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Summary Lecture 1

Find appropriate set of basis functions to approximate
functions from interesting class.

fila,bl = C, lfllh <vVb—alflla < (®—a)|lflloo
Identify f and g if f =g a.e..

| - || attractive in theory because, ||f||% = (f, f),
Pythagoras, Cauchy-Schwartz, orthogonality.

| - ||lp with p € [1,00) attractive in theory because
C([a,b]) dense in LP([a,b])
Fatou’'s lemma (Lebesgue’'s dominated convergence):

() — f(@) all t, [fn(t)] < g(t) all n,t, ||gllp < oo
= | frn— fllp — O

| - |lso attractive in practice.

v:Z—C, |v|e<|v]2< V]2



Fourier Series
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e Periodic Functions



T >0
T-periodic functions

f:R—C is T-periodic if f(t+T)=f(t) VtelR

Example. For each k € Z,
t ~ cos(27rt%) and t ~ sin(27rt%) are T-periodic.

Fourier: these are essentially all T'-periodic functions:
each T-periodic function is in some sense a
linear combinations of these sines and cosines

T is the length of the period.

Note that exp(27rit%) = cos(27rt%) -+ isin(2wt%)



Functions on [a,a + T'] can be identified
with T-periodic functions:

If g is defined on [a,a + T], then

f)=g(t+kT) (teR) keZst t+kT €la,a+T)

defines a T-periodic function and f =g on [a,a + T1.
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f is 2-periodic




e Function spaces



If f is T-periodic, then

/Tf(t) dt = /T—I_Tf(t) dt (1 €R)
0 T

For T-periodic, integrable functions f on R define

I/l = = Iﬂwmt

The space of all complex- valued T-periodic functions for
which || f||1 < oo is denoted by LA 7(R).

_ 1t 2
nﬂu=¢;4|ﬂw|m

The space of all complex-valued T-periodic functions for
which ||f|l2 < oo is denoted by L? #(R).

Note. We identify functions that coincide a.e..



ANl < Nl fll2 < Iflloo = ess-sup{[f(2)] | z € R}

Cr(R) = {f € C(R) | f is T-periodic} ¢ L#(R) C L:(R)
L% (R) is an inner product space w.r.t.

1 T _
(Fo=2 ) f®g®)dt  (f.g€ LF(R))

For each k € Z, put ¢.(t) = exp(Qm‘t%) (t € R).

Theorem. The ¢, form an orthonormal system in LZ(R):

(P, 05) =0 ifk#5 and |opllo=1 (4,k€Z)
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Fourier series
For f € L1#(R), put
1 /T .k

W =73 [ F@e P T dr (ke 2)

vi(f) is the kth Fourier coefficient. For n € N,
n itk
Sn(f)®) = Y v e™T (t € R)
k=-—n

Sn(f) is the nth partial Fourier series.
The formal infinite sum is the Fourier series of f:

L k
f N Z/Vk 627th7.

Note. This is not statement on convergence!

Use exp(2ritL) = cos(2rtL)+isin(2wtL) for a formulation in sines and
cosines.



Fourier series
For f € L#(R),

1 (T .
W) =7 [ ST de = (£, 1)

v (f) is the kth Fourier coefficient. For n € N,

SuHNBO = 3 et = 3 (£,

k=-—n |k|<n

Note that  Sn(f) € C(®)(R).



Exercise. Consider f and g defined by

o= so={T e,

(a) Extend f and g to 2-periodic functions (T = 2).
(b) Are these functions in C(D(R), C7(R), LZ(R), LA(R)?

(c) Compute the Fourier series of g.
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L2-Convergence

Theorem. ||Sp(f) — flla = 0 (n — o0) if f € LA(R).

T herefore, for f € L%(R), in the L%—sense, we have that

@)

f= % (e

k—=—0o0



L2-Convergence

Theorem. ||Sp(f) — flla = 0 (n — o0) if f € LA(R).

Therefore, for f € L%(R), in the L%—sense, we have that

@)

f= % (e

k—=—0o0

What about [|Sh(f) — flleo OF |Sn(f)(t) — f(t)] for n — oco?



L2-Convergence

Theorem. ||Sp(f) — flla = 0 (n — o0) if f € LA(R).

T herefore, for f € L%(R), in the L%—sense, we have that

@)

f= % (e

k—=—0o0
What about [|Sh(f) — flleo OF |Sn(f)(t) — f(t)] for n — oco?

if e Cp+(R) and a t € R for which (S,(f)(t)) diverges:

additional smoothness is required for stronger convergence.



Convergence

Theorem. [[Sn(f) — flloo — 0 (n — o) if f € CSD(R).

Theorem. S,(f)(t) — f(t) (n — oo0) if f € Cp(R)
and f € ([t —4,¢t+ 8]) for some § > 0.

This last theorem is quite remarkable, since the Fourier
series requires f over a whole period, while the convergence

results needs some additional smoothness of f only close
to the point t of interest.

Results can be relaxed.



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f(t) =|t| on [-1,41].



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f(t) =|t| on [-1,41].

Example. If f € C(1(R) then f is of BV.
Proof. f(t) = f(0)+ [, f/(s)ds = f(0O) + f+-(t) — f-(t)  with

f.,.(t)z/o max(f'(s),0)ds and f(t)z/o max(—f'(s).0) ds



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f(t) =|t| on [-1,41].

Example. If f(t) = f(0) + [§g(s)ds with g € LL(R),
f is absolutely continuous (AC), then f is of BV: .

Proof. f(t) = f(0) + [;9(s)ds = f(0) + f+-(t) — f-(t)  with

f_|_(t)5/0 max(g(s),0)ds and f(t)z/o max(—g(s),0) ds



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f(t) =|t| on [-1,41].

Example. With

| +1 ifte]o,1]
g(t)_{—l ift € [—-1,0)

we have that |t| = [§g(s) ds.



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f(t) =|t| on [-1,41].

Example. With

| +1 ifte]o,1]
g(t)_{—l ift € [—-1,0)

we have that |t| = [§g(s) ds.
it| is AC, g is not AC, g is of BV.



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Example. f 2-periodic s.t. f(t) =tsin(2nx/t) (|t]| < 1)
f is continuous, but not of BV.




Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

A function f on R is of bounded variation (BV) if it is a
finite linear combination of non-decreasing functions.

Totaal variation norm. f BV iff TV(f) < oo, where
TV(f) = /OO ((c)de, where £(c) = #{t | f(t) = c}.

If f(t) = £(0) + [y 9(s)ds then TV(f) = ||g]lx.

If f defined on subset R? then ¢(c) is length {t | f(t) = ¢}.



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.




Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

Theorem. |lon(f) — flloo = 0 (n — o0) iff f € Cp(R)

1 n—1
Here, on(f) == > Su(f) Césaro sum
n
3=0



Uniform Convergence

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

Theorem. |lon(f) — flloo = 0 (n — o0) iff f € Cp(R)

1 n—1
Here, on(f) == > Su(f) Césaro sum
n
3=0

Example. f(t) = cos(2nts). Then,

Sn(f) = LT 4 2T = (n> 1),

whereas  on(f) =21 f (n € N).



Point-wise Convergence

Theorem. Sn(f)(t) — f(t) (n— oo0) if f € Cp(R)
and f e CU([t — 6,4+ §]) for some § > 0.




Point-wise Convergence

Theorem. Sp(f)(t) — f(t) (n— o0) if f € Cr(R)
and f is of BV on [t —§,t+ §] for some § > 0.




Point-wise Convergence

Theorem. Sp(f)(t) — f(t) (n— o0) if f € Cr(R)
and f is of BV on [t —§,t+ §] for some § > 0.

Even continuity is not needed




Point-wise Convergence

Theorem. Sp(f)(t) — f(t) (n— o0) if f € Cr(R)
and f is of BV on [t —§,t+ §] for some § > 0.

T heorem.

Sn(£)(t) = 3[ft+) + f(t)] (n— o0) if f € LL(R)
and f is of BV on [t —6,t + 8] for some § > O.

Here,  f(t+) = LU f(t+e)

f(t—) = am f(t—e)
and we assume that the (essential) limits exist.
Note that, for f € LL(R), f(¢) is not well-defined.




Point-wise Convergence

Theorem. Sp(f)(t) — f(t) (n— o0) if f € Cr(R)
and f is of BV on [t —§,t+ §] for some § > 0.

T heorem.

Sn(f)(t) = 3[f () + fF(t=)] (n— o0) if f e LE(R)
and f is of BV on [t —6,t + 8] for some § > O.

Example. g 2-periodic with
g(t) =41 ifte (0,1] and g(t) = -1 if t € (-1, 0]
is in LA(R) and of BV.




Theorem. |Sp(f) — fll2 =0 (n — o0) if f € LZ(R).

Theorem. [|Sp(f) — flloo — 0 (n — o0) if f € Cpr(R)
and f is of bounded variation.

T heorem.

Sn(f)(t) = 3[F () + fF(tE=)] (n— o0) if f e LE(R)
and f is of BV on [t —§,t + §] for some § > 0.




e Error Estimates



Error estimates

Theorem. If f € Cp(R) and f' € LA(R) then

() = sz (f)  (k€Z,k#0)

Proof. Integrate by parts.



Error estimates

Theorem. If f € Cp(R) and f' € LA(R) then

() = sz (f)  (k€Z,k#0)

Exercise. If f € C}l)(R) then f' € C+(R) and

T, (f")

vo(f") =0, Ye(f) = ik

(k # 0).

Exercise. f is 2-periodic given by f(t) = |t| (]t] < 1).
Compute v.(f). (Hint. Consider f/).



Error estimates

Theorem. If f € Cp(R) and f' € LA(R) then

() = sz (f)  (k€Z,k#0)

Theorem. f e LL(R).

YOI < 1112 < [[flloo
Ye(f) — 0 if |k| — oco. (Riemann—Lebesgue)

(I < e GOl I f € O (®)



Error estimates

Theorem. If f € Cp(R) and f' € LA(R) then

() = sz (f)  (k€Z,k#0)

Theorem. f e LL(R).

YOI < 1112 < [[flloo
Ye(f) — 0 if |k| — oco. (Riemann—Lebesgue)

(I < e GOl I f € O (®)

Theorem. f € C}@ (R)
1Sn(f) = flloo < 1 () IF P




e Differential equations



Differential equations
Turn differential equations into algebraic equations.
With f e Cr(R), a,b,c € C, find a T-periodic u s.t.

au"—l—bu/—l—cqu

Solution. ~v,(f) = ay(u") + by (u') + cyi(u)
= [a(ZZ¥)2 4 b 2T 4 ]y (u)

What about boundary conditions?

Applications. Electric circuits.



e Discrete ¢2 spaces



0@

Parseval.  |fls= Y 1w  (feLzR))
k=—o0
Proof. ||fllz = |If — Sn(Hl5 + IS (N3 (Pythagoras)
1Sn (O3 =0, ()2 (Pythagoras)

liMp—oo ||f — Sn(f)]3=0 (Theorem)



0@

Parseval.  |IflI3= Y w(HIF  (feLF®)
k——o0

Consider ¢2(Z) = {(vt)pez | % € C, 1(velo = X 1k]? < o0}

with inner product  <(v), (ug)>= 3 v fig-

Riesz—Fischer. The Fourier transform f ~ (v,(f)),c7

identifies the inner product spaces LZ(R) and ¢%(Z).
In particular,  (f,9) =<(w(f)), (w(9))>  (f.g € LH(R)).

Proof. (v) € ¢%(Z) then (Zlen v ¢r)n Cauchy sequence in L2(R).
If + Callz = [IflI3 + 2Re(¢(f,9)) + llgllz for all f,g € L#(R), ¢ € C.

|(ve) + C(uk)lg = |(7k)|§ + 2Re((<(k), (ui)>) + |(uk)|§ for all .. ..
Now, apply Parseval and take ( =1 and ¢ = .



Li(R) 7G) (Z), |v(Hla < IIfllL, not surjective

L2(R) 70 2Z),  |v(Hl>=Ifllo, inversion exists.

Here, ¢(Z) = {(7) | |(ve)l w<oo} and ~(f) = (w(f)).




Li(R) 7G) 62(Z), |v(Hlo < NIfll1, not surjective

L2(R) 70 2Z),  |v(Hl>=Ifllo, inversion exists.

Here, (3°(Z) = {(vx) € £°(Z) |y — 0 (k[ — o0)} and ~v(f) = (w([f)).




