti2, 3.7].
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We shall give an example of a F -type family specialising to a B0-type hypersurface,
such that the Euler characteristic is constant but the total curvature jumps (Example
6.2).

5.2. Concentration of the loss of total curvature at infinity. In the case of F -type
hypersurfaces there is pointwise concentration of the loss of total curvature at infinity, see
(5.4). This might be no longer the case for B-type or more general classes of hypersurfaces:
in formula (5.2) we have Euler characteristics and dependence on the slice H̄. The loss
of total curvature at infinity is nevertheless concentrated at the singular locus of the set
Ȳ ∩ H∞.

5.3. Affine curves and the correction term at infinity. Let C := {f = 0} ⊂ C2 be
a non-singular complex affine curve of degree d. We get from (5.1):

(5.5) GB(C) = −d.

The well-known inequality due to Cohn-Vossen [Co] tells that GB(M) ≤ 0 if M is a com-
plete, finitely connected Riemann surface having absolutely integrable Gauss curvature.

Let now r be the number of asymptotic directions of C, i.e. the number of points in the
set {fd = 0}, where fd denotes the degree d homogeneous part of f . Let us point out that
since C̄∩H∞ consists of r points, the sum of Milnor numbers

∑
p∈Sing(C̄∩H∞) µp(C̄∩H∞) is

precisely d− r. By applying formula (5.4), since non-singular plane curves are of F -type,
we get:

(5.6)
ω−1

n

∫
C
|K|dv = d(d − 1) −

∑
p∈Sing(C̄∩H∞) µp(C̄) − d + r =

= d2 − 2d + r −
∑

p∈Sing(C̄∩H∞) µp(C̄).

Comparing this to the formula found by Risler [Ri, Proposition 4.2, (15)] for a non-
singular complex affine curve C, one notices that the latter does not contain the sum∑

p∈Sing(C̄∩H∞) µp(C̄). Therefore Risler’s formula would not be valid when the compacti-
fication C̄ is singular. However, Risler uses his formula in loc.cit. only in the case r = d,
which implies that the affine curve C is general at infinity. In this special case indeed
formula (5.6) reduces as such.

5.4. Semi-continuity and extrema of curvature integrals. For any family {Xs}s∈δ

of affine hypersurfaces we have:

(5.7) ω−1
n

∫
X0

|K|dv = α
(n)
0 ≤ α(n)

s = (ωn)−1

∫
Xs

|K|dv.

The total curvature is therefore bounded as follows: 0 ≤ ω−1
n

∫
X0

|K|dv ≤ d(d − 1)n.
For a general hypersurface X0, the equality ω−1

n

∫
X0

|K|dv = d(d− 1)n holds. We claim
that the reciprocal is true. Indeed, if X0 is not general then there exists a deformation
{Xs}s such that: Xs is of F -type for s 6= 0, X̄0 is non-singular and X̄0∩H∞ is non-singular
except at one point, say p, where the singularity is of type A1, i.e. µp(X̄0 ∩ H∞) = 1.
According to (5.4) we then have: ω−1

n

∫
Xs

|K|dv = d(d− 1)n − 1, which, together with the
semi-continuity relation (5.7), gives a contradiction.
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What happens now when the minimum occurs, i.e. the total curvature of X0 is zero?
For the case of non-singular X0, the answer is the following: (ωn)−1

∫
X0

|K|dv = 0 implies
that the map lH : X0 → C, for H ∈ Ωσ, is a trivial fibration; in particular bn(X0) = 0.
This is a consequence of the fact that α

(n)
0 = 0 implies that there are no n-cells in the

CW model of X0, see §3.2.

6. examples

Example 6.1. We show first how to compute the total absolute curvature directly from
equation (4.3). Let f : C

3 → C, f(x, y, z) = x + x2yz. We consider the family Xs = {f =
s}, see [Ti2, Example 3.8]. The generic polar intersection multiplicities and the defects at
infinity in the neighbourhood of the value 0 are given in [Ti2]; from those results we may
extract the folowing data: α

(2)
s = 5, α

(1)
s = 8, α

(0)
s = 4 for s 6= 0, and α

(2)
0 = 3, α

(1)
0 = 6,

α
(0)
0 = 4. We get: ω−1

2

∫
Xs

|K|dv = 5 if s 6= 0 and ω−1
2

∫
X0

|K|dv = 3.
The variation of total curvature is 2 and is equal to the vanishing curvature at infinity

α2
0(∞), as defined in Theorem 4.1. Therefore the curvature of Xs is not constant in the

family, even if Xs is nonsingular and χ(Xs) = 1 for all s ∈ C (see loc.cit.). It is also clear
that the family is not topologically trivial, since the number of connected components of
the fibers change at s = 0.

Example 6.2. Consider the double parametre family Xs,t = {fs = x4+sz4+z2y+z = t}.
This deforms the B0-type hypersurface X0,t into a F -type one Xs,t for s 6= 0, see [ST,
Example 6.5]. We recall that, for all s, fs has a generic fibre, which is homotopy equivalent
to a bouquet of three 2-spheres. There are no affine critical points and t = 0 is the only
atypical value of fs.

In order to compute the total curvature we use formulas (5.4) and (5.2) for the B0-type
(s = 0) and (5.4) for the F -type (s 6= 0). The input for the formulas is in the table below.
The computation of χ(Xs,t) is via the curvature by using the Gauss-Bonnet defect. Let
us recall a few facts from [ST]:
(1). X̄s,t has isolated singularities at infinity in p := ([0 : 1 : 0], 0) for all s and in
q := ([1 : 0 : 0], 0) for s = 0. The µ’s are listed in the table.
(2). The singularities of X̄s,t ∩ H∞ ⊂ P2 change from a single smooth line {x4 = 0} into
the isolated point p with Ẽ7 singularity.
(3). The space X̄s,t ∩ H̄ ∩H∞ has a single singularity of type A3 for s = 0 and is smooth
if s 6= 0.
(4). The change on the level of χ(X̄s,t ∩ H∞) is from 2 to 5, so ∆χ∞ = −3. Note that
χ2,4 = −4. In the table we use as notation ∆χ = χ2,4 − χ(X̄s,t ∩ H∞).

(s, t) µp(X̄s,t) + µq(X̄s,t) µ(X̄s,t ∩ H̄ ∩ H∞) (−1)n+1∆χ α
(2)
s,t χ(Xs,t)

(0, 0) 18 + 3 3 4 + 2 36 − 30 = 6 6 − 6 = 0
(0, t) 15 + 3 3 4 + 2 36 − 27 = 9 9 − 6 = 3
(s, 0) 18 + 0 − 9 36 − 27 = 9 9 − 9 = 0
(s, t) 15 + 0 − 9 36 − 24 = 12 12 − 9 = 3
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NB. In notations like (0, t) we mean here that t 6= 0.
Let us point out that in this example we have, for each fixed t, a χ-constant family

Xs,t of constant degree, but with non-constant total curvature. It turns out (by using a
coordinate change in the variable y) that actually this family is topologically trivial.

6.1. Examples with non-isolated affine singularities. In case Y is singular, one may
correct the formula (3.2) by defining the level n correction terms β

(n)
Y as follows:

(6.1) χ(Y ) = χ(Y ∩H) + (−1)n[α
(n)
Y + β

(n)
Y ].

Remark that we have found β
(n)
Y more explicitely in case Y has only isolated singularities,

see (3.3). For Y with non-isolated singularities, one needs lower level corrections β
(i)
Y ,

i ≤ n, which one defines by using equalities analogous to (6.1) for successive slices. It
follows that β

(n−i)
Y = 0 for i > dim Sing Y . We show in the following Examples 6.3 and

6.4 how the lower β’s occur in case of Y has one-dimensional singularities.

Example 6.3. Consider the family given by a single polynomial Xs = {f = x2+x3y+z4 =
s} and note that f has a non-isolated singularity. The critical set is the y-axis, with
constant transversal type A3, and the only atypical value turns out to be 0. A generic
affine pencil produces a polar curve, which has 12 intersections points with Xs if s 6= 0.
It has 6 intersections with (X0)reg and no intersection with Sing X0, therefore six points
disappear at infinity. This gives the values of α(2) in the table below. We have β

(2)
Xs

= 0 for
all s since Xs is non-singular for s 6= 0 and X0 has a non-singular 1-dimensional singular
locus with constant transversal type.

We consider next the restriction of f to a generic hyperplane section. We use the plane
H defined by y = px + qz + r. This gives us the polynomial

g = x2 + px4 + qx3z + z4 + rx2z = s

The direct computation of α(1) turns out to be involved, so we choose the following way.
For generic (p, q, r), the fibers of g are general at infinity, of degree 4. So χ(Xs ∩H) = −8
for s 6= 0. If s = 0 then X0 ∩H has a A3 singularity, which has as effect χ(X0 ∩H) = −5.
By slicing again g we get 4 points: this gives α(0) + β(0) in the table below.

Next the complex links: the fibre X0 has a singular stratum which is linear and with
transversal A3 singularity. Its complex link contributes with β(1) = 1. If s 6= 0 the fibre
is smooth, so all betas are zero. Using the notations χ2 = χ(Xs), χ1 = χ(Xs ∩ H),
χ0 = χ(Xs ∩H ∩H′), the table with all information looks as follows:

α(i) β(i) α(i) + β(i) χi i α(i) β(i) α(i) + β(i) χi

6 0 6 1 2 12 0 12 4
8 1 9 −5 1 12 0 12 −8
4 0 4 4 0 4 0 4 4

s = 0 s 6= 0

We get
∫

Xs
|K|dv = 12ω2 if s 6= 0 and

∫
X0

|K|dv = 6ω2. The vanishing of curvature
is only due to the concentration at infinity: although we have an affine non-isolated
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singularity, there is no loss of total curvature in the affine part. Note also:∫
Xs∩H

|K|dv = 12ω1 if s 6= 0 and
∫

X0∩H
|K|dv = 8ω1 and that on this level there is an

affine loss of total curvature.

Example 6.4. Consider f = x2y + x3y2 + z5 = s. This can be treated in the same way.
The polynomial has a non-isolated smooth 1-dimensional critical set (y-axis), but with a
non-trivial complex link on the level i = 2 (modelled on the Whitney umbrella) and an
isolated singularity on level i = 1. There is also an affine contribution to the loss of total
curvature. The corresponding table is:

α(i) β(i) α(i) + β(i) χi i α(i) β(i) α(i) + β(i) χi

10 2 12 1 2 32 0 32 17
15 1 16 −11 1 20 0 20 −15
5 0 5 5 0 5 0 5 5

s = 0 s 6= 0
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