

http://www.staff.science.uu.nl/~sleij101/

Summary Lecture 1

Find appropriate set of basis functions to approximate functions from interesting class.

 $f:[a,b] \to \mathbb{C}, \quad \|f\|_1 \le \sqrt{b-a} \, \|f\|_2 \le (b-a) \, \|f\|_{\infty}$ Identify f and g if f = g a.e..

- $\|\cdot\|_2$ attractive in theory because, $\|f\|_2^2 = (f, f)$, Pythagoras, Cauchy-Schwartz, orthogonality.
- $\begin{array}{l} \| \cdot \|_p \text{ with } p \in [1, \infty) \text{ attractive in theory because} \\ C([a, b]) \text{ dense in } L^p([a, b]) \\ \text{Fatou's lemma (Lebesgue's dominated convergence):} \\ f_n(t) \to f(t) \text{ all } t, \ |f_n(t)| < g(t) \text{ all } n, t, \ \|g\|_p < \infty \\ \Rightarrow \quad \|f_n f\|_p \to 0 \end{array}$

Also correct with $[a,\infty)$ or $(-\infty,\infty)$ instead of [a,b].

 $\|\cdot\|_\infty$ attractive in practice.

$$\gamma: \mathbb{Z} \to \mathbb{C}, \quad |\gamma|_{\infty} \leq |\gamma|_{2} \leq |\gamma|_{1}$$

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

*T***-periodic functions**

 $f : \mathbb{R} \to \mathbb{C}$ is *T*-periodic if f(t+T) = f(t) $\forall t \in \mathbb{R}$

Example. For each $k \in \mathbb{Z}$, $t \rightsquigarrow \cos(2\pi t \frac{k}{T})$ and $t \rightsquigarrow \sin(2\pi t \frac{k}{T})$ are *T*-periodic.

Fourier: these are essentially all *T*-periodic functions: each *T*-periodic function is in some sense a linear combinations of these sines and cosines

T is the length of the period.

Note that $\exp(2\pi i t \frac{k}{T}) = \cos(2\pi t \frac{k}{T}) + i \sin(2\pi t \frac{k}{T})$

Functions on [a, a + T] can be identified with *T*-periodic functions:

If g is defined on [a, a + T], then

 $f(t) \equiv g(t+kT)$ $(t \in \mathbb{R})$ $k \in \mathbb{Z}$ s.t. $t+kT \in [a, a+T)$

defines a T-periodic function and f = g on [a, a + T].

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

If f is T-periodic, then

$$\int_0^T f(t) \, \mathrm{d}t = \int_\tau^{\tau+T} f(t) \, \mathrm{d}t \qquad (\tau \in \mathbb{R})$$

For $T\text{-}\mathsf{periodic},$ integrable functions f on $\mathbb R$ define

$$\|f\|_1 \equiv \frac{1}{T} \int_0^T |f(t)| \, \mathrm{d}t$$

The space of all complex-valued *T*-periodic functions for which $||f||_1 < \infty$ is denoted by $L^1_T(\mathbb{R})$.

$$||f||_2 \equiv \sqrt{\frac{1}{T} \int_0^T |f(t)|^2 dt}$$

The space of all complex-valued *T*-periodic functions for which $||f||_2 < \infty$ is denoted by $L^2_T(\mathbb{R})$.

Note. We identify functions that coincide a.e..

 $\|f\|_{1} \leq \|f\|_{2} \leq \|f\|_{\infty} \equiv \operatorname{ess-sup}\{|f(x)| \mid x \in \mathbb{R}\}$ $C_{T}(\mathbb{R}) \equiv \{f \in C(\mathbb{R}) \mid f \text{ is } T \operatorname{-periodic}\} \subset L_{T}^{2}(\mathbb{R}) \subset L_{T}^{1}(\mathbb{R})$

 $L^2_T(\mathbb{R})$ is an inner product space w.r.t.

$$(f,g) \equiv \frac{1}{T} \int_0^T f(t) \overline{g(t)} \, \mathrm{d}t \qquad (f,g \in L^2_T(\mathbb{R}))$$

For each $k \in \mathbb{Z}$, put $\phi_k(t) \equiv \exp(2\pi i t \frac{k}{T})$ $(t \in \mathbb{R})$.

Theorem. The ϕ_k form an orthonormal system in $L^2_T(\mathbb{R})$: $(\phi_k, \phi_j) = 0$ if $k \neq j$ and $\|\phi_k\|_2 = 1$ $(j, k \in \mathbb{Z})$

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

Fourier series

For $f \in L_T^1(\mathbb{R})$, put $\gamma_k(f) \equiv \frac{1}{T} \int_0^T f(t) e^{-2\pi i t \frac{k}{T}} dt \qquad (k \in \mathbb{Z})$

 $\gamma_k(f)$ is the *k*th Fourier coefficient. For $n \in \mathbb{N}$,

$$S_n(f)(t) \equiv \sum_{k=-n}^n \gamma_k e^{2\pi i t \frac{k}{T}} \qquad (t \in \mathbb{R})$$

 $S_n(f)$ is the *n*th partial Fourier series. The formal infinite sum is the Fourier series of f:

$$f \sim \sum \gamma_k e^{2\pi i t \frac{k}{T}}.$$

Note. This is not statement on convergence!

Use $\exp(2\pi i t \frac{k}{T}) = \cos(2\pi t \frac{k}{T}) + i \sin(2\pi t \frac{k}{T})$ for a formulation in sines and cosines.

Fourier series

For
$$f \in L^2_T(\mathbb{R})$$
,
 $\gamma_k(f) \equiv \frac{1}{T} \int_0^T f(t) e^{-2\pi i t \frac{k}{T}} dt = (f, \phi_k)$
 $\gamma_k(f)$ is the *k*th Fourier coefficient. For $n \in \mathbb{N}$,

$$S_n(f)(t) \equiv \sum_{k=-n}^n \gamma_k e^{2\pi i t \frac{k}{T}} = \sum_{|k| \le n} (f, \phi_k) \phi_k$$

Note that
$$S_n(f)\in C^{(\infty)}(\mathbb{R}).$$

Exercise. Consider f and g defined by

$$f(t) \equiv |t|, \quad g(t) = \begin{cases} +1 & \text{for } t \in (0, 1] \\ -1 & \text{for } t \in (-1, 0] \end{cases}$$

(a) Extend f and g to 2-periodic functions (T = 2).

(b) Are these functions in $C^{(1)}(\mathbb{R})$, $C_T(\mathbb{R})$, $L^2_T(\mathbb{R})$, $L^1_T(\mathbb{R})$?

(c) Compute the Fourier series of g.

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

L^2 -Convergence

Theorem.
$$||S_n(f) - f||_2 \to 0 \quad (n \to \infty) \text{ if } f \in L^2_T(\mathbb{R}).$$

Therefore, for $f \in L^2_T(\mathbb{R})$, in the L^2_T -sense, we have that

$$f = \sum_{k=-\infty}^{\infty} \gamma_k(f) \, e^{2\pi i t \frac{k}{T}}$$

L^2 -Convergence

Theorem. $||S_n(f) - f||_2 \to 0 \quad (n \to \infty) \text{ if } f \in L^2_T(\mathbb{R}).$

Therefore, for $f \in L^2_T(\mathbb{R})$, in the L^2_T -sense, we have that

$$f = \sum_{k=-\infty}^{\infty} \gamma_k(f) \, e^{2\pi i t \frac{k}{T}}$$

What about $||S_n(f) - f||_{\infty}$ or $|S_n(f)(t) - f(t)|$ for $n \to \infty$?

L^2 -Convergence

Theorem. $||S_n(f) - f||_2 \to 0 \quad (n \to \infty) \text{ if } f \in L^2_T(\mathbb{R}).$

Therefore, for $f \in L^2_T(\mathbb{R})$, in the L^2_T -sense, we have that

$$f = \sum_{k=-\infty}^{\infty} \gamma_k(f) \, e^{2\pi i t \frac{k}{T}}$$

What about $||S_n(f) - f||_{\infty}$ or $|S_n(f)(t) - f(t)|$ for $n \to \infty$?

 $\exists f \in C_T(\mathbb{R})$ and a $t \in \mathbb{R}$ for which $(S_n(f)(t))$ diverges: additional smoothness is required for stronger convergence.

Convergence

Theorem.
$$||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty) \text{ if } f \in C_T^{(1)}(\mathbb{R}).$$

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and $f \in C^{(1)}([t - \delta, t + \delta])$ for some $\delta > 0$.

This last theorem is quite remarkable, since the Fourier series requires f over a whole period, while the convergence results needs some additional smoothness of f only close to the point t of interest.

Results can be relaxed.

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. $f(t) \equiv |t|$ on [-1, +1].

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. $f(t) \equiv |t|$ on [-1, +1].

Example. If $f \in C^{(1)}(\mathbb{R})$ then f is of BV. *Proof.* $f(t) = f(0) + \int_0^t f'(s) \, ds = f(0) + f_+(t) - f_-(t)$ with $f_+(t) \equiv \int_0^t \max(f'(s), 0) \, ds$ and $f_-(t) \equiv \int_0^t \max(-f'(s), 0) \, ds$

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. $f(t) \equiv |t|$ on [-1, +1].

Example. If $f(t) = f(0) + \int_0^t g(s) \, ds$ with $g \in L_T^1(\mathbb{R})$, f is absolutely continuous (AC), then f is of BV: . *Proof.* $f(t) = f(0) + \int_0^t g(s) \, ds = f(0) + f_+(t) - f_-(t)$ with $f_+(t) \equiv \int_0^t \max(g(s), 0) \, ds$ and $f_-(t) \equiv \int_0^t \max(-g(s), 0) \, ds$

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. $f(t) \equiv |t|$ on [-1, +1].

Example. With

$$g(t) = \begin{cases} +1 & \text{if } t \in [0, 1] \\ -1 & \text{if } t \in [-1, 0) \end{cases}$$

we have that $|t| = \int_0^t g(s) \, ds$.

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example.
$$f(t) \equiv |t|$$
 on $[-1, +1]$.

Example. With

$$g(t) = \begin{cases} +1 & \text{if } t \in [0,1] \\ -1 & \text{if } t \in [-1,0) \end{cases}$$

we have that $|t| = \int_0^t g(s) \, ds$.

|t| is AC, g is **not** AC, g is of BV.

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Example. f 2-periodic s.t. $f(t) = t \sin(2\pi/t)$ $(|t| \le 1)$ f is continuous, but **not** of BV.

Theorem. $||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

A function f on \mathbb{R} is of **bounded variation** (BV) if it is a finite linear combination of non-decreasing functions.

Totaal variation norm. $f BV \text{ iff } TV(f) < \infty$, where

$$\mathsf{TV}(f) \equiv \int_{-\infty}^{\infty} \ell(c) \, \mathrm{d}c, \quad \text{where } \ell(c) \equiv \#\{t \mid f(t) = c\}.$$

If $f(t) = f(0) + \int_{0}^{t} g(s) \, \mathrm{d}s$ then $\mathsf{TV}(f) = \|g\|_{1}.$

If f defined on subset \mathbb{R}^2 then $\ell(c)$ is length $\{t \mid f(t) = c\}$.

Theorem. $||S_n(f) - f||_{\infty} \to 0$ $(n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

Theorem.
$$||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$$
 if $f \in C_T(\mathbb{R})$
and f is of bounded variation.

Theorem.
$$\|\sigma_n(f) - f\|_{\infty} \to 0 \quad (n \to \infty) \text{ iff } f \in C_T(\mathbb{R})$$

Here,
$$\sigma_n(f) \equiv \frac{1}{n} \sum_{j=0}^{n-1} S_n(f)$$
 Césaro sum

Theorem.
$$||S_n(f) - f||_{\infty} \to 0 \quad (n \to \infty)$$
 if $f \in C_T(\mathbb{R})$
and f is of bounded variation.

Theorem.
$$\|\sigma_n(f) - f\|_{\infty} \to 0 \quad (n \to \infty) \text{ iff } f \in C_T(\mathbb{R})$$

Here,
$$\sigma_n(f) \equiv \frac{1}{n} \sum_{j=0}^{n-1} S_n(f)$$
 Césaro sum

Example. $f(t) = \cos(2\pi t \frac{1}{T})$. Then, $S_n(f) = \frac{1}{2}(e^{-2\pi i t/T} + e^{2\pi i t/T}) = f \quad (n \ge 1),$ whereas $\sigma_n(f) = \frac{n-1}{n}f \qquad (n \in \mathbb{N}).$

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and $f \in C^{(1)}([t - \delta, t + \delta])$ for some $\delta > 0$.

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Even continuity is not needed

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Theorem.

 $S_n(f)(t) \to \frac{1}{2}[f(t+) + f(t-)] \quad (n \to \infty) \text{ if } f \in L^1_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Here, $f(t+) \equiv \lim_{\varepsilon > 0, \varepsilon \to 0} f(t+\varepsilon)$ $f(t-) \equiv \lim_{\varepsilon > 0, \varepsilon \to 0} f(t-\varepsilon)$

and we assume that the (essential) limits exist.

Note that, for $f \in L^1_T(\mathbb{R})$, f(t) is not well-defined.

Theorem. $S_n(f)(t) \to f(t) \quad (n \to \infty) \text{ if } f \in C_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Theorem.

 $S_n(f)(t) \to \frac{1}{2}[f(t+) + f(t-)] \quad (n \to \infty) \text{ if } f \in L^1_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

Example. *g* 2-periodic with

$$g(t) = +1$$
 if $t \in (0, 1]$ and $g(t) = -1$ if $t \in (-1, 0]$
is in $L^1_T(\mathbb{R})$ and of BV.

Theorem. $||S_n(f) - f||_2 \to 0 \quad (n \to \infty) \text{ if } f \in L^2_T(\mathbb{R}).$

Theorem. $||S_n(f) - f||_{\infty} \to 0$ $(n \to \infty)$ if $f \in C_T(\mathbb{R})$ and f is of bounded variation.

Theorem. $\|\sigma_n(f) - f\|_{\infty} \to 0$ $(n \to \infty)$ iff $f \in C_T(\mathbb{R})$

Theorem. $S_n(f)(t) \rightarrow \frac{1}{2}[f(t+) + f(t-)] \quad (n \rightarrow \infty) \text{ if } f \in L^1_T(\mathbb{R})$ and f is of BV on $[t - \delta, t + \delta]$ for some $\delta > 0$.

There is an $f \in C_T(\mathbb{R})$ and a $t \in \mathbb{R}$ for which $(S_n(f)(t))$ diverges.

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

Theorem. If $f \in C_T(\mathbb{R})$ and $f' \in L^1_T(\mathbb{R})$ then

$$\gamma_k(f) = \frac{T}{2\pi i k} \gamma_k(f') \quad (k \in \mathbb{Z}, k \neq 0)$$

Proof. Integrate by parts.

Theorem. If $f \in C_T(\mathbb{R})$ and $f' \in L^1_T(\mathbb{R})$ then

$$\gamma_k(f) = \frac{T}{2\pi i k} \gamma_k(f') \quad (k \in \mathbb{Z}, k \neq 0)$$

Exercise. If $f \in C_T^{(1)}(\mathbb{R})$ then $f' \in C_T(\mathbb{R})$ and $\gamma_0(f') = 0, \qquad \gamma_k(f) = \frac{T\gamma_k(f')}{2\pi i k} \quad (k \neq 0).$

Exercise. f is 2-periodic given by f(t) = |t| $(|t| \le 1)$. Compute $\gamma_k(f)$. (Hint. Consider f').

Theorem. If $f \in C_T(\mathbb{R})$ and $f' \in L^1_T(\mathbb{R})$ then

$$\gamma_k(f) = \frac{T}{2\pi i k} \gamma_k(f') \quad (k \in \mathbb{Z}, k \neq 0)$$

Theorem. $f \in L^1_T(\mathbb{R})$. $|\gamma_k(f)| \le ||f||_1 \le ||f||_\infty$ $\gamma_k(f) \to 0 \text{ if } |k| \to \infty.$ (Riemann–Lebesgue) $|\gamma_k(f)| \le \frac{1}{|k|^{\ell}} (\frac{T}{2\pi})^{\ell} ||f^{(\ell)}||_1 \text{ if } f \in C^{(\ell)}_T(\mathbb{R})$

Theorem. If $f \in C_T(\mathbb{R})$ and $f' \in L^1_T(\mathbb{R})$ then

$$\gamma_k(f) = \frac{T}{2\pi i k} \gamma_k(f') \quad (k \in \mathbb{Z}, k \neq 0)$$

Theorem. $f \in L^1_T(\mathbb{R})$. $|\gamma_k(f)| \le ||f||_1 \le ||f||_{\infty}$ $\gamma_k(f) \to 0 \text{ if } |k| \to \infty.$ (Riemann–Lebesgue) $|\gamma_k(f)| \le \frac{1}{|k|^{\ell}} (\frac{T}{2\pi})^{\ell} ||f^{(\ell)}||_1 \text{ if } f \in C^{(\ell)}_T(\mathbb{R})$

Theorem. $f \in C_T^{(\ell)}(\mathbb{R})$ $\|S_n(f) - f\|_{\infty} \leq \frac{1}{n^{\ell-1}} (\frac{T}{2\pi})^{\ell} \|f^{(\ell)}\|_1$

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

If
$$f \in C_T^{(1)}(\mathbb{R})$$
 then $2\pi i k \gamma_k(f) = T \gamma_k(f')$

Differential equations

Turn differential equations into algebraic equations.

With $f \in C_T(\mathbb{R})$, $a, b, c \in \mathbb{C}$, find a *T*-periodic *u* s.t.

a u'' + b u' + c u = f

Solution.
$$\gamma_k(f) = a \gamma_k(u'') + b \gamma_k(u') + c \gamma_k(u)$$

= $[a(\frac{2\pi ik}{T})^2 + b \frac{2\pi ik}{T} + c] \gamma_k(u)$

What about boundary conditions?

Applications. Electric circuits.

Program

- Periodic Functions
- Function spaces
- Fourier Series
- Convergence
- Error Estimates
- Differential equations
- Discrete ℓ^2 spaces

Parseval.
$$||f||_2^2 = \sum_{k=-\infty}^{\infty} |\gamma_k(f)|^2$$
 $(f \in L_T^2(\mathbb{R}))$
Proof. $||f||_2^2 = ||f - S_n(f)||_2^2 + ||S_n(f)||_2^2$ (Pythagoras)

$$\|S_n(f)\|_2^2 = \sum_{k=-n}^n |\gamma_k(f)|^2$$
 (Pythagoras)
$$\|m_{n\to\infty} \|f - S_n(f)\|_2^2 = 0$$
 (Theorem)

Parseval.
$$||f||_2^2 = \sum_{k=-\infty}^{\infty} |\gamma_k(f)|^2$$
 $(f \in L_T^2(\mathbb{R}))$

Consider $\ell^2(\mathbb{Z}) \equiv \{(\gamma_k)_{k \in \mathbb{Z}} \mid \gamma_k \in \mathbb{C}, |(\gamma_k)|_2 \equiv \sum |\gamma_k|^2 < \infty\}$ with inner product $\langle (\gamma_k), (\mu_k) \rangle \equiv \sum \gamma_k \overline{\mu_k}.$

Riesz–Fischer. The Fourier transform $f \rightsquigarrow (\gamma_k(f))_{k \in \mathbb{Z}}$ identifies the inner product spaces $L^2_T(\mathbb{R})$ and $\ell^2(\mathbb{Z})$. In particular, $(f,g) = \langle (\gamma_k(f)), (\gamma_k(g)) \rangle$ $(f,g \in L^2_T(\mathbb{R}))$.

Proof. $(\gamma_k) \in \ell^2(\mathbb{Z})$ then $(\sum_{|k| < n} \gamma_k \phi_k)_n$ Cauchy sequence in $L^2_T(\mathbb{R})$. $\|f + \zeta g\|_2^2 = \|f\|_2^2 + 2\operatorname{Re}(\zeta(f,g)) + \|g\|_2^2$ for all $f,g \in L^2_T(\mathbb{R}), \zeta \in \mathbb{C}$. $\|(\gamma_k) + \zeta(\mu_k)\|_2^2 = \|(\gamma_k)\|_2^2 + 2\operatorname{Re}(\zeta < (\gamma_k), (\mu_k) >) + \|(\mu_k)\|_2^2$ for all Now, apply Parseval and take $\zeta = 1$ and $\zeta = i$. $L_{T}^{1}(\mathbb{R}) \xrightarrow{\gamma(\cdot)} \ell^{\infty}(\mathbb{Z}), \quad |\gamma(f)|_{\infty} \leq ||f||_{1}, \text{ not surjective}$ $L^{2}(\mathbb{R}) \xrightarrow{\gamma(\cdot)} \ell^{2}(\mathbb{Z}), \quad |\gamma(f)|_{2} = ||f||_{2}, \text{ inversion exists.}$ Here, $\ell^{\infty}(\mathbb{Z}) \equiv \{(\gamma_{k}) \mid |(\gamma_{k})|_{\infty} < \infty\}$ and $\gamma(f) \equiv (\gamma_{k}(f)).$

 $L_T^1(\mathbb{R}) \xrightarrow{\gamma(\cdot)} \ell_0^\infty(\mathbb{Z}), \quad |\gamma(f)|_\infty \leq ||f||_1, \text{ not surjective}$ $L^2(\mathbb{R}) \xrightarrow{\gamma(\cdot)} \ell^2(\mathbb{Z}), \quad |\gamma(f)|_2 = ||f||_2, \text{ inversion exists.}$ $\text{Here, } \ell_0^\infty(\mathbb{Z}) \equiv \{(\gamma_k) \in \ell^\infty(\mathbb{Z}) \mid \gamma_k \to 0 \ (|k| \to \infty)\} \text{ and } \gamma(f) \equiv (\gamma_k(f)).$

