
Singularities at in�nity and their vanishingcycles, II. Monodromy�Dirk SIERSMA and Mihai TIB�ARAbstractLet f : C n ! C be any polynomial function. By using global polarmethods, we introduce models for the �bers of f and we study the monodromyat atypical values of f , including the value in�nity. We construct a geometricmonodromy with controlled behavior and de�ne global relative monodromywith respect to a general linear form. We prove localization results for therelative monodromy and derive a zeta-function formula for the monodromyaround an atypical value. We compute the relative zeta function in severalcases and emphasize the di�erences to the \classical" local situation.key words: topology of polynomial functions, singularities at in�nity, relative monodromy.1 IntroductionWe study a polynomial function f : C n ! C aiming to describe the variation oftopology in the �bration induced by f , at atypical �bers. The topology of polynomialfunctions became a challenging topic after the paper of Broughton [Br] since applyinglocal methods encounters obstructions from the non properness of f and from theasymptotic nongenericity. In two variables, the interest increases by the reductionof the Jacobian Conjecture to the following statement: if f has singularities atin�nity then the singular locus Sing (f; g) is not empty, for any polynomial functiong [LW], [ST]. The problem raised by such a statement is how to control the socalled \singularities at in�nity". As we show in this paper, they represent a newtype of singularities, their behavior being di�erent from the one of local singularities.In several variables, the term \singularities at in�nity" is well de�ned only underspeci�c conditions and possibilities of study are limited because these singularitiescan be non isolated. In two variables, only isolated singularities at in�nity can occurand one may de�ne them in several equivalent ways.In case f has isolated singularities at in�nity (in the sense that the proper exten-sion p : X0! C , de�ned in x2., has isolated singularities with respect to a Whitney�revised version, December 21, 1999 1



strati�cation of the space X0) we have introduced in [ST] the \vanishing cycles atin�nity" and proved that they generate the homology of the generic �ber togetherwith the cycles vanishing at critical points in the a�ne. It appears that there isan interaction between the two types of cycles and that this interaction is of a newtype, di�erent from the one between cycles vanishing in the a�ne.Starting from our previous results [ST], [Ti-3], [Ti-4], we develop in this papera method for studying the monodromy of f via the relative monodromy. The moti-vation for looking to relative monodromy is that, by slicing, we get a polynomial inless coordinates and with less singularities (at least those at in�nity), see the proofof Proposition 4.8.There are recent papers which contain results on some invariants of the mon-odromy, usually under certain restrictions on f . Di�erent points of view are adopted:Newton polyhedra [LS], Hodge theory of families of algebraic hypersurfaces [GN],Fourier transform ofD-modules [Sa], resolution of singularities [MW], [ACD], [GLM],relative monodromy in case of two variables [Ha].Our approach is via the construction of geometric monodromies along loops inC and has been announced in [ST-2]. We �rst recall from [Ti-4] the construction ofa model of a �ber of f , which uses a tomographic method, the slicing with generichyperplanes. Repeating this procedure in lower dimensions, one arrives at a genericskeleton. This idea was �rst used by the second author for proving that a certainasymptotic equisingularity condition is controlled by global polar invariants, in caseof a family of a�ne hypersurfaces [Ti-4].Then we de�ne a global geometric monodromy, i.e. a representation � : �1(C n�f) ! Di�(F ), where �f is the set of atypical values, F is the general �ber of fand Di�(F ) is the group of C1-di�eomorphisms of F . In case of a monodromyat an atypical value (including the value 1 2 P1) we de�ne a certain vector �eld,controlled at in�nity and tangent to the polar curve �(l; f) := closurefSing (l; f) nSing fg of f with respect to a general linear form l. The construction yields a re�ned�ltered structure of the a�ne �ber F , reecting the dynamic behavior of each piecein the decomposition of F , when turning around the atypical value.This also represents a globalization of the local carrousel construction of Lê D.T.[Lê-1], [Lê-2]. We prove localization results for the relative monodromy which leadto a zeta function formula for any f . We emphasize on the new features that occurin the neighbourhood of in�nity: there are certain loops around in�nity which enterin the description of the relative monodromy. These loops are in particular the causeof the error in the main result of H�a H.V.'s paper [Ha, Theorem 3.4]. Namely, incase n = 2, at a singular point at in�nity with � = 1 (called \Morse singularityat in�nity" in loc cit) the local monodromy can e�ectively be either +id, or �id,see Examples 6.1, 6.2. This does not happen in the local case: the monodromy ofa local Morse curve singularity is allways +id. Examples of computations of therelative monodromy are included at the end.Acknowledgements Part of this research was done as a RiP program at Oberwol-fach, which was supported by the Volkswagen-Stiftung. The authors bene�ted from the2



excellent working conditions o�ered by the Mathematisches Forschungsinstitut Oberwol-fach. They thank the referee for remarks that contributed to improve the exposition.2 Models of �bersLet f : C n ! C be a polynomial function of degree d. A value t0 2 C is calledtypical if f is a trivial C1-�bration at t0. It is known that the set of atypicalvalues, denoted �f , is �nite (because of algebraicity) cf. [T], [Va], [Ve]. It includesthe critical values of f but also other values, the �bers over which have singularasymptotic behavior. Under certain conditions, one can localize the variation oftopology at atypical values, thus obtaining \singular points at in�nity", cf. [Ti-3].We need for that a support at in�nity, to contain all the \ends" of �bers of f .We consider the closure of the graph of f in Pn�P1, namely the spaceX= f[x0 :x1 : � � �xn] 2 Pn; [s : t] 2 P1 j s ~f � txd0 = 0g � Pn�P1, where ~f is the homogenizedof the polynomial f . Here and in the following x0 denotes the variable at in�nity,de�ning the embedding C n � Pn. Denote by p : X! P1 the second projection andby X1 := X\ fx0 = 0g the hyperplane at in�nity of X. Since the graph of f isdi�eomorphic to the domain, we have an embedding i : C n ' Graph(f) ,! X. Themap f is the composition C n i,! X p! C . So the study of f is equivalent to thestudy of the restriction of p to the graph of f .There is a �nite set � � P1, � � �f , minimal with the property that therestriction pj :Xn p�1(�)! P1 n �, resp. pj : Xn (p�1(�) [X1)! P1 n �, is a C0,resp. C1, locally trivial �bration [T], [Ve]. We take by de�nition [0 : 1] = 1 2 �.We consider the polar locus �(l; f) := closurefSing (l; f) n Sing fg � C n of f withrespect to a linear form l : C n ! C and denote by � := (l; f)(�(l; f)) the polarimage in C 2. Denote by lH the linear form associated to a projective hyperplaneH 2 �Pn�1. We �rst prove the following key result.2.1 Lemma There is a Zariski-open set 
 � �Pn�1 such that, for any H 2 
:(a) the polar locus �(lH; f) is a reduced curve or it is empty.(b) the map (lH; f) : C n ! C �C is a C1-trivial �bration over (C � (C n�H ))n�,where �H is some �nite set in C .Proof (a) is a slightly improved version of the Polar Curve Theorem, see [Ti-3,Lemma 2.4]. That the polar curve is reduced follows from standard Bertini typearguments. We prove (b) in the following. Take a �nite complex strati�cationW := fWigi2I of X0 := X\ (Pn � C ) satisfying Whitney conditions and such thatC n � X0 is a stratum. (The embedding of C into P1 is given by making s = 1 andthe embedding of C n into X0 comes from the isomorphism C n ' Graph(f) and theembedding of the graph of f intoX, as de�ned above.) There is a canonical Whitneystrati�cation with this property, cf. [Te].3



We take two copies of C , denoted C r and C t , of variables r, respectively t. LetH := f(r; [x0 : x]; t) 2 C r�Pn�C t j lH�rx0 = 0g (notice that t is free). Consider X0as subset of Pn� C t. Note that H is nonsingular, whereas X0 can have singularitieson X1. De�ne the space:Y := (C r �X0) \ H � C r �Pn� C t(1)and consider the projection (r; t) : Y ! C r � C t . This is a proper extension ofthe map (l; f). It follows that Y n Y1 is non-singular (since it can be identi�edwith C n), where Y1 := Y \ (C r � fx0 = 0g � C t), and that the critical locus ofthe restriction (r; t)jYnY1 is Sing (l; f). It remains to understand the situation atin�nity.We �rst return to the space X0 and the map p : X0! C . Denote by SingWp :=[Wi2WSing pjWi the singular locus of p with respect to the strati�cation W. It is aclosed analytic subset of X0.For a �xed stratum Wi � X0 \X1 � Pn�1 � C t, we consider the projectivizedrelative conormal PT �pjWi � Pn�1 � C t � �Pn�1. For the de�nition of the relativeconormal, we refer to [Te], [HMS]. Let us just emphasize that there is a uniquehyperplane within Pn�1 which is tangent to a given non-singular point of some �berof pjWi and we identify it with an element of �Pn�1.We remark that, if p is not constant on Wi, then dimPT �pjWi = n�1. By using aBertini type argument for the projection PT �pjWi ! �Pn�1, it follows that there existsa Zariski open set 
 � �Pn�1 such that, for any H 2 
, the map pjWi restricted toWi\ (H �C t) is a submersion at all points except of the singular locus SingWp andexcept of at most a �nite set AH, for any i 2 I. We may and shall assume, withoutloss of generality (after eventually intersecting with a Zariski open set), that the set
 also veri�es the point (a) of our lemma.Now let us construct a Whitney strati�cation of Y. We take Y nY1 ' C n asa stratum and start to stratify Y1. Consider the product strati�cation C r �W 0 ofC r�X0, whereW 0 �X0\X1. This is a Whitney strati�cation too. The intersectionof C r �Wi with H is transverse within C r �Pn� C t if and only if the intersection(C r �Wi)\ (C r �H � C t) is transverse within C r �Pn�1� C t . This latter is indeedtransverse for any i, at all points except of the set C r �AH, if H 2 
. Leaving asidethe exceptional set C r � AH , the transverse slices become Whitney strata of Y atin�nity, since Whitney property is preserved by transverse cutting.Next we have to see whether the �bres of the map (r; t) are transverse to the abovede�ned Whitney strata of Y. Namely, the map (C r�Wi)\(C r�H�C t) (r;t)! C r�C tis a submersion whenever the second projectionWi\(H�C t) t! C t is a submersion.This situation is treated above, since the map t coincides with the map p. The resultis that, if H 2 
, then the �bres of (r; t) are transverse to the Whitney strati�cationof Y except at the points of the following set:�H := �(lH; f) [ (C r � (SingWp [AH)):4



Note that t(C r �SingWp) is a �nite set. Moreover, for H 2 
, �(lH ; f)[ (C r �AH)is a curve (or empty). Denote by �H(r; t) � C r � C t the image of �H by (r; t). Wehave thus proved that the map:(r; t)j : Y n (r; t)�1(�H(r; t))! (C r � C t) n�H(r; t)(2)is a locally trivial, strati�ed �bration. Restricting it to C n , yields the desired state-ment (b). We may therefore de�ne �H as t(C r � (SingWp[AH )). Note that the setof critical values �f and the set of atypical values � are contained in �H. �When focusing to a certain (atypical) value a 2 C , we need to look at the special setof points �(lH; f)\Fa, where Fa denotes the �bre f�1(a). If such a point is a smoothpoint of Fa then f is locally trivial at this point but the map (lH; f) is not. We needto change H in order to have transverse intersection of � with Fa at the point. Thisis possible as shown in the next lemma, which is a supplement of Lemma 2.1. If so,then we have a better situation along Fa since transverse intersections provide localstrati�ed product structures with respect to (lH ; f), see Remark 4.6(b).2.2 Lemma Let a 2 C . There is a Zariski-open set 
a � 
 � �Pn�1 such that, forany H 2 
a, we have:(c) as a hyperplane of the hyperplane at in�nity Pn�1, H is transverse to all thestrata at in�nity of the canonical Whitney strati�cation of the projective hy-persurface p�1(a) � Pn.(d) the polar curve �(lH ; f) has no component included into f�1(a).(e) the restriction lH jf�1(a) : f�1(a) ! C has only strati�ed Morse critical pointsoutside the one point strata of the strati�cation considered at (c).Proof Condition (c) is an open condition and implies condition (d). Condition (e)is known to be locally open, hence open. �2.3 Convention When a =1 (that is a = [0 : 1] 2 P1), we de�ne 
1 to be just
 (the Zariski-open set from Lemma 2.1).The following is an immediate consequence of the de�nition:2.4 Corollary Let H 2 
. If Fa has an isolated singularity at c 2 Fa then c 2�(lH; f). More generally, if the restriction of lH on Fa has an isolated strati�edsingularity at c 2 Fa, then c 2 �(lH; f). �We recall from [Ti-4, 3.6] the description of the \tomographic" model of Fa :=f�1(a). According to Lemma 2.2, for H 2 
a the linear function lH : Fa ! C is a�bration without singularities at in�nity. The only critical points of lH : Fa ! Care the intersection points �(lH; f) \ Fa = fc1; : : : ; ckg. By Lefschetz-Morse-Smaletheory, the hypersurface Fa is built from the slice Fa \H by attaching a number of5



cells of dimension n� 1 only. In case Fa is singular, this result is still true by usingthe theory of functions with isolated singularities on strati�ed spaces, see [Lê-3]. Toeach point there corresponds an attaching of a number of (n� 1)-cells equal to the(n� 2)th Betti number of the local Milnor �ber MH;ci of the germ lH : (Fa; ci)! C .2.5 Fibres with isolated singularities: the generic skeletonLet us be more explicit in case when Fa is non-singular or it has only isolated sin-gularities. By Milnor's Theorem, the Milnor �ber MH;ci is homotopically a bouquetof spheres and by Lê's Theorem [Lê-3], their number is equal to the intersectionmultiplicity intci(�(lH ; f); flH = lH(ci)g), which in turn is equal to the multiplicitymultci�(lH ; f) of the polar curve at ci (by our assumptions in Lemma 2.2). Wededuce, see e.g. [Ti-4, Theorem 3.6], that if dim(Sing Fa) � 0, then:bn�2(MH;ci) = intci(�(lH ; f); Fa)� �(Fa; ci);(3)where intci(�(lH ; f); Fa) denotes the intersection multiplicity at ci and �(Fa; ci) isthe Milnor number of the hypersurface singularity (Fa; ci). (If Fa is non-singular atci, then �(Fa; ci) = 0.)After the second author's paper [Ti-4], there is the following homotopy model:Fa is built from the generic hyperplane section Fa\H to which one attaches n�1a ��(Fa) cells of dimension n � 1, where �(Fa) is the sum of the Milnor numbers ofthe singularities of the hypersurface Fa and n�1a is the generic polar intersectionmultiplicity. We recall from [Ti-4] the de�nition of n�1a and of the set of genericpolar intersection multiplicities �a := fn�1a ; n�2a ; : : : ; 1a; 0ag:n�1a = int(�(lH ; f); Fa); H 2 
a;where int(�(lH ; f); Fa) denotes the sum of the local intersection multiplicities at eachpoint of the �nite set �(lH ; f)\ Fa. Next, take a hyperplane H 2 
a and denote byn�2a the generic polar intersection multiplicity at a 2 C for the polynomial functionfjH : C n�1 ! C , where H is identi�ed to C n�1 . By induction, we de�ne in this wayn�ia , for 1 � i � n� 1. By de�nition, 0a := deg f .By a standard connectivity argument, the set of polar intersection multiplicitiesis well-de�ned i.e., it does not depend on the choices of generic hyperplanes.The generic skeleton Ska(f) of Fa is de�ned as the CW-complex obtained bysuccessively attaching to 0a points 1a cells of dimension 1, 2a cells of dimension 2,: : :, n�2a cells of dimension n� 2 and �nally n�1a ��(Fa) cells of dimension n� 1.By the above, the generic skeleton does not depend on the choices of generichyperplanes. We refer to [Ti-4] for the details and an application of �a to equi-singularity at in�nity. Computations of � can be found in the Examples at theend.One of the consequences of the above model is the following:2.6 Corollary Let H 2 
. If �(lH; f)\Fa = ; then Hj(Fa;Z) = 0, for j � n� 1.�6



3 A global geometric monodromyWe proceed to construct a geometric monodromy of a polynomial function by usingthe key lemma 2.1 and the generic skeleton Skc(f) of a typical �ber of Fc. LetH 2 
 and let ~� � �H � C be the �nite set ~� := p(SingWp), in the notations of2.1. For any simple loop within P1n ~�[f1g we may de�ne a geometric monodromyas follows. By the proof of Lemma 2.1, the map p : Xn p�1(~� [ f1g) ! C n ~� isa locally trivial strati�ed �bration. In particular, the restriction of p on the openstratum C n is a C1 locally trivial �bration. As in the proof of the Thom-MatherIsotopy Lemma (see e.g. [Ve]) one can produce a trivializing vector �eld tangent tothe strata at in�nity. We therefore get a geometric monodromy representation� : �1(P1 n ~� [ f1g)! Di�(F );where F is a general �ber of f and Di�(F ) is the group of C1-di�eomorphisms ofF . We may replace ~� by the set of atypical values �. This induces an algebraicmonodromy representation �alg : �1(P1 n � [ f1g)! H�(F;Z).3.1 Monodromy at an atypical value and at in�nity.Some more structure on the trivializing vector �eld could allow to �nd results onmonodromy. We therefore focus on de�ning a geometric monodromy of a general�ber of f along a small circle in the base space P1 n � [ f1g. We recall that�H = t(C r � (SingWp [AH)) is a �nite set containing �.Take a small closed disc Da at a 2 � [ f1g such that �H \ Da = fag. Weassume that H 2 
a. By Lemma 2.1, one can lift the unitary vector �eld u onthe circle @Da to a vector �eld w in the tube f�1(@Da) such that w is tangent tot�1(@Da) \Y1 in a strati�ed sense and tangent to �(lH; f) \ f�1(@Da), for somegeneral H 2 
a. Note that the set �(lH; f) \ f�1(@Da) is a �nite union of circles.Moreover, one can construct a vector �eld w by lifting u in two steps:f�1(@Da) (l;f)�! C � @Da pr2�! @Da:(4)This idea was used in the local case by Lê D.T. [Lê-1], [Lê-2]. In the global set-ting, we may decompose the monodromy ow in regions where the local carrouselconstruction of Lê can be used. Let �(lH; f) denote the closure of �(lH ; f) in X.There is a \carrousel" associated to each point q 2 �(lH; f) \ p�1(a), including thecase where q 2 X1 \ p�1(a), as follows. We use the notations from 2.1. We havede�ned at (1) the space Y � C r �Pn� C t with projection (r; t) : Y! C r � C t . Wenow consider the closure Ŷr of Y in Pn �P1r � C t and denote by r̂ : Ŷr ! P1 theprojection which extends r : Y ! C r . First we lift the vector �eld u by pr2 to avector �eld v on C r �@Da with the following properties. There is a small closed disc� at each point r̂(q) of P1, q 2 �(lH; f) \ t�1(a), such that v is the carrousel vector�eld on � � @Da, for small enough Da. In particular, the lift v of u to C r � @Da istangent to the discriminant �(lH; f). By de�nition, the vector �eld v is the identicallift by the projection pr2 : fbg � @Da ! @Da, for any point b 2 @�; moreover, this7



is the case for any point b 2 P1 n [ki=1�i, where �i is a small enough disc centered atdi and the set fd1; : : : ; dkg 2 P1 is the image by r̂ of the set �(lH; f) \ p�1(a).This special vector �eld v is now lifted to f�1(@Da) via the strati�ed �bration(2) giving rise, by integration, to a geometric monodromy, denoted by ha. Notethat, for some point b 2 P1 n [ki=1�i, this monodromy restricts to a monodromy ofthe slice �bration: f�1(@Da) \ l�1H (b)! @Da:(5)The action of the monodromy ha on the pair (Fc; Fc \ l�1H (b)), where c 2 @Da, iscalled relative geometric monodromy and will be denoted by hrela .3.2 Note Let H 2 
a. If q 2 �(lH; f) \ p�1(a) \X1 then r̂(q) =1 2 P1.4 Localization of monodromyLocalizing the change of topology from a typical �ber to an atypical one is a problemthat cannot be solved for any polynomial f : C n ! C , since its singularities atin�nity (at least in the meaning of this paper, see bellow) may be non-isolated.4.1 De�nition We say that f has isolated W-singularities at a 2 C (or at Fa) ifdimSingWp \ p�1(a) = 0.Notice that isolated W-singularities at a 2 C implies that the hypersurface Fa hasisolated singularities. Under this isolatedness condition we have proved a structureresult for the general �bre.4.2 Theorem [ST] If f : C n ! C has isolated W-singularities at all �bers thenits general �bre is homotopy equivalent to a bouquet of spheres of dimension n� 1.The number of spheres is equal to � + �, where � denotes the total Milnor numberof the isolated singularities of f and � denotes the total\Milnor number at in�nity"of the isolated W-singularities at in�nity (de�ned in loc cit). �Following [Ti-3, x4], we say that the variation of topology of the �bers of f at a 2 Cis localizable if there is a �nite set fa1; : : : ; akg 2 p�1(a) such that the restrictionfj : (C n n [ki=1Bi) \ f�1(Da) ! Da is a trivial �bration, where Bi � X is a smallenough ball centered at ai. In this case, we also say that the monodromy ha islocalizable at the points a1; : : : ; ak, in the sense that the geometric monodromy hais trivial on the complement of the balls Fc n [ki=1Bi.4.3 Proposition [Ti-3] If f has isolated W-singularities at a 2 C then thevariation of topology of the �bers of f at a is localizable at the points of the �niteset p�1(a) \ SingWp. In particular, the monodromy ha is localizable at the isolatedW-singularities. �8



Our scope is to show that certain localization results for the relative monodromyha;rel hold without any assumption on the W-singularities of f .First localization of relative monodromy.We shall keep using the notations in the previous section. Recall that d1; d2; : : : ; dkwere the points where the closure ��(lH; f) � P1r � C t of the discriminant �(lH; f)cuts the projective line ft = ag � P1r � C t . We consider small discs �i � P1r at diand �x some points si 2 @�i, for i 2 f1; : : : kg. We denote ��i := �i if di 2 C r and��i := �i n �i if di = 1, where �i is th radius from di to a point on the circle @�idi�erent from si.By construction, ��i � fcg contains all the points of ��i(lH ; f) \ P1r � fcg, wherec 2 @Da and ��i(lH; f) denotes the germ of ��(lH; f) at (di; a) 2 P1�C . The structureof the generic skeleton Skc(f) implies that the relative homology H�(Fc; Fc \ l�1H (b))is concentrated in dimension n� 1, where b 2 P1 n [ki=1�i. We have the following.4.4 Proposition The relative homology splits into a direct sum:Hn�1(Fc; Fc \ l�1H (b)) = �ki=1Hn�1(Fc \ l�1H (��i); Fc \ l�1H (si))and the relative monodromy splits accordingly:(hrela )� = �ki�1(hrela )�;i ;where (hrela )�;i denotes the monodromy acting on Hn�1(Fc \ l�1H (��i); Fc \ l�1H (si)).Proof The geometric monodromy hrela constructed above acts on the exact sequenceof the pair (Fc; Fc \ l�1H (b)). By an excision argument applied to the projectionlH : Fc ! C , we get the homology splitting. Next, the geometric monodromy hrelaacts on the pair of spaces (Fc\l�1H (��i); Fc\l�1H (si)) if and only if di 2 C . Nevertheless,in case the center di is the point 1 2 P1, the algebraic monodromy still acts on therelative homology Hn�1(Fc \ l�1H (��i); Fc \ l�1H (si)). �Second localization of relative monodromy.We further localize the relative monodromy in the source space. Let a 2 C .By Lemma 2.2, for H 2 
a, the map lH : Fa ! C has isolated critical points(in the strati�ed sense), which points are exactly the set �(lH ; f) \ Fa and has nosingularities at in�nity. It follows that the map lH : Fc ! C has the same properties,for any c 2 Da, for small enough disc Da. If a is 1 then the map lH : Fc ! C alsohas these properties, for any c 2 C within a small enough neighbourhood of1 2 P1.Let fpi;jgj2li denote the set of points �(lH ; f)\Fc\ l�1H (��i). Take Milnor data forthe germs lH : (Fc; pi;j) ! C , which means: small enough discs Di;j � ��i centeredat lH(pi;j) and small balls Bi;j � Fc \ l�1H (��i) centered at pi;j. We assume thatDi;j1 = Di;j2 if lH(pi;j1) = lH(pi;j2). Note again that, by 2.1 and 2.2, these are germsof complex Morse singularities. We get the following result:9



4.5 Proposition Let a 2 P1 and let i be �xed. The homology of the pair (Fc \l�1H (��i); Fc \ l�1H (si)) splits into a direct sum�j2liHn�1(Fc \ l�1H (Di;j) \Bi;j; Fc \ l�1H (si;j) \Bi;j);where si;j 2 @Di;j are some �xed points. The restriction of the relative monodromyha;rel acts on the set of all pairs (Fc\ l�1H (Di;j)\Bi;j; Fc\ l�1H (si;j)\Bi;j) by permuta-tions, via di�eomorphisms (i.e. ha;rel sends a pair to another one, di�eomorphically).Proof First we get by excision the following splitting:Hn�1(Fc \ l�1H (��i); Fc \ l�1H (si)) = �Hn�1(Fc \ l�1H (Di;j); Fc \ l�1H (si;j));where the sum is taken over the distinct discs Di;j, with �xed i. Next, by the abovearguments, the map:lH : Fc \ l�1H (Di;j0) n [j2li;Di;j=Di;j0Bi;j ! Di;j0is a trivial �bration, for any j0 2 li. It is indeed so since this map has no singularitiesat in�nity and its �bers are transverse to the spheres @Bi;j. The splitting of homologyfollows. The second statement is a consequence of the fact that our vector �eld istangent to the polar curve. �4.6 Remarks(a) In general, the relative monodromy does not split following the direct sumof Proposition 4.5. There are interactions among the relative cycles whichdepend on the global carrousel motion and also on the action of ha on the�ber Fc \ l�1H (si;j). Moreover, it may happen that one or more branches of thediscriminant locus at di are multiple, since being the image of more than onebranches of the polar curve.(b) Let H 2 
a. Let p 2 Fa\�(lH ; f) such that p 62 SingFa. By Lemma 2.2, sincep is a Morse point of the map lH jFa, the polar curve is nonsingular at p and itcuts the nearby �ber Fc at a single point pi;1 within a small neighborhood ofp. Then the relative monodromy acts on the pair (Fc \ l�1H (Di;1) \ Bi;1; Fc \l�1H (si;1)\Bi;1) as the identity. Indeed, the maps fj : f�1(D)\ l�1H (si;1)\Bi;1 !D and fj : f�1(D) \ l�1H (Di;1) \ Bi;1 ! D are trivial strati�ed �brations forsmall enough Di;1, the strata being �(lH; f) and its complement.When �i � C n , the relative monodromy (hrela )�;i from Proposition 4.4 can moreoverbe localized at the points of intersection �(lH; f) \ Fa \ l�1H (�i) = fb1; : : : ; bgig.4.7 Proposition Let �i � C n , for some i 2 f1; : : : ; kg. Then there is the followingsplitting: (hrela )�;i = �gij=1(hrelbj )� ;where (hrelbj )� denotes the local relative monodromy of the germ fj : (C n ; bj)! C withrespect to the linear function lH. 10



Proof Since the map lH : Fc\ l�1H (�i)! �i is trivial at in�nity, for all c close enoughto a, we may excise the exterior of some small enough polydiscs Pj := Bj��i centeredat bj, for j 2 f1; : : : ; gig, and get the splitting:Hn�1(Fc \ l�1H (�i); Fc \ l�1H (si)) = �gij=1Hn�1(Pj \ Fc \ l�1H (�i); Pj \ Fc \ l�1H (si)):The monodromy splits accordingly. The right hand terms are just the localrelative homology groups of the germs fj : (C n ; bj) ! C with respect to the linearfunction lH. �4.8 Proposition Let H 2 
a. If f has isolated W-singularities at a (see De�n-ition 4.1), then the restriction hajHr of ha to a general hyperplane Hr := flH = rgcan be chosen to be the identity.Proof The second author has proved in [Ti-3, x5] that, if H 2 
, then the Whitneystrati�cation W attached to f induces canonically a Whitney strati�cation WHrattached to the restriction fjHr . Then one proves, see [Ti-3, Lemma 5.4], thatdimSingWHr p0 � dimSingWp� 1, where p0 is the extension of fjHr (as p is the oneof f de�ned in x2), under the condition: dimSingWp � 1. It turns out that, bychoosing H 2 
a, one can easily drop this condition completely when referring toonly the �bre over a. The same proof works with minor changes, so we skip it:Lemma (cf. [Ti-3]) If H 2 
a thendimSingWHr p0 \ p0�1(a) � dimSingWp \ p�1(a)� 1:Now, if dimSingWp = 0, then it follows from this lemma that fjHr has no W-singularities on the �bre over a, hence this �bre is typical for fjHr and therefore themonodromy of fjHr around a is isotopic to the identity. �5 Zeta function of monodromy via the relativemonodromyThe relative monodromy is part of the monodromy of f around an atypical valuea 2 P1. We show the precise meaning of this at the zeta function level. Let us �rstgive the de�nition we work with.5.1 De�nition Let h� be the algebraic monodromy associated to a �bration overa circle S1 and let Hi denote the ith homology group, over C , of the �bre. One callszeta function of h� the following rational function:�h�(t) =Yi�0 det[id� th� : Hi ! Hi](�1)i+1:11



As a consequence of the localization of the relative monodromy, we prove the fol-lowing general zeta function formula for the monodromy (ha)�, with no restrictionson f .5.2 Theorem Let f : C n ! C be any polynomial function. Let a 2 P1 and letH � 
a. Then �ha(t) = �hajF 0 (t) � kYi=1 �rel;i(t);where F 0 is a general �ber of the map (lH; f) and by �rel;i(t) we denote thezeta-function of the relative monodromy (hrela )�;i. The index i runs over the points��(lH; f) \ ft = ag. For di =1 we have:�rel;i(t) = ���(t);where ��� is the zeta function of the monodromy acting on the space Fc \ l�1H (��i ),with �� := ��i denoting the pointed disc centered at 1 2 P1.Proof The monodromy acts on the homology sequence of the pair (Fc; Fc \ l�1H (b)).We get the 4-term exact sequence:0! Hn�1(Fc)! Hn�1(Fc; Fc \ l�1H (b))! Hn�2(Fc \ l�1H (b))! Hn�2(Fc)! 0and, for j � 3, the isomorphisms:0! Hn�j (Fc \ l�1H (b))! Hn�j(Fc)! 0:By Proposition 4.4 the action of hrela splits and therefore the zeta-function decom-position follows. To prove the last assertion, we start by decomposing C into theunion of a big disc D with the pointed disc at in�nity ��, their intersection beinga thickened circle A. A Mayer-Vietoris argument shows that �ha(t) = �D(t) � ���(t).Next, D retracts to the union of the discs �i � C together with simple paths con-necting all those to one exterior point p 2 C . Excising now l�1H () in the relativehomology, we get the formula:�ha(t) = �hajF 0 (t) � Ydi�C �rel;i(t) � ���(t):Comparing to the previous formula for �ha, we get the claimed relation. �Zeta function formulae have been proven for special classes of polynomials f :in terms of Newton polyhedra|under nondegeneracy conditions [LS], in terms ofthe projective compacti�cation of f|when this is non-singular [GN]. In a recentpreprint [GLM], a general zeta function formula is presented, using the fact that thezeta function is a constructible function.12



Let us now focus on isolated W-singularities case. Proposition 4.3 tells that, iff has isolated W-singularities at the �ber Fa then the variation of topology is local-izable and the monodromy ha is splitting. To make a precise statement about zetafunction, let fqs j s = 1; : : : ; �g � �Fa be the W-singularities of f at Fa. Accordingto [Ti-3, 4.3], at each point qs there is a complete system of ball neighborhoods Bs;"within the space X, such that the mapfj : (C n n [s �Bs;") \ f�1(D�)! D�is a trivial �bration, for small enough " > 0, 0 < � << " and D� is centered at a.Moreover, for any s, the restrictionfj : C n \Bs;" \ f�1(D� n fag)! D� n fag(6)is locally trivial, cf. [Ti-3, 4.4]. Let us denote by �ha;s(t) the zeta function of themonodromy induced by the local �bration (6) on the pair (C n \ Bs;" \ f�1(D� nfag; Fc\Bs;"), where c 2 @D�. We then have the following decomposition into localzeta functions:5.3 Proposition If f has isolated W-singularities at a 2 C , then:�ha(t) = (1� t)��(Fa) �Ys=1 ��1ha;s(t);(7)where q1; : : : q� are the isolated singularities on Fa or at in�nity.Proof From the homology exact sequence of the pair (FD� ; Fc) we get that �ha(t) =�FD� (t) � ��1(FD� ;Fc)(t). Since by excision we have the direct sum decomposition:H�(FD�; Fc) ' �sH�(FD� \ Bs;"; Fc \Bs;");we get ��1(FD� ;Fc)(t) = Q�s=1 ��1ha;s(t). Now, since the monodromy acts on FD� as theidentity and since �(FD�) = �(Fa), we get our formula. Note that the relativehomology H�(FD� ; Fc) is concentrated in dimension n� 1, [ST]. �5.4 Remarks (a) The above result holds in particular for polynomial functionsf : C 2 ! C , at any reduced �ber Fa. See the Examples.(b) If f has isolated W-singularities at all �bers, then it follows from [ST, 3.5]that �(Fa) = 1+ (�1)n�1(�+ �� �a��a), where �, resp. �, denote the totalMilnor number, resp. the total Milnor number at in�nity, of f whereas �a,resp. �a, is the sum of the Milnor numbers of the singularities of Fa, resp. thesum of the Milnor numbers at in�nity of Fa (as de�ned by H�a and Lê [HL] incase n = 2 and by the authors in general [ST]).(c) For those isolated singularity qs 2 Fa (not at in�nity), the space FD� \Bs;" iscontractible and therefore we may replace in the formula (7) the factor ��1ha;s(t)by (1 � t)�qs(t), where �qs(t) is the zeta function of the germ of f at qs.13



(d) A'Campo's local result [A'C] on the Lefschetz number says that the Lefschetznumber of a singular holomorphic germ is zero. As a consequence of formula(7), there is the following generalization to the global setting, in case of an fwith isolated W-singularities:L(ha) = �(Fa n Sing f) +XL1s (ha);where L1s (ha) denotes the Lefschetz number of the monodromy acting on thepair (C n \ Bs;" \ f�1(D� n fag); Fc \ Bs;") and the sum is taken over those ssuch that the point qs is at in�nity.Section 6 contains several examples where f has a singularity at in�nity butL1 is non-zero (unlike in the local case).6 Computing the relative monodromy at in�nityTo compute �rel;i(t) and ���(t) we may use the method developed by the secondauthor in [Ti-1] based on a Mayer-Vietoris argument for an annular decompositionof the carrousel disc. This works reasonably well for a carrousel with only �rstorder smaller carrousels (i.e. when the branches of the germs of �� have only onePuiseux pair), but computations are very hard in general. We refer for the theoreticaltreatment to [Ti-1].We show in the following examples what is the inuence of the vicinity of in�nityupon relative monodromy. This in turn inuences the (absolute) monodromy at anatypical value. We consider �rst the case of an isolated singularity at in�nity with� = 1: the local relative monodromy action on the unique relative cycle can onlybe +id or �id. When dimension is �xed, both cases are possible and we show thisby the �rst two examples (n = 2). This behavior is new: in the local case, themonodromy of the unique (n � 1)-cycle of a Morse singularity only depends on thedimension; for n = 2, it is the identity.6.1 Example f : C 2 ! C , f(x; y) = x+ x2y.This came into attention due to Broughton [Br], as the simplest polynomial witha noncritical atypical �ber (see also [ST], [Ti-3] for further comments on it). Thepoint [0 : 1] 2 P1 is a W-isolated singularity at in�nity for the �ber F0, with � = 1.For a general l, say l = x+y, the polar curve �(l; f) intersects a general �ber Fgenin 3 points and the �ber F0 in 2 points, transversely. We get 1gen = 3, 0gen = 00 = 3and 10 = 2, therefore �(Fgen) = 0, �(F0) = 1 (which is of course clear, sinceFgen ht' S1 and F0 ht' C ` S1). The zeta-function of the monodromy h0 around thevalue 0 is equal, by Proposition 4.8 and Theorem 5.2, to �F 0(t) � Q3i=1 �rel;i(t). Let� := �1 be the disc centered at 1 2 P1 and let �2; �3 be the other two discs in C .Then, by Remark 4.6(b), �rel;2(t) = �rel;3(t) = (1�t). To get �rel;1(t) we use Theorem5.2 and compute ��(t) instead, as follows.14



We use the setting and notations of Proposition 4.5. The carrousel �� centeredat 1 2 P1 contains only one little disc D centered at the unique point p 2 � \ ��.Let s 2 @D. Then ���(t) is equal to �D;s(t), the zeta function of the carrouselmonodromy acting on H1(Fc \ l�1H (D) \ B;Fc \ l�1H (s) \ B) ' H1(I; @I). Now thecarrousel monodromy of the space Fc \ l�1H (s) \ B is isotopic to the monodromyof this space along a loop around both the center of �� and the center of D. Wedecompose it into a simple loop around 1 2 � followed by a small loop around p.Since p is an A1-singularity of lH restricted to Fc, the lH-monodromy of H1(I; @I)around it is �id, since dimC Fc = 1. The monodromy around the point 1 is also�id, by the following reason: the compacti�ed curve �Fc has an A2 singularity at[0 : 1], if c 6= 0 (and an A3 singularity if c = 0). The loop in Fc around this point isnothing else but the complex link monodromy of the germ of �Fc (i.e. the monodromyof a general linear function on �Fc). We refer to [GM] for de�nitions and basic resultsabout complex link. By a straightforward computation one �nds:Lemma The complex link monodromy of the germ of a Ak-type curve singularity is(�1)k�1id. �It then follows that �rel;1(t) = (1 � t). Therefore �h0(t) = 1, since �h0 jF 0 (t) =(1� t)�3. The monodromy is itself the identity.6.2 Example f : C 2 ! C , f(x; y) = x2y2 + xy + x.This is contained in the classi�cation list of polynomials of small degrees, withrespect to their singularities including those at in�nity, of the �rst author withSmeltink [SS]. There is a Morse singularity at (0;�1), on the �ber F0 and a sin-gularity at in�nity at [0 : 1] 2 P1 for the �ber F� 14 . Hence � = 1 and � = 1. Thegeneral �ber is homotopy equivalent to S1 _ S1. We may take l = x+ y as generallinear form. Then �(l; f) = f2xy2 + y + 1 � 2x2y � x = 0g and its intersectionwith Ft is 4 points, if t = 0 or t = �14 and 5 points for the other values of t. The�ber F 0 = Fgen \ fx + y = sg is 4 points, for generic s. We get 1gen = 10 = 5and 1� 14 = 4. We now compute the zeta-function of the monodromy h� 14 . By thelocalization result Proposition 5.3, this is equal to ���, since the other contributionsare trivial. Now, in the carrousel disc �� centered at q1 = ��(l; f)\ �F� 14 , the situationis similar to that in the �rst example. The only di�erence is that the complex linkmonodromy in cause is this time the one of an A3 curve singularity (instead of aA2 singularity). Using the above Lemma, this shows that our monodromy is thecomposition (�id) � (�id). Finally, by Theorem 5.2, we get:�h� 14 (t) = (1� t)�4(1� t)4(1 + t) = 1 + t:We may deduce that the monodromy h� 14 acts on a certain basis of absolute cyclesby switching those.The zeta function �h0 is easier to compute since it is localizable at the Morsesingularity (0;�1) and the local monodromy is the identity (acting on the local15



cycle S1). Therefore, by Proposition 5.3 and the remarks following it:�h0(t) = (1 � t)��(Fa)(1� t)�(0;�1)(t) = 1 � t;since Fa ht' S1 and �(0;�1)(t) = 1. By using the next Remark and Example, we �ndthe zeta function at in�nity: �h1(t) = 1� t2.6.3 Remark The family of polynomial functions fd = x+ dxy+x2y2 is a (�+�)-constant family (for d = 0 we have � = 2 and � = 0). For such a family themonodromy �bration at 1 2 P1 is constant for d 2 C , by [Ti-2]. Nevertheless, themonodromy group (i.e. the group generated by loops around atypical values) is notthe same. For d 6= 0, it is the example above. We shall investigate the case d = 0 inthe next, within a whole series.6.4 Example Series Ea;b : ga;b = x+ xa+1yb, a � 1, b � 0.Let a; b be �xed. There are no singularities in the a�ne, � = 0. We may considery as general linear function, y 2 
0, even though it is not a \most generic" one.Then, for generic s, the intersection Ft \ Hs consists of (a + 1) points, for any t.The intersections with the polar curve �(y; ga;b) are Ft \ � = b points, for t 6= 0 andF0 \ � = ;. Hence � = b and there is a single W-singularity at the point at in�nity[0 : 1] 2 P1, corresponding to the �bre F0. The carrousel at in�nity is governed bythe polar image ��(y; ga;b) = ffa = Kzbg � C 2 , where z = 1=y and K is a constant.Let c = gcd(a; b). The e�ect of a 2� turn in f is a ab2� turn in z. Therefore we haveb points in the carrousel disc �� and the carrousel monodromy cyclically permutesthe points within c cycles of length b=c. Hence for each cycle we �nd the relativemonodromy matrix:M = 26664 0 � � � � �11 0 � 0� � � �0 � � � 1 0 37775 ;where the sign � has to be determined:The total relative monodromy matrix is a block-matrix having on the diagonal cmatrices of type M (and 0 in the rest). The � sign is determined by studying a ac2�monodromy in z of one relative vanishing cycle, hence of its boundary. We embedthe boundary cycle in the full slice z = 1=y =const. in Ft (t 6= 0). The z-monodromyon Ft (t 6= 0) is isotopic to the z-monodromy of F0, hence we study the complexlink monodromy of X0 := X\ p�1(0) which has local equation fxza+b + xa+1 = 0g.The slice z =const. consists of (a+ 1) points: x = 0 and the solutions of xa = za+b.On x = 0, the z-monodromy works as the identity. On the other points, the e�ectof a 2� turn in z is a ba2� turn in x. Now we have to take the a=c power of this,which is a bc2� turn in x, hence the identity! The sign determination is complete: itis +1. For the zeta function, we get: ��� = (1 � t bc )c. This coincides, by Theorem5.2, with the zeta function of ha and also with the one of h1 (since � = f0g).16
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