The following result is due to Greuel & Steenbrink:

\begin{center}
(4.4.1) Theorem : \ Let \(X \xrightarrow{f} S \) be a smoothing of a normal isolated singularity \(X = f^{-1}(0) \). Let \(X_t = f^{-1}(t) \), \(t \neq 0 \), be its Milnor fibre. Then:
\[b_1(X_t) := \dim_{\mathbb{C}} H^1(X_t, \mathbb{C}) = 0 \]
\end{center}

For a proof see [G-S].

When one looks for a similar simple statement for non-isolated singularities one runs soon into big trouble. By taking the cone over Zariski's plane sextic with six cusps, we get a surface in \(\mathbb{C}^3 \). The first Betti number of the Milnor fibre of this surface (which thus appears as a six-fold cover of the complement of the curve) depends on the position of the cusps: when they are on a conic, then \(b_1(X_t) = 2 \), when they are not, then \(b_1(X_t) = 0 \). (see [Es]).

This shows that \(b_1 \) is a subtle invariant.

The cone over a curve \(\Gamma \subset \mathbb{P}^2 \) is weakly normal precisely when \(\Gamma \) has only ordinary double points. In that case the first Betti number is independent of the exact position of the double points: one has \(b_1(X_t) = r - 1 \), where \(r \) is the number of irreducible components of \(\Gamma \). We are going to prove the following generalization of theorem (4.4.1):

\begin{center}
Theorem : \ Let \(X \xrightarrow{f} S \) be a smoothing of a (reduced, equidimensional and) weakly normal space (germ) \(X \). Let \(X_t = f^{-1}(t) \), \(t \neq 0 \), be its Milnor fibre and \(r \) the number of irreducible components of \(X \). Then:
\[b_1(X_t) \leq r - 1 \]
\end{center}

For a hypersurface one has equality.

The proof will be along the lines of [G-S].
Let X be a fixed contractible Stein representative of a reduced and equidimensional germ (X,p). We consider a smoothing of X over a smooth curve (germ) S:

$$
\begin{array}{c}
X \\
\downarrow \\
\{0\}
\end{array}
\begin{array}{c}
x \\
\downarrow f \\
S
\end{array}
$$

We also assume that X is contractible and Stein. Remark that in this situation we have that X is normal: $\text{Sing}(X) \subseteq \Xi := \text{Sing}(X)$, so this is of codimension ≥ 2. Further $\text{depth}_p(X) \geq 1$, so we have $\text{depth}_p(X) \geq 2$.

To study the Milnor fibre $X_t := f^{-1}(t)$, $t \neq 0$, it is convenient to take an embedded resolution of X in X. So we get a space Y together with a proper map $Y \xrightarrow{\pi} X$ with the following properties:

1) $\mathcal{Y} = \pi^{-1}(\Xi) \longrightarrow X - \Xi$.
2) $Y := (f \circ \pi)^{-1}(0)$ is a normal crossing divisor.
3) \mathcal{Y} is smooth.

After a finite base change we may assume that Y is reduced.

(Semi-stable reduction.)

In Y we find in general three types of divisors:

a) \tilde{X}, the strict transform of X.

b) F, a set of non-compact divisors, mapping properly to Ξ.

c) $E = \pi^{-1}(p)$, a compact divisor.

(c.f. with the situation in (2.6.?).)

The Milnor fibre X_t is via π isomorphic to $Y_t := (f \circ \pi)^{-1}(t) \subset Y$. In a semi-stable family this Milnor fibre Y_t "passes along" every component of Y just once. One can find a "contraction"

$$c: Y_t \longrightarrow Y$$

of the Milnor fibre Y_t on the special fibre Y (see [Cl],[Stee 1]). Now we can use the Leray spectral sequence for c to find the beginning of an exact sequence:
Leray:

\[0 \longrightarrow H^1(Y) \longrightarrow H^1(Y_t) \longrightarrow H^0(\mathcal{C}_Y^{[0]}/\mathcal{C}_Y) \longrightarrow H^2(Y) \longrightarrow \]

Here we have used the easily verified formulas:

\[c_* \mathcal{C}_Y = \mathcal{C}_Y \]
\[R^1 c_* \mathcal{C}_Y = \mathcal{C}_Y^{[0]}/\mathcal{C}_Y \]

\(Y^{[0]} := \bigsqcup Y_i \), where \(Y_i \) are the irreducible components of \(Y \). (The sheaf \(\mathcal{C}_Y^{[0]} \) is considered on \(Y \).)

We note that there are two other exact sequences in which \(H^1(Y_t) \) appears:

Milnor's Wang sequence (see [Mi], p. 67)

\[0 \longrightarrow H^0(Y_t) \longrightarrow H^1(B) \longrightarrow H^1(Y_t) \xrightarrow{h_* - \text{id}} H^2(Y_t) \longrightarrow \cdots \]

Here \(B = X - X \), the total space of the Milnor fibration over \(S - \{0\} \) and \(h_* \) is the monodromy transformation.

Sequence of the pair \(B = Y - Y \longrightarrow Y \approx Y(\approx \text{means homotopy equivalence})\)

\[0 \longrightarrow H^1(Y) \longrightarrow H^1(B) \xrightarrow{\alpha} H^0(Y^{[0]}) \xrightarrow{\beta} H^2(Y) \longrightarrow \cdots \]

Here we have used the isomorphism \(H^2(Y, Y - Y) \approx H^0(Y^{[0]}) \).

These three sequences fit into a single big diagram:
We note that \(\dim H^0(Y) = 1 \).
From this diagram we draw the following conclusions:

(4.4.3) Conclusion: In the above situation we have:
1) \(\dim H^1(B) = \dim H^1(Y) + \dim \ker \beta \).
2) \(\dim H^1(Y_t) \geq \dim H^1(B) - 1 \), and equality holds if \(H^1(Y) = 0 \).
3) If \(H^1(Y) = 0 \), then the monodromy acts trivially on \(H^1(Y_t) \).

We now study the parts \(H^1(Y) \) and \(\ker \beta \) separately.

(4.4.4) The group \(H^1(Y) \). If \(X \) is a plane curve singularity, then one can compute \(\dim H^1(Y) \). The result is:
\[
\dim H^1(Y) = 2 \cdot g + b
\]
where \(g \) is the sum of the genera of the compact components of \(Y \) and \(b \) is the number of cycles in the dual graph of \(Y \). (These numbers \(g \) and \(b \) are invariants of the limit Mixed Hodge Structure on \(H^1(X_t) \); one has \(b = \dim \Gr^W_0 \Gr^W_F H^1(Y_t) \), \(g = \dim \Gr^W_1 \Gr^W_F (Y_t) \), see [Stee 1].) By taking \(X \subseteq \mathbb{C} \) we can construct (trivial) examples of irreducible surfaces with \(H^1(X_t) \) arbitrarily high. Only in the case that \(X \) is an ordinary double point, one has \(H^1(Y) = 0 \). It turns out that it is exactly the weak normality of \(X_0 \) that forces \(H^1(Y) \) to vanish.

(4.4.5) Proposition: Let \(X \xrightarrow{f} S \) be a flat deformation of a weakly normal \(X = f^{-1}(0) \). Let \(y \xrightarrow{\pi} x \) be map such that:
1) \(y - \pi^{-1}(\xi) \rightarrow x - \xi, \xi = \text{Sing}(\xi) \)
2) \(\pi \circ \phi_y \approx \phi_x \).
Then one has:
\[
R^1\pi_\ast \phi_y = 0.
\]

Proof: This is the crucial point and the argument is the same as in [G-S]. First look at the exact sequence:
\[
0 \rightarrow \mathcal{O}_y \xrightarrow{T} \mathcal{O}_y \rightarrow \mathcal{O}_x \rightarrow 0
\]
Here \(t \) is a local parameter on \(S \) and \(Y \) is the fibre over \(0 \). Taking
the direct image of the above sequence gives a diagram:

\[
\begin{array}{ccccccccc}
0 & \to & \pi_*\mathcal{O}_Y & \xrightarrow{t} & \pi_*\mathcal{O}_Y & \to & R^1\pi_*\mathcal{O}_Y & \to & R^1\pi_*\mathcal{O}_Y \\
& & \uparrow & & \uparrow & & \uparrow & & \\
0 & \to & \mathcal{O}_X & \xrightarrow{t} & \mathcal{O}_X & \to & \mathcal{O}_X & \to & 0
\end{array}
\]

By assumption \(\pi_*\mathcal{O}_Y \approx \mathcal{O}_X\). From this it follows that the sequence

\[
0 \to \mathcal{O}_X \to \pi_*\mathcal{O}_Y \to R^1\pi_*\mathcal{O}_Y \to R^1\pi_*\mathcal{O}_Y
\]

is also exact. We claim that \(\mathcal{O}_X \approx \pi_*\mathcal{O}_Y\). Note that by condition 2) we have that the fibres of \(\pi\) are connected. Consider a section \(g \in \pi_*\mathcal{O}_Y\), or what amounts to the same, a function on \(Y\). As the \(\pi\)-fibres are compact and connected, this function is constant along the \(\pi\)-fibres. Hence \(g\) can be considered as a continuous function on \(X\), which is holomorphic on \(Y - \pi^{-1}(\xi) \to X - \xi\).

Because we assumed \(X\) to be weakly normal, \(g \in \mathcal{O}_X\). So we have indeed \(\mathcal{O}_X \to \pi_*\mathcal{O}_Y\). Because the map \(\pi\) is an isomorphism outside \(\xi\), the coherent sheaf \(R^1\pi_*\mathcal{O}_Y\) has as support a set contained in \(\xi\).

By the last exact sequence \(t\) acts injectively \(R^1\pi_*\mathcal{O}_Y\). As \(t\) vanishes on \(\xi (\subset X)\) we conclude that \(R^1\pi_*\mathcal{O}_Y = 0\).

\section*{(4.4.6) Corollary}

Let \(C\) be a weakly normal curve singularity and \(X\) the total space of a flat deformation \(X \to S\) of \(C\). Then \(X\) is weakly rational. This was stated as (2.5.7).

\section*{(4.4.7) Proposition}

With the notation of (4.4.2) we have:

\[X\text{ weakly normal} \implies H^1(Y) = 0\]

\textbf{Proof}: The embedded resolution map \(Y \to X\) clearly fulfils condition 1) of (4.4.5). It also fulfils condition 2), because \(X\) is normal, hence \(\mathcal{O}_X \to i_*\mathcal{O}_{X-\xi}\) where \(i: X - \xi \to X\) is the inclusion map. Because \(Y - \pi^{-1}(\xi) \to X - \xi\), it follows that \(\pi_*\mathcal{O}_Y \approx \mathcal{O}_X\). Now according to (4.4.5) we have \(R^1\pi_*\mathcal{O}_Y = 0\), in other words:

\[H^1(\mathcal{O}_Y) = 0\]

From the exponential sequence

\[
0 \to \mathbb{Z}_Y \to \mathcal{O}_Y \to \mathcal{O}_Y^* \to 0
\]
and the similar sequence for x and the fact that $\mathcal{O}_x \cong \pi_\ast \mathcal{O}_y$ it
then follows that:

$$H^1(y,\mathbb{Z}_y) = 0$$

As y is contractible to Y, we have $H^1(Y,\mathbb{Z}) = 0$.

(4.4.8) The kernel of β.

In the big diagram of (4.4.2) there was a map β

$$H^0(Y^{[0]},\mathbb{Z}) \xrightarrow{\beta} H^2(y,\mathbb{Z}) (= H^2(Y,\mathbb{Z}))$$

This map works as follows: Elements of the first groups can be
considered as divisors $\Sigma a_i Y_i$ with support on Y. (The Y_i are the
irreducible components of Y.) Then one has:

$$\beta(\Sigma n_i Y_i) = \text{first chern class of the line bundle determined by}
\text{the divisor } \Sigma n_i Y_i$$

So the map β factorizes over the map ψ which associates to a
divisor its line bundle:

$$\ldots \rightarrow H^1(\mathcal{O}_y) \xrightarrow{\psi} H^1(\mathcal{O}_y) \rightarrow H^2(y,\mathbb{Z}) \rightarrow \ldots$$

We first study the map ψ. Note that if $H^1(\mathcal{O}_y) = 0$, then we have
$\ker \psi = \ker \beta$.

(4.4.9) Definition: Let (X,p) be a germ of a normal analytic
space. The local class group is the group

$$\text{Cl}_p(X) = \{(\text{germs of) Weil divisors})/\{(\text{germs of) principal divisors})$$

(4.4.10) Proposition: With the notation as in (4.4.2) there
is a diagram with exact rows and
columns:
Here $F^{[0]} = Y^{[0]} \setminus X$ (so it contains the components F and E of (4.4.2)) and $X^{[0]} = \bigsqcup X_i$, where the X_i are the irreducible components of X. The maps are the obvious ones.

proof: The surjection of $H^2(\mathcal{O}_Y)$ (or better of $R^1\pi_*\mathcal{O}_Y$) to the local class group is obvious: pulling back a Weil divisor on X gives a Cartier divisor on Y (hence a line bundle) that maps down to the original Weil divisor, as the map π is a modification in codimension ≥ 2 (c.f. [Mu]). The main point is to show that the kernel of the bottom row is not bigger, or what amounts to the same, that $\ker \psi \cong \ker \tau$. Let $A = \sum a_i Y_i$ be in the kernel of ψ. We may assume that $a_i \geq 0$. Hence there is a function $g \in H^0(\mathcal{O}_Y)$ with $(g) = A$. By the normality of X we have $\mathcal{O}_X = \pi_* \mathcal{O}_Y$, so g can be considered as holomorphic on X, having of course as divisor on X just (the image) of that part of A that does not involve $F^{[0]}$. This gives the map $\ker \psi \twoheadrightarrow \ker \tau$. This map is injective because if the divisor of g (on X) would be zero, g would be a unit, hence $A = 0$. Surjectivity follows by pulling back functions.

The use of (4.4.10) is that we get rid of the global object Y. In (4.4.2) we used a base change to arrive at a semi-stable family. The kernel of the map γ is essentially independent of this base change:

Lemma: Consider a normal space X and a reduced principal divisor $X \subset X$. Let $X^{[0]} = \bigsqcup X_i$, where the X_i are the irreducible components of X. Let \tilde{X} be
obtained from \(X \) by taking a \(d \)-fold cyclic cover branched along \(X \).

Let \(\tilde{\iota} : H^0(X) \to Cl_p(X) \), \(\tilde{\tau} : H^0(X) \to Cl_p(X) \) be the obvious maps. Then \(\ker(\tilde{\iota}) \otimes \mathbb{Q} = \ker(\tilde{\tau}) \otimes \mathbb{Q} \).

proof: Excercise.

We summarize the above results in one theorem:

\[(4.4.12) \quad \text{Theorem:} \quad \text{Let } X \xrightarrow{f} S \text{ be (a contractible Stein representative of) a smoothing of a reduced germ } (X,p). \text{ Let } X_t = f^{-1}(t), \ t \neq 0, \text{ be its Milnor fibre.} \]

Let \(X^{[1]} = \bigsqcup X_i \), where the \(X_i \) are the irreducible components.

Let \(\tilde{\tau} : H^0(X^{[1]}) \to Cl_p(X) \) be the obvious map.

Then one has:

1) \(b_1(X_t) \geq \text{rank } (\ker \tilde{\tau}) - 1. \)

2) If \(X \) is weakly normal, then one has equality:

\[b_1(X_t) = \text{rank } (\ker \tilde{\tau}) - 1. \]

In particular, when \(X \) is a **hypersurface**, rank \(\ker \tilde{\tau} \) is equal to the number of irreducible components of \(X \).

\[(4.4.13) \quad \text{Remark:} \quad \text{For a hypersurface germ } X \text{ in } \mathbb{C}^3 \text{ with a complete intersection as singular locus and transversal type } A_1 \text{ it is known that the first Betti number } b_1(X_t) \text{ is zero or one (see [Sie 2], [Str]). So the number of irreducible components of } X \text{ is one or two. To put it in another way, the singular locus of a weakly normal hypersurface in } \mathbb{C}^3 \text{ which has more than three components is never a complete intersection.} \]

\[(4.4.14) \quad \text{Question:} \quad \text{J. Stevens has shown that all degenerate cusps are smoothable (private communication). What is the first Betti number for these smoothings? Is the first Betti number an invariant of } X? \text{ (Probably not, but at this moment I do not have computed any non-trivial example.)} \]