Singularities at infinity and their vanishing
cycles, II. Monodromy”*

DIRK SIERSMA axp M1aal TIBAR

Abstract

Let f : C* — C be any polynomial function. By using global polar
methods, we introduce models for the fibers of f and we study the monodromy
at atypical values of f, including the value infinity. We construct a geometric
monodromy with controlled behavior and define global relative monodromy
with respect to a general linear form. We prove localization results for the
relative monodromy and derive a zeta-function formula for the monodromy
around an atypical value. We compute the relative zeta function in several
cases and emphasize the differences to the “classical” local situation.
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1 Introduction

We study a polynomial function f : C* — C aiming to describe the variation of
topology in the fibration induced by f, at atypical fibers. The topology of polynomial
functions became a challenging topic after the paper of Broughton [Br] since applying
local methods encounters obstructions from the non properness of f and from the
asymptotic nongenericity. In two variables, the interest increases by the reduction
of the Jacobian Conjecture to the following statement: if f has singularities at
infinity then the singular locus Sing (f, g) is not empty, for any polynomial function
g [LW], [ST]. The problem raised by such a statement is how to control the so
called “singularities at infinity”. As we show in this paper, they represent a new
type of singularities, their behavior being different from the one of local singularities.
In several variables, the term “singularities at infinity” is well defined only under
specific conditions and possibilities of study are limited because these singularities
can be non isolated. In two variables, only isolated singularities at infinity can occur
and one may define them in several equivalent ways.

In case f has isolated singularities at infinity (in the sense that the proper exten-
sion p: X’ — C, defined in §2., has isolated singularities with respect to a Whitney
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stratification of the space X') we have introduced in [ST] the “vanishing cycles at
infinity” and proved that they generate the homology of the generic fiber together
with the cycles vanishing at critical points in the affine. It appears that there is
an interaction between the two types of cycles and that this interaction is of a new
type, different from the one between cycles vanishing in the affine.

Starting from our previous results [ST], [Ti-3], [Ti-4], we develop in this paper
a method for studying the monodromy of f via the relative monodromy. The moti-
vation for looking to relative monodromy is that, by slicing, we get a polynomial in
less coordinates and with less singularities (at least those at infinity), see the proof
of Proposition 4.8.

There are recent papers which contain results on some invariants of the mon-
odromy, usually under certain restrictions on f. Different points of view are adopted:
Newton polyhedra [LS], Hodge theory of families of algebraic hypersurfaces [GN],
Fourier transform of D-modules [Sa], resolution of singularities [MW], [ACD], [GLM],
relative monodromy in case of two variables [Hal.

Our approach is via the construction of geometric monodromies along loops in
C and has been announced in [ST-2]. We first recall from [Ti-4] the construction of
a model of a fiber of f, which uses a tomographic method, the slicing with generic
hyperplanes. Repeating this procedure in lower dimensions, one arrives at a generic
skeleton. This idea was first used by the second author for proving that a certain
asymptotic equisingularity condition is controlled by global polar invariants, in case
of a family of affine hypersurfaces [Ti-4].

Then we define a global geometric monodromy, i.e. a representation p : w1(C \
Ay) — Diff(F'), where A; is the set of atypical values, F' is the general fiber of f
and Diff(F') is the group of C*-diffeomorphisms of F. In case of a monodromy
at an atypical value (including the value oo € P') we define a certain vector field,
controlled at infinity and tangent to the polar curve I'(/, f) := closure{Sing (I, f) \
Sing f} of f with respect to a general linear form [. The construction yields a refined
filtered structure of the affine fiber F', reflecting the dynamic behavior of each piece
in the decomposition of F', when turning around the atypical value.

This also represents a globalization of the local carrousel construction of Le D.T.
[Le-1], [Lé-2]. We prove localization results for the relative monodromy which lead
to a zeta function formula for any f. We emphasize on the new features that occur
in the neighbourhood of infinity: there are certain loops around infinity which enter
in the description of the relative monodromy. These loops are in particular the cause
of the error in the main result of Ha H.V.’s paper [Ha, Theorem 3.4]. Namely, in
case n = 2, at a singular point at infinity with A = 1 (called “Morse singularity
at infinity” in loc cit) the local monodromy can effectively be either +id, or —id,
see Examples 6.1, 6.2. This does not happen in the local case: the monodromy of
a local Morse curve singularity is allways +id. Examples of computations of the
relative monodromy are included at the end.
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2 Models of fibers

Let f : C* — C be a polynomial function of degree d. A value t; € C is called
typical if f is a trivial C®-fibration at ty. It is known that the set of atypical
values, denoted Ay, is finite (because of algebraicity) cf. [T], [Va], [Ve]. It includes
the critical values of f but also other values, the fibers over which have singular
asymptotic behavior. Under certain conditions, one can localize the variation of
topology at atypical values, thus obtaining “singular points at infinity”, cf. [Ti-3].
We need for that a support at infinity, to contain all the “ends” of fibers of f.

We consider the closure of the graph of fin P"x P!, namely the space X = {[z :
2y ceexn) €PY s t] € P sf —tal = 0} € P* x P!, where f is the homogenized
of the polynomial f. Here and in the following xq denotes the variable at infinity,
defining the embedding C* C P™. Denote by p : X — P! the second projection and
by X* := XN {xg = 0} the hyperplane at infinity of X. Since the graph of f is
diffeomorphic to the domain, we have an embedding ¢ : C* ~ Graph(f) — X. The
map [ is the composition C* <> X & C. So the study of f is equivalent to the
study of the restriction of p to the graph of f.

There is a finite set A C P, A D A;, minimal with the property that the
restriction p; : X'\ p7H(A) — P'\ A, resp. p;: X\ (p7'(A) UX>®) — P'\ A, is a C°,
resp. C* locally trivial fibration [T], [Ve]. We take by definition [0 : 1] = co € A.
We consider the polar locus I'(I, f) := closure{Sing (/, f) \ Sing f} C C" of f with
respect to a linear form [ : C* — C and denote by A := (I, f)(I'({, f)) the polar
image in C?. Denote by [y the linear form associated to a projective hyperplane
H € P*~'. We first prove the following key result.

2.1 Lemma There is a Zariski-open set Q@ C P*~' such that, for any H € Q:

(a) the polar locus I'(ly, f) is a reduced curve or it is empty.

(b) the map (lg, f) : C" — Cx C is a C-trivial fibration over (Cx (C\ Ag))\ A,

where A is some finite set in C.

Proof (a) is a slightly improved version of the Polar Curve Theorem, see [Ti-3,
Lemma 2.4]. That the polar curve is reduced follows from standard Bertini type
arguments. We prove (b) in the following. Take a finite complex stratification
W = {W,}ier of X' := XN (P" x C) satisfying Whitney conditions and such that
C* € X' is a stratum. (The embedding of C into P! is given by making s = 1 and
the embedding of C" into X’ comes from the isomorphism C" ~ Graph(f) and the
embedding of the graph of f into X, as defined above.) There is a canonical Whitney
stratification with this property, cf. [Te].



We take two copies of C, denoted C, and C;, of variables r, respectively ¢. Let
H:= {(r,[zo: z],t) € C, xP"XC; | ly—rzo =0} (notice that ¢ is free). Consider X'
as subset of P x C,. Note that H is nonsingular, whereas X’ can have singularities
on X*. Define the space:

(1) Y =(C xX)nHCC, xP"x G

and consider the projection (r,t) : Y — C, x C;. This is a proper extension of
the map (I, f). It follows that Y \ Y* is non-singular (since it can be identified
with C"), where Y™ := Y N (C, x {x¢o = 0} x C;), and that the critical locus of
the restriction (r,?)jy\y= is Sing ([, f). It remains to understand the situation at
infinity.

We first return to the space X’ and the map p : X’ — C. Denote by Sing ,p :=
Uw,ewSing pjw, the singular locus of p with respect to the stratification W. It is a
closed analytic subset of X'.

For a fixed stratum W; C X'NX>* C P*! x C;, we consider the projectivized
relative conormal PT;|W¢ C P! x C, x P*1. For the definition of the relative
conormal, we refer to [Te], [HMS]. Let us just emphasize that there is a unique
hyperplane within P~ which is tangent to a given non-singular point of some fiber
of pjy, and we identify it with an element of pr-1,

We remark that, if p is not constant on W;, then dim PTw, =n—1. By using a

Bertini type argument for the projection P71, — P! it follows that there exists

a Zariski open set Q@ C P"' such that, for any H € Q, the map pw; restricted to
W, N (H x C;) is a submersion at all points except of the singular locus Sing,p and
except of at most a finite set Ay, for any ¢ € I. We may and shall assume, without
loss of generality (after eventually intersecting with a Zariski open set), that the set
) also verifies the point (a) of our lemma.

Now let us construct a Whitney stratification of Y. We take Y \ Y™ ~ C" as
a stratum and start to stratify Y*. Consider the product stratification C, x W’ of
C, x X', where W C X'NX". This is a Whitney stratification too. The intersection
of C, x W; with H is transverse within C, x P" x G, if and only if the intersection
(C. x Wi)N(C, x H x C;) is transverse within C, x P"~! x C,. This latter is indeed
transverse for any ¢, at all points except of the set C. x Ap, if H € Q). Leaving aside
the exceptional set C, x Ay, the transverse slices become Whitney strata of Y at
infinity, since Whitney property is preserved by transverse cutting.

Next we have to see whether the fibres of the map (r, ) are transverse to the above

defined Whitney strata of Y. Namely, the map (C, x W;)N(C, x H x C;) 9 C, xC,
is a submersion whenever the second projection W;N(H x C;) N C; 1s a submersion.
This situation is treated above, since the map ¢ coincides with the map p. The result
is that, if H € Q, then the fibres of (r, 1) are transverse to the Whitney stratification
of Y except at the points of the following set:

ZH = F(ZH,f) U (CT X (Smg whp U AH))



Note that ¢(C, x Sing yp) is a finite set. Moreover, for H € Q, I'(lg, f)U(C, x Ap)
is a curve (or empty). Denote by Ag(r,t) C C. x C; the image of Xy by (r,t). We
have thus proved that the map:

(2) (r 1) s YA (r ) (An(r, 1)) = (o x )\ An(r,t)

is a locally trivial, stratified fibration. Restricting it to C*, yields the desired state-
ment (b). We may therefore define Ay as t(C, x (SingypU Ap)). Note that the set
of critical values Ay and the set of atypical values A are contained in Ap. O

When focusing to a certain (atypical) value a € C, we need to look at the special set
of points I'(lg, f)N F,, where F, denotes the fibre f~'(a). If such a point is a smooth
point of F, then f is locally trivial at this point but the map (I, f) is not. We need
to change H in order to have transverse intersection of I' with F, at the point. This
is possible as shown in the next lemma, which is a supplement of Lemma 2.1. If so,
then we have a better situation along F, since transverse intersections provide local
stratified product structures with respect to (g, f), see Remark 4.6(b).

2.2 Lemma Let a € C. There is a Zariski-open set Q, C Q C P*~' such that, for
any H € Q,, we have:

(c) as a hyperplane of the hyperplane at infinity P"~', H is transverse to all the
strata at infinity of the canonical Whitney stratification of the projective hy-
persurface p~'(a) C P™.

(d) the polar curve T'(lg, f) has no component included into f~'(a).

(e) the restriction lg|j-1(q) : f~%a) — C has only stratified Morse critical points
oulside the one point strata of the stratification considered at (c).

Proof Condition (c) is an open condition and implies condition (d). Condition (e)
is known to be locally open, hence open. O

2.3 Convention When a = co (that is a = [0 : 1] € P'), we define Q.. to be just
Q) (the Zariski-open set from Lemma 2.1).

The following is an immediate consequence of the definition:

2.4 Corollary Let H € Q. If F, has an isolated singularity at ¢ € F, then ¢ €
U(lg, f). More generally, if the restriction of lg on F, has an isolated stratified
singularity at ¢ € F,, then ¢ € (g, f). O

We recall from [Ti-4, 3.6] the description of the “tomographic” model of F, :=
f~Ya). According to Lemma 2.2, for H € Q, the linear function Iy : F,, — Cis a
fibration without singularities at infinity. The only critical points of lf : F, — C
are the intersection points I'(lg, f) N F, = {e1,...,cx}. By Lefschetz-Morse-Smale
theory, the hypersurtace £}, is built from the slice F, N H by attaching a number of
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cells of dimension n — 1 only. In case F, is singular, this result is still true by using
the theory of functions with isolated singularities on stratified spaces, see [Lé-3]. To

each point there corresponds an attaching of a number of (n — 1)-cells equal to the
(n — 2)"™ Betti number of the local Milnor fiber My .. of the germ Iy : (F,, ¢;) — C.

2.5 Fibres with isolated singularities: the generic skeleton

Let us be more explicit in case when F, is non-singular or it has only isolated sin-
gularities. By Milnor’s Theorem, the Milnor fiber My ., is homotopically a bouquet
of spheres and by Lé’s Theorem [Lé-3], their number is equal to the intersection
multiplicity int.,(I'(lg, f), {lg = lg(c;)}), which in turn is equal to the multiplicity
mult, I'({g, f) of the polar curve at ¢; (by our assumptions in Lemma 2.2). We
deduce, see e.g. [Ti-4, Theorem 3.6], that if dim(Sing F,) <0, then:

(3) bn2(Mire,) = inte,(U(lm, f), Fa) — p(Fa, i),

where int. (I'(lg, f), F,) denotes the intersection multiplicity at ¢; and u(F,,¢;) is
the Milnor number of the hypersurface singularity (F;,¢;). (If F, is non-singular at
¢, then u(F,,¢;) =0.)

After the second author’s paper [Ti-4], there is the following homotopy model:
F, is built from the generic hyperplane section F, N H to which one attaches v~ —
w(Fy) cells of dimension n — 1, where u(F,) is the sum of the Milnor numbers of
the singularities of the hypersurface F, and v"~! is the generic polar intersection
multiplicity. We recall from [Ti-4] the definition of 477! and of the set of generic
polar intersection multiplicities v = {~"~1 4m=2 . 4l 401

75—1 _ int(F(ZHaf)aFa)v He,,

where int(I'(Ig, f), Fl,) denotes the sum of the local intersection multiplicities at each
point of the finite set I'(lz, f) N F,. Next, take a hyperplane H € €, and denote by
4"=2 the generic polar intersection multiplicity at a € C for the polynomial function
Jie : €71 — C, where H is identified to C"~'. By induction, we define in this way
A=t for 1 <7< n— 1. By definition, 7% := deg f.

By a standard connectivity argument, the set of polar intersection multiplicities
is well-defined i.e., it does not depend on the choices of generic hyperplanes.

The generic skeleton Sk,(f) of F, is defined as the CW-complex obtained by
successively attaching to 4° points v} cells of dimension 1, 2 cells of dimension 2,
ooy Y72 cells of dimension n — 2 and finally v*~1 — u(F,) cells of dimension n— 1.

By the above, the generic skeleton does not depend on the choices of generic
hyperplanes. We refer to [Ti-4] for the details and an application of ~) to equi-
singularity at infinity. Computations of v* can be found in the Examples at the
end.

One of the consequences of the above model is the following:

2.6 Corollary Let H € Q. If U'(ly, /)NE, =0 then H{(F,,Z)=0, forj>n—1.
U



3 A global geometric monodromy

We proceed to construct a geometric monodromy of a polynomial function by using
the key lemma 2.1 and the generic skeleton Sk.(f) of a typical fiber of F.. Let
H e Qandlet A C Ay C C be the finite set A := p(Sing ,yp), in the notations of
2.1. For any simple loop within P!\ AU {00} we may define a geometric monodromy
as follows. By the proof of Lemma 2.1, the map p : X'\ p_l(]\ U{oo}) — C\ A is
a locally trivial stratified fibration. In particular, the restriction of p on the open
stratum C" is a C* locally trivial fibration. As in the proof of the Thom-Mather
[sotopy Lemma (see e.g. [Ve]) one can produce a trivializing vector field tangent to
the strata at infinity. We therefore get a geometric monodromy representation

p:m(PY\ AU {c0}) — Diff(F),

where F' is a general fiber of f and Diff(/") is the group of C*-diffeomorphisms of
F. We may replace A by the set of atypical values A. This induces an algebraic
monodromy representation pue @ 71 (P'\ AU {o0}) — H.(F,Z).

3.1 Monodromy at an atypical value and at infinity.

Some more structure on the trivializing vector field could allow to find results on
monodromy. We therefore focus on defining a geometric monodromy of a general
fiber of f along a small circle in the base space P'\ A U {oo}. We recall that
Ag = t(C, x (Singyp U Ag)) is a finite set containing A.

Take a small closed disc D, at a € AU {oo} such that Ay N D, = {a}. We
assume that H € Q,. By Lemma 2.1, one can lift the unitary vector field u on
the circle 9D, to a vector field w in the tube f~!'(dD,) such that w is tangent to
t=4dD,) NY™ in a stratified sense and tangent to I'({g, f) N f~1(9D,), for some
general H € Q,. Note that the set T'(ly, f) N f~1(9D,) is a finite union of circles.

Moreover, one can construct a vector field w by lifting u in two steps:

(4) Yo, Y« an, 2= ap,.

This idea was used in the local case by Lé D.T. [Lé-1], [Lé-2]. In the global set-
ting, we may decompose the monodromy flow in regions where the local carrousel
construction of Lé can be used. Let T'(lg, f) denote the closure of I'(lg, f) in X.
There is a “carrousel” associated to each point ¢ € T'(ly, f) N p~(a), including the
case where ¢ € X* N p~'(a), as follows. We use the notations from 2.1. We have
defined at (1) the space Y C C, x P x C; with projection (r,1): Y — C, x C;. We
now consider the closure YT of Y in P" x P! x C; and denote by + : YT — P! the
projection which extends r : Y — C,.. First we lift the vector field u by pr, to a
vector field v on C, x 9D, with the following properties. There is a small closed disc
§ at each point #(q) of P1, ¢ € T'(ly, f) Nt~Y(a), such that v is the carrousel vector
field on & x dD,, for small enough D,. In particular, the lift v of u to C, x 9D, is
tangent to the discriminant A(lg, f). By definition, the vector field v is the identical
lift by the projection pr, : {b} x 0D, — 9D, for any point b € 9é; moreover, this
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is the case for any point b € P*\ UL §;, where §é; is a small enough disc centered at
d; and the set {d;,...,d;} € P!is the image by 7 of the set T'(Iy, f) N p~(a).

This special vector field v is now lifted to f~'(dD,) via the stratified fibration
(2) giving rise, by integration, to a geometric monodromy, denoted by h,. Note
that, for some point b € P!\ UX_,é;, this monodromy restricts to a monodromy of
the slice fibration:
(5) F7HOD,) NI (b) — 9D,.

The action of the monodromy h, on the pair (F., F. N I5' (b)), where ¢ € 9D,, is
called relative geometric monodromy and will be denoted by Al

3.2 Note Let H € Q,. If ¢ € T(lg, f) N p~(a) N X* then #(¢q) = co € PL

4 Localization of monodromy

Localizing the change of topology from a typical fiber to an atypical one is a problem
that cannot be solved for any polynomial f : C* — C, since its singularities at
infinity (at least in the meaning of this paper, see bellow) may be non-isolated.

4.1 Definition We say that f has isolated W-singularities at « € C (or at F}) if
dim Sing yy,p N p~t(a) = 0.

Notice that isolated W-singularities at @ € C implies that the hypersurface [, has
isolated singularities. Under this isolatedness condition we have proved a structure
result for the general fibre.

4.2 Theorem [ST] [If f:C" — C has isolated W-singularities at all fibers then
its general fibre is homotopy equivalent to a bouquet of spheres of dimension n — 1.
The number of spheres is equal to u + X\, where p denotes the total Milnor number
of the isolated singularities of f and \ denotes the total “Milnor number at infinity”
of the isolated W-singularities at infinity (defined in loc cit). O

Following [Ti-3, §4], we say that the variation of topology of the fibers of f at a € C
is localizable if there is a finite set {ay,...,ar} € p~'(a) such that the restriction
Ji o (C\ Uk B;) N f~YD,) — D, is a trivial fibration, where B; C X is a small
enough ball centered at a;. In this case, we also say that the monodromy h, is
localizable at the points aq,...,ar, in the sense that the geometric monodromy A,
is trivial on the complement of the balls F,. \ U%, B;.

4.3 Proposition [Ti-3] If [ has isolated W-singularities at a« € C then the
variation of topology of the fibers of f at a is localizable at the points of the finite
set p~'(a) N Sing yyp. In particular, the monodromy h, is localizable at the isolated
W-singularities. O



Our scope is to show that certain localization results for the relative monodromy
hg e hold without any assumption on the W-singularities of f.

First localization of relative monodromy.

We shall keep using the notations in the previous section. Recall that dy,ds, ..., d;
were the points where the closure A(ly, f) C P! x C; of the discriminant A(lg, f)
cuts the projective line {t = a} C P} x C;. We consider small discs §; C P} at d;
and fix some points s; € 9¢;, for © € {1,...k}. We denote 6, := & if d; € C, and
5 = & \ «; if d; = oo, where a; is th radius from d; to a point on the circle 9¢;
different from s;.

By construction, & x {c} contains all the points of Ay(Iy, f) NP x {e}, where
c € 0D, and A;(lr, f) denotes the germ of A(lg, f) at (d;,a) € P*xC. The structure
of the generic skeleton Sk.(f) implies that the relative homology H.(F., F. N 15 (b))

is concentrated in dimension n — 1, where b € P\ U, &;. We have the following.

4.4 Proposition The relative homology splits into a direct sum:
H, ((F, F.0 (b)) = L Hy o (F. 0 (6, Fon gt (s0))
and the relative monodromy splits accordingly:
(B = By (B
where (A%, ; denotes the monodromy acting on H,_1(F.N l;ll((?i), F.n g (s:).

Proof The geometric monodromy A constructed above acts on the exact sequence
of the pair (F., F. N I57'(b)). By an excision argument applied to the projection
Iy + F. — C, we get the homology splitting. Next, the geometric monodromy A"
acts on the pair of spaces (F.NI7(6;), F.Nl7"(s;)) if and only if d; € C. Nevertheless,
in case the center d; is the point co € P!, the algebraic monodromy still acts on the
relative homology H,,_1(F. N l;ll((?i), F.0 5 (s0)). O

Second localization of relative monodromy.

We further localize the relative monodromy in the source space. Let a € C.
By Lemma 2.2, for H € Q,, the map [y : F, — C has isolated critical points
(in the stratified sense), which points are exactly the set I'(Iy, f) N F, and has no
singularities at infinity. It follows that the map [y : F. — C has the same properties,
for any ¢ € D,, for small enough disc D,. If @ is oo then the map Iy : F. — C also
has these properties, for any ¢ € C within a small enough neighbourhood of co € P1.

Let {p;.;} el denote the set of points I'(ly, f) N F.N 15" (6;). Take Milnor data for
the germs Iy : (F.,p;;) — C, which means: small enough discs D, ; C 8; centered
at Ig(p; ;) and small balls B,; C F. N lﬁl(&) centered at p; ;. We assume that
D;j, =D, it lg(pij,) = lu(pij,). Note again that, by 2.1 and 2.2, these are germs
of complex Morse singularities. We get the following result:
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4.5 Proposition Let a € P! and let i be fized. The homology of the pair (F. N
I(6:), F. N 5 (s)) splits into a direct sum

e, Hoot (F- N 15 (D) 0 By, F. 0 g (s0;) N Biy),

where s; ; € 0D, ; are some fized points. The restriction of the relative monodromy
hara acts on the set of all pairs (F.NI7 (D; ;)N B, F.0lg (5;;) 0 B;;) by permuta-
tions, via diffeomorphisms (i.e. hqye sends a pair to another one, diffeomorphically).

Proof First we get by excision the following splitting:
Hya (Fe N (80), Fe N1 (s0) = @ Hoa (Fe 0 (D), Fe 0 T (s5)),

where the sum is taken over the distinct discs D, ;, with fixed :. Next, by the above
arguments, the map:

I« F.N g (Dijy) \ Yjet.p: =0, ,, Big — Dij,

is a trivial fibration, for any jo € ;. It is indeed so since this map has no singularities
at infinity and its fibers are transverse to the spheres 9B, ;. The splitting of homology
follows. The second statement is a consequence of the fact that our vector field is
tangent to the polar curve. O

4.6 Remarks

(a) In general, the relative monodromy does not split following the direct sum
of Proposition 4.5. There are interactions among the relative cycles which
depend on the global carrousel motion and also on the action of h, on the
fiber . N 15" (s;;). Moreover, it may happen that one or more branches of the
discriminant locus at d; are multiple, since being the image of more than one
branches of the polar curve.

(b) Let H € Q,. Let p € F,NI'(Ig, f) such that p ¢ Sing F,,. By Lemma 2.2, since
p is a Morse point of the map Iy p,, the polar curve is nonsingular at p and it
cuts the nearby fiber F. at a single point p;; within a small neighborhood of
p. Then the relative monodromy acts on the pair (F. N {5 (D;1) N By, F. N
I3 (si1) N B;1) as the identity. Indeed, the maps fi: YD) NG (si1)N By —
D and fj: f71(D) N I;7(D;1) N B;y — D are trivial stratified fibrations for
small enough D, 1, the strata being I'(/y, f) and its complement.

When §; C C*, the relative monodromy (2", ; from Proposition 4.4 can moreover
be localized at the points of intersection I'(lgr, f) N F, N 5 (6;) = {b1,..., b, }.

4.7 Proposition Let é; C C*, for somer € {1,...,k}. Then there is the following
splitting:
(e = By (B3

where (h};]el)* denotes the local relative monodromy of the germ f : (C*,b;) — C with
respect to the linear function ly.
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Proof Since the map Iy : F.N l;II((SZ') — 0; 1s trivial at infinity, for all ¢ close enough
to a, we may excise the exterior of some small enough polydiscs P; := B; x¢; centered
at b;, for j € {1,...,¢:}, and get the splitting:

Ho o (BN (6), Fon iy (s0) = @I Hao (P N Fo 0 3H(68:), Py NV F.O T (sq).

The monodromy splits accordingly. The right hand terms are just the local
relative homology groups of the germs fj : (C*,b;) — C with respect to the linear
function I. O

4.8 Proposition Let H € Q,. If f has isolated W-singularities at a (see Defin-
ition 4.1), then the restriction hqy, of hy to a general hyperplane H, := {lg = r}
can be chosen to be the identity.

Proof The second author has proved in [Ti-3, §5] that, if H € Q, then the Whitney
stratification W attached to f induces canonically a Whitney stratification Wy,
attached to the restriction fjz,. Then one proves, see [Ti-3, Lemma 5.4], that
dim Sing WHTp’ < dim Sing yyp — 1, where p' is the extension of fig, (as p is the one
of f defined in §2), under the condition: dimSing,,p > 1. It turns out that, by
choosing H € (),, one can easily drop this condition completely when referring to
only the fibre over a. The same proof works with minor changes, so we skip it:

Lemma (cf. [Ti-3]) If H € Q, then
dim Sing WHTp' Np ™' (a) < dimSing yp N p~'(a) — 1.

Now, if dimSing,,p = 0, then it follows from this lemma that fjy, has no W-
singularities on the fibre over a, hence this fibre is typical for f|y, and therefore the
monodromy of f|g, around « is isotopic to the identity. O

5 Zeta function of monodromy via the relative
monodromy

The relative monodromy is part of the monodromy of f around an atypical value
a € P'. We show the precise meaning of this at the zeta function level. Let us first
give the definition we work with.

5.1 Definition Let A, be the algebraic monodromy associated to a fibration over
a circle S' and let H; denote the :*® homology group, over C, of the fibre. One calls
zeta function of h. the following rational function:

Ch* (t) = H det[ld — th* : HZ N Hi](_l)iﬂ‘

i>0

11



As a consequence of the localization of the relative monodromy, we prove the fol-
lowing general zeta function formula for the monodromy (A, )., with no restrictions

on f.

5.2 Theorem Let [ : C* — C be any polynomial function. Let a € P and let
HcCQ,. Then

k
Cha (t) = Chau?‘/(t) ) H Creu(t)v

where F' is a general fiber of the map (ly, f) and by Ge (1) we denote the
zeta-function of the relative monodromy ('), ;. The index 1 runs over the points

Allg, fyn{t =a}. For d; = co we have:

Crel,i(t) = C(S* (t)v

where (s« is the zeta function of the monodromy acting on the space F, N 5 (67),
with §* := & denoting the pointed disc centered at oo € P,

Proof The monodromy acts on the homology sequence of the pair (F., F.N 15" (b)).
We get the 4-term exact sequence:

0 — Hyoy(Fe) = Hyod(Fes Fo N 1 (b)) — Hyoo(Fe N 1 (D) = Hyoa(FL) — 0
and, for j > 3, the isomorphisms:
0— H, ;(F.0lz (b)) — H,_;(F.) = 0.

By Proposition 4.4 the action of A* splits and therefore the zeta-function decom-
position follows. To prove the last assertion, we start by decomposing C into the
union of a big disc D with the pointed disc at infinity 6*, their intersection being
a thickened circle A. A Mayer-Vietoris argument shows that (,(¢) = (p(t) - (s« (1).
Next, D retracts to the union of the discs 6; C C together with simple paths con-
necting all those to one exterior point p € C. Excising now [5'(7) in the relative
homology, we get the formula:

Cha(t) = Chapp (1) TT Grerilt) - o (1),

d;CC

Comparing to the previous formula for (;_, we get the claimed relation. O

Zeta function formulae have been proven for special classes of polynomials f:
in terms of Newton polyhedra—under nondegeneracy conditions [LS], in terms of
the projective compactification of f—when this is non-singular [GN]. In a recent
preprint [GLM], a general zeta function formula is presented, using the fact that the
zeta function is a constructible function.
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Let us now focus on isolated W-singularities case. Proposition 4.3 tells that, if
f has isolated W-singularities at the fiber F, then the variation of topology is local-
izable and the monodromy #h, is splitting. To make a precise statement about zeta
function, let {¢, | s = 1,...,v} C F, be the W-singularities of f at F,. According
to [Ti-3, 4.3], at each point ¢s there is a complete system of ball neighborhoods B .
within the space X, such that the map

f| . (Cn \ USB&E) N f_l(Dg) — D5

is a trivial fibration, for small enough ¢ > 0, 0 < 6 << ¢ and Dy is centered at a.
Moreover, for any s, the restriction

(6) J:C B0 TN (Ds \ {a}) — Ds \ {a}

is locally trivial, cf. [Ti-3, 4.4]. Let us denote by (3, s(¢) the zeta function of the
monodromy induced by the local fibration (6) on the pair (C* N By. N f~1(Ds \
{a}, F.N Bs.), where ¢ € dDs. We then have the following decomposition into local
zeta functions:

5.3 Proposition If f has isolated W-singularities at a € C, then:
(7) Gra(t) = (1= )X TT GEL(0),
s=1

where q1,...q, are the isolated singularities on F, or at infinity.

Proof From the homology exact sequence of the pair (Fp,, F.) we get that (;, (1) =
CFp, (1) - C(_FlD . )(t). Since by excision we have the direct sum decomposition:
57 C

Ho(Fp,, Fo) ~ @sHo(Fp, N Bs o, F.N By ),

we get C(_FlD F)(t) = T, ;. t.(t). Now, since the monodromy acts on Fp, as the
51 [+ as

identity and since x(Fp,) = x(F.), we get our formula. Note that the relative

homology H,.(Fp,, F.) is concentrated in dimension n — 1, [ST]. O

5.4 Remarks (a) The above result holds in particular for polynomial functions
f:C* — C, at any reduced fiber F,. See the Examples.

(b) If f has isolated W-singularities at all fibers, then it follows from [ST, 3.5]
that x(F.) =1+ (—=1)"""(u+ A — pa — As), where p, resp. A, denote the total
Milnor number, resp. the total Milnor number at infinity, of f whereas p,,
resp. Ay, is the sum of the Milnor numbers of the singularities of F),, resp. the
sum of the Milnor numbers at infinity of F,, (as defined by Ha and Lé [HL] in
case n = 2 and by the authors in general [ST]).

(c¢) For those isolated singularity ¢s € F, (not at infinity), the space Fp, N Bs. is
contractible and therefore we may replace in the formula (7) the factor Ch_a{s(t)
by (1 —1)(,. (), where (,. (1) is the zeta function of the germ of f at ¢,.
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(d) A’Campo’s local result [A’C] on the Lefschetz number says that the Lefschetz
number of a singular holomorphic germ is zero. As a consequence of formula
(7), there is the following generalization to the global setting, in case of an f
with isolated W-singularities:

L(ha) = X(F, \ Sing ) + > L7 (ha),

where L°(h,) denotes the Lefschetz number of the monodromy acting on the
pair (C* N Bs. N f~Y(Ds \ {a}), F.N Bs.) and the sum is taken over those s
such that the point ¢, is at infinity.

Section 6 contains several examples where f has a singularity at infinity but
L* is non-zero (unlike in the local case).

6 Computing the relative monodromy at infinity

To compute (ei(t) and (s« (t) we may use the method developed by the second
author in [Ti-1] based on a Mayer-Vietoris argument for an annular decomposition
of the carrousel disc. This works reasonably well for a carrousel with only first
order smaller carrousels (i.e. when the branches of the germs of A have only one
Puiseux pair), but computations are very hard in general. We refer for the theoretical
treatment to [Ti-1].

We show in the following examples what is the influence of the vicinity of infinity
upon relative monodromy. This in turn influences the (absolute) monodromy at an
atypical value. We consider first the case of an isolated singularity at infinity with
A = 1: the local relative monodromy action on the unique relative cycle can only
be +id or —id. When dimension is fixed, both cases are possible and we show this
by the first two examples (n = 2). This behavior is new: in the local case, the
monodromy of the unique (n — 1)-cycle of a Morse singularity only depends on the
dimension; for n = 2, it is the identity.

6.1 Example [:C* — C, f(z,y) =« + 2%y.
This came into attention due to Broughton [Br], as the simplest polynomial with
a noncritical atypical fiber (see also [ST], [Ti-3] for further comments on it). The
point [0 : 1] € P! is a W-isolated singularity at infinity for the fiber Fy, with A = 1.
For a general [, say [ = 24y, the polar curve I'(/, f) intersects a general fiber Fy.,
in 3 points and the fiber Iy in 2 points, transversely. We get v40, = 3, Ygen = 70 = 3
and 73 = 2, therefore x(Fgen) = 0, x(Fy) = 1 (which is of course clear, since
Fyen g St and Fp hzt CII SY). The zeta-function of the monodromy hy around the
value 0 is equal, by Proposition 4.8 and Theorem 5.2, to (g (t) - TT5_; Creri(t). Let
6 := &, be the disc centered at oo € P! and let 8,, 83 be the other two discs in C.
Then, by Remark 4.6(b), Gre12(t) = Geas(t) = (1 —1). To get (a1(t) we use Theorem

5.2 and compute (*(¢) instead, as follows.
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We use the setting and notations of Proposition 4.5. The carrousel 6* centered
at oo € P! contains only one little disc D centered at the unique point p € A N 6*.
Let s € dD. Then (s+(1) is equal to (ps(t), the zeta function of the carrousel
monodromy acting on Hy(F. N {5 (D) N B, F.N g (s) N B) ~ Hy(I,dI). Now the
carrousel monodromy of the space F. N {5 (s) N B is isotopic to the monodromy
of this space along a loop around both the center of 6* and the center of D. We
decompose it into a simple loop around oo € 6 followed by a small loop around p.
Since p is an Aj-singularity of Iy restricted to F,, the [y-monodromy of Hy(1,0I)
around it is —id, since dimg F. = 1. The monodromy around the point oo is also
—id, by the following reason: the compactified curve F, has an A, singularity at
[0:1],if ¢ # 0 (and an As singularity if ¢ = 0). The loop in F. around this point is
nothing else but the complez link monodromy of the germ of F. (i.e. the monodromy
of a general linear function on F.). We refer to [GM] for definitions and basic results
about complex link. By a straightforward computation one finds:

Lemma The complex link monodromy of the germ of a Ap-type curve singularity is
(—1)*tid. O

It then follows that (rer1(f) = (1 —t). Therefore (p, () = 1, since Chow/(t) =
(1 —¢)7%. The monodromy is itself the identity.

6.2 Example [:C* — C, f(z,y) = 2%y* + 2y + .

This is contained in the classification list of polynomials of small degrees, with
respect to their singularities including those at infinity, of the first author with
Smeltink [SS]. There is a Morse singularity at (0, —1), on the fiber F and a sin-
gularity at infinity at [0 : 1] € P! for the fiber F_%. Hence p =1 and A = 1. The

general fiber is homotopy equivalent to S* Vv S'. We may take [ = 2 + y as general
linear form. Then I'(], f) = {22y* + y + 1 — 22*y — 2 = 0} and its intersection
with F} is 4 points, if t =0 or t = —i and 5 points for the other values of {. The
fiber I = Fyen N {x +y = s} is 4 points, for generic s. We get 7., = 7 = 5
and 4!, = 4. We now compute the zeta-function of the monodromy h_%. By the
localization result Proposition 5.3, this is equal to (s«, since the other contributions
are trivial. Now, in the carrousel disc 6* centered at ¢; = T'(I, f)N F_%, the situation
is similar to that in the first example. The only difference is that the complex link
monodromy in cause is this time the one of an As curve singularity (instead of a
A,y singularity). Using the above Lemma, this shows that our monodromy is the
composition (—id) o (—id). Finally, by Theorem 5.2, we get:

G, =0=-0)"*"1 =)'+ =1+1

_1
4

We may deduce that the monodromy h_1 acts on a certain basis of absolute cycles
by switching those.
The zeta function (j, is easier to compute since it is localizable at the Morse

singularity (0,—1) and the local monodromy is the identity (acting on the local

L
1
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cycle S1). Therefore, by Proposition 5.3 and the remarks following it:
Cho (1) = (1 — t)_X(Fa)(l - t)C(O,—l)(t) =1-1,

since F, 2 51 and 0,-1)(t) = 1. By using the next Remark and Example, we find
the zeta function at infinity: (5 (¢) = 1 — ¢%

6.3 Remark The family of polynomial functions f; = x + day + 2%y* is a (u + A)-
constant family (for d = 0 we have A = 2 and g = 0). For such a family the
monodromy fibration at oo € P! is constant for d € C, by [Ti-2]. Nevertheless, the
monodromy group (i.e. the group generated by loops around atypical values) is not
the same. For d # 0, it is the example above. We shall investigate the case d = 0 in
the next, within a whole series.

6.4 Example Series E,} : g, = ¢ + 2yt a>1, 6> 0.

Let a,b be fixed. There are no singularities in the affine, p = 0. We may consider
y as general linear function, y € (g, even though it is not a “most generic” one.
Then, for generic s, the intersection F; N Hy consists of (a + 1) points, for any t.
The intersections with the polar curve I'(y, g.) are F; N T' = b points, for £ # 0 and
FonT = 0. Hence A = b and there is a single W-singularity at the point at infinity
[0: 1] € P!, corresponding to the fibre Fy. The carrousel at infinity is governed by
the polar image A(y, gup) = {f* = Kz} C C?, where z = 1/y and K is a constant.
Let ¢ = ged(a,b). The effect of a 27 turn in f is a $27 turn in z. Therefore we have
b points in the carrousel disc 6* and the carrousel monodromy cyclically permutes
the points within ¢ cycles of length b/c. Hence for each cycle we find the relative
monodromy matrix:

0 --- - +1

1 0 - 0 . .
M=) |,wherethe sign + has to be determined.

0 --- 1 0

The total relative monodromy matrix is a block-matrix having on the diagonal ¢
matrices of type M (and 0 in the rest). The £ sign is determined by studying a %27
monodromy in z of one relative vanishing cycle, hence of its boundary. We embed
the boundary cycle in the full slice z = 1/y =const. in F} (¢ # 0). The z-monodromy
on F; (t # 0) is isotopic to the z-monodromy of Fjy, hence we study the complex
link monodromy of Xg:= X M p~1(0) which has local equation {zz**" + 21 = 0}.
The slice z =const. consists of (a + 1) points: @ = 0 and the solutions of 2% = P
On x = 0, the z-monodromy works as the identity. On the other points, the effect
of a 27 turn in z is a 2271' turn in . Now we have to take the a/c power of this,
which is a %271' turn in z, hence the identity! The sign determination is complete: it

is +1. For the zeta function, we get: (s« = (1 — tg)c. This coincides, by Theorem
5.2, with the zeta function of &, and also with the one of h., (since A = {0}).
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