
Singularities at in�nity and their vanishingcyclesDirk Siersma Mihai Tib�arAbstractWe study the topology of the �bres of polynomials f with \singularities at in�-nity". We �rst de�ne W-singularities at in�nity, where W refers to a certain Whitneystrati�cation on the space X which is the union of compacti�ed �bres of f . We showthat the general �bre of a polynomial with isolated W-singularities at in�nity has thehomotopy type of a bouquet of spheres and that the number of these spheres is �f+�f ,where �f is the Milnor number and �f is the sum of some polar numbers at in�nity.As a byproduct, we improve the connectivity estimation of the general �bre of anypolynomial. In the last part we de�ne t-regularity at in�nity of a polynomial and showthat it implies topological triviality at in�nity. We relate isolated W-singularities atin�nity to t-nonregularity via polar curves at in�nity.1 IntroductionIt has been remarked by Ren�e Thom [T] that a polynomial f : Cn ! C induces a locallytrivial �bration f : Cn n f�1(�) ! C n � above the complement of a �nite set �, see e.g.[Mi] for a proof. The points in � are either critical values of f or atypical values comingfrom \the singularities at in�nity of f".There is up to now no de�nition for \singularity at in�nity" of f . What one can onlysee is the e�ect of such a hidden thing, namely the change in the topology of the �bre(non-�berability).We propose a natural and rather large class of polynomials where \singularity at in�nity"has a precise meaning, as follows. First we extend the function f to a proper functiont : X ! C. Then endow X with a certain Whitney strati�cation: t becomes a strati�edmapping, thus having strati�ed singularities. We shall callW-singularity at in�nity the germat X nCn of the singular locus of t.It would be possible that some of these W-singularities do not count as singularities atin�nity of f (for instance if they do not produce atypical values). On the other hand, itappears that, like in the local case, these singularities can be nonisolated, so the hope to�nd more precise results than general connectivity statements would be rather small.It was therefore reasonable for us to focus on polynomials with isolated W-singularitiesat in�nity. In this case we prove that \W-singularities at in�nity" is an incarnation of\singularities at in�nity of f". This class includes the reduced plane curves and includes1



strictly the class of polynomials with \isolated singularities at in�nity" in the sense used byParusinski [Pa], see our Examples 2.6.To give an account on the di�culties one may encounter in the study of isolated W-singularities, let us refer to the local situation. If g : (Y; y) ! (C; 0) is a function germwith isolated singularity with respect to a Whitney strati�cation of Y at y (see [L4] for thede�nition) then one may hope that y being a singularity of g is equivalent to existence ofvanishing cycles in the Milnor �bre of g. This is well-known to be true for smooth Y , butnot anymore if Y is singular (see e.g. [Ti] for examples).Our main result is that the general �bre of a polynomial with isolated W-singularity atin�nity is homotopy equivalent to a wedge of spheres of dimension n�1. We then relate theexistence of an isolated W-singularity at in�nity to the existence of a certain polar curve asgerm at that point. We prove that, if the germ of such a polar curve is nonvoid, then thepoint is a singularity where a certain positive number of cycles of a general �bre vanish.We give an estimation (Corollary 3.6) of the connectivity of a general �bre of any poly-nomial. This estimation is better (usually by one) than the one of Dimca [Di].In the second part, we get topological triviality results by assuming \t-regularity atin�nity", a natural condition that we introduce for any polynomial. This condition �ts wellinto the context of polynomials with isolated W-singularities at in�nity. For instance, weprove that, if the polar curve at some isolated W-singularity at in�nity is void, then thispoint, loosely speaking, does not change the topology of the �bre.We prove that atypical values of polynomials with isolated W-singularities are charac-terised by the variation of the Euler number of the �bre (Theorem 5.6). This extends theresults of H�a and Lê [HL] and Parusinski [Pa]. We also extend some results in two variableswhich are more or less known to specialists (Corollaries 5.8, 3.5).2 Strati�cation at in�nityLet f : Cn ! C be a polynomial of degree d and let ~f (x; x0) be the homogenized of f by thenew variable x0. One replaces f : Cn ! C by a proper mapping t : X! C which dependson the chosen system of coordinates on Cn, as follows (see [Br-2]). Consider the closure inPn �C of the graph of f , that is the hypersurfaceX := f((x;x0); t) 2 Pn �CjF := ~f (x; x0)� txd0 = 0g;which �ts into the commuting diagramCn i�! Xf & .tC ;where i denotes the inclusion x 7! (x; f(x)) and t is the projection on the second factor.2.1 Let H1 denote the hyperplane at in�nity fx0 = 0g � Pn. The singularities of X arecontained in the part \at in�nity" X1 := X \ (H1 �C), namely:Xsing := A�C; where A := f@fd@x1 = � � � = @fd@xn = 0; fd�1 = 0g � H1:2



The singularities of f , the a�ne set Sing f := Z( @f@x1 ; � � � ; @f@xn ), can be identi�ed, bythe above diagram, with the singularities of t on X n X1. One can prove, by an easycomputation, that Sing f \ H1 � A, where Sing f denotes the closure of Sing f in Pn. Inparticular dimSing f � 1 + dimA.Let us recall that, for an analytic function  on a complex space Y endowed with a com-plex Whitney strati�cation C, one has the well de�ned notion of strati�ed singularity of  (alternatively: singularity of  with respect to C). Namely, the strati�ed singularities of , denoted by Sing  , are the union [Ci2CSing jCi (see e.g. [GM], [L3]). We introduce thefollowing de�nitions:2.2 De�nition (Canonical strati�cation at in�nity)Let W be the least �ne Whitney strati�cation of X that contains the strata X n X1 andX1 nXsing. This is a canonical Whitney strati�cation (see [Ma, x4]) with two imposed stratainstead of the smooth open X nXsing. We may call W the canonical Whitney strati�cationat in�nity of X.2.3 Let Sing t be the singularities of t : X ! C with respect to the canonical Whitneystrati�cation at in�nity and denote Sing1 f := Sing t \ X1. Using 2.1, one then gets thefollowing equality: Sing t = Sing f [ Sing1 f:Let us also remark that Sing t \ (X1 nXsing) = ; and that dimSing1 f � dimA.The class of polynomials we want to focus at is de�ned, by making use of Lê's de�nition ofisolated singularities [L3, De�nition 1.1], as follows.2.4 De�nition (Isolated W-singularities at in�nity)We say that the polynomial f : Cn ! C has isolatedW-singularities at in�nity if the projec-tion t : X! C has isolated singularities with respect to the strati�cation W (equivalently:dimSing t � 0).2.5 Remarks (a) \IsolatedW-singularities at in�nity" implies that the polynomial f hasisolated singularities in Cn (in the usual sense), which fact does not depend any moreon coordinates.(b) If t already has isolated singularities with respect to some Whitney strati�cation whichis �ner thanW then obviously t has isolated singularities with respect toW. We there-fore introduce the following �ner (sometimes more handy in examples) strati�cationW 0. There is a canonical (i.e. the least �ne) Whitney strati�cation S of the projectivehypersurface ffd = 0g � H1 ' Pn�1 such that A is a union of strata. Then S �C isa Whitney strati�cation of X1. It is foliated by lines fag �C, for a 2 ffd = 0g. Thestrati�cation of X which consists of X n X1 and the strata of S � C may be not aWhitney strati�cation of X, but it can be re�ned to such a one by (eventually) intro-ducing new strata on Xsing only. The least �ne Whitney strati�cation of X obtainedin this way will be denoted by W 0.2.6 Examples (a) If the polynomial f has isolated singularities in Cn and dimA � 0then f has isolated W-singularities at in�nity. This is the case for all reduced planecurves. 3



(b) h = x3y + x + z2 : C3 ! C has isolated W-singularities at in�nity (with respect toW 0) but dimA = 1.(c) The polynomial g := x2y + x : C3 ! C has non-isolated W-singularities at in�nity(namely in the �bre g�1(0)). It turns out that it has nonisolated W-singularities atin�nity in any coordinates, see also our next Remark.3 A bouquet theoremWe prove here a global version of the local bouquet theorems of J. Milnor [Mi, Theorem 6.5]and Lê D.T. [L3, Theorem 5.1].3.1 Theorem Let f : Cn ! C be a polynomial with isolated W-singularities at in�nity.Then the general �bre of f is homotopy equivalent to a bouquet of spheres of real dimensionn � 1.Remark As in the local case, if f has nonisolated W-singularities at in�nity, then onecannot expect to get a bouquet of the type in the Theorem above. The Example 2.6(c)shows that even if the polynomial has smooth �bres (but some nonisolated W-singularitycontained in X1), the result above is no more true: the general �bre of g is a circle (whereasit should have been a bouquet of spheres of dimension 2).3.2 Proof of Theorem 3.1Step 1. We prove �rst that the reduced homology of a general �bre is concentrated indimension n � 1. Relatively to the strati�cation W, the projection t : X ! C has onlyisolated singularities, namely a �nite number of points situated on X1 and another �niteset on X nX1 which coresponds to the set Sing f . Let R be the set of critical values of t.For each b 2 R, let �b be a small enough disc centred at b. Then t : X\t�1(Cn[b2R�b)!C n [b2R�b is a strati�ed topological �bration (with respect to W), hence its restriction tof�1(C n [b2R�b) is a locally trivial topological �bration, by Thom �rst isotopy lemma.Let XS := t�1(S), FS := f�1(S), for some S � C. Let us �x c 2 Cn[b2R�b and cb 2 @�b.We get, as usually by deformation retraction and excision, the following splitting:~Hi(Fc) = Hi+1(Cn; Fc) = �b2RHi+1(F�b; Fcb):We stick to such a term: for simplicity, let D be one of the discs �b and �x some d 2 @D.We have, according to [Br-2, Proposition 5.2]:H�(FD; Fd) �= H2N��(XD;Xd):It remains to prove that H�(XD;Xd) is concentrated. Let b be the centre of D. Thesingularity of tjXD are on Xb, let those be denoted by a1; : : : ; ak. We may choose a goodneighbourhood of ai, say of the form Bi \ XD, where Bi is a small enough closed ball insome local chart and also suppose D small enough such that the restriction t : Bi\XD ! Dis a Milnor representative of the germ t : (XD; ai) ! (C; b). Since this germ is an isolatedsingularity with respect to the induced strati�cation, it follows that the �bres t�1(u), 8u 2 D,are transversal to a certain semi-algebraic Whitney strati�cation of @Bi \XD, constructed4



as in the proof of [L2, Theorem 1.1] or [L3, Theorem 1.3]. Thus there is a trivial topological�bration: t : XD n [i=1;kBi ! Dand, by an excision, we get the isomorphism:H�(XD;Xd) = �i=1;kH�(Bi \XD; Bi \Xd) = �i=1;k ~H��1(Bi \Xd);where Bi \Xd is the local Milnor �bre of the germ of t at ai.We may conclude our proof by applying a theorem due to Lê D.T. (see e.g. [L3, Theorem5.1] for a more general result) which says that the Milnor �bre of an isolated singularityfunction germ on a hypersurface of pure dimension n has the homotopy type of a bouquetof spheres of dimension n � 1.Step 2. To get the homotopy result, we would like to replace in the above proof thehomology excision by the homotopy excision. By inspecting the proof, it easily appearsthat one can do this until the local situation. For instance, since the trivial topological�bration t : XD n [i=1;kBi ! D is a strati�ed one, it restricts to the trivial �brationt : (XD nX1) n [i=1;kBi ! D.It remains to manage the local situation. Let �rst ai 2 X1 be a singular point of t.This �ts into a statement due to Hamm and Lê [HL1, Theorem 4.2.1, Corollary 4.2.2]: theconditions are obviously ful�lled, namely t has isolated singularities with respect to W andrHd(X n X1) � n (since X n X1 is smooth). The ingredients in the proof are homotopyexcision (Blakers-Massey theorem) and strati�ed Morse theory.Now by a very slight modi�cation of the above cited result of Hamm and Lê (i.e. byusing cylindrical neighbourhoods, which are conical by [GM, p. 165]), we get that the pairJ(Bi \XD nX1; Bi \Xd nX1)is (n� 1)-connected.We may apply [Sw, Prop. 6.13] to conclude that Bi \ XD n X1 is obtained from Bi \Xd nX1 by adding cells of dimensions � n.A similar (even better) situation is encountered on the a�ne piece: if aj 2 Xb nX1 is asingularity of tjXD then it is well known that Bj \FD is obtained from Bj \Fd by attachingn-cells.For global �bres, it follows that FD is obtained (up to homotopy) by adding a �nitenumber of cells of dimension � n to Fd.Finally, the whole space Cn = FC is obtained, up to homotopy, by attaching a �nitenumber of cells of dimensions � n to a general �bre Fc. Since Fc has the homotopy type ofa n-dimensional CW-complex, we get Fc ht' _
Sn�1, by Whitehead theorem. 23.3 Note Our homotopy statement extends the one for polynomials with \good behaviourat in�nity": tame [Br-2], quasi-tame [N], M-tame [NZ]. Recall that \tame" implies \quasi-tame", which implies in its turn \M-tame" [N], [NZ]. It will turn out from Corollary 5.8,Proposition 5.3 and Corollary 3.5(a) that if such a polynomial has isolated W-singularitiesat in�nity then actually it has no W-singularities at in�nity.Under the additional hypothesis dimA = 0, the homology statement was proved (with adi�erent proof) by Broughton [Br-2, Theorem 5.2]. In this case he also gets Corollary 3.5(a)below. 5



3.4 De�nition We denote by �a the number of spheres in the Milnor �bre of the germt : (X; a)! (C; b) and call it the Milnor number at in�nity, at a.3.5 Corollary Let f be a polynomial with isolated W-singularities at in�nity. Then:(a) The number 
 of spheres in a general �bre is equal to the sum �f +�f , where �f is thetotal Milnor number of f and �f is the sum of the Milnor numbers at in�nity.In particular �f is invariant under di�eomorphisms of Cn.(b) Let �Fb denote the sum of the Milnor numbers of all the singularities of the �bre Fband let �Fb denote the sum of all Milnor numbers at in�nity at Xb \X1. Then�(Fu)� �(Fb) = (�1)n�1(�Fb + �Fb);where Fu is a general �bre of f . 23.6 Corollary (General connectivity estimation) Let f : Cn ! C be any polynomial.Then its general �bre Fu is at least (n � 2 � dim(A [ Sing f))-connected.Note This result improves, in case dimSing f � dimA the connectivity estimation of Dimca[Di, Theorem 1], which improved in its turn the one of Kato [Ka]. Comparing to [Di], oneshould remark that our statement is only true for general �bres: the connectivity of atypical�bres can be 1 less (see for instance the example f = x2y + x : C2 ! C).We actually can prove the following more natural and possibly sharper (see 2.3) connec-tivity upper bound: (n � 2 � dimSing t), but the proof is di�erent from the one below andwe defer it to some future paper.Proof We give a brief account of the proof and refer the reader to [Di] for details. Usingthe Lefschetz type theorem of Goresky and MacPherson [GM, p. 153], one gets that thepair (Fu; Fu \ H) is (n � 2)-connected, where H is a generic hyperplane in Cn. Let k :=dim(A [ Sing f) and notice that dimSing f � 1 + dimA. As slicing, the dimensions ofthe sets A and Sing f (see 2.1) drop by one and within k steps we arive to a general �breof a polynomial (in k less coordinates) with isolated singularities and the correspondingset A of dimension 0 (or just void). We know in this case, by our Theorem, that thegeneral �bre is homotopy equivalent to a bouquet of spheres of middle dimension. In casedimA � dimSing f , the di�erence to Dimca's proof is only in this last point: he uses abouquet result valid only if A = ;, therefore has to slice one more time. 24 Polar curves and vanishing cycles at in�nityThe proof of the above Theorem shows that the general �bre of f has cycles that vanishat the W-singularities at in�nity. We give here another interpretation of the number ofvanishing cycles at in�nity, in terms of polar numbers. In section 5, this will allow us toanswer a�rmatively the following natural question that rises up. Loosely speaking: if thereare no cycles that vanish at points at in�nity of some �bre of f , then is there topologicaltriviality at in�nity, at this �bre? 6



4.1 The space X is covered by the a�ne charts Ui := f((x;x0); t) 2 Pn �C j xi 6= 0g, fori 2 f0; 1; : : : ; ng. Let p 2 X1 \ Ui, for some i 2 f1; : : : ; ng and consider in this chart thefunction x0 : (X; p) ! (C; p0):This induces a local Thom (Ax0)-strati�cation at p. A priori, this strati�cation depends onthe choice of the chart Ui at p (since the function x0 itself does), but one can prove thefollowing:4.2 Lemma The canonical Whitney strati�cation at in�nity of X veri�es the (Ax0)-conditionat any p 2 X1, in any chart Ui.Proof For any i 2 f1; : : : ; ng, the morphism x0 : X \ Ui ! C is a strati�ed morphismwith respect to the induced Whitney strati�cation on X \ Ui, respectively the strati�cationfC n f0g; f0gg on C. Indeed, a simple computation shows that the singular locus of theabove morphism is included in SingX1, hence included in fx0 = 0g.We conclude, by using the main result of Brian�con, Maisonobe and Merle in [BMM,Theorem 4.2.1], that the strata of the globally well-de�ned Whitney strati�cation W verifythe (Ax0)-condition. 24.3 Let a 2 X1 \ Ui and b := t(a). We consider the germ at a of the mapping� := (t; x0) : X! C2:Since t can have at most an isolated singularity at a, with respect to W and since the strataof W verify the (Ax0)-condition at points of X1 (Lemma 4.2), it follows that the followingvariety, as germ at a: �a(t; x0) := closure(Sing � nX1)is of dimension � 1 [L2, Lemma 2.2]. We call it (nongeneric) polar curve.Following [L1], there is a fundamental system of privileged open polydiscs in Ui, centredat a, of the form (D� � P�)�2K and a corresponding fundamental system (D� �D0�)�2K of2-discs at (b; 0) in C2, such that � induces, for any � 2 K, a mapping�� : X \ (D� � P�)! D� �D0�which is a topological �bration over D� �D0� n ��(Sing �).One may identify the Milnor �bre of the germ t : (X; a)! (C; b) by ���1(fb+ "g�D0�),for some " 2 C close enough to 0. We know, from Lê's [L3, Theorem 5.1], that this Milnor�bre is homotopy equivalent to a bouquet of �a spheres of real dimension n� 1.4.4 De�nition-Proposition Let int(�a(t; x0);Xb)a be the intersection number of the polarcurve with the hypersurface Xb in X, at a. We call it the polar number at in�nity of f , atthe point a. It is equal to the Milnor number �a.It follows that the polar number at a 2 X1 does not depend on the chart Ui, since thelocal Milnor number of t at a depends only on the point.7



Proof We have a �nite number of isolated singularities of the function x0 : P� \ Xb+" \x�10 (D0� n f0g) ! D0� n f0g which are precisely the intersections of the polar curve withXb+" � Ui. All of them project to D0� n D00, where D00 � D0� is a small enough disccentred at 0. Thus the Milnor �bre is made up by attaching cells of dimension n � 1 toP� \ Xb+" \ x�10 (D00). But this last space is contractible, by the following reason. Byconstruction, the �bres x�10 (s), for s 2 D00, are transversal to the induced strati�cation ofthe space P� \ Xb+". Since all the singularities of x0jXb+" are on fx0 = 0g, we may applya result of A. Durfee [Du] to conclude that P� \Xb+" \ x�10 (D00) is homotopy equivalent toP� \ Xb+" \ x�10 (0). In its turn, the latter space is contractible, since it can be identi�edwith the complex link of the space X1 at the point a, which is contractible, by the productstructure of the Whitney strati�cation S �C of X1. 25 t-regularity and topological trivialityWe prove that a W-singularity at in�nity with �a = 0 is in fact a \false singularity". Let us�rst introduce the following:5.1 De�nition (t-regularity at in�nity)We say that the �bre f�1(t0) is t-regular at s 2ffd = 0g � H1 if there is an a�ne chart Ui such that, for any sequence of points z 2 XnX1,z ! p, where p := (s; t0), the limit of the tangent hyperplanes limz!p Tz(X \ fx0 = z0g),whenever it exists, is transverse within Pn �C to the hyperplane ft = t0g � Pn �C, at p.If f�1(t0) is t-regular at s, 8s 2 ffd = 0g, then we say that this �bre is t-regular atin�nity.5.2 Remark It is obvious from the de�nition that the t-regularity of f�1(t0) at s is impliedby the transversality of ft = t0g to the strata of some (Ax0)-strati�cation, at p. In particular,by use of Lemma 4.2, t-regularity is implied by the transversality of ft = t0g to the strataof W which are in X1. One can moreover prove the following, by using the same lemma.For any polynomial f , the �bres which are not t-regular at in�nity are �nitely many. Iff has isolated W-singularities at in�nity, then these singularities are the only points wherethe corresponding �bres of f may be not t-regular.5.3 Proposition Let t have an isolated singularity at p = (s; t0) 2 X1. Then f�1(t0) ist-regular at s if and only if �p(t; x0) = ;.Proof Let Cx0jX\B be the conormal space relative to the function x0 : X\B ! C, for somesmall enough open ball B centred at p within a �xed chart Ui, that is:Cx0jX\B := closuref(x;H) 2 (X nX1) \B � �Pn j Tx(X \ fx0 = const.g) � Hg;where �Pn is the dual of Pn, i.e. the set of hyperplanes in Cn+1, at 0. Let �1 be the projectionon the �rst factor and �2 be the projection on �Pn. Since p is an isolated singularity, byRemark 5.2, p is an isolated point where t-regularity is eventually not ful�lled, hence weget �1(��12 (ft = t0g)) \ X1 \ B � fpg. We already know that �p(t; x0) is a curve. It isprecisely the germ at p of �1(��12 (ft = t0g)). Now f�1(t0) is not t-regular at s if and onlyif (p; ft = t0g) 2 Cx0jX\B and this, if and only if �1(��12 (ft = t0g)) \X1 \ B = fpg. This8



last equality implies that ��12 (ft = t0g) has dimension at least 1, since nonvoid and sincedimCx0jX\B = n + 1. We conclude our proof by noticing that �p(t; x0) 6= ; is equivalent to�p 6= 0 (by 4.4 ) and this does not depend on the chart Ui. 2We are now in the position to prove the following topological triviality statements.5.4 Proposition (local triviality at in�nity)If �p = 0 (equivalently, �p(t; x0) = ;) then the restriction of tt : (X nX1) \ (D� � P�)! D�is a trivial �bration.Proof Since Sing ��\XnX1 = ;, we can lift the complex vector �eld @=@t into the tangentspace Tz(X\fx0 = constantg), at any point z 2 (XnX1)\(D��P�). This gives a nowherezero complex vector �eld on (X nX1) \ (D� � P�) which is moreover tangent to the levelsX \ fx0 = constantg). 25.5 Proposition (global triviality) Let f be any polynomial and let t0 be a regular valueof f . If f�1(t0) is t-regular at in�nity, then the �bre f�1(t0) is not atypical.Proof We have X \ Un = fFn = 0g � Cn � C, where Fn := F (x1; : : : ; xn�1; 1; x0; t). Byde�nition, t-regular at s, say with respect to Un, is equivalent to the following: there is � > 0such that � �����@(Fn)@t ����� < ����������@(Fn)@x1 ; : : : ; @(Fn)@xn�1 ���������� ;in a neighbourhood of p = (s; t0). We divide by jxd�10 j, then change the chart to U0: wehave to replace x0 by x�1n . We then get� < jxnj � ���������� @f@x1 ; : : : ; @f@xn�1 ���������� ; for x! p:This clearly implies the Malgrange condition:(*) jjxjj � jjgradf jj > �:If this happens for all s in the compact X1 \ t�1(t0), then the condition (*) is ful�lled,with a certain � > 0, for all x 2 Cn such that jjxjj ! 1 and jf(x)j ! t0. Now it isstandard (see [Mi] and also [Br-2, p. 229], [NZ, p. 684]) that this alows one to constructa complex vector �eld which trivializes the map f : f�1(D) ! D, where D is a smallenough disc centred at t0. Namely, one �rst projects the vector gradf(x) into the complextangent hyperplane at x to the sphere S2n�1, centred at 0 2 Cn. This gives a nonzero vectorv(x) := gradf(x) � hx;gradf(x)ijjxjj � x which one renormalizes into w(x) := v(x)hv(x);gradf(x)i. Forkxk su�ciently large, we thus get a nowhere zero vector �eld w with hw;gradfi = 1. Wethen glue it (by a partition of unity) to the vector �eld gradfkgradfk2 which is nowhere zero withina big ball B � Cn. The resulting vector �eld on f�1(D) \ B is the one we are looking for.Details of the explicit elementary computation can be found in [Pa, Lemma 1.2]. 29



5.6 Theorem Let f be a polynomial with isolated W-singularities at in�nity. Then a �breFb is atypical or not smooth if and only if �(Fb) 6= �(Fu), where Fu is a general �bre.Proof If Fb is not smooth, then �Fb > 0 and we quickly conclude by Corollary 3.5(b). Letthus Fb be smooth. By Proposition 5.5 on the one hand and by Propositions 5.3, 4.4 andCorollary 3.5(b) on the other hand, Fb is not atypical if and only if it is t-regular at in�nity.Thus Fb atypical implies that �a(t; x0) 6= ;, for at least a point a 2 Xb \X1. By Corollary3.5(b), this introduces a di�erence of �a in the Euler characteristics. The \if" part of thestatement is trivial. 2Note For reduced plane curves, Theorem 5.6 was proved by H�a and Lê [HL]. For polyno-mials with isolated (a�ne) singularities and dimA = 0 it was proved by Parusinski [Pa].The family of hypersurfaces fXtgt2C can be viewed as a family of local isolated hypersurfacesingularities at fag � C, for some a 2 A. Then the above Theorem can be rephrased bysaying that �-constancy of this family at some t0, for all a 2 A, is equivalent to topologicaltriviality at t0 of the polynomial �bration f : Cn ! C. (This is in turn equivalent to theconstancy or the Euler number of the global �bre Ft, for t in a neighbourhood of t0.) More-over, by adapting the result of Lê-Saito [LS] to our situation, the �-constancy is equivalentto the fact that, locally at t0, the stratum fag �C veri�es the (Ax0)-condition.5.7 Remark Let f : C2 ! C be a reduced polynomial. Then t-regularity at in�nity isequivalent to equisingularity at in�nity. By Abyankhar-Moh Theorem, a t-regular at in�nitypolynomial f with �f = 0 is in the Aut(C2)-orbit of a coordinate of C2.Then the Jacobian Conjecture is equivalent to the following: For any f; g : C2 ! C suchthat Jac(f; g) = C[x; y], one has �f = �f = 0.Question Let f : Cn ! C have isolated W-singularities at in�nity. If �f = �f = 0, thenis there � 2 Aut(Cn) such that f � � is a coordinate? This is Abyankhar-Moh Theorem incase n = 2.The t-regularity at in�nity is related to M-tameness as follows. Recall the de�nition from[NZ]: a polynomial is called M-tame if there is no sequence of points xk 2 Cn such that, ask !1, lim jjxkjj =1, limf(xk) = t0 and gradf(xk) = �kxk for some �k 2 Cn.5.8 Corollary Let f have isolated W-singularities at in�nity.Then f is M-tame if and only if f is t-regular at in�nity (equivalently: �f = 0). In particular,f : Cn ! C is a trivial �bration if and only if f is M-tame and �f = 0.Proof If f is M-tame, then the total number of spheres 
 is equal to �f [NZ], hence �f = 0.But this implies that f is t-regular at in�nity (Proposition 5.3). Conversely, if f is t-regular,then the M-tameness is satis�ed, as showed in the last part of the proof of Proposition 5.5above. We were informed by Pierrette Cassou-Nogu�es that a result of this type was provedin [Ha], in case of plane curves (n = 2). 210
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