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Preface

Fourier Theory belongs to the basic mathematical prerequisites in many technical and
physical disciplines as Astrophysics (radar technology), Electronics, Geophysics, Infor-
mation Theory, Optics, Quantum Mechanics, Spectroscopy, etc., etc.. Everybody who
works in such a field should feel comfortable with Fourier transforms. But Fourier The-
ory also plays a fundamental role in Mathematics, in subjects as Partial Differential
Equations, Numerical Analysis, Stochastics, etc.. Fourier Theory is considered to be a
hard subject in Mathematics that can not be properly presented to math students in
their first or second year. Some familiarity with Measure and Integration Theory and
Functional Analysis is required. Mathematical textbooks spend one hundred pages or
more to discuss the basic principles of Fourier Theory (see, for instance, [5, 11]), while
engineering textbooks never use more than ten pages (see, for instance, [9, 8, 2]).

The order of integrals and limits is routinely exchanged in the exposition of the
theory. In addition, many sequences of functions show up that are supposed to converge
but of which convergence is not obvious, and often it is even not clear in what sense
they converge. Physicists and engineers appear to have less problems with these type of
complications: based on physical arguments, they often ‘know’ whether a limit function
exists.

Thorough mathematical discussions of Fourier Theory often do not pass the treat-
ment of the basics. In these notes, we want to demonstrate that there are also interesting
mathematical aspects associated with applications of this theory. We can only address
a few applications and a few fundamental mathematical aspects. For more interesting
mathematical discussions, we refer to [10, 7].

Firstly, we collect some basic properties of the theory. At a number of places, we
describe where the mathematical problems are and we indicate how they can be solved.
The discussion will not be completely rigorous, but it will be more fundamental than
in many technical textbooks.
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4 1 PRELIMINARIES

1 Preliminaries

For ease of presentation, we assume that the functions in this section are complex-valued
and that the scalars are complex numbers. However, the definitions and statements
can also be formulated for the ‘real’ case.

1.1 Norms. Let V be a vector space (function space).
A map ‖ · ‖ from V to R is a norm if the following three properties hold:

1) ‖f‖ ≥ 0; ‖f‖ = 0 if and only if f = 0 (f ∈ V),
2) ‖f + g‖ ≤ ‖f‖ + ‖g‖ (f, g ∈ V) (triangle inequality),
3) ‖λf‖ = |λ| ‖f‖ (f ∈ V, λ ∈ C).

A sequence (fn) in V is a Cauchy sequence if limn>m→∞ ‖fn − fm‖ = 0.
The normed space V is complete if each Cauchy sequence (fn) in V converges to

some f in V: limn→∞ ‖fn − f‖ = 0.

The following variant of the triangle inequality is often useful (see Exercise 1.1)

∣∣∣‖f‖ − ‖g‖
∣∣∣ ≤ ‖f − g‖ (f, g ∈ V).

1.2 Examples.
Sup-norm. For complex-valued functions f defined on some set I, let ‖f‖∞ be defined
by

‖f‖∞ ≡ sup{|f(x)| x ∈ I}. (1)

Then, ‖ ·‖∞ defines a norm on the space V = C([a, b]) of all complex-valued continuous
functions on the interval [a, b]. Here a, b are reals and b > a. ‖ · ‖∞ is called the
sup-norm or ∞-norm. The space C([a, b]) is complete with respect to the sup-norm. If
(fn) converges to f in sup-norm, then we will also say that (fn) converges uniformly
on [a, b] to f .1

The sup-norm also forms a norm on the space L∞([a, b]) of all bounded integrable
functions in [a, b]. This space is complete with respect to the sup-norm.2

1-norm. For functions f on [a, b] for which |f | is integrable, let ‖f‖1 be defined by

‖f‖1 ≡
∫ b

a
|f(t)| dt. (2)

Then ‖ · ‖1 defines a norm on the space V = C([a, b]); ‖ · ‖1 is the 1-norm.

1More formally: if ε > 0, then there exists an N ∈ N such that ‖f − fn‖∞ < ε whenever n > N .
This implies that |f(x) − fn(x)| < ε for all n > N and all x ∈ [a, b]. The value of N depends on ε but
not on x and that is where ‘uniformly’ refers to: we can use the same N for all x (in formula: ∀ε∃N
such that ∀x . . . ). The statement ‘the sequence of functions (fn) converges to the function f ’ may also
refer to point-wise convergence: limn→∞ fn(x) = f(x) (x ∈ [a, b]). In such a case, we have to find an
N for each ε and each x (in formula: ∀ε, x∃N . . . ): the N is allowed to depend on x.

In case of ambiguity, we will use the words ‘uniformly’ and ‘point-wise’ to specify in what sense the
convergence has to be understood.

2Our functions f will be complex-valued and defined on I = R or on some interval I of R. Inte-
grability and integrals have to be understood in the Lebesgue sense. But, for ease of interpretation,
one may think of integrable functions f as functions that are continuous or continuously differentiable
in all points in the domain I of f with the exception of finitely or countably many and for whichR
I
|f(t)| dt exists. The integral

R b

a
|f(t)| dt over (a, b) ⊂ R can be understood in a Riemannian sense.

If, for instance, f(t) = 1√
t

for t 6= 0 and f(0) = 0 then f is continuous everywhere except in 0 and f is
integrable over each bounded interval.
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Figure 1. The functions f1 (left graph) and the f2 (right graph) coincide except at 1
2
(a+ b).

The space C([a, b]) is not complete with respect to ‖ · ‖1 (see Exercise 1.4).

Let L1([a, b]) be the space of all complex-valued functions f on [a, b] for which

|f | is integrable (i.e.,
∫ b
a |f(t)| dt < ∞). The function f , defined by f(a) ≡ 1 and

f(t) ≡ 0 for all t ∈ (a, b], shows that there are non-zero functions f in L1([a, b]) for
which ‖f‖1 = 0. Therefore, ‖ · ‖1 is not a norm on L1([a, b]). However, often the value
of a function at a single point or at a few points is not of importance: for instance,
in many application, functions f1 and f2 as in Fig. 1 provide the same information
(f1(t) ≡ 0 for t < 1

2(a+ b), f1(t) ≡ 1 elsewhere, and f2(t) ≡ 0 for t ≤ 1
2(a+ b), f2(t) ≡ 1

elsewhere (t ∈ [a, b])). In these cases, there is no objection to identify functions f and

g that coincide almost everywhere, i.e., for which the set N ≡ {t ∈ [a, b] f(t) 6= g(t)}
is negligible.3 In particular, we can identify the the functions f1 and f2 of Fig. 1: they
differ on a set that consists of one point only: N = {1

2 (a+ b)}.
If, in L1([a, b]), we identify functions that coincide almost everywhere, then ‖ · ‖1 is

a norm on L1([a, b]) for which L1([a, b]) is complete (cf., Exercise 1.4).

2-norm. For functions f on [a, b] for which |f |2 is integrable, let ‖f‖2 be defined by

‖f‖2 ≡
√∫ b

a
|f(t)|2 dt. (3)

Then ‖ · ‖2 defines a norm on V = C([a, b]); ‖ · ‖2 is the 2-norm.

Let L2([a, b]) be the space of functions f on [a, b] that are absolute square integrable

(i.e.,
∫ b
a |f(t)|2 dt < ∞). If, in L2([a, b]), we identify function that coincide almost

everywhere, then ‖ · ‖2 is a norm for which L2([a, b]) is complete.

Quadratically summable sequences. For sequence (µk)k∈Z of complex numbers,

(µk) 2 ≡

√√√√
∞∑

k=−∞
|µk|2 (4)

defines a norm on the space ℓ 2(Z) of all sequences of complex numbers that, in absolute

value, are quadratically summable: ℓ 2(Z) ≡ {(µk)k∈Z

∑
k |µk|2 <∞}.

Some norms are induced by ‘inner products’. These norms have additional proper-
ties that make them of special interest for theoretical analysis.

3A subset N of R is negligible if it has measure 0, i.e.,
R
χN (t) dt = 0, where χN (t) ≡ 1 if t ∈ N

and χN (t) ≡ 0 if t 6∈ N . The negligible sets that we encounter will often consists of one or a few points

only. But sets like { 1
n
n ∈ N} are also negligible.
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1.3 Inner products. Let V be a vector space (function space).
A map ( · , · ) from V ×V to C is an inner product if the following three properties hold:

1) (f, f) ≥ 0; (f, f) = 0 if and only if f = 0 (f ∈ V),
2) (f, g) = (g, f) (f, g ∈ V),
3) the map f  (f, g) from V to C is linear (g ∈ V),

that is, (α1f1 + α2f2, g) = α1(f1, g) + α2(f2, g) (α1, α2 ∈ C, f1, f2, g ∈ V).
If ( · , · ) is an inner product on V, then

‖f‖ ≡
√

(f, f) (f ∈ V) (5)

defines a norm on V (see Exercise 1.5).
We say that f is orthogonal to g, denoted by f ⊥ g, if (f, g) = 0.

Pythagoras’ Theorem holds for spaces with an inner product (see Exercise 1.6):

‖f + g‖2 = ‖f‖2 + ‖g‖2 (f, g ∈ V, f ⊥ g). (6)

Pythagoras’ theorem together with Cauchy–Schwartz’ inequality (below) makes the
inner product to a powerful object in theoretical arguments.

1.4 Cauchy–Schwartz’ inequality. If ( · , · ) is an inner product on V with asso-
ciated norm ‖ · ‖, then

|(f, g)| ≤ ‖f‖ · ‖g‖ (f, g ∈ V). (7)

We have equality only if f is a multiple of g.

Proof. Assume that ‖f‖ = 1 and ‖g‖ = 1. To show that |(f, g)| ≤ 1, consider
ζ ≡ (f, g)/|(f, g)|. Then, ζ (f, g) = |(f, g)| and

0 ≤ (f − ζg, f − ζg) = ‖f‖2 − ζ (f, g) − ζ (f, g) + ‖g‖2 = 2(1 − |(f, g)|).

For the proof of the last statement, see Exercise 1.7.

1.5 Examples. For functions f, g ∈ L2([a, b]), define

(f, g) ≡
∫ b

a
f(t) g(t) dt. (8)

If we identify functions that coincide almost everywhere, then (8) defines an inner
product on L2([a, b]) that is associated with the norm in (3).

Note that ‖f‖1 =
∫ b
a |f(t)| dt = (|f |,1) ≤ ‖f‖2 ‖1‖2 =

√
b− a ‖f‖2. Here, 1 is the

constant function t 1 and we used Cauchy–Schwartz.
Moreover, ‖f‖2

2 =
∫ b
a |f(t)|2 dt ≤

∫ b
a ‖f‖2

∞ dt = (b− a) ‖f‖2
∞. In summary,

‖f‖1 ≤
√
b− a ‖f‖2, ‖f‖2 ≤

√
b− a ‖f‖∞. (9)

Note that the inequalities are also correct if, say, ‖f‖2 = ∞.

For sequences (µk), (νk) ∈ ℓ 2(Z),

<(µk), (νk)>≡
∞∑

k=−∞
µk νk (10)

defines an inner product on ℓ 2(Z) that is associated with the norm from (4).
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1.6 We learn from the above examples that a space can be equipped with more
than one norm. It depends on the application what norm is the most convenient one.
For instance, in actual numerical computations in which one approximates complicated
functions on [a, b] with simple ones (as polynomials or finite linear combinations of sines
and cosines), the sup-norm is the most popular norm for measuring the error, while
the 2-norm is preferred in theoretical considerations.

The estimate ‖f‖2 ≤ κ ‖f‖∞ (f ∈ C([a, b])), for κ =
√
b− a, implies

lim
n→∞

‖f − fn‖∞ = 0 ⇒ lim
n→∞

‖f − fn‖2 = 0. (11)

The norms would be equivalent on C([a, b]) if we also could find a κ̃ such that ‖f‖∞ ≤
κ̃ ‖f‖2 for all f ∈ C([a, b]). Then convergence with respect to (w.r.t.) the 2-norm would
imply convergence w.r.t. the sup-norm (i.e., the converse of (11)). Unfortunately, the
norms are not equivalent and a sequence of functions that converges in the 2-norm
may diverge in the sup-norm: on [a, b] = [0, 1], with fn(t) ≡ tn (t ∈ [0, 1]), we have
that limn→∞ ‖fn − 0‖2 = 0, while there is no continuous function f on [0, 1] for which
limn→∞ ‖f − fn‖∞ = 0. See also Exercise 1.9.

Conditions in Fourier theory that ensure convergence w.r.t. sup-norm often involve
f ′. This is essentially for the following reason: if f ∈ C([a, b]) such that f ′ ∈ L2([a, b]),
then f(t) = f(a) +

∫ t
a f

′(s) ds. Hence,

‖f‖∞ ≤ |f(a)| +
∫ b

a
|f ′(s)| ds ≤ |f(a)| + ‖f ′‖2 ‖1‖2 = |f(a)| +

√
b− a ‖f ′‖2.

If Sn(t) = f(a) +
∫ t
a S̃n(s) ds, then

‖f − Sn‖∞ ≤
√
b− a ‖f ′ − S̃n‖2.

In particular, limn→∞ ‖f ′ − S̃n‖2 = 0 ⇒ limn→∞ ‖f − Sn‖∞ = 0 : we can deduce
sup-norm convergence from 2-norm convergence of the derivatives.

1.7 Norms on unbounded intervals. In the above examples, we considered func-
tions on some bounded interval [a, b] in R. However, we will also be interested in
functions defined on the whole R (or on semi-bounded intervals as [a,∞)). For these
functions, natural norms are

‖f‖1 =

∫ ∞

−∞
|f(t)| dt, ‖f‖2 =

√∫ ∞

−∞
|f(t)|2 dt, and ‖f‖∞ = sup{|f(t)| t ∈ R}.

For simplicity of notation, we use the same notation as for norms of functions on a
bounded interval [a, b].

1.8 Integrable functions need not to be continuous. However, they are close to
continuous functions provided that the distance is measured in 1-norm or 2-norm and
not in the sup-norm. Without proof, we mention the following result.

Density theorem. 4 Let p = 1 or p = 2. Let f ∈ Lp([a, b]).
Then, for each ε > 0, there is a function g ∈ C([a, b]) such that ‖f − g‖p < ε.

4In mathematical textbooks, the space L1([a, b]) is often introduced as the closure in 1-norm of the
space of continuous functions, i.e., as the space of functions f for which, for some sequence (fn) of
continuous functions, ‖f − fn‖1 → 0 (n→ ∞). Then the density theorem is correct by definition.



8 1 PRELIMINARIES

We can also find smooth functions g that are close to f : for each ε > 0 and each
k > 0, there is a g ∈ C(k)([a, b]) such that ‖f − g‖p < ε, see Exercise 1.17. Apparently,
we can put stricter conditions on the smoothness of g, but we can not take p = ∞: for
instance, for f0, defined on [−1,+1] by f0(t) = −1 if t ≤ 0 and f0(t) = 1 if t > 0, we
have that ‖f0 − g‖∞ ≥ 1 whenever g is continuous at 0.

The theorem is also correct if we replace [a, b] by some (semi-)unbounded interval
as [a,∞) or R. Then we can find a g that is uniformly continuous and vanishes at ∞.

1.9 Point-wise convergence. Let I be a bounded or (semi-)unbounded interval in
R (I is [a, b], [a,∞), (−∞, b], or R). Consider a sequence (fn) of real or complex-valued
functions fn on I and a function f such that

lim
n→∞

fn(t) = f(t) for all t ∈ I :

the sequence (fn) converges point-wise to f . The sequence (fn) does not necessarily
converge to f w.r.t. the ‖ · ‖2 (or ‖ · ‖1) norm even if (fn) and f are in L1(I) (resp.
L2(I)); see (d) of Exercise 1.9. The following gives a condition under which we have
‖ · ‖1 convergence.

Lebesgue’s Dominated Convergence Theorem. If there is a g such that

|fn(t)| ≤ |g(t)| for all t ∈ I, n ∈ N and g ∈ L1(I)

then lim
n→∞

‖fn − f‖1 = 0.

For extensions and applications, see Exercise 1.10, Exercise 1.11, and Exercise 1.12.

1.10 Integration by parts. If F and G are differentiable, f = F ′, and g = G′,
then (FG)′ = fG+ Fg (the product rule). Integration of this expression leads to

∫ b

a
f(t)G(t) dt = F (b)G(b) − F (a)G(a) −

∫ b

a
F (t)g(t) dt. (12)

Here, we implicitly assumed that F and G are differentiable everywhere on [a, b]. How-
ever, it is often convenient to integrate by parts also if the functions fail to be dif-
ferentiable in some points. Formula (12) is also correct if F (t) = α +

∫ t
c f(s) ds,

G(t) = β+
∫ t
c g(s) ds (t ∈ [a, b]) and f, g ∈ L1([a, b]). Here, α, β are suitable constants

and c is in [a, b]: integration by parts only requires F and G to be primitives of L1

functions. Note that such F and G are continuous. Primitives of L1 functions are said
to be absolutely continuous. Continuity of F and G is essential for integrating by parts!
See Exercise 1.19. See also Exercise 1.18.

Example. Consider F0(t) ≡ |t| for t ∈ [−1,+1]. Then f0(t) = F ′
0(t) = −1 for t < 0

and f0(t) = F ′
0(t) = +1 for t > 0. F0 is not differentiable at t = 0. However, if we

define f0(0) = 0 (or any other value), then f0 ∈ L1([−1,+1]) and F0(t) =
∫ t
0 f0(s) ds.

As for F0, the derivative of f0 is properly defined everywhere in [−1,+1] except at
t = 0: h0(t) ≡ f ′0(t) = 0 for t 6= 0. Note, however, that assigning some finite value to
h0(0) is not helpful now: the primitive of such an h0 will be a constant function and
not a step function as f0.

Note that F0 is continuous at 0, in contrast to f0.

In the sequel, we will use expression as

‘f is differentiable and f ′ ∈ L1([a, b])’. (13)
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Then, we will mean that

g = f ′ ∈ L1([a, b]) and f(t) = α+

∫ t

c
g(s) ds (t ∈ [a, b]) (14)

for some α and c ∈ [a, b]. In particular, we then have that f is continuous.
Note that the Expression (13) applies to f = F0, with F0 as in the example above.

Exercises

Exercise 1.1. Consider a space V equipped with a norm ‖ · ‖. Prove that

∣∣∣‖f‖ − ‖g‖
∣∣∣ ≤ ‖f − g‖ (f, g ∈ V). (15)

Exercise 1.2. Prove that ‖·‖∞ defines a norm on the space of all bounded integrable functions
on [a, b].

Exercise 1.3. Which of the following maps defines a norm on the mentioned space?

(a) f  
∫ b

a
|f ′(t)| dt on C(1)([a, b]).

(b) f  
∫ b

a |f ′(t)| dt on {f ∈ C(1)([a, b]) f(a) = 0}.
(c) f  max(‖f‖∞, ‖f ′‖∞) on C(1)([a, b]).

Exercise 1.4. Let fn be defined by

fn(t) = 1 for t ∈ [1, 2] and fn(t) = tn for t ∈ [0, 1].

Show that (fn) is a Cauchy sequence in C([0, 2]) with respect to ‖ · ‖1. Does (fn) converge to
a function in C([0, 2])? Does (fn) converge to a function in L1([0, 2])?

Exercise 1.5.
Prove that ‖f‖ ≡

√
(f, f) defines a norm on V if (·, ·) is an inner product on V .

Exercise 1.6. ( · , · ) is an inner product on V , ‖ · ‖ is its associated norm.
Prove Pythagoras’ Theorem: ‖f + g‖2 = ‖f‖2 + ‖g‖2 for all f, g ∈ V , f ⊥ g.

Exercise 1.7. ( · , · ) is an inner product on V , ‖ · ‖ is its associated norm.

(a) Why may we assume that both f and g are normalized in the proof of the Cauchy–Schwartz’
inequality?

(b) Suppose that ‖f‖ = ‖g‖ = 1 and |(f, g)| = 1. Consider h ≡ f − (f, g)g.
Show that h ⊥ g. Now, show that ‖h‖2 = (h, f) = 0. Conclude that f = (f, g)g.

Exercise 1.8. ( · , · ) is an inner product on V , ‖ · ‖ is its associated norm.
Let φ1, . . . , φN be non-zero elements in V that form an orthogonal system, i.e., φn ⊥ φm if

n 6= m. Let W be the subspace of V spanned by φn: W = {∑N
n=1 αnφn αn ∈ C}.

(a) Show that

g =
N∑

n=1

(g, φn)

(φn, φn)
φn for all g ∈ W . (16)

(b) Show that V = W if the dimension of V is equal to N .

(c) Let f ∈ V and g ∈ W . Prove the following

f − g ⊥ W ⇒ ‖f − g‖ ≤ ‖f − h‖ for all h ∈ W . (17)
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Here, f − g ⊥ W is short hand for f − g ⊥ h for all h ∈ W . Apparently, g is the best
approximation of f in W with respect to the norm ‖ · ‖ if f − g is orthogonal to W .

(d) Let f ∈ V and g ∈ W . Prove the following

f − g ⊥ W ⇐ ‖f − g‖ ≤ ‖f − h‖ for all h ∈ W . (18)

(Hint: Use that ‖f − g‖ ≤ ‖f − g + εh‖ for all h ∈ W and all (small) ε ∈ C.)

(e) Let f ∈ V . Prove that the best approximation of f in W is unique.

(f) Let f ∈ V and g ∈ W . Prove that

g =

N∑

n=1

(f, φn)

(φn, φn)
φn ⇔ ‖f − g‖ ≤ ‖f − h‖ for all h ∈ W . (19)

Exercise 1.9. Let (fn) be a sequence of complex-valued functions on [a, b] = [0, 1] and let f
be a complex-valued function on [0, 1]. Consider the following statements:

(1) limn→∞ ‖f − fn‖2 = 0
(2) limn→∞ ‖f − fn‖∞ = 0
(3) limn→∞ fn(x) = f(x) for all x ∈ [0, 1].
Then (1) ⇐ (2) ⇒ (3), while all other implications are incorrect.

(a) Prove that (1) ⇐ (2) and (2) ⇒ (3).

(b) Show that (1) 6⇒ (2) and (1) 6⇒ (3).
(Hint: consider fn(t) ≡ 1 − nt (nt < 1), fn(t) ≡ 0 (1 ≤ nt), and f ≡ 0.)

(c) Show that (2) 6⇐ (3). (Hint: consider fn(t) ≡ nt (nt < 1), fn(t) ≡ 2 − nt (1 ≤ nt < 2),
fn(t) ≡ 0 (2 ≤ nt), and f ≡ 0.)

(d) Show that (1) 6⇐ (3). (Hint: scale the functions fn in the hint of (c).)

Exercise 1.10. Lebesgue’s theorem.

Let I be [a, b] or R. Let (fn) be a sequence of functions on I that converges point-wise to a
function f (see §1.9), let g be a function such that |fn(t)| ≤ |g(t)| for all t ∈ I and n ∈ N.

(a) Does Lebesgue’s Theorem hold w.r.t. ‖ · ‖2 convergence if g ∈ L2(R)
(i.e. ‖fn − f‖2 → 0 for n→ ∞ if g ∈ L2(R))?

(b) Does Lebesgue’s Theorem hold w.r.t. ‖ · ‖∞ convergence if g ∈ L∞(R)?

Exercise 1.11. Let f ∈ L1(R) such that the function t t f(t) also is in L1(R).

(a) Prove that g(ω) ≡
∫∞
−∞ f(t) sin(2πtω) dt (ω ∈ R) defines a bounden function on R.

(b) Use Lebesgue’s Theorem (see §1.9) to prove that g is differentiable and that

g′(ω) = 2π

∫ ∞

−∞
t f(t) cos(2πtω) dt (ω ∈ R).

Exercise 1.12. Riemann Sums for functions on R.

Let g ∈ C(R). For h > 0, T > 0, consider the Riemann Sums

Rh,T ≡
∑

hg(hk), where we sum over all k ∈ Z, kh ∈ [−T, T ).

For h > 0, let gh be defined by gh(t) ≡ kh if t ∈ [kh, kh+ h).

(a) Show that gh(t) → g(t) (h→ 0) for all t ∈ R. Show that, for each T > 0

∫ T

−T

gh(t) dt = Rh,T (g) (h > 0) and lim
h→0

Rh,T (g) =

∫ T

−T

g(t) dt.
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(b) Suppose there is an α > 0 such that Rh,T (|g|) ≤ α for all h > 0 that are sufficiently small
and all T that are suffciently large. Show that

∫∞
−∞ |g(t)| dt < α and g ∈ L1(R).

Can we apply Lebesgue’s Convergence Theorem at this point to prove that the Riemann
Sums converge to

∫
g if, in addition, we also have that g and gh are in L1(R)?

(c) Assume that g is differentiable and that both g and g′ are in L1(R). Prove that
∫ h

0
|g(t) −

g(0)| dt ≤ h
∫ h

0 |g′(t)| dt. Conclude that

|
∫ T

−T

g(t) dt−Rh,T (g)| ≤
∫ ∞

−∞
|g(t) − gh(t)| dt ≤ h

∫ ∞

−∞
|g′(t)| dt = h‖g′‖1.

In particular, this leads to
∫

|t|>T

|gh(t)| dt ≤
∫

|t|>T

|g(t)| dt+ h‖g′‖. (20)

(d) Prove that, if g, g′ ∈ L1(R), then

Errorh,T ≡ |
∫ ∞

−∞
g(t) dt−Rh,T (g)| ≤

∫

|t|>T

|g(t)| dt+ h‖g′‖1.

Conclude that

|
∫ ∞

−∞
g(t) dt−Rh,T (g)| → 0 for h→ 0, T → ∞,

where the limit is independent of the order (that is, for each ε > 0, there is a h0 > 0 and a
T0 > 0 such that for all h ∈ (0, h0] and T > T0 we have that Errorh,T ≤ ε).

(e) Assume that g ∈ C(1)(R) and both g and g′ are in L2(R). Prove that

|
∫ ∞

−∞
|g(t)|2 dt−Rh,T (|g|2)| → 0 for h→ 0, T → ∞,

where the limit is independent of the order.

Exercise 1.13. For functions on a bounded interval [a, b], there are κ > 0 and κ̃ > 0 (namely,
κ =

√
b− a and κ̃ = b− a) such that

‖f‖1 ≤ κ ‖f‖2 ≤ κ̃ ‖f‖∞ for all f.

Is this also correct for functions on R (with ‖ · ‖1 and ‖ · ‖2 defined as in §1.7)?

Exercise 1.14. Prove that, for p = 1 and for p = 2, we have that

‖fg‖p ≤ ‖f‖p ‖g‖∞ for all f ∈ Lp([a, b]) and g ∈ L∞([a, b]). (21)

Exercise 1.15. Prove that L1(R) ∩ L∞(R) ⊂ L2(R).

Exercise 1.16. Consider the function f on [−1,+1] defined by

f(t) ≡ −1 if t ≤ 0 and f(t) ≡ 1 if t > 0 (t ∈ [−1,+1]).

(a) Let ε > 0.
Show, by explicit construction, that there is a g ∈ C([−1,+1]) such that ‖f − g‖1 < ε.

(b) Prove that ‖f − g‖∞ ≥ 1 for each g ∈ C([−1,+1]).

Exercise 1.17. Let g ∈ C(ℓ)(R) and ε > 0. Here, ℓ ∈ N0 and C(0)([a, b]) = C([a, b]).
Suppose δ > 0 is such that |g(s) − g(t)| < ε as soon as |t− s| < δ. Define

h(t) =
1

2δ

∫ t+δ

t−δ

g(s) ds (t ∈ R). (22)
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(a) Show that h ∈ C(ℓ+1)(R). (Hint: h′(t) = (g(t+ δ) − g(t− δ))/(2δ).)

(b) Prove that ‖h− g‖∞ < ε. (Hint: h(t) − g(t) = 1
2δ

∫ t+δ

t−δ
g(s) − g(t) ds.)

(c) Let g ∈ C([a, b]), k ∈ N, and ε > 0.
Prove that ‖g − h‖∞ < ε for some h ∈ C(k)([a, b]).

Exercise 1.18. A function F on [a, b] is said to be absolutely continuous if it is the primitive

of some L1([a, b]) function f : F (t) = α+
∫ t

c
f(t) dt for some α ∈ C and c ∈ [a, b].

(a) Suppose F is absolutely continuous with L1-derivative f . Let ε > 0 and fc ∈ C([a, b]) such

that ‖f − fc‖1 < ε. Define Fc(t) ≡ α+
∫ t

c fc(s) ds. Show that Fc is continuously differentiable
and that ‖F − Fc‖∞ ≤ ε.

(b) Prove that each absolutely continuous function F is continuous.

(c) Prove that each continuous piecewise continuously differentiable function F on [a, b] is
absolutely continuous (F is piecewise continuously differentiable if for some finite increasing
sequence (c0 = a, c1, . . . , cn−1, cn = b), the restriction of F to (ci−1, ci) is differentiable with
continuous and bounded derivative for each i = 1, . . . , n).
In particular, each function in C(1)([a, b]) is absolutely continuous.

(d) Consider the function

F (x) ≡ x sin
π

x
for x ∈ [−1, 0), and F (0) ≡ 0. (23)

Show that F is continuous on [0, 1] but not absolutely continuous.
(Hint: f , given by f(x) ≡ π

x cos π
x for x ∈ [−1, 0) and f(0) ≡ 0, is not in L1([−1, 0]).)

Exercise 1.19. Suppose that F (t) = α +
∫ t

c
f(s) ds and G(t) = β +

∫ t

c
g(s) ds (t ∈ [a, b])

for some f, g ∈ L1([a, b]). Here, α, β ∈ C and c ∈ [a, b].

(a) Prove (12) for the present F and G using the fact that (12) is correct for continuously
differentiable functions F and G. (Hint: see Exercise 1.18(a).)

Exercise 1.20. Suppose that F (t) = α +
∫ t

c f(s) ds (t ∈ R) for some f ∈ L1(R). Here,
α ∈ C and c ∈ R.

(a) Show that F is uniformly continuous.

(b) F vanishes at infinity if F (t) → 0 for |t| → ∞.
Show that F vanishes at infinity if both F and F ′ (= f) are in L1(R).

(c) Does F ′ ∈ L1(R) (i.e., f ∈ L1(R)) imply that F vanishes at infinity?

(d) Does F vanishes at infinity if F ∈ L1(R), but F ′ 6∈ L1(R)?

Exercise 1.21. Let f ∈ L1(R). Let ε > 0. Prove that there is a δ > 0 such that

∫ ∞

−∞
|f(t) − f(t+ s)| dt < 2ε for all s, |s| < δ. (24)

(Hint: use that there is a uniformly continuous function g on R such that ‖f − g‖1 < ε, i.e., g
is such that for each ε′ > 0 there is a δ > 0 such that |g(t) − g(s)| < ε′ whenever |s− t| < δ.)

Exercise 1.22. The total variation of a function F on [a, b] is the amount by which F (x) (the
graph of F along the vertical axis) varies if we move x from a to b.

(a) The total variance of F (t) ≡
√
|t| on [−1, 1] is 2 (why?), whereas the total variance on

[−1, 0] of F in (23) is infinite (why?).
The formal definition of total variance Var(F ) is as follows

Var(F ) ≡ sup

n∑

k=1

|F (ci) − F (ci−1)|
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Figure 2. All functions of which the graph is shown here are continuous. The function at the left,
x  x sin(π/x), does not have a bounded variation. The middle function, Cantor’s stair, is of bounded
variation, but its derivative is equal to 0 almost everywhere and the function is not absolutely continuous.
The function at the right, x 

p
|x|, is absolutely continuous, but is not C(1).

where the supremum is taken over all n ∈ N and all increasing sequences (c0 = a, c1, . . . , cn−1, cn =
b). F is of bounded variation (BV) if Var(F ) <∞.

F is non-decreasing on [a, b] if −∞ < F (x) ≤ F (y) < ∞ for all x, y ∈ [a, b], x < y. In
particular, non-decreasing functions are real-valued.

(b) Show that non-decreasing functions are of BV. Show that any finite linear combination
of non-decreasing functions is of BV. Actually, any function F that is of BV is of the form
F = F1−F2 + i(F3−F4) with Fj non-decreasing (but you do not have to show that). Conclude
that F is of BV if F has at most finitely many local extrema.

(c) Prove that
Var(F ) = ‖f‖1

if F is absolutely continuous with ‘derivative’ f ∈ L1([a, b]). In particular, we see that each
absolutely continuous (AC) function F is of bounded variation, i.e., Var(F ) <∞.

(d) In Exercise 1.23, we will construct a function F that is continuous, and of bounded variation,
but that is not absolutely continuous. Use also this fact to conclude that

C(1)([a, b]) ⊂ {f f is AC on [a, b]} ⊂ {f ∈ C([a, b]) f is of BV} ⊂ C([a, b])

and that all inclusions are strict (see Fig. 2).

Exercise 1.23. Cantor’s stair.

Suppose that the function values F (a) and F (b) at the ends a and b of the interval I = [a, b]
are known. Then we obtain the values of F in the other points of [a, b] as follows. We devide

the interval [a, b] in three subintervals, I1, I2, and I3, of equal length, I1 ≡ a + (b − a)[̇0, 1
3 ],

I2 ≡ a + (b − a)[̇ 13 ,
2
3 ], and I3 ≡ a + (b − a)[̇23 , 1], and we define F on the middle interval by

F (x) ≡ 1
2 (F (a) + F (b)) for all x ∈ I2. Note that now F has been defined on both ends of both

intervals I1 and I3. Therefore, the procedure can be repeated on these two remaining intervals,
i.e., we take I = I1 and then I = I3, etc.. We start our construction on the interval [0, 1] with
the values F (0) = 0 and F (1) = 1. A graphical display of this function is given in Fig. 2.

(a) Write a MATLAB code of at most 25 commands that for any given resolution h > 0 along
the horizontal axis produces the graph of F as in center picture of Fig. 2 (i.e., if h > 0 is given,
then for each y ∈ [0, 1], F (x) is computed by the program for at least one x ∈ [y, y + h]).

(b) In the first step, F has not been defined on (two) intervals of total length 2
3 , in the second

step, the total length of this area of ‘undefinedness’ has been reduced to (2
3 )2, etc.. Check this.

The set of points at which F has not been defined is negligible. Argue that in the remaining
points of [0, 1] F can be defined such that F is continous on [0, 1].

Compute the total variation of F . Show that F ′ exists and equals to 0 almost everywhere.
Conclude that F is not absolutely continuous.
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2 Fourier series

The functions in this section are defined on R, have complex values and are locally
integrable (i.e. integrable on each bounded interval), unless stated otherwise.

Let T > 0.

2.1 Periodic functions. A function f : R → C is T -periodic (that is, periodic with
period T ) if

f(t+ T ) = f(t) for all t ∈ R.

If the function f is T -periodic, then
∫ T

0
f(t)dt =

∫ T+τ

τ
f(t) dt for all τ ∈ R. (25)

The space of all T periodic functions f for which

‖f‖1 ≡ 1

T

∫ T

0
|f(t)| dt <∞

is denoted by L1
T (R); L2

T (R) is the space of T -periodic functions f for which

‖f‖2 ≡
√

1

T

∫ T

0
|f(t)|2 dt <∞.

2.2 Fourier series. Consider an f ∈ L1
T (R).

We define the exponential Fourier coefficients:

γk(f) ≡ 1

T

∫ T

0
f(t) exp(−2πit

k

T
) dt (k ∈ Z). (26)

With

Sn(f)(t) ≡
n∑

k=−n

γk(f) exp(2πit
k

T
) (t ∈ R), (27)

Sn(f) is the nth partial Fourier series of f . The formal sum
∑

k∈Z
γk(f) exp(2πit k

T ) is
the Fourier series of f . We write

f ∼
∞∑

k=−∞
γk(f) exp(2πit

k

T
).

Fourier series can also be defined in terms of the trigonometric Fourier coefficients




αk(f) ≡ 2

T

∫ T

0
f(t) cos(2πt

k

T
) dt (k ∈ N0),

βk(f) ≡ 2

T

∫ T

0
f(t) sin(2πt

k

T
) dt (k ∈ N).

(28)

Then, 2γk(f) = αk(f) − iβk(f) and

Sn(f)(t) = 1
2α0(f) +

n∑

k=1

(
αk(f) cos(2πt

k

T
) + βk(f) sin(2πt

k

T
)

)
(t ∈ R). (29)

Here we used the fact that exp(iφ) = cos(φ) + i sin(φ).
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2.3 If f is odd (i.e., f(t) = −f(−t) for all t), and real-valued, then

f ∼
∑

k

βk(f) sin(2πt
k

T
),

and if f is even (i.e., f(t) = f(−t) for all t), and real-valued, then

f ∼ 1

2
α0(f) +

∑

k

αk(f) cos(2πt
k

T
).

Usually, only the real parts have a meaning in Physics. We could restrict ourselves
to sines and cosines. However, mathematical manipulations with powers of e are much
more convenient.

A popular choice for T in many textbooks is T = 2π. This choice simplifies the
formulas exp(2πit k

T ) to exp(itk). For ease of future reference, we do not follow this
simplification.

The coefficients γk(f) are often denoted by f̂(k) and f̂ is called the Fourier trans-
form of f . In the next section, we will see that the notation 1

T f̂( k
T ) would be more

appropriate.

The Fourier series of f has been introduced as a formal expression. Of course, we
would like to know whether it coincides with f : does (Sn(f)) converge to f? For many
functions f it does. However, according to a construction by du Bois–Reymond (from
1872), there is a T -periodic continuous function f whose Fourier series is divergent at
some point x (i.e., (Sn(f)(x)) is divergent; see Exercise 2.22). Convergence appears
to depend on the ‘smoothness’ of f and on the way convergence is measured. The
following theorem gives some conditions. For proofs, we refer to the literature. See also
Exercise 1.9.

2.4 Theorem. Let f ∈ L1
T (R).

(a) limn→∞ ‖f − Sn(f)‖2 = 0 if f ∈ L2
T (R).

(b) Let x ∈ R and δ > 0. If both f(x+) and f(x−) exist,5 and f is C(1) on [x− δ, x)
and on (x, x+ δ] with bounded derivative, then

lim
n→∞

Sn(f)(x) = 1
2 [f(x+) + f(x−)].

(c) limn→∞ ‖f − Sn(f)‖∞ = 0 if f ∈ C(1)(R).

If (Sn(f)(t)) converges to f(t), then we may write f(t) =
∑∞

k=−∞ γk(f) exp(2πit k
T ).

Convergence in the square integral sense (as in (a)) does not imply point-wise
convergence. The du Boi–Reymond example shows that a Fourier series may diverge at
some point even if f is continuous (even for continous functions there may be infitely
many points of divergence). However, it can not diverge everywhere: a result by
Carleson (from 1966) shows that set of points of divergence for a function f in L2

T (R) is
negligible (has measure 0). It is crucial here that f is in L2

T (R): there are functions f
in L1(R) for which the Fourier series diverges in almost all points (Kolmogorov, 1923).

5f(x+) exists if the limit of f(x + ε) for ε → 0 with ε > 0 exists. Then f(x+) is the limit value.
Similarly, f(x−) = limε>0,ε→0 f(x− ε).
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The Fourier series may diverge at x even if f is continuous. However, if f is
continuous at x and its series converges at x, then it converges to the ‘correct’ value:
either (Sn(f)(x)) converges to f(x) or it diverges (Cantor, 1924; see also Exercise 2.13.)

The result in (b) (Jordan’s test; [5, §10.1.1]) is remarkable: the condition only
involves values of f in some (arbitrarily) small neighborhood of x, while each γk(f)
depends on all values of f . This is a general fact and is known the Riemann localization
principle: the convergence of the Fourier series to f(x) only depends on the values of
f in a neighborhood of x.

The conditions in (b) and in (c) can be relaxed.
For instance, in (b), it is sufficient if both f(x+) and f(x−) exists and f is a linear
combination of finitely many functions that are non-decreasing6 on [x− δ, x + δ] (f is
of bounded variation on [x − δ, x + δ], see Exercise 6.20. Note that no continuity is
required). For more theory on point-wise convergence, see, e.g., [1] and [5, §10].
In Exercise 6.20 we will see that (cf. (c)) we have uniform convergence of the Fourier
series as soon as the T -periodic function f is continous and a linear combination of
finitely many non-decreasing functions on (−1

2T,
1
2T ] (which is the case if, for instance,

f is of the form f(t) = a +
∫ t
0 g(s) ds with

∫ T
0 |g(s)| ds < ∞; cf., Exercise 1.18), but,

as we already know, only requiring continuity for f is not sufficient for (c).
Averaging the Fourier series (Cesàro sums) turns the Fourier series of any T -periodic

continous function f into a uniformly converging one (see Exercise 6.19):

limn→∞ ‖ 1
n+1

(∑n
j=0 Sj(f)

)
− f‖∞ = 0 if f ∈ L1

T (R) ∩ C(R). (30)

This result is elegant, because the convers is true as well: if the (average of the) Fourier
series of f converges uniformly then f is continuous (see Exercise 2.24). In addition,
it has interesting theoretical mathematical consequences (see Exercise 2.23). However,
averaging turns fastly converging Fourier series into slowly converging ones (see (d) of
Exercise 2.23) and its practical interest is therefore limited.

We will write

f =
∞∑

k=−∞
γk(f) exp(2πit

k

T
) for functions f ∈ L2

T (R), (31)

but one should keep in mind that the meaning of this expression depends on the way
convergence is measured (

∑∞
k=−∞ . . . assumes a limit, limn→∞

∑
|k|≤n . . .!).

In practice, it is useful to have an estimate for the error in an approximation by
Sn(f). The theorem does not provide this information. Nevertheless, the theorem is
important. It plays an essential role in theoretical arguments; the proof of Parseval’s
formula in 2.8 forms an example.

Formula (31) tells us that functions f in L2
T (R) can be viewed as a superposition

of harmonic oscillations t  γk(f)e2πit k
T with frequency k

T .7 The contribution of the

oscillation with frequence k
T has amplitude |γk(f)|. If γk(f) = |γk(f)|e−iφk with φk in

[0, 2π), then φk is the phase of f at frequency k
T .8

6A function f is non-decreasing on [a, b] if −∞ < f(x) ≤ f(y) <∞ for all x, y ∈ [a, b], x < y.
7If t is a point of time and R represents time, then t e2πitω runs through k periods in T seconds,

that is, on average, ω ≡ k
T

periods per second. The quantity ω is called the frequency then and is
measured in Hz (Hertz), i.e., oscillations per second. We will use this terminology. Often the term 2π
is absorbed in ω, i.e., t eitω is considered. Then ω is called the angular frequency.

8To understand why the expression ‘phase’ is used, note that γk exp(2πit k
T

) = |γk| exp(2πit k
T
−φk):

the harmonic oscillation with frequency k
T

is shifted by φk.
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Figure 3. Elementary building blocks in an electrical network. From left to right, resistor, inductor
(coil), capacitor.

The next theorem states that there is a very simple relation between Fourier coef-
ficients of a function and its derivative. This theorem allows to translate ‘complicated’
problems from Analysis to ‘simple’ algebraic problems: differentiating is translated to
multiplication. This property explains to some extent the popularity of Fourier trans-
forms in technical sciences.

2.5 Theorem. If f is differentiable and f ′ ∈ L1
T (R) then

γk(f
′) = 2πi k

T γk(f) for all k ∈ Z.

Proof. Integrate by parts. The fact that both f and t  exp(2πit k
T ) are T -periodic

implies that the ‘stock term’ is 0.

In the next application, we demonstrate how Fourier transformations can simplify
the analysis of an electric current I in a circuit induced by a known varying electric
potential V .

2.6 Application. At time t, let VC(t) be the electric potential at the two ends of a
capacitor with capacitance C and let IC be the electric current induced by this voltage
difference. Then d

dtVC(t) = 1
C IC(t) for all t. If the voltage drop VC is T -periodic and

Zk(C) ≡ 1/(2πi k
T C), then γk(VC) = Zk(C)γk(IC).

If VL(t) is the potential at two ends of an inductor with inductance L and IL(t)
is the induced current, then VL(t) = L d

dtIL(t). If VL T -periodic and Zk(L) ≡ 2πi k
T L,

then γk(VL) = Zk(L)γk(IL).

If VR(t) is the voltage drop at the two ends of a resistor with resistance R and IR(t)
is the induced current, then VR = RIR (Ohm’s law): if VR T -periodic and Zk(R) ≡ R,
then γk(VR) = Zk(R)γk(IR).

Now, it is easy to analyze an electric network that is constructed from capacitors,
inductors, and resistors only. As an example we consider the following circuit.

We put a T -periodic potential V at two points that are connected with each other
by a conducting wire via a capacitor, an inductor and a resistor (see Fig. 4). According
to Kirchhoff’s laws9 we have that V = VC + VL + VR and I ≡ IC = IL = IR.
These relations imply that 1

C I(t)+LI
′′(t)+RI ′(t) = V ′(t). We could employ analytical

tools to solve this differential equation for I (assuming that I is periodic). The solution
can much easier be obtained with a Fourier transform: (Zk(C)+Zk(L)+Zk(R))γk(I) =
γk(V ). With Zk ≡ Zk(C) +Zk(L) +Zk(R) we obtain the Fourier coefficients of I from
the ones of V : γk(I) = 1

Zk
γk(V ).

9Kirchhoff’s voltage law: the algebraic sum of all instantaneous voltage drops around any closed
loop in a circuit is zero. Kirchhoff’s current law: at any point of a circuit, the sum of the inflowing
currents is equal to the sum of the outflowing currents.
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Figure 4. A simple electronic circuit.

2.7 Orthonormality. Define

(f, g) =
1

T

∫ T

0
f(t) · g(t) dt, ‖f‖2 =

√
(f, f) (f, g ∈ L2

T (R)) :

( · , · ) defines an inner product with associated norm ‖ · ‖2 on the space L2
T (R).

The (φk), with

φk(t) ≡ exp(2πit
k

T
) = (φ1(t))

k (t ∈ R, k ∈ Z),

form an orthogonal system, i.e., (φk, φℓ) = 0 for all k, ℓ ∈ Z, k 6= ℓ. Moreover, the φk

are normalized, i.e., ‖φk‖2 = 1 (k ∈ Z): the system (φk) is said to be orthonormal.

Note that orthogonality (orthonormality) depends on the inner product.
In the following sections, we will introduce other inner products for which, for simplicity
of notation, we will use the same symbols. In particular, the dependency on T does
not show in our notation.

Now, for f ∈ L2
T (R), the Fourier series can be represented as

γk = (f, φk) (k ∈ Z), Sn(f) =
∑

|k|≤n

(f, φk)φk (n ∈ N) (32)

and

f =

∞∑

k=−∞
(f, φk)φk, (33)

where (33) has to be understood in the L2
T -sense: ‖f −∑|k|<n(f, φk)φk‖2 → 0 for

n→ ∞.

The representation in (33) is unique for functions f ∈ L2
T (R), that is, if f =∑∞

k=−∞ γ̃kφk in the L2
T -sense, then γ̃k = γk(f) = (f, φk) for all k ∈ Z (see Exer-

cise 2.11). The (φk) form a so-called Schauder basis for L2
T (R).

The representation of Sn(f) and of f as a linear combination of functions that are
mutually orthogonal leads to an ‘infinitely dimensional’ variant of Pythagoras’ theorem
which is called the Parseval’s formula (or also Bessel’s equality) in Fourier theory.
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2.8 Parseval’s formula.

∞∑

k=−∞
|γk(f)|2 =

1

T

∫ T

0
|f(t)|2 dt (f ∈ L2

T (R)). (34)

Proof. 1) We have that f −Sn(f) ⊥ φk (|k| ≤ n). This implies that f−Sn(f) ⊥ Sn(f),
since Sn(f) is a finite linear combination of multiples of φk (|k| ≤ n).
2) Now, Pythagoras’ theorem leads to ‖f‖2

2 = ‖f − Sn(f)‖2
2 + ‖Sn(f)‖2

2.
3) Since the φk are orthonormal, we can repeatedly apply Pythagoras’ theorem to find
that ‖Sn(f)‖2

2 =
∑

|k|≤n |γk(f)|2.
4) Finally, a combination of the results in 2) and 3) with a limit process using (a) of
Theorem 2.4 proves Parseval’s formula.

Replacing f by f+ζg in (34) and varying the scalar ζ, leads to the following variant
of Parseval’s formula

∞∑

k=−∞
γk(f) γk(g) =

1

T

∫ T

0
f(t) g(t) dt (f, g ∈ L2

T (R)). (35)

2.9 According to Parseval’s formula, the Fourier coefficients (γk(f)) of functions
f in L2

T (R) are absolutely quadratically summable:
∑ |γk(f)|2 < ∞. Conversely, if a

sequence (µk)k∈Z of scalars is absolutely quadratically summable, then it is a sequence
of Fourier coefficients of some function in L2

T (R): to be more precise, g ≡∑µk φk is in
L2

T (R) and µk = γk(g) (k ∈ Z). This result is the Riesz–Fischer theorem. Apparently,
the Fourier transform f  (γk(f)) identifies the space L2

T (R) with the space ℓ 2(Z) ≡
{(µk)k∈Z

∑ |µk|2 < ∞}. If we equip ℓ 2(Z) with the inner product <(µk), (νk)>≡∑
µk νk with associated norm (µk) 2 ≡

√∑ |µk|2, then the identification by the
Fourier transform also preserves norm and inner product.

The transform (γk)k∈Z  
∑

k γk φk for sequences (γk) ∈ ℓ 2(Z) is called the discrete
Fourier transform. Note that this transform depends on T .

The orthogonality property that we deduced in step 1) of the proof of Parseval’s
formula implies also that the nth partial Fourier series is the best approximation in
some sense:

2.10 Proposition. If f ∈ L2
T (R) and S̃n =

∑
|k|≤n γ̃k φk for some scalars γ̃k, then

‖f − Sn(f)‖2 ≤ ‖f − S̃n‖2.

Proof. Use Pythagoras and the fact that f − Sn(f) ⊥ Sn(f) − S̃n (see the first step in
the proof of Parseval’s formula).

2.11 An immediate consequence of Parseval’s formula is that, for f ∈ L2
T (R),

lim
k→∞

γk(f) = 0. (36)

Although there are T -periodic functions f for which ‖f‖1 < ∞, while ‖f‖2 = ∞,
it can be shown that (36) holds as soon as ‖f‖1 < ∞ (this is the Riemann-Lebesgue
lemma; see Exercise 2.15).
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For smoother T -periodic functions f , the speed with which γk(f) converges to 0
(n→ ∞) can be estimated.

First note that
|γk(f)| ≤ ‖f‖1.

As compared to (36), this estimate is not very exciting. However, in combination with
Theorem 2.5, it leads to interesting estimates: |γk(f)| = T

2π|k| |γk(f
′)| ≤ T

2π|k|‖f ′‖1 if f
is differentiable, or, more general: if f is i-times differentiable, then

|γk(f)| =

∣∣∣∣
T

2πk

∣∣∣∣
i

|γk(f
(i))| ≤

∣∣∣∣
T

2πk

∣∣∣∣
i

‖f (i)‖1.

This estimate can be used to obtain an upper bound on the error in Sn(f) (see Exer-
cise 2.16): for some positive constants κ2 and κ∞ we have that

‖f − Sn(f)‖2 ≤ κ2 n
−i+ 1

2 ‖f (i)‖1 and ‖f − Sn(f)‖∞ ≤ κ∞ n−i+1‖f (i)‖1

Note that the speed of convergence (or, actually, an upper bound of the error) depends
on the smoothness of f .

2.12 Application: the wave equation. Consider the partial differential equation
(PDE)

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for t ≥ 0, x ∈ [0, 1] (37)

with boundary conditions (BC)

u(0, t) = u(1, t) = 0 (t ≥ 0), (38)

and initial conditions (IC)

u(x, 0) = φ1(x) and
∂u

∂t
(x, 0) = φ2(x) (x ∈ [0, 1]). (39)

The real-valued functions φ1, φ2 ∈ L2([0, 1]) are known, u is real-valued and has to
be solved for. c is a given real constant. Equation (37) is the wave equation: u(t, x)
describes the height of a vibrating string at time t and position x. The (idealized) one
dimensional string is stretched between 0 and 1. The string is fixed at 0 and 1, which
explains the boundary values u(t, 0) = u(t, 1) = 0 (t ≥ 0). φ1 and φ2 describe the form
and ‘speed’ of the string at release at time t = 0.

To solve this problem, we firstly concentrate on the solution of (37) and (38).
We try to find a solution u of the form u(x, t) = f(t)g(x). Note that it is not clear
that such a solution exists, nor that it leads to a solution that also satisfies (39).
Nevertheless, we will try and we will see that this approach is fruitful.
Substitution in (37) yields f ′′

f (t) = c2 g′′
g (x). Since this equation should hold for all

x ∈ [0, 1] and for all t ≥ 0, it can only be correct if

f ′′(t) = λ2c2f(t) (t ≥ 0) and g′′(x) = λ2g(x) (x ∈ [0, 1]),

for some constant λ (we used λ2 only to simplify notation below). Since (38) implies
that g also should satisfy the conditions g(0) = g(1) = 0, we find that g is a multiple of
sinπkx for some k ∈ Z and that λ2 = −k2π2. Hence, f is a multiple of exp(πickt) and
f(t)g(x) is a multiple of exp(πickt) sin(πkx). Note that for g it suffices to take only k
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in N. However, both λ = ikπ and λ = −ikπ are solutions of λ2 = −k2π2. By letting k
range over Z, we capture both solutions. The PDE and the BC are linear. Therefore,
linear combinations of the solution are also solutions. Hence, for any complex sequence
(ak) ∈ ℓ 2(Z),

u(x, t) =
∑

k∈Z

ak e
πikct sin(πkx) (40)

is also a solution of (37) and (38).

We will now use Fourier theory to see that an appropriate selection of the ak leads
to a u that also satisfies (39). Note that φ1 and φ2 can be expressed as a sine-series:

φ1(x) =
∞∑

k=1

αk sin(πkx) and φ2 =
∞∑

k=1

βk sin(πkx) (41)

with real coefficients αk and βk. To see this, consider the Fourier series of the odd
2-periodic function that coincides with φi on (0, 1) (i = 1, 2; see also Exercise 2.7). If
u is as in (40), then (39) implies that ak − a−k = αk and πikc(ak + a−k) = βk (k ∈ N).
Hence, 2ak = αk − i βk

πkc and 2a−k = −αk − i βk
πkc = −2ak: the sequence (ak) is odd.

Since the αk and βk are real, we find that

u(x, t) =

∞∑

k=1

(
αk cos(πkct) +

βk

πkc
sin(πkct)

)
sin(πkx). (42)

Note that, with γk ≡ −iak, (40) can be rewritten to

u(x, t) = 1
2 [ψ(ct+ x) − ψ(ct− x)], where ψ(s) ≡

∞∑

k=−∞
γk e

πiks. (43)

The function ψ is 2-periodic in L2
1(R). Since γ−k = γk, we have that ψ is real-valued:

ψ(s) = 2Re(
∑∞

k=1 γk exp(πiks)). At fixed time t, the graphs of the function x  
ψ(ct+x) and of x ψ(ct−x) are mirror images, with mirror at x = 0. The function u
is the difference of a wave that moves to the left and one that moves to the right with
speed −c and c, respectively.

Exercises

Exercise 2.1. Consider T -periodic functions f and g.

(a) Prove (25).

(b) Prove that ‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞. Conclude that CT (R) ⊂ L2
T (R) ⊂ L1

T (R). Here, CT (R)
is the space of all continuous T -periodic functions on R.

(c) Find f and g such that ‖f‖2 <∞, ‖f‖∞ = ∞ and ‖g‖1 <∞, ‖g‖2 = ∞.

Exercise 2.2. Prove the following statements for f ∈ L1
T (R), n ∈ N, k ∈ Z.

(a) The Sn(f) in (27) and in (29) coincide.

(b) f  Sn(f) is linear: Sn(αf + βg) = αSn(f) + βSn(g) (α, β ∈ C, f, g ∈ L1
T (R)).

(c) Sn(f) is T -periodic and continuous.

(d) |γk(f)| ≤ ‖f‖1.

(e) Sketch the graphs of t cos(2πt k
T ) and of t sin(2πt k

T ) for k = 0, 1, 2.
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Figure 5. The left picture displays the graph of some f on [−1,+1] (solid curve) and its 2-periodic
associate f∗ (the dotted curve). The picture at the right shows the graph of t  f(cos(t)) for t ∈ [0, π]
(solid curve) and for t 6∈ [0, π] (dotted curve). (See Exercise 2.6.)

Exercise 2.3. For a T -periodic function f and a real number a, the ‘shifted’ function fa is
defined by fa(t) ≡ f(t− a) (t ∈ R). Show that
fa is T -periodic, γk(fa) = exp(−2πia k

T ) γk(f) (k ∈ Z), Sn(fa) = (Sn(f))a (n ∈ N).

Exercise 2.4.

(a) Show that f ∼ 1
2α0 +

∑∞
k=1 αk(f) cos(2πt k

T ) if f ∈ L2
T (R) is even and real-valued.

(b) Show that f ∼∑∞
k=1 βk(f) sin(2πt k

T ) if f ∈ L2
T (R) is odd and real-valued.

(c) Give a variant of the two properties above for the case where f is complex-valued.

(d) Show that each complex-valued function f on R can be written as f = fe + fo with fe even
and fo odd.

(e) Discuss the statements: ‘f is even if and only if γk(f) is real for all k’ and ‘f is real valued
if and only if the sequence (γk(f))k is even, i.e., γ−k(f) = γk(f)’.

Exercise 2.5. Compute the Fourier coefficients of the following 2π-periodic functions f (i.e.,
T = 2π).

(a) f(t) = 0 for t ∈ (−π, 0] and f(t) = 1 for t ∈ (0, π] (block pulse).

(b) f(t) = t for t ∈ (−π,+π] (sawtooth function).

Exercise 2.6. Periodic extensions.

Consider a complex-valued function f on the interval [−1,+1].

(a) Let f∗ be defined by f∗(t) ≡ f(t− 2k) (t ∈ R), where k ∈ Z is such that t− 2k ∈ (−1, 1]
(see the left picture in Fig. 5). Show that f∗ is 2-periodic. Is f∗ continuous if f is continuous?

(b) For a complex-valued function g that is defined on the interval [0, 1], let h be defined on
[−1,+1] by h(t) ≡ g(t), h(−t) ≡ g(t) (t ∈ [0, 1]). Is h∗ continuous if g is continuous? Is h∗
continuously differentiable if that is the case for g?

(c) Show that fc(t) ≡ f(cos(t)), for t ∈ R, 2π periodic (see the right picture in Fig. 5), and
f is real-valued then fc is even. For what n ∈ N0 is the following implication correct: if
f ∈ C(n)([−1,+1]) then fc ∈ C(n)(R)?

Exercise 2.7. Sine series and cosine series.

Let f be a real-valued function in L2([0, 1]). Convergence and equality below is in L2-sense
(integrating over [0, 1]). Further, N0 and N are the collection of non-negative integers (k ≥ 0)
and of positive integers (k ≥ 1), respectively.
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(a) Show that there is a 1-periodic function F in L2
1(R) such that F (t) = f(t) for all t ∈ [0, 1)

and conclude that there are real sequences (αk) ∈ ℓ 2(N0), (βk) ∈ ℓ 2(N) such that

f(t) = 1
2α0 +

∞∑

k=1

αk cos(2πtk) +

∞∑

k=1

βk sin(2πtk). (44)

(b) Show that there is an even 2-periodic function F in L2
2(R) such that F (t) = f(t) for all

t ∈ (0, 1) and conclude that there is a real sequence (αk) ∈ ℓ 2(N0) such that

f(t) = 1
2α0 +

∞∑

k=1

αk cos(πtk). (45)

(c) Show that there is an odd 2-periodic function F in L2
2(R) such that F (t) = f(t) for all

t ∈ (0, 1) and conclude that there is a real sequence (βk) ∈ ℓ 2(N) such that

f(t) =

∞∑

k=1

βk sin(πtk). (46)

Note that sin(πtk) is 0 for t = 0 and t = 1 (k ∈ N). If f is smooth, but f(0) 6= 0 or f(1) 6= 0,
then F is not smooth at t = 0 or at t = 1, and the sine-series will converge slowly.

(d) Show that there is a 4-periodic function F in L2
2(R) that is odd around t = 0 (F (t) =

−F (−t)), even around t = 1 (F (1+ t) = F (1− t)) and that coincides with f on (0, 1). Conclude
that there is a real sequence (βk) ∈ ℓ 2(N) such that

f(t) =

∞∑

k=1

βk sin(πt(k + 1
2 )). (47)

Note that we can have fast convergence only if f is smooth, f(0) = 0 and f ′(1) = 0 (why?).

Exercise 2.8. Fourier–Chebyshev series.

Let f ∈ C([−1,+1]) be real-valued, and let fc be as defined in c) of Exercise 2.6.

(a) Show that Sn(fc) is of the form Sn(fc)(t) = 1
2α0 +

∑n
k=1 αk cos(kt).

Consider the functions

Tk(x) ≡ cos(k(arccos(x)) for x ∈ [−1,+1] (k ∈ N0)

and, with αj as in (a),

Cn(f)(x) ≡ 1
2α0 +

n∑

k=1

αkTk(x) (n ∈ N0, x ∈ [−1,+1]).

(b) Show that

{
T0(x) = 1, T1(x) = x, (x ∈ [−1,+1])

Tk+1(x) = 2xTk(x) − Tk−1(x) (x ∈ [−1,+1], k ∈ N)

(Hint: cos(ψ + φ) = 2 cos(φ) cos(ψ) − cos(ψ − φ)), conclude that Tk is a polynomial of exact
degree k and that Cn(f) is a polynomial of degree ≤ n: the Tk’s are the so-called Chebyshev
polynomials and Cn(f) is the nth partial Fourier–Chebyshev series.

(c) Prove that the sequence of polynomials Cn(f) converges uniformly on [−1,+1] to f if
f ∈ C(1)([−1,+1]).

Exercise 2.9. Prove that Sn(f)′ = Sn(f ′) if f is differentiable and f ′ ∈ L1
T (R).
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Exercise 2.10. Consider the inner product and the functions φk defined in §2.7.

(a) Show that the φk are in the space L2
T (R).

(b) Show that the system (φk) in §2.7 is orthonormal with respect to the inner product defined
there.

(c) Prove (32).

Exercise 2.11.
Consider a sequence (µk)k∈Z of scalars. Let gn ≡∑|k|<n µk φk (n ∈ N).

(a) Show that (gn) is a Cauchy sequence in L2
T (R) w.r.t. ‖ · ‖2 if (µk) is in ℓ 2(Z).

(b) Suppose g is the limit in L2
T sense of the sequence (gn): limn→∞ ‖g− gn‖2 = 0. Show that

(g, φk) = µk. In particular, µk = 0 (k ∈ Z) if g = 0.

(c) Show that γ̃k = (f, φk) (k ∈ Z) if f ∈ L2
T (R) and f =

∑∞
k=−∞ γ̃k φk in L2

T sense.

Exercise 2.12. Formulate Parseval’s formula in terms of the αk and βk.

Exercise 2.13. Suppose f ∈ L2
T (R) is continuous and the sequence (Sn(f)) converges uni-

formly. Let g be the limit function of (Sn(f)).

(a) Prove that g is T -periodic and continuous.

(b) Prove that f = g.
(Hint: Use (a) of Theorem 2.4 and (a) of Exercise 2.1 to show that ‖f − g‖2 = 0.)

Exercise 2.14. Often a function is described by a table of function values. This type of
description can be found in old table books, but also on new media like CDs and DVDs. For
instance, on CDs, a function f that represents the sound (air pressure function represented by
an electrical voltage function) is ‘sampled’ at a rate of 44 100 Hertz, that is, for ∆t ≡ 1

44 100
second, the function values f(k∆t) are stored: the f(k∆t) are called ‘sample values’, 1/∆t is
the sample frequency. Put Ω ≡ 1/(2∆t).

To analyze the function k f(k∆t) (k ∈ Z), Fourier transforms are employed. If (f(k∆t))
is in ℓ 2(Z), then the ‘discrete’ transform as mentioned in §2.9 can be used.

Define

F (ω) ≡
∞∑

k=−∞
∆t f(k∆t) e−2πiωk∆t (ω ∈ R).

(a) Show that F ∈ L2
2Ω(R).

(b) Prove that F ∈ C(R) if (f(k∆t)) is in ℓ 1(Z), where ℓ 1(Z) is the space of absolute summable
sequences (µk): (µk) 1 ≡∑ |µk|.
(c) Prove that f(k∆t) =

∫ Ω

−Ω
F (ω)e2πiωk∆t dω (k ∈ Z).

Exercise 2.15. The T -periodic function f is such that ‖f‖1 <∞.

(a) Prove that |γk(f)| ≤ ‖f − g‖1 + |γk(g)| for each T periodic function g.

(b) Prove the Riemann–Lebesgue lemma: limk→∞ γk(f) = 0.
(Hint: use the fact that there are smooth functions g for which ‖f − g‖1 < ε).

Exercise 2.16. Suppose f ∈ L1
T (R) is i-times differentiable, i ≥ 1.

(a) Prove that ‖f − Sn(f)‖2
2 =

∑
|k|>n |γk(f)|2 ≤∑|k|>n | T

2πk |2i ‖f (i)‖2
1.

(b) Prove that ‖f − Sn(f)‖2 ≤ κ ‖f (i)‖1 n
−i+ 1

2 , where κ ≡
√

2 (T/(2π))i.

(c) Derive an upper bound for ‖f − Sn(f)‖∞ in case i > 1.

(d) Let f be the 2-periodic function defined by f(t) = |t| (t ∈ [−1,+1]). Give an upper bound
for ‖f − Sn(f)‖2.

Exercise 2.17. The heat equation.
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Use Fourier theory to solve the one dimensional heat equation

∂u

∂t
(x, t) = γ

∂2u

∂x2
(x, t) for t ≥ 0, x ∈ [0, 1] (48)

with boundary conditions (BC)

u(0, t) = u(1, t) = 0 (t ≥ 0), (49)

and initial conditions (IC)

u(x, 0) = φ(x) (x ∈ [0, 1]). (50)

The real-valued function φ ∈ L2([0, 1]) is known, u is real-valued and has to be solved for. γ is
a given positive constant, u(t, x) describes the temperature distribution at time t and position
x in a (idealized) one dimensional string that is stretching between 0 and 1. The temperature
of the string is fixed to 0 at 0 and 1, φ is the temperature of the string at initial time t = 0.

(a) Prove that multiples of exp(−(πk)2γt) sin(πkx) solve (48) and (49) (k ∈ N).

(b) Find an expression for the solution u of (48), (49), and (50) in terms of linear combinations
of sin(πkx).

(c) Show that, for each t > 0, the function x u(x, t) is in C(∞)([0, 1]).

Note. Equations like the heat equation (and the wave equation) were the inspiration source
for the development of Fourier theory. The result in (a) was known in the mid 18th century
and it was also realized that linear combinations of solutions form a solution. However, it was
not clear what kind of functions could be formed at t = 0 with linear combinations of sin(πkx)
(even the concept of ‘function’ was not clear at that time). Although, Fourier published a book
in 1822 with many particular instances of representations of functions in trigonometric series,
it was Dirichlet who started the rigorous study of Fourier series in 1829 and who introduced a
concept of ‘function’ in 1837.

Exercise 2.18. The wave equation 2.

Use Fourier theory to solve the one-dimensional wave equation (see §2.12), but now with bound-
ary conditions given by

u(0, t) = 0 and
∂u

∂x
(1, t) = 0 (t ≥ 0). (51)

(Hint: use (d) of Exercise 2.7).

Exercise 2.19. The wave equation 3.

We use the notations and results from §2.12. Consider (40) and note that, for fixed t, the
function w(x) ≡ u(x, t) is defined for all x ∈ R.

(a) Prove that w is real-valued, 2-periodic, in L2
2(R), odd around 0 (i.e., w(−x) = −w(x)

(x ∈ R)), and odd around 1 (i.e., w(1 − x) = −w(1 + x) (x ∈ R)).

(b) The value at a specific point x is not wel defined for L2-functions. However, w is 0 at 0

and at 1 also in a L2-sense: show that 1
2δ

∫ δ

−δ w(x) dx = 0 and 1
2δ

∫ 1+δ

1−δ w(x) dx = 0.
Note that the Fourier series also allows to define the concept of derivative in some weak

sense.

Exercise 2.20. Dirichlet kernel.

For n ∈ N consider the so-called Dirichlet kernel, the function Dn, given by

Dn(t) ≡
n∑

k=−n

exp(itk). (52)
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(a) Show that Dn is even, 2π-periodic, and

1

2π

∫ 2π

0

Dn(t) dt = 1. (53)

(b) Show that, with ζ ≡ exp(it),

Dn(t) = 1 + 2
n∑

k=1

cos(tk) = 1 + 2 Re

(
n∑

k=1

ζk

)
= 1 + 2 Re

(
ζ
ζn − 1

ζ − 1

)
=

sin(t(n+ 1
2 ))

sin(1
2 t)

. (54)

(Hint: Use that 2iζ
ζ−1 = ζ

1
2 / sin(1

2 t). Why is this correct?)

(c) Show that

1 + 2
π log(n+ 1

2 ) ≤ ‖Dn‖1 =
1

π

∫ 1
2π

0

|Dn(t)| dt ≤ 2 + log(n+ 1
2 ). (55)

Here ‖ · ‖1 is the 1-norm for 2π-periodic functions.
(Hint: split the integral in two parts, integrate in the first part from 0 to the first positive zero

2π
2n+1 of Dn, integrate in the second part from the first zero to 1

2π and use t
π ≤ sin(1

2 t) ≤ 1
2 t.)

(d) Put Dn(t) ≡
∫ t

0
Dn(s) ds for |t| ≤ π. Show that

Dn(t) > 0 (t ∈ (0, π]) and ‖Dn‖∞ = |Dn( 2π
2n+1 )| ≤ 2π. (56)

(Hint: inspect the graph of Dn.)

Exercise 2.21. Sawtooth.

Let f be 2π-periodic given by f(t) = t− π for t ∈ [0, 2π).

(a) Is f continuous? Is f even or odd? Show that

Sn(f)(t) =

n∑

k=1

2

k
sin(tk). (57)

(b) Discuss the convergence of (Sn(f)) (w.r.t. ‖ · ‖2, ‖ · ‖∞ and point-wise).

(c) Show that

π2

6
=

∞∑

k=1

1

k2
. (58)

(Hint: Use Parseval’s formula.)

(d) Prove that
‖Sn(f)‖∞ ≤ 2π. (59)

(Hint: Show that, with g ≡ Sn(f), g′ = Dn − 1 (see (54)). Now, use (56) observing that
−t ≤ g(t) ≤ Dn(t) for t ∈ [0, π].)

Exercise 2.22. Fejèr example.

We will construct a continuous function with Fourier series that does not converge at 0.
For ease of notation, we consider T = 2π-periodic functions.

(a) For p, q ∈ N, q < p, define

f(t) ≡ fp,q(t) ≡ 2 sin(tp)

q∑

j=1

1

j
sin(tj). (60)

Prove that

αp+j(f) = −1

j
for 0 < |j| ≤ q and αp+j(f) = 0 elsewhere. (61)
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(Hint: 2 sin(φ) sin(φ) = cos(φ − ψ) − cos(φ+ ψ).)
Show that

|Sp+q(f)(0) − Sp(f)(0)| = |
q∑

j=1

αp+j(f)| > log(q). (62)

Show that

‖f‖∞ < 4π. (63)

(Hint: use (57) and (59).)

(b) Now, select sequences (pk), (qk) in N such that

pk + qk < pk+1 − qk+1 for all k ∈ N,
1

k2
log qk → ∞ (k → ∞) (64)

(for instance, check that with pk ≡ 2qk and qk ≡ ek3

, we have that 3qk < qk+1 and log qk = k3):
the Fourier coefficients αn(fpk,qk

) do not ‘overlap’. Put

F (t) =

∞∑

k=1

1

k2
fpk,qk

. (65)

Show that F T -periodic and continous.
Show that |Spk+qk

(F )(0) − Spk
(F )(0)| > 1

k2 log(qk) → ∞ (k → ∞).
Conclude that (Sn(F )(0)) does not converge.

Exercise 2.23. Cesàro sums and Weierstrass’ theorem.

Convergence can be ‘improved’ by using Cesàro sums.
If sn =

∑
|k|≤n γn, then the average σn ≡ 1

n+1

∑n
j=0 sn is the Cesàro sum.

(a) Discuss the convergence behaviour of (sn) and of (σn) in case γk ≡ (−1)k for k ≥ 0 and
γk ≡ 0 for k < 0.

For f ∈ L1
T (R), define

σn(f) ≡ 1

n+ 1

n∑

j=0

Sj(f) (n ∈ N). (66)

It can be shown (see Exercise 6.19) that

lim
n→∞

‖σn(f) − f‖∞ = 0 if f ∈ C(R) ∩ L1
T (R). (67)

(b) Use this result to prove Weierstrass’ theorem:
for each f ∈ C([−1,+1]) and each ε > 0 there is a polynomial p such that

‖f − p‖∞ < ε. (68)

(Hint: consider fc(t) ≡ f(cos(t)) (t ∈ R) and pn(x) ≡ σn(fc)(arccos(x)) (x ∈ [−1,+1]), and
use (b) of Exercise 2.8.)

(c) Use (67) to prove (a) of Theorem 2.4.
(Hint: for ε > 0 there is a continous T -periodic function g such that ‖f − g‖2 <

1
2ε. Now,

observe that ‖f − Sn(f)‖2 ≤ ‖f − σn(g)‖2 ≤ ‖f − g‖2 + ‖g − σn(g)‖∞ (why?).)

The following example gives one reason why we do not always work with σn(f) instead of
Sn(f).

(d) Consider the T -periodic function f(t) ≡ cos(2π t
T ) (t ∈ R). Show that Sn(f) = f for all

n ∈ N and S0(f) = 0. Conclude that σn(f) = n
n+1f and

‖Sn(f) − f‖∞ = 0, while ‖σn(f) − f‖∞ = 1
n+1 for all n ∈ N.
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Exercise 2.24. f is in L1
T (R) in this exercise.

(a) Prove that
lim

n→∞
‖f − Sn(f)‖2 = 0 ⇔ f ∈ L2

T (R).

(b) Prove that
lim

n→∞
‖f − σn(f)‖∞ = 0 ⇔ f ∈ C(R),

with σn(f)f as defined in (66).
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−T/2 
+T/2

 

f 

f * 

Figure 6. The picture displays the graph of some f . The graph of f restricted to [−T/2,+T/2] is
solid, the graph is dash-dotted elsewhere. The T -periodic extension of f restricted to [−T/2, T/2] is dotted.

3 Fourier integrals

Functions as the V in the application above are never periodic in practice, not even
approximately (think of the variance in voltage caused by a voice in a microphone).

We indicate how the theory in the preceding section can be formulated for non-
periodic functions.

3.1 Fourier integrals, heuristics. Consider a function f for which

‖f‖1 ≡
∫ +∞

−∞
|f(t)| dt <∞.

If f ∈ C(1)(R), T > 0 and γk(T ) ≡ 1
T

∫ + T
2

−T
2

f(t) exp(−2πit k
T ) dt then

f(t) =
∑

k∈Z

γk(T ) exp(2πit
k

T
) for t ∈ (−T

2
,
T

2
)

(to see this, apply the theory from the preceding section to the function f∗ that is
T -periodic and for which f∗ = f on [−T

2 ,+
T
2 ]; see Fig. 6).

In order to obtain an expression for f in terms of periodic ‘exp-functions’ that is
correct for any t ∈ R, it is tempting to drive T to ∞ in the above formulas. However,
limT→∞ γk(T ) = 0 for each k. If we select ω ∈ R and converge both k and T to ∞
in such a way that k

T converges to ω, then we see that limT→∞ Tγk(T ) exists and is

equal to
∫ +∞
−∞ f(t) exp(−2πitω) dt.

If we note that, for g ∈ C(R) for which
∫ +∞
−∞ |g(ω)| dω exists,

lim
T→∞

∑

k∈Z

1

T
g(
k

T
) =

∫ +∞

−∞
g(ω) dω,

(Riemann sum) then we see that, with f̂(ω) ≡
∫ +∞
−∞ f(t) exp(−2πitω) dt (ω ∈ R), we

may expect that, for large T ,

f(t) =
∑

k∈Z

γk(T ) exp(2πit
k

T
) ≈

∑

k∈Z

1

T
f̂(
k

T
) exp(2πit

k

T
) ≈

∫ +∞

−∞
f̂(ω) exp(2πitω) dω
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(here we used a Riemann sum approximation): we may expect that f(t) =
∫ +∞
−∞ f̂(ω) exp(2πitω) dω

and f(t) =
̂̂
f(−t).

We now give a more formal introduction.

3.2 Notations. The space of all functions f for which ‖f‖1 ≡
∫ +∞
−∞ |f(t)| dt < ∞

is denoted by L1(R), while L2(R) denotes the space of all functions f for which ‖f‖2 ≡√∫ +∞
−∞ |f(t)|2 dt <∞.

3.3 Fourier integrals for L1-functions. For f ∈ L1(R) we define

f̂(ω) ≡
∫ +∞

−∞
f(t)e−2πitω dt for all ω ∈ R.

3.4 Theorem. Let f ∈ L1(R).

(a) f̂ is bounded: |f̂(ω)| ≤ ‖f‖1 for all ω ∈ R.

(b) f̂ is a uniformly continuous function on R.

(c) f̂ vanishes at ±∞: lim|ω|→∞ f̂(ω) = 0.

Proof. (a) |f̂(ω)| ≤
∫ +∞
−∞ |f(t)| | exp(−2πitω)| dt = ‖f‖1.

(b) For each ω ∈ R and δ > 0 we have that

f̂(ω) − f̂(ω + δ) =

∫ +∞

−∞
f(t)e−πit(2ω+δ)(e+πitδ − e−πitδ) dt.

Hence, |f̂(ω) − f̂(ω + δ)| ≤
∫ +∞
−∞ |f(t)| |2 sin 2πtδ| dt.

For ε > 0, select a T > 0 such that
∫
|t|>T |f(t)|dt < 1

4ε. Then select δ > 0 such

that |2 sin 2πtδ| ≤ 1
2‖f‖1

ε for all t for which |t| ≤ T , and we obtain that we have

|f̂(ω) − f̂(ω + δ)| ≤ ε.

(c) Let ω ∈ R. Note that the substitution t = s+ 1
2ω leads to

f̂(ω) =

∫ +∞

−∞
f(t)e−2πitω dt = −

∫ +∞

−∞
f(s+

1

2ω
)e−2πisω ds.

Hence, f̂(ω) = 1
2 (f̂(ω) + f̂(ω)) =

∫ +∞
−∞ (f(t) − f(t+ 1

2ω ))e−2πitω dt and

|f̂(ω)| ≤
∫ +∞

−∞
|f(t) − f(t+

1

2ω
)| dt.

This estimate leads to (c); see Exercise 1.21.

Note that (c) can be viewed as an analogue of the Riemann–Lebesgue lemma in
§2.11.

As in §2.5, differentiation transforms to multiplication.
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3.5 Theorem. Let f ∈ L1(R).

(a) If f is differentiable and f ′ also belongs to L1(R), then

f̂ ′(ω) = 2πiωf̂(ω) (ω ∈ R).

(b) If tf ∈ L1(R), then f̂ ∈ C(1)(R) and f̂ (1) = −2πi(̂tf).

Here tf denotes the function t tf(t) (t ∈ R).

Proof. (a) Integrate by parts and use the fact that f is continuous and vanishes at ∞
if both f and f ′ are in L1(R) (see Exercise 1.20).

(b) Apply Lebesgue’s theorem to see that

f̂ (1)(ω) = lim
∆ω→0

f̂(ω + ∆ω) − f(ω)

∆ω
= −2πi

∫
tf(t)e−2πitω dt

Note that, for each n ≥ 0, tnf is in L1(R) if f has a bounded support, i.e., if the

support {t ∈ R f(t) 6= 0} of f is contained in a interval [−T, T ] for some T > 0: the
support of f is bounded by T .

3.6 Corollary. If f ∈ L1(R) has a support bounded by T > 0, then

f̂ ∈ C(∞)(R), ‖f̂ (n)‖∞ ≤ (2πT )n‖f‖1 (n ∈ N0),

and f is an analytic function, i.e., the Taylor series converges on R.

Proof. Inductive application of Theorem 3.5 shows that f̂ ∈ C(n)(R) for each n ∈ N0,

f̂ (n)(ω) = (−2πi)n(̂tnf)(ω, and ‖f̂ (n)‖∞ ≤ (2π)n‖tnf‖1 ≤ (2πT )n‖f‖1.

For ω ∈ R and n ∈ N, the remainder term of the (n − 1)th order Taylor series at 0
of f̂ evaluated at ω is equal to ωn

n! f̂
(n)(ξ). Here ξ is some real number between 0 and

ω. This term can be bounded by (2πωT )n

n! ‖f‖1. Since, for each κ > 0 κn

n! → 0 if n→ ∞,
we see that the Taylor series converges.

Note that the convergence is uniform on each interval [−Ω,+Ω].

The above results show that f̂ is a ‘nice’ function in case f ∈ L1(R). Actually, f̂ is
so nice that we immediately see that the reverse formula suggested in 3.1 will not be

obvious: because, if f̂ ∈ L1(R) then
̂̂
f is continuous and the relation

̂̂
f(−t) = f(t) can

not be correct for all t for L1-functions f that have a discontinuity .

Before we discuss how to reconstruct f from f̂ , we consider two examples.

3.7 Examples.
(a) Consider the Gaussian function f defined by f(t) ≡ exp(−πt2) for t ∈ R.
Then f ∈ L1(R) and

f̂(ω) = exp(−πω2) for each ω ∈ R, (69)

as we will show now. Note that

∫ +∞

−∞
exp(−πt2 − 2πitω) dt = exp(−πω2)

∫ +∞

−∞
exp(−π(t+ iω)2) dt.
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To show that g(ω) ≡
∫ +∞
−∞ exp(−π(t+ iω)2) dt = 1, we first note that

g(0) =

∫ +∞

−∞
exp(−πt2) dt = 1.

Moreover,

g′(ω) =

∫ +∞

−∞
−2πi(t+ iω) exp(−π(t+ iω)2) dt = i exp(−π(t+ iω)2)

t=+∞
t=−∞ = 0.

Hence, g(ω) = g(0) +
∫ ω
0 g′(ν) dν = 1 for all ω ∈ R.

(b) For T > 0, consider the ‘top-hat’ function ΠT given by10

ΠT (t) ≡ 1 if |t| ≤ T, and ΠT (t) ≡ 0 if |t| > T. (70)

Then,

Π̂T (ω) =

∫ +T

−T
e−2πitω dt =

1

−2πiω
e−2πitω

t=+T

t=−T
=

1

πω
sin(2πTω).

The function t sin(πt)/(πt) plays an important role in Physics and is called the
sinc-function:

sinc(t) ≡ sin(πt)

πt
(t ∈ R). (71)

The Fourier transform of the scaled top-hat function 1
2T ΠT with height 1/(2T ) and

width 2T is equal to ω  sinc(2Tω):

1̂

2T
ΠT (ω) = sinc(2Tω) (ω ∈ R); (72)

see Fig. 7 for a graph of the top-hat function and the sinc-function.
Note that sinc(0) = 1 and sinc(k) = 0 for all k ∈ Z, k 6= 0.

The first example supports the expectation that the reverse formula for Fourier in-
tegrals is correct. The second example is slightly discouraging. The transform function
is uniformly continuous and vanishes at infinity, which is in line with the theorems.
Unfortunately, sinc is not absolutely integrable: sinc 6∈ L1(R). However, observe that
sinc is quadratically integrable: sinc ∈ L2(R).

The following three lemmas allow us to define the Fourier transform also for func-
tions in L2(R). First note that f ∈ L1(R) if f ∈ L2(R) and has a bounded support.

3.8 Lemma. Let f ∈ L2(R) with support bounded by L > 0. Then, for T ≥ 2L,

‖f‖2
2 =

∑

k∈N

1

T
|f̂(

k

T
)|2 and lim

n→∞

∫ +L

−L
|f(t) −

∑

|k|≤n

1

T
f̂(
k

T
) exp(2πi

k

T
t)|2 dt = 0.

Proof. Note that f̂(ω) =
∫ + T

2

−T
2

f(t)e−2πitω dt. With γk(f) from §2.2, γk(f) = 1
T f̂( k

T ).

The second statement of the lemma follows from (a) of Theorem 2.4. Parseval’s formula

10The symbol Π is chosen as an obvious aid to memory.
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Figure 7. The top figure shows the graph of the scaled top-hat function 1
2T

ΠT for T = 1, the bottom
figure displays its Fourier transform, the sinc function ω  sinc(2Tω) also for T = 1.

implies that 1
T

∫ + T
2

−T
2

|f(t)|2 dt =
∑

k∈Z
| 1
T f̂( k

T )|2 and
∫ +∞
−∞ |f(t)|2 dt =

∑
k∈Z

1
T |f̂( k

T )|2.

Apparently, limT→∞
∑

k∈Z

1
T |f̂( k

T )|2 exists and, since f̂ is uniformly continuous, it

is tempting to conclude that the limit equals
∫ +∞
−∞ |f̂(ω)|2 dω = ‖f̂‖2

2. This conclusion
is correct (see Lemma 3.9 below) but the proof requires somewhat more work. The
proof relies on the fact that tnf ∈ L1(R) ∩ L2(R) if f ∈ L2(R) has a bounded support
(n = 0, 1). Hence, f̂ ∈ C(∞)(R) (see Th. 3.5) and arguments for f and f̂ apply to tf
and f̂ (1) as well.

3.9 Lemma. If f ∈ L2(R) has a bounded support, then f̂ ∈ L2(R), ‖f‖2 = ‖f̂‖2,

and, ‖f − fΩ‖2 → 0 if Ω → ∞, where fΩ(t) ≡
∫ Ω

−Ω
f̂(ω) e2πitω dω.

Proof. Since |f̂ |2 ∈ C(R), the first formula in Lemma 3.8 and (b) of Exercise 1.12 implies
that |f̂ |2 ∈ L1(R), whence f̂ ∈ L2(R). Replacing f by tf shows that f̂ (1) ∈ L2(R) and
(e) of Exercise 1.12 tells us that ‖f‖2 = ‖f̂‖2.

To prove the last claim in the lemma, assume the support of f is bounded by L > 0,
and, for Ω > 0, T > 2L, consider the functions

fT,Ω(t) ≡ 1

T

∑

k∈Z,| k
T
|≤Ω

f̂(
k

T
) e2πit k

T (t ∈ R).
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Parseval’s formula and Theorem 2.4(a) implies that

∫ T

−T
|f(t) − fT,Ω(t)|2 dt =

∑

k∈Z,| k
T
|>Ω

1

T
|f̂(

k

T
)|2 ≤

∫

|ω|≥Ω
h(ω) dω +

1

T
‖h′‖1.

Here, h ≡ |f̂ |2, and for the last estimate we used (20) in Exercise 1.12.
Since ω  f̂(ω)e2πitω is uniformly continuous, we have that, for any K > 0,

∫ K

−K
|fΩ(t) − fT,Ω(t)|2 dt→ 0 if T → 0.

Combining these two results shows that
∫K
−K |f(t) − fΩ(t)|2 dt ≤

∫
|ω|≥Ω h(ω) dω,

whence ‖f − fΩ‖2
2 ≤

∫
|ω|≥Ω h(ω) dω. Since h ∈ L1(R), the lemma follows.

3.10 Lemma. Let f ∈ L1(R) ∩ L2(R). Then f̂ ∈ L2(R) and ‖f‖2 = ‖f̂‖2.

Proof. For n ∈ N, consider fn ≡ fΠn. Note that fn ∈ L2(R) is of bounded support.

By Lemma 3.8, ‖fn − fm‖2 = ‖ ̂(fn − fm)‖2 = ‖f̂n − f̂m‖2: (f̂n) is a Cauchy sequence

in L2(R). Hence, ‖f̂n − g‖2 → 0 (n → ∞) for some g ∈ L2(R). Since f̂n(ω) → f̂(ω),
we have that ‖f̂ − g‖2 = 0. Apparently, f̂ ∈ L2(R) and ‖f̂n − f̂‖2 → 0 (n→ ∞).

Since also ‖fn − f‖2 → 0 and ‖f̂n‖2 = ‖fn‖2, we find that ‖f̂‖2 = ‖f‖2.

We can define the Fourier transform for functions in L2(R).

3.11 Fourier integrals for L2-functions. If f ∈ L2(R), then there is a sequence
(fn) in L2(R)∩L1(R) for which ‖f−fn‖2 → 0 (e.g., fn = fΠn). According Lemma 3.10,

(f̂n) is a Cauchy sequence in L2(R). Hence, there is a g ∈ L2(R) for which ‖f̂n−g‖2 → 0.
The limit function g is in some sense unique:
(i) If g̃ ∈ L2(R) shows up in a similar way as limit function of another sequence of
functions in L2(R) ∩ L1(R) that approximate f , then ‖g − g̃‖2 = 0.
(ii) If f ∈ L2(R) ∩ L1(R), then, by Lemma 3.10, ‖g − f̂‖2 = 0.
Since there is no real confusion concerning the selection of g, we put f̂ instead of g.
Usually, we have that f̂(ω) = limT→∞

∫ T
T f(t)e−2πitω dt for almost all ω ∈ R.

Therefore, we simply use the formula f̂(ω) =
∫ +∞
−∞ f(t)e−2πitω dt.

If we respect the conventions from 3.11, then Lemma 3.9 leads to the following
analogue of (a) of Theorem 2.4 and of Parseval’s formula ((34) and (35) in §2) can be
proved. The analogue of Parseval’s formula is know as Plancherel’s formula.

3.12 Theorem. Let f ∈ L2(R). Then,

f̂ ∈ L2(R), ‖f‖2 = ‖f̂‖2, (f, g) = (f̂ , ĝ) (g ∈ L2(R)), (73)

f̂(ω) =

∫ +∞

−∞
f(t)e−2πitω dt, and f(t) =

∫ +∞

−∞
f̂(ω)e+2πitω dω. (74)

As in (c) and (d) of Theorem 2.4, there are onditions on f that guarantee that
the sequence (In(f)), where In(f)(t) ≡

∫ +n
−n f̂(ω)e+2πitω dω, converges uniformly or

point-wise to f . We refer to literature for more details.
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3.13 Note. The factor 2π in the definition of the Fourier integrals often shows up
in literature on other places.

(a) For sound reasons, the following relations are often used in physics

F (ω) =

∫ +∞

−∞
f(t)e−itω dt and f(t) =

1

2π

∫ +∞

−∞
F (ω)e+itω dω.

(b) For mathematical reasons, many mathematical textbooks employ

F (ω) =
1√
2π

∫ +∞

−∞
f(t)e−itω dt and f(t) =

1√
2π

∫ +∞

−∞
F (ω)e+itω dω.

In applications, the functions f should often be real-valued. It would be useful if
this could be concluded from f̂ . The relations in the theorem lead to the following
result.

3.14 Property. Let f be in L2(R) or in L1(R).
Then, f is real-valued ⇔ f̂ is even, f is even ⇔ f̂ is real-valued.

With Fourier integrals, electric networks (cf. 2.6) can easily be analysed.

3.15 Application (continued). Again, consider the electric network in the last
paragraph of Application 2.6.

As before, V is the voltage difference between two end points in the network and
I is the resulting current (V is not periodic now). Then, assuming that V and I are
L2-functions (which is physically reasonable), we have that V̂ (ω) = Z(ω)Î(ω) where
Z(ω) = 1

2πiωC + 2πiωL+R.

3.16 Interpretation. In many fields in Physics and Technology, t is a point in time
and R represents time. The value f(t) may describe the voltage drop at time t between
two points in an electric network or the changes in pressure in the air at time t at a
certain place in space (such changes in pressure may be caused by sound waves). The
function f is called a signal then and

∫ +∞
−∞ |f(t)|2 dt can be interpreted as the energy

of the signal . All signals have finite energy. Therefore, the space L2(R) is also called
the space of all signals. The quantity ∆ω|f̂(ω)|2 can be viewed as the energy contained
in the part of the signal contained in the frequency band (ω− 1

2∆ω, ω+ 1
2∆ω): |f̂(ω)|2

is the power spectrum or spectral power density of the signal.
Periodic functions in L2

T (R) are sometimes called stationairy signals, herewith re-
ferring to the fact that the function is the same after T -seconds. Non-periodic signals
are said to time-dependent.

Since f(t) =
∫
f̂(ω)e2πitω dω, the function f can be viewed as a superposition of

the harmonic oscillations t  f̂(ω)e2πitω with frequency ω.11 The function f has
amplitude |f̂(ω)| and phase φ(ω) at frequency ω. Here, φ(ω) ∈ [0, 2π) is such that
f̂(ω) = |f̂(ω)| e−iφ(ω).

The functions f and f̂ can be identified (via the Fourier transforms). In discussions,
f is often referred to as the function in time domain and f̂ as the function in frequency
domain.

11In 1 second, t  e2πitω runs through ω periods, that is, the number of t ∈ [T, T + 1] for which
e2πitω = 1, is, on average, averaging over all T ∈ R, equal to ω.
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3.17 Extensions. The function φν(t) ≡ e2πiνt (t ∈ R) is not in L1(R), nor in
L2(R) and its Fourier transform has not been formally defined. The inversion formula
f(t) =

∫
f̂(ω) exp(2πitω) dω for functions in L2(R) tells us that f can be viewed as

a superposition of harmonic oscillations. The function φν is an harmonic oscillation
itself (with frequency ν) and only one oscillation contributes to φν . Thefore, if such an

inversion formula makes sense for φν , then φ̂ν(ω) = 0 for all ω 6= ν. It is tempting to

postulate that φ̂ν(ν) = 1. However, such a function is equivalent to the zero function

and the integral
∫
φ̂ν(ω) exp(2πiωt) dω is equal to zero rather than to the desired value

exp(2πiνt); we are looking for a ‘function’ or construction δν with the following property
∫ ∞

−∞
δν(x) g(x) dx = g(ν) for all g ∈ C(R).

Of course, δν is not a function —it would be zero at x 6= ν and ∞ at ν. But, it does form
a bounded linear map on the space of continuous functions that vanish at infinity.12

Therefore, δν can be identified with a so-called ‘measure’. Nevertheless, physicists and
technicians like to view δν as a ‘function’ and call it the Dirac delta function at ν. For
mathematicians, δν is the point-measure at ν.

For δν , we have that δ̂ν(−t) ≡
∫
δν(ω) e2πitω dω = e2πitν . Conversely, if an inversion

formula can be defined for φν (and it can, as we will argue below), then it should be

φ̂ν = δν .
Recall that we had to employ limit processes in order to get the Fourier transform

of L2(R) functions rigorously defined. The Dirac delta function can also be obtained
as the result of a limit process. To see this and to simplify notation, take ν = 0. Now,
note that

lim
ε→0

∫ ∞

−∞

1

2ε
Πε(x) g(x) dx = lim

ε→0

1

2ε

∫ +ε

−ε
g(x) dx = lim

ε→0

G(ε) −G(−ε)
2ε

= g(0).

Here, g is continuous and G is its primitive (G′ = g). Hence, in some weak sense, the
Dirac delta function δ0 at 0 appears to be the limit of the functions 1

2εΠε for ε→ 0. The
function values 1

2εΠε(x) converge to 0 if x 6= 0, and to ∞ if x = 0 (ε → 0). However,
there are other sequences of continuous functions that converge weakly to δ0 and that
do not converge point-wise.13 For instance, there is no x for which 2

ε sinc(x2
ε ) converges

for ε → 0, while
∫

2
ε sinc(x2

ε ) g(x) dx → g(0) (ε → 0) for each smooth function g with
bounded support; see Exercise 3.17. Hence, (x  2

ε sinc(x2
ε )) converges weakly to δ0,

or, using a more sloppy notation, (2
ε sinc(x2

ε )) converges weakly to δ0(x) (ε → 0). In
particular, δ0 can be viewed as the Fourier transform of φ0:

∫ 1
ε

− 1
ε

φ0(t) e
−2πitω dt =

∫ 1
ε

− 1
ε

e−2πitω dt = 2
ε sinc(ω 2

ε ) → δ0(ω) (ε→ 0).

This approach may help to understand some puzzling ‘consequences’ of Fourier’s
inversion formula. Routine manipulation with integrals would lead to

f(t) =
∫
f̂(ω) e2πitω dω =

∫ (∫
f(s)e−2πisω ds

)
e2πitω dω

=
∫ ∫

f(s)e2πiω(t−s) dω ds =
∫
f(s)

(∫
e2πiω(t−s) dω

)
ds.

12If C∞(R) is the space of continuous functions g that vanish at infinity (that is, g(x) → 0 if |x| → ∞),
then a linear map µ from C∞(R) to C is bounded if, for some κ > 0, |µ(g)| ≤ κ‖g‖∞ (g ∈ C∞(R)).
Such a map can be identified with a measure and the notation

R
g(x) dµ(x) is used instead of µ(g).

13A sequence (fε) of functions converge wealkly to a measure µ if
R
fε(x) g(x) dx →

R
g(x) dµ(x)

for each function g ∈ C∞)(R) with bounded support. A function g has a bounded support if it vanishes
outside some bounded interval, that is, if there is an L > 0 such that g(x) = 0 whenever |x| > L.
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All integrals are from −∞ to ∞. The expression
∫
e2πiω(t−s) dω is hard to interpret,

since |e2πω(t−s)|, nor its square, is integrable. However, is we saw above, this expression
can be viewed as the Dirac delta function and that leads to the familiar conclusion:

∫
f(s)

(∫
e2πiω(t−s) dω

)
ds =

∫
f(s) δ0(s − t) ds = f(t).

The discussions appear to be consistent.
For a rigorous and extended discussion on Fourier transforms for more general type

of functions and measures, we refer to a course on ‘Distribution Theory’.

Exercises

Exercise 3.1.

(a) Prove that f  f̂ is linear.

Exercise 3.2. Let f ∈ L1(R) and let a, α, ν ∈ R.
Prove the following, where t and ω range over R.

(a) If fa(t) ≡ f(t− a), then f̂a(ω) = e−2πiaω f̂(ω).

(b) If fT(t) ≡ f(−t), then f̂T = f̂ .

(c) If g(t) ≡ e2πitνf(t), then ĝ(ω) = f̂(ω − ν) = (f̂)ν(ω).

(d) If g(t) ≡ cos(2πtν) f(t), then ĝ(ω) = 1
2 (f̂(ω − ν) + f̂(ω + ν)).

(e) If g(t) ≡ √
αf(α t), then ĝ(ω) = 1√

α
f̂( 1

αω).

Exercise 3.3.

(a) For λ ∈ C, consider the function f defined by

f(t) ≡ eλt for t ≥ 0 and f(t) ≡ 0 for t < 0.

Show that f ∈ L1(R) ∩ L2(R) if Re(λ) < 0 and that then

h(ω) ≡ f̂(ω) =
1

2πiω − λ
(ω ∈ R).

(b) Compute the inverse Fourier transform of the function h in case Re(λ) > 0.
(Hint: consider h(−ω).)

(c) For n ∈ N, consider the function hn(ω) ≡ (λ − 2πiω)−n (ω ∈ R). For which n ∈ N does
hn belong to L2(R)? When is hn in L1(R)? Show that the inverse Fourier transform of hn is
continuous for n ≥ 2 without explicitly computing the inverse Fourier transform.

(d) Compute the inverse Fourier transform of hn(ω) ≡ (λ− 2πiω)−n.
(Hint: Consider the nth derivative h(n) of h).

Exercise 3.4.

(a) Compute the Fourier transform of the function t 
√
α cos(2πtν) e−π(αt)2 .

A function of the form t  cos(2πtν)f0(t) is a so-called wavepacket, with (frequency ν and)
envelope f0.

(b) Compute the Fourier transform of the function t 
√
α cos2(2πtν) e−π(αt)2 .

(c) Compute the Fourier transform of the function f defined by f(t) = 1 if ||t| − d| ≤ 1
2a and

f(t) = 0 elsewhere. Here, a, d > 0 such that a < 2d.

(d) Let a, d > 0 such that a < d. Let dk ≡ kd for k ∈ Z, |k| ≤ K. Compute the Fourier
transform of f , where the function f is defined by f(t) = 1 if |t − dk| ≤ 1

2a for some k ∈ Z,
|k| ≤ K, and f(t) = 0 elsewhere.
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Figure 8. A simple electronic circuit.
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Figure 9. Harmonic oscillator.

Hint: to get a manageable expression, use the fact that

K∑

k=−K

ζk = ζ−K 1 − ζ2K+1

1 − ζ
=
ζ−K− 1

2 − ζK+ 1
2

ζ−
1
2 − ζ

1
2

.

Exercise 3.5. Prove the following statements.

(a) f is real ⇔ f̂ is even. f is purely imaginary ⇔ f̂ is odd.

(b) f is even ⇔ f̂ is real. f is odd ⇔ f̂ is purely imaginary.

Exercise 3.6. Let f be a continuous function in L1(R).
Consider the function F (t) ≡∑k∈Z f(t− k).

(a) Show that
∫ 1

0
|F (t)| dt ≤ ‖f‖1.

(b) Show that F is 1-periodic. Hence F ∈ L1
1(R).

(c) Prove that F is constant if and only if f̂(k) = 0 for all k ∈ Z, k 6= 0.

Exercise 3.7. Complex Gaussian function.

For α ∈ C, let f be given by f(t) ≡ exp(−απ t2) (t ∈ R).

(a) Show that f ∈ L1(R) if Re(α) > 0. Show that f ∈ L∞(R) if α ∈ iR. Does f belong to
L1(R) or to L2(R) for these purely imaginary α?

(b) We want to compute f̂ in case Re(α) > 0. It is tempting to try and to combine (69) and
(d) of Exercise 3.2. Unfortunately, (d) of Exercise 3.2 is not applicable if α 6∈ R. Why not?

Nevertheless, use (d) of Exercise 3.2 to compute f̂ .

(c) Consider the case where Re(α) > 0. Prove that

f̂(ω) =

√
1

α
e−π ω2

α (ω ∈ R). (75)

If Re(α) = 0, then it seems reasonable to define f̂(ω) =
√

1
α e

−π ω2

α (ω ∈ R). Why?

Exercise 3.8. Compute the Fourier transform of 1
2 (δν + δ−ν).

Exercise 3.9. Electric circuit.

Consider the electric circuit in Fig. 8. We put a potential Vin at the two points of the left hand
side of the circuit. We are interested in the resulting voltage difference Vout at the points at
the right hand side of the circuit. Vin is sufficiently smooth (Vin ∈ L1(R) ∩ L2(R)).

(a) Derive an expression of the form V̂out(ω) = H(ω)V̂in(ω) and determine the ‘transfer func-
tion’ H .
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Figure 10. An electric network can be viewed as a directed graph. Volages are measured on the
vertices of the graph. Each edge contains exactly one electrical component. See Exercise 3.11.

(b) Sketch, for R = 1, L = 0.14 and C = 10, the graph of the absolute value |H | of H .

Exercise 3.10. Harmonic oscillator.

Consider the equation for a simple harmonic oscillator

x′′(t) + γ x′(t) + ω2
0 x(t) = f(t). (76)

This equation describes the movement of a body M with mass m on a spring S (see Fig. 9).
The body moves along the x-axis (vertically in the figure). x(t) is the displacement distance
of the body at time t from its position at rest, ω0 is the natural oscillation frequency, γ is a
damping coefficient, f(t) = F (t)/m, where F (t) is a force on the body. The force F (t), and
therefore f(t) is known (the input). We are interested in the position x(t) (the output). We
assume that the input as well as the output is in L2(R)

(a) Assume that f(t) = f0 exp(−2πitω). Solve (76). Determine the transfer function H(ω)
defined by x(t)/f(t).

(b) For general f ∈ L2(R), we have f(t) =
∫
f̂(ω) exp(2πitω) dω (t ∈ R). Show that the

associated solution x satisfies x(t) =
∫
f̂(ω)H(ω) exp(2πitω) dω (t ∈ R).

Exercise 3.11. Electric circuits 2.

An electrical network can be represented by a directed graph: each edge represents a wire with
exactly one electrical component. So, some edges contain resistors, others capacitors, and so
on. The electrical currency in a wire is positive when flowing according to the direction of the
edge. Otherwise, it is negative (or 0). Voltages are measured at the vertices of the graph. A
directed graph can be described by a so-called incidence matrix. This is an M by N matrix,
if M is the number of vertices and N is the number of edges. The M vertices, as well as the
N edges are numbered. The jth column corresponds with the jth edge. It takes the value +1
at the kth coordinate and the value −1 at the ℓth coordinate if the ith edge starts at the kth
vertix and ends at the ℓth one. The other values in the column are 0.

Let V be the M -vector of voltages, that is, the kth coordinate Vk is the voltage at the kth
vertix. Let I be the N -vector of currencies, i.e., ij = Ij is the currency in the wire correspoding
with the jth edge (positive if in the direction of the edge). Let A denote the incidence matrix.

(a) Give the incidence matrix for the network in Fig. 10.

(b) Give an interpretion of the value of the kth coordinate of AI. What is the value of this
coordinate?

(c) Give an interpretation of the jth coordinate of ATV.
Let C be an N by N diagonal matrix, Cjj is the value of the capicitor at the jth wire if

this wire contains a capicitor, Cjj = 0 otherwise. The N by N diagonal mattices R and L are
defines similarly for resistors and inductors, respectively.
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(d) Show that {
AI = 0

ATV̇ = Rİ + C−1I + LÏ + ḟ = 0.
(77)

What does f describe?

(e) Has Kirchoff’s law of voltages been modelled? How?

(f) Put J ≡ İ. Assemble the vectors I, V and J in one large vector X ≡ (IT,VT,JT)T. The
coupled system (77) can be written as

EẊ = AX + U.

Give a describtion of E and A in terms of A, AT, R, C, L, and the N by N indentity matrix
IdN . Describe U in terms of f .

(g) Suppose that, in the situation of Fig. 10, we are interested in the voltage difference V3−V2.
Show that this difference can be expressed as cTX for some vector c. Give an expression for c.
This leads to a so-called control system

{
EẊ = AX + U

Y ≡ cTX.

U is the control parameter, Y is the observable. Explain these terms.

(h) Now, suppose that U is of the form U(t) = u exp(2πitω) for all t ∈ R, where u is a constant
vector (of appropriate dimension). Suppose X and Y can be written as X(t) = x exp(2πitω)
and Y (t) = y exp(2πitω) with x and y time independent. Show that

y = H(ω) ≡ cT(2πiωE − A)−1u (ω ∈ R).

Exercise 3.12. The wave equation.

We are interested in solutions u of the the wave equation

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for t ≥ 0, x ∈ R

for which x u(x, t) is in L2(R) for each t ≥ 0. Note that the requirement u(·, t) ∈ L2(R) can
be viewed as a boundary condition. The solution u also satisfies initial conditions

u(x, 0) = φ1(x) and
∂u

∂x
(x, 0) = φ2(x),

where φ1 and φ2 are real-valued functions in L2(R) and φ1 is continuously differentiable.
Consider a function u of the form u(x, t) = 1

2 [ψ1(ct+ x) + ψ2(x− ct)] where ψ1 and ψ2 are
sufficiently smooth function in L2(R).

(a) Prove that u satisfies the wave equation and the ‘boundary condition’.

(b) Show that

ψ̂1(ω) = φ̂1(ω) +
1

2πicω
φ̂2(ω) and ψ̂2(ω) = φ̂1(ω) − 1

2πicω
φ̂2(ω).

leads to a solution that also satisfies the initial conditions.

(c) Prove that

u(x, t) =

∫ ∞

−∞
φ̂1(ω) cos(2πωct) e2πiωx dω +

∫ ∞

−∞
φ̂2(ω)

sin(2πωct)

2πωc
e2πiωx dω.

(d) Suppose that both φ1 and φ2 are odd around 0 (i.e., φi(−y) = −φi(y)) and odd around 1
(i.e., φ(1−y) = −φi(1+y)). Show that ψ1(−y) = −ψ2(y) and ψ1(1−y) = −ψ1(1+y) (y ∈ R).
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Show that u(0, t) = u(1, t) = 0 for all t > 0 (Note that these results are consistent with the
ones in §2.12; see also Exercise 2.19).

Exercise 3.13. The heat equation.

We are interested in solutions u of the the heat equation

∂u

∂t
(x, t) = γ

∂2u

∂x2
(x, t) for t ≥ 0, x ∈ R

for which x u(x, t) is in L2(R) for each t ≥ 0. The solution u also satisfies the initial condition

u(x, 0) = φ(x),

where φ is a real-valued function in L2(R) and γ > 0.

(a) Prove that

u(x, t) =

∫ ∞

−∞
φ̂(ω) e−4π2ω2γt e2πiωx dω.

Exercise 3.14. Local mode analysis.

To asses the stability of a time dependent partial differential equation one often proceed as fol-
lows. The differential equation is linearized around the exact solution. Then it is analyzed how
the linearized differential equation responds ‘locally’ to a perturbation by a Fourier ‘mode’, i.e.,
by a perturbation of the form ε e2πiωx. The influence of the boundary conditions is discarded.

To illustrate this approach, consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
. (78)

Note that the heat equation is already linear.

(a) Try to find a solution of the form eλt e2πiωx. Show that λ = λ(ω) = −4π2ω2γ. Note that
λ < 0 and that eλt → 0 for t→ ∞ only if γ > 0.

Generally (for other PDEs), we would like to see that Re(λ(ω)) < 0 for all ω ∈ R.

(b) What is the effect of perturbing the solution u at time t = t0 by εe2πiωx?

(c) What is the effect of perturbing the solution at time t = t0 by an f ∈ L2(R)?

Note that any perturbation in L2(R) at t = t0 can be written as a superposition of pertur-
bations of the form εe2πiωx. If one of the components increases if t→ ∞, then the perturbation
amplifies and we may fear that the differential equation is unstable.

In this approach, boundary conditions have not been considered. Perturbations may get
controlled by imposing boundary conditions. However, the idea is here that, if a perturbations
grows strongly, then the perturbed solution already may become completely spoiled even before
the perturbation ‘hits the boundaries’.

If γ = γ(x, t) depends on time and on place, then the analysis in (a) is applied to the variant
of (78) with ‘frozen coefficients’, i.e., to the equation where γ(x, t) is replaced by the constant
γ(x0, t0). Here, again the idea is that perturbations introduced in the neighborhood of (x0, t0),
may get out of control, before they enter a more stable region (i.e., a region with nicer values
for γ(x, t)). Now, λ depends also on x0 and t0: λ = λ(ω, x0, t0), and for stability we would like
to see that Re(λ(ω, x, t)) < 0 for all ω, x, t.

The procedure is: linearize around the exact solution, discard boundary conditions, freeze
the coefficients and analyze the growth behavior of solutions of the form eλt e2πiωx. This ‘local
mode’ analysis is not a thorough stability analysis, but it is an easy way to obtain some insight
in the stability of the differential equation.

Local mode analysis may also be applied to discretized partial differential equations.
Discretization of the heat equation (with Euler’s method) leads to

u(xj , tn+1) = u(xk, tn) + γ
∆t

∆x2
D2u(xj , tn)
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Here, xj ≡ j∆x (j ∈ Z), tn ≡ n∆t (n ∈ N), and D2w(xj) ≡ w(xj +∆x)−2w(xj)+w(xj −∆x)
for functions w defined on the grid {xj}.
(d) Use local mode analysis to derive the Courant–Friedrich–Lewy (CFL) stability condition:
for stability we need

0 < γ
∆t

∆x2
≤ 1

2 .

Exercise 3.15. Sampling signals of bounded bandwidth.

Let Ω > 0. Consider a function f ∈ L2(R) with non-trivial amplitudes only at frequencies ω

with |ω| ≤ Ω, i.e., f̂(ω) = 0 if |ω| > Ω : f is of bounded bandwidth.
In this exercise it will be useful to consider the function F on R that is 2Ω-periodic and

that coincides with f̂ for ω ∈ R, |ω| ≤ Ω: F (ω) = f̂(ω) if |ω| ≤ Ω.

(a) Prove that f̂ ∈ L1(R). Show that f is continuous (or, to be more precise, the function

g(t) ≡
∫
f̂(ω) exp(2πiωt) dω (t ∈ R) is continuous and ‖g−f‖2 = 0. Hence, it is no restriction

to assume that f = g and that is what we will do) and even in C(∞)(R) (why?).

(b) With

γk ≡ 1

2Ω

∫ Ω

−Ω

F (ω) e2πiω k
2Ω dω (k ∈ Z),

we have that

F (ω) =
∞∑

k=−∞
γk e

−2πiω k
2Ω for all ω ∈ R

(why?). Now, with ∆t ≡ 1/(2Ω), show that γk = ∆t f(k∆t) and conclude that f̂ = F ΠΩ and

F (ω) =

∞∑

k=−∞
∆t f(k∆t) e−2πiωk∆t (ω ∈ R). (79)

In particular, we have that f̂(ω) =
∑

∆t f(k∆t) exp(−2πiωk∆t) if |ω| ≤ Ω.

(c) Show that (f(k∆t)) is in ℓ 2(Z).

(d) Now, suppose that, for an ℓ ∈ N, f ∈ L2(R) is such that

f(ω) = 0 if ω 6∈ O, where O ≡ {ω ℓΩ ≤ |ω| < (ℓ+ 1)Ω}.

Show that there is a 2Ω-periodic function F such that f̂ = F χO. Here, χO(ω) ≡ 1 if ω ∈ O
and χO(ω) ≡ 0 elsewhere. Prove that also for this F Equation (79) holds.

Exercise 3.16. Fourier transform of discrete measures.

Let δt be the point measure or Dirac delta function at t:
∫
δt(s) g(s) ds = g(t) for continuous

functions g. We have that δ̂t(ω) = exp(−2πitω) (ω ∈ R), .
Let (γk) be a sequence in ℓ 1(Z) and let (tk) be a sequence in R. Consider the discrete

measure µ defined by

µ ≡
∑

γk δtk
:

∫ ∞

−∞
g(x) dµ(x) =

∞∑

k=−∞
γk g(tk) (g ∈ C(R), g bounded).

(a) Show that µ̂ is given by µ̂(ω) ≡∑ γk exp(−2πitkω) (ω ∈ R), is bounded, and is continuous.

(b) Show that µ̂ is 2Ω-periodic if tk ≡ k∆t for all k ∈ Z and ∆t ≡ 1/(2Ω). Here Ω > 0.

(c) Show that the setting of (b) allows an extension to the case where (γk) ∈ ℓ 2(Z).

(d) Consider an f ∈ L2(R) for which f̂(ω) = 0 if |ω| > Ω. We may assume that f ∈ C(R)

(see Exercise 3.15(a)). Let F be 2Ω-periodic such that F (ω) = f̂(ω) for all ω, |ω| ≤ Ω.
Show that

µ̂ = F and f̂ = µ̂ΠΩ if µ ≡
∞∑

k=−∞
∆t f(k∆t) δk∆t.
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Note: this result is a form of the Shannon–Whitakker Theorem to be discussed below in §7.A
(see also Exercise 3.15).

Exercise 3.17. Weak convergence to the Dirac delta function.

For T > 0, let

fT (t) ≡ 2T sinc (2T t) =
sin(2πT t)

πt
(t ∈ R).

Consider a g ∈ C(R) with bounded support (i.e., g(x) = 0 for |x| large).

(a) In this part, we only need that g ∈ L1(R). Prove that, for δ > 0,

lim
T→∞

∫

|t|≥δ

fT (t) g(t) dt = 0 for all g ∈ L1(R).

(Hint: Consider the function G defined by G(t) ≡ g(t)/(πt) if |t| ≥ δ and G(t) ≡ 0 if |t| < δ.

Then G ∈ L1(R) and
∫
|t|≥δ fT (t) g(t) dt =

∫∞
−∞G(t) sin(2πT t) dt = 1

2i

(
Ĝ(−T ) − Ĝ(T )

)
→ 0

(T → ∞). Why?)

(b) Use the fact that
∫∞
0

sin(t)
t dt = 1

2π to show that for each δ > 0,

∫ +δ

−δ

fT (t) dt→ 1 for T → ∞.

(c) Prove that fT is even and

∣∣∣∣
∫ a

0

fT (t) dt

∣∣∣∣ ≤ 1 for all a > 0.

(Hint: Consider FT (t) ≡
∫ t

0
fT (s) ds (s ∈ R), inspect the graph of fT , and show that ‖FT ‖∞ ≤

FT ( 1
2T ) ≤ fT (0) 1

2T = 1.) Show that f 6∈ L1(R).

(d) Suppose that, in addition, g′ exists on (−a, a) for some a > δ > 0 and is in L1(−a,+a).
Then, |g(t) − g(0)| ≤

∫ δ

0 |g′(s)| ds for t ≥ δ. Prove that

∣∣∣∣∣

∫ +δ

−δ

fT (t) g(t) dt− g(0)

∣∣∣∣∣ ≤ 2

∫ δ

−δ

|g′(s)| ds for large T.

(e) Prove that

lim
T→∞

∫ +∞

−∞
fT (t) g(t) dt = g(0) if g ∈ C(1)(R) ∩ L1(R). (80)

Note. In (d) we used integration by part for functions g that are absolutely continuous
(locally at 0). The second mean value theorem for integral calculus gives a similar result:∣∣∣
∫ +δ

−δ
fT (t) g(t) dt− g(0)

∣∣∣ ≤ 2|g(δ) − g(−δ)| for continuous functions g that are locally non-

decreasing. Therefore, for (80) it suffices to require that the continuous function g with bounded
support is of bounded variation on some neighborhood of 0.

Exercise 3.18. The Dirac comb.

In Exercise 3.16, we defined the Fourier transform for discrete measure, ‘summable’ linear
combinations of Dirac delta functions, even though these objects are not in L1(R) or L2(R)
(even worse; they are not functions). In this exercise, we push the idea even further and define
the Fourier transform for

w∆t ≡
∑

k∈Z

δtk
, (81)



44 3 FOURIER INTEGRALS

where tk ≡ k∆t for some step size ∆t > 0 (k ∈ Z). This ‘operator’ is sometimes called the
Dirac comb by physicists (or shah function. ‘Shah’ is the name of the Cyrillic symbol w that is
used to denote the function): if the Dirac delta function can graphically be represented as an
infinitely large spike, then the Dirac comb can graphically be represented as infinite sequence
of infinitely large spikes. The Dirac comb simplifies certain formulas in the theory of sampling
signals (see, for instance, Exercise 6.9).

(a) For N ∈ N, consider the discrete measure µN ≡∑|k|≤N δtk
. Note that µ̂N is discussed in

Exercise 3.16. Show that µ̂N is a scaled version of the Nth Dirichlet kernel (see Exercise 2.20,
Eq. (52) and (54)).

(b) With Ω ≡ 1
2∆t , consider the functions hN ≡ µ̂NΠΩ (N ∈ N). Argue that, for each

continuously differentiable function g, the sequence (
∫∞
−∞ g(ω)hN (ω) dω) converges to 2Ω g(0):

lim
N→∞

∫ ∞

−∞
g(ω)hN(ω) dω = 2Ω g(0).

(Hint: adapt the arguments in Exercise 3.17, or, alternatively, use Theorem 2.4(b).)

(c) Argue that the Fourier transform of the Dirac comb w with step size ∆t is a scaled version
of the Dirac comb with step size 1/∆t:

ŵ∆t = 1
∆t w 1

∆t
. (82)
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4 Fourier integrals in more dimensions

In the preceding sections, we interpreted the variable t as time. However, in applica-
tions, it can also be a space variable. In those situations, more than one variable will
usually play a role. It is easy to generalize the theory for one dimension to a theory for
more dimensions. First, we introduce some notation.

We put ~x = (x1, x2, . . . , xd)
T for the space variable in a d-dimensional space Rd.

Here, d = 2 or d = 3, but d can also be larger. The frequency vector ~ω will also be
d-dimensional. We will write ~ω = (ω1, ω2, . . . , ωd)

T ∈ Rd.14 The multiplication between
a space vector and a frequency vector is the inner product (~x, ~ω) between these vectors
defined by

(~x, ~ω) ≡ ~ωT~x = x1 ω1 + x2 ω2 + . . .+ xd ωd.

If f is real-valued on Rd and square integrable, f ∈ L2(Rd), i.e.,

‖f‖2
2 ≡

∫
. . .

∫
|f(x1, . . . , xd)|2 dx1 dx2 . . . dxd =

∫
. . .

∫
|f(~x)|2 d~x <∞,

then the Fourier integral f̂(~ω) can be defined:

f̂(~ω) ≡
∫
. . .

∫
f(~x) e−2πi(~x,~ω) d~x (~ω ∈ Rd). (83)

The integrals range here, as elsewhere in this section (unless stated differently), from
−∞ to +∞.

As in §3, we first should define Fourier integrals for functions in L1(Rd) and then
introduce the Fourier integral for a function in L2(Rd) as the 2-norm limit of a sequence
of functions that are both in L1 as well as in L2. We leave the details of such a
formal introduction to the interested reader and concentrate on the situation where
f ∈ L2(Rd).

It can be shown that

f(~x) =

∫
. . .

∫
f̂(~ω) e2πi(~x,~ω) d~ω (~x ∈ Rd). (84)

4.A Application: diffraction

4.1 Huygens’ principle. In physics, diffraction is a wave phenomenon: the appar-
ent bending and spreading of waves when they meet an obstruction. Diffraction occurs
with electromagnetic waves, such as light and radio waves, and also in sound waves
and water waves. In diffraction theory, Huygens’ principle plays a central role: every
point on a wavefront which comes from a source can itself be regarded as a (secondary)
source. All the wavefronts from all these secondary sources combine and interfere to
form a new wavefront.

Here, we consider the case of far-field or Fraunhofer diffraction, where the diffracting
obstruction is many wavelengths distant from the point at which the wave is measured.
The more general case is known as near-field or Fresnel diffraction, and involves more
complex mathematics. Fraunhofer diffraction is commonly observed in nature.

14Higher dimensional Fourier techniques play a crucial role in analyzing the behavior of waves. In
these application, ~ω is the wave vector and is usually denoted by ~k = (k1, . . . , kd) instead of ~ω.
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Figure 11. The picture shows a two-dimensional intersection of a screen S with a long narrow
rectangular slit of width a. The intersection is perpendicular to the long direction of the slit. Plane waves
emitted from a mono-chromatic light source located at −∞ along the horizontal axis approach the screen
S. The waves are diffracted at the aperture. According to Huygens’ principle, points in the aperture can be
viewed as sources that emit (spherical) waves. These ‘secondary’ waves form an interference pattern at the
screen through P parallel to S: the distance s from P at (X,Z) to (x, 0) differs from the distance r from
P to the origin (0, 0). Depending on the wavelength λ of the light and the difference r− s in distance, the
waves emitted from (0, 0) and from (x, 0) may amplify each other or may cancel out at P .

4.2 Fraunhofer diffraction. Our obstruction is a screen S with a small transpar-
ent part on which we shine light. For ease of exposition we restrict ourselves here to
a two-dimensional situation, but we urge the reader to adapt the formulas below for
three dimensions. We consider a situation in which the y-coordinate can be discarded.
We assume that the aperture that bounds the transparent part of S is unbounded, rect-
angular, and perpendicular to the plane of the diagram in Fig. 11. In the plane of the
diagram we use Cartesian coordinates: x for the vertical direction, z for the horizontal
one (here, we follow traditional notation). The surface S is along the x- and the y-axis
at z = 0. The y-coordinate can be discarded here (Why?). Furthermore, we assume
that the width a of the aperture is small compared to the distance r from the origin
(0, 0) to a point of interest P . We also assume that the light source at L is located on
the negative z-axis with a distance from (0, 0) that is so large that a mono-chromatic
electric field E (light is composed of electromagnetic waves)15 emitted from the source
at L has the same magnitude and a constant phase at all points on the transparent
part of S (i.e., we assume that L is at −∞ along the z axis, E is a plane wave).16 The
field E at time t and location (x, z) with z ≤ 0 is given by E = E0 exp(2πi(kz − ωt)).

4.3 For ease of notation, we will assume in the exposition below that t = 0.

15An electromagnetic wave is a combination of oscillating electric and magnetic fields in perpendicular
orientation to each other, moving through space. The direction of oscillation is perpendicular to the
wave’s direction of travel.

16The electric field E is a plane wave if it is of the form ~E0 exp(2πi[(~k, ~x) − ωt]), where, with ~k ≡
(k1, k2, k3) and ~x ≡ (x, y, z), (~k, ~x) ≡ k1x+ k2y + k3z. E0 ≡ ‖ ~E0‖2 is the amplitude. The wave travels

in the direction of the wave vector ~k. k ≡ ‖~k‖2, or actually 2πk, is the wave number, λ ≡ 1/k is the
wavelength, and with c the speed of light, ω = c

λ
is the frequency. As mentioned above, the vector ~E0

is perpendicular to ~k = (k1, k2, k3): electromagnetic waves are transverse, in contrast to, for instance,

sound waves that vibrate in the direction of travel. They are longitudinal: ~E0 is a multiple of ~k.
Here, we restrict ourselves to the (x, z) plane (we omit y), and we assume that the wave travels along

the z-axis, i.e., ~k = (0, k3). We write k instead of k3 and we write E0 instead of ~E0, thus omitting the
direction of E0.
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The field at (x, 0) is E0. Then, according to Huygens’ principle, the field at P = (X,Z)
induced from a strip of width dx at (x, 0) will be

ΓA(x)E0 e
2πiks dx,

where s is the distance from (x, 0) to P , Γ is some proportionality factor that depends
on the wavelength and Z,17 and A(x) is the aperture function, which describes the
transparent and opaque parts of the screen S. For instance, A is the top-hat function
with width a in case of one slit and A is the sum of two shifted top-hat functions in
case of two slits.

Huygens’ principle is applicable if both X and the width a of the aperture are small
relative to Z and that is what we will assume here.

If r is the distance from (0, 0) to P , and ϑ is the angle between the line from P
to (0, 0) and the z-axis, then P = (X,Z) = (r sinϑ, r cos ϑ). Note that sinϑ ≈ X/Z.
Hence, if we use that |x| ≪ r, then s ≈ r − x sin(ϑ) and we find that the field at P is
given by

ΓE0 e
2πikr

∫
A(x) e2πikx sin(ϑ) dx = ΓE0 e

2πikr Â(k sin(ϑ)). (85)

Therefore, the reduction at P of the strength of the original field is proportional to the
Fourier transform of the aperture function. The intensity I(P ) of the diffracted waves
at P is the square of the absolute value of the expression in (85). Hence,

I(P ) = I0 (Â(k sin(ϑ))2, where I0 ≡ |ΓE0|2.
The intensity of the wave is what we measure/observe, or, on other words, the absolute
value of the Fourier transform can be measured. There is no information on the phase.
This fact is known as the missing phase problem in crystallography.

To obtain the formula’s for the more dimensional situation, note that, if we put
~x ≡ (x, 0) and ~p ≡ 1

r (X,Z), then (~x, ~p) = x sin(ϑ).

4.4 Single-slit diffraction. In case of a single slit, A is the top-hat function Πa/2

and

I(P ) = I0 a
2sinc2(aω), where ω ≡ sinϑ

λ
.

If the aperture is circular (in the (x, y)-plane), the pattern is similar to a radially
symmetric version of this equation, representing a series of concentric rings surrounding
a so-called central Airy disc.

4.5 Diffraction gradings. The aperture is a diffraction grading if it consists of N
parallel rectangular slits of width a at equal distance d from each other, with N ∈ N

large. Then (see Exercise 4.5) A is a sum of N shifted top-hat functions and

I(P ) = I0

(
a sinc(aω)

sin(Nπ dω)

sin(π dω)

)2

, where ω ≡ sinϑ

λ
. (86)

If a≪ d, then the light intensity takes locally maximal values at the angles ϑ that
satisfy

d sinϑ = ℓ λ (ℓ ∈ Z). (87)

17To be precise, Γ = −i/(λZ) in three dimensions and Γ =
p

1/(iλZ) in two dimensions. This precise
expression for Γ is not part of Huygens’ principle. The secondary sources in the Huygens’ principle
produce spherical waves Γ′ 1

r
exp(2πir) in 3-d and cylindrical waves Γ′′ 1√

r
exp(2πir) in 2-d; r is the

distance to the secondary source, Γ′ and Γ′′ are appropriate constants.
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This relation is known in crystallography as Bragg’s law.18

The most common demonstration of Bragg diffraction is the spectrum of colors seen
reflected from a compact disc: the closely-spaced tracks on the surface of the disc form
a diffraction grading, and the individual wavelengths of white light are diffracted at
different angles from it, in accordance with Bragg’s law.

Exercises

Exercise 4.1. Suppose f ∈ L2(R2) is of the form f(x, y) = f1(x)f2(y) (x, y ∈ R).

Derive an expression for f̂ in terms of f̂1 and f̂2.

Exercise 4.2.

(a) Formulate the Fourier transform (83) in polar coordinates for d = 2.

(b) Compute the Fourier transform f̂ of the the 2-dimensional top-hat function:

f(x, y) ≡ 1 if |x|2 + |y|2 ≤ 1 and f(x, y) = 0 elsewhere.

Exercise 4.3. The wave equation.

Consider the three dimensional wave equation

∂2u

∂t2
(~x, t) = c∆u(~x, t) for t ≥ 0, ~x ∈ R

3,

where the Laplace operator ∆ acts on the space variables ~x: ∆f ≡ ∂2f
∂x2

1

+ ∂2f
∂x2

2

+ ∂2f
∂x2

3

for sufficiently

smooth real-valued functions f with domain in R
3. c is a positive constant.

(a) Let ~k ∈ R
3. Show that

u(~x, t) = e2πi[(~k,~x)−ωt] (88)

is a solution if ω ∈ R is such that |ω| = cκ, where, κ ≡ ‖~k‖2 =
√
k2
1 + k2

2 + k2
3 .

(b) The real part of u in (88) has maxima at the (~x, t) for which (~k, ~x)−ωt = ℓ for some ℓ ∈ Z.

For a fixed time t, the ℓth maximum is at Pℓ ≡ {~x (~k, ~x) = ℓ + ωt}. Note that Pℓ is a plane

orthogonal to ~k (if ~x ∈ Pℓ and ~y ⊥ ~k then ~x+ ~y ∈ Pℓ). For this reason, waves of the form (88)

are called plane waves; ~k is the wave vector and κ (or actually 2πκ) is the wave number (in

many texts, waves of the form exp((~k, ~x) − ωt) are considered: then the factor 2π is included

in the wave vector and in the frequency). Show that P0 = {ct~ζ + ~y ~y ⊥ ~ζ}, where ~ζ is the

direction of ~k: ~ζ ≡ 1
κ
~k, ‖~ζ‖2 = 1. Observe that these planes move in the direction ~k at speed

c. Show that the distance between two neighboring planes is λ ≡ 1/κ: λ is the wave length.
Now, fix an ~x. Show that time between two consecutive tops at ~x is 1/|ω|: ω is the frequency

of the wave. Note that ω = c/λ.

(c) Prove that

u(~x, t) =

∫∫∫
φ̂1(~k) cos(2πωt) e2πi(~k,~x) d~k +

∫∫∫
φ̂2(~k)

sin(2πωt)

2πω
e2πi(~k,~x) d~k (89)

18From en.wikipedia.org: Diffraction from multiple slits, as described above, is similar to what
occurs when waves are scattered from a periodic structure, such as atoms in a crystal. Each scattering
center (e.g., each atom) acts as a point source of spherical wavefronts; these wavefronts undergo con-
structive interference to form a number of diffracted beams. The direction of these beams is described
by Bragg’s law. Now, d is the distance between scattering centers, ϑ is the angle of diffraction and ℓ is
an integer known as the order of the diffracted beam. Bragg diffraction is used in X-ray crystallography
to deduce the structure of a crystal from the angles at which X-rays are diffracted from it.
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is a solution in L2(R3) of the wave equation that satisfies the initial conditions u(x, 0) = φ1

and ∂u
∂t (x, 0) = φ2(x), where φi are sufficiently smooth functions in L2(R3). Here, ω depends

on ~k according to ω = cκ, with κ = ‖~k‖2.

(d) Show that there are L2(R3) functions ψ1 and ψ2 such that

u(~x, t) =

∫∫∫
ψ̂1(~k) e

2πi[(~k,~x)+ωt] d~k +

∫∫∫
ψ̂2(~k) e

2πi[(~k,~x)−ωt] d~k.

Again, ω = cκ = c‖~k‖2. Give an expression for ψ̂1 and ψ̂2 in terms of φ̂i.
Apparently, u can be viewed as a superposition of harmonic plane waves.

(e) In the one dimensional case, we could represent the solution as a sum of two waves, of which
one travels to the left and the other travels to the right (ψ1, ψ2, respectively in Exercise 3.12).
Do we have a similar representation in this three dimensional case?

For each direction vector ~ζ (i.e., ~ζ ∈ R
3 such that ‖~ζ‖2 = 1), define

Ψi(~ζ, s) ≡
∫ ∞

−∞
κ2 ψ̂i(κ ~ζ ) e2πiκs dκ (s ∈ R, i = 1, 2).

Show that

u(~x, t) =

∫∫

B

[Ψ1(~ζ, (~ζ, ~x) + ct) + Ψ2(~ζ, (~ζ, ~x) − ct)] d~ζ,

where we integrate over the semi-ball B ≡ {~ζ ‖~ζ‖2 = 1, ζ1 ≥ 0}. Where does the term κ2 come
from in the definition of Ψi?

It appears that, for each direction ~ζ, a wave that moves to the right and one that moves to
the left play a role. To obtain the solution u, we have to integrate over all directions ~ζ.

Note. In reality, waves are vector valued. For instance, they may describe the displacement of
molecules in air by a change in air pressure (acoustic wave). Then ~u(~x, t) is the displacement
vector: at time t, it describes the dispacement of the molecule that originally was located at
position ~x. For vector-valued waves, harmonic plane waves are of the form ~a exp(2πi[(~k, ~x)−ωt]),
where ~a is a constant vector in R

3. In case of an acoustic wave, ~a is a multiple of ~k (the pressure
changes in the direction in which the wave travels). In case of an electromagnetic wave, both

the ~ae for the electric component and the ~ab for the magnetic component are orthogonal to ~k;
in addition, ~ae is orthogonal to ~ab.

For vector-valued waves, the above analysis applies coordinate wise.

Exercise 4.4. Wavepacket, group velocity.

The function
(τ, x) e2πi(µτ−kx)

is a(n harmonic) wave with frequency µ and wavenumber k that travels with speed c ≡ µ/k.
The quantity 1/k is the wavelength.

(a) Explain the notions ‘frequency’, ‘speed’, and ‘wavelength’.

Consider a function f in L2(R) with frequencies concentrated around some frequency Ω,

i.e., f̂(ω) = f̂0(ω − Ω) with f̂0(ρ) = 0 (or ≈ 0) if |ρ| > ε for some small positive ε.
If x is a space variable, and τ the time variable, then (τ, x)  f(cτ − x), with c some

positive scalar, represents a group of waves or wavepacket that travels with speed c. Why can
c be viewed as speed?

(b) Prove that f(cτ − x) can be written as

g(τ, x) ≡ f(cτ − x) =

∫ ∞

−∞
f̂0(ρ) e

2πi(Ω+ρ)(cτ−x) dρ = f0(cτ − x)e2πi(Ωcτ−Ωx).

This expression reveals that f0(cτ − x) can be viewed as a modulation of the wave with
frequency µ = Ωc and wavenumber k = Ω and explains the term ‘wavepacket’. The function f0
is the enveloppe of the wavepacket g.
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Now, suppose that the speed depends on the frequency (as is often the case in practical
situation), c = c(ω). We are interested in the development in time of the group of waves that,
at x, is equal to f(−x) at time τ = 0.

(c) Explain why this group of waves is described by

g(τ, x) =

∫ ∞

−∞
f̂0(ρ) e

2πi(Ω+ρ)(c(Ω+ρ)τ−x) dρ

(d) Put c0 ≡ c(Ω) and c′0 ≡ c′(Ω). Show that

(Ω + ρ)(c(Ω + ρ)τ − x) = Ω(c0τ − x) + ρ([c0 + Ωc′0]τ − x) + O(|ρ|2) (|ρ| → 0)

and conclude that
g(τ, x) ≈ f0([c0 + Ωc′0]τ − x) e2πi(Ωc0τ−Ωx).

Note that the enveloppe f0 of the wavepacket travels at a different speed as the wave e2πi(c0τ−x):
c(Ω) is the phase velocity and c(Ω)+Ωc′(Ω) is the group velocity. Nevertheless, the wavepacket
hardly desintegrates in time: the shape of the wavepacket, the enveloppe, is (approximately)
preserved.

Suppose we travel with the wavepacket. How will we experience the differences in speed?

(e) Note that the frequency µ ≡ ωc depends on the wavenumber according to µ(ω) = ωc(ω).
The function that expresses µ in terms of the wavenumber is called the dispersion relation.

Show that the group velocity is given by µ′(Ω) and the phase velocity by µ/Ω (= µ(Ω)−µ(0)
Ω ).

If the spacial domain is d-dimensional, then the wavenumber is a d-vector ~k = (k1, . . . , kd)
T

and if the frequency µ depends on ~k then the group velocity is the vector

(
∂µ

∂k1
, . . . ,

∂µ

∂kd
)T

(f) Describe the notion of wavepacket on a d-dimensional spatial domain and interpret the
notion of group velocity.

Exercise 4.5. Diffraction gradings.

Suppose the aperture in §4.A is a diffraction grading consisting of N parallel rectangular slits
of width a at equal distance d from each other.

(a) Use the notation of §4.A and prove that the intensity I(P ) at P of mono-chromatic light
of wavelength λ is as in (86).
(Hint: use the result of (c) of Exercise 3.4: N = 2K + 1.)

(b) Assume that a≪ d. Prove (87), Bragg’s law.

(c) For wavelength λ1 ≡ λ, there is a locally maximal light intensity at the angle ϑ1 for which
ϑ1 ≈ sinϑ1 = ℓλ1

d . Determine the smallest ∆λ for which λ2 ≡ λ+ ∆λ has zero light intensity
at angle ϑ1: ∆λ is the theoretical resolution of the grading (the difference between wavelengths
that can produce separate images).

Exercise 4.6. Consider the situation of §4.A where the screen S is again in the (x, y)-plane,
but where the aperture is bounded now (with a diameter that is small compared to the distance
from S to P ). The aperture function A(x, y) is two-dimensional now.

(a) To describe the field E and the intensity I(P ) at P we need expressions involving A(x, y).
Give these expressions.

(b) Compute I(P ) in case the aperture is circular: A is the two-dimensional top-hat function.
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5 Discrete Fourier transforms

5.1 If f is T -periodic and sufficiently smooth, then we have that (cf. §§2.2 and 2.4)

f(t) =

∞∑

k=−∞
γk(f) e2πit k

T , where γk(f) ≡ 1

T

∫ T

0
f(t) e−2πit k

T dt. (90)

Suppose that the function values of f are sampled at t = n∆t with ∆t = T
N and

that only the sample values fn ≡ f(n∆t), for n = 0, . . . ,N − 1, are available. Then it
seems reasonable to approximate γk(f) by a Riemann sum, that is, by γ̃k, where

γ̃k ≡ 1

T

N−1∑

n=0

∆t f(n∆t) e−2πin∆t k
T =

1

N

N−1∑

n=0

fn e
−2πi nk

N . (91)

We would like to know how accurate the approximations are.
Note that the oscillations t  exp(2πit k

T ) and t  exp(2πitk+N
T ) coincide on the

sample points n∆t. This phenomenon is known as aliasing. Two implications are
important for our discussion here. The first one is slightly disappointing: γ̃k+N = γ̃k

for all k ∈ Z. Hence, γ̃k can not form a good approximation to γk(f) for all k ∈ Z. The
relation that follows from the first equality in (90),

f(n∆t) =

N−1∑

k=0

µk(f)e2πi nk
N , where µk(f) ≡

∞∑

j=−∞
γk+jN(f), (92)

is another implication. In combination with the theorem below, this implies that

γ̃k = µk(f), (k ∈ Z) (93)

and estimates for the size of the |γk+jN(f)| lead to estimates of the error in the ap-
proximation γ̃k of γk(f), because

|γ̃k − γk(f)| ≤
∑

j 6=0

|γk+jN (f)| (k ∈ Z). (94)

For instance, for |k| ≤ 1
2N , the upper bound can be small, particularly if f is smooth

(for an illustration, see Fig. 12).
The following theorem is not only important for proving our claim (93), but it plays

a central role in many computations (in ‘digital Fourier’ techniques)

5.2 Inversion theorem for discrete Fourier transform (DFT).

γ̃k ≡ 1

N

N−1∑

n=0

fn e
−2πi nk

N ⇒ fn =
N−1∑

k=0

γ̃k e
2πi nk

N . (95)

Proof. As in 2.7, our proof relies on orthogonal bases.
Let ℓN be the space of sequences f = (f(0), . . . , f(N − 1)) of N complex numbers,

or, equivalently, of complex-valued functions f on {0, 1, . . . ,N−1}. Note that, for ease
of notation, we write f(n) in this proof instead of fn.

Note that <f ,g>≡∑f(k)g(k) defines an inner product on ℓN . Here and in the
rest of the proof, we sum over k = 0, 1, . . . ,N − 1.
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Figure 12. The left picture shows the log10 of the absolute value of the Fourier coefficients γk(f)
(marked with ◦ ◦ ◦) of a real-valued smooth T -periodic function f and of the discrete Fourier coefficients
eγk(f) (marked with ∗ ∗ ∗) for N = 100, the right picture shows the log10 of the absolute value of the error
γk(f) − eγk(f). For these pictures, f(t) ≡ (t2 − 1) cos2(10πt) on [−1,+1], T = 2.

With φn(k) ≡ exp(2πikn
N ) and ζ ≡ exp(2πin−m

N ), we have that

<φn,φm>=
∑

e2πik n−m
N =

∑
ζk =





ζN − 1

ζ − 1
= 0 if n 6= m

N if n = m.

This shows that the φk, (k = 0, . . . , N − 1), form an orthogonal system. In particular,
they are linearly independent. Since their number is precisely the dimension of ℓN , they
form a basis. Therefore, f is of the form f =

∑
αkφk for certain scalars αk. Taking

the inner product of this expression with φm and using the orthogonality shows that
Nαk =<f ,φk>. Hence,

f =
∑

αk φk, where αk =
<f ,φk>

N
=

1

N

∑
f(k) e−2πi kn

N = γ̃n.

The last expression follows from the definition of the inner product and of φk.

The definition of the γ̃k and the statement for fn in the theorem is correct for all k
and n in Z, although it suffices to let k and n run from 0 to N − 1. This observation is
of interest, if we want to use γ̃k as an approximation to γk(f): the approximation will
be useful for |k| < 1

2N and most accurate for |k| ≪ N (cf., Fig. 12).

5.3 Discrete cosine transform (DCT). If the T -periodic function f is real-
valued and even, then the sequence of Fourier coefficients γk(f) is even and real and f
can be expressed as a linear combination of cosines. Discrete variants lead to discrete
cosine transforms (DCTs). The DCTs, and in particular the DCT-II, are often used in
signal and image processing, especially for lossy data compression, because they have
a strong “energy compaction” property: most of the signal information tends to be
concentrated in a few low-frequency components of the DCT.

If f0, . . . , fN is a sequence of real numbers, then there are several ways of expanding
this sequence to an even one. This leads to several variants of the DCT. For instance,
with gn ≡ fn and gN+n ≡ fN−n for n = 0, . . . ,N − 1, i.e.,

(gn) = (f0, f1, f2, . . . , fN−1, fN , fN−1, . . . , f2, f1),
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gn is defined for n = 0, . . . , 2N − 1 and the DFT in (95) leads to DCT-I:

γk =
1

2N

2N−1∑

n=0

gne
−2πi nk

2N =
1

2N

(
N−1∑

n=0

fne
−πi nk

N +
N∑

n=1

fne
−πi

(2N−n)k
N

)

=
1

2N

(
N−1∑

n=0

fne
−πi nk

N +

N∑

n=1

fne
πi nk

N

)

=
1

2N

(
f0 + (−1)kfN

)
+

1

N

N−1∑

n=1

fn cos(π
nk

N
).

Note that the periodic extension gn ≡ gn+2jN (n ∈ Z) is even both around n = 0 and
around n = N . The expression for γk is correct for all k ∈ Z. Note that γk is also even
around k = 0 and k = N . Therefore, the expression for γk has to be computed only
for k = 0, . . . , N . Since γk and gn have the same symmetry properties, we can easily
conclude from the second relation in (95) that the inverse of DCT-I is given by

fn = (γ0 + (−1)nγN ) + 2
N−1∑

k=1

γk cos(π
nk

N
).

The extension

(gn) = (f0, f1, . . . , fN−1, fN−1, . . . , f1, f0) = (f ,fT),

where f ≡ (f0, . . . , fN−1) and fT is f in reverse order, leads to DCT-II:

γk ≡ 1

N

N−1∑

n=0

fn φn,k and fn = γ0 + 2

N−1∑

k=1

γk φn,k, where φn,k ≡ cos

(
π

N
(n+

1

2
)k

)
.

Note that the sequence f here in DCT-II, is of length N , whereas the sequence f in
DCT-I is of length N + 1. In both case, g is of length 2N . The periodic extension of
the (gn) here in DCT-II is even around n = −1

2 and even around n = N − 1
2 . The

sequence of coefficients γk is even around k = 0, odd around k = N , and γN = 0.
Actually, application of (95) leads to a coefficient γ̃k that is the above γk times ζk,
where ζ ≡ exp(πi 1

2N ). Coordinate-wise multiplication of the sequence of γk by the
sequence of ζk results in a sequence that is even around k = N . These factors ζk have
been moved to the formula for fn to keep the formulas real.

DCT-III arises from the sequence

(gn) = (f0, f1ζ
1, . . . , fN−1ζ

N−1, 0,−fN−1ζ
N+1, . . . ,−f1ζ

2N−1). (96)

The periodic extension of (gn) is equal to (. . . , f0, f̃ , 0,−f̃ T,−f0,−f̃ , 0, . . .) times z,
where f̃ ≡ (f1, . . . , fN−1) and z ≡ (ζn). Note that ζ2N = 1, ζN−n = −ζN+n, and
ζ−n = ζn. Hence, z is 2N -periodic, odd around n = N , and even around n = 0. This
shows that the periodic extension of (gn) is not only even around n = N , but also
around n = 0. Except for the position of the scaling factor 2N , DCT-III is the inverse
of DCT-II. Without the factors ζn, the sequence in (96) is odd around n = N .

The sequence (. . . ,f ,−fT,−f ,fT, . . .) is odd around n = N − 1
2 and even around

n = −1
2 . Multiplication by z̃ ≡ (ζn+ 1

2 ) leads to DCT-IV:

γk =
1

N

N−1∑

n=0

fn φn,k and fn = 2
N−1∑

k=0

γk φn,k, where φn,k = cos

(
π

N
(n+

1

2
)(k +

1

2
)

)
.
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The sequence z̃ is also odd around N − 1
2 (zN−1 = −zN , . . .) and even around n = −1

2
(z−1 = z0, . . .).

In the above, we obtained the DCT by extending first to a sequence (gn) of length 2N .
DCT of type V–VIII follow from making sequences (gn) of length 2N − 1 by odd or
even extensions (before the periodic extension). However, these variants seem to be
rarely used in practice.

DCT-II seems to be the most commonly used form of discrete cosine transform and
is often referred to as “the DCT”. Matlab uses DCT-IV.

From en.wikipedia.org: The DCT is used in JPEG image compression, MJPEG
video compression, and MPEG video compression. There, the two-dimensional DCT-II
of 8x8 blocks is computed and the results are filtered to discard small (difficult-to-
see) components. That is, n is 8 and the DCT-II formula is applied to each row and
column of the block. The result is an array in which the top left corner is the DC
(zero-frequency) component and lower and rightmore entries represent larger vertical
and horizontal spatial frequencies.

A related transform, the modified discrete cosine transform, or MDCT (see Exer-
cise 5.10), is used in AAC, Vorbis, and MP3 audio compression.

DCTs are also widely employed in solving partial differential equations by spec-
tral methods, where the different variants of the DCT correspond to slightly different
even/odd boundary conditions at the two ends of the array; cf., Exercise 5.8.

The discrete Fourier transform (and the real variants, the DCTs) plays a central
role in all numerical computations of Fourier transform. This is the case for periodic
functions, as we saw above, but also for non-periodic ones, as we will explain now.

5.4 If f is in L2(R) then (see Theorem 3.12).

f̂(ω) =

∫ ∞

−∞
f(t) e−2πitω dt and f(t) =

∫ ∞

−∞
f̂(ω) e2πitω dω.

For numerical computations, we have to discretize.
First, we can select an interval [a, b] such that f is small outside [a, b], or, to be

more precise,
∫∞
−∞ |f(t)| dt ≈

∫ b
a |f(t)| dt. Then,

f̂(ω) ≈
∫ b

a
f(t) e−2πitω dt (ω ∈ R).

Now, with T ≡ b− a, we can follow the same discretization strategy as for T -periodic
functions. For ∆t ≡ T

N , select a sequence of equally space base points tn = t0 + n∆t,

n = 0, . . . , N − 1 in [a, b). For ω0, let ωk ≡ ω0 + k
T for k ∈ Z. Then, a Riemann sum

approach leads to f̂(ωk) ≈
∫ b
a f(t) e−2πitωk dt ≈∑N−1

n=0 ∆tf(tn) e−2πitnωk . Hence,

f̂(ωk) ≈
(

1

N

N−1∑

n=0

fn e
−2πi nk

N

)
T e−2πit0(ωk−ω0), where fn ≡ f(tn) e−2πitnω0. (97)

Similarly,

f(tk) ≈
(

N−1∑

k=0

gk e
2πi nk

N

)
e2πitnω0 , where gk ≡ f̂(ωk)

e2πit0(ωk−ω0)

T
. (98)
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Due to aliasing, our approximations for f̂(ωk) will only be of interest for N values
of k. Therefore, it is convenient to select the ω0 such that the ωk are in the range of
interest, for k = 0, . . . , N − 1.

Note that the expression in brackets are discrete Fourier transforms (cf., Theo-
rem 5.2).

The step size 1
T in the frequency domain is determined by the length of the interval

[a, b] in time domain that carries the interesting part of f . The number N of interesting
sample points in both time and frequency domain is determined by ∆t = T/N , that
is, by the sample rate in time domain. Since the discrete Fourier transform only leads
to a useful approximation for at most N frequencies spanning an interval [ω0, ωN ) of
length ωN −ω0 = N/T = 1/∆t, one can also argue that N is determined by the length
of the interval in frequency domain that carries the interesting part of f̂ .

Often large values are required for both T as well as for 1/∆t. This implies that N
will be huge. For instance, with T = 1000 and 1/∆t = 1000, N will be 106. But larger
values for N are not unexceptional. Since discrete Fourier transforms are performed in
all numerical computations involving Fourier transforms (for instance, in digital signal
processing, in date compression as in MP3 and JPEG, etc.) it will be clear that it is
important to have an efficient algorithm for this transform. This is the subject of the
next section.

5.5 Fast Fourier Transform. Let α0, . . . , αN−1 be scalars and suppose we want
to compute

fn ≡
N−1∑

k=0

αk e
2πi kn

N for n = 0, . . . ,N − 1. (99)

Obviously, an efficient algorithm for computing the fn, is an efficient algorithm for the
discrete Fourier transform.

If we assume that the values for exp(2πikn
N ) are available, then a naive implementa-

tion of the formula in (99) would still require N multiplications and N − 1 additions to
compute one fn: the N values fn can be computed in (2N − 1)N ≈ 2N2 flops (floating
point operations). The Fast Fourier Transform (FFT) algorithm can it do in 2Nℓ flop
where ℓ = log2(N). If, for instance, N = 220 ≈ 106, then ℓ = 20 and there is a gain
by a factor N/ℓ = 5104 which is the difference between approximately 14 hours and 1
second!

Radix 2. To explain the idea of FFT, assume that N = Nℓ ≡ 2ℓ for some positive
integer ℓ. Put M ≡ Nℓ−1 = N/2. Now, write fn as

fn =

(∑

2k<N

α2k e
2πi 2kn

N

)
+

( ∑

2k+1<N

α2k+1 e
2πi 2kn

N

)
e2πi n

N . (100)

For ease of discussion, let us denote the term in the first pair of brackets by fe,n and
the one in the second pair by fo,n (‘e’ for ‘even’, ‘o’ for ‘odd’):

fn = fe,n + fo,n e
2πi n

N = fe,n + fo,n e
πi n

M . (101)

We now concentrate on fe,n. Note that

fe,n =
M−1∑

k=0

α2k e
2πi kn

M ,
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which is an expression as in (100), but with N reduced by a factor 2 to M . We are
only summing over half of the number of terms (M instead of N). But, of course, that
does not lead to savings in the computational costs, since we also have to compute
the fo,n. However, exp(2πik(n+M)

M ) = exp(2πikn
M ) and, consequently, fe,n+M = fe,n for

all n. The aliasing phenomenon is helpful here: we only have to compute fe,n for the
values n = 0, . . . ,M − 1 and we get the fe,n for n from M to N − 1 for free. The same
observation applies to fo,n. Since exp(πin+M

M ) = − exp(πi n
M ), we now have that

fn+M = fe,n − fo,n e
πi n

M . (102)

We apply (101) and (102) for n = 0, . . .M − 1 to obtain the fn for n = 0, . . . ,N − 1:
we have to compute only half of the fe,n and fo,n values and this is where the savings
come from. Of course, this idea can be applied recursively (to the fe and fo, etc.), and
that is what FFT does.

We explained two recursive step at the ‘highest’ level (from Nℓ−1 to Nℓ). FFT
starts the computation at the lowest level (from N0 to N1) and then works recursively
towards the highest. Note that the ‘Fourier coefficients’ α2k and α2k+1 of fe,n and fo,n,
respectively, coincide with the Fourier coefficients of fn; there is only a difference in
numbering. Similarly, the Fourier coefficients at the lowest level are equal to the αk’s.

To analyze the computational costs of FFT, let κℓ−1 denote the number of flops to
compute the values fe,n for n = 0, . . . ,M − 1. Then we have that

κℓ = 2κℓ−1 + 2N. (103)

The first factor 2 expresses the fact that computing the fo,n is as expensive as computing
the fe,n. The factor 2N comes from the multiplication by exp(2πin/N) and summing
the ‘e’ and ‘o’ components for each of the N values of n (see (101) and (102)). Recursive
application of (103) leads to κℓ = 2(κℓ−1 +N) = 2(2κℓ−2 +2M)+2N = 22κℓ−2 +2N +
2N = . . . = 2ℓκ0 + 2Nℓ. The number of flops for computing (99) at the lowest level is
0: κ0 = 0. Therefore,

κℓ = 2Nℓ.

In our discussion above, we assumed that the values of exp(2πikn
N ) are available.

They can be computed in an implicit way: with ω1 ≡ exp(πi 1
M ), we can compute the

f̃o,n ≡ fo,n exp(πi n
M ) recursively as

ω = 1,

for n = 0 to M − 1

f̃o,n = fo,n ω

ω = ω ω1

This scheme requires two multiplications for each n, but since f̃o,n can be used twice
(cf. (101) and (102)), the cost formula (103) is still correct. Apparently, all the fn can
be computed in 2Nℓ flops plus ℓ exponentials exp(πi2−j) (j < ℓ).

Although it is relatively simple to write a code for the FFT algorithm, we do not
encourage to do it yourself. There are so many details to take care of if you really want
your code to be efficient. There are excellent codes available, codes that have been
optimized for specific computer architectures and processors.

Radix d. In the discussion above we assumed N to be a power of 2. What if that is
not the case?
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Of course, we can adopt the above saving strategy when N is, say, a power of 3. Then,
we split the sum for fn in three parts involving α3k, α3k+1, and α3k+2, respectively,
(cf. (100)), etc.. The resulting FFT algorithm is called FFT with radix 3. The FFT
with radix 4 appears to be the most efficient variant, even more efficient than the above
‘basic’ variant of radix 2.

General. More generally, we can decompose N as a product of powers of primes
and we can formulate FFT variants accordingly. However, such a strategy will not
be highly efficient: on each level, we have to deal with another prime number. The
following observations are more useful.

Suppose we have a choice of applying FFT with N = 2ℓ or the naive approach with a
much smaller N , say, N = 1

22ℓ + 1. Then, it is interesting to note that the FFT on the
longer sequence is still faster than the naive approach. It is faster by approximately a
factor N/(4ℓ); this is still the difference between 3h30 and 1 sec. in case N = 220 ≈ 106.
Therefore, if we are in the situation of §§5.1 or 5.4 and we can select our sample ratio
∆t or the sample length T freely, then it is more efficient to take a larger N in order
to get a power of 2. In a number of other applications, the Fourier transforms are only
used for fast computations and not for, say, filtering: filtering affects the functions in
frequency domain (see, for instance, Exercise 5.4). In such applications, the sequence
of (αk) can safely be trailered with zeros in order to get a sequence of the desirable
length.

Finally, we mention that a discrete Fourier transform can be viewed as a convolution
product between two sequences of complex numbers (see Exercise 5.5). Since convolu-
tion products can be efficiently computed with FFT with radix 2 (and 4), this offers
also a possibility for fast computation of the discrete Fourier; for more details, see
Exercise 5.5.

The DCTs also have fast variants. This is not surprising, since the DCTs can be
obtained from the complex DFT by simple rearranging terms.

Note. The FFT algorithm has been introduced by Cooley and Tukey in 1965 [3]. Their paper
is one of the most cited mathematical papers. It was published at a time when computers firstly
made large scale computations possible. Earlier publications of the fast algorithm (by Gauss in
the first half of the 19th century (published in his collected works, 1866) and by Runge (1903))
appear to have been forgotten in 1965.

Exercises

Exercise 5.1. Accuracy of the DFT.

Let f be sufficiently smooth and T -periodic. We sample f at tn ≡ n∆t with sample ratio
∆t = T/N and approximate γk by γ̃k(f) = 1

N

∑N−1
n=0 f(tn)e−2πi nk

N .

(a) Prove that ‖f − Sn(f)‖∞ ≤∑|k|>n |γk(f)|.
(b) Prove that |γk(f) − γ̃k(f)| ≤∑j 6=0 |γk+jN (f)|.

(c) Prove that ‖f − S̃n(f)‖∞ ≤ 2
∑

|k|>n |γk(f)| if |k| < 1
2N .

Here, S̃n(f) is the nth partial Fourier series of f with γk(f) replaced by γ̃k(f).

Prove that S̃n(f) is the inverse discrete Fourier transform of the (γ̃k(f)) as defined in Theo-
rem 5.2.
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(d) Suppose that f ∈ C(i)(R) for some i ≥ 2. Put κ ≡
(

T
2π

)i ‖f (i)‖1.
Show that, if |k| < 1

2N ,

|γk(f) − γ̃k(f)| ≤ 2κ

∞∑

j=1

(jN − |k|)−i ≤ 3κ (N − |k|)−i.

(Hint: use the integral criterion to estimate
∑∞

j=2(jN − |k|)−i.)

(e) If N is even and N = 2M then f(tn) = S̃M (f)(tn) for all n ∈ Z. Prove this.

S̃M (f) interpolates f at the equally space grid-points tn = n∆t: S̃M (f) is the interpolating
trigonometric polynomial of f at tn.

Exercise 5.2. Consider the construction of §5.4. Put

f̂d(ωk) ≡
(

1

N

N−1∑

n=0

fn e
−2πi nk

N

)
Te−2πit0(ωk−ω0).

Estimate the computational costs to compute f̂d(ωk) for k = 0, . . . , N − 1.

Exercise 5.3. Discrete convolution product.

Let ℓN be the space of sequences of N complex number.
If α = (α0, . . . , αN−1) the we will also write α(n) instead of αn. We denote the discrete Fourier
transform of α by F(α):

F(α)(k) ≡
N−1∑

n=0

αn e
−2πi kn

N (k = 0, . . . , N − 1).

We define the convolution product α ∗ β on ℓN as follows

α ∗ β(n) ≡
N−1∑

k=0

α(n− k)β(k) =
N−1∑

k=0

α(k)β(n− k) (n = 0, . . . , N − 1). (104)

Here, we assumed α(k) to be defined for values of k outside {0, . . . , N−1} by periodic extension:
α(k +N) = α(k) (k ∈ Z).

(a) Prove the equality in (104).

(b) Prove that F is a bijection from ℓN onto ℓN .

(c) Prove that
F(α ∗ β) = F(α) · F(β) (α,β ∈ ℓN).

Here, · is the coordinate-wise product: µ · ν(n) ≡ µ(n)ν(n) for µ,ν ∈ ℓN .

(d) Show that F−1(µ) ∗ F−1(ν) = F−1(µ · ν) for all µ,ν ∈ ℓN .

Exercise 5.4. Multiplying polynomials.

Let p and q be polynomials of degree M and L, respectively, p(x) =
∑M

n=0 αn x
n and q(x) =∑L

k=0 βk x
k.

Let N ≥M+L. By defining αn ≡ 0 if n > M , and βk ≡ 0 if k > L, the sequences α = (αn)
and β = (βk) belong to ℓN . The convolution is defined as in (104).

(a) Prove that the product polynomial pq is given by

pq(x) ≡ p(x) q(x) =

N∑

m=0

α ∗ β(m)xm.

(b) Compute the convolution product of the sequence α = (1, 2, 1) and β = (1, 4, 6, 4, 1).
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(c) Prove that α ∗β = F−1(F(α) · F(β)) also if we increase N and trailer the sequences of αs
and βs with zeros.

(d) The coefficients of the product polynomial can be computed i) directly from the definition
of the convolution product, but also ii) via the discrete Fourier transform and its inverse.
The discrete Fourier transform and its inverse can be computed in ii.a) the naive way with
N = M + L or ii.b) with FFT and N = 2ℓ, ℓ such that 2ℓ−1 < M + L ≤ 2ℓ.
Analyze and compare the computational costs of these three approaches i), ii.a), and ii.b).
What is the most efficient one? Does it depend on the size of M and L?

Exercise 5.5. ZCT and DFT as a convolution product.

Here, we will see that the DFT can be written as a convolution product.
Let N ∈ N and let α = (α0, α1, . . . , αN−1) be a sequence in C.

(a) For ζ0, ζ1 ∈ C, non-zero, let zk ≡ ζ0 ζ
k
1 (k ∈ Z). Consider the transform

γk ≡
N−1∑

n=0

αnz
−n
k (k = 0, . . . , N − 1). (105)

A transform of this form is called a z-chirp transform (ZCT) .
Show that the DFT is a special kind of z-chirp transform (ζ0 = 1 and ζ1 = exp(2πi/N)).

(b) Consider formula (105). Note that 2kn = n2 + k2 − (n − k)2. Let ζ ∈ C be such that
ζ2 = ζ1. Prove that

γ = (α̃ ∗ β)/β, where α̃(n) ≡ αn ζ
−n
0 ζ−n2

, β(n) ≡ ζn2

.

What is the range of n for γ(n) = γn, α̃(n) and β(n)? Has the range to be extended?

(c) Describe a procedure using FFT with radix 2 that computes the z-chirp transform (105)
also in case N is not a power of 2. Pay special attention to the way you extend the range of β.

(d) Analyze the computational costs of this approach. What are the costs for perfoming the
DFT (99) with this approach?

(e) Write a MATLAB code to perform DFT for any N based on FFT with radix 2.

Exercise 5.6. Convolution and circulant matrices.

We can identify sequences f = (f0, . . . , fN−1) of N complex numbers with vectors f in the
N -dimensional vector space ℓN . Consequently, the discrete Fourier transform F and its inverse
can be identified with N by N matrices. Let the N by N matrix F represent the discrete Fourier
transform (i.e., the transform from the fn to the γ̃k in Theorem 5.2. See also Exercise 5.3).

(a) Describe the matrix F .

(b) Prove that the inverse Fourier transform is represented by F−1 and that F−1 = NFH,
where FH is the conjugated transpose of F.

(c) If α ∈ ℓN , then the convolution product α ∗ β defines a linear map from ℓN to ℓN .
Describe the matrix A that represents this map: Aβ = α ∗ β.
Show that A = (aij) is a circulant, that is aij = ai+1 j+1 if j < N and aij = ai+1 1 if j = N .
Show that the ‘convolution map’ identifies the circulant matrices with vectors in ℓN .

(d) Show that the columns of F are eigenvectors of A and that the associated eigenvalues are
the discrete Fourier coefficients F(α)(k) of α.

Exercise 5.7. DCT.

Prove the formulas for DCT-II, DCT-III, and DCT-IV.

Exercise 5.8. DCT and differential equations.

The Fourier transform and the discrete Fourier transform can be viewed as transformations
from one orthogonal basis system to another. The same is true for discrete cosine transforms,
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although this is a bit hard to see. The following questions offer an alternative approach for
proving orthogonality of the cosines that are involved in the DCTs: the cosines show up in the
numerical solution of the symmetric eigenvalue problem f ′′ = λf with appropriate boundary
conditions as f ′(0) = f ′(1) = 0 (f ∈ C(2)([0, 1])).

(a) Consider the N by N matrix A with all 1 on the two first co-diagonals (Ai,i+1 = Ai+1,i = 1)
and −2 on the diagonal, except for A1,1 and AN,N which are equal to −1. Prove that the vectors
~φk with nth coordinate equal to cos(πk(n + 1

2 )/N) are eigenvectors of A. Conclude from the

fact that A is symmetric that the vectors ~φk form an orthogonal system. Show that the cosines
involved in DCT-II form an orthogonal system.

Explanation: A can be viewed as the discretization of the second derivative f  f ′′, where f
has been discretized on [0, 1] in the points tn ≡ (n − 1

2 )∆t with ∆t ≡ 1/N : fn ≈ f(tn). If we
require the derivative of f to be zero at t = 0, then f(1

2∆t)−f(− 1
2∆t) ≈ f0−f−1 = 0 combined

with f(− 1
2∆t)− 2f(1

2∆t)+ f(3
2∆t) ≈ f0 − 2f1 + f2 = λf1 yields −f1 + f2 = λf1. This explains

the choice A1,1 = −1. Similarly, the boundary condition f ′(1) = 0 leadsto AN,N = −1.

(b) For DCT-I, consider the N + 1 by N + 1 matrix A with ones on the two first co-diagonals

and −2 on the diagonal except for A1,2 = AN+1,N = 2. Show that that the vectors ~φk with nth
coordinate cos(π kn

N ) are eigenvectors of A. A is not symmetric but J−1AJ is, if J the identity

matrix except for J1,1 = JN+1,N+1 ≡
√

2.

Explanation: Here f has been discretized in the points tn = (n − 1)∆t, ∆t = 1/N . Again
the derivative of f is taken to be zero at 0 and at 1: f(∆t) − f(−∆t) ≈ f2 − f0 = 0, and
f0 − 2f1 + f2 = λf1 transforms into −2f1 + 2f2 = λf1, etc..

(c) DCT-IV can be treated with the N by N matrix A with 1 one the first two co-diagonals,
−2 on the diagonal, except for A1,2 = 2 and AN,N = −3.

Explanation: the discretization is again in tn = (n − 1
2 )/N . The derivative of f at 0 is again

0, but at 1 we require f(1) = 0. f(1) = 0 discretizes as f((N − 1
2 )∆t) = −f((N + 1

2 )∆t), or,
fN = −fN+1, which leads to AN,N = −3.

Exercise 5.9. Fourier and Fast Fourier Transform in matrix representation.

Consider the column vectors f ≡ (f0, . . . , fN−1)
T and γ ≡ (γ0, . . . , γN−1)

T. Note that, for
consisteny of notation, we let the first index of the vector to be 0. Similarly, the first entry of
a matrix (the left top entry) will be the (0, 0)-entry.

(a) Let F be the N ×N matrix with (n, k)-entry equal to e2πi nk
N . Show that the matrix vector

multiplication f = Fγ represents the DFT. Show that the inverse DFT is given by the matrix-
vector multiplication γ = 1

N F∗f . Here, F∗ is the complex-conjugate transpose of the matrix F.
Conclude that the scaled matrix 1√

N
F is unitary.

(b) Assume thatN = 2M for some positive integerM . Show that the first step in the derivation
of the FFT (represented in (101) and (102)) can be represented as

f =

[
f ′

f ′′

]
=

[
IM DM

IM −DM

] [
fe

fo

]
=

[
IM DM

IM −DM

][
FM 0

0 FM

] [
γe

γo

]
.

Here, f ′, f ′′, fe, fo, γe, γo are M -vectors, f ′ is the top half of f , f ′′ is the bottom half. fe is the
DFT of the M -vector γe, where γe ≡ (γ0, γ2, . . .)

T. Similarly, γo consists of the odd indexed
γjs and fo is the associated DFT. FM is the FFT of lenth M , DM is the diagonal matrix of
size M ×M with (i, i)-entry equal to eπi n

M , IM is the M ×M identity matrix.

(c) Suppose N = 2ℓ. Conclude that the Fourier Transform matrix FN can be obtained as a
product of ℓ sparse matrices (with 2 non-zeros per row) and one permutation. How are D2ℓ−1

and D2j related for j < ℓ?

Exercise 5.10. Modified discrete cosine transform (MDCT).

The MDCT is unusual as compared to the discrete Fourier-related transforms in that it has
half as many outputs as inputs.
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For N = 2M even and a sequence f = (f0, . . . , f2N−1) of 2N real numbers the N coefficients
γ0, . . . , γN−1 are given by

γk ≡ 1

N

2N−1∑

n=0

fn φk,M+n with φk,n ≡ cos

(
π

N
(k +

1

2
)(n+

1

2
)

)
(106)

with ‘inverse’ the sequence f̃ = (f̃0, . . . , f̃2N−1) of 2N real numbers given by

f̃n ≡
N−1∑

k=0

γk φk,M+n. (107)

Note that MDCT as defined in (106) and the ‘inverse’ IMDCT from (107) are shifted variants
of DCT-IV and its inverse. Of course, MDCT does not have an inverse (why not?). But if we
add the results of the IMDCT of subsequent overlapping blocks, we have perfect invertibility
as we will explain in (e) below.

(a) Let Φ be the N × N matrix with (n, k) entry equal to φn,k (the (0, 0)-entry is the top
left entry). Express DCT-IV in terms of a matrix-vector multiplication (using Φ). Show that
ΦT = Φ and 2

N Φ2 = IN , with IN the N ×N identity matrix.

(b) Prove that φk,2N−1−n = φk,2N−1+n = −φn,k. Conclude that the N × 3N matrix with
(k, n)-entry φk,n can be written as

Φ
[

IN −JN −IN

]
.

Here, JN is the N × N matrix that represents the back numbering (all entries of J are zero
except for the (i, N − 1 − i) which are 1).

(c) With 0 the M×M zero matrix, conclude that the MDCT can be represented by the matrix

Ψ ≡ Φ

[
0 0 −JM −IM

IM −JM 0 0

]
, Γ =

1

N
Ψf .

Show that the ‘inverse’ MDCT is given by ΨT, i.e., f̃ = ΨTΓ.

(d) Let (F1,F2,F3,F4) be the sequence f partioned in blocks Fi of length M . Show that the
‘inverse’ MDCT applied to (γk) equals (F1 − F T

2 ,−F T
1 + F2,F3 + F T

4 ,F
T

3 + F4, ). Here, F T

is F in reverse order (the ‘transpose’ of F ). Conclude that the inverse MDCT leads to

f̃ = 1
2 ((F1,F2) − (F1,F2)

T, (F3,F4) + (F3,F4)
T).

This interprets the result when the sequence f is supposed to be partioned into two blocks each
of length N , as ((F1,F2), (F3,F4)). Note that time values from the second block (in F2) get
represented in the first block, etc.. This phenomenon is referred to as time-domain aliasing.

(e) TDAC. Now, consider the sequence F ≡ (F1,F2, . . . ,Fℓ), where now Fi are blocks of
length N (twice as long as the blocks above!) and ℓ ≥ 3. Apply MDCT to the subsequences
(Fi,Fi+1) of length 2N , to obtain the sequences Γi of length N . Note that the subsequences
(Fj ,Fj+1) overlap: for j = i, i+ 1, they share the block Fi+1.

Let the inverse MDCT applied to Γi be denoted by (Gi,Hi+1). Show that Hi+1 + Gi+1 =
Fi+1: the reverse terms cancel. This property is called ‘time-domain aliasing cancellation’
(TDAC).

Conclude that we have perfect reconstruction by adding the overlapping IMDCTs of MDCTs
applied to subsequent overlapping blocks if the first block F1 and the last block Fℓ are zero.

(f) Windows. Usually window functions are used to attenuate effects of applying the trans-
form per block (to Fi rather than f with a Fourier transform). Let W = (W1,W2) be a se-
quence of length 2N partioned into two blocks Wi each of length N . As in c), F = (F1, . . . ,Fℓ)
is partioned into blocks Fi of size N . Apply MDCT to the sequence (W1Fi,W2Fi+1) to obtain
Γi. The multiplication is point-wise. Here, W acts as a ‘window’; W is a window function.
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Let the results of IMDCT applied to Γi be denoted by (Gi,Hi+1). Application of the same
window leads to (W1Gi,W2Hi+1).

Prove perfect reconstruction, i.e., W2Hi+1 + W1Gi+1 = Fi+1, if

W2 = W T
1 and W 2

1 + W 2
2 = 1.

The first property makes the window symmetric (around k = N + 1
2 ), the second property is

the Princen–Bradley condition.
Show that both the sine window W = (wk) with wk ≡ sin π

2N (k + 1
2 ) (k = 0, . . . , 2N − 1)

and the window wk ≡ sin
(

π
2 sin2

[
π

2N

(
k + 1

2

)])
are symmetric and satisfied the Princen–Bradley

condition. Note that the wk are small for k ≈ 0 and ≈ 2N−1. The sine window is used in MP3,
MPEG2-AAC, the second one in Vorbis. The Kaiser windows (used in, e.g., MPEG4-AAC) are
based on 0th order Bessel functions.

Here, we assumed that the analysis window (the MDCT transforms to frequency domains,
thus, prepares for spectral analysis) and the synthesis window (with IMDCT, spectrum infor-
mation is transformed back to time domain) are the same. However, perfect reconstruction is
also possible with different (but carefully selected) windows.
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Figure 13. A signal f (solid line) and its delayed version fs (dashed-dot).

6 Convolution products

We can multiply functions coordinate-wise. However, there is another type of multi-
plication, the convolution product (see §6.1), that is extremely important in practice.
Although, this multiplication looks complicated, the Fourier transform transforms it to
coordinate-wise multiplication (see Theorem 6.4).

All integrals in this section run from −∞ to ∞.

If f is a function and s ∈ R, then the translated, shifted, or delayed function fs (see
Fig. 13) is defined by

fs(t) ≡ f(t− s) (t ∈ R) :

the graph of fs is precisely the graph of f but translated (or shifted) over s, or, if f is
a signal in time, then fs is the same signal, but with a delay s.

6.1 Convolution products. For f and h from a large class of functions on R, new
functions f∗h on R can be defined by

f∗h(t) =

∫ +∞

−∞
f(t− s)h(s) ds =

∫ +∞

−∞
f(s)h(t− s) ds for t ∈ R. (108)

f∗h is the convolution product of f and h.

6.2 Example. If h(t) = 1
T for t ∈ [0, T ] and h(t) = 0 elsewhere, then f∗h(t) =

1
T

∫ t
t−T f(s) ds for all t ∈ R: f∗h(t) is an average over the f -values in the time interval

[t− T, t] of length T prior to t.

In general, the function value f∗h(t) can be viewed as the average of the delayed
f -values, f(t − s), where the f -values have been weighted with weights, h(s), that
depend on the delay, s: h is the weight function. Such a situation occurs in practice
when, for instance, an acoustic or electromagnetic signal f is broadcast. The signal
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will be received with a delay, say s0. The delay depends on the speed with which
the signal travels and the distance from source to receiver. Of course, the received
signal will be reduced in strength, so f(t − s0)h(s0) will be received at time t, where
h(s0) is the damping factor. In addition, there will be echoes. The echoes will have
to travel a longer distance and will be less energetic than the ‘primary’ signal: one
echo will contribute to the received signal at time t with f(t− s1)h(s1) where s1 > s0
and (probably) |h(s1)| < |h(s0)|. If there is a range of echoes, then the signal that
is received at time t is equal to

∫
f(t − s)h(s) ds, where the integral represents the

superposition of the echoed values. In practice, the received signal will, in addition, be
polluted with noise. Therefore, the received signal will be of the form f ∗ h+ n, where
n represents the noise.

Obviously, the convolution product (108) is well-defined in case f ∈ L1(R) and
h ∈ L∞(R), but also if both f and h are in L2(R). Then, we have the following
estimates

‖f ∗ h‖∞ ≤ ‖f‖1 ‖h‖∞ and ‖f ∗ h‖∞ ≤ ‖f‖2 ‖h‖2, (109)

respectively. To prove the last estimate, apply the Cauchy–Schwartz inequality. The
convolution product f ∗ h for f ∈ L1(R), h ∈ L∞(R) or both f and h in L2(R) are not
only bounded, but also continuous.

6.3 Theorem.
If f ∈ L1(R) and h is bounded, then f∗h is a uniformly continuous function on R.
The convolution f∗h is also uniformly continuous if h, f ∈ L2(R).

Sketch of a proof. We leave the details to the reader; see Exercise 6.11.
Suppose f ∈ L1(R). Then, for ε > 0, there is a smooth function f̃ such that

‖f − f̃‖1 < ε (see §1.8). It is easy to see that f̃ ∗h is smooth as well. The first estimate
in (109) teaches us that ‖f ∗h− f̃ ∗h‖∞ = ‖(f − f̃) ∗h‖∞ < ε‖h‖∞. Apparently, there
are smooth functions (f̃ ∗ h) that are arbitrarily close to f ∗ h in the sup-norm. This
implies that f ∗ h itself is smooth.

The statement for f and h in L2(R) can be proved with similar arguments.

If we do not insist on defining a function point-wise, but if we also accept definitions
by means of converging sequence of functions (as in 3.11), then f∗h is also defined for,
for instance, f ∈ L1(R) and h ∈ L1(R) ∪ L2(R); then

f∗h ∈ L1(R), ‖f ∗ h‖1 ≤ ‖f‖1 ‖h‖1 if h ∈ L1(R) (110)

and
f∗h ∈ L2(R), ‖f ∗ h‖2 ≤ ‖f‖1 ‖h‖2 if h ∈ L2(R). (111)

The statements are quite surprising, because, if f ∈ L1(R), then f2 need not be
integrable (as is shown by f(t) = 1/

√
t for |t| < 1 and f(t) = 0 elsewhere). So, products

of L1-functions need not be integrable: the integral need not be finite. However, ac-
cording to the statement in (110), the infinite value in a convolution of two L1-functions
can only occur in a negligible set of points t.

We sketch a proof of (110) using the following fact: if f ∈ L1(R) then

‖f‖1 = sup |(f, g)| = sup |
∫
f(t) g(t) dt|,

where the supremum is taken over all g ∈ L∞(R) with ‖g‖∞ ≤ 1.
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Let both f and h be in L1(R). For the moment, let us not worry about the existence
of f ∗ h, but simply estimate its 1-norm using the above fact:

|(f ∗ h, g)| ≤
∫ ∫

|f(s)| |h(t − s)| |g(t)| dt ds

=
∫
|f(s)|

∫
|h(t− s)| |g(t)| dt ds

≤
(∫

|f(s)| ds
) (

sups

∫
|h(t− s)| |g(t)| dt

)

= ‖f‖1 ‖h ∗ g‖∞ ≤ ‖f‖1 ‖h‖1 ‖g‖∞.

Hence, ‖f ∗ h‖1 ≤ ‖f‖1 ‖h‖1.
Now, define hn(t) = h(t), if |h(t)| < n, and hn(t) = 0, elsewhere. Then hn is bounded
(by n) and ‖h−hn‖1 → 0 if n→ ∞. Since hn is bounded, f∗hn is well-defined, and since
hn is in L1(R), we have that ‖f ∗hn−f ∗hm‖1 = ‖f ∗(hn−hm)‖1 ≤ ‖f‖1 ‖hn−hm‖1 → 0
if n > m→ ∞. Therefore, there is an L1 function, which we denote by f ∗h, such that
‖f ∗ h− f ∗ hn‖1 → 0 if n→ ∞.

The proof of (111) is similar. It exploits the fact that

‖f‖2 = sup
{
|(f, g)| g ∈ L2(R), ‖g‖2 ≤ 1

}
(f ∈ L2(R)).

We learned from Theorem 6.3 that convolution tends to smooth functions. However,
we emphasize that f ∗h need not be continuous if f ∈ L1(R) and h in L1(R) or in L2(R)
see Exercise 6.12. The arguments in the proof of Theorem 6.3 are not applicable to
these functions for the following reason. In (109), we are dealing with the sup-norm,
whereas the estimates in (110) and (111) involve the 1- and the 2-norm. If a function
is arbitrarily close in the sub-norm to continuous functions, then that function itself
must be continuous, but this need not to be the case if closeness is measured in 1- or
2-norm.

The estimates in (109), (110), and (111), are instances of a more general result. We
give this more general result now since it may be easier to memorize:
if p, q, r ∈ [1,∞] such that 1

p + 1
q = 1 + 1

r , then

f ∗ h ∈ Lr(R), ‖f ∗ h‖r ≤ ‖f‖p ‖h‖q if f ∈ Lp(R), h ∈ Lq(R) (112)

Here, f ∈ Lp(R) for p ∈ [0,∞) if ‖f‖p ≡ (
∫
|f(t)|p dt)

1
p is finite.

If r = ∞, i.e., 1
p + 1

q = 1, then f ∗ h is continuous.

Fourier transform maps the convolution product to the standard coordinate-wise
product.

6.4 Theorem. If f, h ∈ L1(R) ∪ L2(R), then

f̂∗h = f̂ ĥ. (113)

Sketch of a proof.

f̂∗h(ω) =
∫
f∗h(t) e−2πitω dt =

∫ ∫
f(s)h(t− s) e−2πitω dt ds

=
∫ ∫

f(s) e−2πisω h(t− s) e−2πi(t−s)ω dt ds

=
∫ (∫

h(t− s) e−2πi(t−s)ω dt
)
f(s) e−2πisω ds

=
∫
ĥ(ω) f(s) e−2πisω ds = ĥ(ω) f̂(ω).
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The statement (113) is also correct if h ∈ L∞(R) and is the Fourier transform of a
function in L1(R): ĥ ∈ L1(R).

The convolution product can also be formulated for discrete functions (see Ex-
ercise 5.3) and for T -periodic functions (see Exercise 6.13). Here also, the Fourier
transform leads to coordinate-wise multiplication.

6.5 Correlation product. The correlation product f ⊙ h, defined by

f ⊙ h(t) ≡
∫ ∞

−∞
f(s)h(s+ t) ds =

∫ ∞

−∞
f(s− t)h(s) ds = (h, ft) (t ∈ R),

is related to the convolution product (see Exercise 6.3).

This product plays an important role in stochastics. It measures the stochastical
dependence, the correlation, of h and f or a translate ft of f . The autocorrelation
f ⊙ f measures the correlation of f and translates ft of f . If, for instance, f and h are
independent in a stochastical sense (uncorrelated), then (h, f) =

∫
f(s)h(s) ds = 0.

If n is a function that represents noise and f is a signal such that
∫
f(t) dt = 0,

then n and f , but also n and ft will be uncorrelated. Therefore, f ⊙ n = 0, and
f ⊙ (δf + n) = δ(f ⊙ f); see Fig. 14. here, δ is a scalar (scaling factor). This can
conveniently be exploited specifically in situations where the noise is large relative to
δf .

6.6 Application: radar. This last property is used in practice to measure dis-
tances. The distance between two objects can be measured by sending a signal (acoustic
or electromagnetic) from one object to the other. The signal will be reflected. The time
of arrival of the reflected signal at the source is proportional to the distance between
the objects. Unfortunately, the reflected signal will be much weaker than the original
one (δ ≪ 1) and is often heavily polluted by noise (see the two left pictures in Fig. 14).
As a consequence, it will be hard to accurately determine the time of arrival of the
reflected signal. By forming the correlation product of the received, reflected, signal
with the original signal, the obscuring effect of most of the noise can be annihilated (see
the right pictures in Fig. 14). Here we assume that the reflection f̃ of the source signal
f is of the form δfτ + n, where δ is a damping factor and τ is the delay, that is, the
time that the reflected signal needs to return; n represents noise. So, we assume that
there are no (significant) echoes in the reflected signal. We are interested in computing
τ . Note that f ⊙ (δfτ + n) = δ(f ⊙ f)τ . Therefore, if f ⊙ f is largest at t = 0, then
f ⊙ f̃ will be largest at time τ .

The source signal in the pictures in Fig. 14, is a sine function. The pictures indicate
that the autocorrelation can be used to determine time of arrival of the reflected signal.
However, determining when the correlation function f ⊙ f̃ is largest would be easier
if this function were more localized. (This is particularly so if the reflected signal
contains echoes from multiple objects.) This can be done by making the initial pulse
shorter in duration, but then the energy transmitted —and more importantly, the
energy received— would decrease (δ gets smaller), while the magnitude of the noise
would not be affected. Another approach is to find a source signal that has more
localized autocorrelation. The premier example of such a signal is the chirped pulse
sinωt, in which the frequency ω is itself time-dependent. That is, the frequency changes
as a function of time, like a bird’s chirp, see Fig. 15.
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Figure 14. The source signal f (top-left) and its autocorrelation function f ⊙ f (top-right). The

received signal ef = fτ +n is polluted with noise n. The noise n is large relative to f : ‖n‖∞ = 3‖f‖∞. The
polluted signal is displayed in the bottom-left picture. Here, we took τ = 0. The bottom-right picture shows
the correlation product ef ⊙ f of the received signal with the source signal f . The noise is not completely
annihilated in the correlation product ef ⊙ f (in our computation we used sampled values. This introduces
an error, which partially explains why the noise did not completely vanish). Nevertheless, the time of arrival
of the pure received signal fτ , that is, the time where the ‘noiseless’ received signal fτ starts to be non-zero,
can be determined from ef ⊙ f , which is not possible from ef . Notice that the scale along the vertical axis
is different in each picture.

6.7 The Wiener–Khintchini theorem. In the frequency domain we have that

f̂ ⊙ h = f̂ ĥ.

In particular, for the autocorrelation function f ⊙ f , we have that

f̂ ⊙ f = |f̂ |2.

This result is the Wiener–Khintchini theorem: the Fourier transform of the autocorre-
lation function is the power spectrum.

These results allow efficient computation of the correlation product: the FFT can
be exploited.

Exercises

Exercise 6.1.

(a) prove that f ∗ h = h ∗ f .
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Figure 15. For an explanation, see Fig. 14. Here, we replaced the sine pulse from Fig. 14 by a chirped
pulse. Note that this approach allows easy detection of the center of the broadcast signal as well as of the
received signal.

(b) Prove that f ∗ hτ = fτ ∗ h = (f ∗ h)τ (τ ∈ R).

Exercise 6.2. Prove that f ⊙ (δfτ + n) = δ(f ⊙ f)τ .

Exercise 6.3. Let f, g ∈ L2(R) and h ∈ L1(R). Define the adjoint hT of h by

hT(t) ≡ h(−t) (t ∈ R).

Note that real even functions are self-adjoint, i.e., hT = h.

(a) Prove that (f, h ∗ g) = (hT ∗ f, g).
For h ∈ L1(R), the convolution f  h ∗ f defines an operator from L2(R) to L2(R). This

operator is linear and bounded, with operator norm (less than or equal to) ‖h‖1, because
‖h ∗ f‖2 ≤ ‖h‖1 ‖f‖2. In (a), we showed that the adjoint is given by f  hT ∗ f . This is the
reason, we called hT the adjoint of h; formally adjoints are defined only for operators.

(b) Show that (f ∗ h)T = fT ∗ hT.

(c) Show that ĥT = ĥ.

(d) Show that h⊙ f = f ∗ hT = (h ∗ fT)T = (f ⊙ h)T.

(e) Combine (c) and (d) to show that ĥ⊙ f = f̂ ĥ (Wiener–Khintchini, see §6.7).

(f) Prove that ‖h⊙ f‖2
2 = (f ⊙ f, h⊙ h) and (h⊙ f) ⊙ (h⊙ f) = (f ⊙ f) ∗ (h⊙ h).

Exercise 6.4. Dilation equations.
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Let f and g be in L2(R) such that

f(1
2x) =

∞∑

j=−∞
αj f(x− j) and g(1

2x) =

∞∑

j=−∞
βj g(x− j) (x ∈ R),

for some sequences α ≡ (αj) and β ≡ (βj) in ℓ 2(Z).

(a) Prove that

(f ∗ g)(1
2x) =

∞∑

j=−∞

1
2 (α ∗ β)(j) (f ∗ g)(x− j) (x ∈ R),

where the convolution product α ∗ β of the sequence of scalars is defined by

α ∗ β(k) ≡
∞∑

j=−∞
αj βk−j =

∞∑

j=−∞
αk−j βj (k ∈ Z)

(see also Exercise 5.4).

Exercise 6.5. Splines.

Let B0 be the function defined by

B0(t) ≡ 1 if t ∈ [0, 1) and B0(t) ≡ 0 elsewhere.

(a) Compute B1 ≡ B0 ∗B0 and B2 ≡ B0 ∗B0 ∗B0.

(b) Prove that the convolution Bn of n+1 copies of B0 is a spline of degree n, where a function
f is a spline of degree n if its restriction to each of the intervals [k, k+1) is polynomial of degree
≤ n (k ∈ Z) and f ∈ C(n−1)(R) (here C(0)(R) is the space C(R) of continuous functions and
C(−1)(R) is the space of all functions on R that are left continuous).

(c) Consider an n ∈ N0. Show that any finite collection of functions x  Bn(x − k), i.e., k
belongs to some finite subset of Z, forms a linearly independent set.

(d) Check that B0(
1
2x) = B0(x) +B0(x− 1) (x ∈ R).

Use this relation and the results in Exercise 6.4 to show that, for each x ∈ R,

B1(
1
2x) = 1

2B1(x) +B1(x − 1) + 1
2B1(x− 2)

and
B3(

1
2x) = 1

8 (B3(x) + 4B3(x− 1) + 6B3(x− 2) + 4B3(x− 3) +B3(x− 4)) .

Exercise 6.6. Convolutions with elementary ‘functions’.

Let f ∈ L1(R).

(a) Show that the convolution product f ∗ φω of f and the harmonic oscillation φω(t), φω(t) ≡
exp(2πitω), is equal to f̂(ω):

f ∗ φω = f̂(ω)φω .

(b) The convolution product can also be defined for Dirac delta functions or point-measures:

f ∗ δν(t) ≡
∫ ∞

−∞
f(t− s) δν(s) ds = f(t− ν) = fν(t) (t ∈ R).

Show that this definition is consistent with the interpretation of δν as a limit, that is, for ν = 0,

f ∗ δ0(t) = lim
ε→0

∫ ∞

−∞
f(t− s)

1

2ε
Πε(s) ds.

Exercise 6.7. Convolution with discrete measures.
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Let f ∈ L1(R) and µ =
∑
γkδk for some sequence (γk) ∈ ℓ 1(Z) and some sequence (tk) in R

(see Exercise 3.16).

(a) Show that f ∗ µ(t) =
∑
γk f ∗ δtk

(t) =
∑
γk f(t− tk).

(b) Show that f̂ ∗ µ = f̂ µ̂.

Exercise 6.8. Shannon–Whittaker.

Let Ω > 0 and let f ∈ L2(R) be such that f̂(ω) = 0 if |ω| > Ω. In §7, we will see that the
bandwidth restriction on f implies that f is smooth, and, in particular, the function values
f(k∆t) are well-defined.

For ∆t ≡ 1/(2Ω), put µ ≡∑∆t f(k∆t) δk∆t (see Exercise 3.16). Put Ψ ≡ Π̂Ω.

(a) Show that Ψ̂ ∗ µ = ΠΩ µ̂ = f̂ . Conclude that

f(t) = Ψ ∗ µ(t) =
∑

∆t f(k∆t)Ψ(t− k∆t) =
∑

f(k∆t) sinc(2tΩ − k) (t ∈ R).

Exercise 6.9. Shannon–Whittaker II.

Here is a ‘quick proof’ of Shannon–Whitaker’s theorem. Proof and formulation use the Dirac
comb w∆t of Exercise 3.18. f , Ω, ∆t are as in Exercise 6.8.

(a) Show that (fw∆t)̂ = f̂ ∗ w1/∆t.
Interpret the spectrum of the sampled version of f as the 2Ω periodic extension of the spectrum
of f (with spectrum of f being resticted to [−Ω,+Ω]).

(b) Show that f̂ = (f̂ ∗ w1/∆t)ΠΩ.

(c) Show that f = (fw∆t) ∗ Π̂Ω.
Interpret this result as the Shannon–Whittaker theorem.

Exercise 6.10. The smoothing effect of convolutions I.

Let h be the scaled top-hat function 1
2δ Πδ.

(a) Prove that f ∗h is in C(n+1)(R) if f is bounded and in C(n)(R). Prove that f ∗h is uniformly
continuous if f is bounded.

Exercise 6.11. The smoothing effect of convolutions II.

(a) Prove (109).

(b) Prove that f ∗ h ∈ C(n)(R) if f ∈ C(n)(R) ∩ L1(R) and h ∈ L∞(R).

(c) Use the Density Theorem 1.8 to prove that f ∗ h is uniformly continuous if f ∈ L1(R) and
h ∈ L∞(R).

(d) Use the Density Theorem 1.8 to prove that f ∗ h is uniformly continuous if f ∈ L2(R) and
h ∈ L2(R).

Exercise 6.12. Compute the convolution product f ∗ h of f and h with h and f given by

f(t) = 0, h(t) ≡ 1

|t| if |t| ≥ 1 and f(t) =
1√
|t|
, h(t) = 0 if |t| < 1.

Does f ∗ h belong to L1(R), to L2(R)

Exercise 6.13.

(a) Formulate a convolution product for T -periodic functions. Derive an expression for the
Fourier transform of this product.

(b) For α = (αk) ∈ ℓ 2(Z), let α̂(ω) ≡∑∞
k=−∞ αk e

−2πiωk. Then αk =
∫ 1

0 α̂(ω) e2πiωk dω.
Formulate a convolution product for sequences in ℓ 2(Z) and derive an expression for the

Fourier transform of this product.
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Exercise 6.14. Heat equation.

We use the notations and results from Exercise 3.13:

u(x, t) =

∫ ∞

−∞
φ̂(ω) e−4π2ω2γt e2πiωx dω

solves the heat equation with initial condition u(x, 0) = φ(x).

(a) Prove that Ht = ĥt, where

Ht(ω) ≡ e−4π2ω2γt and ht(x) ≡ 1
2
√

γt
e
−π( x

2
√

γt
)2
.

(b) Show that u(x, t) = φ ∗ ht(x).

(c) Prove that (x, t) u(x, t) is a smooth function on R × (0,∞).

(d) Note that the limit ht for t → 0 does not exist. Nevertheless, φ ∗ ht defines the solution
that matches with the initial condition. To understand this, show that

∫ ∞

−∞
g(x)ht(x) dx→ g(0) =

∫ ∞

−∞
g(x) δ0(x) dx (t → 0),

for each continuous function g ∈ L1(R). Here, δ0 is the Dirac delta function. Hence, in some
weak sense, ht converges to δ0 for t→ 0. Show that φ ∗ ht → φ if, in addition, φ is continuous.

Interpretation. The solution of the heat equation can be represented as a convolution of
the initial heat distribution with a Gaussian function ht. This clearly represents the spreading
of the heat in time. The Dirac delta function δ0 at t = 0 spreads to a Gaussian distribution ht

for t > 0 that ‘gets wider’ with increasing t.

Exercise 6.15. Wave equation.

We use the notations and results from Exercise 3.12:

u(x, t) =

∫ ∞

−∞
φ̂1(ω) cos(2πωct) e2πiωx dω +

∫ ∞

−∞
φ̂2(ω)

sin(2πωct)

2πωc
e2πiωx dω

solves the wave equation with initial conditions u(x, 0) = φ1(x) and ∂u
∂t (x, 0) = φ2(x).

(a) Prove that, for t > 0,

u(x, t) = φ1 ∗ (1
2 [δct + δ−ct]) + φ2 ∗ ( 1

2cΠct).

(b) Show that φ1 ∗ (1
2 [δct + δ−ct]) → φ1 ∗ δ0 = φ1 (t→ 0) of φ1 is also continuous.

(c) For a continuous function g, consider Φ(t) ≡
∫

1
2cΠct(x) g(x) dx. Prove that Φ′(t) =

1
2 [g(ct) + g(−ct)] for t > 0 and conclude that Φ′(0) = limt→0 Φ′(t) = g(0).

Show that the partial derivative with respect to t of φ2∗( 1
2cΠct) is equal to φ2∗(1

2 [δct+δ−ct])
and conclude that this derivative converges to φ2 if t→ 0 and φ2 is continuous.

Exercise 6.16. Huygens’ principle.

Consider an electromagnetic wave, with electric field E in two space dimensions: E(x, z) is the
field at (x, z) at t = 0.

Suppose A(x) ≡ E(x, 0) (x ∈ R) is known and suppose the wavenumber k, or, equivalently,
the wavelength λ ≡ 1

k is known. We want to determine E(x, z) from A.
If A(x) = E0 exp(2πik1x) then

E(x, z) = E0 exp(2πi(k1x+ k3z)), where k2 ≡ k2
1 + k2

3 =
ω2

c2
.

Since the wavenumber k is know, the frequency ω, and k3 can be computed: E(x, z) can be
determined.
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(a) Show that, in the general situation,

E(x, z) =

∫
Â(k1) e

2πi(k1x+k3z) dk1 =

∫
Â(k1)H(k1) e

2πik1x dk1,

where the transfer function H is given by H(k1) = exp(2πik3z) with k1 =
√
k2 − k2

1 . Hence,

E(X, z) = A ∗ h(X) =

∫
A(x)h(X − x) dx, (114)

where h(x) =
∫
H(k1) exp(2πik1x) dk1. Note that H and, therefore, h, depend on z.

(b) Assume that k1 ≪ k (i.e., the wave E0 e
2πi(k1x+k3z) moves almost parallel to the z-axis).

Then, show that k3 = k

√
1 − k2

1

k2 ≈ k − k2
1

2k . Hence,

H(k1) ≈ e2πikz e−πi z
k

k2
1 .

Show that, if, in addition, x≪ z, then

h(x) = hz(x) ≈
√
k

iz
e2πikz eπi k

z
x2 ≈

√
k

iz
e2πik

√
z2+x2 ≈

√
1

iλ

e2πikr

√
r
, (115)

where r ≡
√
x2 + z2 is the distance from (x, z) to the origin (0, 0).

(c) The function (x, z) exp(2πikr)/
√
r in (115) represents a cylindrical wave emitted from

the origin (0, 0). Apparently, hz approximately represents a cylindrical wave, in case ~k =
(k1, k3) ≈ (0, k3) and x≪ z.

Similarly, if in three dimensional space A(x, y) = E(x, y, 0) is known, then E(X,Y, z) can
be computed from the two-dimensional variant of (114), where

h(x, y) = hz(x, y) ≈
k

iz
e2πikz eπi k

z
(x2+y2) ≈ 1

iλ

e2πikr

r
.

Here r ≡
√
x2 + y2 + z2: h approximately represents a spherical wave (here also assuming that

the direction of the wave has a small angle with the z-axis and
√
x2 + y2 is small relative to

z). Formulate the two-dimensional variant of (114).
Now, use (114) and (115) to interpret E(X, z) (and E(X,Y, z)) as a superposition of ap-

proximate cylindrical (spherical) waves (Huygens’ principle).

T -periodic functions.

A convolution product can also be defined for T -periodic functions f and h

f ∗ h(t) =
1

T

∫ T

0

f(t− s)h(s) ds =
1

T

∫ T

0

f(s)h(t− s) ds for t ∈ R.

Note that the integral here has been adapted to the inner-product. For this convolution product
we have statements similar to ones in the Theorems 6.3 and 6.4.

We will consider T -periodic functions and this convolution product in the following three
exercises, where we prove some of the results from §2 that we stated there without proof. The
proofs exploit convolution products.

Exercise 6.17. Approximate identity.

Consider a sequence (Kn) of functions in L1
T (R) for which

(i) supn ‖Kn‖1 ≤M <∞,

(ii) 1
T

∫ T

0
Kn(t) dt = 1 for all n ∈ N,

(iii) for each δ > 0 we have that limn→∞
∫

δ≤|t|≤ 1
2
T
|Kn(t)| dt = 0.
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We will show that

lim
n→∞

‖Kn ∗ f − f‖∞ = 0 for each T -periodic f ∈ C(R) (116)

For this reason, a sequence (Kn) in L1
T (R) with these three properties is called an approximate

identity.

(a) Show that, for each δ > 0, we have that

|Kn ∗ f(t) − f(t)| ≤ I1 + I2,

where

I1 ≡ 1

T

∫

|s|≤δ

|Kn(s)| |f(t− s) − f(t)| ds, I2 ≡ 1

T

∫

δ<|s|≤ 1
2
T

|Kn(s)| |f(t− s) − f(t)| ds.

(b) Prove that, for each ε > 0, there is a δ > 0 such that I1 ≤ εM .
(Hint: f is uniformly continous. Why?)

(c) Prove that, for any δ > 0, I2 → 0 if n→ ∞.

(d) Prove (116).

(e) Show that (116) also holds if (ii) is replaced by the weaker condition

(ii′) limn→∞
1
T

∫ T

0
Kn(t) dt = 1.

Exercise 6.18. Dirichlet kernels.

Put

Dn(t) =
∑

|k|≤n

exp(2πt
k

T
).

(a) Show that
Sn(f) = Dn ∗ f for all f ∈ L1

T (R). (117)

Dn is the so-called Dirichlet kernel of order n (see Exercise 2.20).

(b) Show that (see (54))

Dn(t) =
sin(π t

T (2n+ 1))

sin(π t
T )

.

(c) Show that (see (53))

1

T

∫ T

0

Dn(t) dt = 1.

(d) Show that there are constants κ1 ≥ κ2 > 0 such that (see (55))

κ2 log(n) ≤ ‖Dn‖1 ≤ κ1 log(n+ 1) for all n.

Is (Dn) an approximate identity (see Exercise 6.17)?
The proportionality of ‖Dn‖1 with log(n) is the reason for a lot of hard work and ‘nasty’

estimates in the convergence theory for Fourier series for functions f that are not very smooth.

Exercise 6.19. Cesàro sums and Fejér kernels.

For f ∈ L1
T (R) consider the trigoniometric polynomial

σn(f) ≡ 1

n+ 1

n∑

j=0

Sj(f).

The function σn(f) is the average of the first n+ 1 partial Fourier series S0(f), . . . , Sn(f): it is
the so-called nth Cesàro sum.
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In this exercise, we will see that

lim
n→∞

‖σn(f) − f‖∞ = 0 for all continous f ∈ L1
T (R). (118)

Here, we have uniform convergence for any continous T -periodic function f , while for (Sn(f))
uniform convergence requires some additional smoothness for f (as we know from the examples
of du Bois-Reymond, see the discussion on Theorem 2.4, and of Exercise 2.22).

Define

Fn(t) ≡ 1

n+ 1

n∑

j=0

Dj(t).

We will see that these so-called Fejér kernels form an approximate identity (see Exercise 6.17).

(a) Show that
σn(f) = Fn ∗ f.

(b) With ζ ≡ exp(2πi t
T ), show that

(n+ 1)Fn(t) =
1

ζ
1
2 − ζ̄

1
2

2 Im




n∑

j=0

ζj+ 1
2


 =

2 Re(ζn+1 − 1)

(ζ
1
2 − ζ̄

1
2 )2

=
sin2(π t

T (n+ 1))

sin2(π t
T )

≥ 0.

(c) Show that

‖Fn‖1 =
1

T

∫ T

0

Fn(t) dt =
1

n+ 1

n∑

j=0

1

T

∫ T

0

Dj(t) dt = 1.

(d) Show that (Fn) is an approximate identity and prove (118).

Exercise 6.20. Jordan’s test.

In this exercise we will show that, for f ∈ L1
T (R) and x ∈ R,

lim
n→∞

Sn(f)(t) = 1
2 (f(t+) + f(t−)) , (119)

if f(t+) and f(t−) exist and, for some δ > 0, f is of bounded variation on (t−δ, t+δ) (Jordan’s
test; see (b) of Th. 2.4 and the discussion following this theorem).

(a) Take T = 2π. For t ∈ (−π, π], let g(s) ≡ 1
2 (f(t+ s)+ f(t− s)) (s ∈ R). Show that Dn and

g are even and that (see (117))

Sn(f)(t) = 1
2π

∫ π

−π Dn(s) f(t− s) ds = 1
2π

∫ π

−π Dn(s) f(t+ s) ds

= 1
2π

∫ π

−π Dn(s) g(s) ds = 1
π

∫ π

0 Dn(s) g(s) ds.

To prove (119) it suffices to show that

lim
n→∞

1

π

∫ π

0

Dn(s) g(s) ds = g(0+). (120)

Since 1
π

∫ π

0 Dn(s) ds = 1 (see (53)), it suffices to show (120) in case g(0+) = 0 and g is non-
decreasing.
Therefore, assume that g is non-decreasing, g(0+) = 0, and, for δ > 0, consider

I1 ≡ 1

π

∫ δ

0

Dn(s) g(s) ds and I2 ≡ 1

π

∫ π

δ

Dn(s) g(s) ds.

(b) Show that
lim

n→∞
I2 = 0.
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(Hint: Consider the 2π-periodic function G that is 0 on (−π, π] except for 2s ∈ [δ, π], where
G(s) ≡ g(2s)/| sin(s)|. Then,

I2 = 1
π

∫ 2π

−2π
G(1

2s) sin(s(n+ 1
2 )) ds = 2

π

∫ π

−π
G(s) sin(s(2n+ 1)) ds = 2β2n+1(G).

Now, use the Riemann–Lebesgue lemma.)

(c) To prove that |I1| ≤ ε, first consider the case where g(s) =
∫ s

0
h(τ) dτ for some h ∈

L1([0, π]), h ≥ 0. Now, prove that

|I1| ≤ 4

∫ δ

0

|h(s)| ds = 4 g(δ).

(Hint: With Dn(s) ≡
∫ s

0
Dn(τ) dτ we have that |Dn(s)| < 2π for all s ∈ [0, π], see (56)), and

conclude that (120) holds in this case.
The 2nd mean theorem of integral calculus leads to the same estimate for I2 also in case g

is only non-decreasing on [0, δ] and g(0+) = 0: then, |I2| ≤ 4 g(δ−).

(d) Adapt the above arguments to prove that

lim
n→∞

‖f − Sn(f)‖∞ = 0

or each T -periodic function f that is continuous and of bounded variation on [0, T ] (see (c) of
Th. 2.4 and the discussion following the theorem).

Exercise 6.21. Discrete convolution products.

For a sequences f = (. . . , f0, f1, . . .) in C define

f p ≡ p

√∑

j∈Z

|fj |p (p ∈ [1,∞)), f ∞ ≡ sup
j

|fj |.

ℓ p(Z) is the space of all sequence f for which f p < ∞. For sequences f and h of complex
number consider

(f ∗ h)k ≡
∑

j∈Z

fk−j hj (k ∈ Z).

(a) Proof that f ∗ h is well-defined for f ∈ ℓ 1(Z) and h ∈ ℓ∞(Z). Show that then

f ∗ h ∈ ℓ∞(Z) and f ∗ h ∞ ≤ f 1 h ∞.

(b) Formulate and proof a similar result in case f ,h ∈ ℓ 2(Z).

(c) Give a proper definition for f ∗ h in case f ∈ ℓ p(Z) and h ∈ ℓ 1(Z). Show that

f ∗ h ∈ ℓ p(Z) and f ∗ h p ≤ f p h 1.
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7 Signals of bounded bandwidth

We use the terminology of Par. 3.16.

If f is a signal, then {|ω| f̂(ω) 6= 0} is the frequency band of f . The signal f has a
bounded bandwidth if there exists an Ω > 0 for which the band of f is a subset of [0,Ω].
The ‘smallest’ Ω for which this is the case, is the bandwidth of f .

The signals that play a role in practice all appear to have bounded bandwidth:

• The male voice does not contain frequencies of 8000 Hertz or higher (Ω ≤ 8000).

• A symphony orchestra produces music with bandwidth less than 20000 Hertz.

• The frequencies in TV technology are below 2 106 Hertz.

Devices that manipulate or transfer signals tend to strongly damp high frequent os-
cillations in a signal. As a consequence, these devices change any signal into a signal
of which the bandwidth is more or less bounded. Depending on the device and the
bandwidth, signals of bounded bandwidth can be well manipulated.

Signals of bounded bandwith are of interest in technology since they are natural and
can easily be manipulated. In the sequel of this paper, we consider some mathematical
aspects of technical questions concerning signals of bounded bandwidth.

As the following theorem shows, signal of bounded bandwidth are very beautiful
from a mathematical point of view.

7.1 Theorem. A signal f of bounded bandwidth is an analytic function
(i.e. f ∈ C(∞)(R) and f has a converging Taylor series in each t0 ∈ R).

Proof. Let f be a signal with bandwidth ≤ Ω.
We will show that f ∈ C(∞)(R) and

|f (n)(t)| ≤ ‖f‖2 (2πΩ)n+
1
2 (t ∈ R, n ∈ N).

Then, with

f(t) = f(t0) +
(t− t0)

1!
f (1)(t0) + . . . +

(t− t0)
n−1

(n− 1)!
f (n−1)(t0) +Rn,

where Rn =
(t− t0)

n

n!
f (n)(ξ) for some ξ between t and t0,

the nth order Taylor expansion of f in t around t0, we have that

|Rn| ≤ |t− t0|n
(2πΩ)n+

1
2

n!
‖f‖2.

The n! in the denominator implies that, for any t ∈ R, limn→∞Rn = 0.
Apply Cauchy–Schwartz and Plancherel’s formula to find that

‖f̂‖1 =

∫ Ω

−Ω
|f̂(ω)| · 1 dω ≤ ‖f̂‖2

√
2Ω = ‖f‖2

√
2Ω.

Hence, ‖f̂‖1 < ∞ and a combination of 3.12 and 3.4 (interchanging the roles of t and
ω) tells us that f is uniformly continuous.
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Figure 16. A function (solid line) sampled at tn = n∆t (marked with + + +), with ∆t = 0.15. The
sampled function values are marked with ◦ ◦ ◦.

In addition, we have that

dnf

dtn
(t) =

∫ +Ω

−Ω

∂n

∂tn
(f̂(ω)e2πiωt) dω =

∫ +Ω

−Ω
f̂(ω)(2πiω)ne2πiωt dω

Hence,

|f (n)(t)| ≤
∫ +Ω

−Ω
|f̂(ω)| |2πω|n dω ≤

∫ +Ω

−Ω
|f̂(ω)| |2πΩ|n dω ≤ ‖f̂‖1(2πΩ)n.

Signals of bounded bandwidth are so smooth that they can not last in finite time.

7.2 Corollary. Let f be a signal of bounded bandwidth.
If f = 0 on an interval [t1, t2] with t1 < t2, then f = 0 on R.

Proof. Consider a t0 ∈ (t1, t2). Then f (n)(t0) = 0 for each n ∈ N, whence the Taylor
series of f around t0 equals 0. Therefore, f(t) = 0 for all t.

Apparently, any spoken word is around until eternity (if it has bounded bandwidth).
Common sense tells us that this is not the case. As an explanation, we can mention that
each signal carries energy that is so low after a while that the signal is not detectable
anymore for common humans nor for devices. (If f is a signal, i.e.

∫ +∞
−∞ |f(t)|2 dt <∞,

and ε > 0, then there is a T > 0 such that
∫
|t|>T |f(t)|2 dt < ε. If ε is the lowest energy

level for which we can detect a signal, then we fail to detect the signal for T > 0).

7.A Sampled signals

In digital signal processing, one would like to reconstruct the signal from a discrete
series of signal values (see Fig. 16). According to the following theorem, this is possible
provided that the signal is of bounded bandwidth and the function values are ‘sampled ’
at a uniform speed with a frequency at least twice the bandwith.19

In general L2 functions will not be continuous and the value of a function in a
specific point may not be well-defined. However, this problem does not occur for
signals of bounded bandwith, since they are very smooth.

19Devices that sample function values are called analog to digital converters. Since the point of
digital signal processing is usually to measure or filter continuous real world analog signals, an analog
to digital conversion is usually the first step. The target of the signal processing is often another analog
output signal which requires a digital to analog converter for translation.
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7.3 The sampling theorem of Shannon–Whittaker.
Let f be a signal of bandwidth ≤ Ω. Put ∆t ≡ 1

2Ω . Then

f(t) =
∑

k∈Z

f(k∆t) sinc(2tΩ − k) =
∑

k∈Z

f(k∆t) sinc

(
t− k∆t

∆t

)
for all t ∈ R.

Convergence is in L2 sense as well as uniform on bounded intervals.

Proof. The essential idea of the proof is simple. From (b) of 3.7 and Theorem 3.12, we

see that Ψ̂Ω = 1
2ΩΠΩ, where ΨΩ ≡ sinc(2tΩ). Therefore,

∫ +∞

−∞
sinc(2tΩ − k) e−2πitω dt =< s = t− k∆t >= exp

(
−2πi

k

2Ω
ω

)
1

2Ω
ΠΩ(ω). (121)

If g is the 2Ω-periodic function for which f̂ = gΠΩ, then the Fourier transform of
f̂ = gΠΩ leads the claim in the theorem. The formal proof below uses Lemma 3.8
several times, but with the roles of −t and ω interchanged.

For n ∈ N, consider fn(t) ≡∑|k|≤n f(k∆t) sinc(2tΩ − k). By (121), we have that

f̂n(ω) =
∑

|k|≤n

1

2Ω
f(

k

2Ω
) exp(−2πi

k

2Ω
ω)ΠΩ(ω).

By Lemma 3.8, limn→∞ ‖f̂n − f̂‖2 = 0, and, with Theorem 3.12, this implies that
limn→∞ ‖fn − f‖2 = 0.

Proving convergence in a uniform sense requires an additional argument. Consider
a t ∈ [−∆t,+∆t]. Then |sinc(2tΩ − k)| ≤ min(1, 1

π|k−1|). Cauchy–Schwarz and
Lemma 3.8 implies, for m > n > 1, that

∑

n≤|k|≤m

|f(k∆t) sinc(2tΩ − k)| ≤
√∑

k

|f(k∆t)|2
√√√√ 2

π2

m∑

k=n

1

(k − 1)2

≤ 2

π

√
Ω‖f‖2

√√√√
m∑

k=n

1

(k − 1)2
.

Apparently, the sequence (fn) converges uniformly on [−∆t,+∆t]. Uniform conver-
gence on any other bounded interval can be proved similarly. Since (fn) converges in
L2-norm to f and f is continuous, we may conclude that (fn) converges to f uniformly
on any bounded interval.

The theorem is also correct if ∆t ≤ 1/(2Ω) (if ∆t < 1/(2Ω), then consider Ω′ ≡
1/(2∆t) and note that the bandwidth of f is less than Ω′). The theorem states that the
signal f with bandwith ≤ Ω can be reconstructed from a sequence (fk) of samplevalues
fk ≡ f(k∆t), provided that the sample frequency 1/∆t is at least twice the largest
frequency present in the signal (see also Fig. 17). The critical value 1/(2Ω) is the
so-called Nyquist rate.

7.4 Digital signals. If f is of bandwidth ≤ Ω, then, with fk ≡ f( k
2Ω), we have

that

f̂(ω) =
∞∑

k=−∞

1

2Ω
fk e

−2πiω k
2Ω (|ω| ≤ Ω) and fk =

∫ Ω

−Ω
f̂(ω) e2πiω k

2Ω dω. (122)
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Figure 17. The harmonic oscillation f(t) ≡ sin(2πtΩ) (solid line) with Ω = 10 and the zero function
coincide at tn ≡ n/(2Ω) (marked with + + +). The function f has bandwidth Ω, but can clearly not
be reconstructed from its sampled values at sample frequency 2Ω. This example seems to contradict
the Shannon–Whittaker Theorem, where the critical sample frequency 2Ω is allowed. However, note that
this function f is not square integrable (f 6∈ L2(R)). Nevertheless, this example clearly shows what the
critical value is of the sample frequency to allow reconstruction from the sampled function values (see also
Exercise 7.2). It may help to memorize that the critical sample value is 2 times the bandwidth.

The first equality in (122) is the Fourier series of the 2Ω-periodic extension of the
restriction of f̂ to [−Ω,+Ω] (with the roles of −t and ω interchanged; cf. Exercise 2.14).

A digital signal is a sequence F = (fk) in ℓ 2(Z), i.e.,
∑ |fk|2 < ∞. In view of the

above arguments, we define the Fourier transform F̂ (ω) by

F̂ (ω) ≡ 1

2Ω

∞∑

k=−∞
fk e

−2πiω k
2Ω (ω ∈ R).

Then F̂ is 2Ω-periodic and

fk =

∫ Ω

−Ω
F̂ (ω) e2πiω k

2Ω dω (k ∈ Z).

Note that it is not clear what value for Ω should be taken if a digital signal F is
given, but no information on the sample frequency is available. However, often the
precise value for Ω does not play an essential role. Therefore, to simplify notation, one
usually takes Ω = π (or Ω = 1

2 ). Then the ω with ω ≈ 0 are low frequencies and with
|ω| ≈ π are high frequencies.

The study of signals in a digital representation (or in discrete time) as above and
the processing methods of these signals is called digital signal processing.

In practice, sampling is not straight-forward. We mention some of the problems
that one may encounter.

7.5 Noise. The signal f will be polluted by some noise. Rather than f , we will
have f̃ ≡ f + ε, where ε is some function representing the noise.

Noise does not lead to serious problems if the average energy 1
δ

∫ t+δ
t |ε(s)|2 ds of the

noise per time unit [t, t+δ) is significantly less than the average energy in the signal f in
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that same time unit. If ε is continuous (unlikely), then limδ→0
1
δ

∫ t+δ
t |ε(s)|2 ds = |ε(t)|2

and we will not be bothered by the noise if |ε(t)|2 ≪ |f(t)|2 for all t.
The noise in an audio-signal seems to be undetectable by ear if the signal-noise

ratio is larger than 90 dB (decibel),20 i.e., 10 log10 |f(t)|2 − 10 log10 |ε(t)|2 ≥ 90.21

7.6 Approximation error. Signals of bounded bandwidth last forever. On, for
instance, a CD only finitely many sample-values can be stored.22 We have to stop the
sample process. The following property can be used to estimate the resulting error.

Property. For T > 0, n > 2ΩT , and |t| ≤ ∆t ≡ 1/(2Ω), we have that

∣∣∣∣∣∣
f(t) −

∑

|k|≤n

f(k∆t) sinc(2tΩ − k)

∣∣∣∣∣∣
.

2

π

√
1

2T

∫

|s|≥T
|f(s)|2 ds.

Proof. In step (α) of the proof of 7.3, we saw that
|f(t)−∑|k|≤n f(k∆t) sinc(2tΩ−k)|2 ≤ (

∑
|k|>2ΩT ∆t|f(k∆t)|2) (

∑
|k|≥n

4Ω
π2k2 ).

7.7 Aliasing. To determine the Nyquist ratio, an estimate of the bound Ω of the
bandwith the signal should be available, which is often not the case. If the estimate
for Ω is too small (and, consequently, the Nyquist ratio too large), then a harmonic
oscillation t f̂(ω)e2πitω with frequency ω that is too high gets represented an a ‘grid’

{ k
2Ω k ∈ Z} on which the oscillation can not be distinguish from its alias, i.e., an

oscillation of lower frequency (see Fig. 18):23

e2πitω = e2πit(ω−2Ω) for each t ∈ { k

2Ω
k ∈ Z}.

This ‘alias-phenomenon’ can be observed in old western movies where the wheels of the
post coach appear to turn backward (the spokes of the wheel have been samples with
a frequency of 16 frames per second, while the number of times that a spoke passes a
specific point is much larger than 16).

20The quality of a signal or of a device in audio-technology is given on the decibel scale. Roughly
speaking, this scale corresponds to the sensitivity of our ear: a signal that is twice as strong on the
decibel scale as another signal leads to a sound that appears to be twice as loud to us.

21The sample values on a CD are represented by 16 bits (sinks and non-sinks) numbers. These
numbers will not be the exact function values. However, the ‘noise’ that is introduced by rounding
function values to 16 bits numbers is below the threshold for our ear: the signal-noise ratio is ≥ 90 dB.

22The Nyquist ratio on a CD is 1
44100

second: Ω = 22500. A CD can contain about 5 109 bits in total.
A CD player reads 106 bits per second (the CD does not only contain the sampled values, but there
are also many control bits. For instance, there are additional bits to allow the Reed-Solomon code to
correct a few bits).

The digital to analog (DA) converter in a CD player transforms the discrete function of sampled

values to a step function: if f is sampled at tn = n∆t (n ∈ Z), then the DA converter produces ef that

is defined by ef(t) ≡ f(tn) if t ∈ [tn, tn+1). There is no accurate reconstruction of f ! The discontinuities

in this ‘reconstruction’ ef of f seem to be audible. To mask the discontinuities, ‘oversampling’ is applied
before sending the sampled values to the DA converter, that is, the values of f are computed at tn/2

(one time oversampling) or also at tn/4 (two times oversampling). Here tr ≡ r∆t. In case of two

times oversampling, the DA converter produces ef defined by ef(t) ≡ f(tn/4) if t ∈ [tn/4, t(n+1)/4). The
Shannon–Whittaker Theorem can be exploited to do the oversampling.

23To handle this problem as gracefully as possible, most analog signals are filtered with an anti-
aliasing filter (usually a low-pass filter; see §8 for definitions) at the Nyquist frequency before conversion
to the digital representation.
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Figure 18. An harmonic oscillation and his alias. The sine functions t sin(2πtω), with ω = ω1 = 2

(solid line) and ω = ω2 = −8 (dotted line) in the left picture coincide on {k/10 k ∈ Z} (+’s with function
values ◦). Note that ω1 = ω2 + 10. The cosine functions cos(2πtω), with ω = ω1 = 2 (solid line) and

ω = ω3 = 8 (dotted line) in the right picture coincide on {k/10 k ∈ Z}. Now, ω3 6= ω1 + 10. But
cos(φ) = cos(−φ) and ω3 = −ω1 + 10.

The following property allows us to estimate the error due to aliasing. We compare
f with another nearby function that can be handled by the theory and we interpret
the difference as noise.

Property. Let fΩ be the signal for which f̂Ω = f̂ ΠΩ. Then the Shannon–Whittaker
theorem is applicable to fΩ and

|f(t) − fΩ(t)| ≤
∫

|ω|>Ω
|f̂(ω)| dω.

Proof. See (a) of theorem 3.4.

7.8 Jitter. The times at which the sampled values are taken will in practice not
be exactly equidistant: one will sample at tk = k∆t + ε. The resulting error is called
jitter.

7.9 Note. Since there is no T > 0 for which the sinc function sinc( t
∆t) vanishes

outside [−T,+T ], any sampled value will have an effect on the signal for ever (see
Fig. 7).

Numerical mathematics provides algorithms to reconstruct the signal if a number
of sample values are lacking (for instance, due to some flaw in material of the CD).24

A question that is of interest in Harmonic Analysis (pure mathematics) is whether
the collection {k∆t} can be replaced by another subset of R that, in some sense, contains
‘less’ points.

The theorems (and their variants for more dimensions) are also of importance for
Crystallography: the points k∆t will then represent the positions of atoms in a crystal.

24The Reed-Solomon code only corrects a bit if most of the neighboring bits are correct. In case of,
for instance, a flaw in the material a whole series of bits will be incorrect. The Reed-Solomon codes
can track the error, but they do not provide a correction then.
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7.B Information on a signal with bounded bandwith

Communication technologists assume that a signal with bandwidth Ω and time interval
2T can carry approximately 4ΩT different messages. The assumption “the dimension
of the space of all signals f for which f = 0 outside [−T,+T ] and f̂ = 0 outside
[−Ω,+Ω] is approximately 4ΩT ” looks like the mathematical translation of this as-
sumption (signals f and 5f differ only in volume and consequently(?) carry the same
information!). Unfortunately, except for the trivial signal, there is no signal with both
bounded bandwidth and bounded time support. Since the devices that the engineers
design do their job, we may assume that there is another translation. The following
theorem might be a suitable candidate.

7.10 Theorem. Assume 2ΩT ∈ N. Let f be a signal with bandwidth ≤ Ω.
Then, there is an a ∈ [0, 1

2Ω) such that, with fa(t) ≡ f(t− a), we have that

‖fa −
∑

|k|≤2ΩT

fa(
k

2Ω
) sinc(2 tΩ − k)‖2 ≤

√∫

|t|≥T
|f(t)|2 dt.

Proof. From 7.3 and 3.8 (interchanging roles of t and ω) we conclude that

∫ 1
2Ω

0
‖fa −

∑

|k|≤2ΩT

fa(
k

2Ω
) sinc(2 tΩ − k)‖2

2 da ≤

∫ 1
2Ω

0

1

2Ω

∑

|k|>2ΩT

|fa(
k

2Ω
)|2 da ≤ 1

2Ω

∫

|t|≥T
|f(t)|2 dt.

For the last estimate, we exploited the observation that | k
2Ω − a| ≥ | k

2Ω | − a ≥ 2ΩT+1
2Ω −

1
2Ω = T if |k| > 2ΩT . This leads to the statement in the theorem.

Except for a delay a, the signals f and fa are identical (cf., Fig. 13). If the signal f
carries ε ≡

∫
|t|>T |f(t)|2 dt energy outside the time interval [−T,+T ] then the difference

between the slightly delayed signal fa and some signal in the span of the 4ΩT + 1
functions sinc(2 tΩ − k) (k = −2ΩT,−2ΩT + 1, . . . , 2ΩT − 1, 2ΩT ) has energy less
than ε.

7.C Signal reconstruction

The questions in this subsection are harder to answer than the ones in the two preceding
subsections. We will not give details here, but we will indicate what techniques can
be used for a proper treatment. Questions and analysis techniques show that also in
fields of application of Fourier theory a wide mathematical knowledge and expertise is
necessary for successful research.

A signal can not be of bounded bandwidth and at the same time last only for a
limited period of time. In spite of this fact, of signals f with bandwidth Ω often only
values in a bounded time interval [−T,+T ] are know (or f -values from a certain time
interval are lacking due to deficiencies in the material or perturbations by noise,. . . ).
It is remarkable that a signal f of bounded bandwidth is completely determined by its
values on each arbitrary time interval [t0, t1] where t0 < t1, no matter how small the
interval is.
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7.11 Property. Let t0 < t1. If f1 and f2 are signals of bounded bandwidth such
that f1 = f2 on [t0, t1], then f1 = f2 on R.

Proof. Apply 7.2 with f = f1 − f2.

Now, one may wonder how to reconstruct f from its values on a bounded time
interval. The problem resembles the ‘sample problem’ of §7.A. However, the answer to
the present problem is more complicated and requires results from Hilbert space theory.
We look for a solution by means of an orthonormal basis of appropriate functions.25

We will use Plancherel’s formula (see (73) in §3).

7.12 The space of all signals with bandwidth ≤ Ω is denoted by BΩ:

BΩ ≡ {f ∈ L2(R) f has bandwidth ≤ Ω}.
Define DT , BΩ : L2(R) → L2(R) as follows:

DT (f) ≡ fΠT and BΩ(f) ≡ f∗Π̂Ω (f ∈ L2(R).

With g ≡ BΩ(f), we have that ĝ = f̂
̂̂
ΠΩ = f̂ ΠΩ = DΩ(f̂). Here, we used that ΠΩ is

an even function:
̂̂
ΠΩ(ω) = ΠΩ(−ω) = ΠΩ(ω).

We collect some elementary and useful properties.

7.13 Properties. Let f, g ∈ L2(R). Then, with (·, ·) the L2(R) inner product, we
have that
(i) (DT (f), g) = (f,DT (g) ) and (BΩ(f), g) = (f,BΩ(g) ),
(ii) DTDT (f) = DT (f) and BΩBΩ(f) = BΩ(f),
(iii) if DTBΩ(f) = 0, then BΩ(f) = 0, and if BΩDT (f) = 0, then DT (f) = 0.

Proof. (i) (DT (f), g) =
∫ T
−T f(t)g(t) dt = (f,DT (g) ).

(BΩ(f), g) = (B̂Ω(f), ĝ) = (DΩf̂ , ĝ) = . . ..
(ii) Clearly the first equality is correct. The second one follows by taking the Fourier
transform.
(iii) The first claim is a consequence of 7.11, the second one follows from the first claim
via the Fourier transform.

The eigenfunctions of BΩDT BΩ lead to the desired orthonormal basis.

7.14 An eigenvalue problem.
We are interested in the eigenfunctions ψ in L2(R) of BΩDT BΩ with eigenvalue

λ ∈ R:
BΩDT BΩ(ψ) = λψ.

The following result can be proved with techniques from Hilbert space theory. The
representation of the operator BΩDT BΩ as an integral operator (see (123) below)

25Orthonormal basis often play a central role. The fact that the functions t  exp(2πit k
T

) form
an orthogonal basis for the space of the L2

T -functions is one reason why the theory on Fourier series
is so elegant. The Fourier transform of t  sinc(2Ω t − k) is precisely ω  1

2Ω
exp(2πi k

2Ω
ω)ΠΩ(ω)

(see the proof of Shannon–Whittaker’s theorem). This and Parseval’s formula imply that the functions
t  sinc(2 Ω t − k) form an orthonormal basis of the space of signals of bandwidth ≤ Ω. This basis
is well-suited for reconstruction from sampled function values. For reconstruction from functions on
intervals, we need another orthonormal basis.
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implies that the operator is compact. From 7.13 it can be deduced that this operator
is selfadjoint and positive definite. The following theorem holds for compact positive
definite operators on Hilbert spaces. We will not give a proof here.

7.15 Theorem.

There is a sequence (ψn) in L2(R) and a sequence (λn) in [0,∞) such that

(i) BΩDT BΩ(ψn) = λn ψn for all n ∈ N,

(ii) the ψn form an orthonormal basis for L2(R).

The ψn in BΩ will provide us with a basis that can be used to solve our signal
reconstruction problem.

7.16 Lemma. Let E ≡ {n ∈ N λn 6= 0}.
If n ∈ E, then BΩ(ψn) = ψn and ψn ∈ BΩ. If n 6∈ E, then BΩ(ψn) = 0.

Proof. If n 6∈ E, then BΩDT BΩ(ψn) = 0, and BΩ(ψn) = 0 follows from (iii) in 7.13.

Property (ii) of 7.13 implies that

λnBΩ(ψn) = BΩBΩDT BΩ(ψn) = BΩDT BΩ(ψn) = λn ψn

and BΩ(ψn) = ψn if λn 6= 0.

7.17 Theorem. For each n ∈ E, we put ψ̃n ≡ 1√
λn
DT (ψn).

(i) The functions ψn with n ∈ E form an orthonormal basis of BΩ.

(ii) The functions ψ̃n with n ∈ E form an orthonormal basis of {DT (f) f ∈ BΩ}.
If f ∈ BΩ and f =

∑
k∈E βk

1√
λk
ψk, then DT (f) =

∑
k∈E βkψ̃k.

Proof. (i) Let f ∈ L2(R).
By 7.15, we have that f =

∑∞
k=1 αkψk. Hence, (f, ψn) =

∑
k αk(ψk, ψn) = αn. If

f ∈ BΩ and n 6∈ E, then αn = (f, ψn) = (BΩ(f), ψn) = (f,BΩ(ψn) ) = 0.

(ii) To show that the ψ̃n form an an orthonormal system, note that, for n,m ∈ E,

(DT (ψn),DT (ψm) ) = (DT BΩ(ψn),DT BΩ(ψm) )

= (BΩDT DT BΩ(ψn), ψm) = λn(ψn, ψm).

Therefore, the orthonormality of the ψn implies orthonormality of the ψ̃n (n ∈ E).

If f ∈ BΩ, then f =
∑

k∈E αkψk and

DT (f) =
∑

k∈E

αk DT (ψk) =
∑

k∈E

αk

√
λkψ̃k.

The last claim in the theorem follows with βk = αk

√
λk and we proved that the ψ̃n

form a complete system for DT (BΩ).

The functions ψn have a double orthogonality property which makes them attractive
in many application. For instance, they solve our problem:
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7.18 Corollary. If g = DT (f) for some f ∈ BΩ, then

f =
∑

k∈E

βk
1√
λk

ψk, where βk ≡
∫ T

−T
g(t) ψ̃k(t) dt.

Proof. If DT (f) = DT (g) = g =
∑

k∈E βk ψ̃k,

then
∫ T
−T g(t) ψ̃n(t) dt = (g, ψ̃n) =

∑
k βk(ψ̃k, ψ̃n) = βn.

Formally we have now solved our signal reconstruction problem. However, before
we can apply the above corollary in practice, some difficulties have to be solved. We
mention a few obstacles.

In the first place, we have to learn how to deal with the eigenfunctions ψn. The
observations the following paragraphs will be useful for this.

7.19 The eigenvalue problem revisited. We are interested in the eigenfunctions
ψ ∈ BΩ. For such an eigenfunction ψ with eigenvalue λ we have that BΩ(ψ) = ψ.
Therefore,

BΩDT (ψ)(t) = (ΠTψ) ∗ Π̂Ω(t) =

∫ +T

−T
ψ(s)

sin(2π(t− s)Ω)

π(t− s)
ds = λψ(t). (123)

With c ≡ ΩT , φ(y) ≡ ψ(Ty), and t ≡ Ty, we have that (substitute s = Tx)

∫ +1

−1

sin 2cπ(y − x)

π(y − x)
φ(x) dx = λφ(y). (124)

We see that the eigenfunction φ and eigenvalue λ depend only on the product ΩT , on
c, and not on the terms T and Ω separately. Note that (124) allows to compute φ(y)
for |y| > 1 if φ(x) is available for |x| ≤ 1.

The eigenfunction φ is also a solution of the differential eigenvalue problem

d

dx
(1 − x2)

dφ

dx
+ (

1

λ
− 4π2c2x2)φ = 0.

This differential equation plays also a role in the analysis of the wave equation in
certain spherical coordinates. Due to this analysis, many properties of the solutions φ
(the so-called prolete spherical wave functions) are well-known.

7.20 The values of the eigenvalues. Let λ1(c), λ2(c), . . . be the eigenvalues λ of
the problem (123). We may assume that these eigenvalues are ordered such that

λ1(c) ≥ λ2(c) ≥ . . .

(and that λn = λn(ΩT ) for all n, where λn is as in 7.15).

The following can be proved (cf. Fig. 19):

• λn(c) ≈ 1
2 if n ≈ 4c;

• λn(c) ≈ 1 if n≪ 4c (even for n < 4c− δ, where δ ≈ log(c));

• λn(c) ≈ 0 if n≫ 4c (even if n > 4c+ δ).
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Figure 19. The top figure shows the value of the eigenvalues λn(c) for c = 3.5. The dotted lines
at log c of the value 4c (dashed-dot) mark the transition area from λ ≈ 1 to λ ≈ 0. The next four figures
show the graph of eigenfunctions φn corresponding to the eigenvalues that are marked (with circles) in the
top figure. The most left eigenvalue in the top picture corresponds to the left picture at the second row
of pictures, etc.. Note that the eigenfunctions corresponding to λ ≈ 1 are well-concentrated in [−1, 1],
whereas the eigenfunction with λ ≈ 0 nearly vanishes on [−1, 1]. The eigenfunction with λ in the transition
stage has significant values inside as well as outside the interval [−1, 1].

The domain of the ns for which λn(c) 6≈ 1 and λn(c) 6≈ 0 is small. This do-
main is an interval around n ≈ 4c with width ≈ log c. Since (DT (ψn),DT (ψn)) =∫ +T
−T |ψn(s)|2 ds = λn (cf. 7.17), this implies that for n < 4c − δ, the signals ψn are

almost completely concentrated in the interval [−T,+T ], while for n > 4c + δ the sig-
nal ψn have almost no energy in the interval [−T,+T ] (cf. Fig. 19. This figure is for
c = 3.5. For c = 10, the λ1, . . . , λ16 are up to 15 digits equal to 1, while λ35 = 0.99986:
apparently, even λ35 is close to 1. Hence, even ψ35 is for 99.993% concentrated in
[−T, T ].).

With the ψn and exploiting the insights obtained above, a “4ΩT -theorem” can be
formulated, that is, a theorem as in §7.B that expresses how a space of signals with
bandwidth Ω and energy that is almost completely concentrated in [−T,+T ] can be
viewed as the span of ≈ 4ΩT linearly independent signals: the ψn for n < 4ΩT −δ form
an orthonormal system of signals that are almost completely concentrated in [−T,+T ].

To conclude this discussion, we mention that
∑∞

n=1 λn(c) = 4c.

7.21 Practical objections. If f ∈ BΩ and f is known on [−T,+T ], then, in
principle, f can be determined everywhere. Unfortunately, the values of f on [−T,+T ]
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Figure 20. The function λ  1/
√
λ (dashed-dot) and its regularized variant λ  

√
λ(λ + µ) for

µ = 0.02.

that are available will usually be polluted by errors. Rather than g = DT (f), we have
g̃ = g + ε, with ε some noise (function in L2(R)) with DT (ε) = ε and ε̄ ≡ ‖ε‖2 small.

If g =
∑

k∈E βk ψ̃k, then f =
∑

k∈E βk
1√
λk
ψk and ‖f‖2

2 =
∑

k∈E
|βk|2
|λk| <∞, since

f ∈ L2(R). For f̃ we will take the function
∑

k∈E (βk + δk)
1√
λk
ψk, with

δk ≡
∫ +T
−T ε(t) ψ̃k(t) dt. Since the ψ̃k form an orthonormal system for k ∈ E, we have

that
∑

k∈E |δk|2 ≤ ε̄. However, since ε will not be in BΩ, the error ‖f − f̃‖2 can

be unboundedly large, because ‖f − f̃‖2
2 =

∑
k∈E

|δk|2
|λk| . The problem is said to be ill

conditioned.

The produced solution f̃ itself will be infinitely large in case the error is infinitely
large (‖f̃‖2 ≥ ‖f̃ − f‖2 + ‖f‖2). This is the reason that in practice a regularisation
technique is employed: a small value of µ > 0 is selected and the function f in BΩ is
computed for which the expression

‖DT (f) −DT (g̃)‖2
2 + µ‖f‖2

2

is minimal. If f r is this minimizing f , then f r can not have an infinite norm ‖f r‖2.

With r(λ) ≡
√

λ
λ+µ for λ > 0, we actually have that f r ≡∑k∈E

β̃k r(λk)ψk, where

β̃k =
∫ +T
−T g̃(t) ψ̃k(t) dt.

The above misery stems from the fact that 1√
λk

is large if λk is small. Note that

r(λ) ≈ 1√
λ

for larger λ, while r(λ), also for smaller λ, will not be large; see Fig. 20

7.D Uncertainty relations

We have seen that a signal can not have bounded bandwidth and at the same time
last only for a limited period of time. Nevertheless, it is important to have signals that
are well concentrated both in time as well as in frequency. (Radio stations are close
together on the radio band. One would like to have not only ‘smooth’ signals that
transport music and speech, but one also would like to employ short pulses as dots and
dashes in telegraphy and dots and non-dots in digital communication.)

The uncertainty principle of Heisenberg gives a lower bound on how well a signal
can be concentrated both in time and in frequency.
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7.22 Let f be a signal. Then

E ≡
∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞
|f̂(ω)|2 dω (125)

is its energy. The center of the (energy distribution of) signal f is located at time

t0 ≡ 1

E

∫ ∞

−∞
t |f(t)|2 dt. (126)

The quantity σt, given by

σ2
t ≡ 1

E

∫ ∞

−∞
(t− t0)

2 |f(t)|2 dt =
1

E

∫ ∞

−∞
t2 |f(t)|2 dt− t20, (127)

is a measure for the concentration of the energy around the center: if f is well-
concentrated around t0, then σf will be small, whereas σf is large if f has large values
far away from t0.
Similar definitions can be given in the frequency domain: with

ω0 ≡ 1

E

∫ ∞

−∞
ω |f̂(ω)|2 dω, σ2

ω ≡ 1

E

∫ ∞

−∞
(ω − ω0)

2 |f̂(ω)|2 dω

ω0 is the center of the spectral energy density, σω is a measure for the spectral energy
concentration.

The uncertainty principle of Heisenberg states that a signal can not be concentrated
both in time as well as in frequency: σt and σω can not both be small at the same time.

7.23 The uncertainty principle of Heisenberg. Let f be a signal that is suffi-
ciently smooth. Then

σt σω ≥ 1

4π
.

In addition, we have that

σt σω =
1

4π
⇔ f(t) = c eγ(t−t0)2 (t ∈ R) for some c and γ ∈ C, Re(γ) < 0.

Proof. Without loss of generality, we may assume that t0 = 0 and ω0 = 0.
We have that f̂ ′(ω) = 2πiωf̂(ω). Cauchy–Schwartz’ inequality and Plancherel’s

formula (see Th. 3.12) imply that

∣∣∣∣
∫ +∞

−∞
t f(t) f ′(t) dt

∣∣∣∣
2

≤
∫ +∞

−∞
t2 |f(t)|2 dt ·

∫ +∞

−∞
|f ′(t)|2 dt

= 4π2

∫ +∞

−∞
t2|f(t)|2 dt ·

∫ +∞

−∞
ω2|f̂(ω)|2 dω.

Here, we also used Theorem 3.5. Integration by parts leads to

∫ +∞

−∞
tf(t)f ′(t) dt = t12f

2(t)
+∞
−∞ − 1

2

∫ +∞

−∞
f2(t) dt = −1

2E

and Heisenberg’s uncertainty relation follows by a combination of these two estimates.
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The estimate can only be sharp if the estimate with the Cauchy–Schwartz inequality
is sharp. This is the case if and only if the functions t  tf(t) and f ′ are linearly
dependent, that is, if there is a γ̃ ∈ C such that f ′(t) = γ̃ tf(t) for all t ∈ R. Then,
(log f)′(t) = γ̃t, and, therefore, f(t) = c exp(1

2 γ̃t
2). This f can only be in L2(R) if

Re(γ) < 0, where γ ≡ 1
2 γ̃ < 0.

Heisenberg’s uncertainty relation is famous from quantum physics. Quantum physi-
cists do not interpret f as a signal but as a quantity that expresses the probability to
find a particle in certain place t. In this interpretation, f̂ is the probability that the
particle has impulse ω. The quantities σt and σω are of stochastical origin in this
application.26

7.24 The stochastical approach by the quantum physicists is less convenient for the
communication technology, where one is more interested in the quantity αT (f) given
by

αT (f)2 ≡ 1

E

∫ +T

−T
|f(t)|2 dt with E ≡

∫ +∞

−∞
|f(t)|2 dt.

The quantity αT (f)2 is the fraction of the energy of the signal f between −T and +T .
One is interested in how large αT (f) can be for signals f with bandwidth Ω, in other

words, one wants to determine αT ≡ sup{αT (f) f ∈ BΩ}.
Note that

α2
T = sup{‖DT (f)‖2

2 f = BΩ(f), ‖f‖2 ≤ 1}
= sup{‖DT BΩ(f)‖2

2 ‖f‖2 ≤ 1}
= sup{(BΩDT BΩf, f) ‖f‖2 ≤ 1}.

A result from Hilbert space theory (the Courant–Fischer Theorem) tells us that α2
T

is the largest eigenvalue of the linear map BΩDT BΩ (see 7.14). The eigenvalues and
eigenfunctions from the preceding subsection appear to play a role here as well. Note
that 1 ≈ αT ≤ 1 (see 7.20).

From the results in this subsection, we also know that αT does not depend on T and
Ω separately, but only on the product TΩ (see 7.19). In addition, it appears that ψ1,
corresponding to λ1 = α2

T , is the signal in BΩ that is mostly concentrated in [−T,+T ].
For a graph of ψ1 for T = 1 and Ω = 40, see Fig. 19.

26 The quantum mechanical particle is described by a Schrödinger wave packet ψ(x). This function
describes a free quantum mechanical particle in one dimensional space with coordinate x at a fixed
time. The square absolute value |ψ(x)|2 represents the probability density for finding the particle at
point x. In particular, we have that

R
|ψ(x)|2 dx = 1 and the expected position of the particle isR

x |ψ(x)|2 dx. We can write ψ(x) as a superposition of pure De Broglie waves exp(2πipx/h), which
corresponds to a Schrödinger function of particle momentum p. Here, h is Planck’s constant. Notice
that the ‘frequency’ of the De Broglie wave is p/h. We write the superposition of pure De Broglie waves
as

ψ(x) =
1√
h

Z
φ(p)e2πi x

h
p dp.

As an application of Plancherel’s formula, we find that
R
|φ(p)|2 dp = 1. Therefore, |φ(p)|2 can

be interpreted as the probability density that our particle has momentum p. Let us assume thatR
p|φ(p)|2 dp = 0: our particle is expected to be at rest. Theorem 7.23 can be applied with ψ(x)

instead of f(t). With σ2
x ≡

R
x2 |ψ(x)|2 dx and σ2

p ≡
R
p2 |φ(p)|2 dp, this leads to σxσp ≥ h/(4π),

which is viewed as the mathematical formulation of Heisenberg’s uncertainty principle.
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Exercises

Exercise 7.1. Prove that the functions t  sinc(2 tΩ − k) (k ∈ Z) form an orthonormal
system.

Exercise 7.2. Consider the functions f(t) ≡ sin(2πtΩ) and, for some α, 0 < α ≪ 1, g(t) ≡
exp(−πα2t2) (t ∈ R).

(a) Show that f 6∈ L2(R) and f ∗ g ∈ L2(R).

(b) Show that the bandwidth of f ∗ g is > Ω.

Exercise 7.3. Suppose that the frequency band of a real-valued signal f is contained in

O ≡ {ω |ω| ∈ [ℓΩ, (ℓ+ 1)Ω)}, where Ω > 0 and ℓ is a positive integer: O is symmetric about
0 and consists of two intervals of width Ω.

In this exercise, we will see that, although the bandwidth of f is (ℓ + 1)Ω, it still suffices
to sample f at tk ≡ k∆t, where ∆t ≡ 1/(2Ω), i.e., at a sample frequency of 2Ω as in the
Shannon–Whittaker theorem. But with an adapted ‘reconstruction function’. We will see that

f(t) =

∞∑

k=−∞
f(tk) cos(π(t− tk)Ω(2ℓ+ 1)) sinc((t− tk)Ω) (t ∈ R). (128)

There is a 2Ω-periodic function F such that F (ω) = f̂(ω) for all ω ∈ O (see Exercise 3.15).
Show that F is even. From Exercise 3.15 we know that

F (ω) =

∞∑

k=−∞
γk e

−2πiωk∆t =

∞∑

k=−∞
∆t f(k∆t) e−2πiωk∆t (ω ∈ R).

(a) Let Φ ∈ L2(R) be such that Φ̂(ω) = 1 if ω ∈ O and Φ̂(ω) = 0 elsewhere. Show that

Φ(t) = 2 cos(2πtΩ(ℓ+ 1
2 ))

sin(πtΩ)

πt
(t ∈ R).

Is this consistent with the formula for Ψ that we have in the proof of the Shannon–Whittaker
theorem?

(b) Consider the function g(t) ≡∑∞
k=−∞

1
2Ωf(tk)Φ(t− tk) (t ∈ R). Show that

ĝ(ω) =

∞∑

k=−∞
∆tf(k∆t) e2πiωk∆t Φ̂(ω) = F (ω) Φ̂(ω) (ω ∈ R).

Conclude that ĝ(ω) = f̂(ω) for all ω ∈ R and, finally, prove (128).

Exercise 7.4. Let f ∈ L2(R).

(a) Show that that ∫ ∞

−∞
(t− s)2 |f(t)|2 dt

is minimal for s = t0, where t0 is the center of the energy distribution of f (see (127)).

(b) The uncertainty principle of Heisenberg is ‘symmetric’ with respect to f and f̂ . The
second statement in Theorem 7.23 involves a t0, but does not seem to involve an ω0. Explain
this (seemingly) lack of symmetry.

(c) Derive the scaled version in Footnote 26 of the uncertainty principle.



91

8 Filtering

In fields as signal processing (with its three major subfields: audio signal processing,
digital image processing and speech processing) filtering is an important operation.
With analog or digital techniques, one wants to filter a part with limited bandwidth
from a signal f : for instance, for Ω > 0 one wants to produce a signal fΩ from f such
that f̂Ω ≡ f̂ ΠΩ (to avoid aliasing, to let speakers produce the sound of only one radio
channel,. . . ). Or noise has to be filtered from a signal. In practice (specifically when
using analogue techniques) filtering has to be done in time domain. It is not clear
whether the ‘ideal’ filtered signal fΩ can be produced in time domain. This issue will
be addressed in §8.A. But, first we introduce some terminology.

Of course, in practice, one is not only interested in filtering for low frequencies.

8.1 Definition. Let H be a locally integrable bounded (even) function on R. The
map from L2(R) to L2(R) that maps the signal f to the signal g where ĝ = f̂H is called
the ideal H-filter. The signal f is called the input signal, g is the output or response
signal, and H is the so-called transfer function or (frequency) response function.

Consider an oscillation component t  f̂(ω) exp(2πiωt) (ω ∈ R) of the input
function. The filter changes the amplitude by a factor |H(ω)|: |H(ω)| is the gain at
frequency ω. H is complex-valued. The phase of this component is shifted by φ(ω),

where, φ is such that H = |H(·)|e−iφ(·). Or, equivalently, the time is delayed by φ(ω)
2πω

seconds,

e2πiωt−iφ(ω) = e2πiω(t−φ(ω)
2πω

) :

φ(ω)
2πω is the phase delay at frequency ω.

Here, we mainly focus on the ideal ΠΩ-filter. Insights for filtering low frequencies
are also useful for filtering for other parts of the frequency band (if, for instance,
H = ΠΩ − ΠΓ with 0 < Γ < Ω).

In order to see whether an ideal H-filter can be formed in the time domain, it is
convenient to have a representation of the filtering process in time domain. If H is a
response function then, according to Theorem 6.4, the ideal H-filter can be represented
in the time domain by means of the convolution product f  f∗h (f ∈ L2(R)),
where h ∈ L2(R) is such that ĥ = H. This function h is also called the impulse
response function (to understand the naming, consider the function fδ ≡ 1

2δΠδ for

δ > 0. Then fδ∗h(t) = 1
2δ

∫ t+δ
t−δ h(s) ds and certainly if h is continuous, we will have

that limδ→0 fδ∗h(t) = h(t): if the input signal is a “pulse” fδ, then the response function
will resemble h, the resemblance will be better for shorter pulses).

8.2 Example. The ideal low frequency band filter, the ideal ΠΩ-filter, can be rep-
resented in time domain as f  f∗Π̂Ω. Here we used the fact that Π̂Ω is even. Hence,

f̂(ω)
̂̂
ΠΩ(ω) = f̂(Ω)ΠΩ(−ω) = f̂(ω)ΠΩ(ω). Recall that (see (b) in 3.7)

Π̂Ω =
sin(2πtΩ)

πt
= 2Ω sinc(2tΩ).

A convolution product can be viewed as weighted averaging. Therefore, filtering in
frequency domain corresponds to weighted averaging in time domain.
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8.A Filters constructed with the window method

If a filter is to be formed in time domain, then one should realize that it is not possible
to include signal values in the ‘averaging process’ that have not been received yet: in
some applications, typically in audio signal processing, the function is available as a
‘stream’ of function values.27 Then, the impulse response function h should be such
that

f∗h(t) =

∫ t

−∞
f(s)h(t− s) ds for each f.

This is possible only if h(t) = 0 for all t < 0.

8.3 Definition. An impulse response function h is causal if h(t) = 0 for all t < 0.

8.4 If h is an impulse response function for which, for some s > 0, h(t) = 0 for
all t < −s, then h need not be causal. However, by delaying the input signal, we can
average s seconds ‘in future’.

For a signal g and s ∈ R, we define the delayed signal gs by gs(t) = g(t− s).

8.5 Property. Let f be a signal and h an impulse response function. Then

(fs)∗h = f∗(hs) = (f∗h)s.

Proof. Express the three convolution products as integrals using the definition and
apply appropriate substitution of variables.

The output signal f∗hs produced with a shifted impulse response function hs is,
except for a delay s, precisely the desired signal f∗h. Note that, hs is causal if h(t) = 0
for t < s. For ease of terminology, we will call such a response function causal as well.

8.6 The realistic low frequency band filter and Gibbs’ phenomenon. The
ideal low frequency band filter is not causal and can not be turned into a causal one
by a shift. However, by taking T sufficiently large, we can approximate the ideal
impulse response function Π̂Ω with, for instance, Π̂ΩΠT . If we shift this approxi-
mate impulse response function by T , then we have a causal impulse response function
(Π̂ΩΠT )T . Except for the delay T , this response function produces the approximate

signal f∗(Π̂ΩΠT ). We discuss how accurately this constructable signal (with delay) ap-

proximates the ideal signal. We compare the approximate response function (Π̂Ω ΠT )̂
with the ideal response function ΠΩ.

According to Theorem 6.4, we have that (Π̂ΩΠT )̂ = ΠΩ∗Π̂T and

ΠΩ∗Π̂T (ω) =

∫ +Ω

−Ω
Π̂T (ω − ρ) dρ =

∫ ω+Ω

ω−Ω

sin(2πTρ)

πρ
dρ.

With

UT (ω) ≡
∫ ω

−∞

sin(2πTρ)

πρ
dρ for ω ∈ R

27That is, at time t, only the function values f(s) for s ≤ t are available. For s > t, one has to wait
s− t seconds. Waiting may be undesirable if s is much larger than t.

In other fields, as digital image processing, all function values are already available at the beginning
of the ‘processing phase’.
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Figure 21. The graph of sin(2πTω)/(πω) (left) and its primitive (right).
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Figure 22. The ideal low frequency band filter with ‘causal’ approximate in frequency domain. The
approximate vanishes in time domain outside the time interval [−T, T ] and is, strictly speaking, not causal
(see §8.4). The left picture shows the ideal filter (solid line) and the causal approximate (dotted line) for
T = 5. Both functions are even and only the graph for ω ≥ 0 is displayed. The right picture shows the
ideal filter and the causal approximate on decibel scale.

we have that

ΠΩ∗Π̂T (ω) = UT (ω + Ω) − UT (ω − Ω).

For a sketch of the graph of Π̂T and UT , see Fig. 21. We now can describe how ΠΩ∗Π̂T

approximates the ideal ΠΩ (see Fig. 22). We see that, specifically near the endpoints
of the interval [−Ω,+Ω], the approximate filter exhibits a lot of deviating wiggles. By
taking T larger the area shrinks where the wiggles are large, however, the height of the
wiggles near −Ω and +Ω does not change. This can be understood as follows

UT (ω) =

∫ ω

−∞

sin(2πTρ)

πTρ
T dρ =

∫ Tω

−∞

sin(2πσ)

πσ
dσ = U1(Tω).

Apparently, changing T only implies a rescale of the ω-axis. If T gets larger, the graph
of UT in Fig. 21 is compressed only in the horizontal direction; the height of the wiggles
is not affected.28

28Also without explicit computation, properties of the graph of U1 can be deduced.
Obviously U1(−∞) ≡ limω→−∞ U1(ω) = 0. Since cΠT is even (why?) it follows that U1(ω) = U1(∞)−
U1(−ω). In addition, we have that U1(∞) =

R +∞
−∞

cΠ1(ρ)e
2πi0ρ dρ = Π1(0) = 1.



94 8 FILTERING

−4 −2 0 2 4

0

0.5

1

1.5

2

2.5

−4 −2 0 2 4

0

0.5

1

1.5

2

2.5

−4 −2 0 2 4

−0.01

−0.005

0

0.005

0.01

−4 −2 0 2 4
−120

−100

−80

−60

−40

−20

0

Figure 23. The top-left picture shows the original signal f in time domain, the top-right picture
shows the filtered signal f0 = f ∗ bΠΩ. Here f0(t) ≡ 3.5

√
α exp(−πα2t2), f(t) ≡ 2f0(t) cos2(2βπt), with

α = 0.1, β = 5 and Ω = 9. The bottom-left picture shows the error f0 − ef0 when f0 is computed with the
causal approximate: ef0 = f ∗ (bΠΩΠT ). The bottom-right figure also shows this error, but now on decibel

scale (20 log10 |f0 − ef0|).

For a signal f that is filtered with this constructable approximation of the ideal
ΠΩ-filter, this means that oscillation components with frequencies close to Ω and −Ω
will be amplified by ≈ 10 % (‘overshoot’), no matter how large T is. This is the so-
called Gibbs’ phenomenon. In addition, high frequency oscillation components (with
|ω| > Ω) are damped, but for a large set of these components the damping is poor,
certainly for acoustical applications. Not only oscillations with frequencies that are
slightly larger than Ω are poorly damped but also many oscillations with frequencies
that are considerably larger than Ω (see Fig. 23).

(Consider an L > Ω and, for δ > 0, the signal fδ with f̂δ(ω) = 1 if | |ω| − |L| | ≤ δ and
f̂δ(ω) = 0 elsewhere. Let gδ be the output signal associated with this input signal fδ:

ĝδ = f̂δ(ΠΩ∗Π̂T ). Then, for small δ, the ratio between the energy of the output and the
input signal approximately equals |UT (L − Ω)|2, or, in other words, is approximately
10 log |UT (L− Ω)|2 dB. This can be as much as ≈ −21 dB. From Fig. 22, we see that
damping with not more than 20 à 30 dB occurs in a very wide part of the band of high
frequencies.)

In the next paragraph we turn to the question whether the above approach can be
used to construct filters with better filter properties.

Put Ik ≡
R k+1

k

sin(πσ)
πσ

dσ for k ∈ Z. Then
. . . < −I−6 < +I−5 < −I−4 < +I−3 < −I−2 < +I−1 = I0 > −I1 > +I2 > −I3 > . . ..

This implies that, for k < 0, U1(2k) = (I2k + I2k−1) + (I2k−2 + I2k−3) + . . . > 0
and U1(2k + 1) = (I2k+1 + I2k) + (I2k−1 + I2k−2) + . . . < 0, etc..
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pass band 
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Figure 24. Pass band, transition band and stop band of a filter (dotted line) in the frequency domain.
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Figure 25. An ideal H filter (solid line) and a causal approximations (dotted line) for T = 5 in
frequency domain. In the picture, H is the Bartlett window. All functions are on decibel scale.

8.7 Other low frequency band filters. In view of the arguments in the preced-
ing subsection, it is clear that, if H is a response function, the ideal H-filter can be
approximated by the H∗Π̂T -filter. Except for a delay T this filter has a causal impulse
response function. This approach to form a causal filter from an ideal H-filter is called
a window-method: in the weighted average

∫ +T
−T f(t − s)h(s) ds (or in its the causal

variant) only f -values from the “time window” [−T,+T ] are used.

Since H∗Π̂T is continuous (see 6.3) if H is in L2(R), it is impossible to construct a
step function as ΠΩ in this way. A response function H∗ΠΩ that vanishes on the band
of high frequencies can not be constructed either (see 7.2). Appropriate continuous

approximation H of ΠΩ lead to realistic H∗Π̂T -filters with significantly better filter
properties in the high frequency band and less overshoot than the ΠΩ∗Π̂T -filter. The
approximations H are also called windows: ΠΩ and also H are windows in frequency
domain.

If H is continuous, then the ideal H-filter and the realistic H∗Π̂T -filter will not
only either stop or pass harmonic oscillations but will also somewhat damp oscillations
of certain frequencies. The collection of frequencies in this “transition” area is called
the transition band. The collection of frequencies of the oscillations that are stopped
to some acceptable degree are called the stopband. Frequencies of oscillations that are
hardly damped form the passband. “Stop”, “pass” and “damp” have to be understood
in some relative sense on the decibel scale (cf. Fig. 24).

Continuous response functions H lead to realistic H∗Π̂T -filters of which the transi-
tion band is wider than that of the ΠΩ∗Π̂T -filter but with better stop properties in the
stop band (compare the Figures 22, 25, and 26).

Examples.

• Bartlett window: H ≡ (1 − ω
Ω)ΠΩ(ω) (see the Fig. 25).

• Welch window: H ≡ (1 − (ω
Ω)2)ΠΩ(ω).
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Figure 26. Ideal H filter (solid line) and a causal approximations (dotted line) for T = 5 in frequency
domain. In the left picture, H is the Hann window, and, in the right picture, H is the Blackman window.
All functions are on decibel scale.
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Figure 27. The function f of Fig. 23 is filtered here with a causal variant of Bartlett’s window (top

pictures) and Blackman’s window (bottom pictures): ef0 = f ∗ ( bH ΠT ). The errors f0 − ef0 are displayed in
the left pictures on standard scale and in the right pictures on decibel scale.

• Hann window: H ≡ 1
2 (cos(π ω

Ω) + 1)ΠΩ(ω) (see the left picture in Fig. 26).

A Hamming window is a small variant of the Hann window:
H ≡ (0.46 cos(π ω

Ω) + 0.54)ΠΩ(ω)

• Blackman window: H ≡ 1
2 (cos(π ω

Ω) + 1)ΠΩ(ω) + 0.08(cos(2π ω
Ω)− 1)ΠΩ(ω) (see the

right picture in Fig. 26).

• The Kaiser window is based on the 0th order Bessel function.

8.8 Stability. For filters with a causal impulse response function, that we formed
by means of a convolution product, we have to discuss the effect of noise on the output
signal.

It is easy to see that |ε∗h(t)| ≤ ε̄
∫ +∞
−∞ |h(s)| ds = ε̄ ‖h‖1 if |ε(s)| ≤ ε̄ for each s ∈ R.
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For the L1-impulse response functions h, as constructed with the window method, the
noise gets amplified by at most 20 log10 ‖h‖1dB. Although the amplification by the filter
of the noise can be large, it can never be unlimited, in case of an L1-impulse response
function. (In view of this kind of stability arguments, we see that, in, for example, the

ΠΩ∗Π̂T -filter, we should not take the time window [−T,+T ] too long.)

8.B Analog filters with an infinitely long impulse response

In time domain, a filter can be represented by a convolution product in which signal
values are averaged in some weighted way. The averaging for the ideal ΠΩ-filter involves
very old signal values (as well as future ones). Since signals with bounded bandwidth
are completely determinated by their values on any time interval (see 7.11 for more
details) it is conceivable that there are ‘filters’ that, by exploiting the smoothness of
a signal, realize the ideal filters in time domain better than those from the window
methods.

In this section, we consider filters that, although in time domain they only need
‘local information’, their impulse response function has infinite duration (h(t) 6= 0 for
arbitrarily large t). These filters assume input signals that have some smoothness.

8.9 The filter. Consider a0, a1, . . . , ak and b0, b1, . . . , bm in R.
With, for instance, electronic circuits as in Application 2.6,29 devices can be constructed
that produce from a smooth input signal f , a smooth output signal g for which

a0g(t)+a1g
′(t)+ . . .+akg

(k)(t) = b0f(t)+b1f
′(t)+ . . .+bmf

(m)(t) for t ∈ R. (129)

Put p(ζ) ≡ a0 + a1ζ + . . .+ akζ
k and q(ζ) ≡ b0 + b1ζ + . . .+ bmζ

m for ζ ∈ C. Then we
have that p(2πiω)ĝ(ω) = q(2πiω)f̂(ω). Suppose that the coefficients ai and bj are such
that

p(ζ) 6= 0 for all ζ ∈ {2πiω ω ∈ R} and k ≥ m.

Define

H(ω) ≡ q(2πiω)

p(2πiω)
for ω ∈ R.

Then is H a bounded C(∞)-function and

ĝ = Hf̂.

29From en.wikipedia.org: The simplest electronic filters are based on combinations of resistors,
inductors and capacitors. Since resistance has the symbol R, inductance the symbol L and capacitance
the symbol C, these filters exist in so-called RC, RL, LC and RLC varieties. All these types are
collectively known as passive filters, because they are activated by the power in the signal and not by
an external power supply.

Here’s how passive filters work: inductors block high-frequency signals and conduct low-frequency
signals, while capacitors do the reverse. A filter in which the signal passes through an inductor, or in
which a capacitor provides a path to earth, therefore transmits low-frequency signals more strongly
than high-frequency signals and is a low-pass filter. If the signal passes through a capacitor, or has
a path to ground through an inductor, then the filter transmits high-frequency signals more strongly
than low-frequency signals and is a high-pass filter. Resistors on their own have no frequency-selective
properties, but are added to inductors and capacitors to determine the time-constants of the circuit,
and therefore the frequencies to which it responds.

Active filters are implemented using a combination of passive and active components. Operational
amplifiers are frequently used in active filter designs.
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If k > m, then H ∈ L2(R) and g = f∗h with h ∈ L2(R) such that ĥ = H. We will see
that h is also in L1(R) (see Theorem 8.13 and the subsequent discussion). In particular,
we have that g ∈ L2(R) (see (111)).

Note that, in practice, initial value conditions for g are needed: if f(t) = 0 for all
t ≤ 0, then it seems reasonable to require that g(0) = g′(0) = . . . = g(k−1)(0) = 0. The
function f ∗ h meets these conditions only if h is causal. This brings the question how
we can tell from the polynomials p and q that is the case?

One can try to construct a low frequence band filter by selecting appropriate p and
q and approximating ΠΩ by H. This kind of filters leads to problems that we did not
encounter before. As an illustration, we consider an example with p and q as simple
as possible. The resulting H happens to be complex, non-real, valued. Filtering with
complex valued response functions is possible (and, even unavoidable, as we will see
below): if, for instance, H = ΠΩ exp(−iφ) with φ(ω) ∈ [0, 2π) for ω ∈ R, then, for
any ω ∈ (−Ω,+Ω), the filter transforms the harmonic component t f̂(ω) exp(2πitω)
to the oscillation t  f̂(ω) exp(2πitω − iφ(ω)): the phase of the oscillation shifts (by
φ(ω)), while the amplitude is unaffected.

8.10 Example. We consider two filters that, as in (129), are given by

(a) g + g′ = f (b) g − g′ = f .

The functions H for case (a) is not equal to the function H for case (b). However, in
both cases, we have that |H(ω)|2 = 1/(1+4π2ω2): both Hs have the same amplification
and damping properties. Nevertheless, the filtering properties are quite different as we
will show now.

In practise, f may get perturbed. We will analyze the effect of such perturbations.
For ε0 ∈ R and δ > 0, consider perturbations ε in L2(R) given by

ε(t) ≡ ε0 for t ∈ [−δ,+δ] and ε(t) ≡ 0 elsewhere.

If g satisfies (a), g + g′ = f , and g̃ satisfies the perturbed equation, g̃ + g̃′ = f + ε,
then the error E ≡ g̃ − g satisfies the equation

E(t) + E′(t) = ε(t) for t ∈ R. (130)

The equation should hold in some weak sense, i.e., there is some function D and a
constant c such that E(t) = c +

∫ t
0 D(s) ds and

∫ t
0 |D(s)| ds < ∞ for all t ∈ R and

E(t) +D(t) = ε(t) for almost all t: D is the (weak) derivative of E. We put E′ ≡ D.
Note that E is continuous. Note also that, for any c1, c2, c3 ∈ R,

E(t) = c1e
−t (t < −δ), E(t) = ε0 + c2e

−t (|t| < δ), E(t) = c3e
−t (t > δ),

satisfies (130) if |t| 6= δ. If we select the constants c1, c2 and c3 such that E is continuous
also at t = ±δ, then E solves (130) in the weak sense. In practice, perturbations will
effect only future function values g and not past ones (why?). Therefore, c1 will be 0.
Hence, c2 = −ε0e−δ (then E(−δ) = 0) and c3 = ε0(e

δ − e−δ) (to have continuity also
at t = δ). Note that c3e

−t is the effect of the perturbation ε for t > δ. This effect
vanishes if t increases. Note also that, with this choice for the ci, the perturbation E
is in L2(R).

Now, assume that g satisfies (b), g − g′ = f , and g̃ satisfies g̃ − g̃′ = f + ε, with
ε as before. Following the above arguments and insisting on an error E ≡ g̃ − g that
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is 0 in the past, i.e., for t < −δ, we find an E that is continuously differentiable and
that, for some c3 6= 0, is equal to c3e

t for t > δ. Note that |E(t)| → ∞ if t → ∞. In
particular, E 6∈ L2(R). This may seem a bit strange, since, for each input signal f (or
ε), Equation (129) has precisely one solution that is also a signal (assuming that n ≥ m
and p has no zeros on the imaginary axis). However, (129) itself does not require the
solution to be a signal and, it appears that the condition ‘E(t) = 0 for t < −δ’ leads
to this ‘exploding’ solution. We conclude that (b) is unstable.
The L2(R) solution E can be constructed by putting c3 = 0, and selecting c2 and c1
such that E is continuous also at t = δ and t = −δ, respectively. Then, for some
c1 6= 0, we have that E(t) = c1e

t for t < −δ. In particular, E ∈ L2(R) and |E(t)| → 0
if t → −∞. Unfortunately, this L2-solution incorporates the effect of the perturbation
ε on f before the perturbation became effective, which is impossible in practice.

In contrast to case (a), it appears that in case (b), the condition ‘E ∈ L2(R)’ (or,
more appropriate, g̃ ∈ L2(R)) and the condition ‘E(t) = 0 for t < −δ’ can not be
satisfied simultaneously.

Instabilities as in (b) show up for large class of filters. The instability problem is a
consequence of the desire to employ a filter that operates based on local information,
but with a response function that has an infinitely long impulse response.

8.11 Stability. The instability in (b) in §8.10 comes from the fact that the homo-
geneous equation g − g′ = 0 has a solution eλt with Re(λ) ≥ 0. In this case λ = 1.

More generally, the homogeneous part of the differential equation (129) determines
the stability. If the homogeneous part has a solution of the form eλt and Re(λ) ≥ 0
then the differential equation is unstable and the associated filter is said to be unstable.
Stability and instability can be expressed in terms of the roots of p (why?):

8.12 Definition. Let degr(p) denote the degree of the polynomial p.
A filter with response function H of the form q/p is stable if degr(p) > degr(q) and all

zeros of p are in the left complex halfplane {ζ ∈ C Re(ζ) < 0}.30
The zeros of p are called the poles of the filter. The zeros of q are the zeros of the

filter.

Consider the situation of §8.10. Note that E = ε ∗ h. Therefore, taking ε0 = 1
2δ

and driving δ to 0 leads to h: let Eδ be the L2-solution corresponding to this εδ ≡ ε,
then h = limδ→0(εδ ∗ h) = limδ→0Eδ (Why?). Hence, h(t) = e−t for t > 0, h(t) = 0 for
t ≤ 0 in case (a), while h(t) = −et for t < 0, h(t) = 0 for t ≥ 0 in case (b). Note that
in both cases h is also in L1(R). Only in case (a), h is causal. The conclusion holds
more general:

8.13 Theorem. The impulse response function h of a stable filter is causal.

Proof. Any rational function q/p with k > m and p has k mutually different zeros
λ1, . . . , λk can be written as

H(ζ) =
q(ζ)

p(ζ)
=

k∑

j=1

αj

ζ − λj
(ζ ∈ C). (131)

30If the notion of ‘stability’, has been formally defined in terms of the effects of perturbations, then
the statement in the definition would have been a theorem.
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Here, the αj are appropriate constants in C. Hence, h is the sum of hj with hj the
inverse Fourier transforms of the term αj/(2πiω − λj); hj is equal to

hj(t) = αj e
λjt for t > 0 and hj(t) = 0 for t ≤ 0

(see Exercise 3.3). The hj are causal and, therefore, h is causal. Here, we used the fact
that Re(λj) < 0. If Re(λj) > 0, then the hj (in L2(R)) is given by

hj(t) = −αj e
λjt for t < 0 and hj(t) = 0 for t ≥ 0.

Note that the term αj/(ζ − λj) corresponds to the differential equation g′ − λjg =
αjf : the ‘special’ cases in §8.10 appear to be quite general.

If p has roots, say λj , with multiplicity, say ℓ, larger than 1 then the sum in (131)
also contains terms αj,i/(ζ − λj)

i for i = 1, . . . , ℓ. The invers Fourier transform hj,i

of such a term is equal to tieλjt for t > 0 and 0 for t ≤ 0 (see (c) of Exercise 3.3).
Therefore, also for this case, we can conclude that h is causal.

Note that the above proof implies that hj and therefore the h not only belongs to
L2(R) but also to L1(R).

8.14 Butterworth filters. The response function function of filter that is given
by the equation

g +
1

(2πiΩ)k
g(k) = f

is equal to ω  1/(1 +
(

ω
Ω

)k
). This function reasonable well resembles ΠΩ for large k.

Unfortunately, the filter is unstable. Moreover, its coefficients are not real if k is odd.
Stable variants with real coefficients are possible and are called Butterworth filters (of
order k).

We actually saw such a variant for k = 1: the filter in Example (a) in §8.10 has a
stable response function H and |H(ω)| = 1/

√
1 + (ω

Ω)2.

As an additional example, we consider the case k = 2.

The filter

g +

√
2

2πΩ
g′ +

1

(2πΩ)2
g′′ = f (132)

has a stable response function H and |H(ω)| = 1/
√

1 + (ω
Ω)4.

Since we are interested in stable filters, we learned from the preceding example
that we have to deal with response functions H that are not purely real valued. The
resulting phase shift leads to a surprising effect that we will discuss below.

8.15 Phase and group delay. If H = |H|e−iφ is a response function, then the
gain |H(ω)| and the phase delay φ(ω)/(2πω) play a role (see §8.1), but also 1/(2π)
times the derivative φ ′(ω) of the phase shift. Note that, φ(ω)/ω ≈ φ ′(0) if ω ≈ 0.

First consider a signal f with bandwidth ≤ Ω and a response function H for which
H(ω) = e−icω if |ω| ≤ Ω. Note that in this case c = φ(ω)/ω = φ ′(ω): φ(ω) = c ω. For
the output signal g we have that

g(t) =
̂̂
fH(−t) =

∫ +∞

−∞
f̂(ω)e2πiωt−icω dω = f(t− c

2π ) for each t : (133)
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A Bode magnitude plot of the Butterworth filter of order n=2
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A Bode phase plot of the Butterworth filter of order n=2
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Figure 28. The pictures show several graphical ways of displaying a filter. Here, we consider the
butterworth filter of order 2. The left picture is a so-called Bode magnitude (or gain) plot, that is, |H(ω)| is
plotted along the vertical axis on dB scale (20 log10 |H(ω)|) versus the frequency along the horizontal axis.
The frequency is also on log scale. Here, we used the log2 scale, since on this scale one octave corresponds
to an interval of unit 1. The value of |H(Ω)| at the so-called cut off frequency Ω is -3 dB (the dotted line);
Ω is equal to 1 here. The transition band (right from the cut off frequency) slopes off towards −∞ with
slopes of -12dB per octave. An instance of an octave is indicated by the dashed-dotted lines. The frequency
response is as flat as possible in the pass band (no ripples). The picture in the middle is a Bode phase
plot. It shows the phase φ as function of the frequency: H(ω) = |H(ω)|e−iφ(ω). The frequency is again on
log2-scale; φ is in degrees. Finally, the right picture is a Nyquist plot. It shows the curve ω  H(ω) in the
complex plane, where ω runs from −∞ to ∞.

the filter delays the input signal by c
2π seconds. This is not surprising, since we already

know that each harmonic component of f is delayed by φ(ω)/(2πω) seconds which, in
this case, is the same amount of time: φ(ω)/ω is constant!

What if φ(ω)/ω is not constant? Then the situation is much more complicated, but
for certain interesting signals, the derivative of the phase shift plays a role in the delay
of the output signal.

To see this, consider a general smoothH and a signal of the form f(t) = f0(t) exp(2πitΩ),
where f̂0 is concentrated on a small domain [−ε, ε] around 0, that is, f̂0(ω) = 0 (or ≈ 0)
for |ω| > ε. Note that f̂ is concentrated in a small domain around Ω: f̂(ω) = f̂0(ω−Ω).
Such a signal f is called a wave packet (with frequency Ω), f0 is the envelope. Taylor
approximations lead to

H(ω) ≈ |H(Ω)|e−i(φ(Ω)+c(ω−Ω)) for ω ∈ [Ω − ε,Ω + ε].

Here, c ≡ φ ′(Ω). Hence,

g(t) =
̂̂
fH(−t) ≈

∫ +∞

−∞
f̂(ω)|H(Ω)|e−i(φ(Ω)−cΩ)e2πiωt−icω dω

= |H(Ω)| e−i(φ(Ω)−cΩ) f(t− c

2π
) = |H(Ω)| f0(t−

φ ′(Ω)

2π
) e2πi(t−φ(Ω)

2πΩ
)Ω.

(134)

Again, we see that the derivative of the phase shift gets expressed as a delay, now as a
delay of the ‘envelope’ f0 by 1

2πφ
′(Ω) seconds; 1

2πφ
′ is the so-called group delay. The

phase delay φ(Ω)/(2πΩ) is visible in the ‘wave part’ exp(2πitΩ) of the wave packet.

Note that, (134) is consistent with (133): if φ(ω) = cω, then φ(Ω)/Ω = c = φ ′(Ω).

For real wave packets and even filters, we have a similar result.

For f of the form f(t) = f0(t) cos(2πtΩ) with f̂0 concentrated on [−ε,+ε] and H even
(i.e., H(−ω) = H(ω), whence |H| even, φ odd, and φ ′ even), we have that

g(t) =
̂̂
fH(t) ≈ |H(Ω)| f0(t− φ ′(Ω)

2π ) cos(2π
(
t− φ(Ω)

2πΩ

)
Ω). (135)
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8.16 Chebyshev filters. Chebyshev filters are related to Butterworth filters. They
are stable, but they have a steeper roll-off (the function is steeper in the transition
band), ‘at the cost’ of more ripples in the passband or in the stopband. They have
the property that they minimize the error between the idealized filter at the passband
(Chebyshev filters of type I ) or at the stopband (Chebyshev filters of type II ) and the
actual one, but as noted, there can be ripples in the passband (type I) or in the stopband
(type II). For this reason filters which have a smoother response in the passband but a
more irregular response in the stopbands are preferred for some applications.

The frequency (amplitude) characteristic of a Chebyshev filter of the kth order can
be described mathematically by:

|H(ω)|2 =
1

1 + ε2 T 2
k

(
ω
Ω

) ,

where |ε| < 1 and |H(Ω)| = 1/
√

1 + ε2 is the gain at the cutoff frequency Ω, and Tk

is a Chebyshev polynomial of the kth order.31 (Note: Commonly the frequency at
which the gain is -3dB is called the cutoff frequency. But for Chebyshev filters another
definition is used!)

8.C Digital filters

In electronics, a digital filter is a filter in discrete time, that is implemented through
digital computation. It operates on sampled signals (see §7.4 and (b) of Exercise 6.13).

One advantage of digital filters is the stability of their parameters. A computer
is much less susceptible to environmental conditions than analog circuits. Computers
are relatively cheap, and the advantages of digital signal processing are outweighing
complex analog filters. (But, of course, computer chips consist of many very complex
analog filters!) Although, for proper sampling an (analog) anti-aliasing filter is needed,
which is usually a low-pass filter or band-pass filter.

In this section, we define

f̂(ω) ≡
∞∑

n=−∞
fn e

−2πiωn (ω ∈ R)

for digital signals f = (fn) ∈ ℓ 2(Z); f̂ is 1-periodic and

fn =

∫ 1

0
f̂(ω) e2πiωn dω

(see §7.4, where here, for ease of notation, we took Ω = 1
2 , i.e., ∆t = 1

2Ω = 1).

We leave the proof of a number of claims in this section to the reader: these claims
and proofs are analogues of the ones in §8.B.

8.17 The filter. A digital filter with input f ∈ ℓ 2(Z) and output g is typically of
the form

α0gn = (β0fn + β1fn−1 + . . .+ βmfn−m) − (α1gn−1 + α2gn−2 + . . . + αkgn−k)

=
m∑

j=0

βj fn−j −
k∑

j=1

αj gn−j .

(136)

31The Chebyshev polynomials have been introduced in Exercise 2.8.
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Hence, g satisfies the equation

α ∗ g = β ∗ f on Z

where α ≡ (α0, . . . , αk), α0 6= 0 and β ≡ (β0, . . . , βm) are finite sequences of real
numbers. We will assume that α0 = 1, which is no restriction. The function g can be
computed in MATLAB with the command ‘g=filter(beta,alpha,n)’. The filter has
m so-called feed-forward stages and k feedback stages. The number k of feedback stages
is called the order of the filter. If the order is 0 (i.e, k = 0: αj = 0 for all j > 0), then
we have a so-called finite impulse response (FIR) filter. The number m of coefficients
of a FIR filter is the length of the filter (also referred to as the number of tabs and
sometimes as the order). We have an infinite impulse response (IIR) filter if k > 0: the
response has infinite duration because feedback of the outputs is used to calculate other
output values. Unlike the FIR filter, the IIR filter must have an ‘initial condition’ for
k successive feedback values: for instance, if fn = 0 for n < 0 then g−1 = . . . = g−k = 0
are appropriate ‘initial values’ for g.

With p(ζ) ≡ 1 + α1ζ + . . .+ αkζ
k and q(ζ) ≡ β0 + βζ + . . .+ βmζ

m for ζ ∈ C, we
have that p(exp(−2πiω)) ĝ(ω) = q(exp(−2πiω)) f̂ (ω). Hence, the response function H
is given by

H(ω) =

m∑

j=0

βj e
−2πiωj

1 −
k∑

j=1

αje
−2πiωj

=
q(ζ−1)

p(ζ−1)
, where ζ = e2πiω.

The function z  q(z−1)/p(z−1) (z ∈ C) is the so-called z-transform of the filter. In
MATLAB: ‘[H,omega]=freqz(beta,alpha,n)’. Note that the z-transform is a rational
function of z: with N ≡ max(k,m), both zNq(z−1) and zNp(z−1) are polynomials.

8.18 Stability. The filter is stable if p(λ−1) = 0 implies that |λ| < 1, or, equiva-
lently, if the zeros of the polynomial zNp(z−1) are in the open complex unit disc.

The definition is motivated by the following observation. If g = (gn) is a solution
and p(λ−1) = 0, then g̃n ≡ gn +ελn is a solution as well. Stability guarantees that such
a perturbation is relatively harmless.

A filter that is not stable, i.e., |λ| ≥ 1 for some λ ∈ C for which p(λ−1) = 0, is
unstable.

The zeros of p(z−1) are the poles of the filter, while the zeros of q(z−1) are referred
to as the zeros of the filter. The poles of the filter determine the stability. Both poles
as well as zeros of the filter are important in the design of the filter: except for a scalar
multiplicativity factor, the filter is completely determined by its poles and zeros. The
multiplicativity factor does not play an essential role.

There is a close similarity between the analog filters discussed in §8.B and the dig-
ital filters that we have here. Note, however, the difference in the stability condition:
Re(λ) < 0 in case of analog filters, while |λ| < 1 for digital filters. This is precisely
the difference that we know from discussions on differential equations versus difference
equations: (136) is the general form of a linear difference equation with constant co-
efficients. These type of equations show up when, for instance, a ordinary differential
equation (initial value problem) has been discretized with a so-called multistep method.
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We did not discuss existence of g in ℓ 2(Z) yet. We will address this issue now.
Note, however, that we are not only interested in having a square summable output,
but the output may also have to satisfy initial conditions.

8.19 Causality. Suppose the filter is stable.

Then, p(ζ) 6= 0 for all ζ ∈ C, |ζ| = 1. Hence, H is a continuous 1-periodic function. In
particular, H ∈ L2

1(R) and there is an h = (hn) ∈ ℓ 2(Z) for which

ĥ(ω) =
∞∑

n=−∞
hn e

−2πiωn =
∞∑

n=−∞
hn ζ

−1 =
q(ζ−1)

p(ζ−1)
= H(ω) where ζ ≡ e2πiω.

With Fourier transforms, one easily verifies that, with g ≡ f ∗ h, g satisfies (136).
From the fact that p and q are polynomials, p non zero on the complex unit circle, one
can even deduce that h ∈ ℓ 1(Z) (cf., Exercise 8.7 and Exercise 8.8). Hence, g ∈ ℓ 2(Z)
whenever f ∈ ℓ 2(Z). However, it is not clear that gn = 0 for all n < 0 if fn = 0 for all
n < 0. In other words, we do not know whether h is causal.

However, it can be shown that (see Exercise 8.7), for some sequence (h′n) in ℓ 1(Z),

q(z)

p(z)
=

∞∑

n=0

h′n z
n for all z ∈ C for which |z| ≤ 1

ρ
,

where ρ ≡ max{|λ| λ ∈ C, p(λ−1) = 0}. Stability of the filter implies that ρ < 1. In

particular, we have convergence for z = ζ−1, where ζ = exp(2πiω). Since two ℓ 2(Z)-
sequences that have the same Fourier transform, coincide, we have that, hn = h′n for
n ≥ 0, and hn = 0 for n < 0. In particular, h is causal: stability implies causality.
Conversely, if the filter is not stable then h is not causal (cf., Exercise 8.8).

8.20 Discussion. If the filter is a FIR filter, then p = 1. There are no poles and
the filter is stable. In this case h = β, h has finite duration: only finitely many hn

are non-zero. Here, we define hn ≡ 0 for n for which βn is not defined. The impulse
response function h has an infinite duration (see Exercise 8.7) if the filter is a (stable)
IIR filter.

A FIR filter can have a linear phase. It has linear phase if and only if its coefficients
are symmetric about the center coefficient.

If the impulse response function of a FIR filter has a long duration, then it it
may be attractive to apply (Fast) Fourier transform to compute f ∗ h. There is no
advantage in using Fourier transform to compute the output of IIR filters, that is, if
Fourier transforms are considered for practical computation with IIR filters, then one
could as well have designed a filter in frequency domain and not bother at all about
its realization in time domain. There is no need to work with rational functions then.
In the construction phase of an IIR filter, however, the Fourier transform does play an
important role.

The sequences α and β of IIR filters are usually relatively short and the filter is
often applied in situations in which the input signal f is available as a ‘stream’ of
function values (as when playing a CD or on radio). The filter is causal: gj can be
computed as soon as fn is available for n ≤ j, but fn for n > j is not yet needed. With
the feedback part α one wishes to achieve good filtering properties with short α and
β that otherwise with FIR filters would require a long β.
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8.21 Constructing digital filters There is an elegant way to transform analogue
filters into digital ones using Cayley’s transform:

Z(z) ≡ z − 1

z + 1
(z ∈ C\{−1}). (137)

This transform is a conformal mapping, that is, it is complex differentiable, or, equiv-
alently, analytic, and its derivative is non-zero everywhere in C\{−1}. Moreover, it is
a bijection

(1) from C\{−1} onto C\{+1},
(2) from {z ∈ C |z| < 1} onto {ζ ∈ C Re(ζ) < 0}, and

(3) from {z ∈ C |z| = 1, z 6= 0} onto iR.

(138)

Property (2) and (3) makes the Cayley transform useful for our application. We assume
in this paragraph the following relation between the complex numbers z and ζ and
between the real numbers v and ω:

ζ ≡ γZ(z) = γ
z − 1

z + 1
(z ∈ C), ω ≡ − γ

2π
tan(πv) (v ∈ R). (139)

Here, for convenient scaling along the imaginary axis, and to let stability of the analogue
filter be transferred to stability of the digital filter (by relating z with |z| > 1 to ζ with
Re(ζ) < 0), we select a γ < 0 (to be specified below):

Proposition 8.1 For γ < 0 we have that
(a) z = e−2πiv if and only if ζ = −iγ tan(πv) = 2πiω.
(b) Re(ζ) < 0 if and only if |z| > 1.

If, for V ∈ (0, 1
2), we are interested in approximating ΠV (v) (that is, if we want to

filter for frequencies v in [−V, V ]), then we can consider approximating ΠΩ(ω) for
Ω ≡ − γ

2π tan(πV ): v ∈ [−V,+V ] if and only if ω ∈ [−Ω,+Ω]. Note that the scaling
γ = −2π/ tan(πV ) might be attractive: then Ω = 1.

Suppose that we have a stable analogue filter A = q
p that filters for frequencies in

[−Ω,+Ω], that is with H(ω) ≡ A(2πiω) we have that

• |H(ω)| ≈ ΠΩ(ω) (it filters for frequencies in [−Ω,+Ω])

• if A(ζ) = ∞ then Re(ζ) < 0 (the stability condition).
Now, define the digital filter by

D(z) ≡ A(ζ) = A(γ
z − 1

z + 1
) (z ∈ C) and H̃(v) ≡ D(e−2πiv) (v ∈ R).

To prove that this defines a stable digital filter first note that D is a rational function
(quotient of two polynomials: multiply both p and q with (z+1)k, where k the degree of
p). Moreover, since D(e−2πiv) = A(2πiω) (use Prop. 8.1(a)), we see that H̃(v) = H(ω)
and therefore |H̃(v)| approximates ΠV (v). Stability follows from the observation that
D(z) = ∞ implies that A(ζ) = ∞, whence Re(ζ) < 0 and, therefore by Prop. 8.1(b),
|z| > 1.

8.22 Butterworth and Chebyshev filters. There are digital versions of the But-
terworth filters as well as of the Chebyshev filters: the gain (that is, |H(ω)|) for these
versions is as described in §8.14 and §8.16, respectively, but the stability has to be
understood in the ‘digital’ sense.
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8.23 Equiripples filter. Approximation of the ideal ΠΩ0 filter leads to the Gibb’s
phenomenon. To avoid the disadvantages associated herewith, FIR filters are con-
structed that approximate as accurately as possible the value 1 for |ω| ≤ ωpass and the
value 0 for |ω| ≥ ωstop and, of course, |ω| ≤ 1

2 (recall that we assumed that Ω = 1
2): they

do not ‘worry’ about the transition band (for frequencies ω with ωpass < |ω| < ωstop.
Here we assume that cutoff frequency ωpass of the passband is smaller than the cutoff
frequency ωstop of the stopband and ωstop ≤ 1

2). If accuracy is measured in the sup-norm,
with supremum taken over all ω ∈ [−1

2 ,+
1
2 ] except for the ones in the transition band,

then the best filter, the equiripples or elliptic filter, has ripples of equal (maximum and
minimum) height, say δ, in passband and in stopband. The filter slopes almost linearly
off (in dB scale) in the transition band. The height δ depends on the length N of the

filter: N ≈ − ln(πδ)

ln(cot π−∆ω
4

)
, where ∆ω ≡ ωstop − ωpass is the width of the transition band.

The so-called Rémez algorithm can be used to compute the best filter for any length
N . If accuracy is measured in another norm (as the 2-norm over the frequency area of
interest), then other filters arise.

8.24 Application: MP3 compression. A bird that flies in front, or almost in
front, of the sun is not visible. For similar reason tones are not audible if they sound
slightly after a louder tone with approximately the same pitch. These softer tones
can be blocked without affecting the quality of the piece of music. Audio compression
techniques as MP3 (MPEG/audio Layer III) exploit this fact.

Psychoacoustics. The resolving power of the human auditory system appears to be
frequency dependent. Experiments show that this dependency can be expressed in
terms of 27 ‘critical’ frequency bands Oi with widths which are less than 50 Hz for the
lowest audible frequencies and approximately 5 kHz at the highest. For each pair of
critical bands there is a ‘mask’ that can be used to block softer tones in these bands,
or, in a more mathematical formulation, for each pair (i, j) of critical bands, there
are positive functions t  δi,j(t) (the mask) with δij(0) = 1 and decaying to zero for

increasing t. Decompose a signal f as f(t) =
∑

j fj(t) with f̂j in the jth frequency
band Oj . The F ≡ fj sounds the same as f if |fi(t)| ≤ maxs<t (|F (s)|δij(t− s)) for
all t and i 6= j.

MPEG/audio. The MPEG/audio algorithms use 32 frequency bands Oi of equal
width, (on linear scale) whereas the width of the 27 critical bands Oi fits equality better
on a log-scale. However, equal width on linear scale allows more efficient computation
as we will see below. These algorithms split a digital audio signal f into 32 signal fi,
where (ideally) fi has frequencies only in Oi. Sample values fi′(tj′) are replaced by
zero if signal components fi(tj) in a neighbouring frequency band Oi and nearby time
domain (tj′ ≈ tj and tj ≤ tj′) carry relatively much energy: softer tones are blocked.
The blocking threshold depends on amount of energy and band numbers. Layer III
(MP3) is more sophisticated in computing the blocking thresholds than the layer I and
layer II approaches: it applies MDCT (see Exercise 5.10) to each of the fi to obtain
more detailed spectral information.32 In addition, each of the signals fi is ‘quantized’,
that is, each (16 bit) function value fi(tj) is replaced by an m-bit value with m = 8
or less.33 Quantization (that is, the value for m) also depends on the band and is as

32The splitting of a signal into 32 signals with a limited frequency band has been preserved in MP3
for compatibility reasons. Other modern compression techniques as Advanced Audio Control (AAC)
rely on MDCT only.

33Quantization is preceded by a transformation of the function value x = fi(tj) according to the
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coarse as inaudibility allows.34

Polyphase filter bank. The splitting exploits a so-called polyphase filter bank:

fi(tn) = f ∗hi(tn) =
∞∑

j=−∞
f(tn−j)hi(j), where hi(n) = 2C(n) cos( π

64 (2i+1)n), (140)

where C is the impulse response function of an approximate ideal Πδ filter with δ ≡ 1
128 .

The choice for this ‘analysis’ filter bank for the encoder can be understood as follows.
First recall that, with sample frequency 2Ω = 1/∆t, (Ω is the bandwidth of f),

f̂(ω) = ∆t
∑

f(n∆t) e2πin∆t ω = ∆t
∑

f(n∆t) e2πi n eω, where ω̃ ≡ ∆t ω =
ω

2Ω
.

The range of ω is (−Ω,+Ω), whence, ω̃ ranges in (−1
2 ,+

1
2 ), and with νi ≡ 2i+1

128 ,

Õi ≡ {ω̃ − δ ≤ |ω̃| − νi < δ} (i = 0, . . . , 31)

defines a partitioning of the scaled frequency interval (−1
2 ,

1
2) into 32 bands Õi of equal

width 2δ (since νi+1−νi = 2δ, ν0−δ = 0, ν31 +δ = 1
2 ). Note that the Õi are symmetric

about 0 (ω̃ ∈ Õi ⇒ −ω̃ ∈ Õi) and Oi = {2Ωω̃ ω̃ ∈ Õi}. If C filters for frequencies in
(−δ, δ), then n  C(n)[exp(2πinνi) + exp(−2πinνi)] = hi(n) filters for frequencies in
Õi, since ĥi(ω̃) = Ĉ(ω̃ + νi) + Ĉ(ω̃ − νi).

For C a sequence of 512 coefficients is used.
Note that n  f0(tn) has (ideally) maximum frequency 2δ. Hence, its Nyquist

ratio is 1/(2 · 2δ) = 32. Therefore, it suffices to subsample f0(tn) at n = 32ℓ. But it
also suffices to subsample the other fi by 32 (see Exercise 7.3). This implies that it
suffices to replace each set of 32 input samples as f(t0), . . . , f(t31) with a set of only 32
output samples as f0(t0), . . . , f31(t0): the outcome of the filter bank does not require
more storage than the original signal!

Of course, the ‘prototype’ filter Ĉ, does not have a sharp cutoff at frequency δ:
Ĉ is not equal to Πδ. So, when the filter outputs are subsampled by 32, there is a
considerable amount of aliasing. However, the design of the prototype filter Ĉ results
in a complete alias cancellation at the output of the decoder’s ‘synthesis’ filter bank.
Another consequence of the lack of sharpness at cutoff is that some frequencies get
represented at two bands. The MDCT in the Layer III approach allows to remove
some artifacts caused by this overlap.

Exercises

Exercise 8.1. Let h be an pulse response function.

(a) Prove that the following three properties (in continuous time) are equivalent.
(i) h is causal

so-called µ-law: y = sign(x) ln(1 + µ|x|/X)/ ln(1 + µ), here X is the maximum absolute value that the
function values can take, µ is an appropriate constant (as µ = 255). The resulting logarithmic step
spacing obtained after quantization represents low-amplitude audio samples with greater accuracy than
higher-amplitude values, which is not the case for linear quantization (i.e., quantization of x/X). So,
this strategy avoids that soft parts of a piece music get rounded to 0.

34All these techniques replace function values by 0 or by values that can be represented by much less
bits than the original values. In the layer III approach an additional compression is obtained by the
Huffman coding. This is a lossless compression technique.
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(ii) f ∗ h(t) = 0 for all t < 0, whenever f(t) = 0 for all t < 0 (f ∈ L2(R)).

(iii) f ∗ h(t) =
∫ t

−∞ f(s)h(t− s) ds for all t and all f ∈ L2(R).

(b) Formulate and prove the analogue of the above statement in discrete time.

Exercise 8.2. Consider the situation as in §8.10.
Assume f is perturbed by ε that is now given by

ε(t) ≡ ε0(t
2 − δ2) for |t| < δ and ε(t) ≡ 0 elsewhere.

Note that ε is continuous and in L2(R).

(a) Prove that the continuous solution E is continuously differentiable.

(b) Determine the error E that is in L2(R) for case (a) of §8.10. The same question for case
(b).

Exercise 8.3. Prove (135).

Exercise 8.4. Optimum filter.

Consider a signal f . Suppose that the signal is perturbed by white noise n: f̃ ≡ f + n. We are
interested in a filter that gives the best signal-to-noise ratio, i.e., that is such that after filtering
the ratio N/S of the energy in the noise (N) and in the signal (S) is small as possible.

The energy in noise and signal after filtering is given by

∫ ∞

−∞
|n̂(ω)H(ω)|2 dω and

∫ ∞

−∞
|f̂(ω)H(ω)|2 dω

respectively. Here, H is the frequency response function of the filter. For white noise, we may
assume that ∫ ∞

−∞
|n̂(ω)H(ω)|2 dω = κ

∫ ∞

−∞
|H(ω)|2 dω

for some constant κ. Why?

(a) Prove that N/S ≥ κ and that equality holds only if |H | is a multiple of |f̂ |. This is the
matched filter theorem. (Hint: apply Cauchy–Schwartz to S/N).

It appears that, for the best filter, the power spectrum of the signal needs to be know in
advance. This filter could not be implemented in hardware, but can only be (approximately)
applied by software after the data has been collected.

Exercise 8.5. Butterworth filters.

Consider a butterworth filter of order k.

(a) Compute H(ω) in case k = 2 and show that the filter is stable.

(b) Show that |H(ω)| at cut off frequency ω = Ω is ≈ −3dB (or to be more precise, −3.0103 . . .dB),
independent of the order k.

(c) Show that the slope in the transition band approximates k times −6.0206 . . .dB for large
frequencies ω.

Exercise 8.6. The stability of digital filters..

Consider the digital filter defined by p(z) = 1+α1z+. . .+αkz
k and q(z) = β0+β1z+. . .+βmz

m

with input signal f and output signal g.

(a) Prove that (gj + ελj) is a solution if (gj) is a solution and p(λ−1) = 0.

(b) Assume that p(z) 6= 0 if |z| ≤ 1. Prove that ελj → 0 if j → ∞.

Exercise 8.7. The output of digital filters.

Let α1 = −λ1 be such that |λ1| < 1. Consider the digital filter

gj = βm fj−m − α1gj−1 (j ∈ Z)
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with input signal f and output signal g.

(a) Verify that q(z) = βm zm and p(z) = 1 − λ1 z.

(b) Show that the filter is stable (also in the sense that errors at, say g0, are not amplified).

(c) Show that for |z| < 1/λ1, we have that

q(z)

p(z)
=

∞∑

n=0

βm zm (λ1 z)
n.

(d) Let hn+m ≡ βm λn
1 for n ≥ 0 and hn+m = 0 if n < 0.

Prove that g = h if f0 = 1, fk = 0 if n 6= 0 and gn = 0 if n < 0. Note that the sequence
h is in ℓ 1(Z) and that it has an infinite duration: hn 6= 0 for all n ≥ 0.

Consider the general digital filter defined by p(z) ≡ 1 + α1z + . . . + αkz
k and q(z) ≡

β0 + β1z + . . .+ βmz
m (z ∈ C) with input signal f and output signal g.

(e) Prove that p(z) = Πk
j=0(1 − λj z), where λj are the zeros of p(z−1).

(f) Show that there is an h ∈ ℓ 1(Z) such that

q(z)

p(z)
=

∞∑

n=0

hn z
n for all z ∈ C, |z| < 1

ρ
,

where ρ ≡ max{|λj |} < 1.

(Hint: Since 1
p(z) =

∑ wj

1−λjz for appropriate weights wj , we have that q(z)
p(z) is a linear combina-

tion of terms of the form β̃em z em/(1 − λj z).)

(g) Prove that g = h if f0 = 1, fn = 0 if n 6= 0 and gn = 0 if n < 0 and conclude that

ĥ(ω) =
q(ζ−1)

p(ζ−1)
for ζ ≡ e2πiω.

(h) Show that g = f ∗ h and g ∈ ℓ 2(Z) if f ∈ ℓ 2(Z).

(i) Show that the impulse response function h has an infinite duration, i.e., for each n0 ∈ N,
there is a n ∈ N, n > n0 such that hn 6= 0.

Exercise 8.8. The output of digital filters 2.

Consider the digital filer

gn = fn − 2gn−1.

(a) Compute the response function H . Is H continuous and, therefore, in L2
1(R)?

(b) Show that

q(z−1)

p(z−1)
=

1

1 − z
2

=
1
2z

1
2z − 1

=

∞∑

n=1

2−n zn if |z| < 2.

(c) Compute the impulse response function h for this filter.

(d) Is the filter stable? Is the impulse response causal?

Exercise 8.9. FIR filters with linear phase.

Prove that a digital FIR filter has a linear phase if and only if its coefficients are symmetric
about its center coefficient.

Exercise 8.10. Polyphase quadrature filter.

Consider the polyphase filter bank from (140) with h0 only 512 non-zero coeeficients, i.e.,
h0(k) = 0 if k < 0 or k > 511.
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(a) Show that

fi(tk) = f ∗ hi(tk) =

511∑

j=0

f(tk−j) 2h0(j) cos(
π

64
(2i+ 1)j)

=

63∑

n=0

Mi,n

7∑

l=0

h̃0(n+ 64l) f(tk−n−64l),

where Mi,n ≡ cos( π
64 (2i+ 1)n) and h̃0(n+ 64l) ≡ 2(−1)lh0(n+ 64l).

(b) Show that the first sum requires 32× 512 multiplications to compute fi(tk) (i = 1, . . . , 32)
for each k, whereas the second sum only requires 5 × 512 multiplications per k. Here we have
averaged the total number of multiplications over all k and assumed that k is large.

Exercise 8.11. Resampling.

Let f ∈ L2(R) such that f̂(ω) = 0 if |ω| > Ω. Let ∆t ≡ 1/(2Ω), and tn = n∆t. Suppose that
only f -values fn ≡ f(tn) at the sample points tn are available and, for some p, q ∈ N, we want
to compute f values at the sequence n∆t′, where ∆t′ ≡ q

p∆t: we want to resample the sequence

(fn) of f -values.

(a) Let g ∈ L2
T (R) with Fourier coefficients γk. Note that g is also pT -periodic. Let γ̃k be the

Fourier coefficients of g as a pT -periodic function. Show that

γ̃kp = pγk (k ∈ Z) and γ̃j = 0 if j ∈ Z\pZ.

(b) Let F be such that F̂ (ω) = f̂(ω − 2kΩ) if |ω| ≤ pΩ with k ∈ Z such that |ω − 2kΩ| ≤ Ω

and F̂ (ω) = 0 elsewhere. Put h ≡ ∆t/p. Show that

F (nph) = pf(n∆t) (n ∈ Z) and F (jh) = 0 if j ∈ Z\pZ.

(c) To have f(j∆t′) we proceed by subsequentially (i) upsample, (ii) filter, (iii) downsample.

(i) First we upsample (fn) by p, denoted by (↑ p)(fn): with (f̃j) ≡ (↑ p)(fn)

f̃np ≡ f(n∆t) for n ∈ Z and f̃j ≡ 0 if j ∈ Z\pZ.

In other words, the sequence (fn) is extended to a sequence (f̃j) by adding p − 1 zeros after

every fn. Show that f̃j = 1
pF (jh) (j ∈ Z). Show that the Fourier transform of (f̃j) is the

2pΩ-periodic function that is equal to F̂ on [−pΩ, pΩ].
(ii) Secondly, we apply a filter to get rid of the high frequencies. Ideally, in the frequency domain,

we multiply the Fourier transform of f̃ by the 2pΩ-periodic function ΠΩ, i.e., ΠΩ(ω) = 1 if

|ω| ≤ Ω and ΠΩ(ω) = 0 if Ω < |ω| ≤ pΩ: g = f̃ ∗ Π̂Ω. In practice, a digital filter (IIR) is applied

to (f̃j) that approximates the effect of the ideal filter. Show that, in the ideal case, the filtered
result, say (gj), is such that gj = 1

p f(jh) for all j ∈ Z.

(iii) Finally, we downsample the sequence (gj) by q, denoted by (↓ q)(gj), i.e., with (g̃j) = (↓
q)(gj), we have that g̃j ≡ gjq (j ∈ Z). Show that g̃j = 1

pf(j∆t′) (j ∈ Z).
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ξ

(x,y)

η

x →

↑

y

φ

Figure 29. The dashed line is at distance
ξ from the origin and has angle φ + 1

2
π with the

x-axis. The point (x, y) has coordinates (ξ, η) in
the rotated axis system: x = ξ cos(φ) − η sin(φ),
y = ξ sin(φ) + η cos(φ).

ξ

(x,y) = (r cos(θ), r sin(θ))

φ

θ−φ

θ

Figure 30. If (r, ϑ) are the polar coordinates
of (x, y), (x, y) = (r cos(ϑ), r sin(ϑ)), then (x, y)
has polar coordinates (r, ϑ − φ) in the rotated sys-
tem, where the rotation of the Cartesian coordinates
is over an angle φ.

9 Computerized Tomography (CT)

Before we give the physical background in §9.2 of X-ray computerized tomography, we
firstly give the mathematical formulation of the problem.

9.1 A reconstruction problem. Consider a complex-valued map f on R2. For
each φ ∈ [0, π) and each ξ ∈ R, let pφ(ξ) be defined by

pφ(ξ) ≡
∫
f(x(η), y(η)) dη, (141)

where x(η) ≡ ξ cos(φ) − η sin(φ) and y(η) ≡ ξ sin(φ) + η cos(φ) (η ∈ R). The map
η  (x(η), y(η)) describes a straight line in the (x, y)-plane at distance ξ from the
origin. The line has angle φ+ 1

2π with the x-axis (see Fig. 29). The function f in (141)
is integrated along this line: pφ can be viewed as a projection of f on a straight line with
angle φ with the x-axis (the ‘ξ-axis’). For φ = 0, we have that p0(ξ) =

∫
f(ξ, η) dη.

The map (ξ, φ)  pφ(ξ) is known as the Radon transform of f . The 2-dimensional
graph of the Radon transform (ξ, φ) pφ(ξ) is called the sinogram of f .

Now, suppose that only the values pφ(ξ) are available (ξ ∈ R, φ ∈ [0, π)). Then
the question is how to reconstruct f from these values pφ(ξ). It turns out that this is
possible via two one dimensional Fourier transforms (see Theorem 9.4). However, the
proof of this result relies on two dimensional Fourier transforms (see 9.3).

9.2 CT scans. We took the text in the following two paragraphs from [4], pp.325–
326. For more details, we refer to [6, Ch.3].

As a beam of x-rays passes through a uniform slab of material, the intensity of
the beam decreases according to I = I0e

−κd, where I0 is the initial intensity, d is
the thickness of the slab, and κ is an appropriate coefficient. κ is often called an
absorption coefficient, but there are actually many processes occurring that diminish
the intensity of the beam. The detector is constructed to measure the intensity of the
beam that passes straight through the object, so that x-rays that are scattered will not
be detected. The reduction of the signal in computerized tomography (CT) is primarily
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φ

Figure 31. x-rays are directed in a series of
thin, pencil like parallel beams through the image
plane, and the attenuation of each beam is mea-
sured.

Figure 32. The scanner will circle around the
object. The attenuation of beams is measured for a
range of angles φ. The light gray rectangles mark
past and future positions of the scanner (beamer
(gray) and detector (dark gray)).

due to scattering out of the forward direction. We will refer to the loss of intensity, to
whatever cause, as attenuation.

In CT, a two dimensional slice through an object is imaged. In its simplest config-
uration, x-rays are directed in a series of thin, pencil like parallel beams through the
image plane, and the attenuation of each beam is measured (as picturized in Fig. 31).
Since the object is nonuniform, the attenuation of the beam varies from point to point,
and the total attenuation is given as an integral along the path of the beam. That is,
if f is an ‘absorption’ function on R2, then the intensity at the detector of the beam at
distance ξ from the origin at angle φ+ 1

2π with the x-axis will be of the form

I = I0 e
−

R
f(x(η),y(η)) dη,

where η  (x(η), y(η)) is the parametrization of the beam as in 9.1. From the collection
of beams a profile of the object can be built. The ‘projection at φ’ can be obtained by
evaluating the logarithm of the measured I/I0 ratio,

pφ(ξ) = − ln

(
I

I0

)
=

∫
f(x(η), y(η)) dη.

Note that f can not be reconstructed if only the values pφ(ξ) are available at a fixed
angle φ (then the ‘bone’ can be in the front as well in the back): the scanner has to
circle around the object (see Fig. 32). Note that the result of a scan at φ and at φ+ π
will be the same.

A three dimensional image can be obtained by piling the images of two dimensional
slices.

9.3 To reconstruct f from the pφ(ξ) values, we first represent the Fourier transform
with respect to a rotated basis.

Note that, for a fixed φ, each pair (x, y) can be written as

x = ξ cos(φ) − η sin(φ), y = ξ sin(φ) + η cos(φ) (142)
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for an appropriate pair (ξ, η) (see Fig. 29): (142) rotates the axis over an angle φ. In
two dimensions, (83) reads as

f̂(ω1, ω2) =

∫ ∫
f(x, y) e−2πi(xω1+yω2) dx dy.

We substitute the expressions (142) for x and y in this integral. To simplify the resulting
expression for xω1 + yω2 in the exponential function, we also rotate the axis in the
(ω1, ω2)-plane over the angle φ:

ω1 = ρ1cφ − ρ2sφ, ω2 = ρ1sφ + ρ2cφ, where cφ ≡ cos(φ) and sφ ≡ sin(φ).

Then, xω1 +yω2 = ξρ1 +ηρ2. To see this, recall that the inner product between vectors
does not change by representing these vectors with respect to another orthonormal
basis. Hence,

f̂(ρ1cφ − ρ2sφ, ρ1sφ + ρ2cφ) =∫∫
f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πi(ξρ1+ηρ2) dξ dη.

In particular, for ρ2 = 0,

f̂(ρ1cφ, ρ1sφ) =

∫ ∫
f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πiξρ1 dξ dη.

Swapping the order of integration leads to

f̂(ρ1cφ, ρ1sφ) =
∫∫

f(ξcφ − ηsφ, ξsφ + ηcφ) e−2πiξρ1 dη dξ

=
∫ [∫

f(ξcφ − ηsφ, ξsφ + ηcφ) dη
]
e−2πiξρ1 dξ.

Now, note that the expression between square brackets is precisely pφ(ξ). Hence,

f̂(ρ cφ, ρ sφ) =

∫
pφ(ξ) e−2πiξρ dξ. (143)

Here, we dropped the index 1 of ρ to simplify notation. This last integral is the one
dimensional Fourier transform of the function pφ at frequency ρ: f̂(ρ cφ, ρ sφ) = p̂φ(ρ).

Although, we derived expression (143) for a fixed φ, the expression is correct for any
φ: φ was fixed, but arbitrary. This observation turns (143) into a remarkable result,
since any point (ω1, ω2) in R2 can be written in polar coordinates as (ρ cφ, ρ sφ) for
appropriate ρ and φ. In other words, the one dimensional Fourier transforms in (143)
yields f̂ in any (ω1, ω2) of R2.

Now, in principle, we can apply the two dimensional inverse Fourier transform to
find f . Although this approach is theoretically correct, in practice it is inaccurate. In
practice, pφ(ξ) will only be available for a discrete set of points φ = φk = k∆φ and

ξ = ξℓ = ℓ∆ξ. Since, to compute f̂ , we will apply FFT to (143), f̂ will be computed
at a grid that is rectangular in polar coordinates, that is, at (ρ cφ, ρ sφ) for (ρ, φ) =

(ρℓ, φk) = (ℓ∆ρ, k∆φ) (see Fig. 33). To compute f from f̂ , using inverse FFT based on
(84), we rather would like to have the function values of f̂ at a grid that is rectangular
in Cartesian coordinates, that is, at (ω1, ω2) for (ω1, ω2) = (ω1,i, ω2,j) = (i∆ω, j∆ω).

Computing f̂ at the points of this ‘rectangular Cartesian’ grid with some interpolation
formula from the ‘rectangular polar’ grid introduces errors and these errors will be
amplified by the subsequent inverse Fourier transform. Note that the distribution of
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Figure 33. The solid dots mark a grid that is rectangular in polar coordinates, while the circles mark
a grid that is rectangular in Cartesian coordinates. Note that the density of the grid points in the grid that
is rectangular in polar coordinates is non uniform in Cartesian coordinates. The density is high close to the
origin and low towards infinity.

the grid points of the rectangular polar grid is very nonuniform with respect to Cartesian
coordinates (see Fig. 33).

Therefore, as a more accurate alternative, we will express the inverse Fourier trans-
form

f(x, y) =

∫ ∫
f̂(ω1, ω2) e

2πi(xω1+yω2) dω1 dω2 (144)

(see (84)) in polar coordinates: (ω1, ω2) = (ρ cφ, ρ sφ). We will let ρ range from −∞ to
∞ and φ in [0, π), whereas the standard choice is ρ ∈ [0,∞), φ ∈ [0, 2π). The absolute
value of the determinant of the Jacobian matrix of the transform to polar coordinates
is |ρ|. Again, in order to simplify xω1 + yω2, we will use polar coordinates for (x, y) as
well: (x, y) = (rcϑ, rsϑ). Then

xω1 + y ω2 = r cϑ ρ cφ + r sϑ ρ sφ = rρ (cϑcφ + sϑsφ) = rρ cϑ−φ.

Hence, (144) reads as

f(rcϑ, rsϑ) =

∫ π

0

∫ ∞

−∞
f̂(ρ cφ, ρsφ) e2πirρ cϑ−φ |ρ| dρ dφ.

Put ξ ≡ rcϑ−φ. Note that this definition is consistent with the use of ξ above (see
Fig. 30). Then,

f(rcϑ, rsϑ) =

∫ π

0

[∫ ∞

−∞
|ρ| f̂(ρ cφ, ρsφ) e2πiξρ dρ

]
dφ

If we denote the expression in square brackets by p̃, then we have that

f(rcϑ, rsϑ) =

∫ π

0
p̃φ(ξ) dφ, where p̃φ(ξ) ≡

∫ ∞

−∞
|ρ| f̂(ρ cφ, ρsφ) e2πiξρ dρ.

The following theorem summerizes our results.
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Figure 34. The pictures show the projection pφ (the solid line) and the filtered projection epφ (the
dotted line) of a function f for some angle φ. In the left picture, φ ∈ (0, π/4) and f is constant (non zero) on
some square [−a, a]2 and 0 elsewhere. In the right picture, f is equal to 1 on the disc {(x, y) : x2+y2 ≤ 0.5}
and 0 elsewhere. Note that in this second situation the projection pφ is the same for each φ. The filtered
projection epφ in the right picture is constant on the interval of ξ’s with ξ2 ≤ 1/2. The Gibb’s phenomenon
in epφ at the end of the interval is the due to the fact that for the computation a discretized version of the
Fourier transform has been used.

9.4 Theorem For f ∈ L2(R2), ξ ∈ R and φ ∈ [0, π), let

pφ(ξ) ≡
∫ ∞

−∞
f(x(η), y(η)) dη, (145)

where x(η) ≡ ξ cos(φ) − η sin(φ), y(η) ≡ ξ sin(φ) + η cos(φ) (η ∈ R). Then, with

p̂φ(ρ) =

∫ ∞

−∞
pφ(ξ) e−2πiξρ dξ and p̃φ(ξ) ≡

∫ ∞

−∞
|ρ| p̂φ(ρ) e2πiξρ dρ, (146)

we have that

f(r cos(ϑ), r sin(ϑ)) =

∫ π

0
p̃φ(r cos(ϑ− φ)) dφ (r ∈ [0,∞), ϑ ∈ [0, 2π)) (147)

Note that, due to the additional factor |ρ|, p̃φ is not exactly the inverse Fourier
transform of p̂φ. Nevertheless, both p̂φ and this ‘modified’ projection p̃φ are one dimen-
sional Fourier transforms and FFT and inverse FFT, respectively, can be employed for
efficient computation. Note that the map pφ  p̃φ can be viewed as a filter operation:
p̃φ is the inverse Fourier transform of p̂φH, where H(ρ) ≡ |ρ|.

If pφ is the projection of f , then it might be reasonable to call

f̃(r cos(ϑ), r sin(ϑ)) ≡
∫ π

0
pφ(r cos(ϑ − φ)) dφ (r ∈ [0,∞), ϑ ∈ [0, 2π))

the back projection (why?) and (147) is a filtered back projection (FBP). The back
projection is a blurred version of f , whereas the filtered back projection is exactly
equal to f .

Suppose that, for a given angle φ, the projection values pφ(ξℓ) are available for
ξℓ = ℓ∆ξ. Then, note that the FFTs will yield values of the ‘modified’ projection p̃φ

at the same points ξℓ.
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Exercises

Exercise 9.1. Computerized Tomography project.

Select an image array (xi, yj), that is, for a set xi = x0 + i∆x and yj = y0 + j∆y, we want to
compute the image values fi,j ≡ f(xi, yj) at (xi, yj) (for a more precise definition, see (148)):
the values for fi,j that we obtain by computation form the ‘reconstructed’ or ‘output’ image.

We suppose that the projected values pφ(ξ) are available (can be measured) for a set of
angles φ = φk = k∆φ and, for each φ in this set, for a set of points ξ = ξℓ = ℓ∆ξ.

Alg. 1 uses this input information to reconstruct the image.

A. Initialize the output image to 0 (fi,j = 0 for all i, j).

B. For each angle φ in the collection {φk} do:

1. ‘Measure’ the projections pφ(ξ) at the points ξ = ξℓ.

2. Use FFT to compute p̂φ(ρ) (see (146)).

3. Use inverse FFT to compute p̃φ(ξ) at the points ξ = ξℓ (see (146)).

4. Use the results for this one projection to update the output image (see
(147)), that is, for each (x, y) in the set (xi, yj) do:

a. Determine ξ from (142).

b. Approximate the modified projection at ξ by interpolation of the
pφ(ξℓ) (linear interpolation is usually sufficient).

c. Add this contribution to the φ integral (147) to the image.

5. Display the image obtained thus far (optional).

Algorithm 1. An outline of an image reconstruction algorithm based on the theory in §9. For a
motivation to use linear interpolation in step 4.b, see the Paragraph “Computing the projections” below.

In practice, of course, the projections in step 1 would be obtained from the CT scanning
device. For our purposes, we compute them from an “input” image.35 The reconstructed image
is the output image.

Use the outline in Alg. 1 to write a computer program to reconstruct images.36 You may
assume that the images are contained in a circle of unit radius.37

Write a report that is readable for someone who is familiar with Fourier Theory but who
does not have a copy of the lecture notes. In your report you may address the following issues:
— Investigate the effect of changing the resolution (i.e., the size of ∆x and ∆y. You may take
∆x = ∆y. Consider, for instance ∆x = 2/100, 2/200, . . .). Do you need the same step sizes ∆x
and ∆y for the reconstruction as for the projections? How do you relate the step size ∆x and
∆y for reconstruction to the step size ∆ξ and ∆φ?
— Discuss the advantages of this approach with one dimensional inverse Fourier transforms
followed by an integral over φ as compared to an approach based on one two dimensional
inverse Fourier transform.
— What do you expect from replacing linear interpolation in step 4b by cubic interpolation?
(i.e., approximate the value p̃φ(ξ) by the value P (ξ) of the cubic polynomial P for which
P (ξℓ−1) = p̃φ(ξℓ−1), P (ξℓ) = p̃φ(ξℓ), P (ξℓ+1) = p̃φ(ξℓ+1), P (ξℓ+2) = p̃φ(ξℓ+2), where ℓ is such
that ξ ∈ (ξℓ, ξℓ+1). How do you define P near the boundary?).
— FFT ‘assumes’ that the input function is periodic. This periodicity can be achieved by
first restricting the image function f to a rectangle (multiplication by a 2-d tophat function?),

35The code for computing the projections will be provided for.
36You can use existing codes for FFT and inverse FFT.
37The MATLAB file Images.m can be used for producing images. The file gives several ways of

producing image files that can be used in testing the image reconstruction code.
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followed by a periodic extension (after an even extension?). What is the effect of the restriction
and the extension on the reconstructed image? The function H(ρ) ≡ |ρ| that defines the ‘filter
operation’ (multiplcation of p̂φ by |ρ|) is not bounded nor in L2(R). Is this a problem?

For more details, we refer to [6, Ch.3].

Discretization. In practice, the values of pφ(ξ), for ξ ∈ R, φ ∈ [0, π), or for ξ = ξℓ = ℓ∆ξ
and φ = φk = k∆φ, are available from measurements. For the design and the analyse of an
effective numerical solution process it is usefull to have a discrete model of the problem and to
have discrete versions of the operations that are involved.38

Averaging versus sampling. A picture of which each pixel is either black or white gives the
impression of being composed of patches of different shades of gray when viewed from a distance.
When in an approximation that uses larger pixels the color is determined by sampling, the shades
of gray disappear and black and white blocks become visible. This is undesirable. Averiging
leads to shades of gray. Therefore, discretization by averaging seems to be a more appropriate
approach here: specifically in Image Processing, discretization by averaging leads to pictures
that are more appealing to the eye, then when discretized by sampling.

If the real-valued function f that is defined on the square [−a, a] × [−a, a] represents a
picture,39 then f can be approximated as follows by a piece-wise constant function. Select
a step size ∆x in the x-direction and a step size ∆y in the y direction (∆x = 2a/Nx and
∆y = 2a/Ny). Then, (xi, yj) ≡ ((i − 1

2 )∆x, (j − 1
2 )∆y) − (a, a) is the center of the pixel area

Ii,j ≡ [xi − 1
2∆x, xi + 1

2∆x) × [yj − 1
2∆y, yj + 1

2∆y) (i = 1, . . . , Nx, j = 1, . . . , Ny), and we
compute the image value fi,j for this pixel by averaging,

fi,j ≡ 1

∆x∆y

∫∫

Ii,j

f(x, y) dx dy : (148)

f is approximated by the function fd that has the value fi,j on Ii,j (i = 1, . . . , Nx, j =
1, . . . , Ny).

This approach suggests the following discretization for the projection pφ(ξ). Select a step
size ∆ξ = 2/(Nξ − 1). Then, for ξℓ ≡ −1 + (ℓ− 1)∆ξ, define

pℓ,φ ≡ 1

∆ξ

∫ ξℓ+
1
2
∆ξ

ξℓ− 1
2
∆ξ

pφ(ξ) dξ (ℓ = 1, . . . , Nξ). (149)

In the exposition below we will assume that f is equal to the discretized version: f = fd.

Computing the projections. Note that pφ is the sum of all projected pixels. To be more
precise, if χi,j is the function with value 1 on Ii,j and zero elsewhere, then

pφ(ξ) =
∑

i,j

fi,j

∫
χi,j(x(η), y(η)) dη. (150)

Here, we sum over all i = 1, . . . , Nx and all j = 1, . . . , Ny, and x(η) and y(η) are as defined in
§9.1. Except for the color value fi,j , the function

π
(i,j)
φ (ξ) ≡

∫
χi,j(x(η), y(η)) dη

is the projected pixel. For a graph of this function, see Fig. 35. Note that the integral of πφ

38The discretization as explained here, is also used in the MATLAB code for this assigment, the code
that computes the ‘measured’ projection values pφ(ξ).

39We assume the picture to be defined on a square contained in the unit disk {(x, y) |x|2 + |y|2 ≤ 1},
that is, a ≡ 1

2

√
2. Obviously, this is not a restriction, since each picture can be scaled to this situation.

Working on the unit disk slightly simplifies the coding when using polar coordinates.
For a full color picture, we need three color functions fr, fg, and fb, where, for instance, fr defines

the red intensities, fg the green intensities, and fb the blue intensities. However, in CT the colors are
artificial anyway. We, therefore, assume the image to be defined by one color function f only. The
function value f(x, y) represent the intensity of the color at (x, y).
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Figure 35. The picture represents a pixel (with center (xi, yj)) and its projection πφ on a ξ-axis. The
projection is on the line with angle φ with the x axis (φ is here −π/3 = 2π/3). Rather than rotating the
projection line over an angle φ, the pixel area has been rotated over an angle −φ in this picture.

over ξ is precisely equal to ∆x∆y (why?). The contribution of the (i, j)th pixel to pℓ,φ is equal
to

fi,j
1

∆ξ

∫

Ξℓ

π
(i,j)
φ (ξ) dξ., where Ξℓ ≡ [ξℓ − 1

2∆ξ, ξℓ + 1
2∆ξ).

A matrix representation. For coding purposes, it is convenient to number the pixels as well
as the gridpoints in the (ξ, φ)-plane. We suggest lexicographical numberings: the mth pixel
is the pixel with center (xi, yj) with i and j such that m = i + (j − 1)Nx; similarly, the nth
point of the (ξ, φ)-grid is (ξℓ, φk) with n = ℓ + (k − 1)Nξ. Then the picture f corresponds to
a vector x with coordinate xm equal to the image value fi,j , where m = i + (j − 1)Nx. The
projected values pℓ,φk

are represented by the vector b with nth coordinate bn equal to pℓ,φk
,

where n = ℓ + (k − 1)Nξ. Note that now the reconstruction problem can be formulated as a
matrix-vector equation:

Ax = b, where An,m ≡ 1

∆ξ

∫

Ξℓ

π
(i,j)
φk

(ξ) dξ, (151)

and m, i, j and n, ℓ, k related as before.

The nth point in the (ξ, φ)-grid corresponds to the strip of beams that, at angle φk, hit the
ℓth ξ-interval Ξℓ: bn is the projected result from this nth strip of beams. The multiplication
An,: x of the nth row An,: of the matrix A with x representes the effect of the beams in this
nth strip. The matrix entry An,m is equal to the scaled surface of the interesection of the mth
pixel and the nth strip of beams. Since most of the strips of beams mis most of the pixels, each
row of A, and therefore A itself, is sparse.

Further simplifications. If π
(i,j)
φ is zero outside the ξ-interval Ξℓ, then the contribution of the

(i, j)th pixel to pℓ,φ is precisely equal to fi,j
∆x ∆y

∆ξ . Of course, it depends on the diameter of

the pixel (on ∆x and ∆y) and on ∆ξ, but, unfortunately, in general, π
(i,j)
φ will not be non-zero

on one interval only.40 To speed up computations, we will not compute what part of π
(i,j)
φ is

non-zero on each of the intervals Ξℓ, but, we will simply follow the following strategy.

If ξ′ is the ξ-coordinate of the center (xi, yj) of the (i, j)th pixel (i.e., xi = ξ′c − η′s,
yj = ξ′s+ η′c where c ≡ cos(φ) and s ≡ sin(φ)), and ℓ is such that ξ′ ∈ [ξℓ, ξℓ+1), then we add

40If ∆x+ ∆y ≪ ∆ξ then most of the πφ will be non-zero on only one interval. However, certainly in
the reconstruction phase, the pixels will be selected such that their diameters are comparable to ∆ξ.
Then, π

(i,j)
φ will generally be non-zero on two intervals.
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the fraction fi,j
∆x∆y

∆ξ
ξ′−ξℓ

ξℓ+1−ξℓ
to pℓ+1,φ and the remaining fraction fi,j

∆x ∆y
∆ξ

ξℓ+1−ξ′

ξℓ+1−ξℓ
to pℓ,φ:

we follow a ‘linear interpolation’ type of strategy.

Alternative algebraic approaches. As explained in (151), the problem of reconstructing the
fi,j values from the values of pφ(ξ) at φ = φk and ξ = ξℓ can be formulated as a matrix-vector
equation. This formulation suggests to use numerical linear algebra methods for obtaining a
solution.

Unfortunately, it is unlikely that A is square, A may not even have full column rank.
Moreover, due to errors in the measurements and errors from the discretization b will not
be equal to Ax. Therefore, we can not simply apply a straight-forward method as Gauss
elimination. The solution of the matrix-vector equation may not exist, if it exists it may not be
unique and if it is exists uniquely, it may not be the one that we are interested in. Therefore,
we first have to decide on the ‘solution’ that we want to compute. If we decide to follow the
algebraic approach, we actually decide to discart the structure in the problem (the structure
that allows for a solution using Fourier transforms) and the ‘solution’ that we will try to compute
has to be characterized by algebraic properties.

Finding the solution with smallest error is impossible since the exact solution is unknown.
As an alternative, we can try to compute a solution x̃ with smallest residual norm. The residual
r is defined by b − Ax̃. The residual can be computed and if there is an x for which Ax = b
then the residual is A times the error x − x̃.

Note that

x = minarg{‖b− Ax̃‖2 x̃} ⇔ b− Ax ⊥ Ax̃ ∀x̃ ⇔ ATAx = ATb :

the minimal residual solution or least square solution is equal to the solution of the normal
equations. The matrix ATA is square. However, if x is a minimal residual solution and if
Az = 0 then x+z is also minimal residual. To have uniqueness, one often computes the minimal
residual solution x with smallest norm. This solution is characterized by the property x ⊥ z if
Az = 0, or equivalently, x = ATy for some y (why?). The minimum residual minimum norm
solution exists and is unique. Iterative methods for computing a minimum residual solution
(as Conjugate Gradients for the Normal Equations (CGNE)) produce the minimum residual
minimum norm solution. Unfortunately, due to errors in b, the min.res. min.norm solution is
often a noisy version of the true image, and regularization has to be included to damp the noise.

The Fourier approach requires a homogenuous distribution of beams, but is fast and avoids
the problems mentioned above. The algebraic approach is applicable also in cases the beams are
not nicely distributed as in SPECT (Single Positron Emission CT) and in Acoustic Tomography
and Seismic Tomography.

Exercise 9.2. Let f : R
2 → R be 1 on {(x, y) x2 + y2 ≤ 1} and 0 elsewhere. The right

picture in Fig. 34 show the graph of some of the functions in this exercise.

(a) Prove that pφ(ξ) = 2
√

1 − ξ2 if |ξ| ≤ 1 and φ(ξ) = 0 if |ξ| ≥ 0.

(b) Let f̃(r cos(ϑ), r sin(ϑ)) ≡
∫ π

0
pφ(r cos(ϑ−φ)) dφ be the (unfiltered) back projection. Show

that f̃(r cos(ϑ), r sin(ϑ)) = f̃(r, 0). Show that f̃ is strict positive and decreasing on [0,∞) and

f̃(r, 0) ∼ 2π
r for r → ∞.

(c) Suppose that p̃φ is analytic in (−1, 1). Show that there is a γ > 0 such that p̃φ(ξ) = γ for
all ξ, |ξ| < 1. Compute γ.

Exercise 9.3. Let f : R
2 → R be 1 on [−1, 1]2 and 0 elsewhere.

Let gT : R → R be defined by gT (ξ) ≡ T − |ξ| if |ξ| ≤ T and gT (ξ) = 0 elsewhere. The left
picture in Fig. 34 show the graph of some of the functions in this exercise.

(a) Prove that, for each φ ∈ (0, 1
4π), pφ is a linear combination of gT (φ) and gT (−φ) with

T (φ) ≡ cos(φ) + sin(φ).

(b) Show that g2 = Π1 ∗ Π1. Compute ĝ2. Show that ρ ĝ2(ρ)|ρ| is in L2(R).

(c) Put hΩ(t) ≡ Re
(∫ Ω

0
sin2(πω)

ω e2πitω dω
)

(t ∈ R). Compute h′Ω(t).
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It can be show that, for all τ > 0,
∫∞

τ
cos(2πΩt)

t dt→ 0 for ω → ∞. Use this result to show
that,

h∞(τ) ≡ lim
Ω→∞

hΩ(τ) = lim
Ω→∞

∫ ∞

τ

h′Ω(t) dt =
1

4
ln

(
τ2 − 1

τ2

)
(τ ∈ R).

Compute the inverse Fourier transform of ρ ĝ2(ρ)|ρ|.
(d) For φ ∈ (0, 1

4π), compute p̃φ.
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I.A Introduction Ex.1

Computer session I: Convergence of Fourier series

I.A Introduction

In this exercise, f : I → R is bounded and integrable on the bounded interval I ≡ [a, b].
We assume f to be periodically extended to R with period T ≡ b− a:

f(t) = f(t+ kT ) (k ∈ Z, t ∈ R).

For k ∈ Z, γk(f) is the kth Fourier coefficient of f , and Sn(f) is the nth partial
Fourier series (n ∈ N0) as defined in §2.2. We are interested in the approximation
quality of Sn(f) (cf. §2.4).

We will also consider the best sup-norm approximation Pn(f) of f of the form

Pn(f)(t) =

n∑

k=−n

µk e
2πit k

T (t ∈ R),

with µk ∈ C. Pn(f) is a so-called trigonometric polynomial of degree n.
We put

Fn(f) ≡ ‖f − Sn(f)‖∞ and En(f) ≡ ‖f − Pn(f)‖∞ (n ∈ N0).

For some N ∈ N, we will also consider the discrete Fourier coefficients γ̃k(f),1 for
|k| ≤ N , and the nth partial discrete Fourier series S̃n(f), for n ∈ N, n ≤ N . These
quantities are given by (cf. §5)

γ̃k(f) ≡ 1

N

N−1∑

n=0

f(tn) e−2πi nk
N and S̃n(f)(tm) ≡

n∑

k=−n

γ̃k(f) e2πitm
k
T . (1)

Notation. For µ,ν : Z → R we write

µ ∼ ν if lim
|k|→∞

µ(k)

ν(k)
exists and is non-zero:

then (µk) and (νk) have the same asymptotic behaviour for |k| → ∞.

In this exercise, we study the relation between the ‘speed’ by which the sequence
(γk(f)) of Fourier coefficients approaches 0 if |k| → ∞ and the smoothness of f . For
instance, we will try to find out when

|γk(f)| ∼ ka for some a < 0,

|γk(f)| ∼ λk for some λ ∈ [0, 1), or

|γk(f)| ∼ 1
k! .

For this purpose, we try to find a function µ : C×Z → R such that lim|k|→∞ µ(γk(f), k)
exists and is non-zero: if, for instance, |γk(f)| ∼ k−2, then the choice µ(γ, k) = k2γ,
implies that µ(γk(f), k) ∼ 1, with µ(γ, k) = log(γ)/k we have that µ(γk(f), k) ∼ 1
if γk(f) ∼ λk. We employ scaling functions µ to make the asymptotic behaviour of
(γk(f)) better visible in graphical displays.

1Actually the Matlab code that we use does not compute the Fourier coefficients γk(f) but a
discrete variant: it computes the discrete Fourier coefficients for N = 2l > 8n + 100, where n is the
largest value of |k| that is of interest to us. These values can be computed with the so-called Fast
Fourier Transform (FFT) technique. The technique is fast if N is a power of 2. The program uses the
defining formulas if N is not a power of 2.



Ex.2 REFERENCES

I.B Exercises

The Matlab program FSstart.m can be used for all exercises in this session. This program has

to be edited to change parameters. To run FSstart.m, type FSstart in Matlab’s execution

screen. Instructions that are program-dependent are in footnotes in order to keep the main

text of the exercises independent of a specific program. Since Matlab does not accept Greek

letters as input, we spelled out the names of the Greek letters: for instance, we used mu for µ

and gamma for γ. You may have to hit the ‘space’ bar once in a while to get the next picture;

the pause statement has been included in the Matlab programs between pictures. Further

references in this text to the program FSstart.m will be in footnotes.

Make notes: insights and results will be used in subsequential exercises.

Computer-exercise I.1. Take for f the function f(t) ≡ |t| for t ∈ I ≡ [−2,+2].
Plot the Fourier coefficients.2 The Fourier coefficients appear to be real and symmetric
(k  γk(f) is even). Could this be anticipated? Find a function µ such that µk ≡
µ(γk(f), k) is more or less constant for large k.3 The speed with which the Fourier
coefficients of the function f(t) = |t − 1| on [−2,+2] converge to 0 is slower (the
absolute value of the Fourier coefficients are larger for large |k|).4 Why is the asymptotic
behaviour for |k| → ∞ of the Fourier coefficients of |t| and of |t − 1| on [−2,+2] so
different? (A heuristic argument suffices here; a detailed explanation will be derived
in the exercises below.) The Fourier coefficients of f = |t − 1| on [−1, 3] appear to
be purely imaginary, but their asymptotic behaviour is the same as for f = |t| on
[−2,+2].5 Can you explain this?

Computer-exercise I.2. In this exercise, I = [−2,+2]. The functions are defined
for t ∈ I.

Take for f the function f(t) = |t|. Design a function µ such that µk = µ(γk(f), k) is
more or less constant for large k, k odd. Design also a function µ such that µ(Fk(f), k)
is more or less constant for larger k.6

Investigate the asymptotic behaviour of (γk(f)) and of (Fk(f)) for the function f
defined by f(t) = | sin(1

4πt)|.7 Does the asymptotic behaviour depend on the number
of singularities in one period?

Find the asymptotic behaviour of (γk(f)) and of (Fk(f)) for the function f(t) =√
| sin(1

4πt)|.8 What do you expect for the speed by which (γk(f)) an (Fk(f)) converge

towards 0 in case f(t) = | sin(1
4πt)|a for some a > 0? Check your conjectures for several

a > 0. Why are a ∈ N0, a even, exceptional values?

2Check whether the values in the executable lines of this program are correct: f=’abs(t)’, I=[-2,2],
and, for the moment, take ok=0, delta=0, mu=’1*gamma’, and k=-50:50. ‘Run’ the program. First, the
graph of f will be displayed. Then, if you hit the space bar, the graph of the Fourier coefficients will be
plotted in the next figure window. To be more precise, you will see the graph of k  µk ≡ µ(γk(f), k),
with µ(γ, k) = γ, for k ∈ Z, |k| ≤ 50: the line mu=’1*gamma’ sets the choice for µ and the line k=-50:50

defines the collection of ks for which µk will be shown.
3Try a µ of the form µ(γ, k) = γ ki for i = 1, 2, . . .: mu=’gamma.*(k.∧1)’, mu=’gamma.*(k.∧2)’,

. . . .
4Take f=’abs(t-1)’. Try another i.
5I=[-1,3].
6Now take ok=1;. As with ok=0, the graph f and of k  µ(γk(f), k) will be displayed. Another hit

of the space bar will show the graph k  µ(Fk(f), k) in the same figure as k  µ(γk(f), k). Adjust mu
to capture the correct asymptotic behaviour.

7f=’abs(sin(pi*t/4))’.
8Take f=’abs(sin(pi*t/4)).∧0.5’;.
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Consider the functions f = | sin(cos(1
2πt))| and f = sin(cos(1

2πt)) as well: if f ′

has a singularity, then the asymptotic behaviour of the sequences (γk(f)) and (Fk(f))
seems to depend only on the type of the singularity and not on the specific values of
f away from the singular point (can you explain this? We will return to this issue in
Computer-exercise I.6 below).

Can you predict the asymptotic behaviour of (γk(f)) and (Fk(f)) for f(t) = |t| 12
and for f(t) = |t| 32 ?

Computer-exercise I.3. Consider the convergence behaviour of (γk(f)) and (Fk(f))
for f(t) ≡ exp(cos(t)) (t ∈ [−π, π]).9 The function f is smooth and fast convergence
could have been anticipated. Why? However, the fast convergence for the (γk(f))
seems to get lost for k ≥ 13. Can you explain the behaviour of (γk(f)) and of (Fk(f))
for k ≥ 13?

From the graphs of k  µ(γk(f), k) and k  µ(Fk(f), k) it appears that, for k ≤ 12,
|Fk(f)| ≤ 2 |γk(f)| and |Fk(f)| ≈ 2 |γk+1(f)|. Can you explain this?

Computer-exercise I.4. For compression purposes, one may consider to approxi-
mate f by Pn(f) rather than by Sn(f). In this exercise, we investigate whether this is
an attractive idea.

Consider f = exp(cos(t)) for t ∈ [−π, π]. Compare the approximation quality of
Sn(f) and Pn(f) for n = 10.10 Is it worthwhile to use Pn(f) instead of Sn(f)?

Investigate the same questions for f(t) = |t| (t ∈ [−2, 2]). How much can we gain
with Pn(f) for, say, n = 10? What about f(t) = |t − 1| on [−2, 2]? What is your
conclusion?

Computer-exercise I.5. We investigate the effect of random perturbations on f
in this exercise: we compute the partial Fourier series of f⋆ ≡ f + ε, where, for some
δ > 0, the “white” noise ε : I → R takes values that are uniformly randomly distributed
between −δ and δ.

First take f(t) = 0 (t ∈ I = [−1,+1]) and δ = 1.11

Consider the Fourier coefficients γk(f
⋆) and F ⋆

k (f) ≡ ‖f − Sk(f
⋆)‖∞.12 (These

Fourier coefficients have not been formally defined. Why not? However, we use discrete
Fourier coefficients in our program γ̃k(f

⋆) for M = 2l > 8N+200; see (1).). The γk(f
⋆)

seem to be randomly distributed between [−γ, γ] for some γ > 0 (with γ ≈ δ
2
√

M
?).

It can be show that F ⋆
k (f) ≤ λkδ with λk the so-called Lebesgue’s constant: λk ≈

0.1 + 4
π2 log(2|k| + 1). Can you see this upper bound in the graph of k  F ⋆

k (f)? The
upper bound for F ⋆

k (f) by a function proportional to log(2|k| + 1) appears to be an
over estimate for smaller values of k (k ≤

√
M?): a linear growth seems to be more

realistic here. Can you derive such a linear estimate?

Now, take f(t) = exp(cos(πt)) (t ∈ [−1,+1]) and δ = 0.01.
Consider the Fourier coefficients γk(f

⋆) and F ⋆
k (f).13 Initially k  F ⋆

k (f) decreases, but
for larger k it slowly increases. For what value of k do you get the best approximation of
f? Since the sequence (γk(f)) converges rapidly to 0, the approximation error decreases

9ok=1, f=’exp(cos(t))’, I=[-pi,pi], and k=-30:30. Take mu=’log10(abs(gamma))’ or another
suitable function.

10Take ok=3 to get a graph of Pn(f) and f − Pn(f). The value of n will be equal to the maximum
absolute value of the values appearing in the sequence k.

11f=’0.*t’ and delta=1.0.
12Take ok=1, mu=’gamma’, and k=0:100.
13Take mu=’log10(abs(gamma))’, etc..
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rapidly if k increases. The effects of the noise increase with increasing k. Therefore, the
total error F ⋆

k (f) takes a minimal value for some k = k0. From the figure, it appears
that, by working with some Sk0(f

⋆), the effect of the noise can be reduced by, at least,
a factor ≈ k0√

M
. Such a reduction of the noise can be proved for smooth functions f .

(This property is exploited in practice: if, from a smooth function f , only N function
values are known from measurements, then the effect of the errors in the measurements
can be diminished by working only with an nth partial Fourier series —or, to be more
precise, an nth discrete partial Fourier series— with, typically, n ≤

√
N : the complete

(discrete) Fourier series is not used.)

For a function f : I → R en t ∈ I we use the notation f(t+) if the right-limit
limε>0,ε→0 f(t + ε) of f at t exists. Then, f(t+) is the value of this limit. Similarly,
with f(t−) we refer to the left limit.

Computer-exercise I.6. In this exercise, we investigate how accurately the Fourier
series converge in the neighborhood of discontinuities of f . (The insights that we gain
here are also helpful to explain the convergence behaviour of Fourier series close to
discontinuities of f ′, f ′′: differentiation brings the discontinuities in lower derivatives.)

Take for f on I = [−2, 2] the top-hat function Π1 defined by

Π1(t) =

{
1 voor |t| < 1

0 voor |t| ≥ 1.

The sequence (γk(f)) converges to 0 (why?). Check graphically that |γ2k+1(f)| ∼ 1
2k+1

and Fn(f) ∼ 1 (why is Fk(f) ≥ 1
2 for all k?).14

Pay careful attention to meaning of the various notions of convergence and conclude
from the graphs that 15

(i) (Sk(f)) converges point-wise to 1
2 [f(·+)+f(·−)] (note that this function

coincides with f itself in each t ∈ [−2, 2], |t| 6= 1),

(ii) for each ε > 0, (Sk(f)) converges uniformly to f on {t ∈ [−2, 2] ||t|−1| ≥
ε},

(iii) the sequence (Gn), with Gn ≡ {(t, Sn(f)(t)) t ∈ I} the graph of Sn(f),
does not converge to the subset G of [−2, 2] × R in the left picture in
Fig. 36, but it does converge to the subset G in the right picture (here
(t, y) ∈ R2 is a limit point of (Gn) if each disk with center (t, y) in
[−2, 2]×R intersects the graph of Gn for all sufficiently large n. Why is
this type of convergence not in conflict with the one in (i)?).

Comment to (iii). The graphs Gn exhibit more wiggles with increasing n. For each
n, the tops and the bottoms of these wiggles appear to have exactly the same heights;
the wiggles are only compressed in the t-direction towards the points of discontinuity
if n increases. There is no change in the vertical direction. This effect is known as the
Gibb’s phenomenon.

Do the same for f = gΠ1, where g is a smooth 4-periodic function with g(1) 6= 0.16

Note that in the neighbourhood of the discontinuity (t = 1) only the scaling of the

14Take ok=0;, delta=0;, f=’(abs(t)<1)’, and I=[-2,2].
15Take ok=2; and subsequentially for k k=0:10;, k=0:20;, k=0:40;, k=0:80;. Pay special attention

to the height of the first top of Sk(f) in the neighbourhood of the discontinuity of f .
16For instance, f=’exp(-cos(4*pi*t)).*(abs(t<1)’.
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Figure 36. Limit functions?

phenomenon changes (with a factor g(1)). Can you explain this? (Hint: f = h + κΠ1

for some κ ∈ R and a function h that is smoother than f . Note that, now, differentiation
leads to an explanation of the phenomenon as observed in the last part of Computer-
exercise I.2)

Computer-exercise I.7. Let γ̃k(f) be the kth discrete Fourier coefficient of f (|k| ≤
N). For each k ∈ Z, |k| < N , we have that

γ̃k(f) = γk(f) +
∑

j∈Z,j 6=0

γk+jN(f),

assuming f is sufficiently smooth: if the Fourier coefficients of f rapidly converge to 0,
then the γ̃k(f) form a good approximation to γk(f) (for |k| ≪ N).

Check this claim experimentally and observe that the approximation is also good if
k is not much smaller than 1

2N .17 Check the quality of the approximation also in case
the Fourier coefficients decrease slowly.18

Compare the efficiency of FFT and the naive approach to evaluate the discrete
Fourier transform.19 How is the time needed to computed the Fourier coefficients
related to the number of coefficients in case of FFT and in case of the naive approach?

Computer-exercise I.8.
For a > 0, the function f ∈ C(I) is defined by

f(t) :=

{
|t|a cos π

|t| for t ∈ [−1,+1], t 6= 0

0 als t = 0.
The Fourier series converges uniformly if a > 1. Why? There is no theorem on uniform
convergence that can be applied in case a ∈ (0, 1). Check graphically whether the
Fourier series converges for, for instance, a = 1 and a = 0.2.20 The sequence (γk(f))
of Fourier coefficients should converge for each choice of a ∈ (0, 1). Why? Can you
observe this in the graphs?

Consider the case where the Fourier series does not seem to converge uniformly.
Display the graph of f−Sk(f) for several values of k and observe that the Fourier series

17Take ok=4, for f , say, f=’1./(25*cos(pi*t).∧2+1)’, mu=’log10(abs(gamma))’, and k=-100:100.
If you run the program, the graphs of k  µ(k, γk(f)) and, after hitting the space bar, the graphs of
k  µ(k, eγk(f)) and of k  µ(k, γk(f) − eγk(f)) will be displayed. The discrete Fourier coefficients are
computed for N = n, where n is the maximum absolute value in the sequence k.

18Take, for instance, f=’(1-t.*t).*cos(10*pi*t).∧2’, etc..
19The program does not compute the exact Fourier coefficients, but for γk(f), it takes discrete Fourier

coefficients for N = 2ℓ > 8n+ 100. These coefficients are evaluated with FFT. The timings are shown
in the Matlab window. Take for k=-1000:1000, k=-2000:2000, . . . .

20take ok=1, k=0:100, mu=’log10(abs(gamma))’ and, for instance, f=’(abs(t)+10∧(-12)).∧0.2.*
cos(pi./(abs(t)+10∧(-12))’ (to avoid “overflow” by division by 0, we suggest to add 10−12 to
abs(t)).
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converges at t, for each t (limn→∞ Sn(f)(t) = f(t)) and even uniformly on [−1,−ε] ∪
[ε, 1],21 (cf., Computer-exercise I.6). In what sense does the ‘uniform convergence’ fail?

I.C Best approximations

I.1 Trigonometric polynomials. A function p on R is a trigonometric polynomial
of degree ≤ n with period T , if, for some scalars αk, we have that

p(t) =
n∑

k=−n

αk e
2πit k

T =
n∑

k=−n

αk ζ
k where ζ ≡ ζt ≡ e2πi t

T (t ∈ R).

Let T n
T be the space of all T -periodic trigonometric polynomials of degree ≤ n.

Note that Sn(f) ∈ T n
T for each f ∈ L1

T (R).

I.2 The best trigonometric approximation. Consider a real-valued T -periodic
function f ∈ C(R). We call p the best approximation of f in T n

T with respect to the
sup-norm if p ∈ T n

T and ‖f−p‖∞ ≤ ‖f−q‖∞ for all q ∈ T n
T . Without proof we mention

that the best approximation exists and is unique. This best approximation is denoted
by Pn(f). We put En(f) ≡ ‖f − Pn(f)‖∞: En(f) is the sup-norm distance from f to
T n

T .

If f is real-valued, then the best approximation in T n
T is real-valued as well.

In order to achieve better compression, one may consider to approximate a T - peri-
odic function f by its best approximation Pn(f) in T n

T : instead of storing a collection
of sampled function values f(n∆t), one can store the largest coefficients αk of Pn(f).
Standardly, a partial Fourier series of f is used. This polynomial can relatively easily
by computed using FFT. Sup-norm best approximations are hard to compute. But,
one may hope that ‖f − Pn(f)‖∞ ≤ ‖f − Sm(f)‖∞ for some n that is (much) smaller
than m.

One can show the following. We leave the proof as an exercise to the reader (see
Exercise I.3).

I.3 Theorem

‖f − Pn(f)‖∞ ≤ ‖f − Sn(f)‖∞ ≤ ‖f − Pn(f)‖∞(1 + Tλn),

where λn is Lebesgue’s constant:

λn ≡
∫ 1

0

sinπ(2n+ 1)t

sinπt
dt ≈ 0.1 +

4

π2
log(2|n| + 1).

For n → ∞, Lebesgue’s constant tends to ∞. However, the convergence is very
slow and, for moderate values of n, Lebesgue constant is rather small. Nevertheless,
the theorem is rather pessimistic in case of rapid convergence of the Fourier series.
Then the following theorem can be useful.

21Take ok=2 and subsequentially, for instance, k=0:10, k=0:20, k=0:40, k=0:80.
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I.4 The Theorem of de la Vallée–Poussin.
Let f be a real-valued function in L1

T (R). Consider some real-valued p ∈ T n
T .

If there is an increasing sequence t0, . . . , t2n+1 such that t2n+1 − t0 < T and

Gk ≡ (−1)k[f(tk) − p(tk)] > 0 for k = 0, . . . , 2n + 1,

then
min

k
Gk ≤ En(f) ≤ ‖f − p‖∞.

Proof. The last equality is trivially true by definition of En(f).
Now, assume that En(f) < Gk for all k = 0, . . . , 2n+ 1.

Then, for all k = 0, . . . , 2n + 1, we have that

(−1)k(Pn(f) − p)(tk) = (−1)k(f − p)(tk) − (−1)k(Pn(f) − f)(tk) ≥ Gk − En(f) > 0.

Put q ≡ Pn(f) − p. q is real-valued and in T n
T . If we put t2n+2 ≡ t0 + T , then, by

T -periodicity of q, we have that (−1)kq(tk) > 0 for all k = 0, . . . , 2n+2. Since q is real-
valued and continuous, q has at least one zero between each pair of consecutive tk’s. In
other words, there are 2n+2 different zeros s0, . . . , s2n+1 of q in (t0, t0 +T ). q is of the
form Q(ζt) with Q(ζ) ≡∑n

k=−n βkζ
k (ζ ∈ C) and ζt ≡ exp(2πit/T ). Hence, Q as well

as the polynomial ζnQ of degree at most 2n has 2n + 2 zeros at the ζsk
. A corollary

of the main theorem of the algebra states that non-trivial polynomials of degree N can
have at most N zeros in the complex plain. Consequently, Q and, therefore, q must be
zero. Apparently Pn(f) = p. But this violates the assumption that En(f) < Gk for all
k. We can conclude that En(f) ≥ Gk for some k.

Note that the number of points tk that are required by the above theorem is one
more than the number of terms involved in the trigonometric polynomial p.

In our applications, Sn(f) will be the approximating trigonometric polynomial p.
If the γk(f) converge quickly towards 0 if |k| → ∞, then we will have that

f − Sn(f) ≈ 2Re(γn+1(f) e2πi
(n+1)t

T ) = 2 |γn+1(f)| cos(2π

(
(n+ 1)t

T
+ φ

)
),

where φ is such that γn+1(f) = |γn+1(f)| e2πiφ. Since cos(kπ) = (−1)k, we see that
f(tk) − Sn(f)(tk) ≈ (−1)k|γk(f))| at tk = (1

2k − φ) T
n+1 for k = 0, . . . , 2n + 1. Since

we will also have that ‖f − Sn(f)‖∞ ≈ 2 |γn+1(f)|, it follows that in this situation of
quickly decreasing |γk(f)| the best approximation Pn(f) will not provide a much better
approximation than Sn(f) (see Exercise I.4).

As a corollary we have that p ∈ T n
T is the best approximation of f if there is a

increasing sequence t0, . . . , t2n+1 in [t0, t0+T ) such that (−1)k[f(tk)−p(tk)] = ‖f−p‖∞
for all k = 0, . . . , 2n+1; we say that f −p has the alternation property at 2n+2 points.
The converse is also correct if f is continuous. For a proof we refer to the literature.

I.5 Alternation theorem. Let f be a real-valued continuous function in L1
T (R),

and let p ∈ T n
T . Then, p is the best sup-norm approximation of f in T n

T if and only if
there is an increasing sequence t0, . . . , t2n+1 in [t0, t0 + T ) such that

(−1)k[f(tk) − p(tk)] = ‖f − p‖∞ for all k = 0, . . . , 2n+ 1.
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Exercises

Exercise I.1. Consider a T -periodic function f . Suppose that p is the best approximation of
f in T n

T .

(a) If q ∈ T n
T , then 1

2 (q + q) ∈ T n
T .

(b) If f is real-valued then p is real valued. Prove this.
(Hint: If a ∈ R and b ∈ C, then |a− Real(b)| ≤ |a− b|.)

Exercise I.2.

(a) Show that

Sn(f)(s) =
∑

|k|≤n

γk(f) e2πis k
T =

∫ T

0

f(t)
∑

|k|≤n

e2πi(s−t) k
T dt.

Apparently, with Dn(t) ≡∑|k|≤n exp(2πitk), we have that Sn(f)(s) =
∫ T

0
f(t)Dn( s−t

T ) dt. Dn

is the so-called Dirichlet kernel. Note that Dn is real-valued, even and 1-periodic.

(b) Prove that

‖Sn(f)‖∞ ≤ ‖f‖∞ Tλn where λn ≡ 1

T

∫ T

0

|Dn(
t

T
)| dt = 2

∫ 1
2

0

|Dn(t)| dt.

λk is Lebesgue’s constant.

(c) Show that, with ζ ≡ exp(2πt), we have that

Dn(t) =
∑

|k|≤n

ζk = ζ−n
2n∑

k=0

ζk = ζ−n ζ
2n+1 − 1

ζ − 1
=
ζn+

1
2 − ζ−n− 1

2

ζ
1
2 − ζ−

1
2

=
sin(π(2n+ 1)t)

sin(πt)
.

(d) Show that, |Dn(t)| ≤ π(n + 1
2 ) if t ∈ [0, 1

2n+1 ], and |Dn(t)| ≤ 1
2t if t ∈ [0, 1

2 ]. (Hint:

sin(πt) ≥ 2t for |t| ≤ 1
2 ). Now, show that

λn ≤ π + log(n+ 1
2 ).

The sharper upper bound in Theorem I.3 requires more careful estimates. However, note that
this simple derivation already shows the logarithmical dependence on n.

Exercise I.3. Consider a f ∈ L1
T (R).

(a) Prove that ‖f − Pn(f)‖∞ ≤ ‖f − Sn(f)‖∞.

(b) Prove that Sn(p) = p for all p ∈ T n
T .

(c) Prove that ‖f − Sn(f)‖∞ ≤ ‖f − p‖∞ + ‖Sn(f − p)‖∞ for all p ∈ T n
T .

(d) Prove that ‖f −Sn(f)‖∞ ≤ ‖f −Pn(f)‖∞(1+Tλn), where λn is as defined in Exercise I.2.

Exercise I.4. Let f be real-valued and in L1
T (R). Suppose there is some ϑ ∈ [0, 1) such that

2(1 − ϑ) |γn+1(f)| ≤
∑

|k|>n

|γk(f)| ≤ 2(1 + ϑ) |γn+1(f)|.

(a) Prove that 2(1 − ϑ) |γn+1(f)| ≤ ‖f − Sn(f)‖∞ ≤ 2(1 + ϑ) |γn+1(f)|.
(b) Show that there is an increasing sequence t0, . . . , t2n+1 in [t0, t0+T ) such that (−1)k[f(tk)−
Sn(f)(tk)] ≥ 2 (1 − ϑ)|γn+1(f)| for all k = 0, . . . , 2n+ 1.

(c) Prove that En(f) ≤ ‖f − Sn(f)‖∞ ≤ 1+ϑ
1−ϑEn(f).

Exercise I.5. Use de la Vallée–Poussin’s theorem to prove that a p ∈ T n
T is the best sup-

norm approximation of a real-valued function f ∈ L1
T (R) if the ‘error’ function f − p has the

alternation property at at least 2n + 2 points (that is, prove the ‘if’ part of the alternation
theorem).



I.A Introduction Ex.9

Computer session II: Digital Spectral Analysis

I.A Introduction

For a given signal f , the power spectrum or power spectral density (PSD) gives a plot
of the portion of a signal’s power (energy per unit time) falling within given frequency
intervals

ωi  

∫

ωi−1≤|ω|≤ωi

|f̂(ω)|2 dω, (1)

where ωi ≡ i∆ω (i ∈ Z). Matlab represents the energy on dB scale1 and the enerergy
is given (or, more accurately, estimated) per frequency unit, for instance, per Hertz
(dB/Hz). The PSD is a way of measuring the strength of the different frequencies that
form the signal. Often, as we will see below, it is not computationally feasible to get
access to the spectrum f̂ of f . However, in many applications, already an estimate of
the PSD gives the information that is needed.

The most common way of generating a power spectrum is by using a discrete Fourier
transform (DFT), but there are other techniques as well. DFT assumes that the signal
is sampled and concentrates on a part of the signal in time domain.

If f is of bounded bandwidth and sampled at sample frequency 1/∆t, 1/∆t ≥ 2Ω,
where Ω is the maximum frequency of f (i.e., |f̂(ω)| = 0 if |ω| > Ω), then

f̂(ω) = ∆t
∞∑

n=−∞
fn e

−2πi n ∆t ω (|ω| ≤ Ω). (2)

Here, fn ≡ f(tn), where tn ≡ t0 + n∆t for some t0. Here, for notational convenience,
we assume that t0 = 0. Why is this result correct? Is the restriction |ω| ≤ Ω needed?

Unfortunately, in practise, only a finite sequence of f -values can be used. We are in-
terested in this exercise in the effect of ‘finitizing’. Consider the sequence (f0, . . . , fL−1);
L is some positive integer. We will approximate f̂(ω) by

F (ω) ≡ ∆t

L−1∑

n=0

fn e
−2πi n ∆t ω (|ω| ≤ Ω). (3)

We select the frequency intervals of size ∆ω ≡ 1
L∆t around ωi ≡ i∆ω to form the PSD

and we approximate the PSD by

ωi  ∆ω |F (ωi)|2. (4)

Why is this a good approach assuming F (ω) approximates f̂(ω) well, more specifically,
why this ∆ω?
For computational convenience, we select an N ≥ L that is a power of 2 (why?), N = 2ℓ

(ℓ ∈ N is minimal such that 2ℓ ≥ L), and we compute F (ω) as

F (ω) = ∆t

N−1∑

n=0

φn e
−2πi n ∆t ω (|ω| ≤ Ω), (5)

where φn ≡ fn for n = 0, . . . , L − 1 and φn ≡ 0 elsewhere. Check that the equality in
(5) is correct. Instead of (4),

ω̃i ≡
i

N∆t
 ∆ω |F (ω̃i)|2. (6)

1i.e., 10 log10 | bf(ω)|2 = 20 log10 | bf(ω)|
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is plotted. Why? Note that the ∆ω in (6) is the same as the one in (4).
Consider the “time window” W given by Wn ≡ 1 if n = 0, . . . , L − 1 and Wn ≡ 0

elsewhere. Then F = (̂fW ) = f̂ ∗ Ŵ . Here, f is the infinite sequence (. . . , f0, f1, . . .) of
sampled f -values.

I.B Exercises

Make notes: insights and results will be used in subsequential exercises.

Computer-exercise I.1.
Consider the function f given by

f(t) ≡ sin(2π150t) + 2 sin(2π140t) (t ∈ R).

This is not a signal. Why not? Nevertheless, we can compute the Fourier transform f̂ .
How does f̂ look like?

The matlab command periodegram(fn,[],’twosided’,N,fs), produces the PSD
in the way as described above. Here, fn is the sequence (f0, . . . , fL), N is N , and
fs is the sample frequency 1/∆t. How do you expect that the PSD of the above
function will look like? Does the matlab command produces the expected result? First
take L = N = 210 and 1/∆t = L.2 What is the difference between ’twosided’ and
’onesided’? can we safely use ’onesided’ here? Can you explain the shape of the
PSD at −300dB/Hz? The spikes have a certain width. Why is that? Is the height at
ω = 140 and 150 as expected?

What is the effect of taking an L that is somewhat smaller than N , say, L = 1000.
Are the effects less with a slightly larger L, say L = 1023.3 Explain why we have such a
nice picture with L = 1024? Is this because N = L? (Suggestion: change the frequency
140 into 140.5. What is the effect of shifting the original signal in time?)

What is the effect of increasing N (N = 210, N = 211, N = 212, . . . )?4 Explain
your observations. Why is the PSD for smaller N ‘part’ of the graph for larger N?

What is the effect of increasing T ?5 Explain your observations.

2Use Ex1a.m.
3Use Ex1b.m.
4Use Ex1c.m.
5Use Ex1d.m.


