

http://www.staff.science.uu.nl/~sleij101/

f can be defined on \mathbb{R} or on an interval [a, b].

Example. f(t) is the difference $\rho(t) - \rho_0$ of the air pressure $\rho(t)$ at time t at some location (your ear) and the average air pressure ρ_0 : f is an acoustic sound.

f can be defined on \mathbb{R} or on an interval [a, b].

Example. f(t) is the difference $\rho(t) - \rho_0$ of the air pressure $\rho(t)$ at time t at some location (your ear) and the average air pressure ρ_0 : f is an acoustic sound.

f(t) is the voltage difference at time t at the speaker output of an acoustic amplifier.

f can be defined on \mathbb{R} or on an interval [a, b].

Example. Consider a building (bridge) that swings in the wind. f(t) is the distance from some point of the building to its position at rest.

Earthquake, heartbeat, ...

f can be defined on \mathbb{R} or on an interval [a, b].

Complicated functions, but there is some corrolation in the behaviour of f at $[t, t + \Delta t]$ and at $[t', t' + \Delta t]$ (t' > t).

f(x,y) is the gray-value of the picture at position (x,y).

Example. Pictures in a gray scale.

f(x,y) is the gray-value of the picture at position (x,y).

In practice, $[a,b] \times [c,d]$ is discretized into pixels. With $\Delta x = (b-a)/n$, $\Delta y = (d-c)/m$, $I_{i,j} = [a + i\Delta x, c + j\Delta y]$ is the (i,j)th **pixel**. f has a constant color value at each pixel: so, actually f is a step function (piece-wise constant). The pixels have size $\Delta x \times \Delta y$. Smaller pixels (higher n and m) imply *higher resolution*. The function values are also discretized. They may take integer values betwee 0 (black) and 255 (white). For mathematical analysis, it is often more convenient to assume function values in the whole of \mathbb{R} and to assume some smoothness. We are interested in real- or complex valued functions f. f can be defined on \mathbb{R} or on an interval [a, b]. f can be defined on \mathbb{R}^2 or on a rectangle $[a, b] \times [c, d]$. **Example.** Pictures in a gray scale. f(x, y) is the gray-value of the picture at position (x, y).

Colors are a combination

of monochromatic colors **red**, **green** and **blue** (RGB). $f(x,y) = f_R(x,b)$ is the red-value of the picture at position (x,y). The picure can be described by

 $(x,y) \rightsquigarrow \vec{f}(x,y) = (f_R(x,y), f_G(x,y), f_B(x,y))^\top$

We are interested in real- or complex valued functions f. f can be defined on \mathbb{R} or on an interval [a, b]. f can be defined on \mathbb{R}^2 or on a rectangle $[a, b] \times [c, d]$. f can be defined on \mathbb{R}^d or on a (nice) subset I of \mathbb{R}^d . **Example.** d = 3, Movies. We are interested in real- or complex valued functions f. f can be defined on \mathbb{R} or on an interval [a, b]. f can be defined on \mathbb{R}^2 or on a rectangle $[a, b] \times [c, d]$. f can be defined on \mathbb{R}^d or on a (nice) subset I of \mathbb{R}^d . **Example.** d = 3, Computerized Tomography (PET scan, MRI). Voxels

$$f = (f_1, \dots, f_\ell)^\top$$

and we can study the functions $f_i : I \to \mathbb{C}$ separately.

$$f = (f_1, \dots, f_\ell)^\top$$

and we can study the functions $f_i : I \to \mathbb{C}$ separately.

However, there is no convenient way to restrict the analysis further, to functions defined on (a subset of) \mathbb{R} :

e.g., $x \rightsquigarrow f_1(x, x_2, \ldots, x_d)$ depends on $(x_2, \ldots, x_d)!$

$$f = (f_1, \ldots, f_\ell)^\top$$

and we can study the functions $f_i : I \to \mathbb{C}$ separately.

However, there is no convenient way to restrict the analysis further, to functions defined on (a subset of) \mathbb{R} : e.g., $x \rightsquigarrow f_1(x, x_2, \dots, x_d)$ depends on $(x_2, \dots, x_d)!$

Remark. A function $f : \mathbb{C} \to \mathbb{C}$ can be viewed as a function $f : \mathbb{R}^2 \to \mathbb{C}$.

$$f = (f_1, \dots, f_\ell)^{\mathsf{T}}$$

and we can study the functions $f_i : I \to \mathbb{C}$ separately.

However, there is no convenient way to restrict the analysis further, to functions defined on (a subset of) \mathbb{R} : e.g., $x \rightsquigarrow f_1(x, x_2, \dots, x_d)$ depends on $(x_2, \dots, x_d)!$

Remark. A function $f : \mathbb{C} \to \mathbb{C}$ can be viewed as a function $f : \mathbb{R}^2 \to \mathbb{C}$.

Remark. If f is defined on a subset I of \mathbb{R}^d , then f can be extended to a function defined on \mathbb{R}^d , for instance, by defining f(x) = 0 for $x \notin I$ (or by periodicity).

Purpose

We want to analyse functions, reveal hidden structures.

Applications.

- De-noising, de-blurring
- Compression

Ex. For some $k \in \mathbb{Z}$ and T > 0, $f(t) = \sin(2\pi kt/T)$ for $t \in [0, 10]$. Store $f(j\Delta t)$ for $j = 0, 1, ..., 10^5$ with $\Delta t = 10^{-4}$ (as on a CD). Alternative, store k and T.

Compression also important to facilitate analysis.

• . . .

Strategy

Find a suitable basis to represent the class of functions that are of interest.

 (ϕ_k) (infinite set of) 'basisfunctions'. Then $f = \sum_k \gamma_k \phi_k$ in some sense.

Find (ϕ_k) such that

1) $f \approx \sum_{k \in E} \gamma_k \phi_k$, with *E* finite (small) subset of indices *k*. 2) *E* is 'small' and can 'easily' be detected. 3) $\sum_{k \in E} \gamma_k \phi_k(t)$ can efficiently be computed.

1) Approximation, 2) Extraction, 3) Computation

Example. $f \in C([-1, 1]), \phi_k(t) = t^k \quad (k \in \mathbb{N}_0, |t| \le 1)$

Approximation. Weierstrass. $\forall \varepsilon > 0$

 \exists a polynomial p st $\forall t \in [-1, 1], |f(t) - p(t)| \leq \varepsilon$.

Extraction. Taylor. If f is sufficiently smooth:

$$p(t) = \sum_{j < k} \frac{t^j}{j!} f^{(j)}(0), \quad f(t) - p(t) = \frac{t^k}{k!} f^{(k)}(\xi).$$

Evaluation. Horner. If $p(t) = \gamma_0 + \gamma_1 t + \ldots + \gamma_k t^k$ then

$$p(t) = \gamma_0 + (\dots (\gamma_{k-2} + (\gamma_{k-1} + \gamma_k t)t)t \dots)t :$$

$$s_0 = \gamma_k, \ s_j = \gamma_{k-j} + s_{j-1}t \text{ for } j = 1, \dots, k. \text{ Then } p(t) = s_k.$$

Polynomials well suited for computing (but not t^k), less suitable for analysis.

Reveals periodic structures in f:

Reveals periodic structures in f:

Reveals periodic structures in *f*:

Reveals periodic structures in f:

Reveals periodic structures in f:

Example. $f \in C([0, 1]), \phi_k(t) \equiv \cos(2\pi kt) = \phi(kt).$ **Reveals periodic structures** in f:

test against ϕ_k ($k \in \mathbb{N}_0$), i.e., compute $\int f(t)\phi_k(t) dt$

Applications Fourier analysis.

- Audio technique (equalizers, amplyfiers, tuner, CDs)
- \circ MP3 and other audio compression techniques
- o biology, ear, eye, ...
- \circ radar, echo location, CT, MRI, . . .
- Cristallography, Geophysics, . . .
- denoising, deblurring of images, JPEG compression, MJPEG
- Theory (partial) differential equations

÷

Example. $f \in C([0, 1]), \phi_{k,j}(t) = \psi(2^k t - j).$ Reveals periodic structures in f and localized changes: compute $\int f(t)\phi_{k,j}(t) dt$ for $k, j \in E \subset \mathbb{Z}$

Daubechies' wavelet of order 8

Example. $f \in C([0, 1]), \phi_{k,j}(t) = \psi(2^k t - j).$ Reveals periodic structures in f and localized changes: compute $\int f(t)\phi_{k,j}(t) dt$ for $k, j \in E \subset \mathbb{Z}$

Daubechies' wavelet of order 2

Application wavelet analysis.

As Fourier, tends to be more practical

- Storing and detection of fingerprints (to help police investigations)
- Computational techniques for partial differential equations

÷

Example. $\phi_k(t) = t^k$ polynomials.

Example. $\phi_k(t) \equiv \cos(2\pi kt)$ Harmonic oscillations, Fourier modes

Example. Wavelets

÷

Example. Bessel functions, ...

Example. Splines (smooth, piece-wise polynomials)

Example. Finite element basis functions

http://www.staff.science.uu.nl/~sleij101/

Preliminaries

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

Norms

Let \mathcal{V} be a (real or) complex vector space.

A map $\|\cdot\|:\mathcal{V}\rightarrow[0,\infty)$ is a norm if

1)
$$||f|| = 0$$
 iff $f = 0$ $(f \in \mathcal{V})$
2) $||\lambda f|| = |\lambda| ||f||$ $(f \in \mathcal{V}, \lambda \in \mathbb{C})$
3) $||f + g|| \le ||f|| + ||g||$ $(f, g \in \mathcal{V}, \lambda \in \mathbb{C})$

Examples. $\mathcal{V} = C([a, b])$ $\|f\|_{\infty} = \max\{|f(t)| \mid t \in [a, b]\}$ $\|f\|_1 = \int_a^b |f(t)| \, \mathrm{d}t$ $\|f\|_2 = \sqrt{\int_a^b |f(t)|^2 \, \mathrm{d}t}$

Norms

Let \mathcal{V} be a (real or) complex vector space.

A map $\|\cdot\|:\mathcal{V}\rightarrow[0,\infty)$ is a norm if

1) ||f|| = 0 iff f = 0 $(f \in \mathcal{V})$ 2) $||\lambda f|| = |\lambda| ||f||$ $(f \in \mathcal{V}, \lambda \in \mathbb{C})$ 3) $||f + g|| \le ||f|| + ||g||$ $(f, g \in \mathcal{V}, \lambda \in \mathbb{C})$

Exercise.

Inner products

Let \mathcal{V} be a (real or) complex vector space.

A map $(\cdot, \cdot) : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ is an **inner product** if

1) $(f, f) \ge 0$, (f, f) = 0 iff f = 0 $(f \in \mathcal{V})$ 2) $(f, g) = \overline{(g, f)}$ $(f, g \in \mathcal{V})$ 3) $f \rightsquigarrow (f, g)$ is linear $(g \in \mathcal{V})$

Example. $\mathcal{V} = C([a, b])$ $(f, g) = \int_a^b f(t) \,\overline{g(t)} \, dt$

Inner products

Let \mathcal{V} be a (real or) complex vector space.

A map $(\cdot, \cdot) : \mathcal{V} \times \mathcal{V} \to \mathbb{C}$ is an **inner product** if

1) $(f, f) \ge 0$, (f, f) = 0 iff f = 0 $(f \in \mathcal{V})$ 2) $(f, g) = \overline{(g, f)}$ $(f, g \in \mathcal{V})$ 3) $f \rightsquigarrow (f, g)$ is linear $(g \in \mathcal{V})$

Theorem. If (\cdot, \cdot) is an inner product on \mathcal{V} , then $f \rightsquigarrow \sqrt{(f, f)}$ defines a norm on \mathcal{V} .

Example. $||f||_2 = \sqrt{(f,f)}$ on $\mathcal{V} = C([a,b])$.

Pythagoras. If $f, g \in \mathcal{V}$ such that $f \perp g$, i.e. (f,g) = 0, then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$.

Proof.

$$|f + g||_{2}^{2} = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)$$

$$= ||f||_{2}^{2} + (f, g) + \overline{(f, g)} + ||g||_{2}^{2}$$

$$= ||f||_{2}^{2} + 2\operatorname{Re}(f, g) + ||g||_{2}^{2}$$

If (f,g) = 0 the claim follows.

Pythagoras. If $f, g \in \mathcal{V}$ such that $f \perp g$, i.e. (f,g) = 0, then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$.

Cauchy-Schwartz. $(f,g) \leq ||f||_2 ||g||_2$ $(f,g \in \mathcal{V})$. $(f,g) = ||f||_2 ||g||_2$ iff f is a scalar multiple of g.

Proof. Assume $||g||_2 = 1$. Note $f - (f,g)g \perp g$. Hence, (Pythagoras) $||f||_2^2 = ||f - (f,g)g||_2^2 + ||(f,g)g||_2^2 \ge |(f,g)|^2$. Equality only if $||f - (f,g)g||_2 = 0$.

Pythagoras. If $f, g \in \mathcal{V}$ such that $f \perp g$, i.e. (f,g) = 0, then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$.

Cauchy-Schwartz. $(f,g) \leq ||f||_2 ||g||_2$ $(f,g \in \mathcal{V})$. $(f,g) = ||f||_2 ||g||_2$ iff f is a scalar multiple of g.

Example. $\mathcal{V} = C([a, b])$ $\|f\|_1 \le \sqrt{b-a} \, \|f\|_2 \le (b-a) \, \|f\|_\infty \qquad (f \in C([a, b]))$

Pythagoras. If $f, g \in \mathcal{V}$ such that $f \perp g$, i.e. (f,g) = 0, then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$.

Cauchy-Schwartz. $(f,g) \leq ||f||_2 ||g||_2$ $(f,g \in \mathcal{V})$. $(f,g) = ||f||_2 ||g||_2$ iff f is a scalar multiple of g.

Example.
$$\mathcal{V} = C([a, b])$$

 $\|f\|_1 \le \sqrt{b-a} \, \|f\|_2 \le (b-a) \, \|f\|_\infty \qquad (f \in C([a, b]))$

Exercise. $\mathcal{V} = C([0, 1])$

Is there a $\kappa > 0$ such that $||f||_{\infty} \leq \kappa ||f||_2$ for all $f \in C([0, 1]]$? Is there a $\kappa > 0$ such that $||f||_2 \leq \kappa ||f||_1$ for all $f \in C([0, 1]]$?

Pythagoras. If $f, g \in \mathcal{V}$ such that $f \perp g$, i.e. (f,g) = 0, then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$.

Cauchy–Schwartz. $(f,g) \leq ||f||_2 ||g||_2$ $(f,g \in \mathcal{V})$. $(f,g) = ||f||_2 ||g||_2$ iff f is a scalar multiple of g.

Example.
$$\mathcal{V} = C([a, b])$$

 $\|f\|_1 \le \sqrt{b-a} \, \|f\|_2 \le (b-a) \, \|f\|_\infty \qquad (f \in C([a, b]))$

Example.

$$||f||_{\infty} \le |f(a)| + \sqrt{b-a} ||f'||_2 \qquad (f \in C^{(1)}([a,b]))$$

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

 $\mathcal V$ is a space with norm $\|\cdot\|.$

A sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$ if

$$\lim_{n \to \infty} \|f_n - f\| = 0$$

Exercise.
$$\mathcal{V} = C([0,1]), f_n(t) = t^n \quad (n \in \mathbb{N}, t \in [0,1]).$$

Does (f_n) converge with respect to $\|\cdot\|_1$?
Does (f_n) converge with respect to $\|\cdot\|_{\infty}$?

Exercise. $\mathcal{V} = C([0,2]), f_n(t) = \min(t^n, 1).$ Does (f_n) converge with respect to $\|\cdot\|_1$? (f_n) is a **Cauchy sequence** with respect to a norm $\|\cdot\|$

if
$$||f_n - f_m|| \to 0$$
 if $n > m, m \to \infty$

Exercise. $\mathcal{V} = C([0,2]), f_n(t) = \min(t^n,1).$ Is (f_n) a Cauchy sequence wrt $\|\cdot\|_1$? Is (f_n) a Cauchy sequence wrt $\|\cdot\|_2$? Is (f_n) a Cauchy sequence wrt $\|\cdot\|_\infty$? (f_n) is a **Cauchy sequence** with respect to a norm $\|\cdot\|$ if $\|f_n - f_m\| \to 0$ if $n > m, m \to \infty$

A space \mathcal{V} with norm $\|\cdot\|$ is **complete** if each Cauchy sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$.

(f_n) is a **Cauchy sequence** with respect to a norm $\|\cdot\|$ if $\|f_n - f_m\| \to 0$ if $n > m, m \to \infty$

A space \mathcal{V} with norm $\|\cdot\|$ is **complete** if each Cauchy sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$.

Exercise. $\mathcal{V} = C([0,2])$. Is \mathcal{V} complete wrt $\|\cdot\|_1$? Is \mathcal{V} complete wrt $\|\cdot\|_2$? Is \mathcal{V} complete wrt $\|\cdot\|_\infty$? (f_n) is a **Cauchy sequence** with respect to a norm $\|\cdot\|$ if $\|f_n - f_m\| \to 0$ if $n > m, m \to \infty$

A space \mathcal{V} with norm $\|\cdot\|$ is **complete** if each Cauchy sequence (f_n) in \mathcal{V} converges to an $f \in \mathcal{V}$.

Exercise. $\mathcal{V} = C([0,2])$. Is \mathcal{V} complete wrt $\|\cdot\|_1$? Is \mathcal{V} complete wrt $\|\cdot\|_2$? Is \mathcal{V} complete wrt $\|\cdot\|_\infty$?

Can we complete C([0,2]) wrt the $\|\cdot\|_2$? What kind of objects are contained in the completion?

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

Consider two functions f and g on [a, b].

f and g coincide almost everywhere (f = g a.e.)if the set $\mathcal{N} \equiv \{t \in [a, b] \mid f(t) \neq g(t)\}$ on which they differ is negligible, i.e., has measure zero, i.e., $\int_a^b \chi_{\mathcal{N}}(t) dt = 0$, where

$$\chi_{\mathcal{N}}(t) = \begin{cases} 1 & \text{if } t \in \mathcal{N} \\ 0 & \text{if } t \notin \mathcal{N} \end{cases}$$

Consider two functions f and g on [a, b].

f and g coincide **almost everywhere** (f = g a.e.)if the set $\mathcal{N} \equiv \{t \in [a, b] \mid f(t) \neq g(t)\}$ on which they differ is negligible, i.e., has measure zero, i.e., $\int_a^b \chi_{\mathcal{N}}(t) dt = 0$.

Example. Let f(t) = 1 for t > 0 and f(t) = 0 elsewhere, and let $\tilde{f}(t) = 1$ for $t \ge 0$ and $\tilde{f}(t) = 0$ elsewhere. Then $f = \tilde{f}$ a.e..

Consider two functions f and g on [a, b].

f and g coincide **almost everywhere** (f = g a.e.)if the set $\mathcal{N} \equiv \{t \in [a, b] \mid f(t) \neq g(t)\}$ on which they differ is negligible, i.e., has measure zero, i.e., $\int_a^b \chi_{\mathcal{N}}(t) dt = 0$.

Example. Let f(t) = 1 for t > 0 and f(t) = 0 elsewhere, and let $\tilde{f}(t) = 1$ for $t \ge 0$ and $\tilde{f}(t) = 0$ elsewhere. Then $f = \tilde{f}$ a.e..

Unless stated otherwise,

we will identify functions that coincide a.e.

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

$$||f||_1 \equiv \int_a^b |f(t)| \, \mathrm{d}t, \qquad ||f||_2 \equiv \sqrt{\int_a^b |f(t)|^2 \, \mathrm{d}t}$$

We implicitly assume that for all functions that we consider integration is possible, but we allow integrals to have value ∞ .

$$||f||_1 \equiv \int_a^b |f(t)| \, \mathrm{d}t, \qquad ||f||_2 \equiv \sqrt{\int_a^b |f(t)|^2 \, \mathrm{d}t}$$

Note that $||f - g||_1 = ||f - g||_2 = 0$ if f = g a.e.

How to define $||f||_{\infty}$?

$$\|f\|_{1} \equiv \int_{a}^{b} |f(t)| \, \mathrm{d}t, \qquad \|f\|_{2} \equiv \sqrt{\int_{a}^{b} |f(t)|^{2} \, \mathrm{d}t}$$
$$\|f\|_{\infty} \equiv \operatorname{ess-sup}\{|f(t)| \mid t \in [a, b]\}$$

Here **ess-sup** is the **essential supremum**, i.e., essentially we discart negligible sets. More formally,

$$||f||_{\infty} \equiv \inf\{||g||_{\infty} \mid g = f \text{ a.e.}\},\$$

where $||g||_{\infty} = \sup\{|g(t)| \mid t \in [a, b]\}$ as before.

$$\|f\|_{1} \equiv \int_{a}^{b} |f(t)| \, \mathrm{d}t, \qquad \|f\|_{2} \equiv \sqrt{\int_{a}^{b} |f(t)|^{2}} \, \mathrm{d}t$$
$$\|f\|_{\infty} \equiv \operatorname{ess-sup}\{|f(t)| \mid t \in [a, b]\}$$

Theorem.
$$||f||_1 \le \sqrt{b-a} ||f||_2 \le (b-a) ||f||_{\infty}$$

 $L^1([a,b]), L^2([a,b]), L^{\infty}([a,b])$ is the space of all functions $f : [a,b] \to \mathbb{C}$ for which $||f||_1 < \infty$, $||f||_2 < \infty$, $||f||_{\infty} < \infty$, respectively, and we identify functions that coincide a.e..

 $L^{2}([a,b])$ is an inner product space: $(f,g) \equiv \int_{a}^{b} f(t) \overline{g(t)} dt$.

Theorem. $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$ **Exercise.** Show that all inclusions are strict. (f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$

if
$$\|f_n - f_m\| o 0$$
 if $n > m, \ m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$. (f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$

if
$$\|f_n - f_m\| o 0$$
 if $n > m, \ m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$.

Density Theorem. C([a,b]) is **dense** in $L^p([a,b])$ for p = 1 as well as for p = 2, i.e., for each $f \in L^p([a,b])$ and each $\varepsilon > 0$ there is a $g \in C([a,b])$ such that $||f-g||_p < \varepsilon$.
(f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$

if
$$\|f_n - f_m\| \to 0$$
 if $n > m, \ m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$.

 (f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$

if
$$\|f_n - f_m\| \to 0$$
 if $n > m, \ m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$.

 (f_n) is a **Cauchy sequence** wrt a norm $\|\cdot\|$

if
$$\|f_n - f_m\| o 0$$
 if $n > m, \ m \to \infty$

Completeness Theorem.

The spaces $L^p([a,b])$, for $p = 1, 2, \infty$, are **complete** that is, if (f_n) is a **Cauchy sequence** in $L^p([a,b])$ then there is an $f \in L^p([a,b])$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$.

Density Theorem. C([a,b]) is **dense** in $L^p([a,b])$ for p = 1 as well as for p = 2, i.e., for each $f \in L^p([a,b])$ and each $\varepsilon > 0$ there is a $g \in C([a,b])$ such that $||f-g||_p < \varepsilon$.

Exercise. C([a, b]) is **not** dense in $L^{\infty}([a, b])$ (with f(t) = 1 for t > 0 and f(t) = -1 for $t \le 0$ ($|t| \le 1$) show that $||f - g||_{\infty} \ge 1$ for all $g \in C([-1, +1])$.) For sequences $(\gamma_k)_{k\in\mathbb{Z}}$ in \mathbb{C} . With $\gamma(k) = \gamma_k$, $\gamma : \mathbb{Z} \to \mathbb{C}$.

$$|\gamma|_1 \equiv \sum_{k=-\infty}^{\infty} |\gamma_k|, \quad |\gamma|_2 \equiv \sqrt{\sum_{k=-\infty}^{\infty} |\gamma_k|^2}, \quad |\gamma|_{\infty} \equiv \sup_{k \in \mathbb{Z}} |\gamma_k|$$

 $\ell^1(\mathbb{Z}), \ \ell^2(\mathbb{Z}), \ \ell^\infty(\mathbb{Z})$ is the space of all sequences γ in \mathbb{C} for which $|\gamma|_1 < \infty, \ |\gamma|_2 < \infty, \ |\gamma|_\infty < \infty$, resp.

 $\ell^2(\mathbb{Z})$ is an inner product space: $\langle \gamma, \mu \rangle \equiv \sum \gamma_k \overline{\mu_k}$.

Theorem. $|\gamma|_{\infty} \leq |\gamma|_{2} \leq |\gamma|_{1} \quad (\gamma : \mathbb{Z} \to \mathbb{C})$ $\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})$ For functions $f : \mathbb{R} \to \mathbb{C}$

$$\|f\|_{1} \equiv \int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t, \qquad \|f\|_{2} \equiv \sqrt{\int_{-\infty}^{\infty} |f(t)|^{2} \, \mathrm{d}t}$$
$$\|f\|_{\infty} \equiv \operatorname{ess-sup}\{|f(t)| \mid t \in \mathbb{R}\}$$

 $L^1(\mathbb{R}), L^2(\mathbb{R}), L^{\infty}(\mathbb{R})$ is the space of all functions $f : \mathbb{R} \to \mathbb{C}$ for which $||f||_1 < \infty$, $||f||_2 < \infty$, $||f||_{\infty} < \infty$, respectively, and we identify functions that coincide a.e..

 $L^{2}(\mathbb{R})$ is an inner product space: $(f,g) \equiv \int_{-\infty}^{\infty} f(t) \overline{g(t)} dt$.

Exercise. Discuss the inclusions $C(\mathbb{R}) \subset L^{\infty}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \subset L^{1}(\mathbb{R})$ On [a,b]: $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$

On \mathbb{Z} : $\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$

On \mathbb{R} : $C(\mathbb{R})$?? $L^{\infty}(\mathbb{R})$?? $L^{2}(\mathbb{R})$?? $L^{1}(\mathbb{R})$

Explanation: $||f||_1 = \sum_{k \in \mathbb{Z}} ||f||_{[k,k+1]}||_1$ for $f : \mathbb{R} \to \mathbb{C}$: mixure of 'on [a,b]' and 'on \mathbb{Z} .

On [a,b]: $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$

On \mathbb{Z} : $\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$

On \mathbb{R} : $C(\mathbb{R})$?? $L^{\infty}(\mathbb{R})$?? $L^{2}(\mathbb{R})$?? $L^{1}(\mathbb{R})$

Explanation: $||f||_1 = \sum_{k \in \mathbb{Z}} ||f||_{[k,k+1]}||_1$ for $f : \mathbb{R} \to \mathbb{C}$: mixure of 'on [a,b]' and 'on \mathbb{Z} .

On [a,b]: $C([a,b]) \subset L^{\infty}([a,b]) \subset L^{2}([a,b]) \subset L^{1}([a,b])$

On \mathbb{Z} : $\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$

On \mathbb{R} : $C(\mathbb{R})$?? $L^{\infty}(\mathbb{R})$?? $L^{2}(\mathbb{R})$?? $L^{1}(\mathbb{R})$

Explanation: $||f||_1 = \sum_{k \in \mathbb{Z}} ||f||_{[k,k+1]}||_1$ for $f : \mathbb{R} \to \mathbb{C}$: mixure of 'on [a,b]' and 'on \mathbb{Z} .

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

consider a sequence (f_n) in $L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ st

$$\lim_{n \to \infty} f_n(t) = f(t) \qquad (t \in I).$$

The sequence **converges point-wise**.

Exercise.

Does point-wise convergence imply $\|\cdot\|_1$ convergence?

consider a sequence (f_n) in $L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ st

$$\lim_{n \to \infty} f_n(t) = f(t) \qquad (t \in I).$$

The sequence **converges point-wise**.

Fatou's lemma. If there is a g st $g \in L^1(I)$ and $|f_n(t)| \le |g(t)|$ $(t \in I, n \in \mathbb{N}),$ then $\lim_{n \to \infty} f_n(t) = f(t)$ $(t \in I) \Rightarrow \lim_{n \to \infty} ||f_n - f||_1 = 0$

consider a sequence (f_n) in $L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ st

$$\lim_{n \to \infty} f_n(t) = f(t) \qquad (t \in I).$$

The sequence **converges point-wise**.

Fatou's lemma. If there is a g st $g \in L^1(I)$ and $|f_n(t)| \le |g(t)|$ $(t \in I, n \in \mathbb{N})$, then $\lim_{n \to \infty} f_n(t) = f(t)$ $(t \in I) \Rightarrow \lim_{n \to \infty} ||f_n - f||_1 = 0$

Exercise. Suppose $f, tf \in L^1(I)$. Consider g defined by $g(\omega) \equiv \int_I f(t) \sin(2\pi t\omega) dt \quad (\omega \in \mathbb{R}).$

Show that

$$g'(\omega) = 2\pi \int_I t f(t) \cos(2\pi t\omega) dt \quad (\omega \in \mathbb{R}).$$

consider a sequence (f_n) in $L^1(\mathbb{R})$ and an $f \in L^1(\mathbb{R})$ st

$$\lim_{n \to \infty} f_n(t) = f(t) \qquad (t \in I).$$

The sequence **converges point-wise**.

Fatou's lemma. If there is a g st $g \in L^{1}(I)$ and $|f_{n}(t)| \leq |g(t)|$ $(t \in I, n \in \mathbb{N}),$ then $\lim_{n \to \infty} f_{n}(t) = f(t)$ $(t \in I) \Rightarrow \lim_{n \to \infty} ||f_{n} - f||_{1} = 0$

Exercise. Does Fatou's lemma hold for

- L^2 -functions and $\|\cdot\|_2$ -convergence?
- L^{∞} functions and $\|\cdot\|_{\infty}$ convergence?

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

Function values

Note. Formally, f(t) does not have a meaning.

However, if f = g a.e. and g is continuous at t, then g(t) is well-defined and **Convention**. With f(t) we will denote this value g(t).

Function values

Note. Formally, f(t) does not have a meaning.

However, if f = g a.e. and g is continuous at t, then g(t) is well-defined and **Convention**. With f(t) we will denote this value g(t).

In particular f(t) has a well-defined value if f is continuous.

Function values

Note. Formally, f(t) does not have a meaning.

However, if f = g a.e. and g is continuous at t, then g(t) is well-defined and **Convention**. With f(t) we will denote this value g(t).

More generally, we put f(t+),

if f = g a.e. for a function g that is left continuous at t $(\lim_{\varepsilon > 0, \varepsilon \to 0} g(t+\varepsilon) = g(t))$. Then f(t+) has the value g(t).

Similarly,

f(t-) = g(t) if f = g, a.e., and $\lim_{\varepsilon > 0, \varepsilon \to 0} g(t-\varepsilon) = g(t)$

Program

- Norms and inner products
- Convergence
- Almost everywhere
- Function spaces
- Point-wise convergence
- Function values
- Derivatives

We identify functions that coincide a.e.

Weak Derivatives

Example. The function $f(t) \equiv |t|$ is a.e. differentiable with derivative g given by g(t) = 1 if t > 0 and g(t) = -1 else.

More generally,

Weak Derivatives

Consider a function f on [a,b]. We will put f' if there is a function g on [a,b] and a $c \in [a,b]$ such that

$$f(t) = f(c) + \int_{c}^{t} g(s) \, \mathrm{d}s \qquad (t \in [a, b]).$$

Then, f' will denote the function g.

g is unique if we identify functions that coincide a.e..

Exercise. Does f' exists for (a) $f(t) \equiv |t|$ ($|t| \leq 1$) (b) f(t) = 1 if t > 0 and f(t) = -1 elsewhere ($|t| \leq 1$)

Weak Derivatives

Consider a function f on [a,b]. We will put f' if there is a function g on [a,b] and a $c \in [a,b]$ such that

$$f(t) = f(c) + \int_{c}^{t} g(s) \, \mathrm{d}s \qquad (t \in [a, b]).$$

Then, f' will denote the function g.

g is unique if we identify functions that coincide a.e..

Theorem. If $f' \in L^1([a, b])$ then $f \in C([a, b])$.

f is said to be **absolutely continuous** if $f' \in L^1([a, b])$.

We identify functions that coincide a.e.

Weak Derivatives

There is a continuous non-decreasing function f on [0, 1]with f(0) = 0, f(1) = 1 such that f'(t) = 0 for almost all $t \in [0, 1]$: Allthough most values f'(t) exists, f' does not exists!

Integration by parts

If
$$f', g' \in L^{1}([a, b])$$
 then

$$\int_{a}^{b} f'(t)g(t) dt = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(t)g'(t) dt$$

It is essential that both f and g are continuous on [a, b], the functions f' and g' need not be continuous.