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Abstract

We study the topology of the fibres of polynomials f with “singularities at infi-
nity”. We first define W-singularities at infinity, where W refers to a certain Whitney
stratification on the space X which is the union of compactified fibres of f. We show
that the general fibre of a polynomial with isolated W-singularities at infinity has the
homotopy type of a bouquet of spheres and that the number of these spheres is jiy 4+ Ay,
where piy is the Milnor number and Ay is the sum of some polar numbers at infinity.
As a byproduct, we improve the connectivity estimation of the general fibre of any
polynomial. In the last part we define t-regularity at infinity of a polynomial and show
that it implies topological triviality at infinity. We relate isolated W-singularities at
infinity to ¢-nonregularity via polar curves at infinity.

1 Introduction

It has been remarked by René Thom [T] that a polynomial f : C* — C induces a locally
trivial fibration f : C™\ f~'(A) — C\ A above the complement of a finite set A, see e.g.
[Mi] for a proof. The points in A are either critical values of f or atypical values coming
from “the singularities at infinity of f”.

There is up to now no definition for “singularity at infinity” of f. What one can only
see 1s the effect of such a hidden thing, namely the change in the topology of the fibre
(non-fiberability).

We propose a natural and rather large class of polynomials where “singularity at infinity”
has a precise meaning, as follows. First we extend the function f to a proper function
t: X — C. Then endow X with a certain Whitney stratification: ¢ becomes a stratified
mapping, thus having stratified singularities. We shall call W-singularity at infinity the germ
at X\ C" of the singular locus of ¢.

It would be possible that some of these W-singularities do not count as singularities at
infinity of f (for instance if they do not produce atypical values). On the other hand, it
appears that, like in the local case, these singularities can be nonisolated, so the hope to
find more precise results than general connectivity statements would be rather small.

It was therefore reasonable for us to focus on polynomials with isolated W-singularities
at infinity. In this case we prove that “W-singularities at infinity” is an incarnation of
“singularities at infinity of f”. This class includes the reduced plane curves and includes



strictly the class of polynomials with “isolated singularities at infinity” in the sense used by
Parusinski [Pa], see our Examples 2.6.

To give an account on the difficulties one may encounter in the study of isolated W-
singularities, let us refer to the local situation. If ¢ : (Y,y) — (C,0) is a function germ
with isolated singularity with respect to a Whitney stratification of Y at y (see [L4] for the
definition) then one may hope that y being a singularity of ¢ is equivalent to existence of
vanishing cycles in the Milnor fibre of g. This is well-known to be true for smooth Y, but
not anymore if Y is singular (see e.g. [Ti] for examples).

Our main result is that the general fibre of a polynomial with isolated W-singularity at
infinity is homotopy equivalent to a wedge of spheres of dimension n — 1. We then relate the
existence of an isolated W-singularity at infinity to the existence of a certain polar curve as
germ at that point. We prove that, if the germ of such a polar curve is nonvoid, then the
point is a singularity where a certain positive number of cycles of a general fibre vanish.

We give an estimation (Corollary 3.6) of the connectivity of a general fibre of any poly-
nomial. This estimation is better (usually by one) than the one of Dimca [Di].

In the second part, we get topological triviality results by assuming “t-regularity at
infinity”, a natural condition that we introduce for any polynomial. This condition fits well
into the context of polynomials with isolated W-singularities at infinity. For instance, we
prove that, if the polar curve at some isolated W-singularity at infinity is void, then this
point, loosely speaking, does not change the topology of the fibre.

We prove that atypical values of polynomials with isolated W-singularities are charac-
terised by the variation of the Euler number of the fibre (Theorem 5.6). This extends the
results of Ha and Lé [HL] and Parusinski [Pa]. We also extend some results in two variables
which are more or less known to specialists (Corollaries 5.8, 3.5).

2 Stratification at infinity

Let f: C" — C be a polynomial of degree d and let f(:z;, o) be the homogenized of f by the
new variable z¢. One replaces f : C* — C by a proper mapping ¢ : X — C which depends
on the chosen system of coordinates on C”, as follows (see [Br-2]). Consider the closure in
P" x C of the graph of f, that is the hypersurface

X i= {((x:20),0) € P x CIF i= (z,0) — ta = 0},
which fits into the commuting diagram

cr 50X
f\ /t )
C

where ¢ denotes the inclusion @ +— (z, f(x)) and ¢ is the projection on the second factor.

2.1 Let H., denote the hyperplane at infinity {xq = 0} C P". The singularities of X are
contained in the part “at infinity” X, := X N (H x C), namely:
o _ ol

Xing := A x C, where A::{a—:... 5
L1 T,

= 07 fd—l = 0} C HOO



The singularities of f, the affine set Sing f := Z(%,---,%), can be identified, by
the above diagram, with the singularities of ¢ on X \ X.,. One can prove, by an easy
computation, that Sing f N H,, C A, where Sing f denotes the closure of Sing f in P". In

particular dim Sing f <1 + dim A.

Let us recall that, for an analytic function 7 on a complex space Y endowed with a com-
plex Whitney stratification C, one has the well defined notion of stratified singularity of ¥
(alternatively: singularity of ¢ with respect to C). Namely, the stratified singularities of
¢, denoted by Sing ), are the union Ug,ecSing iy, (see e.g. [GM], [L3]). We introduce the

following definitions:

2.2 Definition (Canonical stratification at infinity)

Let W be the least fine Whitney stratification of X that contains the strata X \ X, and
Xoo \ Xging. This is a canonical Whitney stratification (see [Ma, §4]) with two imposed strata
instead of the smooth open X \ Xg,e. We may call W the canonical Whitney stratification
at infinity of X.

2.3 Let Singt be the singularities of ¢ : X — C with respect to the canonical Whitney
stratification at infinity and denote Sing™ f := Sing?¢ N X.,. Using 2.1, one then gets the
following equality:

Singt = Sing f U Sing™ f.

Let us also remark that Sing? N (X \ Xsing) = 0 and that dim Sing™ f < dim A.

The class of polynomials we want to focus at is defined, by making use of Lé’s definition of
isolated singularities [L.3, Definition 1.1], as follows.

2.4 Definition (Isolated W-singularities at infinity)

We say that the polynomial f : C* — C has isolated W-singularities at infinity if the projec-
tion ¢t : X — C has isolated singularities with respect to the stratification W (equivalently:
dim Sing t <0).

2.5 Remarks (a) “Isolated W-singularities at infinity” implies that the polynomial f has
isolated singularities in C” (in the usual sense), which fact does not depend any more
on coordinates.

(b) If t already has isolated singularities with respect to some Whitney stratification which
is finer than W then obviously ¢ has isolated singularities with respect to W. We there-
fore introduce the following finer (sometimes more handy in examples) stratification
W' . There is a canonical (i.e. the least fine) Whitney stratification S of the projective
hypersurface {f; = 0} C H,, ~ P""! such that A is a union of strata. Then & x C is
a Whitney stratification of X,. It is foliated by lines {a} x C, for a € {f; = 0}. The
stratification of X which consists of X \ X, and the strata of § x C may be not a
Whitney stratification of X, but it can be refined to such a one by (eventually) intro-
ducing new strata on Xgns only. The least fine Whitney stratification of X obtained
in this way will be denoted by W'.

2.6 Examples (a) If the polynomial f has isolated singularities in C" and dim A < 0
then f has isolated W-singularities at infinity. This is the case for all reduced plane
curves.



(b) h = 2y +a + 2* : C> — C has isolated W-singularities at infinity (with respect to
W) but dim A = 1.

(c) The polynomial g := 2%y + z : C* — C has non-isolated W-singularities at infinity
namely in the fibre ¢='(0)). It turns out that it has nonisolated W-singularities at
y g g
infinity in any coordinates, see also our next Remark.

3 A bouquet theorem

We prove here a global version of the local bouquet theorems of J. Milnor [Mi, Theorem 6.5]
and Lé D.T. [L3, Theorem 5.1].

3.1 Theorem Let f : C* — C be a polynomial with isolated W-singularities at infinity.
Then the general fibre of [ is homotopy equivalent to a bouquet of spheres of real dimension
n—1.

Remark As in the local case, if f has nonisolated W-singularities at infinity, then one
cannot expect to get a bouquet of the type in the Theorem above. The Example 2.6(c)
shows that even if the polynomial has smooth fibres (but some nonisolated W-singularity
contained in X, ), the result above is no more true: the general fibre of ¢ is a circle (whereas
it should have been a bouquet of spheres of dimension 2).

3.2 Proof of Theorem 3.1
Step 1. We prove first that the reduced homology of a general fibre is concentrated in
dimension n — 1. Relatively to the stratification W, the projection ¢t : X — C has only
isolated singularities, namely a finite number of points situated on X, and another finite
set on X \ X, which coresponds to the set Sing f. Let R be the set of critical values of ¢.
For each b € R, let &, be a small enough disc centred at b. Then ¢ : XNt (C\ Uperds) —
C \ Uperdy is a stratified topological fibration (with respect to W), hence its restriction to
F7HC \ Uperdy) is a locally trivial topological fibration, by Thom first isotopy lemma.
Let Xg :=t7(9), Fs:= f71(5), for some S C C. Let us fix ¢ € C\ Uperéy and ¢, € 6.

We get, as usually by deformation retraction and excision, the following splitting:
Hi(F.) = Hip1(C", F.) = GrerHini (Fy,, Fry).

We stick to such a term: for simplicity, let D be one of the discs 6, and fix some d € dD.
We have, according to [Br-2, Proposition 5.2]:

H(Fp, Fy) = HN7*(Xp, X,).

It remains to prove that H*(Xp,Xy) is concentrated. Let b be the centre of D. The
singularity of #jx, are on X, let those be denoted by a1,...,ar. We may choose a good
neighbourhood of a;, say of the form B; N Xp, where B; is a small enough closed ball in
some local chart and also suppose D small enough such that the restriction ¢t : B;NXp — D
is a Milnor representative of the germ ¢ : (Xp,a;) — (C,b). Since this germ is an isolated
singularity with respect to the induced stratification, it follows that the fibres ¢t~ (u), Yu € D,
are transversal to a certain semi-algebraic Whitney stratification of dB; N Xp, constructed



as in the proof of [L.2, Theorem 1.1] or [L.3, Theorem 1.3]. Thus there is a trivial topological
fibration:
t: XD \ Ui:l,kBi — D

and, by an excision, we get the isomorphism:
H*(Xp,Xy) = @iz H (BiNXp, BN Xy) = @i:l,kf{._l(Bi N Xaq),

where B; N Xy is the local Milnor fibre of the germ of ¢ at a;.

We may conclude our proof by applying a theorem due to Lé D.T. (see e.g. [L.3, Theorem
5.1] for a more general result) which says that the Milnor fibre of an isolated singularity
function germ on a hypersurface of pure dimension n has the homotopy type of a bouquet
of spheres of dimension n — 1.

Step 2. To get the homotopy result, we would like to replace in the above proof the
homology excision by the homotopy excision. By inspecting the proof, it easily appears
that one can do this until the local situation. For instance, since the trivial topological
fibration ¢ : Xp \ Uiz1xB; — D is a stratified one, it restricts to the trivial fibration
t:(Xp \ Xeoo) \ Uiz s Bi — D.

It remains to manage the local situation. Let first a; € X, be a singular point of .
This fits into a statement due to Hamm and Lé [HL1, Theorem 4.2.1, Corollary 4.2.2]: the
conditions are obviously fulfilled, namely ¢ has isolated singularities with respect to YW and
rHd(X \ X&) > n (since X \ X, is smooth). The ingredients in the proof are homotopy
excision (Blakers-Massey theorem) and stratified Morse theory.

Now by a very slight modification of the above cited result of Hamm and Lé (i.e. by
using cylindrical neighbourhoods, which are conical by [GM, p. 165]), we get that the pair

J(B:iNXp\ X, BiNXy\ Xoo)

is (n — 1)-connected.

We may apply [Sw, Prop. 6.13] to conclude that B; N Xp \ X, is obtained from B; N
X4\ X by adding cells of dimensions > n.

A similar (even better) situation is encountered on the affine piece: if a; € X; \ X is a
singularity of #x, then it is well known that B; N Fp is obtained from B; N Iy by attaching
n-cells.

For global fibres, it follows that Fp is obtained (up to homotopy) by adding a finite
number of cells of dimension > n to Fj.

Finally, the whole space C* = F¢ is obtained, up to homotopy, by attaching a finite
number of cells of dimensions > n to a general fibre F.. Since F. has the homotopy type of

. . h .
a n-dimensional CW-complex, we get F. ~ V5"~ by Whitehead theorem.
O

3.3 Note Our homotopy statement extends the one for polynomials with “good behaviour
at infinity”: tame [Br-2], quasi-tame [N], M-tame [NZ]. Recall that “tame” implies “quasi-
tame”, which implies in its turn “M-tame” [N], [NZ]. It will turn out from Corollary 5.8,
Proposition 5.3 and Corollary 3.5(a) that if such a polynomial has isolated W-singularities
at infinity then actually it has no W-singularities at infinity.

Under the additional hypothesis dim A = 0, the homology statement was proved (with a
different proof) by Broughton [Br-2, Theorem 5.2]. In this case he also gets Corollary 3.5(a)
below.



3.4 Definition We denote by A, the number of spheres in the Milnor fibre of the germ
t:(X,a) — (C,b) and call it the Milnor number at infinity, at a.

3.5 Corollary Let f be a polynomial with isolated W-singularities at infinity. Then:

(a) The number ~ of spheres in a general fibre is equal to the sum piy + Xy, where py is the
total Milnor number of f and Ay is the sum of the Milnor numbers at infinity.
In particular Xy is invariant under diffeomorphisms of C".

b) Let up, denote the sum of the Milnor numbers of all the singularities of the fibre Iy
HF,
and let Mg, denote the sum of all Milnor numbers at infinity at X, N Xo. Then

X(Fu) = X(1) = (=1)"" (An, + 1),
where F, is a general fibre of f. O

3.6 Corollary (General connectivity estimation) Let f: C" — C be any polynomial.
Then its general fibre F, is at least (n —2 — dim(A U Sing f))-connected.

Note This result improves, in case dim Sing f < dim A the connectivity estimation of Dimca
[Di, Theorem 1], which improved in its turn the one of Kato [Ka]. Comparing to [Di], one
should remark that our statement is only true for general fibres: the connectivity of atypical
fibres can be 1 less (see for instance the example f = 2%y + 2 : C? — C).

We actually can prove the following more natural and possibly sharper (see 2.3) connec-
tivity upper bound: (n — 2 — dimSing?), but the proof is different from the one below and
we defer it to some future paper.

Proof We give a brief account of the proof and refer the reader to [Di] for details. Using
the Lefschetz type theorem of Goresky and MacPherson [GM, p. 153], one gets that the
pair (Fy, F, N H) is (n — 2)-connected, where H is a generic hyperplane in C". Let k :=
dim(A U Sing f) and notice that dimSing f < 1 + dim A. As slicing, the dimensions of
the sets A and Sing f (see 2.1) drop by one and within k steps we arive to a general fibre
of a polynomial (in k less coordinates) with isolated singularities and the corresponding
set A of dimension 0 (or just void). We know in this case, by our Theorem, that the
general fibre is homotopy equivalent to a bouquet of spheres of middle dimension. In case
dim A > dimSing f, the difference to Dimca’s proof is only in this last point: he uses a
bouquet result valid only if A = (), therefore has to slice one more time. a

4 Polar curves and vanishing cycles at infinity

The proof of the above Theorem shows that the general fibre of f has cycles that vanish
at the W-singularities at infinity. We give here another interpretation of the number of
vanishing cycles at infinity, in terms of polar numbers. In section 5, this will allow us to
answer affirmatively the following natural question that rises up. Loosely speaking: if there
are no cycles that vanish at points at infinity of some fibre of f, then is there topological
triviality at infinity, at this fibre?



4.1 The space X is covered by the affine charts U; := {((x;20),1) € P" x C | x; # 0}, for
i € {0,1,...,n}. Let p € X, NU, for some ¢ € {1,...,n} and consider in this chart the
function

Tg: (va) - (Cvpo)‘

This induces a local Thom (A, )-stratification at p. A priori, this stratification depends on
the choice of the chart U; at p (since the function xq itself does), but one can prove the
following:

4.2 Lemma The canonical Whitney stratification at infinity of X verifies the (A, )-condition
at any p € X, in any chart U;.

Proof For any ¢ € {1,...,n}, the morphism zq : X N U; — C is a stratified morphism
with respect to the induced Whitney stratification on X N U;, respectively the stratification
{C\ {0},{0}} on C. Indeed, a simple computation shows that the singular locus of the
above morphism is included in Sing X, hence included in {z¢ = 0}.

We conclude, by using the main result of Briancon, Maisonobe and Merle in [BMM,
Theorem 4.2.1], that the strata of the globally well-defined Whitney stratification W verify
the (A, )-condition. 0

4.3 Let a € Xoo NU; and b:= t(a). We consider the germ at a of the mapping
® = (t,70) : X — C°.

Since t can have at most an isolated singularity at a, with respect to W and since the strata
of W verify the (A,,)-condition at points of X., (Lemma 4.2), it follows that the following
variety, as germ at a:

74(t, x0) 1= closure(Sing @ \ X..)

is of dimension <1 [L.2, Lemma 2.2]. We call it (nongeneric) polar curve.

Following [LL1], there is a fundamental system of privileged open polydiscs in U;, centred
at a, of the form (D, X P,)sex and a corresponding fundamental system (D, x D),k of
2-discs at (5,0) in C?, such that ® induces, for any a € K, a mapping

O, : XN (Dyx Py)— Dy x D,

which is a topological fibration over D, x D! \ ®,(Sing ®).

One may identify the Milnor fibre of the germ ¢ : (X, a) — (C,b) by ®, ' ({b+¢c} x D')),
for some ¢ € C close enough to 0. We know, from Lé’s [L.3, Theorem 5.1], that this Milnor
fibre is homotopy equivalent to a bouquet of A, spheres of real dimension n — 1.

4.4 Definition-Proposition Let int(? ,(¢,x0), Xs), be the intersection number of the polar
curve with the hypersurface X, in X, at a. We call it the polar number at infinity of f, at
the point a. It is equal to the Milnor number \,.

It follows that the polar number at a € X, does not depend on the chart U;, since the
local Milnor number of ¢ at a depends only on the point.



Proof We have a finite number of isolated singularities of the function z¢ : P, N Xy N
zg (D!, \ {0}) — D’ \ {0} which are precisely the intersections of the polar curve with
Xpre C U All of them project to D!, \ D", where D" C D! is a small enough disc
centred at 0. Thus the Milnor fibre is made up by attaching cells of dimension n — 1 to
P, N Xy Nag(D"). But this last space is contractible, by the following reason. By
construction, the fibres z5'(s), for s € D", are transversal to the induced stratification of
the space P, N Xpi.. Since all the singularities of zgx,,, are on {zo = 0}, we may apply
a result of A. Durfee [Du] to conclude that P, N X,;. Nay' (D) is homotopy equivalent to
P, N Xpye Nzg'(0). In its turn, the latter space is contractible, since it can be identified
with the complex link of the space X, at the point a, which is contractible, by the product
structure of the Whitney stratification § x C of X.. O

5 t-regularity and topological triviality

We prove that a W-singularity at infinity with A, = 0 is in fact a “false singularity”. Let us
first introduce the following:

5.1 Definition (t-regularity at infinity) We say that the fibre f~1(¢o) is t-regular at s €
{fs =0} C H, if there is an affine chart U; such that, for any sequence of points z € X\ X,
z — p, where p := (s,10), the limit of the tangent hyperplanes lim._, T.(X N {xg = z0}),
whenever it exists, is transverse within P" x C to the hyperplane {t = t,} C P" x C, at p.

If f~'(to) is t-regular at s, Vs € {f; = 0}, then we say that this fibre is t-regular at

infinity.

5.2 Remark It is obvious from the definition that the t-regularity of f~'(¢o) at s is implied
by the transversality of {t = ¢y} to the strata of some (A, )-stratification, at p. In particular,
by use of Lemma 4.2, t-regularity is implied by the transversality of {t = ¢} to the strata
of W which are in X,. One can moreover prove the following, by using the same lemma.

For any polynomial f, the fibres which are not t-regular at infinity are finitely many. If
f has isolated W-singularities at infinity, then these singularities are the only points where
the corresponding fibres of f may be not t-regular.

5.3 Proposition Let ¢ have an isolated singularity at p = (s,t9) € Xoo. Then f~(to) is
t-reqular at s if and only if 7 ,(t,x0) = 0.
Proof Let (s, , be the conormal space relative to the function zq : XN B — C, for some
small enough open ball B centred at p within a fixed chart U;, that is:

C

T0|XNB

.= closure{(z, H) € (X \ X)) N B x P" | T,(X N {xy = const.}) C H},

where P” is the dual of P, i.e. the set of hyperplanes in C"t', at 0. Let m; be the projection
on the first factor and 7, be the projection on P”. Since p is an isolated singularity, by
Remark 5.2, p is an isolated point where t-regularity is eventually not fulfilled, hence we
get m (73 ({t = t0})) N X N B C {p}. We already know that ?,(¢,20) is a curve. It is
precisely the germ at p of 71 (75 ' ({t = to})). Now f~1(to) is not t-regular at s if and only
if (p,{t = to}) € Cugxnp and this, if and only if (' ({t = to})) N X N B = {p}. This



last equality implies that 73 '({t = #,}) has dimension at least 1, since nonvoid and since
dim Cy ., = 7+ 1. We conclude our proof by noticing that ?,(t,x0) # 0 is equivalent to
Ay # 0 (by 4.4 ) and this does not depend on the chart U;. O

We are now in the position to prove the following topological triviality statements.

5.4 Proposition (local triviality at infinity)
If A, =0 (equivalently, 7 ,(t,x0) = 0) then the restriction of ¢

t:(X\ X)) N(Dy x Py) — Dy
is a trivial fibration.

Proof Since Sing ®,NX\ X, = 0, we can lift the complex vector field 9/t into the tangent
space T.(XN{xo = constant}), at any point z € (X\ X )N (Dy x Py ). This gives a nowhere
zero complex vector field on (X \ Xo) N (D, x P,) which is moreover tangent to the levels
X N {xg = constant }). 0

5.5 Proposition (global triviality) Let [ be any polynomial and let ty be a regular value
of f. If f~1(to) is t-regular at infinity, then the fibre f~'(to) is not atypical.

Proof We have X N U, = {F, = 0} C C" x C, where F, := F(x1,...,2,-1,1,20,t). By
definition, t-regular at s, say with respect to U, is equivalent to the following: there is 6 > 0
such that
)| _ [|0F)  O(F)
1) < ,
at 8:1;1

ceey
axn—l

Y

in a neighbourhood of p = (s,ty). We divide by |zf~"|, then change the chart to Up: we
have to replace xg by z!. We then get

af af

sy
8:1;1 8:1;n_1

(5<|xn|H , for @ — p.

This clearly implies the Malgrange condition:

(*)
||| - [lgrad f[] > é.

If this happens for all s in the compact X., N¢~!(#o), then the condition (*) is fulfilled,
with a certain 6 > 0, for all @ € C” such that ||z|| — oo and |f(z)] — to. Now it is
standard (see [Mi] and also [Br-2, p. 229], [NZ, p. 684]) that this alows one to construct
a complex vector field which trivializes the map f : f~'(D) — D, where D is a small
enough disc centred at to. Namely, one first projects the vector grad f(«) into the complex

tangent hyperplane at x to the sphere S?"~!, centred at 0 € C". This gives a nonzero vector

v(z) := gradf(x) — ﬁ%ﬂl -2 which one renormalizes into w(z) := ﬁ%m. For

||z|| sufficiently large, we thus get a nowhere zero vector field w with (w,gradf) = 1. We
then glue it (by a partition of unity) to the vector field —8rad)_ohioh is nowhere zero within

llgrad ]2
a big ball B C C". The resulting vector field on f~*(D) N B is the one we are looking for.
Details of the explicit elementary computation can be found in [Pa, Lemma 1.2]. a



5.6 Theorem Let f be a polynomial with isolated W-singularities at infinity. Then a fibre
Fy is atypical or not smooth if and only if x(Fy) # x(Fy.), where F, is a general fibre.

Proof If F, is not smooth, then gp > 0 and we quickly conclude by Corollary 3.5(b). Let
thus Fj, be smooth. By Proposition 5.5 on the one hand and by Propositions 5.3, 4.4 and
Corollary 3.5(b) on the other hand, Fj is not atypical if and only if it is t-regular at infinity.
Thus [}, atypical implies that ?,(¢,z0) # 0, for at least a point a € X, N X,,. By Corollary
3.5(b), this introduces a difference of A, in the Euler characteristics. The “if” part of the
statement is trivial. O

Note For reduced plane curves, Theorem 5.6 was proved by Ha and Lé [HL]. For polyno-
mials with isolated (affine) singularities and dim A = 0 it was proved by Parusinski [Pa)].
The family of hypersurfaces {X;},cc can be viewed as a family of local isolated hypersurface
singularities at {a} x C, for some a € A. Then the above Theorem can be rephrased by
saying that p-constancy of this family at some #¢, for all « € A, is equivalent to topological
triviality at ¢o of the polynomial fibration f : C* — C. (This is in turn equivalent to the
constancy or the Euler number of the global fibre F, for ¢ in a neighbourhood of #y.) More-
over, by adapting the result of Lé-Saito [LS] to our situation, the u-constancy is equivalent
to the fact that, locally at o, the stratum {a} x C verifies the (A, )-condition.

5.7 Remark Let f : C? — C be a reduced polynomial. Then t-regularity at infinity is
equivalent to equisingularity at infinity. By Abyankhar-Moh Theorem, a t-regular at infinity
polynomial f with u; = 0 is in the Aut(C?)-orbit of a coordinate of CZ.

Then the Jacobian Conjecture is equivalent to the following: For any f, ¢ : C* — C such
that Jac(f,g) = Clz,y], one has py = Ay = 0.

Question Let f: C*" — C have isolated W-singularities at infinity. If gy = Ay = 0, then
is there ¢ € Aut(C") such that f o ¢ is a coordinate? This is Abyankhar-Moh Theorem in

case n = 2.

The t-regularity at infinity is related to M-tameness as follows. Recall the definition from
[NZ]: a polynomial is called M-tame if there is no sequence of points z; € C" such that, as
k — oo, lim ||xg|| = oo, im f(x1) = to and gradf(xz)) = Mgz for some A\, € C™.

5.8 Corollary Let [ have isolated W-singularities at infinity.
Then f is M-tame if and only if f is t-reqular at infinity (equivalently: Ay = 0). In particular,
f:C" — C s atrivial fibration iof and only «f f s M-tame and py = 0.

Proof If fis M-tame, then the total number of spheres v is equal to ps [NZ], hence Ay = 0.
But this implies that f is t-regular at infinity (Proposition 5.3). Conversely, if f is t-regular,
then the M-tameness is satisfied, as showed in the last part of the proot of Proposition 5.5
above. We were informed by Pierrette Cassou-Nogues that a result of this type was proved
in [Ha], in case of plane curves (n = 2). 0
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