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Summary Lecture 1

Find appropriate set of basis functions to approximate

functions from interesting class.

f : [a, b] → C, ‖f‖1 ≤
√

b− a ‖f‖2 ≤ (b− a) ‖f‖∞
Identify f and g if f = g a.e..

‖ · ‖2 attractive in theory because, ‖f‖22 = (f, f),

Pythagoras, Cauchy-Schwartz, orthogonality.

‖ · ‖p with p ∈ [1,∞) attractive in theory because

C([a, b]) dense in Lp([a, b])
Fatou’s lemma (Lebesgue’s dominated convergence):

fn(t) → f(t) all t, |fn(t)| < g(t) all n, t, ‖g‖p < ∞
⇒ ‖fn − f‖p → 0

Also correct with [a,∞) or (−∞,∞) instead of [a, b].

‖ · ‖∞ attractive in practice.

γ : Z→ C, γ ∞ ≤ γ 2 ≤ γ 1
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T > 0

T -periodic functions

f : R→ C is T -periodic if f(t + T ) = f(t) ∀t ∈ R

Example. For each k ∈ Z,
t Ã cos(2πt k

T ) and t Ã sin(2πt k
T ) are T -periodic.

Fourier: these are essentially all T -periodic functions:
each T -periodic function is in some sense a
linear combinations of these sines and cosines

T is the length of the period.

Note that exp(2πit k
T ) = cos(2πt k

T ) + i sin(2πt k
T )



Functions on [a, a + T ] can be identified

with T -periodic functions:

If g is defined on [a, a + T ], then

f(t) ≡ g(t + kT ) (t ∈ R) k ∈ Z s.t. t + kT ∈ [a, a + T )

defines a T -periodic function and f = g on [a, a + T ].

— graph g
a = −1, T = 2

. . . graph f ,
f is 2-periodic
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If f is T -periodic, then
∫ T

0
f(t) dt =

∫ τ+T

τ
f(t) dt (τ ∈ R)

For T -periodic, integrable functions f on R define

‖f‖1 ≡
1

T

∫ T

0
|f(t)|dt

The space of all complex-valued T -periodic functions for
which ‖f‖1 < ∞ is denoted by L1

T (R).

‖f‖2 ≡
√

1

T

∫ T

0
|f(t)|2 dt

The space of all complex-valued T -periodic functions for
which ‖f‖2 < ∞ is denoted by L2

T (R).

Note. We identify functions that coincide a.e..



‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞ ≡ ess-sup{|f(x)| | x ∈ R}

CT (R) ≡ {f ∈ C(R) | f is T -periodic} ⊂ L2
T (R) ⊂ L1

T (R)

L2
T (R) is an inner product space w.r.t.

(f, g) ≡ 1

T

∫ T

0
f(t) g(t) dt (f, g ∈ L2

T (R))

For each k ∈ Z, put φk(t) ≡ exp(2πit k
T ) (t ∈ R).

Theorem. The φk form an orthonormal system in L2
T (R):

(φk, φj) = 0 if k 6= j and ‖φk‖2 = 1 (j, k ∈ Z)
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Fourier series

For f ∈ L1
T (R), put

γk(f) ≡ 1

T

∫ T

0
f(t)e−2πit k

T dt (k ∈ Z)
γk(f) is the kth Fourier coefficient. For n ∈ N,

Sn(f)(t) ≡
n∑

k=−n

γk e2πit k
T (t ∈ R)

Sn(f) is the nth partial Fourier series.
The formal infinite sum is the Fourier series of f :

f ∼
∑

γk e2πit k
T .

Note. This is not statement on convergence!

Use exp(2πit k
T
) = cos(2πt k

T
)+i sin(2πt k

T
) for a formulation in sines and

cosines.



Fourier series

For f ∈ L2
T (R),

γk(f) ≡ 1

T

∫ T

0
f(t)e−2πit k

T dt = (f, φk)

γk(f) is the kth Fourier coefficient. For n ∈ N,

Sn(f)(t) ≡
n∑

k=−n

γk e2πit k
T =

∑

|k|≤n

(f, φk)φk

Note that Sn(f) ∈ C(∞)(R).



Exercise. Consider f and g defined by

f(t) ≡ |t|, g(t) =

{
+1 for t ∈ (0,1]
−1 for t ∈ (−1,0]

(a) Extend f and g to 2-periodic functions (T = 2).

(b) Are these functions in C(1)(R), CT (R), L2
T (R), L1

T (R)?

(c) Compute the Fourier series of g.
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L2-Convergence

Theorem. ‖Sn(f)− f‖2 → 0 (n →∞) if f ∈ L2
T (R).

Therefore, for f ∈ L2
T (R), in the L2

T -sense, we have that

f =
∞∑

k=−∞
γk(f) e2πit k

T
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T (R).

Therefore, for f ∈ L2
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f =
∞∑

k=−∞
γk(f) e2πit k

T

What about ‖Sn(f)− f‖∞ or |Sn(f)(t)− f(t)| for n →∞?



L2-Convergence

Theorem. ‖Sn(f)− f‖2 → 0 (n →∞) if f ∈ L2
T (R).

Therefore, for f ∈ L2
T (R), in the L2

T -sense, we have that

f =
∞∑

k=−∞
γk(f) e2πit k

T

What about ‖Sn(f)− f‖∞ or |Sn(f)(t)− f(t)| for n →∞?

∃f ∈ CT (R) and a t ∈ R for which (Sn(f)(t)) diverges:

additional smoothness is required for stronger convergence.



Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ C
(1)
T (R).

Theorem. Sn(f)(t) → f(t) (n →∞) if f ∈ CT (R)

and f ∈ C(1)([t− δ, t + δ]) for some δ > 0.

This last theorem is quite remarkable, since the Fourier

series requires f over a whole period, while the convergence

results needs some additional smoothness of f only close

to the point t of interest.

Results can be relaxed.



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f(t) ≡ |t| on [−1,+1].



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f(t) ≡ |t| on [−1,+1].

Example. If f ∈ C(1)(R) then f is of BV.

Proof. f(t) = f(0) +
∫ t

0 f ′(s) ds = f(0) + f+(t)− f−(t) with

f+(t) ≡
∫ t

0
max(f ′(s),0)ds and f−(t) ≡

∫ t

0
max(−f ′(s),0)ds



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f(t) ≡ |t| on [−1,+1].

Example. If f(t) = f(0) +
∫ t
0 g(s) ds with g ∈ L1

T (R),
f is absolutely continuous (AC), then f is of BV: .

Proof. f(t) = f(0) +
∫ t

0 g(s) ds = f(0) + f+(t)− f−(t) with

f+(t) ≡
∫ t

0
max(g(s),0)ds and f−(t) ≡

∫ t

0
max(−g(s),0)ds



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f(t) ≡ |t| on [−1,+1].

Example. With

g(t) =

{
+1 if t ∈ [0,1]
−1 if t ∈ [−1,0)

we have that |t| = ∫ t
0 g(s) ds.



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f(t) ≡ |t| on [−1,+1].

Example. With

g(t) =

{
+1 if t ∈ [0,1]
−1 if t ∈ [−1,0)

we have that |t| = ∫ t
0 g(s) ds.

|t| is AC, g is not AC, g is of BV.



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Example. f 2-periodic s.t. f (t) = t sin(2π/t) (|t| ≤ 1)

f is continuous, but not of BV.
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Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a

finite linear combination of non-decreasing functions.

Totaal variation norm. f BV iff TV(f) < ∞, where

TV(f) ≡
∫ ∞

−∞
`(c) dc, where `(c) ≡ #{t | f(t) = c}.

If f(t) = f(0) +
∫ t

0 g(s) ds then TV(f) = ‖g‖1.

If f defined on subset R2 then `(c) is length {t | f(t) = c}.



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

Theorem. ‖σn(f)− f‖∞ → 0 (n →∞) iff f ∈ CT (R)

Here, σn(f) ≡ 1

n

n−1∑

j=0

Sn(f) Césaro sum



Uniform Convergence

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

Theorem. ‖σn(f)− f‖∞ → 0 (n →∞) iff f ∈ CT (R)

Here, σn(f) ≡ 1

n

n−1∑

j=0

Sn(f) Césaro sum

Example. f(t) = cos(2πt1T ). Then,

Sn(f) =
1

2
(e−2πit/T + e2πit/T ) = f (n ≥ 1),

whereas σn(f) = n−1
n f (n ∈ N).



Point-wise Convergence

Theorem. Sn(f)(t) → f(t) (n →∞) if f ∈ CT (R)

and f ∈ C(1)([t− δ, t + δ]) for some δ > 0.



Point-wise Convergence
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Point-wise Convergence

Theorem. Sn(f)(t) → f(t) (n →∞) if f ∈ CT (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

Even continuity is not needed



Point-wise Convergence

Theorem. Sn(f)(t) → f(t) (n →∞) if f ∈ CT (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

Theorem.

Sn(f)(t) → 1
2[f(t+) + f(t−)] (n →∞) if f ∈ L1

T (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

Here, f(t+) ≡ lim
ε>0, ε→0

f(t + ε)

f(t−) ≡ lim
ε>0, ε→0

f(t− ε)

and we assume that the (essential) limits exist.

Note that, for f ∈ L1
T (R), f(t) is not well-defined.



Point-wise Convergence

Theorem. Sn(f)(t) → f(t) (n →∞) if f ∈ CT (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

Theorem.

Sn(f)(t) → 1
2[f(t+) + f(t−)] (n →∞) if f ∈ L1

T (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

Example. g 2-periodic with

g(t) = +1 if t ∈ (0,1] and g(t) = −1 if t ∈ (−1,0]

is in L1
T (R) and of BV.



Theorem. ‖Sn(f)− f‖2 → 0 (n →∞) if f ∈ L2
T (R).

Theorem. ‖Sn(f)− f‖∞ → 0 (n →∞) if f ∈ CT (R)

and f is of bounded variation.

Theorem. ‖σn(f)− f‖∞ → 0 (n →∞) iff f ∈ CT (R)

Theorem.

Sn(f)(t) → 1
2[f(t+) + f(t−)] (n →∞) if f ∈ L1

T (R)

and f is of BV on [t− δ, t + δ] for some δ > 0.

There is an f ∈ CT(R) and a t ∈ R for which (Sn(f)(t)) diverges.
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Error estimates

Theorem. If f ∈ CT (R) and f ′ ∈ L1
T (R) then

γk(f) = T
2πik γk(f

′) (k ∈ Z, k 6= 0)

Proof. Integrate by parts.



Error estimates

Theorem. If f ∈ CT (R) and f ′ ∈ L1
T (R) then

γk(f) = T
2πik γk(f

′) (k ∈ Z, k 6= 0)

Exercise. If f ∈ C
(1)
T (R) then f ′ ∈ CT (R) and

γ0(f
′) = 0, γk(f) =

Tγk(f
′)

2πik
(k 6= 0).

Exercise. f is 2-periodic given by f(t) = |t| (|t| ≤ 1).

Compute γk(f). (Hint. Consider f ′).



Error estimates

Theorem. If f ∈ CT (R) and f ′ ∈ L1
T (R) then

γk(f) = T
2πik γk(f

′) (k ∈ Z, k 6= 0)

Theorem. f ∈ L1
T (R).

|γk(f)| ≤ ‖f‖1 ≤ ‖f‖∞
γk(f) → 0 if |k| → ∞. (Riemann–Lebesgue)

|γk(f)| ≤ 1
|k|` (

T
2π)` ‖f(`)‖1 if f ∈ C

(`)
T (R)



Error estimates

Theorem. If f ∈ CT (R) and f ′ ∈ L1
T (R) then

γk(f) = T
2πik γk(f

′) (k ∈ Z, k 6= 0)

Theorem. f ∈ L1
T (R).

|γk(f)| ≤ ‖f‖1 ≤ ‖f‖∞
γk(f) → 0 if |k| → ∞. (Riemann–Lebesgue)

|γk(f)| ≤ 1
|k|` (

T
2π)` ‖f(`)‖1 if f ∈ C

(`)
T (R)

Theorem. f ∈ C
(`)
T (R)

‖Sn(f)− f‖∞ ≤ 1
n`−1 ( T

2π)` ‖f(`)‖1
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If f ∈ C
(1)
T (R) then 2πik γk(f) = T γk(f

′)

Differential equations

Turn differential equations into algebraic equations.

With f ∈ CT (R), a, b, c ∈ C, find a T -periodic u s.t.

a u′′ + b u′ + c u = f

Solution. γk(f) = a γk(u
′′) + b γk(u

′) + c γk(u)

= [a(2πik
T )2 + b 2πik

T + c] γk(u)

What about boundary conditions?

Applications. Electric circuits.
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Parseval. ‖f‖22 =
∞∑

k=−∞
|γk(f)|2 (f ∈ L2

T (R))

Proof. ‖f‖22 = ‖f − Sn(f)‖22 + ‖Sn(f)‖22 (Pythagoras)

‖Sn(f)‖22 =
∑n

k=−n |γk(f)|2 (Pythagoras)

limn→∞ ‖f − Sn(f)‖22 = 0 (Theorem)



Parseval. ‖f‖22 =
∞∑

k=−∞
|γk(f)|2 (f ∈ L2

T (R))

Consider `2(Z) ≡ {(γk)k∈Z | γk ∈ C, (γk) 2 ≡
∑ |γk|2 < ∞}

with inner product <(γk), (µk)>≡
∑

γk µk.

Riesz–Fischer. The Fourier transform f Ã (γk(f))k∈Z
identifies the inner product spaces L2

T (R) and `2(Z).

In particular, (f, g) =<(γk(f)), (γk(g))> (f, g ∈ L2
T (R)).

Proof. (γk) ∈ `2(Z) then (
∑

|k|<n γk φk)n Cauchy sequence in L2
T(R).

‖f + ζg‖22 = ‖f‖22 + 2Re(ζ(f, g)) + ‖g‖22 for all f, g ∈ L2
T(R), ζ ∈ C.

(γk) + ζ(µk)
2
2 = (γk)

2
2 + 2Re(ζ<(γk), (µk)>) + (µk)

2
2 for all . . . .

Now, apply Parseval and take ζ = 1 and ζ = i.



L1
T (R)

γ(·)→ `∞(Z), γ(f) ∞ ≤ ‖f‖1, not surjective

L2(R)
γ(·)→ `2(Z), γ(f) 2 = ‖f‖2, inversion exists.

Here, `∞(Z) ≡ {(γk) | (γk) ∞<∞} and γ(f) ≡ (γk(f)).

L2
T
(R)

L1
T
(R)

l2(Z)

l∞(Z)



L1
T (R)

γ(·)→ `∞0 (Z), γ(f) ∞ ≤ ‖f‖1, not surjective

L2(R)
γ(·)→ `2(Z), γ(f) 2 = ‖f‖2, inversion exists.

Here, `∞0 (Z) ≡ {(γk) ∈ `∞(Z) |γk → 0 (|k| → ∞)} and γ(f) ≡ (γk(f)).

L2
T
(R)

L1
T
(R)

l2(Z)

l∞
0

(Z)


